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1 Modelling Rational Agents

1.1 Overview

We are going to study a general model of belief, desire, and rational choice. At the
heart of this model lies a certain conception of how beliefs and desires combine to
produce actions.

Let’s start with an example.

Example 1.1 (The Miners Problem)
Ten miners are trapped in a shaft and threatened by rising water. You don’t
know whether the miners are in shaft 𝐴 or in shaft 𝐵. You have enough sand-
bags to block one shaft, but not both. If you block the right shaft, all miners
will survive. If you block the wrong shaft, all of them will die. If you do noth-
ing, both shafts will fill halfway with water and one miner (the shortest of the
ten) will die.

What should you do?
There’s a sense in which the answer depends on where the miners are. If they are

in shaft 𝐴 then it’s best to block shaft 𝐴; if they are in 𝐵, you should block 𝐵. The
problem is that you need to make your choice without knowing where the miners
are. You can’t let your choice be guided by the unknown location of the miners. The
question on which we will focus is not what you should do in light of all the facts, but
what you should do in light of your information. We want to know what a rational
agent would do in your state of uncertainty.

A similar ambiguity arises for goals or values. Arguably, it is better to let one
person die than to take a high risk of ten people dying. But the matter isn’t trivial,
and many philosophers would disagree. Suppose you are one of these philosophers:
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1 Modelling Rational Agents

you think it would be wrong to do block neither shaft and sacrifice the shortest miner.
By your values, it would be better to block either shaft 𝐴 or shaft 𝐵.

When we ask what an agent should do in a given decision situation, we will always
mean what they should do in light of whatever they believe about their situation and
of whatever goals or values they happen to have. We will also ask whether those
beliefs and goals are themselves reasonable. But it is best to treat these as separate
questions.

So we have three questions:

1. How should you act so as to further your goals in light of your beliefs?
2. What should you believe?
3. What should you desire? What are rational goals or values?

These are big questions. By the end of this course, we will not have found complete
and definite answers, but we will at least have clarified the questions and made some
progress towards an answer.

Exercise 1.1 ††
In a surprise outbreak of small pox (a deadly infectious disease), a doctor
recommends vaccination for an infant, knowing that around one in a million
children die from the vaccination. The infant gets the vaccination and dies.
There’s a sense in which the doctor’s recommendation was wrong, and a sense
in which it was right. Can you explain these senses?

1.2 Decision matrices

In decision theory, decision problems are traditionally decomposed into three ingre-
dients, called ‘acts’, ‘states’, and ‘outcomes’.

The acts are the options between which the agent has to choose. In the Miners
Problem, there are three acts: block shaft 𝐴, block shaft 𝐵, and block neither shaft.
(‘Possible act’ would be a better name: if, say, you decide to block shaft 𝐵, then
blocking shaft 𝐴 is not an actual act; it’s not something you do, but it’s something
you could have done.)

The outcomes are whatever might come about as a result of the agent’s choice.
In the Miners Problem, there are three relevant outcomes: all miners survive, all
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1 Modelling Rational Agents

miners die, and all but one survive. (Again, only one of these will actually come
about; the others are merely possible outcomes.)

Each of the acts leads to one of the outcomes, but the decision-maker often doesn’t
know how the outcomes are associated with the acts. In the Miners Problem, you
don’t know whether blocking shaft 𝐴 would lead to all miners surviving or to all
miners dying. It depends on where the miners are.

The dependency between acts and outcomes is captured by the states. Informally,
a state specifies the external circumstances that determine which choice would lead
to which outcome. The Miners Problem has two relevant states: that the miners are
in shaft 𝐴, and that they are in shaft 𝐵. (In real decision problems, there are often
many more states, just as there are many more acts.)

We can now summarize the Miners Problem in a table, called a decision matrix:

Miners in 𝐴 Miners in 𝐵
Block 𝐴 all 10 live all 10 die
Block 𝐵 all 10 die all 10 live

Block neither 1 dies 1 dies

The rows in a decision matrix always represent the acts, the columns the states,
and the cells the outcome of performing the relevant act in the relevant state.

Let’s do another example.

Example 1.2 (The Mushroom Problem)
You find a mushroom. You’re not sure whether it’s a delicious paddy straw or
a poisonous death cap. You wonder whether you should eat it.

Here, the decision matrix might look as follows. Make sure you understand how
to read the matrix.

Paddy straw Death cap
Eat satisfied dead

Don’t eat hungry hungry
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1 Modelling Rational Agents

Sometimes the “states” are actions of other people, as in the next example.

Example 1.3 (The Prisoner’s Dilemma)
You and your partner have been arrested for some crime and are separately
interrogated. If you both confess, you will each serve five years in prison. If
one of you confesses and the other remains silent, the one who confesses is
set free, the other has to serve eight years. If you both remain silent, you can
only be convicted of obstruction of justice and will serve one year each.

The Prisoner’s Dilemma combines two decision problems: one for you and one
for your partner. We could also think about a third problem that you face as a group.
But let’s focus on the decision you have to make.

Your choice is between confessing and remaining silent. These are the acts. What
are the possible outcomes? If you only care about your own prison term, the out-
comes are 5 years, 8 years, 0 years, and 1 year. Which act leads to which outcome
depends on whether your partner confesses or remains silent. These are the states.
In matrix form:

Partner confesses Partner silent
Confess 5 years 0 years

Remain silent 8 years 1 year

Notice that if your goal is to minimize your prison term, then confessing leads to a
better outcome no matter what your partner does.

I’ve assumed that you only care about your own prison term. What if you also care
about your partner’s fate? Then your decision problem is not adequately summarized
by the above matrix, because the cells in the matrix don’t say what happens to your
partner. The “outcomes” in a decision problem must specify everything that matters
to the agent. If you care about your partner, the matrix might look as follows.

Partner confesses Partner silent
Confess both 5 years you 0, partner 8 years

Remain silent you 8 years, partner 0 both 1 year

10



1 Modelling Rational Agents

Now confessing is no longer the obviously best choice. If, for example, your aim
is to minimize the combined prison term for you and your partner, then remaining
silent is better, no matter what your partner does.

Exercise 1.2 †
Draw the decision matrix for the game Rock, Paper, Scissors, assuming all
you care about is whether you win.

Exercise 1.3 †††
In an adequate decision matrix, the states must be independent of the acts:
which state obtains should not be affected by which act is chosen. The follow-
ing decision matrix was drawn up by a student who wonders whether to study
for an exam. It suggests that not studying is guaranteed to lead to a better out-
come. However, the matrix violates the independence requirement. Can you
draw an adequate matrix for the student’s decision problem?

Will Pass Won’t Pass
Study Pass & No Fun Fail & No Fun

Don’t Study Pass & Fun Fail & Fun

1.3 Belief, desire, and degrees

To solve a decision problem we generally need to know what the agent wants and
what she believes. Typically, we also need to know how strong these attitudes are.

Return to the Mushroom Problem. Suppose you like eating a delicious mushroom,
and you dislike being hungry and being dead. We might label the outcomes ‘good’
or ‘bad’, reflecting your desires:

Paddy straw Death cap
Eat satisfied (good) dead (bad)

Don’t eat hungry (bad) hungry (bad)
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1 Modelling Rational Agents

Now it looks like eating the mushroom is the better option: not eating is guaranteed
to lead to a bad outcome, while eating at least gives you a shot at a good outcome.

The problem is that you probably prefer being hungry to being dead. Both out-
comes are bad, but one is much worse than the other. We need to represent not only
the valence of your desires – whether an outcome is something you’d like or dislike
– but also their strength.

An obvious way to represent both valence and strength is to label the outcomes
with numbers, like so:

Paddy straw Death cap
Eat satisfied (+1) dead (-100)

Don’t eat hungry (-1) hungry (-1)

The outcome of eating a paddy straw gets a value of +1, because it’s moderately
desirable. The other outcomes are negative, but death (-100) is rated much worse
than hunger (-1).

The numerical values assigned to outcomes are called utilities (or sometimes de-
sirabilities). Utilities measure the relative strength and valence of desire. We will
have a lot more to say on what that means in due course.

We also need to represent the strength of your beliefs. Whether you should eat
the mushroom arguably depends on how confident you are that it is a paddy straw.
We will once again represent the valence and strength of beliefs by numbers, but this
time we only use numbers between 0 and 1. If an agent is certain that a given state
obtains, then her degree of belief in that state is 1; if she is certain that the state does
not obtain, her degree of belief is 0; if she is completely undecided, her degree of
belief is 1/2. These numbers are called credences.

In classical decision theory, we are not interested in the agent’s beliefs about the
acts or the outcomes, but only in her beliefs about the states. The fully labelled
mushroom matrix might therefore look as follows, assuming you are fairly confident,
but by no means certain, that the mushroom is a paddy straw.

Paddy straw (0.8) Death cap (0.2)
Eat satisfied (+1) dead (-100)

Don’t eat hungry (-1) hungry (-1)
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1 Modelling Rational Agents

The numbers 0.8 and 0.2 in the column headings specify your degree of belief in the
two states.

The idea that beliefs vary in strength has proved fruitful not just in decision theory,
but also in epistemology, philosophy of science, artificial intelligence, statistics, and
other areas. The keyword to look out for is ‘Bayesian’: if a theory or framework is
called Bayesian, this usually means that it involves a measure of (rational) degree of
belief. The name refers to Thomas Bayes (1701–1761), who made an important early
contribution to the movement. We will look at some applications of “Bayesianism”
in later chapters.

Much of the power of Bayesian models derives from the assumption that ratio-
nal degrees of belief satisfy the mathematical conditions on a probability function.
Among other things, this means that the credences assigned to the states in a decision
problem must add up to 1. For example, if you are 80 percent (0.8) confident that the
mushroom is a paddy straw, then you can’t be more than 20 percent confident that
the mushroom is a death cap. It would be OK to reserve some credence for further
possibilities, so that your credence in the paddy straw possibility and your credence
in the death cap possibility add up to less than 1. But then our decision matrix should
include further columns for the other possibilities.

Are there also formal constraints on rational degrees of desire? This is less obvi-
ous. The fact that your utility for eating a paddy straw is +1, for example, does not
seem to entail anything about your utility for eating a death cap. In later chapters, we
will see that utilities nonetheless have an interesting formal structure – a structure
that is entangled with the structure of belief.

We will also discuss more substantive, non-formal constraints on belief and desire.
Economists often assume that rational agents are entirely self-interested. Accord-
ingly, the term ‘utility’ is often associated with personal wealth or welfare. That’s
not how we will use the term. Real people don’t just care about themselves, and
there is nothing wrong with that.

Exercise 1.4 †
Add utilities and (reasonable) credences to your decision matrix for Rock, Pa-
per, Scissors.
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1 Modelling Rational Agents

1.4 Solving decision problems

Suppose we have drawn up a decision matrix and filled in the credences and utilities.
We then have all the ingredients to “solve” the decision problem – to say what the
agent should do, in light of her goals and beliefs.

Sometimes the task is easy because some act is best in every state. We’ve al-
ready seen an example in the Prisoner’s Dilemma, given that all you care about is
minimizing your own prison term. The fully labelled matrix might look as follows.

Partner confesses (0.5) Partner silent (0.5)
Confess 5 years (-5) 0 years (0)

Remain silent 8 years (-8) 1 year (-1)

Since confessing leads to a better outcome no matter what your partner does, it is
obviously the right choice. We don’t even need to look at what you think your partner
will do.

An act that leads to a better outcome than another in every state is said to dominate
the other act. An act that dominates all other acts is called dominant. For agents
who only care about themselves, confessing is the dominant option in the Prisoner’s
Dilemma.

The Prisoner’s Dilemma is famous because it refutes the idea that good things will
always come about if people only look after their own interests. If the two parties
in the Prisoner’s Dilemma want to minimize their own prison term, they end up 5
years in prison. If they had cared enough about each other, they could have gotten
away with 1.

Often there is no dominant act. Recall the Mushroom Problem.

Paddy straw (0.8) Death cap (0.2)
Eat satisfied (+1) dead (-100)

Don’t eat hungry (-1) hungry (-1)

It is better to eat the mushroom if it’s a paddy straw, but better not to eat it if it’s a
death cap. Neither option is dominant.

14



1 Modelling Rational Agents

You might say that it’s best not to eat the mushroom because eating could lead to
a really bad outcome, with utility -100, while not eating at worst leads to an outcome
with utility -1. This is an instance of worst-case reasoning. The technical term is
maximin because worst-case reasoning tells you to choose the option that maximizes
the minimal utility.

People sometimes appeal to worst-case reasoning when giving health advice or
policy recommendations, and it works out OK in the Mushroom Problem. As a
general decision rule, however, it is indefensible.

Imagine you have 100 sheep who have consumed water from a contaminated well
and will die unless they’re given an antidote. Statistically, one in a thousand sheep
die even when given the antidote. According to worst-case reasoning there is no
point of giving your sheep the antidote: either way, the worst possible outcome is
that all the sheep will die. In fact, if we take into account the cost of the antidote,
then worst-case reasoning suggests that you should not give the antidote (even if it
is cheap).

Worst-case reasoning is indefensible because it doesn’t take into account the like-
lihood of the worst case, and because it ignores what might happen if the worst case
doesn’t come about. A sensible decision rule should look at all possible outcomes,
paying special attention to really bad and really good ones, but also taking into ac-
count their likelihood.

The standard recipe for solving decision problems evaluates each act by the weighted
average of the utility of all outcomes the act might bring about, weighted by the prob-
ability of the relevant state, as given by the agent’s credence.

Let’s first recall how simple averages are computed. If we have 𝑛 numbers 𝑥1, 𝑥2,
…, 𝑥𝑛, then their average is

𝑥1 + 𝑥2 + … + 𝑥𝑛
𝑛 = 1

𝑛 ⋅ 𝑥1 + 1
𝑛 ⋅ 𝑥2 + … + 1

𝑛 ⋅ 𝑥𝑛.

(‘⋅’ stands for multiplication.) Each number 𝑥𝑖 is given the same weight, 1/𝑛. In a
weighted average, the weights can be different for different numbers.

Let’s compute the weighted average of the utility that might result from eating the
mushroom in the Mushroom Problem. We multiply the utility of each outcome this
act might bring about (+1 and -100) by your credence in the corresponding state (0.8
and 0.2), and then add up these products. The result is called the expected utility of
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1 Modelling Rational Agents

eating the mushroom.

EU(Eat) = 0.8 ⋅ (+1) + 0.2 ⋅ (−100) = −19.2.

In general, suppose an act 𝐴 leads to outcomes 𝑂1, … , 𝑂𝑛 respectively in states
𝑆1, … , 𝑆𝑛. Let ‘Cr(𝑆1)’ denote the agent’s degree of belief (or credence) in 𝑆1,
‘Cr(𝑆2)’ her credence in 𝑆2, etc. Let ‘U(𝑂1)’ denote the utility of 𝑂1, ‘U(𝑂2)’
the utility of 𝑂2, etc. Then the expected utility of 𝐴 is defined as

EU(𝐴) = Cr(𝑆1) ⋅ U(𝑂1) + … + Cr(𝑆𝑛) ⋅ U(𝑂𝑛).

You’ll often see this abbreviated using the ‘sum’ symbol ∑:

EU(𝐴) =
𝑛

∑
𝑖=1

Cr(𝑆𝑖) ⋅ U(𝑂𝑖).

The term ‘expected utility’ is a little misleading. If you eat the mushroom in the
Mushroom Problem, you are guaranteed to get either an outcome with utility +1 or
an outcome with utility -100. You would not expect to get -19.2 units of utility. In
the confusing lingo of probability theory, ‘expectation’ simply means ‘probability-
weighted average’. The “expected outcome” of a die toss, for example, is

1/6 ⋅ 1 + 1/6 ⋅ 2 + 1/6 ⋅ 3 + 1/6 ⋅ 4 + 1/6 ⋅ 5 + 1/6 ⋅ 6 = 3.5,

assuming all six outcomes have probability 1/6. Here, too, it would be odd to literally
expect the outcome 3.5.

Let’s calculate the expected utility of not eating the mushroom:

EU(Not Eat) = 0.8 ⋅ −1 + 0.2 ⋅ −1 = −1.

No surprise here. If all the numbers 𝑥1, … , 𝑥𝑛 are the same, their weighted average
will again be that number.

Now we can state one of the central assumptions of our model:

16



1 Modelling Rational Agents

The MEU Principle
Rational agents maximize expected utility.

That is, when faced with a decision problem, rational agents choose an option with
greatest expected utility.

Exercise 1.5 †
Put (sensible) utilities and credences into the decision matrix for the Miners
Problem, and compute the expected utility of the three acts.

Exercise 1.6 ††
Explain why the following decision rule is not generally reasonable: Choose
an act that leads to the best outcome in the most likely state (or in one of the
most likely states, if there is a tie).

Exercise 1.7 †††
Show that if there is a dominant act, then this act maximizes expected utility.

Exercise 1.8 ††
Is this correct? If an act is certain not to bring about the best outcome, then
it should not be chosen.

In the Mushroom Problem, the MEU Principle says that you shouldn’t eat the
mushroom. Although the most likely outcome of eating the mushroom has a positive
utility, the expected utility of eating the mushroom is -19.2. A really good or really
bad outcome can have a big impact on an act’s expected utility even if the outcome
is very improbable.

This effect is easy to miss. It is tempting to think, for example, that avoiding a
plane trip in order to reduce one’s carbon emissions is a pointless gesture: the plane
isn’t going to stay on the ground just because you don’t take the trip. True. But
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1 Modelling Rational Agents

there is a chance that fewer flights will be scheduled in the future as a result of your
choice. If, one by one, fewer people decide to fly, at some point fewer flights will be
scheduled. So there must be some chance that avoiding a single plane trip will reduce
overall air traffic. To be sure, the chance is tiny. On the other hand, the reduction in
carbon emissions would be huge. On average, it has been estimated, a single person
not taking a single flight reduces overall emissions by a little less than the flight’s
emissions divided by the number of seats on the plane. This is the “expected” effect
of your choice, unless your case is unusual in other respects.

Even Nobel-price winning decision theorists are not immune to this kind of er-
ror. In 1980, John Harsanyi argued that utilitarian citizens who care only about the
common good still have no good reason to participate in elections, given that any
individual vote is almost certain not to make a difference. In one of his simplified
examples, he assumes that a “very desirable policy measure 𝑀” gets implemented
only if 1000 eligible voters all come to the polls and vote for it. Voting entails a mi-
nor cost in terms of convenience, but it would be better for everyone if the measure
is passed than if (say) nobody votes and the measure isn’t passed. Harsanyi claims
that if the voters are rational then “each voter will vote only if he is reasonably sure
that all other 999 voters will vote”. Is this true?

Let’s assume that each vote would decrease the overall welfare in the population
by 1 unit (due the inconvenience for the voter). Since it would be better if everyone
voted and the measure 𝑀 were passed than if nobody voted and the measure fails, 𝑀
must increase overall welfare by more than 1000. Now consider a utilitarian voter
who only cares about overall welfare. If you do the math, you can see that voting
maximizes expected utility for such a voter even if her credence that all the others
will vote is as low as 0.001. She doesn’t need to be “reasonably sure”, as Harsanyi
claims, that all the others will vote.

Exercise 1.9 †††
Do the math. Describe the decision matrix for a voter in Harsanyi’s scenario,
and confirm that voting maximizes expected utility if the probability of all
others voting is 0.001.
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Exercise 1.10 (Pascal’s Wager) ††
One of the first recorded uses of the MEU Principle dates back to 1653, when
Blaise Pascal presented the following argument for leading a pious life. (I
paraphrase.)
An impious life is more pleasant and convenient than a pious life. But if God
exists, then a pious life is rewarded by salvation while an impious life is pun-
ished by eternal damnation. Thus it is rational to lead a pious life even if one
gives quite low credence to the existence of God.
Draw the matrix for the decision problem as Pascal conceives it and verify
that a pious life has greater expected utility than an impious life.

Exercise 1.11 ††
Has Pascal identified the acts, states, and outcomes correctly? If not, what did
he get wrong?

1.5 The problem of intentionality

A major obstacle to the systematic study of belief and desire is the apparent famil-
iarity of the objects. We think and talk about beliefs and desires (our own, and other
people’s) from an early age, and continue to do so every day. We may sometimes ask
how a peculiar belief or unusual desire came about, but the nature and existence of
the states seems unproblematic. It takes effort to appreciate what philosophers call
the problem of intentionality: the problem of explaining what beliefs and desires
ultimately are.

To see the problem, assume (as many philosophers do) that people are nothing but
large swarms of particles. What about such a swarm of particles could settle that it
believes in, say, extraterrestrial life? Alternatively, ask yourself what we would have
to do in order to create an artificial agent with a belief in extraterrestrial life. (Notice
that it is neither necessary nor sufficient that the agent produces the sounds ‘there is
life on other planets’.)

If we allow for degrees of belief and desire, the problem of intentionality takes on
a slightly different form. We need to explain what it ultimately means that an agent
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has a belief or desire with a particular strength. What, exactly, do I mean when I
say that my credence in extraterrestrial life is greater than 0.5, or that I give greater
utility to sleeping in bed than to sleeping on the floor?

These may sound like obscure philosophical questions, but they are important for
a proper assessment of the model we are going to study. There is a lot of cross-talk in
the literature because different authors mean somewhat different things by ‘credence’
and ‘utility’.

Conversely, it has been argued that the kind of model we will study holds the key
to answering the problem of intentionality. Very roughly, the idea is that what it
means to have such-and-such beliefs and desires is to act in a way that would make
sense in light of these beliefs and desires.

I speak of beliefs and desires, but it might be better to stick with ‘credence’ and
‘utility’. We should not assume that our ordinary psychological vocabulary precisely
carves out the object of our investigation. The word ‘desire’, for example, can suggest
an unreflective propensity or aversion. In that sense, rational agents often act against
their desires, as when I refrain from eating a fourth slice of cake, knowing that I
will feel sick afterwards. An agent’s utilities, by contrast, are assumed to comprise
everything that matters to the agent – everything that motivates them, from bodily
cravings to moral principles. It does not matter whether we would ordinarily call
these things ‘desires’.

Similar reservations apply to ‘belief’. For example, some hold that one can have
genuine beliefs only if one has a language (or “conceptually structured mental repre-
sentations”, whatever that is). We don’t make any such assumption. Many animals
have an inner representation of their environment that can be usefully modelled by
a credence function, even though they don’t have a language.

The situation we here face is ubiquitous in science. Scientific theories often in-
volve expressions that are given a special, technical sense. Newton’s laws of motion
speak of ‘mass’ and ‘force’, but Newton did not use these words in their ordinary
sense; nor did he explicitly give them a new meaning: he nowhere defines ‘mass’ and
‘force’. Instead, he tells us what these things do: objects accelerate at a rate equal to
the ratio between the force acting upon them and their mass, and so on. These laws
implicitly define the Newtonian concept of mass and force.

We will adopt a similar perspective towards credence and utility. We won’t pretend
that we have a perfect grip on these quantities from the outset. Informally, an agent’s
credences capture how she takes the world to be, while her utilities capture how she
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would like the world to be. We’ll start with this vague and intuitive conception, and
successively refine it as we develop our model.

One last point. I emphasize that we are studying a model of belief, desire, and
rational choice. Outside fundamental physics, models always involve simplifications
and idealisations. “All models are wrong”, as the statistician George Box once put it.
The aim of a model (outside fundamental physics) is not to provide a complete and
fully accurate description of a certain aspect of reality – be it the diffusion of gases,
the evolution of species, or the relationship between interest rates and inflation. The
aim is to isolate simple and robust patterns in the relevant facts. It is not an objection
to a model that it leaves out details or fails to explain various edge cases.

The model we will study is an extreme case insofar as it abstracts away from
most of the contingencies that make human behaviour interesting. Our topic is not
specifically human behaviour and human cognition, but what unifies all types of
rational behaviour and cognition.

Essay Question 1.1

Ordinary people arguably don’t have fully precise and determinate degrees of
belief. Suppose we model an agent’s attitudes with an “imprecise” probability
measure that assigns to each state a range of probabilities – ‘between 0.2 and
0.4’, for example. Can you find (and defend) a decision rule for agents of this
kind?

Sources and Further Reading
The use of decision matrices, dominance reasoning, and the MEU Principle is best
studied through examples. A good starting point is Alan Hájek’s Stanford Encyclo-
pedia entry on Pascal’s Wager (2017), which carefully dissects exercise 1.10.

General rules for how to identify the acts, states, and outcomes for a decision prob-
lem can be found in chapter 2 of James Joyce’s The Foundations of Causal Decision
Theory (1999). The details are hard.

You may have come across an alternative definition of expected utility, using condi-
tional probabilities and without a requirement that states be independent of the acts.
We’ll look at this formulation in chapter 9.
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1 Modelling Rational Agents

The maximin rule belongs to a family of decision rules that don’t take into account the
probability of the states. Such rules are sometimes thought to be needed for “decision-
making under uncertainty”, where – unlike in cases of “decision-making under risk”
– the agent lacks information about the relevant probabilities. This makes sense if
we assume (as many authors do) that the probabilities that figure in the definition
of expected utility are objective quantities. In our Bayesian model, the probabilities
are simply degrees of belief, and there is no such thing as “decision-making under
uncertainty”, where probabilistic information is unavailable. One advantage of the
Bayesian approach is that it is hard to find a sensible decision rule that doesn’t in-
volve probabilities. Even imprecise probabilities – the topic of the essay question –
raise serious problems: see Adam Elga, “Subjective Probabilities Should Be Sharp”
(2010).

For a quick introduction to the problem of intentionality and the possibility of a
decision-theoretic answer, see Ansgar Beckermann, “Is there a problem about inten-
tionality?” (1996).

For some background on scientific modelling and idealisations, see Alisa Bokulich,
“How scientific models can explain” (2011), and Mark Colyvan, “Idealisations in
normative models” (2013).

Harsanyi’s argument about utilitarian voters appears in his 1980 paper “Rule utili-
tarianism, rights, obligations and the theory of rational behavior”. For more on the
expected good caused by voting, not flying, and the like, see chapter 6 of William
MacAskill, Doing Good Better: Effective Altruism and a Radical New Way to Make
a Difference (2015).

The Miners Problem is from Nico Kolodny and John MacFarlane, “Ifs and Oughts”
(2010).
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2 Belief as Probability

2.1 Subjective and objective probability

Beliefs vary in strength. I believe that the 37 bus goes to Waverley station, and that
there are busses from Waverley to the airport, but the second belief is stronger than
the first. With some idealization, we can imagine that for any propositions 𝐴 and
𝐵, a rational agent is either more confident in 𝐴 than in 𝐵, more confident in 𝐵 than
in 𝐴, or equally confident in both. The agent’s belief state then effectively sorts
the propositions from ‘least confident’ to ‘most confident’, and we can represent a
proposition’s place in the ordering by a number between 0 (‘least confident’) and 1
(‘most confident’). This number is the agent’s degree of belief, or credence, in the
proposition. My credence that the 37 bus goes to Waverley, for example, might be
around 0.8, while my credence that there are busses from Waverley to the airport is
around 0.95.

The core assumption that unifies “Bayesian” approaches to epistemology, statis-
tics, decision theory, and other areas is that rational degrees of belief obey the formal
rules of the probability calculus. For that reason, degrees of belief are also called
subjective probabilities or even just probabilities. But this terminology can give
rise to confusion because the word ‘probability’ has other, and more prominent, uses.

Textbooks in science and statistics often define probability as relative frequency.
On this usage, the probability of an outcome is the proportion of that type of outcome
in some base class of events. For example, on the textbook definition, to say that
the probability of getting a six when throwing a regular die is 1/6 is to say that the
proportion of sixes in a large class of throws is (or converges to) 1/6.

Another use of ‘probability’ is related to determinism. Consider a particular die
in mid-roll. Could one, in principle, figure out how the die will land, given full
information about its present physical state, the surrounding air, the surface on which
it rolls, and so on? If yes, there’s a sense in which the outcome is not a matter of
probability. Quantum physics seems to suggest that the answer is no: that the laws
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of nature together with the present state of the world only fix a certain probability
for future events. This kind of probability is sometimes called ‘chance’.

Chance and relative frequency are examples of objective probability. Unlike
degrees of belief, they are not relative to an agent; they don’t vary between you and
me. You and I may have different opinions about chances or relative frequencies;
but that would be an ordinary disagreement. At least one of us would be wrong.
By contrast, if you are more confident that the die will land six than me, then your
subjective probability for that outcome really is greater than mine.

In this course, when I talk about credence or subjective probability, I do not mean
belief about objective probability. I simply mean degree of belief. Our Bayesian
model here diverges from frequentist or objectivist models that define expected util-
ity in terms of objective probability. The MEU Principle is then restricted to cases in
which the agent knows the relevant objective probabilities. (I mentioned this under
“Sources and Further Reading” in the previous chapter.) On the Bayesian conception
of probability, the MEU Principle does not presuppose knowledge of probabilities;
it only presupposes that the agent has a definite degree of belief in the relevant states.

2.2 Probability theory

What all forms of probability, objective and subjective, have in common is a cer-
tain abstract structure, a structure that is studied by the mathematical discipline of
probability theory.

Mathematically, a probability measure is a certain kind of function – in the math-
ematical sense: a mapping – from some objects to real numbers. The objects that
are mapped to numbers are usually called ‘events’, but in philosophy we call them
‘propositions’.

The main assumption probability theory makes about propositions (the objects
that are assigned probabilities) is the following.

Booleanism
Whenever some proposition 𝐴 has a probability (possibly 0), then so does its
negation ¬𝐴 (‘not 𝐴’); whenever two propositions 𝐴 and 𝐵 both have a prob-
ability, then so does their conjunction 𝐴 ∧ 𝐵 (‘𝐴 and 𝐵’) and their disjunction
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𝐴 ∨ 𝐵 (‘𝐴 or 𝐵’).

(Here and henceforth, I use upper-case letters 𝐴, 𝐵, 𝐶, etc. as schematic variables for
arbitrary propositions.)

In our application, Booleanism implies that if an agent has a definite degree of
belief in some propositions, then she also has a definite degree of belief in any propo-
sition that can be construed from these in terms of negation, conjunction, and dis-
junction.

What sorts of things are propositions? Probability theory doesn’t say. In line with
our discussion in the previous chapter, we will informally understand propositions as
possible states of the world. This is not a formal definition, since I haven’t defined
‘possible state of the world’. But I’ll make a few remarks that should help clarify
what I have in mind.

Different sentences can represent the very same state of the world. Consider the
current temperature in Edinburgh. I don’t know what it is. One possibility (one
possible state of the world) is that it is 10∘C. There is also a possibility that it is
50∘F. How are these related? Since 10∘C = 50∘F, the second possibility is not an
alternative to the first. It is the very same possibility, expressed with a different unit.
The sentences ‘It is 10∘C in Edinburgh’ and ‘It is 50∘F in Edinburgh’ are different
ways of picking out the same (possible) state of the world.

Like sentences, possible states of the world can be negated, conjoined, and dis-
joined. The negation of the possibility that it is 10∘C is the possibility that it is not
10∘C. If we negate that negated state, we get back the original state: the possibility
that it is not not 10∘C is nothing but the possibility that it is 10∘C. In general, if
we understand propositions as possible states of the world, then logically equivalent
propositions are not just equivalent, but identical.

Possible states of the world can be more or less specific. That the temperature is
10∘C is more specific than that it is between 7∘C and 12∘C. It is often useful to think
of unspecific states as sets of more specific states. We can think of the possibility
that it is between 7∘C and 12∘C as a collection of several possibilities, perhaps as
the set { 7∘C, 8∘C, 9∘C, 10∘C, 11∘C, 12∘C }. The unspecific possibility obtains just
in case one of the more specific possibilities obtains. A maximally specific state is
called a possible world (in philosophy, and an ‘outcome’ in many other disciplines).
We will sometimes model propositions as sets of possible worlds.
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I should warn that the word ‘proposition’ has many uses in philosophy. In this
course, all we mean by ‘proposition’ is ‘object of credence’. And ‘credence’, recall,
is a semi-technical term for a certain quantity in the model we are building. It is
pointless to argue over the nature of propositions before we have spelled out the
model in more detail. Also, by ‘possible world’ I just mean ‘maximally specific
proposition’. The identification of propositions with sets of possible worlds is not
supposed to be an informative reduction.

Exercise 2.1 †
First a reminder of some terminology from set theory. The intersection of two
sets 𝐴 and 𝐵 is the set of objects that are in both 𝐴 and 𝐵. The union of 𝐴 and
𝐵 is the set of objects that are in one or both of 𝐴 and 𝐵. The complement of
a set 𝐴 is the set of objects that are not in 𝐴. 𝐴 is a subset of 𝐵 if all objects in
𝐴 are also in 𝐵. 𝐴 is a superset of 𝐵 if all objects in 𝐵 are also in 𝐴.
Now, assume propositions are modelled as sets of possible worlds. Then the
negation ¬𝐴 of a proposition 𝐴 is the complement of 𝐴.

(a) What is the conjunction 𝐴 ∧ 𝐵 of two propositions, in set theory terms?
(b) What is the disjunction 𝐴 ∨ 𝐵?
(c) What, in set theory terms, does it mean that a proposition 𝐴 entails a

proposition 𝐵?

Exercise 2.2 ††
Not all objects of probability are possible states of the world. Booleanism
entails that at least one object of probability is impossible. Can you explain
why?

Let’s continue with the mathematics of probability. A probability measure, I said,
is a function from propositions to numbers that satisfies certain conditions. These
conditions are called probability axioms or Kolmogorov axioms, because their
canonical statement was given by the Russian mathematician Andrej Kolmogorov
in 1933.
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The Kolmogorov Axioms
(i) For any proposition 𝐴, 0 ≤ Cr(𝐴) ≤ 1.
(ii) If 𝐴 is logically necessary, then Cr(𝐴) = 1.
(iii) If 𝐴 and 𝐵 are logically incompatible, then Cr(𝐴 ∨ 𝐵) = Cr(𝐴) + Cr(𝐵).

I used have ‘Cr’ here for the probability measure, as we will be mostly interested
in subjective probability or credence. ‘Cr(𝐴)’ is read as ‘the (subjective) probability
of 𝐴’ or ‘the credence in 𝐴’. Strictly speaking, we should add subscripts, ‘Cr𝑖,𝑡(𝐴)’,
to make clear that subjective probability is relative to an agent 𝑖 and a time 𝑡; but
we’re mostly dealing with statements that hold for all agents at all times, so we can
omit the subscripts.

Understood as a condition on rational credence, axiom (i) says that credences
range from 0 to 1: you can’t have a degree of belief greater than 1 or less than 0.
Axiom (ii) says that if a proposition is logically necessary – like it is raining or it
is not raining – then it must have subjective probability 1. Axiom (iii) says that the
subjective probability of a disjunction equals the sum of the probability of the two
disjuncts, provided these are logically incompatible, meaning they can’t be true at
the same time. For example, since it can’t be both 8∘C and 12∘C, your credence in
the disjunctive proposition 8∘C ∨ 12∘C must be Cr(8∘C) + Cr(12∘C).

We’ll ask about the justification for these assumptions later. First, let’s derive a
few consequences.

2.3 Some rules of probability

Suppose your credence in the hypothesis that it is 8∘C is 0.3. Then what should be
your credence in the hypothesis that it is not 8∘C? Answer: 0.7. In general, the
probability of ¬𝐴 is always 1 minus the probability of 𝐴:

The Negation Rule
Cr(¬𝐴) = 1 − Cr(𝐴).

This follows from the Kolmogorov axioms. Here is how. Let 𝐴 be any proposition.
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Then 𝐴 ∨ ¬𝐴 is logically necessary. By axiom (ii),

Cr(𝐴 ∨ ¬𝐴) = 1.

Since 𝐴 and ¬𝐴 are logically incompatible, axiom (iii) tells us that

Cr(𝐴 ∨ ¬𝐴) = Cr(𝐴) + Cr(¬𝐴).

Combining these two equations yields

1 = Cr(𝐴) + Cr(¬𝐴).

From that, simple algebraic rearrangement give us the Negation Rule.
Next, we can prove that logically equivalent propositions always have the same

probability.

The Equivalence Rule
If 𝐴 and 𝐵 are logically equivalent, then Cr(𝐴) = Cr(𝐵).

Proof: Assume 𝐴 and 𝐵 are logically equivalent. Then 𝐴 ∨ ¬𝐵 is logically neces-
sary; so by axiom (ii),

Cr(𝐴 ∨ ¬𝐵) = 1.
Moreover, 𝐴 and ¬𝐵 are logically incompatible, so by axiom (iii),

Cr(𝐴 ∨ ¬𝐵) = Cr(𝐴) + Cr(¬𝐵).

By the Negation Rule,
Cr(¬𝐵) = 1 − Cr(𝐵).

Putting all this together, we have

1 = Cr(𝐴) + 1 − Cr(𝐵).

Subtracting 1 − Cr(𝐵) from both sides yields Cr(𝐴) = Cr(𝐵).
Above I mentioned that if we understand propositions as possible states of the

world, then logically equivalent propositions are identical: ¬¬𝐴, for example, is
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the same proposition as 𝐴. The Equivalence Rule shows that even if we had used
a different conception of propositions that allows distinguishing between logically
equivalent propositions, these differences would never matter to an agent’s subjective
probabilities. If an agent’s credences satisfy the Kolmogorov axioms, then she must
give the same credence to logically equivalent propositions.

Exercise 2.3 †††
Prove from Kolmogorov’s axioms that Cr(𝐴) = Cr(𝐴∧𝐵)+Cr(𝐴∧¬𝐵). (Like
the proofs above, each step of your proof should either be an instance of an
axiom, or an application of the rules we have already established, or it should
follow from earlier steps by simple logic and algebra.)

Next, let’s show that axiom (iii) generalizes to three disjuncts:

Additivity for three propositions
If 𝐴, 𝐵, and 𝐶 are all incompatible with one another, then Cr(𝐴 ∨ 𝐵 ∨ 𝐶) =
Cr(𝐴) + Cr(𝐵) + Cr(𝐶).

Proof sketch: 𝐴 ∨ 𝐵 ∨ 𝐶 is equivalent (or identical) to (𝐴 ∨ 𝐵) ∨ 𝐶. If 𝐴, 𝐵, and
𝐶 are mutually incompatible, then 𝐴 ∨ 𝐵 is incompatible with 𝐶. So by axiom (iii),
Cr((𝐴 ∨ 𝐵) ∨ 𝐶) = Cr(𝐴 ∨ 𝐵) + Cr(𝐶). Again by axiom (iii), Cr(𝐴 ∨ 𝐵) = Cr(𝐴) +
Cr(𝐵). Putting these together, we have Cr((𝐴 ∨ 𝐵) ∨ 𝐶) = Cr(𝐴) + Cr(𝐵) + Cr(𝐶).

The argument generalizes to any finite number of propositions 𝐴, 𝐵, 𝐶, 𝐷, …: the
probability of a disjunction of 𝑛 mutually incompatible propositions is the sum of
the probability of the 𝑛 propositions. This has the following consequence, which is
worth remembering:

Probabilities from worlds
If the number of possible worlds is finite, then the probability of any propo-
sition is the sum of the probability of the worlds at which the proposition is
true.

Suppose two dice are tossed. There are 36 possible outcomes (“possible worlds”),
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which we might tabulate as follows.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Suppose you give equal credence 1/36 to each of these outcomes or worlds. What
credence should you then give to the hypothesis that both dice land on a number less
than 4? Looking at the table, we can see that there are nine possible worlds at which
the hypothesis is true: the top left quarter of the table. The hypothesis is equivalent
to the disjunction of these possible worlds. Both dice land on a number less than 4
iff the outcome is (1,1) or (1,2) or (1,3) or (2,1) or (2,2) or (2,3) or (3,1) or (3,2) or
(3,3). All of these outcomes are incompatible with one another. (The dice can’t land
(1,1) and (1,2) at the same time.) The rules of probability therefore tell us that the
probability of our target hypothesis is the sum of the probability of the individual
worlds. Since each world has probability 1/36, and there are nine relevant worlds,
your credence that both dice land on a number less then 4 should be 9 ⋅ 1/36 = 1/4.

Exercise 2.4 †
What credence should you give to the following propositions, in the scenario
with the two dice?

(a) At least one die lands 6.
(b) Exactly one die lands 6.
(c) The sum of the numbers that will come up is equal to 5.

Some thorny technical problems arise if there are infinitely many worlds. It would
be nice if we could say that the probability of a proposition is always the sum of the
probability of the worlds that make up the proposition. If there are too many worlds,
however, this turns out to be incompatible with the mathematical structure of the real
numbers. The most one can safely assume is that the principle holds if the number
of worlds is countable, meaning that there are no more worlds than there are natural
numbers 1,2,3,…. To secure this, axiom (iii) – which is known as the axiom of
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Finite Additivity – has to be replaced by an axiom of Countable Additivity. In
this course, we will try to stay away from troubles arising from infinities, so for our
purposes the weaker axiom (iii) will be enough.

Exercise 2.5 †††
Prove from Kolmogorov’s axioms that if 𝐴 entails 𝐵, then Cr(𝐴) cannot be
greater than Cr(𝐵). (You may use the rules we have already derived.)

2.4 Conditional probability

To continue, we need two more concepts. The first is the idea of conditional prob-
ability or, more specifically, conditional credence. Intuitively, an agent’s condi-
tional credence reflects her degree of belief in a given proposition on the supposition
that some other proposition is true. For example, I am fairly confident that it won’t
snow tomorrow, and that the temperature will be above 4∘C. Yet, on the supposition
that it will snow, I am not at all confident that the temperature will be above 4∘C.
My unconditional credence in temperatures above 4∘C is high, but my conditional
credence in the same proposition, on the supposition that it will snow, is low.

Conditional credence relates two propositions: the proposition that is supposed,
and the proposition that gets evaluated on the basis of that supposition.

To complicate things, there are actually two kinds of supposition, and two kinds
of conditional credence. The two kinds of supposition correspond to a grammati-
cal distinction between “indicative” and “subjunctive” conditionals. Compare the
following statements.

(1) If Shakespeare didn’t write Hamlet, then someone else did.

(2) If Shakespeare hadn’t written Hamlet, then someone else would have.

The first of these (an indicative conditional) is highly plausible: we know that some-
one wrote Hamlet; if it wasn’t Shakespeare then it must have been someone else.
The second statement (a subjunctive conditional), is plausibly false: if Shakespeare
hadn’t written Hamlet, it is unlikely that somebody else would have stepped in to
write the very same play.

The two conditionals (1) and (2) relate the same two propositions – the same
possible states of the world. To evaluate either statement, we suppose that our world
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is a world in which Shakespeare didn’t write Hamlet. The difference lies in what
we hold fixed when we make that supposition. To evaluate (1), we hold fixed our
knowledge that Hamlet (the play) exists. Not so in (2). To evaluate (2), we bracket
everything we know that we take to be a causal consequence of Shakespeare’s writing
of Hamlet.

We will return to the second, subjunctive kind of supposition in section 9. For now,
let’s focus on the first, indicative kind of supposition. I will write Cr(𝐴/𝐵) for the
(indicative) conditional credence in 𝐴 on the supposition that 𝐵. Again, intuitively
this is the agent’s credence that 𝐴 is true if (or given that or supposing that) 𝐵 is true.

The slash ’/’ (some authors use ‘|’) is not a connective. Cr(𝐴/𝐵) is not the agent’s
credence in a special proposition designated by ‘𝐴/𝐵’. (Never write things like
‘Cr(𝐴/𝐵/𝐶)’ or ‘Cr(𝐴 ∧ (𝐵/𝐶))’. These have no meaning.)

How are conditional credences related to unconditional credences? The answer
is surprisingly simple, and captured by the following formula.

The Ratio Formula

Cr(𝐴/𝐵) = Cr(𝐴 ∧ 𝐵)
Cr(𝐵) , provided Cr(𝐵) > 0.

That is, your credence in some proposition 𝐴 on the (indicative) supposition 𝐵
equals your unconditional credence in 𝐴∧𝐵 divided by your unconditional credence
in 𝐵.

To see why this makes sense, it may help to imagine your credence as distributing
a certain quantity of “plausibility mass” over the space of possible worlds. When
we ask about your credence in 𝐴 conditional on 𝐵, we set aside worlds where 𝐵 is
false. What we want to know is how much of the mass given to 𝐵 worlds falls on 𝐴
worlds. In other words, we want to know what fraction of the mass given to 𝐵 worlds
is given to 𝐴 ∧ 𝐵 worlds.

People disagree on the status of the Ratio Formula. Some treat it as a definition.
On that approach, you can ignore everything I said about what it means to suppose a
proposition and simply read ‘Cr(𝐵/𝐴)’ as shorthand for ‘Cr(𝐴 ∧ 𝐵)/Cr(𝐴)’. Others
regard conditional beliefs as distinct and genuine mental states and see the Ratio
Formula as a fourth axiom of probability. We don’t have to adjudicate between these
views. What matters is that the Ratio Formula is true, and on this point both sides
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agree.
The second concept I want to introduce is that of probabilistic independence. We

say that propositions 𝐴 and 𝐵 are (probabilistically) independent (for the relevant
agent at the relevant time) iff Cr(𝐴/𝐵) = Cr(𝐴). Intuitively, if 𝐴 and 𝐵 are indepen-
dent, then it makes no difference to your credence in 𝐴 whether or not you suppose
𝐵, so your unconditional credence in 𝐴 is equal to your credence in 𝐴 conditional on
𝐵.

Unlike causal independence, probabilistic independence is a feature of beliefs.
Two propositions can be independent for one agent and not for another. That said,
there are interesting connections between probabilistic (in)dependence and causal
(in)dependence. For example, if an agent knows that two events are causally inde-
pendent, then the events are often also independent in the agent’s degrees of belief.
You may want to ponder why that is the case.

Exercise 2.6 †
Assume Cr(Snow) = 0.3, Cr(Wind) = 0.6, and Cr(Snow∧Wind) = 0.2. What
is Cr(Snow/Wind)? What is Cr(Wind/Snow)?

Exercise 2.7 ††
Using the Ratio Formula and the Equivalence Rule, show that if 𝐴 is (proba-
bilistically) independent of 𝐵, then 𝐵 is independent of 𝐴 (assuming that Cr(𝐴)
and Cr(𝐵) are greater than 0).

Exercise 2.8 ††
A fair die will be tossed, and you give equal credence to all six outcomes. Let
Ex be the proposition that the die lands 1 or 6. Let Odd be the proposition that
the die lands an odd number (1, 3, or 5), and let Low be the proposition that
the die lands 1, 2 or 3. Which of the following are true, in your belief state?

(a) Ex is independent of Odd.
(b) Odd is independent of Ex.
(c) Ex is independent of Low.
(d) Odd is independent of Low.
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(e) Ex is independent of Odd ∧ Low.

2.5 Some more rules of probability

If you’ve studied propositional logic, you’ll know how to compute the truth-value of
arbitrarily complex sentences from the truth-value of their atomic parts. For exam-
ple, you can figure out that if 𝐴 and 𝐵 are true and 𝐶 is false, then 𝐴∧¬(𝐵∨¬(𝐶∨𝐴))
is false. Now suppose instead of the truth-value of 𝐴, 𝐵, and 𝐶, I give you their prob-
ability. Could you compute the probability of 𝐴 ∧ ¬(𝐵 ∨ ¬(𝐶 ∨ 𝐴))? The answer
is no. In general, while the probability of ¬𝐴 is determined by the probability of
𝐴 (as we know from the Negation Rule), neither the probability of 𝐴 ∨ 𝐵 nor the
probability of 𝐴 ∧ 𝐵 is determined by the individual probabilities of 𝐴 and 𝐵.

Let’s have a look at conjunctive propositions, 𝐴 ∧ 𝐵. By rearranging the Ratio
Formula, we get the following:

The Conjunction Rule
Cr(𝐴 ∧ 𝐵) = Cr(𝐴) ⋅ Cr(𝐵/𝐴).

So the probability of a conjunction is the probability of the first conjunct times the
probability of the second conditional on the first. If you only know the unconditional
probabilities of the conjuncts, you can’t figure out the probability of the conjunction.

But there’s a special case. If 𝐴 and 𝐵 are independent, then Cr(𝐵/𝐴) = Cr(𝐵). In
that case, the probability of the conjunction is the product of the probability of the
conjuncts:

The Conjunction Rule for independent propositions
If 𝐴 and 𝐵 are independent, then Cr(𝐴 ∧ 𝐵) = Cr(𝐴) ⋅ Cr(𝐵).

Why do we multiply (rather than, say, add) the probabilities in the Conjunction
Rules? Suppose we flip two coins. What is the probability that they both land heads?
You’d expect the first coin to land heads about half the time; and in half of those cases
you’d expect the second to also land heads. The result is a half of a half. And half
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of a half is 1/2 times 1/2.
What about disjunctions, 𝐴 ∨ 𝐵? We know that if 𝐴 and 𝐵 are logically incompat-

ible, then Cr(𝐴 ∨ 𝐵) = Cr(𝐴) + Cr(𝐵). What if 𝐴 and 𝐵 are not incompatible? In
that case, we have to subtract the probability of the conjunction:

The Disjunction Rule
Cr(𝐴 ∨ 𝐵) = Cr(𝐴) + Cr(𝐵) − Cr(𝐴 ∧ 𝐵).

Again, you can’t compute the probability of the disjunction just from the probability
of the disjuncts.

Why do we subtract Cr(𝐴 ∧ 𝐵) in the Disjunction Rule? The proposition 𝐴 ∨ 𝐵
comprises three kinds of worlds: (1) worlds where 𝐴 is true and 𝐵 is false, (2) worlds
where 𝐵 is true and 𝐴 is false, and (3) worlds where 𝐴 and 𝐵 are both true. These
three sets are disjoint (mutually exclusive). By Additivity, the probability of the
disjunction 𝐴 ∨ 𝐵 equals the probability of 𝐴 ∧ ¬𝐵 plus the probability of 𝐵 ∧ ¬𝐴
plus the probability of 𝐴 ∧ 𝐵. Taken together, the worlds in (1) and (3) comprise
precisely the 𝐴-worlds, and the worlds in (2) and (3) comprise the 𝐵-worlds. So if
we add together Cr(𝐴) and Cr(𝐵), we have effectively double-counted the 𝐴 ∧ 𝐵
worlds. That’s why we need to subtract Cr(𝐴 ∧ 𝐵).

Exercise 2.9 †
Show that two propositions 𝐴 and 𝐵 with positive probability are independent
if and only if Cr(𝐴 ∧ 𝐵) = Cr(𝐴) ⋅ Cr(𝐵). (Some authors use this as the
definition of independence.)

Exercise 2.10 ††
Prove from the Ratio Formula that Cr(𝐴 ∧ 𝐵 ∧ 𝐶) = Cr(𝐴/𝐵 ∧ 𝐶) ⋅ Cr(𝐵/𝐶) ⋅
Cr(𝐶). (This is known as the Chain Rule, and generalizes to more than three
conjuncts.)

35



2 Belief as Probability

Exercise 2.11 †
In 1999, a British woman was convicted of the murder of her two sons, who
she claimed died from Sudden Infant Death Syndrome (SIDS). The eminent
paediatrician Sir Roy Meadow explained to the jury that 1 in 8500 infants die
from SIDS and hence that the chance of SIDS affecting both sons was 1/8500
⋅ 1/8500 = 1 in 73 million. What is wrong with Sir Meadow’s reasoning?

I want to mention two more rules that play a special role in Bayesian accounts.
The first goes back to a suggestion by Thomas Bayes published in 1763.

Bayes’ Theorem

Cr(𝐴/𝐵) = Cr(𝐵/𝐴) ⋅ Cr(𝐴)
Cr(𝐵)

Proof: By the Ratio Formula, Cr(𝐴/𝐵) = Cr(𝐴 ∧ 𝐵)/Cr(𝐵). By the Conjunction
Rule, Cr(𝐴 ∧ 𝐵) = Cr(𝐵/𝐴) ⋅ Cr(𝐴). So we can substitute Cr(𝐴 ∧ 𝐵) in the Ratio
Formula by Cr(𝐵/𝐴) ⋅ Cr(𝐴), which yields Bayes’ Theorem.

Bayes’ Theorem relates the conditional probability of 𝐴 given 𝐵 to the inverse
conditional probability of 𝐵 given 𝐴. Why that might be useful is best illustrated by
an example.

Suppose you are unsure whether the die I am about to roll is a regular die or a
trick die that has a six printed on all sides. You currently give equal credence to
both possibilities. How confident should you be that the die is a trick die given that
it will land six on the next roll? That is, what is Cr(Trick/Six)? The answer isn’t
obvious. Bayes’ Theorem helps. By Bayes’ Theorem,

Cr(Trick/Six) = Cr(Six/Trick) ⋅ Cr(Trick)
Cr(Six) .

The numerator on the right is easy. Cr(Six/Trick) is 1: if the die has a six on all
its sides then it is certain that it will land six. We also know that Cr(Trick) is 1/2.
But what is Cr(Six), your unconditional credence that the die will land six? Here we
need one last rule:
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The Law of Total Probability
Cr(𝐴) = Cr(𝐴/𝐵) ⋅ Cr(𝐵) + Cr(𝐴/¬𝐵) ⋅ Cr(¬𝐵).

This follows immediately from exercise 2.3 and the Conjunction Rule.
If we apply the Law of Total Probability to Cr(Six) in the above application of

Bayes’ Theorem, we get

Cr(Trick / Six) = Cr(Six / Trick) ⋅ Cr(Trick)
Cr(Six / Trick) ⋅ Cr(Trick) + Cr(Six / ¬Trick) ⋅ Cr(¬Trick) .

It looks scary, but all the terms on the right are easy to figure out. We already know
that Cr(Six / Trick) = 1 and that Cr(Trick) = 1/2. Moreover, Cr(Six / ¬Trick) is
plausibly 1/6 and Cr(¬Trick) is 1/2. Plugging all these values into the formula, we
get Cr(Trick / Six) = 6/7. Your credence in the trick die hypothesis conditional on
seeing a six should be 6/7.

Exercise 2.12 †††
A stranger tells you that she has two children. You ask if at least one of them is
a boy. The stranger says yes. How confident should you be that the other child
is also a boy? (Assume there are only two sexes, which are equally common
and independent among siblings.)

Essay Question 2.1

If an agent’s degrees of belief satisfy the probability axioms, it seems to follow
from Kolmogorov’s axiom (ii) that the agent must be certain of every logical
truth. Does this mean that our Bayesian model is inapplicable to ordinary
agents, who are not logically omniscient? If so, is this a problem? Do you
have an idea of how the model could be adjusted to allow for logical non-
omniscience?
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Sources and Further Reading
There are many good introductions to elementary probability theory. For a slightly
more in-depth discussion of the topics we have covered, you may want to consult chap-
ters 3–7 of Ian Hacking, An Introduction to Probability and Inductive Logic (2001).
(You may find the rest of the book helpful as well.)

The problems infinitely many worlds raise for the Additivity axiom are nicely ex-
plained in Brian Skyrms, “Zeno’s paradox of measure” (1983).

The topic of the essay question is commonly discussed as the “problem of logical om-
niscience”. See, for example, Zeynep Soysal, “A metalinguistic and computational
approach to the problem of mathematical omniscience” (2022) for an interesting re-
cent proposal with pointers to the earlier discussion.
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3 Probabilism

3.1 Justifying the probability axioms

The hypothesis that rational degrees of belief satisfy the mathematical conditions
on a probability measure is known as probabilism. In this chapter, we will look
at some arguments for probabilism. We do so not because the hypothesis is espe-
cially controversial (by philosophy standards, it is not), but because it is instructive
to reflect on how one could argue for an assumption like this, and also because the
task will bring us back to a more fundamental question: what it means to say that an
agent has such-and-such degrees of belief in the first place.

We will assume without argument that rational degrees of belief satisfy the Boo-
leanism condition from p.24. The remaining question is whether they should satisfy
Kolmogorov’s axioms (i)–(iii):

(i) For any proposition 𝐴, 0 ≤ Cr(𝐴) ≤ 1.

(ii) If 𝐴 is logically necessary, then Cr(𝐴) = 1.

(iii) If 𝐴 and 𝐵 are logically incompatible, then Cr(𝐴 ∨ 𝐵) = Cr(𝐴) + Cr(𝐵).

Consider axiom (i). Why should rational degrees of belief always fall in the range
between 0 and 1? Why would it be irrational to believe some proposition to degree
7? The question is hard to answer unless we have some idea of what it would mean
to believe a proposition to degree 7.

A natural thought is that axiom (i) does not express a substantive norm of ratio-
nality, but a convention of representation. We have decided to represent strength of
belief by numbers between 0 and 1, where 1 means absolute certainty. We could just
as well have decided to use numbers between 0 and 100, or between -100 and +100.
Having agreed to put the upper limit at 1, it doesn’t make sense to assume that an
agent believes something to degree 7.
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Axioms (ii) and (iii) look more substantive. It seems that we can at least imagine
an agent who assigns degree of belief less than 1 to a logically necessary proposition,
or whose credence in a disjunction of incompatible propositions is not the sum of
her credence in the disjuncts. Still, we need to clarify what exactly it is that we’re
imagining if we want to discuss whether the imagined states are rational or irrational.

For example, suppose we understand strength of belief as a certain introspectible
quantity: a special feeling of conviction people have when entertaining propositions.
On this approach, axiom (ii) says that when agents entertain logically necessary
propositions, they ought to experience the relevant sensation with maximal inten-
sity. It is hard to see why this should be norm of rationality. It is also hard to see
why the sensation should guide an agent’s choices in line with the MEU Principle, or
why it should be sensitive to the agent’s evidence. In short, if we understand degrees
of belief as measuring the intensity of a certain feeling, then the norms of Bayesian
decision theory and Bayesian epistemology become implausible and inexplicable.

A more promising line of thought assumes that strength of belief is defined, per-
haps in part, by the MEU Principle. On this approach, what we mean when we say
that an agent has such-and-such degrees of belief is (in part) that she is (or ought
to be) disposed to make certain choices. We can then assess the rationality of the
agent’s beliefs by looking at the corresponding choice dispositions.

Of course, beliefs alone do not settle choices. The agent’s desires or goals also
play a role. The argument we are going to look at next therefore fixes an agent’s
goals, by assuming that utility equals monetary payoff. Afterwards we will consider
how this assumption could be relaxed.

3.2 The betting interpretation

It is instructive to compare degrees of belief with numerical quantities in other parts
of science. Take mass. What do we mean when we say that an object – a chunk of
iron perhaps – has a mass of 2 kg? There are no little numbers written in chunks of
iron, just as there are no little numbers written in the head. As with degrees of belief,
there is an element of conventionality in the way we represent masses by numbers:
instead of representing the chunk’s mass by the number 2, we could just as well have
used a different scale on which the mass would be 2000 or 4.40925. (Appending ‘kg’
to the number, as opposed to ‘g’ or ‘lb’, clarifies which convention we’re using.)
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I am not suggesting that mass itself is conventional. Whether a chunk of iron has a
mass of 2 kg is, I believe, a completely objective, mind-independent matter. If there
were no humans, the chunk would still have the same mass. What’s conventional is
only the representation of masses (which are not intrinsically numerical) by numbers.

The reason why we can measure mass in numbers – and the reason why we know
anything at all about mass – is that things tend to behave differently depending on
their mass. The greater an object’s mass, the harder the object is to lift up or acceler-
ate. Numerical measures of mass reflect these dispositions, and can be standardized
by reference to particular manifestations. For example, if we put two objects on
opposite ends of a balance, the object with greater mass will go down. We could
now choose a random chunk of iron, call it the “standard kilogram”, and stipulate
that something has a mass of 𝑛 kg just in case it balances against 𝑛 copies of the
standard kilogram (or against 𝑛 objects each of which balances against the standard
kilogram).

Can we take a similar approach to degrees of belief? The idea would be to find a
characteristic way in which degrees of belief manifest themselves in behaviour and
use that to define a numerical scale for degrees of belief.

So how do you measure someone’s degrees of belief? The classical answer is: by
offering them a bet. Consider a bet that pays £1 if it will rain at noon tomorrow, and
nothing if it won’t rain. How much would you be willing to pay for this bet?

We can calculate the expected payoff – the average of the possible payoffs, weighted
by their subjective probability. Let 𝑥 be your degree of belief that it will rain tomor-
row, and 1−𝑥 your degree of belief that it won’t rain. The bet gives you £1 with prob-
ability 𝑥 and £0 with probability 1−𝑥. The expected payoff is 𝑥 ⋅£1+(1−𝑥) ⋅£0 = £𝑥.
This suggests that the bet is worth £𝑥, that £𝑥 is the most you should pay for the bet.

Exercise 3.1 †
Suppose your degree of belief in rain is 0.8 (and your degree of belief in not-
rain 0.2). For a price of £0.70 you can buy a bet that pays £1 if it is raining and
£0 otherwise. Draw a decision matrix for your decision problem and compute
the expected utility of the acts, assuming your subjective utilities equal the net
amount of money you have gained in the end.

If we’re looking for a way to measure your degrees of belief, we can turn this line
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of reasoning around: if £𝑥 is the most you’re willing to pay for the bet, then 𝑥 is
your degree of belief in the proposition that it will rain. This leads to the following
suggestion, where a unit bet on a proposition 𝐴 is a deal that pays £1 if 𝐴 is true and
£0 otherwise.

The betting interpretation
An agent believes a proposition 𝐴 to degree 𝑥 just in case she would buy a unit
bet on 𝐴 for up to £𝑥 (and she would sell a unit bet for 𝐴 for £𝑥 or more).

Selling a bet means offering it to somebody else, in exchange for a fixed amount
of money.

Exercise 3.2 ††
Show that selling a unit bet on 𝐴 for £𝑥 is equivalent to buying a unit bet on
¬𝐴 for £(1 − 𝑥), in the sense that the two transactions have the same net effect
on the decision-maker’s wealth, whether or not 𝐴 is true.

The betting interpretation is meant to have the same status as the above (hypothet-
ical) stipulation that an object has a mass of 𝑛 kg just in case it balances against 𝑛
copies of the standard kilogram. On the betting interpretation, offering people bets
is like putting objects on a balance scale. For some prices, the test person will prefer
to buy the bet, for others she will prefer to sell the bet; in between there is a point
at which the price of the bet is in balance with the expected payoff, so the test per-
son will be indifferent between buying, selling, and doing neither. The price at the
point of balance reveals the subject’s degree of belief. The stake of £1 is a unit of
measurement, much like the standard kilogram in the measurement of mass.

The betting interpretation gives us a clear grip on what it means to believe a propo-
sition to a particular degree. It also points towards an argument for probabilism. For
we can show that if an agent’s degrees of belief do not satisfy the probability axioms
(for short, if her beliefs are not probabilistic) then she is disposed to enter bets that
amount to a guaranteed loss.
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3.3 The Dutch book theorem

In betting jargon, a combination of bets that are bought or sold is called a ‘book’.
A book that amounts to a guaranteed loss is called a ‘Dutch book’ (no-one knows
why). We are going to show that if an agent’s degrees of belief violate one or more
of the Kolmogorov axioms, and she values bets in accordance with their expected
payoff, then she will be prepared to accept a Dutch book.

We begin with Kolmogorov’s axiom (i). Suppose an agent’s credence in some
proposition 𝐴 is greater than 1. Let’s say it is 2. By the betting interpretation, the
agent is willing to pay up to £2 for a deal that pays her back either £0 or £1, depending
on whether 𝐴 is true. She is guaranteed to lose at least £1. More generally, if an
agent’s degree of belief in 𝐴 is greater than 1, then she will be prepared to buy a unit
bet on 𝐴 for more than £1, which leads to a guaranteed loss.

Similarly, suppose an agent’s credence in 𝐴 is below 0. Let’s say it is -1. The agent
will then be prepared to sell a unit bet on 𝐴 for any price above £-1. What does it
mean to sell a bet for £-1? It means to pay someone £1 to take the bet. So the agent
would pay up to £1 for us to take the bet. Having sold the bet, she will have to pay
us an additional £1 if 𝐴 is true. Her net loss is either £2 or £1, and guaranteed be at
least £1. Again, the argument generalizes to any degree of belief below 0.

I leave the case of axiom (ii) as an exercise.

Exercise 3.3 ††
Show that if an agent’s degrees of belief violate Kolmogorov’s axiom (ii) then
(assuming the betting interpretation) they are prepared to buy or sell bets that
amount to a guaranteed loss.

Turning to axiom (iii), suppose an agent’s credence in the disjunction 𝐴 ∨ 𝐵 of
two logically incompatible propositions 𝐴 and 𝐵 is not the sum of her credence in
the individual propositions. For concreteness, suppose Cr(𝐴) = 0.4, Cr(𝐵) = 0.2,
and Cr(𝐴 ∨ 𝐵) = 0.5. By the betting interpretation, the agent is willing to sell a unit
bet on 𝐴 ∨ 𝐵 for at least £0.50. She is also willing to buy a unit bet on 𝐴 for up to
£0.40, and she is willing to buy a unit bet on 𝐵 for up to £0.20. Notice that if she
buys both of these latter bets then she has in effect bought a unit bet on 𝐴 ∨ 𝐵, for
she will get £1 if either 𝐴 or 𝐵 is true, and £0 otherwise. So the agent is, in effect,
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willing to buy this bet for £0.60 and sell it for £0.50. You can check that no matter
whether 𝐴 or 𝐵 or neither of them is true, the agent is guaranteed to lose £0.10.

The reasoning generalizes to any other case where Cr(𝐴 ∨ 𝐵) is less than Cr(𝐴) +
Cr(𝐵). For cases where Cr(𝐴 ∨ 𝐵) is greater than Cr(𝐴) + Cr(𝐵), simply swap all
occurrences of ‘buy’ and ‘sell’ in the previous paragraph.

We have proved the Dutch Book Theorem.

Dutch Book Theorem
Assuming the betting interpretation, any agent whose degrees of belief don’t
conform to the Kolmogorov axioms is prepared to buy bets whose net effect
is a guaranteed loss.

One can also show the converse, that any agent who is prepared to accept a (certain
kind of) Dutch book has non-probabilistic beliefs. In other words, agents whose
beliefs conform to the rules of probability are not prepared to accept (certain kinds
of) bets that amount to a guaranteed loss. This result is known as a Converse Dutch
Book Theorem. I’ll outline a proof.

To get an interesting Converse Dutch Book result, we should extend the betting
interpretation so that it doesn’t just cover unit bets. (We don’t just want to show
that an agent with probabilistic beliefs is not prepared to accept a Dutch Book made
entirely of unit bets.) Let’s assume that agents generally value bets by their expected
monetary payoff, so that they pay up to £𝑥 for a bet with expected payoff £𝑥, where
the expected payoff is computed with the agent’s credence function. We’re now
interested in cases where this credence function is a genuine probability measure,
so that the expected payoff is a genuine “expectation”, in the mathematical sense: a
probability-weighted average.

Now consider an agent with probabilistic beliefs. If the agent pays some amount
£𝑥 for a bet with expected payoff £𝑦, then the entire transaction (including the pur-
chase price) has expected payoff £(𝑦−𝑥). By our extended betting interpretation, the
agent makes the transaction only if 𝑥 ≤ 𝑦, in which case £(𝑦−𝑥) ≥ £0. In other words,
the agent makes the transaction only if the transaction has a non-negative expected
payoff. Evidently, a transaction can’t have a non-negative expected payoff unless
there is at least some possibility for it to have a non-negative payoff. This shows
that an agent with probabilist credences can’t be “Dutch booked” with a single bet.
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What about combinations of bets? Suppose our agent buys a number of bets. We
know that each of these transactions on its own has a non-negative expected payoff.
We also know that the total payoff from all transactions together is the sum of the
payoffs of the individual transactions. Now here is a useful fact about mathematical
expectation: the expectation of a sum (of some quantities) is the sum of the expecta-
tions (of the quantities). Since the sum of non-negative values can’t be negative, this
tells us that the expected total payoff from our agent’s transactions isn’t negative. As
before, we can infer that the combined transactions are not guaranteed to generate a
loss.

Exercise 3.4 ††
Here I have twice appealed to the fact that if a transaction or combination
of transactions has non-negative expected payoff, then there must be at least
a possibility of an actual non-negative payoff. Can you explain why this is
the case? Does it depend on whether the expected payoff is computed with a
genuine probability function?

Exercise 3.5 ††
Suppose I believe that it is raining to degree 0.6 and that it is not raining also
to degree 0.6. Describe a Dutch book you could make against me, assuming
the betting interpretation.

3.4 Problems with the betting interpretation

The Dutch Book Theorem is a mathematical result. It does not show that rational de-
grees of belief satisfy the probability axioms. To reach that conclusion, and thereby
an argument for probabilism, we need to add some philosophical premises about
rational belief.

A flat-footed “Dutch book argument” might go as follows. If your beliefs violate
the probability axioms, then a cunning Dutchman might come along and trick you
out of money. If your beliefs are probabilistic, he can’t do that. To be safe against
the Dutchman, it is better to have probabilistic beliefs.

Is this a good argument for probabilism? Two problems stand out.
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First, why should the possibility of financial loss be a sign of irrational beliefs?
True, there might be a Dutchman going around exploiting people with non-proba-
bilistic beliefs. But there might also be someone (a Frenchman, say) going around
richly rewarding people with non-probabilistic beliefs. We don’t think the latter
possibility shows that people ought to have non-probabilistic beliefs. If there is such
a Frenchman, we can at most conclude that it would be practically useful to have
non-probabilistic beliefs. But those beliefs would still be epistemically irrational.
(Compare: if someone offers you a million pounds if you believe that the moon
is made of cheese, then that belief would be practically useful, but it would not
be epistemically rational.) Why should we think differently about the hypothetical
Dutchman?

Second, the threat of financial exploitation only awaits non-probabilistic agents
who value bets by their expected monetary payoff, as implied by the betting inter-
pretation. Real people don’t actually do this.

Consider the following gamble.

Example 3.1 (The St. Petersburg Paradox)
I am going to toss a fair coin until it lands tails. If I get tails on the first toss,
I’ll give you £2. If I get heads on the first toss and tails on the second, I’ll give
you £4. If I get heads on the first two tosses and tails on the third, I’ll give you
£8. In general, if the coin first lands tails on the 𝑛th toss, I’ll give you £2𝑛.

How much would you pay for this gamble?
We can compute the expected payoff. With probability 1/2 you’ll get £2; with

probability 1/4 you get £4; with probability 1/8 you get £8; and so on. The expected
payoff is

1/2 ⋅ £2 + 1/4 ⋅ £4 + 1/8 ⋅ £8 + … = £1 + £1 + £1 + … .
The sum of this series is infinite. If you value bets by their expected monetary payoff,
you should sacrifice everything you have for an opportunity to play the gamble. In
reality, few people would do that, seeing as the payoff is almost certain to be quite
low.

46



3 Probabilism

Exercise 3.6 †
What is the probability that you will get £16 or less when playing the St. Pe-
tersburg gamble?

The St. Petersburg Paradox was first described by the Swiss mathematician Nico-
las Bernoulli in 1713. It prompted his cousin Daniel Bernoulli to introduce the the-
oretical concept of utility as distinct from monetary payoff. As (Daniel) Bernoulli
realised, “a gain of one thousand ducats is more significant to the pauper than to a
rich man though both gain the same amount”. In other words, most people don’t
regard having two million pounds as twice as good as having one million pounds:
the first million would make a much greater difference to our lives than the second.

In economics terminology, what Bernoulli realised is that money has declining
marginal utility. The ‘marginal utility’ of a good for an agent measures how much
the agent desires a small extra amount of the good. That the marginal utility of money
is declining means that the more money you have, the less you value an additional
pound (or dollar or ducat).

Bernoulli had a more concrete proposal. He suggested that 𝑛 units of money pro-
vide not 𝑛 but log(𝑛) units of utility. This implies that doubling your wealth always
provides the same boost in utility, whether it leads from £1000 to £2000 or from
£1 million to £2 million, even though the second change is much larger in absolute
terms. On Bernoulli’s model, the expected utility of the St. Petersburg gamble for a
person with a wealth of £1000 is equivalent to the utility of getting £10.95. That’s
the most the agent should be willing to pay for the gamble.

Exercise 3.7 †
Suppose Bernoulli is right that owning £𝑛 has a utility of log(𝑛). You currently
have £1. For a price of £0.40 you are offered a bet that pays £1 if it will
rain tomorrow (and £0 otherwise). Your degree of belief in rain tomorrow is
1/2. Should you accept the bet? Draw the decision matrix and compute the
expected utilities. (You need to know that log(1) = 0, log(1.6) ≈ 0.47, and
log(0.6) ≈ −0.51. Apart from that you don’t need to know what ‘log’ means.)
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Exercise 3.8 ††
As Bernoulli noticed, the declining marginal utility of money can explain the
usefulness of insurance. Suppose your net worth is £10 000, and there’s a 5%
chance of a catastrophic event that would cost you £9 000. For a fee of £1 000,
a bank offers you an insurance against the catastrophic event that pays £9 000
if the event occurs (and nothing otherwise). Explain (informally, if you want)
why this might be a good deal both for you and for the bank.

Exercise 3.9 †
Bernoulli’s logarithmic model is obviously a simplification. Suppose you
want to take a bus home. The fare is £1.70 but you only have £1.50. If you
can’t take the bus, you’ll have to walk for 50 minutes through the rain. A
stranger at the bus stop offers you a deal: if you give her your £1.50, she will
toss a coin and pay you back £1.70 on heads or £0 on tails. Explain (briefly
and informally) why it would be rational for you to accept the offer.

There’s a second reason why rational agents wouldn’t always value bets by their
expected payoff even if their subjective utility were adequately measured by mone-
tary payoff. The reason is that buying or selling bets can alter the relevant beliefs.

For example, I am quite confident I will not buy any bets today. Should I therefore
be prepared to pay close to £1 for a unit bet that I don’t buy any bets today? Clearly
not. By buying the bet, I would render the proposition false. Given my current state
of belief, the (imaginary) bet has an expected payoff close to £1, but it would be
irrational for me to buy it even for £0.10.

In sum, we can’t assume that rational agents always value bets by their expected
payoff. The betting interpretation is indefensible.

This is a setback on two fronts. One, we have lost an attractive answer to how
degrees of belief are measured or defined. If an agent’s degrees of belief aren’t
defined by their betting behaviour, then how are they defined? Second, and relatedly,
we have lost what looked like an attractive argument for probabilism. If agents don’t
value bets by their monetary payoff, we can’t show that non-probabilistic agents will
be prepared to buy bets that amount to a sure loss.

We will look at alternative approaches to measuring belief in sections 3.6 and 6.5.
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First, let me explain how we might rescue an argument for probabilism from the
wreckage of the betting interpretation.

3.5 A Dutch book argument

We want to show that non-probabilistic beliefs are irrational. Let 𝛼 be an arbitrary
agent with non-probabilistic beliefs. We can’t assume that 𝛼 values bets by their
expected monetary payoff. But let’s imagine a counterpart 𝛽 of 𝛼 who has the exact
same beliefs as 𝛼 but possibly different, and somewhat peculiar desires. 𝛽’s only
goal is to increase her wealth. Money does not have declining marginal utility for 𝛽.
She would give all she has for an opportunity to play the St. Petersburg gamble. 𝛽
might also differ from 𝛼 in another respect: whenever she faces a choice, 𝛽 chooses
an option that maximizes expected utility.

I’m going to need a number of philosophical assumptions. Here is the first: if 𝛼’s
belief state is epistemically rational, then so is 𝛽’s. The idea is that if you want to
know if someone’s beliefs are epistemically rational (rather than, say, practically use-
ful), then you need to know what her beliefs are and maybe how she acquired those
beliefs, but you don’t need to know what she desires or how she chooses between
available acts.

As we saw at the end of the previous section, we can’t assume that 𝛽 will always
pay up to £Cr(𝐴) for a unit bet on 𝐴 (where Cr is her credence function), since her
credence in 𝐴 may be affected by the transaction. But this problem only seems to
arise for a small and special class of propositions. Let’s call a proposition stable if it
is probabilistically independent, in 𝛽’s credence function, of the assumption that she
buys or sells any particular bets. The probability axioms are supposed to be general
consistency requirements on rational belief. Such requirements should plausibly be
“topic-neutral”: they should hold for beliefs or every kind, not just for beliefs about
a special subject matter. In particular, there aren’t special consistency requirements
that only pertain to stable beliefs. If an agent’s credences over stable propositions
should be probabilistic, then her entire credence function should be probabilistic.
This is my second assumption. It implies that in order to show that non-probabilistic
beliefs are irrational, it suffices to show that non-probabilistic beliefs towards stable
propositions are irrational. So we can assume without loss of generality that 𝛼’s
(and therefore 𝛽’s) beliefs towards stable propositions are non-probabilistic.
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We know that if a proposition 𝐴 is stable, then 𝛽 is prepared to pay up to £Cr(𝐴) for
a unit bet on 𝐴. That’s because 𝛽’s utility function simply measures monetary payoff
and because she obeys the MEU Principle. The betting interpretation is correct for
𝛽, as long as we stick with stable propositions.

We also know that 𝛽’s credences towards stable propositions violate the probabil-
ity axioms. It follows by the Dutch Book Theorem that she is prepared to buy bets
whose net effect is a guaranteed loss. My next assumption states that it would be
irrational for 𝛽 to make these transactions: it is irrational for an agent whose sole
aim is to increase her wealth to (deliberately and avoidably) make choices whose
net effect is a guaranteed loss.

This was my third assumption. My fourth assumption is that irrational choices
always arise from either irrational beliefs or from irrational desires or from an irra-
tional way of linking up one’s beliefs and desires to one’s actions. I also assume
that the right way of linking up beliefs and desires to actions is given by the MEU
Principle. Thus: if an agent is disposed to make irrational choices, then she is either
epistemically irrational, or her desires are irrational, or her acts don’t maximize
expected utility.

In the case of 𝛽, we can rule out the third possibility. Her choices do maximize
expected utility. I also claim (assumption 5) that 𝛽’s desires are not irrational. Ad-
mittedly, her desires are odd. We might call them unreasonable, or even “irrational”
in a substantive sense. But they aren’t inconsistent. They represent a coherent eval-
uative perspective.

Since 𝛽 is disposed to make irrational choices, we can infer that she is epistemi-
cally irrational. By the very first assumption, it follows that 𝛼 is epistemically irra-
tional. And 𝛼 was an arbitrary agent whose credences violate the rules of probability.
We’ve shown that (epistemically) rational beliefs are probabilistic.

My argument relies on a lot of assumptions. Many of them could be challenged.
Can you think of a better argument?

3.6 Comparative credence

We have seen that the betting interpretation is untenable. Many philosophers hold
that degrees of belief cannot be defined in terms of an agent’s behaviour, but should
rather be treated as theoretical primitives. Even on that view, however, more must
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be said about the numerical representation of credence. That we represent degrees
of belief by numbers between 0 and 1 is clearly a matter of convention. We need to
explain how this convention of assigning numbers to propositions works.

One approach towards such an explanation, which does not turn on an agent’s be-
haviour, was outlined by the Italian mathematician and philosopher Bruno de Finetti
(who, incidentally, also published the first proof of the Dutch Book Theorem). De
Finetti suggested that degrees of belief might be defined in terms of the comparative
attitude of being more confident in one proposition than in another. While any nu-
merical representation of beliefs is partly conventional, this comparative attitude is
plausibly objective and might be taken as primitive.

Let ‘𝐴 ≻ 𝐵’ express that a particular (not further specified) agent is more confident
in 𝐴 than in 𝐵. For example, if you are more confident that it is sunny than that it is
raining, then we have Sunny ≻ Rainy. Let ‘𝐴 ∼ 𝐵’ mean that the agent is equally
confident in 𝐴 and in 𝐵. From these, we can define a third relation ‘≿’ by stipulating
that 𝐴 ≿ 𝐵 iff 𝐴 ≻ 𝐵 or 𝐴 ∼ 𝐵.

We now make some assumptions about the formal structure of these relations. To
begin, if you are more confident in 𝐴 than in 𝐵, then you can’t also be more confident
in 𝐵 than in 𝐴, or equally confident in the two. We also assume that if you’re neither
more confident in 𝐴 than in 𝐵, nor in 𝐵 than in 𝐴, then you’re equally confident in
𝐴 and 𝐵. Your comparative credence relations are then “complete”, in the following
sense:

Completeness
For any 𝐴 and 𝐵, exactly one of 𝐴 ≻ 𝐵, 𝐵 ≻ 𝐴, or 𝐴 ∼ 𝐵 is the case.

Next, suppose you are more confident in 𝐴 than in 𝐵, and more confident in 𝐵
than in 𝐶. Then you should be more confident in 𝐴 than in 𝐶. Similarly, if you are
equally confident in 𝐴 and 𝐵, and in 𝐵 and 𝐶, then you should be equally confident
in 𝐴 and 𝐶. So ≻ and ∼ should be “transitive”:

Transitivity
If 𝐴 ≻ 𝐵 and 𝐵 ≻ 𝐶 then 𝐴 ≻ 𝐶; if 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶 then 𝐴 ∼ 𝐶.
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Exercise 3.10 †††
Suppose we define 𝐴 ∼ 𝐵 as ¬(𝐴 ≻ 𝐵) ∧ ¬(𝐵 ≻ 𝐴). Show that Completeness
is then entailed by the assumption that if 𝐴 ≻ 𝐵 then ¬(𝐵 ≻ 𝐴).

For the next assumptions, I use ‘⊤’ to stand for the logically necessary proposition
(the set of all worlds) and ‘⊥’ for the logically impossible proposition (the empty set).

Non-Trviality
⊤ ≻ ⊥.

Boundedness
There is no proposition 𝐴 such that ⊥ ≻ 𝐴.

These should be fairly plausible demands of rationality.
My next assumption is best introduced by an example. Suppose you are more

confident that Bob is German than that he is French. Then you should also be more
confident that Bob is either German or Russian than that he is either French or
Russian. Conversely, if you are more confident that he is German or Russian than
that he is French or Russian, then you should be more confident that he is German
than that he is French. In general:

Quasi-Additivity
If 𝐴 and 𝐵 are both logically incompatible with 𝐶, then 𝐴 ≿ 𝐵 iff (𝐴 ∨ 𝐶) ≿
(𝐵 ∨ 𝐶).

De Finetti conjectured that whenever an agent’s comparative credence relations
satisfy the above five assumptions, then there is a unique probability measure Cr
such that 𝐴 ≿ 𝐵 iff Cr(𝐴) ≥ Cr(𝐵) (which entails that 𝐴 ≻ 𝐵 iff Cr(𝐴) > Cr(𝐵) and
𝐴 ∼ 𝐵 iff Cr(𝐴) = Cr(𝐵)). The conjecture turned out to be false, because a sixth
assumption is required. But the following can be shown:
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Probability Representation Theorem
If an agent’s comparative credence relations satisfy Completeness, Transitiv-
ity, Non-Triviality, Boundedness, Quasi-Additivity, and the Sixth Assump-
tion, then there is a unique probability measure Cr such that 𝐴 ≿ 𝐵 iff
Cr(𝐴) ≥ Cr(𝐵).

Before I describe the Sixth Assumption, let me explain what the Probability Rep-
resentation Theorem might do for us.

I have argued that we can’t take numerical credences as unanalysed primitives.
There must be an answer to why an agent’s degree of belief in rain is correctly rep-
resented by the number 0.2 rather than, say, 0.3. De Finetti’s idea was to derive
numerical representations of belief from comparative attitudes towards propositions.

Imagine we order all propositions on a line, in accordance with the agent’s compar-
ative judgements (which we take as primitive). Whenever the agent is more confident
in one proposition than in another, the first goes to the right of the first. Whenever the
agent is equally confident in two propositions, they are stacked on top of each other
at the same point on the line. If the agent is reasonable, the impossible proposition
⊥ will be at the left end, the necessary proposition ⊤ at the right end.

We now want to use numbers to represent the relative position of propositions
along the line, in such a way that as we move from the ⊥ position to the ⊤ position,
the numbers get higher and higher. The Probability Representation Theorem assures
us that this can be done, provided that the agent’s comparative judgements satisfy
the six assumptions. In that case, it says, there will be an assignment of numbers to
propositions that “represents” the agent’s comparative judgements in the sense that
𝐴 ≿ 𝐵 iff the number assigned to 𝐴 is at least as great as the number assigned to 𝐵.

The next problem is that if there is one such assignment then there are infinitely
many, giving different numbers to propositions in between ⊥ and ⊤. (For example,
if 𝑓 represents ≿ then so does the function 𝑔 defined by 𝑔(𝐴) = 𝑓 (𝐴)2.) We need
to settle on a particular assignment. Again, the Probability Representation Theo-
rem comes to our help. It tells us that among the eligible assignments of numbers
to propositions – among those that represent the agent’s comparative judgements –
there is only one that satisfies the conditions on a probability measure. Let’s adopt
the convention of using this assignment.

On this approach, ‘Cr(Rain) = 0.2’ means that the agent’s comparative confi-

53



3 Probabilism

dence judgements order the propositions in such a way that the unique probabil-
ity measure that “represents” these judgements assigns 0.2 to Rain. Any agent
whose attitudes of comparative credence satisfy the six assumptions is guaranteed
to have probabilistic credences, because the agent’s credence function is defined as
the unique probability measure (!) that represents her comparative judgements. An
agent who doesn’t satisfy the six assumptions doesn’t have a credence function at all,
because our convention of measurement – on the present approach – doesn’t cover
such agents.

As you may imagine, this approach has also not gone unchallenged. One obvious
question is whether we can take comparative confidence as primitive. If we can, a
further question is whether the six assumptions are plausible as general constraints
on any agent with degrees of belief. The missing sixth assumption is especially
troublesome in this regard. The form of the assumption turns out to depend on
whether the number of propositions is finite or infinite. In either case the condition
is so complicated that many struggle to accept it as a basic norm of rationality – let
alone as a basic condition anyone must satisfy in order to have degrees of belief at all.
Just to prove the point, here is the condition for the slightly simpler case of finitely
many propositions:

The Sixth Assumption (finite version)
For any two sequences of propositions 𝐴1, … , 𝐴𝑛 and 𝐵1, … , 𝐵𝑛 such that for
every possible world 𝑤 there are equally many propositions in the first se-
quence that contain 𝑤 as in the second, if 𝐴𝑖 ≿ 𝐵𝑖 for all 𝑖 < 𝑛, then 𝐵𝑛 ≿ 𝐴𝑛.

Essay Question 3.1

I have expressed the Dutch Book Theorem with monetary outcomes. One
might try to avoid commitment to the betting interpretation by replacing the
monetary outcomes with other goods the agent happens to care about. For ex-
ample, when we looked at Kolmogorov’s axiom (i), I said that an agent whose
degree of belief in 𝐴 is 2 would pay (say) £1.50 for a bet that pays £1 if 𝐴 is
true and £0 otherwise. This assumes the betting interpretation. Now let ‘U1.5’
denote an arbitrary good to which the agent assigns utility 1.5. Similarly, let
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U1 be a good with utility 1, and U0 a good with utility 0. Consider a bet that
would give the agent U1 if 𝐴 is true and U0 otherwise. The bet’s expected
utility is Cr(𝐴) ⋅U(U1)+Cr(¬𝐴) ⋅U(U0) = Cr(𝐴). Assuming the MEU Prin-
ciple, an agent with Cr(𝐴) = 2 would prefer this bet over U1.5, even though
the latter is guaranteed to give her greater utility, which is surely irrational.
Can you spell out a full argument for probabilism along these lines? What
problems do you see for this line of argument?

Sources and Further Reading
For a critical overview and assessment of Dutch book arguments, see Alan Hájek,
“Dutch Book Arguments” (2008). If you want to dive even deeper, you may start with
Susan Vineberg’s Stanford Encyclopedia entry on Dutch Book Arguments (2022).

For a more extensive philosophical introduction and criticism of the comparative ap-
proach from section 3.6, see Edward Elliott, “Comparativism and the Measurement
of Partial Belief” (2020). Peter Fishburn’s “The Axioms of Subjective Probability”
(1986) goes deeper into the mathematical background.

A recently popular third way of arguing for probabilism, besides the Dutch book ap-
proach and the comparative approach, draws on the observation (also first made by
de Finetti) that for every non-probabilistic credence function there is a probabilistic
credence function that is guaranteed to be closer to the truth – where closeness to the
truth is a certain measure of the distance between the credence given to any propo-
sition and the proposition’s truth-value (0=false, 1=true). See, for example, James
Joyce, “A nonpragmatic vindication of probabilism” (1998).

Martin Peterson’s Stanford Encyclopedia entry on the St. Petersburg paradox dis-
cusses the historical context of the St. Petersburg paradox and also introduces a “mod-
ern” version in which the monetary payoffs are replaced by units of utility.

The bus fare exercise is from Brian Skyrms, Choice and Chance (2000).
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4 Further Constraints on Rational
Belief

4.1 Belief and perception

We have looked at two assumptions about rational belief. The first, the MEU Prin-
ciple, relates an agent’s beliefs to her desires and choices. The second, probabilism,
imposes an internal, structural constraint on rational beliefs: that they conform to
the rules of probability. There is more.

Example 4.1 (The Litmus Test)
You are unsure whether a certain liquid is acidic. Remembering that acid turns
litmus paper red, you dip a piece of litmus paper into the liquid. The paper
turns red.

Seeing the red paper should increase your confidence that the liquid is acidic. But
as far as probabilism and the MEU Principle are concerned, you could just as well
remain unsure whether the liquid is acidic or even become certain that it is not acidic,
as long as your new credences are probabilistic and your choices maximize expected
utility (by the light of your beliefs and desires).

So there are further norms on rational belief. In particular, there are norms on
how beliefs change in response to perceptual experience. Like the MEU Principle,
and unlike probabilism, these norms state a connection between beliefs and some-
thing other than belief – here, perceptual experience. Loosely speaking, the MEU
Principle describes the causal “output” of beliefs: the effects an agent’s beliefs have
on her behaviour. Now we turn to the “input” side. We want to know what sorts of
experiences might cause a rational agent to have such-and-such beliefs.
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To state a connection between perceptual experience and belief, we need a way to
identify kinds of perceptual experience. How do we do that?

We could try to identify the experiences by their phenomenology, by “what it’s
like” to have the experience. But there is no canonical standard for expressing phe-
nomenal qualities. Besides, we may want our norm to handle unconscious percep-
tions and the perceptions of artificial agents for whom it is doubtful whether they
have any phenomenal experience.

We could alternatively identify perceptions by their physiology, by the neurochem-
ical or electrical events that take place in the agent’s sense organs. But that would go
against the spirit of our general approach, which is to single out high-level patterns
and remain neutral on details of biological or electrical implementation.

The usual strategy is to identify perceptual experiences by the information they
provide to the agent’s belief system. In the Litmus Test, for example, we might
assume that the information you receive from your visual system is that the paper
has turned red. You don’t directly receive the information that the liquid is acidic.
This is something you infer from the experience with the help of your background
beliefs.

In the simplest and best known version of this model, we assume that the informa-
tion conveyed to an agent by their perceptual experiences can always be captured by
a single proposition of which the agent becomes certain. The model can be extended
to allow for cases in which the perceptual information is uncertain and equivocal, but
we will stick to the simplest version.

4.2 Conditionalization

Suppose a perceptual experience provides an agent with some information 𝐸 (for
“evidence”). How should the rest of the agent’s beliefs change to take into account
the new information?

Return to the Litmus Test. Let Crold be your credence function before you dipped
the paper into the liquid, and Crnew your credence function when you see the paper
turn red. If you are fairly confident that red litmus paper indicates acidity, you will
also be confident, before dipping the paper, that your liquid is acidic on the suppo-
sition that the paper will turn red. Your initial degrees of belief might have been as
follows.
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Crold(Acid) = 1/2.
Crold(Acid / Red) = 9/10.

What is your new credence in Acid, once you learn that the paper has turned red?
Plausibly, it should be 9/10. Your previous conditional credence in Acid given Red
should turn into your new unconditional credence in Acid.

This kind of belief change is called conditionalization. We say that you condi-
tionalize on the information Red. Let’s formulate the general rule.

The Principle of Conditionalization
Upon receiving information 𝐸, a rational agent’s new credence in any propo-
sition 𝐴 equals her previous credence in 𝐴 conditional on 𝐸:

Crnew(𝐴) = Crold(𝐴/𝐸).

Here it is understood that the agent’s experience leaves no room for doubts about
𝐸, and that 𝐸 is the total information the agent acquires, rather than part of her
new information. If you see the paper turn red but at the same time notice a whiff
of ammonium hydroxide, which you know is alkaline, your credence in the Acid
hypothesis may not increase to 0.9.

Exercise 4.1 †
Assume Crold(Snow) = 0.3, Crold(Wind) = 0.6, and Crold(Snow ∧ Wind) =
0.2. By the Principle of Conditionalization, what is Crnew(Wind) if the agent
finds out that it is snowing?

Exercise 4.2 ††
Show that conditionalizing first on 𝐸1 and then on 𝐸2 is equivalent to condi-
tionalizing in one step on 𝐸1 ∧ 𝐸2. That is, if Cr1 results from Cr0 by condi-
tionalising on 𝐸1, and Cr2 results from Cr1 by conditionalizing on 𝐸2, then for
any 𝐴, Cr2(𝐴) = Cr0(𝐴 / 𝐸1 ∧𝐸2). (You may assume that Cr0(𝐸1 ∧𝐸2) > 0.)
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Exercise 4.3 †††
Assume that Crnew results from Crold by conditionalizing on some information
𝐸 with Crold(𝐸) > 0, and that Crold satisfies the Kolmogorov axioms. Using
the probability rules, show that Crnew also satisfies the Kolmogorov axioms.
(You may use any of the derived rules from chapter 2. Hint for axiom (ii): if
𝐴 is logically necessary, then 𝐴 ∧ 𝐸 is logically equivalent to 𝐸.)

When computing Crnew(𝐴), it is often helpful to expand Crold(𝐴/𝐸) with the help
of Bayes’ Theorem. The Principle of Conditionalization then turns into the following
(equivalent) norm, known as Bayes’ Rule:

Crnew(𝐴) = Crold(𝐸/𝐴) ⋅ Crold(𝐴)
Crold(𝐸) , provided Crold(𝐸) > 0.

This formulation is useful because it is often easier to evaluate Crold(𝐸/𝐴), the
probability of the evidence 𝐸 conditional on some hypothesis 𝐴, than to evaluate
Crold(𝐴/𝐸), the probaility of the hypothesis conditional on the evidence.

Here is an example.

Example 4.2
2% of women in a certain population have breast cancer. A test is developed
that correctly detects 95% of cancer cases but also gives a positive result in
10% of non-cancer cases. A woman from the population comes into your
practice, takes the test, and gets a positive result. How confident should you
be that the woman has breast cancer?

We assume that you are aware of all the statistical facts before you learn the test
result. Knowing that the woman is from a population in which 2% of women have
breast cancer, your initial credence in the hypothesis, call it 𝐶, that the woman has
cancer should plausibly be 0.02. So we have

Crold(𝐶) = 0.02.

Since you know that the test yields a positive result in 95% of cancer cases, we also
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have
Crold(𝑃/𝐶) = 0.95,

where 𝑃 says that the test result is positive. Similarly, since the test yields a positive
result in 10% of non-cancer cases, we have

Crold(𝑃/¬𝐶) = 0.1.

Now we simply plug these numbers into Bayes’ Rule, expanding the denominator by
the Law of Total Probability:

Crnew(𝐶) = Crold(𝑃/𝐶) ⋅ Crold(𝐶)
Crold(𝑃/𝐶) ⋅ Crold(𝐶) + Crold(𝑃/¬𝐶) ⋅ Crold(¬𝐶)

= 0.95 ⋅ 0.02
0.95 ⋅ 0.02 + 0.1 ⋅ 0.98 = 0.019

0.019 + 0.098 = 0.16.

After the positive test, your degree of belief that the woman has breast cancer
should be 0.16. This is lower than many people initially think – including many
trained physicians. But it makes sense. Imagine we took a sample of 1000 women
from the population. We would expect around 2%, or 20 women, in the sample to
have breast cancer. If we tested all women in the sample, we would expect around
95% of those with cancer to test positive. That’s 95% of 20 = 19 women. Of the
980 women without cancer, we would expect around 10% = 98 to test positive. The
total number of positive tests would be around 19 + 98 = 117. Of these 117 women,
19 actually have cancer. So the chance that an arbitrary woman who tests positive
has cancer is 19/117 = 0.16. If you look back at the above application of Bayes’
Theorem, you can see that it resembles this statistical line of reasoning.

The tendency to overestimate (or underestimate) probabilities in cases like ex-
ample 4.2 is known as the base rate fallacy, because it is assumed to arise from
neglecting the low “base rate” of 2%.

Exercise 4.4 ††
Box 𝐴 contains two black balls. Box 𝐵 contains one black ball and one white
ball. I choose a box at random and blindly draw a ball. The ball is black. How
confident should you be that I have chosen box 𝐴?
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Exercise 4.5 (The Prosecutor’s Fallacy) †††
A murder has been committed on an island with a million inhabitants. In
a database of blood donors, detectives find a record whose DNA seems to
match the perpetrator’s DNA from the crime scene. The DNA test is very
reliable: the probability that it finds a match between distinct people is 1 in
100,000. The person with the matching DNA is arrested and brought to court.
The prosecutor argues that the probability that the defendant is innocent is
1/100,000. Is this true? As a member of the jury, how confident should you
be in the defendant’s guilt?

4.3 Induction and Indifference

Suppose an agent’s beliefs are probabilistic and change by conditionalization. Does
this ensure that the beliefs are reasonable? No. If the agent starts out with sufficiently
crazy beliefs, conditionalization will not make them sane.

Example 4.3
You are stranded on a remote island, which you find inhabited by a strange
kind of flightless bird. During the first ten days of your stay, you see 100 birds,
all of which are green.

You should be fairly confident that the next bird will also be green. The Principle
of Conditionalization does not ensure this. It might even make you confident that
the next bird is pink. For suppose you were born with a firm conviction that if you
are ever going to see 100 green birds on an island, then the next bird you would
see is pink. Your observation of 100 green birds does not challenge this conviction.
After conditionalizing on your observation of the 100 green birds, you would become
confident that the next bird you will encounter is pink.

What we see here is Hume’s problem of induction. As Hume pointed out, there
is no logical guarantee that the future will resemble the past, or that the unobserved
parts of the world resemble the observed. The colour of the 101st bird is not entailed
by the colour of the first 100 birds. To infer that the 101st bird is probably green we
need a further premise about the “uniformity of nature”. Roughly, we need to assume
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that regularities in the part of the world that we have observed up to some time are
likely to extend into the unobserved part of the world. If, for example, the first 100
birds we encounter on an island are all green, then other birds on the island are
probably green as well. This assumption may be supported by earlier experiences.
But, again, it won’t be entailed by these experiences. Ultimately, some such premise
must be accepted as bedrock.

In Bayesian terms, the problem of induction suggests that we have to put restric-
tions on what an agent may believe without any relevant evidence. Scientifically
minded people sometimes feel uneasy about such restrictions, and therefore speak
about the problem of the priors. An agent’s priors (or “ultimate priors” or “ur-
priors”) are her credences at the start of her epistemic journey, before she condition-
alizes on any evidence.

What should an agent believe, at the beginning of her epistemic journey? It would
be irrational to be convinced, without any evidence, that the first 100 birds one might
encounter on an island will be atypical in colour. Indeed, a natural thought is that
without any relevant evidence, one should not be convinced of anything (except log-
ical truths). One should be open-minded, dividing one’s credence evenly between
all ways the world might be:

The (naive) Principle of Indifference
If 𝐴1, … , 𝐴𝑛 are 𝑛 propositions exactly one of which must be true, then a ratio-
nal prior credence function assigns the same probability 1/𝑛 to each of these
propositions.

This, however, can’t be right. Suppose you have no information about the colour
of my hat. Here are two possibilities:

𝑅: The hat is red.
¬𝑅: The hat is not red.

Exactly one of these must be true. By the naive Principle of Indifference, you should
give credence 1/2 to 𝑅 and 1/2 to ¬𝑅. But we can also divide ¬𝑅 into several possi-
bilities:

𝑅: The hat is red.
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𝐵: The hat is blue.
𝐺: The hat is green.
𝑌 : The hat is yellow.
𝑂: The hat has some other colour.

By the naive Principle of Indifference, you should give credence 1/5 to each of these
possibilities. The Principle entails that your credence in 𝑅 should be 1/2 and also
that it should be 1/5!

Some have concluded that in cases like these, rationality really does require you
to have multiple credence functions: relative to one of your credence functions, 𝑅
has probability 1/2, relative to another, it has probability 1/5. I’ll set this view aside
for now, but we will briefly return to it in section 11.5.

A more plausible response is to restrict the propositions 𝐴1, … , 𝐴𝑛 to which the
requirement of indifference applies. Intuitively, you shouldn’t be indifferent between
𝑅 and ¬𝑅 because these two propositions are not on a par. There are more ways of
being non-red than of being red. Unfortunately, it is hard to turn this intuition into a
consistent general rule, as the following exercise illustrates.

Exercise 4.6 ††
I have a wooden cube in my office whose side length is at least 2 cm and
at most 4 cm. That’s all you know about the cube. We can distinguish two
possibilities:

𝑆: The cube’s side length is between 2 cm and 3 cm (excluding 3).
𝐿: The cube’s side length is between 3 cm and 4 cm.

The intervals have the same length, so 𝑆 and 𝐿 are intuitively on a par. This
suggests that you should give credence 1/2 to each of 𝑆 and 𝐿. But now observe
that if a cube has side length 𝑥, then the cube’s volume is 𝑥3.

(a) Can you restate the propositions 𝑆 and 𝐿 in terms of volume?
(b) What credence do you give to 𝑆 and 𝐿 if you treat equally sized ranges

of volume as equally likely?

There is another problem with indifference principles. Let’s imagine we’ve found
a rule for when two propositions are “on a par” so that we can consistently require
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an agent’s priors to be indifferent between propositions that are on a par. We should
still be cautious about endorsing the requirement, for is likely to clash with the “uni-
formity of nature” assumption required for inductive inference.

Return to example 4.3. Assume, for simplicity, that birds can only be green or red.
There are then four possibilities regarding the first two birds you might see:

𝐺𝐺: Both birds are green.
𝐺𝑅: The first bird is green, the second red.
𝑅𝐺: The first bird is red, the second green.
𝑅𝑅: Both birds are red.

Intuitively, these four possibilities are on a par. An indifference principle might say
that you should give credence 1/4 to each.

Now what happens when you see the first bird, which is green? Your evidence
rules out 𝑅𝐺 and 𝑅𝑅. If you conditionalize on your evidence, your new credence
will be divided evenly between the remaining possibilities 𝐺𝐺 and 𝐺𝑅 (as you may
check). Your credence that the next bird is green will be 1/2. By the same reasoning,
if your prior credence is evenly divided between all possible colour distributions
among the first three birds (𝐺𝐺𝐺, 𝐺𝐺𝑅, etc.), then after having seen two green
birds, your “posterior” credence that the next (fourth) bird is green will still be 1/2.
And so on. No matter how many green birds you see, you won’t think that this tells
you anything about the next bird.

If we want an observation of 100 green birds to raise your credence in the next bird
being green, we have to assume that your prior credence in the “uniform” hypothesis
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (that’s 101 ‘𝐺’s) should be greater than your prior credence in
the “non-uniform” hypothesis 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑅.

Intuitively, the problem is that there are at least as many irregular worlds as regular
worlds. If you spread your credence evenly over all ways the world might be, you’ll
end up giving too much credence to irregular worlds. You won’t be able to learn by
induction.

Rational priors should be open-minded, but biased towards regular worlds. There
is no agreement on how to make this precise. (We will meet an intriguing partial
answer in the following section.) As such, the “problem of the priors” remains open.
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4.4 Probability coordination

We turn from the highly controversial Principle of Indifference to another norm that
is almost universally accepted among Bayesians. This norm connects subjective
probability with objective probability, and is often expressed as a norm on priors.

The Probability Coordination Principle
An agent’s prior credence in a proposition 𝐴, on the supposition that the ob-
jective probability of 𝐴 is 𝑥, should equal 𝑥:

Cr0(𝐴 / Pr(𝐴)=𝑥) = 𝑥.

Here, Cr0 is a rational prior credence function, and Pr is any kind of objective prob-
ability, such as relative frequency or quantum physical chance.

The Probability Coordination Principle implies that if a rational agent has discov-
ered the objective probabilities – if she has conditionalized on Pr(𝐴) = 𝑥 – and she
doesn’t have other relevant information about 𝐴, then she will align her degrees of
belief with the objective probabilities: her degree of belief in 𝐴 will match the known
objective probability.

We have unwittingly assumed this all along. In example 4.2, we assumed that if
you know that a woman is from a population in which 2% of women have cancer,
and you have no other relevant information about her, then your credence that she
has cancer should be 0.02. This is not entailed by the Kolmogorov axioms. We need
the Probability Coordination Principle to connect your information about relative
frequency to your degree of belief.

The Probability Coordination Principle can be used even if the agent doesn’t have
full information about the objective probabilities. In exercise 4.4, you had to eval-
uate Cr(Black / 𝐵), where 𝐵 is the hypothesis that I have drawn a ball from a box
containing one black ball and one white ball, and Black is the hypothesis that the
ball is black. Assuming that the draw is random (in some objective sense), 𝐵 entails
that Pr(Black) = 1/2. You don’t know whether 𝐵 is true, but we can infer, by the
Probability Coordination Principle, that Cr(Black / 𝐵) = 1/2.

In 1814, Pierre-Simon Laplace observed that the Probability Coordination Prin-
ciple may help with Hume’s problem of induction. Return to example 4.3, where
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you’ve encountered 100 green birds in the first few days on a remote island. Suppose
you think that there’s a certain objective probability with which any given bird on
the island is green (independently of the other birds). That probability might be 1,
in which case all the birds are certain to be green. Or it might be 0. Or it might be
anything in between 0 and 1, in which case you would expect to find some red birds
and some green birds. Now suppose you start out maximally open-minded about
this probability, giving equal credence to all values from 0 to 1. Using the Probabil-
ity Coordination Principle, one can then show – the maths is beyond what we do in
this course – that after observing 100 green birds, your credence that the next bird
is green will be around 0.99. You have learned by induction!

In the previous section, we saw that indifference over outcomes, over possible
sequences of 𝐺 and 𝑅, makes inductive learning impossible. Laplace saw that in-
difference over (objective) probabilities of outcomes has the opposite effect. By
treating the outcomes as independent matters of objective probability, and giving
equal credence to the objective probability, you end up giving comparatively low
credence to irregular sequences.

You may wonder where the Probability Coordination Principle comes from. Some
say it is a basic norm of rationality. Others say that it must follow from more basic
norms – from a restricted indifference principle, for example, or even from probabil-
ism alone. The issue turns on deep questions about the nature of objective probabil-
ity. Those who regard Probability Coordination as basic tend to believe that the ulti-
mate fabric of the physical world includes probabilistic quantities to which rational
beliefs should be aligned, for reasons nobody can explain. Those who don’t regard
Probability Coordination as basic see no need to posit special physical quantities
with a mysterious spell on rational credence. On a simple version of the alternative
view, objective probability is nothing but relative frequency and the Probability Co-
ordination Principle follows from plausible indifference requirements. We will not
look further into these debates.

Exercise 4.7 †
Jacob Bernoulli (an uncle of Daniel and Nicolas Bernoulli, who we’ve met
in section 3.4) proposed the following simplified version of the Probability
Coordination Principle: If a proposition has very low objective probability,
one may be certain that it is false. What do you think of this?
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4.5 Confirmation

An important question both in the philosophy of science and in scientific practice
is how scientific hypotheses are confirmed or disconfirmed by empirical data. We
can’t directly observe that, say, spacetime is curved, that smoking causes cancer,
or that dolphins evolved from land animals. Our evidence strongly supports these
assumptions, but it doesn’t entail them. What is this relation of evidential support?
What does it take for some evidence to support a hypothesis?

Philosophers have tried to formulate general rules for evidential support, akin
to the rules of deductive logic. The following rules, or “conditions” on when a
hypothesis is confirmed by evidence, figure in an influential 1945 paper by Carl
Hempel.

Nicod’s Condition. Universal generalisations are confirmed by their
instances: an 𝐹 that is 𝐺 lends support to the hypothesis that all 𝐹s are
𝐺s.

Converse Consequence Condition. If some evidence confirms a hy-
pothesis then it also confirms any theory (conjunction of hypotheses)
that entails the hypothesis.

Special Consequence Condition. If some evidence confirms a theory
then it also confirms anything that is entailed by the theory.

This rule-based (or “syntactical”) approach didn’t work out well. Most rules that
initially looked plausible turned out to have clear counterexamples. The few that
remained are too weak to make sense of scientific reasoning.

Consider Nicod’s Condition. Normally, observation of a black raven lends support
to the hypothesis that all ravens are black. But not always. Suppose your friend is on
an expedition and you’ve agreed that if she comes across a white raven then she is
going to send you a black raven, by mail, in a cage. One day, a parcel arrives: it’s a
black raven. In this context, observation of a black raven is strong evidence against
the hypothesis that all ravens are black.
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Exercise 4.8 ††
Show that the Converse Consequence Condition and the Special Consequence
Condition together entail that if some evidence confirms some hypothesis then
the same evidence confirms every hypothesis whatsoever.

A different kind of approach was suggested by Karl Popper. Popper noticed that
although scientific theories are rarely entailed by empirical evidence, they can be
refuted by the evidence. A single white raven is enough to refute (or “falsify”) the
hypothesis that all ravens are black. According to Popper, a theory is confirmed (or
“corroborated”, as he preferred to say) to the extent that it has withstood attempts at
falsification.

One problem for this falsificationist approach is that many scientific theories or
hypotheses can’t actually be falsified, because they don’t have directly observable
consequences. The (well-confirmed) hypothesis that smoking causes cancer, for ex-
ample, doesn’t imply that every single smoker gets cancer. It only predicts that smok-
ers have a higher probability of getting cancer, in some objective sense of ‘probabil-
ity’. (The hypothesis is not about what people believe.) We can’t directly observe
that probability.

To get around this issue, falsificationism may call upon its powerful ally, “clas-
sical” (or “frequentist”) statistics. According to classical statistics, a hypothesis
can be rejected not only if it is logically incompatible with the evidence, but also
if it renders the evidence sufficiently improbable. Imagine, for example, that we
randomly divide 1000 children into two groups. One group is instructed to take up
smoking, the other to refrain from smoking. In all other respects, we force the two
groups to lead similar lives. 50 years later, we find more incidents of cancer in the
smoking group than in the “control group”. This could be just a coincidence. The
tools of classical statistics allow us to compute the objective probability of the ob-
served difference between the groups on the assumption that it is a coincidence. If
this probability is sufficiently low, classical statistics tells us that we can reject the
coincidence hypothesis. We can infer that smoking really does increase the risk of
cancer.

One obvious problem with this move is to explain when a probability is “suffi-
ciently low”. Just how improbable must a hypothesis render the observed evidence
to warrant rejecting the hypothesis? In the social sciences, any probability below
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0.05 is usually deemed sufficiently low. In medicine, a threshold of 0.01 is pre-
ferred. Either choice looks unprincipled and arbitrary. Besides, what does it mean
to “reject” a hypothesis? Should we become absolutely certain that the hypothesis
is false – even though we know that low-probability events happen all the time?

Another problem with the frequentist approach is that it is only applicable to spe-
cific kinds of data. The cancer experiment I have just described has never been car-
ried out, for obvious ethical and practical reasons. The actual data that support the
link between smoking and cancer are, for the most part, of a kind for which the tools
of classical statistics aren’t designed because one can’t easily compute informative
objective probabilities.

A deeper problem with the falsificationist/frequentist approach is that predictive
success is not the only standard by which we evaluate scientific hypotheses. Physi-
cists, for example, favour mathematically elegant theories, like Einstein’s theory of
General Relativity, that unify a diverse range of phenomena. Consider a rival hypoth-
esis to Einstein’s according to which the laws of General Relativity hold throughout
all of space and time except tomorrow afternoon in my back garden, where nature
obeys the laws of Aristotelian physics. This crackpot “theory” is logically compat-
ible with all existing observations, and it doesn’t render any of them less probable
than Einstein’s. By falsificationist lights, Einstein’s theory and mine are equally well
confirmed. Is that true? If you want to predict what is going to happen tomorrow
afternoon in my back garden, you would surely be insane to rely on my theory.

A third approach to confirmation, besides the syntactical and the falsificationist
approach, is Bayesian Confirmation Theory. It is by far the most popular approach
in contemporary philosophy of science. (Its statistics ally is Bayesian Statistics.)

Why do we care about whether, or to what extent, a hypothesis is confirmed by the
evidence? Ultimately, it’s because we want to know how much credence we should
invest in the hypothesis. We want to know how confident we should be that smoking
causes cancer, or that the laws of Aristotelian physics will be operative tomorrow in
my garden.

Bayesianism offers a simple, albeit schematic, answer. If 𝐸 is the relevant evi-
dence, then the credence we should give to a hypothesis 𝐻 in light of 𝐸 is Cr0(𝐻/𝐸),
where Cr0 is a rational prior credence function.

In fact, Bayesians distinguish two notions of evidential support. We may ask about
the absolute degree to which a hypothesis is supported by the evidence, but we may
also ask about the incremental effect a single piece of data has on the credibility
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of the hypothesis. One black raven, for example, hardly makes it probable that all
ravens are black. Still, under normal circumstances, it lends some support to the
generalisation.

The Bayesian analysis of confirmation
𝐸 (absolutely) confirms 𝐻 to the extent that Cr0(𝐻/𝐸) is high.
𝐸 (incrementally) confirms 𝐻 to the extent that Cr0(𝐻/𝐸) exceeds Cr0(𝐻).

Without more information about the prior credence Cr0 these schematic analyses
may not appear terribly useful. But let’s have a closer look.

On the Bayesian account, confirmation comes in degrees, and its degree is closely
related to the conditional probability Cr0(𝐻/𝐸). With the help of Bayes’ Theorem,
we can break this conditional probability into three parts, which we may understand
as three components of Bayesian confirmation:

Cr0(𝐻/𝐸) = Cr0(𝐸/𝐻) ⋅ Cr0(𝐻)
Cr0(𝐸) .

The first component is Cr0(𝐸/𝐻). This is the probability of the evidence given the
hypothesis. The Bayesian analysis implies that, all else equal, the more probable the
evidence is in light of a hypothesis, the more the evidence supports the hypothesis.
Conversely, if a hypothesis renders the evidence unlikely, then (all else equal) the
evidence is evidence against the hypothesis. In easy cases, we may use the tools of
classical statistics to compute an objective probability for 𝐸 given 𝐻, and invoke the
Probability Coordination Principle to determine Cr0(𝐸/𝐻). But we don’t have to go
via objective probabilities. We can take into account all kinds of data. And we don’t
need an arbitrary cutoff at which the hypothesis is “rejected”.

The second component, Cr0(𝐻), is the prior probability of the hypothesis. This is
where simplicity, systematicity, and other such criteria enter the picture. My crack-
pot theory about my Aristotelian back garden deserves negligible prior probability.
(Why? Because rational priors assume that nature is “uniform”, and my theory posits
a bizarre kind of non-uniformity.)

The third component, Cr0(𝐸), is the prior probability of the evidence. This oc-
curs in the denominator, meaning that the lower the prior probability of the evidence,
the higher the degree of confirmation. This makes sense. Einstein’s theory of Rel-
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ativity predicts that light is deflected when it travels past massive objects. The first
observation of this effect, in 1919, was deemed a great triumph for Einstein, because
the observation was so surprising. It has low prior probability. By comparison, if
an astrologer predicts that we will face personal challenges and make new acquain-
tances in the coming year, and the prediction comes true, this isn’t a great triumph
for astrology, because the prediction was highly probable all along.

So we can say a lot without knowing what Cr0 looks like. Still, it would be good
to know more. This brings us back to the questions we’ve discussed earlier in this
chapter. Should rational priors satisfy some kind of indifference requirement? If so,
what does that requirement look like? How, exactly, should priors be biased towards
“uniform” worlds? Should they be aligned with some basic physical quantities?

On a more general level, we may ask how tightly priors are constrained by the
norms of rationality. Some hold that there is a unique rational prior credence func-
tion. Others say that rationality is “permissive”, that it allows for a wide range of
priors, each of which is as rational as the other. According to the permissive view,
there is an irreducibly subjective element to rational credence: perfectly rational
agents with the exact same evidence may arrive at different beliefs. There may, ac-
cordingly, be no objective answer to how strongly a scientific hypothesis is supported
by the evidence.

Exercise 4.9 †
Show that if a theory 𝐻 entails 𝐸, and both 𝐸’s prior probability is not 1, then
𝐸 incrementally confirms 𝐻.

Exercise 4.10 (The raven paradox) †††
The hypothesis that all ravens are black is logically equivalent to the hypoth-
esis that all non-black things are non-ravens. If universal generalizations are
normally confirmed by their instances, and logically equivalent hypotheses
are confirmed by the same data, then an observation of a white shoe ought to
support the hypothesis that all ravens are black. Does it?
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Essay Question 4.1

Evaluate the hypothesis that there is a unique rational prior. Assuming that
beliefs evolve by conditionalising on the evidence, this is equivalent to the
hypothesis that rational agents with the same evidence should have the same
degrees of belief. Can you find an argument for or against this view?

Sources and Further Reading
Chapter 15 of Ian Hacking, An Introduction to Probability and Inductive Logic (2001)
goes into some more details about conditionalization.

The cube exercise is due to Bas van Fraassen, Laws and Symmetry (1989, p.303).
Similar problems for the Indifference Principle are often discussed under the heading
of ‘Bertrand’s Paradox’.

The Probability Coordination Principle is best known as the ‘Principal Principle’,
introduced in David Lewis, “A Subjectivist’s Guide to Objective Chance” (1980).
Lewis’s formulation includes an important extra parameter for “admissible evidence”
that I have omitted.

My claim that Cr(101 𝐺s/100 𝐺s) ≈ 0.99 is an application of Laplace’s “Rule of
Succession”. Laplace’s assumptions can be weakened. For example, we don’t need
to assume that you start with a uniform prior over the objective probabilities. (Search
for “Bayesian convergence” if you’re interested in this.)

Hempel’s 1945 paper on confirmation is called “Studies in the Logic of Confirma-
tion”. It comes in two parts, and also introduces the raven paradox. Popper’s falsifi-
cationist approach was first spelled out in his The Logic of Discovery (1935). Modern
Bayesian Confirmation Theory begins with Rudolf Carnap, Logical Foundations of
Probability (1950). Michael Strevens’s Lecture Notes on Bayesian Confirmation The-
ory (2017) provide a good introduction. The example of the black raven in the mail
is from Strevens. For a brief comparison between the frequentist (“classical”) and the
Bayesian approach to statistical inference, see Matthew Kotzen, “The Bayesian and
Classical Approaches to statistical inference” (2022).

For an introduction to the debate over how wide the range of rational priors might be,
see Christopher G. Meacham, “Impermissive Bayesianism” (2014).
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5 Utility

5.1 Two conceptions of utility

Daniel Bernoulli realized that rational agents don’t always maximize expected mon-
etary payoff: £1000 has more utility for a pauper than for a rich man. But what is
utility?

Until the early 20th century, utility was widely understood to be some kind of
psychological quantity, often identified with degree of pleasure and absence of pain.
On that account, an outcome has high utility for an agent to the extent that it increases
the agent’s pleasure and/or decreases her pain.

Let’s assume for the sake of the argument that one can represent an agent’s total
amount of pleasure and pain by a single number – the agent’s “degree of pleasure”.
Can we understand utility as degree of pleasure? The answer depends on what role
we want the concept of utility to play.

One such role lies in ethics. According to utilitarianism, an act is morally right
just in case it would bring about the greatest total utility for all people. In this context,
identifying utility with degree of pleasure implies that only pleasure and pain have
intrinsic moral value; everything else – autonomy, integrity, respect of human rights,
and so on – would be morally relevant only insofar as it causes pleasure or pain. This
assumption is known as ethical hedonism. We will not pursue it any further.

Exercise 5.1 †
Suppose that money has declining marginal utility, and that the utility of dif-
ferent wealth levels are the same for all people (so that, for example, a net
wealth of £1000 is as good for me as it is for you). Without any further as-
sumptions about utility, it follows that if one person has more money than
another, then the total utility in the population would increase if the wealthier
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person gave some of her money to the poorer person, decreasing the gap in
wealth. Explain why.

Another role for a concept of utility lies in the theory of practical rationality. Ac-
cording to the MEU Principle, practically rational agents choose acts that maximize
the credence-weighted average of the utility of the possible outcomes. If we identify
utility with degree of pleasure, the MEU principle turns into what we might call the
‘MEP Principle’:

The MEP Principle
Rational agents maximize their expected degree of pleasure.

An act’s expected degree of pleasure is the probability-weighted average of the de-
gree of pleasure that might result from the act.

The MEP Principle is a form of psychological hedonism. Psychological hedo-
nism is the view that the only thing that ultimately motivates people is their own
pleasure and pain.

The founding fathers of modern utilitarianism, Jeremy Bentham and John Stuart
Mill, had sympathies for both ethical hedonism and psychological hedonism. As a
consequence, the two conceptions of utility – the two roles associated with the word
‘utility’ – were not properly distinguished. Today, both kinds of hedonism have long
fallen out of fashion, but the two conceptions are still often conflated.

For the most part, contemporary utilitarians hold that the standard of moral right-
ness is the total welfare or well-being produced by an act, which is not assumed to
coincide with total degree of pleasure. Thus ‘utility’ is nowadays often used as a
synonym for ‘welfare’ or ‘well-being’. But the word is also widely used in the other
sense, to denote whatever motivates (rational) agents.

Some have argued that the two uses actually coincide: that the only thing that
motivates rational agents is their own welfare or well-being. This may or may not
be true. But it needs to be backed up by data and argument; it does not become true
through sloppy use of language.

In these notes, ‘utility’ is only used in the second sense. The utility of a outcome
measures the extent to which the agent in question wants the outcome to obtain. We
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do not assume that the only thing agents ultimately want is to increase their degree
of pleasure, their welfare, their well-being, or anything like that.

Note that psychological hedonism, or the slightly more liberal claim that people
only care about their welfare, is at most a contingent fact about humans. One can
easily imagine agents who are motivated by other things. We can imagine a mother
who knowingly takes on hardships for the benefit of her children, or a soldier who
intentionally chooses a painful death in order to save her comrades. Psychological
hedonists hold that humans would never consciously do such things: whenever an
agent sacrifices her own good to benefit others, she mistakenly believes that her
choice will actually make herself better off than the alternatives. Again, we don’t
need to argue over whether this is true. The important point is that utility, as we use
the term, does not mean the same as degree of pleasure or welfare or well-being.

A hedonist might object that while it is conceivable that an agent is motivated by
things other than her personal pleasure, such agents would be irrational. After all,
the MEP Principle only states that rational agents maximize their expected degree
of pleasure; it doesn’t cover irrational agents.

This brings us to a tricky issue. What do we mean by ‘rational’? The label ‘ratio-
nal’ is sometimes associated with cold-hearted selfishness. On this usage, a rational
agent always looks out for her own advantage, with no concern for others. This idea
of “economic rationality” has its use, but it is not our topic. The kind of rationality
we’re interested in is a more minimal notion. Intuitively, it is the idea of “making
sense”. If you want to reduce animal suffering, and you know you can achieve this
by eating less meat, then it makes sense that you eat less meat. If you are sure that a
picnic will be cancelled if it is raining, and you see that it is raining, then it doesn’t
make sense to believe that the picnic will go ahead. The model we are studying is a
model of agents who “make sense” in this kind of way.

Even if we were interested in the cold-hearted and selfish sense of rationality, we
should not define utility as degree of pleasure or welfare. Consider a hypothetical
agent who cares not just about herself, who sacrifices some of her own good to reduce
the pain of others. The agent is “irrational” in the cold-hearted and selfish sense. But
what is irrational about her? Does the fault lie in her beliefs, in her goals, or in the
way she brings these together to make choices? Plausibly, the “fault” lies in her
goals. Her concern for others is what goes against the standards of cold-hearted and
selfish rationality. But if we were to define utility as degree of pleasure or welfare,
we would have to say that the agent violates the basic norm of practical rationality,
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the MEU Principle.
The point generalizes. Consider a person in an abusive relationship who is ma-

nipulated into doing things that hurt or degrade her. We might reasonably think that
the person shouldn’t do these things; it is against her interest to do them. But what is
at fault? Arguably, the fault lies in her (manipulated) desires. What the person does
may well be in line with what she wants to achieve – in particular, with her strong
desire to please her partner. But a healthy, self-respecting person, we think, should
have other desires.

By understanding utility as a measure of whatever the agent in question desires,
we do not automatically sanction these desires as rational or praiseworthy. Our usage
of ‘utility’ allows us to say that the person in the abusive relationship shouldn’t do
what she is doing, because she should have different desires that would not support
her actions.

5.2 Sources of utility

An outcome’s utility measures the extent to which the agent is motivated to bring
about the outcome. I will often say that this is the degree to which the agent desires
the outcome, but we need to keep in mind that the word ‘desire’ can be mislead-
ing. For one thing, we need to cover “negative desire”. Being hungry might have
greater utility for you than being dead, even though you do not desire either. More
importantly, ‘desire’ is often associated with a particular type of motivational state.
I might say that I got up early in the morning despite my strong desire to stay in bed;
I got up not because I desired to get up, but because I had to. On this usage, my
desires contrast with my sense of duty.

Utility comprises everything that motivates the agent, all the reasons she has for
and against a particular action. As such, ‘utility’ is an umbrella term for a diverse set
of psychological states or events. We can be motivated by bodily cravings, by moral
commitments, by our image of the kind of person we want to be, by an overwhelming
feeling of terror or love, and so on. These factors need not be conscious. There is
good evidence that our true motives are often not what we believe or say they are.
An agent’s utility function represents their true motives, and all of them.

Why should we believe that all the factors that motivate an agent can be amalga-
mated into a single numerical quantity? Would it not be better to allow for a whole
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range of utility functions: moral utility, emotional utility, and so on? We could cer-
tainly do that. But there are reasons to think that there must also be an amalgamated,
all-things-considered utility (although the determinacy and numerical precision of
utility functions is obviously an idealisation). When you face a decision, you have to
make a single choice. You can’t choose one act on moral grounds and a different act
on emotional grounds. Somehow, all your motives and reasons have to be weighed
against each other to arrive at an overall ranking of your options.

We will have a brief look at the weighing of different considerations in chapter 7,
but to a large extent this is really a topic for empirical psychology and neuroscience.
If it turns out that there are 23 distinct factors that influence our motivation in an
intricate network of inhibition and reinforcement, then so be it. We will model the
whole network by a single utility function, staying neutral on “lower-level” details
that can vary from agent to agent. But it’s important to keep in mind that a lot of
interesting and complicated psychology is hiding in our seemingly simple concept
of utility.

Consider the following scenario.

Example 5.1 (The endowment effect)
Emily is buying a coffee mug. She is undecided between a red mug and a blue
mug, and somewhat arbitrarily chooses the red one. A little later, someone
offers Emily £1 if she swaps her red mug for the blue mug. Emily declines.

The kind of behaviour displayed by Emily is common. People tend to place a
greater value on things they own than on things they don’t own. Initially, Emily con-
sidered the two mugs equally desirable. Having bought the red mug, Emily suddenly
considers it better than the blue mug.

Psychologists have offered different explanations for this effect. Some say that
forgoing an owned item feels like a loss, and we don’t like this feeling. Others have
argued that we treat goods that we own as part of our identity; forgoing the good
is thus perceived as a threat to our identity. We don’t need to adjudicate between
these (and other) proposals. What’s important for us is that whichever explanation
is correct, it should be reflected in Emily’s utility function. If Emily subconsciously
regards her belongings as part of her identity, and she is subconsciously motivated
to preserve her identity, then her utility for an outcome that involves giving up a
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previously owned good is comparatively low.
Outside philosophy – especially in economics – utility is often assumed to be a

function of material goods (“commodity bundles”). On this usage, one can speak of
the utility (for Emily) of the red mug, but one can’t distinguish between, for example,
the utility of not getting the red mug and giving away the red mug. No matter what
utility we then assign to the two mugs, Emily’s behaviour is found to violate the MEU
Principle. If the red cup has greater utility than the blue cup, then Emily shouldn’t
have been indifferent when she decided which cup to buy. If the two cups have equal
utility for Emily, then Emily should be happy to swap the red cup for the blue cup.

On our usage of ‘utility’, Emily’s behaviour is perfectly compatible with the MEU
Principle. Emily doesn’t just care about which material goods she owns. She also
cares about changes to her possessions. If she is a real person, she will also care
about other things that have little to do with material goods. If we want a general
model of how beliefs and desires relate to choices, we need to make room for all the
desires an agent might have. We could follow the economics tradition and restrict
an agent’s utility function to material goods. But then we would have to add other
elements to our model to account for desires that don’t pertain to the possession of
material goods. We will choose the theoretically simpler option of widening the
definition of ‘utility’, so that an agent’s utility function reflects everything the agent
cares about. We are going to return to this theme in chapter 8.

Exercise 5.2 ††
Amartya is offered a choice between a small slice of cake, a medium-sized
slice, and a large slice. He chooses the medium-sized slice. If he had been
offered a choice between only the small slice and the medium-sized slice, he
would have chosen the small slice.

(a) Explain why this behaviour is incompatible with the MEU Principle if
the utility function is a function of material goods.

(b) Explain why the behaviour is compatible with the MEU Principle on
our use of ‘utility’.

Officially, we will use ‘utility’ to measure anything that motivates the relevant
agent. It is worth pointing out, however, that our model can be usefully applied with
other conceptions of utility. We might want to know, for example, what an agent
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should do, from a moral perspective, in a situation like the Miners Problem from
chapter 1, where crucial information about the world is missing. A tempting idea
is that the agent should maximize expected moral utility, where the moral utility of
an outcome is defined by some ethical theory (utilitarianism, perhaps). Similarly, a
corporation’s board of directors may want to know how to promote shareholder value
in the light of such-and-such common information. Here the relevant utility function
might be derived from the stipulated goal of promoting shareholder value, and the
“credence” function might be derived from the shared information. Neither of these
needs to match the beliefs and desires of any individual member of the board.

Exercise 5.3 †††
Some choices predictably change our desires. One might argue that in such a
case, a rational agent should be guided not by her present desires, but by the
desires she will have as a result of her choice.
Suppose you can decide right now how many drinks you will have tonight:
zero, one, or two. (You have to order the drinks in advance and can’t change
the order at the time.) If you’re sober, you prefer to have one drink rather than
zero or two. But if you have a drink, you often prefer to have another. Draw
a matrix for your decision problem, assuming that your goal is to maximize
your expected future utility.

5.3 The structure of utility

Now that we know what utility is, let’s have a closer look at its formal structure.
First of all, what are the bearers of utility? In ordinary language, we often say

that people desire things: tea, cake, a concert ticket, a larger flat. As we saw in the
previous section, we need a more general conception to capture an agent’s desire not
to lose a previously owned good. We might also desire that our friends are happy,
that it won’t rain tomorrow, that so-and-so will win the next elections. Here the
object of desire isn’t a thing, but a possible state of the world. Even when we say
that people desire things, plausibly the desire is really directed at a possible state of
the world. When you desire tea, you desire to drink the tea. Your desire wouldn’t be
satisfied if I gave you a certificate of ownership for a cup of tea that is locked away
in a safe.
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So we’ll assume that the objects of desire are the same kinds of things as the
objects of belief: propositions, or possible states of the world. As in the case of
belief, we don’t distinguish between logically equivalent states of the world. If you
assign high utility to drinking tea then you also assign high utility to drinking tea or
coffee but not coffee.

Let’s study how an agent’s desires towards logically related propositions are re-
lated to one another. Suppose you assign high utility to the proposition that it won’t
rain tomorrow (perhaps because you want to go on a picnic). Then you should plau-
sibly assign low utility to the proposition that it will rain. You can’t hope that it will
rain and also that it won’t rain. In this respect, desire resembles belief: if you are
confident that it will rain, you can’t also be confident that it won’t rain. The Nega-
tion Rule of probability captures the exact relationship between Cr(𝐴) and Cr(¬𝐴),
stating that Cr(¬𝐴) = 1−Cr(𝐴). Does the rule also hold for utility? More generally,
do utilities satisfy the Kolmogorov axioms? It will be instructive to go through the
three axioms.

Kolmogorov’s axiom (i) states that probabilities range from 0 to 1. If there are
upper and lower bounds on utility, we could adopt axiom (i) for utilities as a conven-
tion of measurement: we simply use 1 for the upper bound and 0 for the lower bound.
However, it is not obvious that there are such bounds. Couldn’t there be an infinite
series 𝐴1, 𝐴2, 𝐴3, … of states of increasing utility in which the difference in utility
between successive states is always the same? If there is such a series, then utility
can’t be measured by numbers between 0 and 1. Philosophers are divided over the
question. Some think utility must be bounded, others think it can be unbounded.
There are arguments for both sides. We will not pause to look at them.

Kolmogorov’s axiom (ii) states that logically necessary propositions have prob-
ability 1. If utilities satisfy the probability axioms, this would mean that logically
necessary propositions have maximal utility. However much you desire that it won’t
rain tomorrow, your desire that it either will or won’t rain should be at least as great.

This does not look plausible. Intuitively, if something is certain to be the case, it
makes no sense to desire it. But this could mean two things. It could mean that de-
grees of desire are not even defined for logically necessary propositions. Or it could
mean that an agent should always be indifferent towards logically necessary propo-
sitions – neither wanting them to be the case nor wanting them to not be the case.
Our common-sense conception of desire arguably sides with the first option: if you
are certain of something, even asking how strongly you desire it seems odd. But the
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issue isn’t clear. For our purposes, it proves more convenient to go with the second
option. We will say that even logically necessary propositions have well-defined
utility, and that their utility measures the point between “positive” and “negative”
desire. If you positively want something to be the case, the utility you assign to it is
greater than the utility of a tautology. If you want something not to be the case, its
utility is lower than that of a tautology. Some authors make this more concrete by
adopting a convention that logically necessary propositions always have utility 0.

Axiom (iii) states that if 𝐴 and 𝐵 are logically incompatible, then the probability
of 𝐴 ∨ 𝐵 equals the sum of the probabilities of 𝐴 and 𝐵. To illustrate, suppose there
are three possible locations for a picnic: Alder Park, Buckeye Park, and Cedar Park.
Alder Park and Buckeye Park would be convenient for you; Cedar Park would not.
Now how much do you desire that the picnic takes place in either Alder Park or
Buckeye Park? If axiom (iii) holds for utilities, then if you desire Alder Park and
Buckeye Park to equal degree 𝑥, then your utility for the disjunction should be 2𝑥:
you should be more pleased to learn that the picnic takes place in either Alder Park
or Buckeye Park than to learn that it takes place in Alder Park. That’s clearly wrong.
Axiom (iii) also fails.

What is the true connection between the utility of 𝐴 ∨ 𝐵 and the utilities of 𝐴 and
𝐵? Intuitively, if 𝐴 and 𝐵 have equal utility 𝑥, then the utility of 𝐴 ∨ 𝐵 should also be
𝑥. What if the utilities of 𝐴 and 𝐵 are not equal? What if, say, U(𝐴) > U(𝐵)? Then
the utility of 𝐴 ∨ 𝐵 should plausibly lie in between the utilities of 𝐴 and 𝐵:

U(𝐴) ≥ U(𝐴 ∨ 𝐵) ≥ U(𝐵).

That is, if Alder Park is your first preference and Buckeye your second, then the
disjunction either Alder Park or Buckeye Park can’t be worse than Buckeye Park or
better than Alder Park. But where does U(𝐴 ∨ 𝐵) lie in between U(𝐴) and U(𝐵)?
At the mid-point?

Suppose you prefer Alder Park to Buckeye Park, and Buckeye Park to Cedar Park.
You think it is highly unlikely that the picnic will take place in Buckeye Park. Now
how pleased would you be to learn the picnic won’t take place in Cedar Park – equiv-
alently, that it will take place either in Alder Park or in Buckeye Park? You should
be quite pleased. If you’re confident that 𝐵 is false, then U(𝐴 ∨ 𝐵) should plausibly
be close to U(𝐴). If you’re confident that 𝐴 is false, then U(𝐴 ∨ 𝐵) should be near
U(𝐵).
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Your utilities depend on your beliefs! On reflection, this should not come as a
surprise. A lot of the things we desire we only desire because we have certain beliefs.
If you want to buy a hammer to hang up a picture, then your desire for the hammer is
based (in part) on your belief that the hammer will allow you to hang up the picture.

Here is the general rule for U(𝐴 ∨ 𝐵), assuming 𝐴 and 𝐵 are incompatible. The
rule was discovered by Richard Jeffrey in the 1960s and is our only basic rule of
utility, apart from the assumption that logically equivalent propositions have the
same utility.

Jeffrey’s Axiom
If 𝐴 and 𝐵 are logically incompatible and Cr(𝐴 ∨ 𝐵) > 0 then

U(𝐴 ∨ 𝐵) = U(𝐴) ⋅ Cr(𝐴 / 𝐴 ∨ 𝐵) + U(𝐵) ⋅ Cr(𝐵 / 𝐴 ∨ 𝐵).

In words: the utility of 𝐴∨𝐵 is the weighted average of the utility of 𝐴 and the utility
of 𝐵, weighted by the probability of the two disjuncts, conditional on 𝐴 ∨ 𝐵.

Why ‘conditional on 𝐴∨𝐵’? Why don’t we simply weigh the utility of 𝐴 and 𝐵 by
their unconditional probability? Because then highly unlikely propositions would
automatically have a utility near 0. If you are almost certain that the picnic will take
place in Cedar Park, both Cr(Alder Park) and Cr(Buckeye Park) will be close to 0.
But the mere fact that a proposition is unlikely does not make it undesirable. To
evaluate the desirability of a proposition, we should bracket its probability. That’s
why Jeffrey’s axiom defines U(𝐴 ∨ 𝐵) as the probability-weighted average of U(𝐴)
and U(𝐵) on the supposition that 𝐴 ∨ 𝐵 is true.

Exercise 5.4 ††
You would like to win the lottery because that would allow you to travel the
world, which you always wanted to do. Let Win be the proposition that you
win the lottery, and Travel the proposition that you travel the world. Note that
Win is logically equivalent to (Win ∧ Travel) ∨ (Win ∧ ¬Travel), and thus has
the same utility. Suppose U(Win ∧ Travel) = 10, U(Win ∧ ¬Travel) = 0, and
your credence that you will travel the world on the supposition that you will
win the lottery is 0.9. By Jeffrey’s axiom, what is U(Win)?
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Exercise 5.5 ††
At the beginning of this section, I argued that if U(¬𝐴) is high, then U(𝐴)
should be low, and vice versa. Let’s use the utility of the tautology 𝐴 ∨ ¬𝐴 as
a neutral point of reference, so that U(𝐴 ∨ ¬𝐴) = 0. From this assumption,
and Jeffrey’s axiom, it follows that U(¬𝐴) > 0 just in case U(𝐴) < 0. More
precisely, it follows that

U(𝐴) ⋅ Cr(𝐴) = −U(¬𝐴) ⋅ Cr(¬𝐴).

Can you show how this follows?

The following consequence of Jeffrey’s axiom is often useful. Assume that 𝑆1, … , 𝑆𝑛
are propositions for which it is guaranteed that exactly one of them is true. That is,
any two propositions in 𝑆1, … , 𝑆𝑛 are logically incompatible (no two of the proposi-
tions can be true together), and the disjunction 𝑆1 ∨ … ∨ 𝑆𝑛 is logically necessary
(one of the propositions must be true). Such a collection of propositions is called a
partition. Intuitively, a partition divides the space of possible worlds into disjoint
regions.

Now, Jeffrey’s axiom entails that if 𝑆1, … , 𝑆𝑛 is a partition, then for any proposi-
tion 𝐴 with Cr(𝐴) > 0,

U(𝐴) = U(𝐴 ∧ 𝑆1) ⋅ Cr(𝑆1/𝐴) + … + U(𝐴 ∧ 𝑆𝑛) ⋅ Cr(𝑆𝑛/𝐴).

Let’s call this the partition formulation of Jeffrey’s axiom.
Think of 𝐴 as a region in logical space. Each 𝐴 ∧ 𝑆𝑖 is a disjoint subregion of

𝐴. The partition formulation says that the desirability of the whole region 𝐴 is a
weighted average of the desirability of the subregions, weighted by their probability
conditional on 𝐴.

Exercise 5.6 †††
Derive the partition formulation of Jeffrey’s axiom from Jeffrey’s (original)
axiom.
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Exercise 5.7 ††
Derive Jeffrey’s axiom from the partition formulation.

Exercise 5.8 ††
Give counterexamples to the following generalisations, assuming that an agent
desires a proposition 𝐴 iff U(𝐴) > U(¬𝐴). (Equivalently, iff U(𝐴) > U(𝐴 ∨
¬𝐴).)

(a) Whenever an agent desires 𝐴 ∧ 𝐵, they also desire 𝐴𝐵.
(b) Whenever an agent desires 𝐴 and desires 𝐵, they also desire 𝐴 ∧ 𝐵.
(c) Whenever an agent desires 𝐴, they desire 𝐴 ∨ 𝐵.

5.4 Basic desire

I have presented Jeffrey’s axiom as the sole formal requirement on rational utility.
Even this much is controversial. Many philosophers hold that rationality imposes
no constraints at all on an agent’s desires. (In a way, this is the opposite extreme of
the hedonist doctrine that rational agents desire nothing but their own pleasure.) The
idea was memorably expressed by David Hume in his Treatise of Human Nature:

’tis not contrary to reason to prefer the destruction of the whole world to
the scratching of my finger. ’Tis not contrary to reason for me to chuse
my total ruin, to prevent the least uneasiness of an Indian or person
unknown to me.

Hume held that our basic desires are not responsive to evidence, reason, or argu-
ment. If your ultimate goal is to help some distant stranger, there is no non-circular
argument that could prove your goal to be wrong, nor could we fault you for not
taking into account any relevant evidence. Whatever facts you might find out about
the world, you could coherently retain your ultimate goal of helping the stranger.

For Hume, beliefs and desires are in principle independent. What you believe is
one thing, what you desire is another. Beliefs try to answer the question: what is
the world like? Desires answer an entirely different question: what do you want the
world to be like? On the face of it, these two questions really appear to be logically
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independent. Two agents could in principle give the same answer to the first question
and different answers to second, or the other way around.

What we have seen in the previous section seems to contradict these intuitions.
We have seen that an agent’s utilities are thoroughly entangled with her credences.
Indeed, we can read off an agent’s credence in any proposition 𝐴 from her utilities,
assuming the utilities obey Jeffrey’s axiom, the credences obey the probability ax-
ioms, and the agent is not disinterested in 𝐴. Here is how.

By Jeffrey’s axiom,

U(𝐴 ∨ ¬𝐴) = U(𝐴) ⋅ Cr(𝐴) + U(¬𝐴) ⋅ Cr(¬𝐴).

By the Negation Rule, we can replace Cr(¬𝐴) by 1−Cr(𝐴). Multiplying out, we get

U(𝐴 ∨ ¬𝐴) = U(𝐴) ⋅ Cr(𝐴) + U(¬𝐴) − U(¬𝐴) ⋅ Cr(𝐴).

Now we solve for Cr(𝐴):

Cr(𝐴) = U(𝐴 ∨ ¬𝐴) − U(¬𝐴)
U(𝐴) − U(¬𝐴) .

The ratio on the right-hand side is defined whenever U(𝐴) ≠ U(¬𝐴), which I meant
when I said that the agent is “not disinterested” in 𝐴.

What is going on here? Have we refuted Hume? Have we shown that an agent’s
beliefs are part of her desires?

Of course not – or not in any interesting sense. We need to distinguish basic
desires from derived desires. If you are looking for a hammer to hang up a picture,
your desire to find the hammer is not a basic desire. It is derived from your desire
to hang up the picture and your belief that you need a hammer to achieve that goal.
By contrast, a desire to be free from pain is typically basic. If you want a headache
to go away, this is usually not (or not only) because you think having no headache is
associated with other things you desire. You simply don’t want to have a headache,
and that’s the end of the story.

When Hume claimed that desires are independent of beliefs, he was talking about
basic desires.

How are basic desires related to an agent’s utility function?
Let’s pretend that you have only one basic desire: to be free from pain. Let’s also
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pretend that this is an all-or-nothing matter. By your lights, all possible worlds in
which you are free from pain are then equally good, equally desirable. In each of
them, you have everything you want. The worlds in which you are not free from pain
are also equally good. In each of them, you do not have what you want.

Let’s say that a proposition has uniform utility for an agent if the agent does not
care how the proposition is realized: all subsets of the proposition (understood as a
set of possible worlds) have equal utility. In our example, being pain-free and being
in pain have uniform utility.

Let’s change the scenario so that you have two basic desires: being free from
pain and being admired by other people. These are logically independent, so there
are four combinations: (1) being pain-free and admired, (2) being pain-free and not
admired, (3) being in pain and admired, and (4) being in pain and not admired. Note
that these form a partition.

Being in pain no longer has uniform utility. The worlds where you are in pain
divide into (better) worlds where you are in pain and admired and (worse) worlds
where you are in pain and not admired. As a consequence, the utility of being in
pain now depends on your beliefs: the stronger you believe that you are admired if
you are in pain, the more you desire being in pain.

The four combinations of being pain-free and admired, however, have uniform
utility. All worlds in which you are, say, in pain and admired are equally desirable
(still pretending these are all-or-nothing matters). I will say that these combinations
are your concerns. Intuitively, a concern is a proposition that settles everything the
agent ultimately cares about. An agent’s concerns always form a partition.

Remember that an outcome in a decision matrix must settle everything the agent
cares about. Every outcome in every decision problem is therefore a concern. Many
decision theorists use the word ‘outcome’ where I use ‘concern’. I prefer a different
label, if only because some of an agent’s concern may never figure as outcomes in a
decision situation.

It will be useful to have a name for an agent’s utility function restricted to their
concerns. I’ll call it the agent’s intrinsic utility function. (Some people say ‘value
function’; many just say ‘utility function’ and never consider the wider function we
call the agent’s ‘utility function’.)

Formally, an intrinsic utility function assigns numbers to some partition of propo-
sitions. Intuitively, each of these propositions settles everything the agent cares
about, and the numbers tell us how strongly the agent desires any particular way
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of settling the things they care about. In the above example, your intrinsic utility
function might by fully given as follows:

U(Pain ∧ Admired) = 1,
U(¬Pain ∧ Admired) = 5,

U(Pain ∧ ¬Admired) = −5,
U(¬Pain ∧ ¬Admired) = 0.

An agent’s intrinsic utility function represents the belief-independent aspect of
their goals or desires. Every possible credence function is compatible with every
possible intrinsic utility function.

Since no concern is ever a disjunction of other concerns, Jeffrey’s axiom imposes
no constraint on intrinsic utility functions. It only enters the picture when we look at
the utility of propositions that aren’t concerns. In effect, the axiom tells us how to de-
rive an agent’s utility for non-concerns from the agent’s intrinsic utility function and
their credence function. (The axiom’s partition formulation makes the derivation
transparent.)

In chapter 7, we will look at how an agent’s intrinsic utility function might be
determined by less specific desires – by a desire to be free from pain, for example,
and a desire to be admired. Before we do this, we need to say more about what
the utility numbers are supposed to represent. What, exactly, does it mean that a
proposition has utility 5, as opposed to -5 or 27?

Exercise 5.9 †
There’s a party, and at first you want to be invited. Then you hear that Bob
will be there, and you no longer want to be invited. Then you hear that there
will be free beer, and you want to be invited again. Your desire seems to
change back and forth. Nonetheless, your basic desires may have remained
the same throughout. Explain how your fluctuating attitude might have come
about without any change in basic desires.
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Exercise 5.10 †
Suppose your only basic desire is to that a certain person in India is happy.
What does your intrinsic utility function look like?

Exercise 5.11 †††
Assume an agent’s intrinsic utility function remains the same while they con-
ditionalize on some proposition 𝐸.

(a) Can you define the new (total) utility function Unew in terms of the old
utility function? (That is, can you complete the equation Unew(𝐴) = …
in such a way that the dots make no reference to the agent’s credences?)

(b) How does conditionalizing on an undesirable proposition (with
Uold(𝐸) < Uold(¬𝐸)) affect the utility of a logically necessary proposi-
tion 𝐴 ∨ ¬𝐴?

Essay Question 5.1

Do you agree with Hume that there are no rational constraints on basic desires?
If so, try to defend this view. If not, try to argue against it.

Sources and Further Reading
Chapter 6 (“Game Theory and Rational Choice”) of Simon Blackburn, Ruling Pas-
sions (1998) eloquently defends the idea that one shouldn’t constrain what rational
agents may care about in the theory of practical rationality. John Broome, “ ‘Utility’ ”
(1991) provides some more background and details on the two conceptions of utility.

On possible explanations for the endowment effect, see Carey K. Morewedge and
Colleen E. Giblin, “Explanations of the endowment effect: an integrative review”
(2015). The cake slice example is from Amartya Sen, “Internal Consistency of
Choice” (1993, p.501).

The formal theory of utility in section 5.3 comes from chapter 5 of Richard Jeffrey, The
Logic of Decision (1965/1983). The assumption that the objects of utility are the same
kinds of things (propositions) as the objects of credence is common in philosophy, but
not in other disciplines.
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My distinction between intrinsic and non-intrinsic utility resembles a common dis-
tinction in economics between “direct utility” and “indirect utility”. It also resembles
the popular distinction between “intrinsic” and “instrumental” desire. But note that
if 𝐴 and 𝐵 are concerns, then a desire for their disjunction 𝐴 ∨ 𝐵 is derived, although
a disjunction is not intuitively instrumental to its disjuncts.
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6.1 The ordinalist challenge

If the utility of an outcome for an agent is not measured by the amount of money the
agent gains or loses, how is it measured? How can we find out whether an outcome
has utility 5 or 500 or -27? What does it even mean to say that an outcome has utility
5?

At the beginning of the 20th century, doubts arose about the coherence of numeri-
cal utilities. Ordinalists like Vilfredo Pareto argued that the only secure foundation
for utility judgements are people’s choices. If you are given a choice between tea
and coffee, and you choose tea, we can conclude that tea has greater utility for you
than coffee. We may similarly find that you prefer coffee to milk, etc., but how could
we find that your utility for tea is twice your utility for coffee – let alone that it has
the exact value 5? The ordinalists argued that we should give up the conception of
utility as a numerical magnitude.

Ordinalism posed a serious threat to the idea of expected utility maximization.
If there is no numerical quantity of utility, we can’t demand that rational agents
maximize the probability-weighted average of that quantity, as the MEU Principle
requires.

In 1926, Frank Ramsey pointed out that if we look at the choices an agent makes in
a state of uncertainty then we can find out more about the agent’s utility function than
how it orders the relevant outcomes – enough to vindicate the MEU Principle. Ram-
sey’s idea was rediscovered by John von Neumann, who published a simpler version
of it in the 1944 monograph Game Theory and Economic Behaviour, co-authored
with Oskar Morgenstern. This work is widely taken to provide the foundations of
modern expected utility theory.

Before we have a closer look at von Neumann’s approach, let’s think a little more
about the ordinalist challenge.
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Ordinalism was inspired by a wider “positivist” movement in science and phi-
losophy. The aim of the positivists was to cleanse scientific reasoning of obscure
and untestable doctrines. Every meaningful statement was to have clear conditions
of verification or falsification. A hypothesis whose truth or falsity is impossible to
establish by either proof or observation was to be rejected as meaningless. In psy-
chology, this movement gave rise to behaviourism, the view that statements about
emotions, desires, and other psychological states should be defined in terms of ob-
servable behaviour.

Today, behaviourism, and positivism more generally, have been almost entirely
abandoned. In part, this is because people came to appreciate the holistic nature
of scientific confirmation. Statements in successful scientific theories often have ob-
servable consequences only in conjunction with other theoretical assumptions. More
practically, the behaviourist paradigm was simply found to stand in the way of sci-
entific progress. It is hard to explain even the behaviour of simple animals without
appealing to inner representational states like goals or perceptions as causes of the
behaviour.

On the basis of these historical developments, it may be tempting to dismiss the
ordinalist challenge as outdated and misguided. But even if their general view of
science was mistaken, the ordinalists raised an important issue.

In chapter 3, I emphasized that we should not think of an agent’s credences as
little numbers written in the head. If your credence in rain is 1/2, then this must be
grounded in other, more basic facts about you – facts that do not involve the number
1/2. Even if we accept your state of belief as a genuine internal state, a cause of your
behaviour, we need to explain why we represent the state with the number 1/2 rather
than 3/4 or 12/5.

There’s nothing special here about credence. Numerical representations in scien-
tific models are always based on non-numerical facts about the represented objects.
For the numerical representations to have meaning, we need to specify what under-
lying non-numerical facts the different numbers are meant to represent.

The same is true for utility. The utility of a proposition for an agent is supposed
to represents the extent to which the agent, on balance, wants the proposition to be
true. But what non-numerical fact about an agent makes it correct to say that their
utility for a certain proposition is 5? This question still needs an answer. And there is
something to be said for the idea that the answer should involve the agent’s choices.

The main reason to think that an agent has such-and-such goals or desires is that
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this would explain their behaviour. The point is even more obvious for the relative
strength of goals or desires. I got out of bed because my sense of duty was stronger
than my desire to stay in bed. Absent further explanation, the claim that my desire to
stay in bed was stronger, even though I got up, is unintelligible. If we seek a standard
to measure the comparative strength of different motives or goals, a natural idea is
thus to look at what the agent is prepared to do.

6.2 Scales

Utility, like credence, mass, or length, is a numerical representation of an essentially
non-numerical phenomenon. All such representations are to some extent conven-
tional. We can represent the length of my pencil as 19 centimetres or as 7.48 inches.
It’s the same length either way. We must take care to distinguish real features of the
represented properties from arbitrary consequences of a particular representation.
For example, it is nonsense to ask whether the length of my pencil – the length itself,
not the length in any particular system of representation – is a whole number. By
contrast, it is not meaningless to ask whether the length of my pencil is greater than
the length of my hand.

In the case of length, the conventionality of measurement essentially boils down
to the choice of a unit. You can introduce a new measure of length simply by picking
out a particular object (say, your left foot) and declare that its length is 1, with the
understanding that if an object is 𝑛 times as long as the chosen object then its length
in your new system is 𝑛. (You could fix the unit by assigning any number greater
than zero to your left foot; it doesn’t have to be the number 1.)

Quantities like mass and length, for which only the unit of measurement is con-
ventional, are said to have a ratio scale because even though the particular numbers
are conventional, ratios between them are not. If the length of my arm is four times
the length of my pencil in centimetres, then that is also true in inches, feet, light
years, and any other sensible system of representation. That my arm is four times as
long as my pencil is an objective, representation-independent fact.

Temperature is different. (Or has appeared to be different until the 19th century.)
People have long known that metals like mercury expand as the temperature goes
up. This can be used to define a numerical representation. Imagine we put a certain
amount of mercury in a narrow glass tube. The higher the temperature, the more
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of the glass tube is filled with the expanding mercury. To get a numerical measure
of temperature, we now need to mark two points on the tube, a unit and a zero.
We could, for example, mark the point at which water freezes as 0 and the point at
which it boils as 100. We can then say that if the mercury has expanded to 𝑥% of the
distance between 0 and 100, then the temperature is 𝑥.

The Celsius scale for temperature and the Fahrenheit scale have different units
and zeroes. As a result, 10 degrees Celsius is 50 degrees Fahrenheit, and 20 degrees
Celsius is 68 degrees Fahrenheit. The ratio between the two temperatures is not
preserved, so these scales are not ratio scales. Scales in which both the zero and the
unit are a matter of convention are called interval scales.

Exercise 6.1 ††
Someone might suggest that we only need to mark a unit on the glass tube,
since we are effectively measuring the volume of the mercury in the tube, and
volume has a ratio scale: zero simply means that the mercury fills up none of
the tube. Does this show that temperature has a (natural) ratio scale?

Ratio scales and interval scales are both called cardinal scales, in contrast to
ordinal scales, in which the only thing that is not conventional is which of two
objects is assigned a greater number.

The ordinalists held that utility has only an ordinal scale (hence the name of the
movement). All we have to go by in order to measure utilities, the ordinalists as-
sumed, are the agent’s choices. If you choose tea over coffee and coffee over milk,
we may infer that your utility for tea is greater than your utility for coffee, which in
turn is greater than your utility for milk. But any assignment of numbers that respects
this ordering is as correct as any other. We could say that for you, tea has utility 3,
coffee 2, and milk 1, but we could equally say that tea has utility 100, coffee 0, and
milk -8.

If the ordinalists were right, then whether an act in a decision problem maximizes
expected utility would often depend on arbitrary choices in the measurement of util-
ity. The MEU Principle would be indefensible. If, on the other hand, utility has an
interval scale, then different measures of utility never disagree on the ranking of acts
in a decision problem. A ratio scale is not required.
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Exercise 6.2 †
In the Mushroom Problem as described by the matrix on page 12 (section 1.3),
not eating the mushroom has greater expected utility than eating the mush-
room. Describe a different assignment of utilities to the four outcomes which
preserves their ordering but gives eating the mushroom greater expected util-
ity than not eating.

Exercise 6.3 ††

Suppose two utility functions U and U′ differ merely by their choice of unit
and zero. It follows that there are numbers 𝑥 > 0 and 𝑦 such that, for any
𝐴, U(𝐴) = 𝑥 ⋅ U′(𝐴) + 𝑦. Suppose some act 𝐴 in some decision problem
has greater expected utility than some act 𝐵 if the utility of the outcomes is
measured by U. Show that 𝐴 also has greater expected utility than 𝐵 if the
utility of the outcomes is measured by U′. (You can assume for simplicity
that the outcome of either act depends only on whether some state 𝑆 obtains;
so the states are 𝑆 and ¬𝑆.)

If we want to rescue the MEU Principle from ordinalist skepticism, we therefore
don’t need to explain what makes it the case that your utility for tea is 3 rather than
100. We can accept that the exact numbers are a conventional matter of representa-
tion. Nor do we need to explain what makes your utility for tea twice your utility
for coffee; such ratios also need not track anything real. But we do have to explain
why, if we arbitrarily mark your utility for tea as (say) 1 and your utility for coffee
as 0, then your utility for milk is fixed at a particular value: why it has to be -1 (say),
rather than -7, even though both hypotheses appear to be in line with your choices.

6.3 Utility from preference

I am now going to describe John von Neumann’s method for determining an agent’s
utility function from their preferences or choice dispositions. More precisely, what
we are going to determine is the agent’s intrinsic utility function. Recall from section
5.4 that an intrinsic utility function assigns a utility to each of the agent’s concerns,
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where a “concern” is a proposition that settles everything the agent ultimately cares
about.

To make the following discussion a little more concrete (and to bypass some prob-
lems that will occupy us later), let’s imagine an agent who is only ultimately inter-
ested in getting certain “rewards”, which may be lumps of money or commodity
bundles or pleasant sensations. I will use lower-case letters 𝑎, 𝑏, 𝑐, … for rewards.
Our goal is to determine the utility the agent assigns to 𝑎, 𝑏, 𝑐, ….

We do this by looking at the agent’s preferences, which we assume to represent
their choice dispositions. For example, if the agent would choose reward 𝑎 when
given a choice between 𝑎 and 𝑏, we say that the agent prefers 𝑎 to 𝑏. The ordinalists
did not challenge the assumption that people have preferences.

Let’s introduce some shorthand notation:

𝐴 ≻ 𝐵 ⇔ The agent prefers 𝐴 to 𝐵.
𝐴 ∼ 𝐵 ⇔ The agent is indifferent between 𝐴 and 𝐵.
𝐴 ≿ 𝐵 ⇔ 𝐴 ≻ 𝐵 or 𝐴 ≿ 𝐵.

(Note that ‘≻’, ‘∼’, and ‘≿’ had a different meaning in section 3.6. You always have
to look at the context to figure out what these symbols mean.)

We will use facts about the agent’s preferences to construct an intrinsic utility
function U (an assignment of numbers to rewards) that represents the agent’s pref-
erences, in the sense that for all rewards 𝑎 and 𝑏, U(𝑎) > U(𝑏) iff 𝑎 ≻ 𝑏, and
U(𝑎) = U(𝑏) iff 𝑎 ∼ 𝑏.

Let’s begin. We accept that the choice of unit and zero is a matter of convention,
so we take arbitrary rewards 𝑎 and 𝑏 such that 𝑏 ≻ 𝑎 and set U(𝑎) = 0 and U(𝑏) = 1.
This resembles the conventional choice of using 0 for the temperature at which water
freezes and 100 for the temperature at which it boils.

Exercise 6.4 ††
If our agent is indifferent between all rewards, then the procedure stalls at this
step. Nonetheless, we can easily find a utility function for such an agent. What
does it look like?

Having fixed the utility of two rewards 𝑎 and 𝑏, we can now determine the utility
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of any other reward 𝑐. We distinguish three cases, depending on how the agent ranks
𝑐 relative to 𝑎 and 𝑏.

Suppose first that 𝑐 “lies between” 𝑎 and 𝑏 in the sense that 𝑏 ≻ 𝑐 and 𝑐 ≻ 𝑎.
To find the utility of 𝑐, we look at the agent’s preferences between 𝑐 and a lottery
between 𝑎 and 𝑏. By a ‘lottery between 𝑎 and 𝑏’, I mean an event that leads to 𝑎 with
some objective probability 𝑥 and otherwise to 𝑏. For example, suppose we offer our
agent a choice between 𝑐 for sure and the following gamble 𝐿: we’ll toss a fair coin;
on heads the agent gets 𝑎, on tails 𝑏. By the Probability Coordination Principle, the
expected utility of 𝐿 is

EU(𝐿) = 1/2 ⋅ U(𝑎) + 1/2 ⋅ U(𝑏) = 1/2 ⋅ 0 + 1/2 ⋅ 1 = 1/2.

If the agent obeys the Probability Coordination Principle and the MEU Principle,
and she is indifferent between 𝐿 and 𝑐, we can infer that 𝑐 has utility 1/2.

Exercise 6.5 †
Suppose U(𝑎) = 0, U(𝑏) = 1, and U(𝑐) = 1/2. Draw a decision matrix repre-
senting a choice between 𝑐 and 𝐿, and verify that the two options have equal
expected utility.

Exercise 6.6 ††
Why do we need to assume that the agent obeys the Probability Coordination
Principle?

If the agent isn’t indifferent between 𝑐 and 𝐿, we try other lotteries, until we find
one the agent regards as equally good as 𝑐. For example, suppose the agent is indif-
ferent between 𝑐 and a lottery 𝐿′ that gives them 𝑎 with probability 4/5 and 𝑏 with
probability 1/5. Since the expected utility of this lottery is 1/5, we could infer that
the agent’s utility for 𝑐 is 1/5.

We have assumed that 𝑐 lies between 𝑎 and 𝑏. What if the agent prefers 𝑐 to both
𝑎 and 𝑏? In this case, we look for a lottery between 𝑎 and 𝑐 such that the agent is
indifferent between 𝑏 and the lottery. For example, if the agent is indifferent between
𝑏 for sure and a lottery 𝐿″ that gives them either 𝑎 or 𝑐 with equal probability, then
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𝑐 must have utility 2. That’s because the expected utility of 𝐿″ is

EU(𝐿″) = 1/2 ⋅ U(𝑎) + 1/2 ⋅ U(𝑐) = 1/2 ⋅ 0 + 1/2 ⋅ U(𝑐) = 1/2 ⋅ U(𝑐).

Since the agent is indifferent between 𝐿″ and 𝑏, which has a guaranteed utility of
1, the lottery must have expected utility 1. So 1 = 1/2 ⋅ 𝑈(𝑐). And so U(𝑐) = 2.
In general, if the agent is indifferent between 𝑏 and a lottery that leads to 𝑐 with
probability 𝑥 and 𝑎 with probability 1 − 𝑥, then U(𝑐) = 1/𝑥.

Exercise 6.7 ††
Can you complete the argument for the case where the agent prefers both 𝑎
and 𝑏 to 𝑐?

In this manner, we can determine the agent’s utility for all rewards from their
preferences between rewards and lotteries. The resulting (intrinsic) utility function
has an arbitrary unit and zero, but once these are fixed, the other utilities are no
longer an arbitrary matter of convention. We have a cardinal utility scale. We have
answered the ordinalist challenge. Or so it seems.

6.4 The von Neumann and Morgenstern axioms

The method described in the previous section assumes that the agent obeys the MEU
Principle. This may seem strange. The ordinalists argued that the MEU Principle
makes no sense. How can we respond to them by assuming the principle? Be-
sides, doesn’t application of the MEU Principle presuppose that we already know
the agent’s utilities?

The trick is that we are applying the principle backwards. Normally, when we
apply the MEU Principle, we start with an agent’s beliefs and desires and try to find
out the optimal choices. Now we start with the agent’s choices and try to find out the
agent’s desires, relying on the Probability Coordination Principle to fix the relevant
beliefs.

There is nothing dodgy about this. Whenever we want to measure a quantity
whose value can’t be directly observed, we have to rely on assumptions about how
the quantity relates to other things that we can observe. Together with the Probability
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Coordination Principle, the MEU Principle tells us what lotteries an agent should be
disposed to accept if she has a given utility function. If she doesn’t accept these
lotteries, we can infer that she doesn’t have the utility function.

You may wonder, though, what happened to the normativity of the MEU Principle.
If we follow von Neumann’s method to define an agent’s utility function, won’t the
agent automatically come out as obeying the MEU Principle?

Not quite. It’s true that if the method works, then the agent will evaluate lotteries
by their expected utility, relative to the utility function identified by the method. But
the method is not guaranteed to work. Nor does it settle how the agent evaluates
the options in decision problems in which the relevant objective probabilities are
unknown.

Here is one way in which the method might fail to work. We have assumed that
if an agent ranks some reward 𝑐 as between 𝑎 and 𝑏, then the agent is indifferent
between 𝑐 and some lottery between 𝑎 and 𝑏. This is not a logical truth. An agent
could in principle prefer 𝑐 to any lottery between 𝑎 and 𝑏, yet still prefer 𝑐 to 𝑎 and 𝑏
to 𝑐. Von Neumann’s method does not identify a utility function for such an agent.

Von Neumann and Morgenstern investigated just what conditions an agent’s pref-
erences must satisfy in order for the method to work. To state these conditions, we
assume that ‘≻’, ‘∼’, and ‘≿’ are defined not just for basic rewards but also for lotter-
ies between rewards as well as “compound lotteries” whose payoff is another lottery.
For example, if I toss a fair coin and offer you lottery 𝐿 on heads and 𝐿′ on tails, that
would be a compound lottery.

Here are the conditions we need. ‘𝐴’, ‘𝐵’, ‘𝐶’ range over arbitrary lotteries or
rewards.

Completeness
For any 𝐴 and 𝐵, exactly one of 𝐴 ≻ 𝐵, 𝐵 ≻ 𝐴, or 𝐴 ∼ 𝐵 is the case.

Transitivity
If 𝐴 ≻ 𝐵 and 𝐵 ≻ 𝐶 then 𝐴 ≻ 𝐶; if 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶 then 𝐴 ∼ 𝐶.
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Continuity
If 𝐴 ≻ 𝐵 and 𝐵 ≻ 𝐶 then there are lotteries 𝐿1 and 𝐿2 between 𝐴 and 𝐶 such
that 𝐴 ≻ 𝐿1 ≻ 𝐵 and 𝐵 ≻ 𝐿2 ≻ 𝐶.

Independence (of Irrelevant Alternatives)
If 𝐴 ≿ 𝐵, and 𝐿1 is a lottery that leads to 𝐴 with some probability 𝑥 and other-
wise to 𝐶, and 𝐿2 is a lottery that leads to 𝐵 with probability 𝑥 and otherwise
to 𝐶, then 𝐿1 ≿ 𝐿2.

Reduction (of Compound Lotteries)
If a 𝐿1 and 𝐿2 are two (possibly compound) lotteries that lead to the same
rewards with the same objective probabilities, then 𝐿1 ∼ 𝐿2.

Von Neumann and Morgenstern proved that if (and only if) an agent’s preferences
satisfy all these conditions, then there is a utility function U, determined by the
method from the previous section, that represents the agent’s preferences (in the
sense that U(𝐴) > U(𝐵) iff 𝐴 ≻ 𝐵, and U(𝐴) = U(𝐵) iff 𝐴 ∼ 𝐵). Von Neumann
and Morgenstern also proved that the function U is unique except for the choice of
unit and zero: any two functions U and U′ that represent the agent’s preferences
differ at most in the choice of unit and zero. These two results are known as the von
Neumann-Morgenstern Representation Theorem.

If we adopt von Neumann’s method for measuring an agent’s utilities in terms of
their choice dispositions, then the MEU Principle for choices involving lotteries is
automatically satisfied by any agent whose preferences satisfy the above conditions –
Completeness, Transitivity, etc. The normative claim that an agent ought to evaluate
lotteries by their expected utility reduces to the claim that their preferences ought to
satisfy the conditions. For this reason, the conditions are often called the axioms of
expected utility theory.

Von Neumann therefore discovered not only a response to the ordinalist challenge
(at least for agents who satisfy the axioms). He also discovered a powerful argument
for the MEU Principle. The argument could be spelled out as follows.
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1. The preferences of a rational agent satisfy Completeness, Transitivity, Conti-
nuity, Independence, and Reduction.

2. If an agent’s preferences satisfy these conditions, then (by the Representation
Theorem) they are represented by a utility function U relative to which the
agent ranks lotteries by their expected utility.

3. This function U is the agent’s true utility function.

4. Therefore: A rational agent ranks lotteries by their expected utility.

Exercise 6.8 †
Maurice would go to Rome if he were offered a choice between Rome and
going to the mountains, because the mountains frighten him. Offered a choice
between staying at home and going to Rome, he would prefer to stay at home,
because he finds sightseeing boring. If he were offered a choice between going
to the mountains and staying at home, he would choose the mountains because
it would be cowardly, he believes, to stay at home. Which of the axioms does
Maurice appear to violate?

6.5 Utility and credence from preference

In chapter 3, we asked how an agent’s credences could be measured or defined. The
betting interpretation gave a simple answer, but we found that it relies on implausible
assumptions about the agent’s utility function. In the meantime, we have learned
from von Neumann how we might derive an agent’s intrinsic utilities from their
choice dispositions. With this information in hand, we might try again to determine
the agent’s credence function by offering them suitable bets.

Frank Ramsey, way ahead of his time in 1926, showed how the two tasks can be
combined. He described a method for determining both a credence function and a
utility function from an agent’s preferences.

Ramsey begins by determining the agent’s utility function. We already know one
way of doing this – von Neumann’s. Ramsey’s method is a little different, and worth
going over.

Ramsey doesn’t use lotteries. Instead, he uses deals whose outcome depends on
some proposition the agent doesn’t intrinsically care about. Suppose 𝑁 is a proposi-

103



6 Preference

tion whose truth-value you don’t care about (say, that the number of stars is even).
Suppose also that your credence in 𝑁 is 1/2. Instead of offering you a lottery that
yields outcome 𝑎 or outcome 𝑏 with equal chance, we can then offer you a deal that
leads to 𝑎 if 𝑁 and to 𝑏 if ¬𝑁 .

I will refer to conditional deals of the form ‘𝐴 if 𝑋, 𝐵 if ¬𝑋’ as gambles. Notice
that every act in every decision problem corresponds to a (possibly nested) gam-
ble. In the mushroom problem from chapter 1, for example, eating the mushroom
amounts to choosing the gamble ‘Dead if Poisonous, Satisfied if not Poisonous’;
not eating the mushroom amounts to choosing ‘Hungry if Poisonous, Hungry if not
Poisonous’.

We need to identify a suitable proposition 𝑁 with credence 1/2, merely by looking
at an agent’s preferences.

Let’s say that a proposition 𝐴 is neutral for an agent if, for any conjunction of
rewards 𝑅, the agent is indifferent between 𝑅 ∧ 𝐴 and 𝑅 ∧ ¬𝐴. Intuitively, a neutral
proposition is one the agent doesn’t care about. Now let 𝑎 and 𝑏 be two rewards
such that 𝑎 ≻ 𝑏. Suppose we find a neutral proposition 𝑁 such that the agent is
indifferent between the gambles ‘𝑎 if 𝑁 , 𝑏 if ¬𝑁’ and ‘𝑏 if 𝑁 , 𝑎 if ¬𝑁’. If the agent
ranks gambles by their expected utility, we can infer that the two gambles have equal
expected utility:

Cr(𝑁) ⋅ U(𝑎) + Cr(¬𝑁) ⋅ U(𝑏) = Cr(𝑁) ⋅ U(𝑏) + Cr(¬𝑁) ⋅ U(𝑎).

Assuming that the agent’s credences are probabilistic, so that Cr(¬𝑁) = 1 − Cr(𝑁),
it follows that Cr(𝑁) = 1/2. (As you may check.)

We now use this proposition 𝑁 to determine the agent’s utility function.
As before, we fix the unit and zero by taking arbitrary rewards with 𝑏 ≻ 𝑎 and set

U(𝑎) = 0 and U(𝑏) = 1. Then we go through all the rewards until we find one for
which the agent is indifferent between 𝑐 and the gamble ‘𝑎 if 𝑁 , 𝑏 if ¬𝑁’. Since this
gamble has expected utility 1/2, we can infer that 𝑐 has utility 1/2.

In the next step, we can use gambles involving 𝑎, 𝑏, and 𝑐 to determine the utility
of further rewards. For example, if the agent is indifferent between a reward 𝑑 and
the gamble ‘𝑎 if 𝑁 , 𝑐 if ¬𝑁’, then 𝑑 must have utility 1/4. And so on.

We can also determine the utility of rewards that don’t lie between 𝑎 and 𝑏. Sup-
pose, for example, that a reward 𝑒 is preferred to 𝑏, and the agent is indifferent be-
tween the gambles ‘𝑎 if 𝑁 , 𝑒 if ¬𝑁’ and ‘𝑐 if 𝑁 , 𝑏 if ¬𝑁’, where 𝑐 is the earlier
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reward whose utility we’ve determined to be 1/2. Then the utility of 𝑒 must be 1.5.

Exercise 6.9 †
Explain this last claim. That is, show that if U(𝑎) = 0, U(𝑏) = 1, U(𝑐) =
1/2, and the agent evaluates gambles by their expected utility, then they are
indifferent between ‘𝑎 if 𝑁 , 𝑒 if ¬𝑁’ and ‘𝑐 if 𝑁 , 𝑏 if ¬𝑁’ only if U(𝑒) = 1.5.

If all went well, we now know the utility the agent assigns to all rewards. We still
need to determine the agent’s credence in propositions other than 𝑁 .

Let 𝑋 be some proposition whose credence we want to determine. Ramsey in-
structs us to find rewards 𝑎, 𝑏, and 𝑐 such that the agent is indifferent between
𝑎 and the gamble ‘if 𝑋 then 𝑏, if ¬𝑋 then 𝑐’. The gamble’s expected utility is
Cr(𝑋) ⋅ U(𝑏) + Cr(¬𝑋) ⋅ U(𝑐). Since the agent is indifferent between the gamble
and 𝑎, we can infer that

U(𝑎) = Cr(𝑋) ⋅ U(𝑏) + (1 − Cr(𝑋)) ⋅ U(𝑐).

Solving for Cr(𝑋) yields
Cr(𝑋) = U(𝑎) − U(𝑐)

U(𝑏) − U(𝑐) .

All quantities on the right-hand side are known. We have determined Cr(𝑋).
Like von Neumann’s method, Ramsey’s method only works if the agent’s prefer-

ences satisfy certain formal conditions or “axioms”. Ramsey lists eight axioms, the
details of which won’t be important for us.

Ramsey’s Representation Theorem states that if (but not only if) an agent’s
preferences satisfy his eight conditions, then there is a utility function U and a prob-
ability function Cr which together represent the agent’s preferences, in the sense that
(i) 𝐴 ≻ 𝐵 iff the expected utility of 𝐴, relative to Cr and U, is greater than that of 𝐵,
and (ii) 𝐴 ∼ 𝐵 iff 𝐴 and 𝐵 have equal expected utility. The theorem also says that Cr
is unique and U is unique expect for the choice of zero and unit.

What can this do for us? Ramsey’s idea is that we may define an agent’s credence
and (intrinsic) utility as whatever functions Cr and U “make sense of their prefer-
ences”. By this I mean that the agent prefers some proposition 𝐴 to a proposition
𝐵 iff the expected utility of 𝐴, computed with Cr and U, is greater than that of 𝐵. I
also assume that in order for Cr to “makes sense” of the agent’s preferences, it must
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conform to the rules of probability.
Ramsey’s Representation Theorem assures us that if the agent’s preferences sat-

isfy his axioms, then there are functions Cr and U that make sense of the agent’s
preferences. Moreover, while there are different such pairs of functions Cr and U,
they all involve the exact same function Cr, and the different U functions differ only
in their choice of unit and zero. For agents who satisfy the axioms, our definition
is therefore guaranteed to identify a unique credence function and a utility function
that is determinate enough to vindicate the MEU Principle.

If we could convince ourselves that Ramsey’s axioms are requirements of rational-
ity, Ramsey’s approach would deliver a more comprehensive argument for the MEU
Principle than what we got from von Neumann and Morgenstern. Their argument
only showed that agents should rank lotteries by their expected utility. But not all
choices involve lotteries. In real life, people often face options for which they don’t
know the objective probability of the outcomes. Why should they rank such options
by their expected utility? On Ramsey’s approach, the only way they could fail to do
so is by violating at least one of the axioms.

Ramsey’s approach also suggests a new argument for probabilism, the claim that
rational degrees of belief conform to the rules of probability. (This was Ramsey’s
actual aim.) Again, the requirement reduces to the preference axioms. On the pro-
posed definition of credence, any agent who obeys the axioms automatically has
probabilistic credences. If you don’t have probabilistic credences, you violate the
axioms.

Exercise 6.10 ††
Can you spell out the argument for probabilism I just outlined in more detail,
in parallel to the argument for the MEU Principle from the end of section 6.4?

Unfortunately, Ramsey’s axioms can hardly be considered requirements of ratio-
nality. Note, for example, that his method doesn’t work unless there is a neutral
proposition 𝑁 with credence 1/2, or unless there is a reward 𝑐 for which the agent is
indifferent between 𝑐 and the gamble ‘𝑎 if 𝑁 , 𝑏 if ¬𝑁’. Ramsey’s axioms 1 and 6
ensure that these conditions are met, but it is hard to see why they should be require-
ments of rationality.

Later authors have improved upon Ramsey in some respects. They have come up
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with other (and generally more complicated) methods for determining credences and
utilities from preferences. The best known of these proposals is due to Leonard Sav-
age, published in his Foundations of Statistics (1954) – the second-most influential
book in the history of decision theory, after Game Theory and Economic Behaviour.
I won’t go through Savage’s method and axioms. Suffice it to say that his axioms
still include conditions that nobody can seriously regard as requirements of rational-
ity, let alone as requirements that anyone must meet in order to have credences and
utilities.

6.6 Preference from choice?

Von Neumann and Ramsey both take as their starting point an agent’s preferences,
represented by the relations ≻, ∼, and ≿. I suggested that we might read ‘𝐴 ≻ 𝐵’
as saying that the agent would choose 𝐴 if given a choice between 𝐴 and 𝐵. On
this interpretation, von Neumann and Ramsey showed how we might determine an
agent’s utilities (and credences, in Ramsey’s case) from their choice dispositions,
assuming that these dispositions satisfy certain conditions (“axioms”).

Let’s be clear why I talk about dispositions. An agent’s dispositions reflect what
the agent would do if such-and-such circumstances were to arise. There is little hope
of determining an agent’s utilities or credences from their actual choices alone. Von
Neumann and Ramsey certainly appeal to all sorts of choices most real agents never
face.

Exercise 6.11 ††
Suppose we define ‘𝐴 ∼ 𝐵’ as ‘the agent has faced a choice between 𝐴 and
𝐵 and expressed indifference’, and ‘𝐴 ≻ 𝐵’ as ‘the agent has faced a choice
between 𝐴 and 𝐵 and expressed a preference for 𝐴. Which of the von Neu-
mann and Morgenstern axioms then become highly implausible (no matter
what exactly we mean by “expressing” indifference or preference)?

Now one of the problems for the betting interpretation, from section 3.4, returns
with a vengeance. If an agent is not facing a choice between two options 𝐴 and
𝐵, then offering them the choice would change their beliefs. Among other things,
the agent would come to believe that they face that choice. From the fact that the
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agent would choose (say) 𝐴 if they were offered the choice, we can’t infer that the
agent’s actual expected utility of 𝐴 is greater than that of 𝐵, even if we assume that
the agent obeys the MEU Principle. Expected utilities depend on credences, and
perhaps 𝐴 only has greater expected utility after the agent’s credences are updated
by the information that they can choose between 𝐴 and 𝐵.

The problem gets worse if we drop the simplifying assumptions that agents only
care about lumps of money, commodity bundles, or pleasant sensations. Suppose
one thing you desire (one “reward”) is peace in Syria, another is being able to play
the piano. Von Neumann’s definition then determines your utilities in part by your
preferences between peace in Syria and a lottery that leads to peace in Syria with
objective probability 1/4 and to an ability to play the piano with probability 3/4. Ram-
sey’s method might similarly look at your preferences between peace in Syria and
gambles like ‘peace in Syria if the number of stars is even, being able to play the pi-
ano if the number is odd’. If you thought you’d face this bizarre choice, your beliefs
would surely be quite different from your actual beliefs. (Indeed, merely from being
offered the choice, you could figure out that either there is peace in Syria or you can
play the piano.)

Even in the rare case where an agent actually faces a relevant choice between 𝐴
and 𝐵, we arguably can’t infer that whichever option they choose (say, 𝐴) has greater
expected utility.

For one thing, the agent might be indifferent between 𝐴 and 𝐵, and have chosen
𝐴 at random. Choice dispositions arguably can’t tell apart 𝐴 ≻ 𝐵 and 𝐴 ∼ 𝐵. The
agent might also be mistaken about their options. If I offer you a choice between an
apple and a banana, and you falsely believe that the banana is a wax banana, your
choice of the apple doesn’t show that you prefer an apple over a (real) banana. You
might be similarly mistaken about which gambles or lotteries are on offer.

The upshot is that we need to distinguish (at least) two notions of preference. One
represents the agent’s choice dispositions: whether they would choose 𝐴 over 𝐵 in
a hypothetical situation in which they face this choice. The other represents the
agent’s current ranking of rewards and gambles or lotteries: whether by the lights
of the agent’s current beliefs and desires, 𝐴 is better than 𝐵. Von Neumann and
Ramsey have at best shown how to derive utilities and credences from preferences
in the second sense.

This could still be valuable. We might still get an interesting argument for prob-
abilism and the MEU Principle. Moreover, there is plausibly some connection be-
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tween preference in the second sense and choices dispositions. We haven’t fully
solved the measurement problem for credences and utilities. But one might hope
that we are at least a few steps closer.

Essay Question 6.1

An agent’s choice dispositions provide information about their beliefs and de-
sires, but perhaps it is a mistake to think that one can determine the agent’s
beliefs and desires by looking at nothing but their choice dispositions. What
other facts about the agent might one take into account? Evaluate the prospects
of measuring an agent’s utilities and/or credences based on these other facts,
perhaps in combination with the agent’s choice dispositions.

Sources and Further Reading
The 1926 draft in which Ramsey shows how one might derive utilities and credences
from preferences is called “Truth and Probability”. Edward Elliott, “Ramsey with-
out Ethical Neutrality: A New Representation Theorem” (2017) provides a useful
summary and suggests some improvements to Ramsey’s method.

For a good discussion of Savage’s approach and its limitations, see chapter 3 of James
Joyce, The Foundations of Causal Decision Theory (1999). A useful, but mathemati-
cally heavy, survey of other representation theorems in the tradition of Ramsey, Sav-
age, and von Neumann and Morgensterm is Peter Fishburn, “Utility and Subjective
Probability” (1994).

Preference-based approaches to utility are standard in economics, but fairly unpopular
in philosophy. Christopher J.G. Meacham and Jonathan Weisberg, “Representation
theorems and the foundations of decision theory” (2011) lists some common philo-
sophical misgivings.

On the connection between preference and choice behaviour, see, for example, chap-
ter 3 of Daniel M. Hausman, Preference, Value, Choice, and Welfare, and Johanna
Thoma, “In defence of revealed preference theory” (2021).

The Maurice exercise is from John Broome, Weighing Goods (1991, p.101).
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7.1 The construction of utility

When a possible outcome looks attractive, then this is usually because it has attrac-
tive aspects. It may also have unattractive aspects, but the attractive aspects (the
“pros”) outweigh the unattractive aspects (the “cons”). In this chapter, we will ex-
plore how this weighing of different aspects might work.

Take a concrete example. You are looking for a flat to rent. There are two options.
𝐴 is a small and central flat that costs £800/month. 𝐵 is a larger flat in the suburbs
for £600/month. You might draw up a lists of pros and cons for each option, and
give them a weight, like so:

𝐴 𝐵
good location (+2) bad location (-2)
a little small (-1) good size (+3)
expensive (-3) a little expensive (-1)

You might then determine the total utility of each option as the Asum of these num-
bers, so that U(𝐴) is +2-1-3 = -2, while U(𝐵) is -2+3-1 = 0.

Is this a reasonable approach? It looks OK in this example. But we have to be
careful. Suppose you had drawn up the following table.

𝐴 𝐵
good location (+2) bad location (-2)
short commute (+1) long commute (-1)
can get up later (+1) have to get up earlier (-1)

a little small (-1) good size (+3)
expensive (-3) a little expensive (-1)
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Now U(𝐴) comes out as 0 and U(𝐵) as −2. Do you see what’s wrong with this table?
The problem is that the first three criteria in the list aren’t independent. Once

you’ve taken “good location” into account, you shouldn’t additionally take into ac-
count “short commute” and “can get up later”. Location, size, and costs are inde-
pendent criteria. Location and commute time are not.

But what, exactly, does independence mean here? There is no logical connection
between “good location” and “short commute”. And there may well be a strong
statistical connection between (say) location and costs.

7.2 Additivity

Let’s stick with the flat example. We assume that you care about certain aspects of
a flat: size, location, and costs. We’ll call these aspects attributes. Let’s assume
that size, location, and costs are all the attributes that ultimately matter to you. Your
preferences between possible flats is then determined by your preferences between
combinations of these attributes. If two flats perfectly agree in each of the three
attributes then you are always indifferent between them. If you prefer one flat to
another, that’s always because you prefer the combined attributes of the first to those
of the second.

Instead of talking about the desirability of a particular flat, we can therefore talk
about the desirability of its attributes. We’ll write combinations of attributes as lists
enclosed in angular brackets. ‘⟨40m2, central, £500⟩’, for example, would represent
any flat with a size of 40 m2, central location, and monthly costs of £500. We are
interested in the utility you assign to any such list.

Strictly speaking, of course, utility functions don’t assign numbers to lists, or even
to flats. When I say that you prefer one kind of flat over another, what I really mean is
that you prefer living in the first kind of flat over living in the other. In full generality,
we should speak about attributes of worlds, not of flats. To keep things simple, we
currently assume that the only thing you ultimately care about is what kind of flat
you are living in (or going to live in). A list like ⟨40m2, central, £500⟩ therefore
settles everything you ultimately care about. It represents one of your “concerns”,
in the terminology of section 5.4.

In the example from section 5.4, we assumed that you care about two things: being
free from pain and being admired. We pretended that these are all-or-nothing matters.
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The resulting four concerns could be represented by the following lists:

⟨Pain, Admired⟩, ⟨¬Pain, Admired⟩, ⟨Pain, ¬Admired⟩, ⟨¬Pain, ¬Admired⟩.

Here, there are two attribute, each of which can take two value. The first attribute
specifies whether you are in pain, and the answer is either yes or no. The second
attribute similarly specifies whether you are admired. If we allowed for different
degrees of pain, then the first attribute would have more than two possible values. We
could, for example, distinguish ⟨Little Pain, Admired⟩ from ⟨Strong Pain, Admired⟩.

In the flat example, we have three attributes, each of which can take many different
values: size, location, and costs. Your intrinsic utility function assigns a desirability
score to all possible combinations of these values.

If you’re like most people, we can say more about how these scores are determined.
For example, you probably prefer cheaper flats to more expensive flats, and larger
flats to smaller flats. The “weighing up pros and cons” idea suggests that the overall
score for a flat is determined by adding up individual scores for the flat’s properties.
Let’s spell out how this might work.

We want to compute the utility of any given attribute list as the sum of numbers
assigned to the elements in the list. We’ll call these numbers subvalues. A size of
40 m2 might have subvalue 𝑉𝑆(40 m2) = 1. Central location might have subvalue
𝑉𝐿(central) = 2. Monthly costs of £500 might have subvalue 𝑉𝐶(£500) = −1. Note
that we have three different subvalue functions: one for size, one for location, one
for costs. The overall value (utility) of ⟨40 m2, central, £500⟩ would then be the sum
of these subvalues:

U(⟨40 m2, central, £500⟩) = 𝑉𝑆(40m2) + 𝑉𝐿(central) + 𝑉𝐶(£500) = 2.

If U is determined by adding up subvalues in this manner, then it is called additive
relative to the attributes in question.

Additivity may seem to imply that you assign the same weight to all the attributes:
that size, location, and price are equally important to you. To allow for different
weights, we could introduce scaling factors 𝑤𝑆, 𝑤𝐿, 𝑤𝐶, so that

U(⟨40 m2, central, £500⟩) = 𝑤𝑠 ⋅ 𝑉𝑆(40 m2) + 𝑤𝐿 ⋅ 𝑉𝐿(central) + 𝑤𝐶 ⋅ 𝑉𝐶(£500).

For convenience, we will omit the weights by folding them into the subvalues. We
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will let 𝑉𝑆(200 m2) measure not just how awesome it would be to have a 200 m2 flat,
but also how important this feature is compared to cost and location.

Subvalue functions are typically defined over propositions that don’t have uniform
utility. Recall that, strictly speaking, ‘200 m2’ expresses the proposition that you are
going to live in a 200 m2 flat. Some of the worlds where you live in such a flat are
great. Others are bad. That’s because you also care about location and costs, and the
200 m2 worlds differ in these respects. An (improbable) world in which you rent a
200 m2 central flat for £100/month is better than a (more probable) world in which
you rent a 200 m2 flat in the suburbs for £1000/month. As a result, the utility of 200
m2 may be low, even though the subvalue is high.

Informally, the utility of 200 m2 measures the desirability of the relevant proposi-
tion. Would you be glad to learn that you are going to rent a 200 m2 flat? Perhaps
not, because the large size indicates high costs and bad location. The subvalue of
200 m2 is not sensitive to your beliefs. It measures the intrinsic desirability of that
size, no matter what it implies or suggests about other attributes. It measures how
much a size of 200 m2 contributes to the overall desirability of a flat, holding fixed
the other attributes.

Exercise 7.1 †††
We could define a concept of additivity purely in terms of utility. Let’s say that
a utility function U is utility-additive with respect to attributes 𝐴1, … , 𝐴𝑛 iff
U(⟨𝐴1, … , 𝐴𝑛 ⟩) = U(𝐴1) + … + U(𝐴𝑛). Explain why your utility function in
the flat example isn’t utility-additive with respect to size, location, and costs.

Exercise 7.2 ††
Additivity greatly simplifies an agent’s psychology. Suppose an agent’s basic
desires pertain to 10 logically independent propositions 𝐴1, 𝐴2, … , 𝐴10. There
are 210 = 1024 conjunctions of these propositions and their negations (such
as 𝐴1∧𝐴2∧¬𝐴3∧¬𝐴4∧𝐴5∧𝐴6∧¬𝐴7∧𝐴8∧𝐴9∧¬𝐴10). To store the agent’s
intrinsic utility function in a database, we would therefore need to store up to
1024 numbers. How many numbers do we need to store in the database if the
agent’s intrinsic utility function is additive?

114



7 Separability

7.3 Separability

Under what conditions is intrinsic utility determined by adding subvalues? How
are different subvalue functions related to one another? We can get some insight
into these questions by following an idea from the previous chapter and study how
intrinsic utility might be derived from preferences.

The main motivation for starting with preferences is, as always, the problem of
measurement. We need to explain what it means that your subvalue for a given
attribute is 5 rather than 29. Since the numbers are supposed to reflect, among other
things, the importance (or weight) of the relevant attribute in comparison to other
attributes, it makes sense to determine the subvalues from their effect on the overall
ranking of attribute lists.

So assume we have preference relations ≻, ≿, ∼ between lists of attributes. (We
aren’t interested in lotteries or gambles this time, only in complete concerns.) To
continue the illustration in terms of flats, if you prefer a central 40 m2 flat for £500
to a central 60 m2 for £800, then we have

⟨40m2, central, £500⟩ ≻ ⟨60m2, central, £800⟩.

If, like most people, you prefer to pay less rather than more, then your subvalue
function 𝑉𝐶 is a decreasing function of monthly costs: the higher the costs 𝑐, the
lower 𝑉𝐶(𝑐). This doesn’t mean that you prefer any cheaper flat to any more expen-
sive flat. You probably don’t prefer a 5 m2 flat for £499 to a 60 m2 flat for £500. The
other attributes also matter. But the following should hold: whenever two flats agree
in size and location, and one is cheaper than the other, then you prefer the cheaper
one.

Let’s generalize this idea.
Consider an attribute list ⟨𝐴1, 𝐴2, … 𝐴𝑛 ⟩, and let 𝐴′

1 be an alternative to 𝐴1. If,
for example, the first position in an attribute list represents monthly costs, then 𝐴1
might be £400 and 𝐴′

1 £500. We can now compare ⟨𝐴1, 𝐴2, … 𝐴𝑛 ⟩ to ⟨𝐴′
1, 𝐴2, … 𝐴𝑛 ⟩

– a hypothetical flat that’s like the first in terms of size and location, but costs £100
more. If

⟨𝐴1, 𝐴2, … , 𝐴𝑛 ⟩ ≻ ⟨𝐴′
1, 𝐴2, … , 𝐴𝑛 ⟩,

we say that you prefer 𝐴1 to 𝐴′
1 conditional on 𝐴2, … , 𝐴𝑛.

Suppose you prefer 𝐴1 to 𝐴′
1 conditional on any way of filling in the remainder
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𝐴2, … , 𝐴𝑛 of the attribute list. In that case, we can say that your preference of 𝐴1
over 𝐴′

1 is independent of the other attributes.
In the flat example, your preference of £400 over £500 is plausibly independent of

the other attributes: whenever two possible flats agree in size and location, but one
costs £400 and the other £500, you plausibly prefer the one for £400. (We are still
assuming that size, location, and costs are all you care about.)

We can similarly consider alternatives 𝐴2 and 𝐴′
2 that may figure in the second

position of an attribute list, and alternatives 𝐴3 and 𝐴′
3 in the third positions, and so

on. If we find that your preferences between 𝐴𝑖 and 𝐴′
𝑖 are always independent of

the other attributes, we say that your preferences between attribute lists are weakly
separable.

Weak separability means that your preference between two attribute lists that differ
only in one position does not depend on the attributes in the other positions.

Consider the following preferences between four possible flats.

⟨50m2, central, £500⟩ ≻ ⟨40m2, beach, £500⟩
⟨40m2, beach, £400⟩ ≻ ⟨50m2, central, £400⟩

Among flats that cost £500, you prefer central 50 m2 flats to 40 m2 flats at the beach.
But among flats that cost £400, your preferences are reversed: you prefer 40 m2

beach flats to 50 m2 central flats. In a sense, your preferences for size and location
depend on price. But we don’t have a violation of weak separability, simply because
the relevant attribute lists differ in more than one position.

That’s why weak separability is called ‘weak’. To rule out the present kind of
dependence, we need to strengthen the concept of separability. Preferences are called
strongly separable if the ranking of lists that differ in one or more positions does
not depend on the attributes in the remaining positions, in which they do not differ.
In the example, your ranking of ⟨50m2, central, −⟩ and ⟨40m2, beach, −⟩ depends on
how the blank (‘−’) is filled in. Your preferences aren’t strongly separable.

(Are they weakly separable? We can’t say. I have only specified how you rank two
pairs of lists. Your preferences are presumably defined for many other combinations
of flat size, location, and costs. There’s no violation of weak separability in the two
data points I have given. But there might be a violation elsewhere.)
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Exercise 7.3 ††
Suppose all you care about is the degree of pleasure of you and your three
friends, which we can represent by a list like ⟨10, 1, 2, 3⟩. Suppose further that
you prefer states in which you all experience equal pleasure to states in which
your degrees of pleasure are different. For example, you prefer ⟨2, 2, 2, 2⟩
to ⟨2, 2, 2, 8⟩, and you prefer ⟨8, 8, 8, 8⟩ to ⟨8, 8, 8, 2⟩. Are your preferences
weakly separable? Are they strongly separable?

Exercise 7.4 ††
Which of the following preferences violate weak separability, based on the
information provided? Which violate strong separability?
(a) (b) (c)
⟨𝐴1, 𝐵1, 𝐶3 ⟩≻⟨𝐴3, 𝐵1, 𝐶1 ⟩ ⟨𝐴1, 𝐵3, 𝐶1 ⟩≻⟨𝐴1, 𝐵3, 𝐶2 ⟩ ⟨𝐴1, 𝐵3, 𝐶2 ⟩≻⟨𝐴1, 𝐵1, 𝐶2 ⟩
⟨𝐴3, 𝐵2, 𝐶1 ⟩≻⟨𝐴1, 𝐵2, 𝐶3 ⟩ ⟨𝐴1, 𝐵2, 𝐶2 ⟩≻⟨𝐴1, 𝐵2, 𝐶3 ⟩ ⟨𝐴2, 𝐵3, 𝐶2 ⟩≻⟨𝐴2, 𝐵1, 𝐶2 ⟩
⟨𝐴3, 𝐵2, 𝐶3 ⟩≻⟨𝐴3, 𝐵2, 𝐶1 ⟩ ⟨𝐴3, 𝐵2, 𝐶3 ⟩≻⟨𝐴3, 𝐵1, 𝐶3 ⟩ ⟨𝐴1, 𝐵1, 𝐶1 ⟩≻⟨𝐴1, 𝐵3, 𝐶1 ⟩

In 1960, Gérard Debreu proved that strong separability is exactly what is needed
to ensure additivity.

To state Debreu’s result, let’s say that an agent’s preferences over attribute lists
have an additive representation if there are a function U, assigning numbers to the
lists, and subvalue functions 𝑉1, 𝑉2, … , 𝑉𝑛, assigning numbers to the items on the
lists, such that the following two conditions are satisfied. First, the preferences are
represented by U. That is, for any two lists 𝐴 and 𝐵,

𝐴 ≻ 𝐵 iff U(𝐴) > U(𝐵), and
𝐴 ∼ 𝐵 iff U(𝐴) = U(𝐵).

Second, the U-value assigned to any list ⟨𝐴1, 𝐴2, … , 𝐴𝑛 ⟩ equals the sum of the sub-
values assigned to the items on the list:

U(⟨𝐴1, 𝐴2, … , 𝐴𝑛 ⟩) = 𝑉1(𝐴1) + 𝑉2(𝐴2) + … + 𝑉𝑛(𝐴𝑛).

Now, in essence, Debreu’s theorem states that if preferences over attribute lists
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are complete and transitive, then they have an additive representation if and only if
they are strongly separable.

A technical further condition is needed if the number of attribute combinations is
uncountably infinite; we’ll ignore that. Curiously, the result also requires that there
are at least three attributes that matter to the agent. For two attributes, a stronger
condition called ‘double-cancellation’ is required. Double-cancellation says that if
⟨𝐴1, 𝐵1 ⟩ ≿ ⟨𝐴2, 𝐵2 ⟩ and ⟨𝐴2, 𝐵3 ⟩ ≿ ⟨𝐴3, 𝐵1 ⟩ then ⟨𝐴2, 𝐵3 ⟩ ≿ ⟨𝐴3, 𝐵2 ⟩. But let’s
just focus on cases with at least three relevant attributes.

Debreu’s theorem has an interesting corollary. Suppose a utility function U has
an additive representation in terms of certain attributes. One can show that if the at-
tributes are sufficiently fine-grained, and small differences to the attributes make for
small difference in overall utility, then every utility function U′ that has an additive
representation in terms of the relevant attributes differs from U at most in the choice
of unit and zero.

This suggests a new response to the ordinalist challenge. The ordinalists claimed
that utility assignments are arbitrary as long as they respect the agent’s preference
order. In response, one might argue that rational (intrinsic) preferences should be
strongly separable and that an adequate representation of such preferences should in-
volve an additive utility function. The only arbitrary aspect of a utility representation
would then be the choice of unit and zero.

Exercise 7.5 ††
Show that whenever U additively represents an agent’s preferences, then so
does any function U′ that differs from U only by the choice of zero and unit.
That is, assume that U additively represents an agent’s preferences, so that for
some subvalue functions 𝑉1, 𝑉2, … , 𝑉𝑛,

U(⟨𝐴1, 𝐴2, … , 𝐴𝑛 ⟩) = 𝑉1(𝐴1) + 𝑉2(𝐴2) + … + 𝑉𝑛(𝐴𝑛).

Assume U′ differs from U only by a different choice of unit and zero, which
means that there are numbers 𝑥 > 0 and 𝑦 such that U′(⟨𝐴1, 𝐴2, … , 𝐴𝑛 ⟩) = 𝑥 ⋅
U(⟨𝐴1, 𝐴2, … , 𝐴𝑛 ⟩)+𝑦. From these assumptions, show that there are subvalue
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functions 𝑉 ′
1, 𝑉 ′

2, … , 𝑉 ′𝑛 such that

U′(⟨𝐴1, 𝐴2, … , 𝐴𝑛 ⟩) = 𝑉 ′
1(𝐴1) + 𝑉 ′

2(𝐴2) + … + 𝑉 ′𝑛(𝐴𝑛).

Exercise 7.6 †††
Assume all you care about are your wealth and your height. On one way of
representing your preferences, the utility you assign to any combination of
wealth 𝑤 (in GBP) and height ℎ (in meters) is U(⟨𝑤, ℎ⟩) = 𝑤 ⋅ ℎ. Do your
preferences have an additive representation? Explain your answer.

Why might one think that rational preferences should be separable? Remember
that we are talking about preferences over “attribute lists” that settle everything the
agent ultimately cares about, with each position in a list settling one question that
intrinsically matters to the agent. In our toy example, these were the size, location,
and costs of their flat. More realistically, items in the attribute list might be the
agent’s level of happiness, their social standing, the well-being of their relatives,
etc. Now, if an agent has a basic desire for, say, happiness, then we would expect
that increasing the level of happiness, while holding fixed everything else the agent
cares about, always is a change for the better. That is, if two worlds 𝑤1 and 𝑤2 agree
in all respects that matter to the agent except that the agent is happier in 𝑤1 than
in 𝑤2, then we would expect the agent to prefer 𝑤1 over 𝑤2. From this perspective,
separability might be understood as a condition on how to identify basic desires: if
an agent’s preferences over some attribute lists are not separable, then the attributes
don’t represent (all) the agent’s basic (intrinsic) desires.

7.4 Separability across time

According to psychological hedonism, the only thing people ultimately care about is
their personal pleasure. But pleasure isn’t constant. The hedonist conjecture leaves
open how people rank different ways pleasure can be distributed over a lifetime. Un-
less an agent just cares about their pleasure at a single point in time, a basic desire
for pleasure is really a concern for a lot of things: pleasure now, pleasure tomorrow,
pleasure the day after, and so on. We can think of these as the “attributes” in the
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agent’s intrinsic utility function. The hedonist’s intrinsic utility function somehow
aggregates the value of pleasure experienced at different times.

To keep things simple, let’s pretend that pleasure does not vary within any given
day. We might then model a hedonist utility function as a function that assigns
numbers to lists like ⟨1, 10, −1, 2, … ⟩, where the elements in the list specify the
agent’s degree of pleasure today (1), tomorrow (10), the day after (-1), and so on.
Such attribute lists, in which successive positions correspond to successive points in
time, are called time streams.

A hedonist agent would plausibly prefer more pleasure to less at any point in time,
no matter how much pleasure there is before or afterwards. If so, their preferences
between time streams are weakly separable. Strong separability is also plausible:
whether the agent prefers a certain amount of pleasure on some days to a different
amount of pleasure on these days should not depend on how much pleasure the agent
has on other days. It follows by Debreu’s theorem that the utility the agent assigns to
a time stream can be determined as the sum of the subvalues she assign to the individ-
ual parts of the stream. That is, if 𝑝1, 𝑝2, …, 𝑝𝑛 are the agent’s degrees of pleasure
on days 1, 2, … , 𝑛 respectively, then there are subvalue functions 𝑉1, 𝑉2, … , 𝑉𝑛 such
that

𝑉(⟨𝑝1, 𝑝2, … , 𝑝𝑛 ⟩) = 𝑉1(𝑝1) + 𝑉2(𝑝2) + … + 𝑉𝑛(𝑝𝑛).
We can say more if we make one further assumption. Suppose an agent prefers

stream ⟨𝑝1, 𝑝2, … , 𝑝𝑛 ⟩ to an alternative ⟨𝑝′
1, 𝑝′

2, … , 𝑝′𝑛 ⟩. Now consider the same
streams with all entries pushed one day into the future, and prefixed with the same
degree of pleasure 𝑝0. So the first stream turns into ⟨𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑛 ⟩ and the sec-
ond into ⟨𝑝0, 𝑝′

1, 𝑝′
2, … , 𝑝′𝑛 ⟩. Will the agent prefer the modified first stream to the

modified second stream, given that she preferred the original first stream? If the an-
swer is yes, then her preferences are called stationary. From a hedonist perspective,
stationarity seems plausible: if there’s more aggregated pleasure in ⟨𝑝1, 𝑝2, … , 𝑝𝑛 ⟩
than in ⟨𝑝′

1, 𝑝′
2, … , 𝑝′𝑛 ⟩, then there is also more pleasure in ⟨𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑛 ⟩ than

in ⟨𝑝0, 𝑝′
1, 𝑝′

2, … , 𝑝′𝑛 ⟩.
It is not hard to show that if preferences over time streams are separable and station-

ary (as well as transitive and complete), then they can be represented by a function
of the form

U(⟨𝐴1, … , 𝐴𝑛 ⟩) = 𝑉1(𝐴1) + 𝛿 ⋅ 𝑉1(𝐴2) + 𝛿2 ⋅ 𝑉1(𝐴3) … + 𝛿𝑛−1 ⋅ 𝑉1(𝐴𝑛),
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where 𝛿 is a fixed number greater than 1. The interesting thing here is that the
subvalue function for any time equals the subvalue function 𝑉1 for the first time,
scaled by an exponential discounting factor 𝛿𝑖.

If a hedonist has strongly separable and stationary preferences, then her prefer-
ences over time streams are fixed by two things: how much she values present plea-
sure, and how much she discounts the future. If 𝛿 = 1, the agent values pleasure
equally, no matter when it occurs. If 𝛿 = 1/2, then one unit of pleasure tomorrow
is worth half as much as to the agent as one unit today; the day after tomorrow it is
worth a quarter; and so on.

Exercise 7.7 †
Consider the following streams of pleasure:

S1: ⟨1, 2, 3, 4, 5, 6, 7, 8, 9⟩
S2: ⟨9, 8, 7, 6, 5, 4, 3, 2, 1⟩
S3: ⟨1, 9, 2, 8, 3, 7, 4, 6, 5⟩
S4: ⟨9, 1, 8, 2, 7, 3, 6, 4, 5⟩
S5: ⟨5, 5, 5, 5, 5, 5, 5, 5, 5⟩

Assuming present pleasure is valued in proportion to its degree, so that
𝑉1(𝑝) = 𝑝 for all degrees of pleasure 𝑝, how would a hedonist agent with sep-
arable and stationary preferences rank these streams, provided that (a) 𝛿 = 1,
(b) 𝛿 < 1, (c) 𝛿 > 1? (You need to give three answers.)

Even if you’re not a hedonist, you probably care about some things that can occur
(and re-occur) at different times: talking to friends, going to concerts, having a glass
of wine, etc. The formal results still apply. If your preferences over the relevant time
streams are separable and stationary, then they are fixed by your subvalue function for
the relevant events (talking to friends, etc.) right now and by a discounting parameter
𝛿.

Some have argued that stationarity and separability across times are requirements
of rationality. Some have even suggested that the only rationally defensible discount-
ing factor is 1, on the ground that we should be impartial with respect to different
parts of our life.

An argument in favour of stationarity is that it is often thought to be required to pro-
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tect the agent from a kind of disagreement with her future self. To illustrate, suppose
you prefer ⟨10, 0, 0, 0, … ⟩ to ⟨0, 11, 0, 0, … ⟩ because you care more about today’s
pleasure than about tomorrow’s. You care less about the difference between getting
pleasure in four days and getting it in five days, so you prefer ⟨0, 0, 0, 0, 11, 0, 0, … ⟩ to
⟨0, 0, 0, 11, 10, 0, 0, … ⟩. These preferences violate stationarity. Stationarity would
imply that if you prefer ⟨10, 0, 0, 0, … ⟩ to ⟨0, 11, 0, 0, … ⟩ then you also prefer the
first stream to the second if both are prefixed with 0, and therefore also if both are
prefixed with two 0s, and with three 0s. Now suppose your (non-stationary) prefer-
ences remain the same for the next 4 days. At the end of this time, you’d still rather
have 10 units of pleasure today than 11 tomorrow: you still prefer ⟨10, 0, 0, 0, … ⟩
to ⟨0, 11, 0, 0, … ⟩. But your “today” is what used to be “in 4 days”. Your new pref-
erences disagree with those of your earlier self, in the sense that the worlds your
former self regarded as better you now regard as worse. This kind of disagreement
is called time inconsistency.

Empirical studies suggest that time inconsistency is pervasive. People often prefer
their future selves to study, eat well, and exercise, but choose burgers and TV for
today.

These preferences do look problematic. Other apparent violations of stationarity,
and even separability across time, however, look OK. Suppose you like to have a
glass of wine every now and then. But only now and then; you don’t want to have
wine every day. It seems to follow that your preferences violate both separability
and stationarity. You violate stationarity because even though you might prefer a
stream ⟨wine, no wine, no wine, … ⟩ to ⟨no wine, no wine, no wine, … ⟩, your prefer-
ence reverses if both streams are prefixed with wine (or many instances of wine).
You violate separability because whether you regard having wine in 𝑛 days as desir-
able depends on whether you will have wine right before or after these days.

Even if an agent only cares about pleasure, it is not obvious why a rational agent
might not (say) prefer relatively constant levels of pleasure over wildly fluctuating
levels, or the other way round.

One might argue, however, that in these cases the items in the time streams do not
represent you basic desires, or not all of them. If, for example, you have a preference
for constant levels of pleasure, then your basic desires don’t just pertain to how much
pleasure you have today, how much pleasure you have tomorrow, and so on. You have
a further basic desire: that your pleasure be constant from day to day.
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Exercise 7.8 ††
Are your preferences in the wine example time-inconsistent, in the sense that
what you prefer for your future self is not what your future self prefers for
itself?

Exercise 7.9 ††
If you care about whether you have wine on consecutive days, then arguably
an adequate time stream for your concerns shouldn’t simply specify, for each
day, whether you do or do not have wine, but also whether you are having
wine after having had wine the previous day. An adequate representation
of a week in which you have wine on days 2, 4, and 5 would therefore be
⟨𝑊̄𝑃̄, 𝑊𝑃̄, 𝑃𝑊̄, 𝑊𝑃̄, 𝑊𝑃, 𝑊̄𝑃, 𝑊̄𝑃̄ ⟩, where 𝑊 means that you have wine, 𝑊̄
that you don’t have wine, 𝑃 that you had wine the previous day, and 𝑃̄ that
you didn’t have wine the previous day. Do your preferences over such streams
satisfy separability and stationarity?

Let’s briefly return to the problematic kind of time-inconsistency, manifested by
the common desire for vice today and virtue tomorrow. What could explain this
phenomenon?

Part of the explanation might be that our preferences have different sources (as
I emphasized in chapter 5). When we reflect on having fries or salad now, we are
more influenced by spontaneous cravings than when we consider the same options
for tomorrow.

We could represent different sources of value by different subvalue functions. We
might, for example, have a subvalue function 𝑉𝑐 that measures the extent to which
a proposition satisfies you present cravings, and another subvalue function 𝑉𝑚 that
measures to what extent it matches your moral convictions. Your intrinsic utility
function is some kind of aggregate of these components. Here, too, separability is
plausible. If, for example, you think that one world is morally better than another,
and the two worlds are equally good with respect to all your other motives (your
cravings are equally satisfied in either, etc.), then you plausibly prefer the first world
to the second. This suggests that different sources of intrinsic utility combine in an
additive manner.
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7.5 Harsanyi’s “proof of utilitarianism”

The ordinalist movement posed a challenge not only to the MEU Principle, but also
to utilitarianism in ethics. Utilitarianism is a combination of two claims. The first
says that an act is right iff it brings about the best available state of the world. The
second says that the “goodness” of a state is the sum of the utility of all people.
Without a numerical (and not just ordinal) measure of personal utility, this second
claim makes no sense. We would need a new criterion for ranking states of the world.

One such criterion was proposed by Pareto. Recall that Pareto did not deny that
people have preferences. If we want to know which of two states is better, we can
still ask which of them people prefer. This allows us to define at least a partial order
on the possible states:

The Pareto Condition
If everyone is indifferent between 𝐴 and 𝐵, then 𝐴 and 𝐵 are equally good; if
at least one person prefers 𝐴 to 𝐵 and no one prefers 𝐵 to 𝐴, then 𝐴 is better
than 𝐵.

Unlike classical utilitarianism, however, the Pareto Condition offers little moral
guidance. For instance, while classical utilitarianism suggests that one should har-
vest the organs of an innocent person in order to save ten others, the Pareto Condition
does not settle whether it would be better or worse to harvest the organs, given that
the person to be sacrificed ranks the options differently than those who would be
saved.

Exercise 7.10 (The Condorcet Paradox) †
A “democratic” strengthening of the Pareto condition might say that whenever
a majority of people prefer 𝐴 to 𝐵, then 𝐴 is better than 𝐵. But consider the
following scenario. There are three relevant states: 𝐴, 𝐵, 𝐶, and three people.
Person 1 prefers 𝐴 to 𝐵 to 𝐶. Person 2 prefers 𝐵 to 𝐶 to 𝐴. Person 3 prefers
𝐶 to 𝐴 to 𝐵. If betterness is decided by majority vote, which of 𝐴 and 𝐵 is
better? How about 𝐴 and 𝐶, and 𝐵 and 𝐶?

In 1955, John Harsanyi proved a remarkable theorem that seemed to rescue, and
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indeed vindicate, classical utilitarianism.
As a first step, Harsanyi adopts von Neumann’s response to the ordinalist chal-

lenge. He assumes that each individual has preferences not only among the relevant
states, but also among lotteries involving the states, and that their preferences con-
form to the von Neumann and Morgenstern axioms. We can then represent their
preferences by personal utility functions U1, … , U𝑛 (one for each individual) that
are unique up to the choice of unit and zero.

Our goal is to derive a “social preference” relation between states that settles
whether a state is overall better than another. Harsanyi assumes that this social
preference relation can be extended to lotteries in a way that conforms to the von
Neumann and Morgenstern axioms. It follows that social preference is also repre-
sented by a (“social”) utility function U𝑠 that is unique up to the choice of unit and
zero.

Harsanyi now showed that if we add the Pareto condition (for both states and lot-
teries), then the individual and social preferences are represented by utility functions
U1, … , U𝑛 and U𝑠 in such a way that social utility is simply the sum of the individual
utilities: for any state 𝐴,

U𝑠(𝐴) = U1(𝐴) + … + U𝑛(𝐴).

Once we have allowed lotteries into the picture, the Pareto condition entails full-
blown utilitarianism! How is this possible?

The Pareto condition implies that the social utility of any state is determined by
the personal utility each individual assigns to the state. For suppose the social utility
of some state 𝐴 depends on an aspect of 𝐴 that doesn’t affect the personal utilities.
Then there is an alternative 𝐵 to 𝐴 (that differs from 𝐴 in this aspect) for which
U𝑠(𝐵) ≠ U𝑠(𝐴) even though every individual assigns the same utility to 𝐴 and 𝐵.
This contradicts the Pareto condition.

So the only “attributes” of a state that are relevant to its social utility are its per-
sonal utility scores. We can represent a state by a list of numbers ⟨𝑢1, … , 𝑢𝑛 ⟩, each
of which specifies how desirable the state is for a particular individual.

Most non-utilitarians would disagree on this point. They would hold that even if
everyone is indifferent between two states 𝐴 and 𝐵, 𝐴 might still be worse than 𝐵, if
it involves gratuitous human rights violations, animal suffering, sin, or whatever.

The really surprising part of Harsanyi’s theorem is that the social utility of a state
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is simply the sum of its personal utility scores 𝑢1 + … + 𝑢𝑛. This tells us that social
preference is separable across the personal utilities, and that each personal utility
(each attribute) simply contributes its value to social utility. How does this come
about? Couldn’t an even distribution ⟨10, 10, 10, 10, … ⟩ be better than an uneven
distribution ⟨0, 20, 0, 20, … ⟩? Relatedly, couldn’t personal utility have “declining
social value”, so that adding 1 unit of personal utility to an individual whose utility
is already at 1000 contributes less to social utility than adding 1 unit to an individual
who stands at 0?

These possibilities are ruled out by three assumptions that look harmless in isola-
tion, but have great power when combined.

One is the assumption that the Pareto condition holds for both lotteries and states.
This implies that if every individual is indifferent between some lottery 𝐿 and some
state 𝐴, then the social preference relation is indifferent between 𝐿 and 𝐴.

The second assumption is that each individual evaluates lotteries by their expected
(personal) utility. Let 𝐿 be a fair lottery between ⟨0, 20, 0, 20, … ⟩ and ⟨20, 0, 20, 0 … ⟩.
The expected personal utility for each individual is 10. If everyone evaluates the
lottery by its expected personal utility, then everyone is indifferent between 𝐿 and
⟨10, 10, 10, 10, … ⟩. By the first assumption, it follows that the social preference
order is indifferent between 𝐿 and ⟨10, 10, 10, 10, … ⟩.

Finally, we have assumed that the social preference order ranks lotteries by their
expected social utility. Assuming that the number of individuals is even, the states
⟨20, 0, 20, 0, … ⟩ and ⟨0, 20, 0, 20, … ⟩ plausibly have the same social utility. It fol-
lows that the social preference order is indifferent between either of these states and
𝐿. (If 𝐴 and 𝐵 have equal utility, then the expected utility of a lottery between 𝐴 and
𝐵 must equal the utility of 𝐴 and 𝐵.) But we’ve just seen that the social preference or-
der is indifferent between 𝐿 and ⟨10, 10, 10, 10, … ⟩. It follows that ⟨0, 20, 0, 20, … ⟩
and ⟨10, 10, 10, 10, … ⟩ have equal social utility.

If we think that even distributions of utility are better than uneven distributions,
we have to reject at least one of the three assumptions. If we also accept that the right
way to evaluate lotteries is by expected utility, it looks like the first assumption has
to go. 𝐿 is worse than ⟨10, 10, 10, 10, … ⟩ even though each individual is indifferent
between the two.

But should we accept that the right way to evaluate lotteries is by expected utility?
This is the question to which we turn next.
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Essay Question 7.1

Do you think time consistency is a requirement of rationality? Can you explain
why, or why not?

Sources and Further Reading
The topic of this chapter is rarely discussed in mainstream philosophy, although its
importance is occasionally recognized. See, for example, Philip Pettit, “Decision The-
ory and Folk Psychology” (1991). In economics, our topic is commonly known as
“multi-attribute utility theory”. Ralph L. Keeney and Howard Raiffa, Decisions with
Multiple Objectives (1976/1993) is a classical, and very detailed, exposition. Paul
Weirich, Decision Space (2001) explores the area from a more philosophical angle.
The theorem by Debreu that I’ve referred to is from his 1960 article “Topological
methods in cardinal utility”. More results along the same line are surveyed in David
Krantz et al., Foundations of Measurement, Vol. I: Additive and Polynomial Repre-
sentations (1971).

For an in-depth discussion of preferences over time streams, including relevant empir-
ical results, see Shane Frederick, George Loewenstein, and Ted O’Donoughue, “Time
Discounting and Time Preference: A Critical Review” (2002).

A simple proof of Harsanyi’s proof of utilitarianism is given in Michael D. Resnik,
Choices (1987, pp. 197-200). For a sympathetic philosophical evaluation, see John
Broome, “General and Personal Good: Harsanyi’s Contribution to the Theory of
Value” (2015).
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8 Why MEU?

8.1 Arguments for the MEU Principle

So far, we have largely taken for granted that rational agents maximize expected
utility. It is time to put this assumption under scrutiny.

In chapter 1, I gave a simple initial argument for the MEU Principle. An adequate
decision rule, I said, should consider all the outcomes an act might bring about –
not just the best, the worst, or the most likely – and that it should weigh outcomes in
proportion to their probability, so that more likely outcomes are given proportionally
greater weight.

In chapter 5, we looked at the internal structure of utility. I didn’t mention it at
the time, but the account we developed can be used to support the MEU Principle.

Consider a schematic decision matrix with 𝑛 states 𝑆1, … , 𝑆𝑛. The expected utility
of an act 𝐴 is

EU(𝐴) = U(𝑂1) ⋅ Cr(𝑆1) + … + U(𝑂𝑛) ⋅ Cr(𝑆𝑛).

In an adequate decision matrix, any act 𝐴 in conjunction with any state 𝑆𝑖 should
determine the relevant outcome 𝑂𝑖, so that 𝑆𝑖 ∧ 𝐴 entails 𝑂𝑖. Since outcomes have
uniform utility, it follows that U(𝐴 ∧ 𝑆𝑖) = U(𝑂𝑖), for all 𝑖. Thus

EU(𝐴) = U(𝐴 ∧ 𝑆𝑖) ⋅ Cr(𝑆1) + … + U(𝐴 ∧ 𝑆𝑛) ⋅ Cr(𝑆𝑛).

In an adequate decision matrix, the states are independent of the acts. This sug-
gests that Cr(𝑆𝑖/𝐴) = Cr(𝑆𝑖). So

EU(𝐴) = U(𝐴 ∧ 𝑆𝑖) ⋅ Cr(𝑆1/𝐴) + … + U(𝐴 ∧ 𝑆𝑛) ⋅ Cr(𝑆𝑛/𝐴).

In section 5.3, I mentioned a “partition formulation” of Jeffrey’s axiom. This says
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that for any proposition 𝐴 and partition 𝑆1, … , 𝑆𝑛,

U(𝐴) = U(𝐴 ∧ 𝑆1) ⋅ Cr(𝑆1/𝐴) + … + U(𝐴 ∧ 𝑆𝑛) ⋅ Cr(𝑆𝑛/𝐴).

Since the states in a decision matrix form a partition, it follows that EU(𝐴) = U(𝐴):
the expected utility of an act equals its utility.

It might seem strange to speak of an act’s utility. When we use the MEU Principle,
we assign utilities to outcomes and expected utilities to acts. We never talk about the
utility of an act. In the terminology of chapter 5, each outcome is a “concern”, as
it settles everything the agent cares about. The theory of utility that we developed
in chapter 5 allows us to extend an agent’s “intrinsic” utility function for concerns
to other propositions. In particular, we can talk about the utility of propositions that
specify an act.

An act’s utility measures how strongly the agent desires to perform the act. Assum-
ing the theory of utility from chapter 5, the MEU principle reduces to the seemingly
innocuous claim that rational agents choose an act that they desire to perform at least
as strongly as any alternative. (We are going to challenge this seemingly innocuous
claim in chapter 9.)

In chapter 6, we met yet another argument for the MEU Principle. The argument
began with an idea about how to measure (or define) an agent’s intrinsic utility func-
tion. The idea was to look at the agent’s preferences between outcomes and lotteries.
Assuming that the agent always chooses a most preferred option, von Neumann’s
construction of utility entails that an agent obeys the MEU Principle (in choices
between lotteries) iff their preferences satisfy certain “axioms”: Transitivity, Com-
pleteness, Continuity, Independence, and Reduction.

To complete this argument for the MEU Principle (for choices between lotter-
ies), we would need to explain why the axioms should be considered requirements
of rationality. Why should rational preferences satisfy Transitivity, Completeness,
Continuity, Independence, and Reduction?

Here is an attractive answer: if an agent violates these axioms, then they will make
patently bad choices in certain multi-stage decision problems.

To illustrate, suppose your preferences violate the Transitivity axiom. You prefer
𝐴 to 𝐵, 𝐵 to 𝐶, but 𝐶 to 𝐴. Your preferences form a cycle. Whichever of 𝐴, 𝐵 or
𝐶 you have, you would prefer to have one of the others. If you are willing to pay a
small amount to get the preferred option, it looks like I could exploit you in a kind
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of multi-stage Dutch Book.
Concretely, let’s assume you start out with 𝐶. Since you prefer 𝐵 to 𝐶, you should

be willing to pay an insignificant amount (say, 1p) if I let you swap 𝐶 for 𝐵. Once
you have 𝐵, I let you swap 𝐵 for 𝐴 in exchange for another penny. You should be
happy to do that, given that you prefer 𝐴 to 𝐵. Finally, I let you swap 𝐴 for 𝐶, again
in exchange for 1p. You should accept, as you prefer 𝐶 to 𝐴. You are back where
you started, with 𝐶, and I have gained three pence. We could start over, letting you
swap 𝐶 for 𝐵 for 𝐴 for 𝐶 until I have emptied your wallet.

This kind of argument is called a money-pump argument (for obvious reasons).
It’s worth spelling out in more detail. In its present form, the argument has a serious
flaw.

8.2 Money pumps and sequential choice

We are looking at an agent with cyclical preferences:

𝐴 ≻ 𝐵
𝐵 ≻ 𝐶
𝐶 ≻ 𝐴

We imagine presenting this agent (“you”) with a sequence of choices. A decision
problem with more than one choice is called a sequential decision problem. The
branch of decision theory that studies sequential decision problems is called sequen-
tial decision theory or dynamic decision theory. Our money-pump argument in-
vites us to take a brief look into this area.

We have assumed that you start with 𝐶. At the first choice point in our money-
pump scenario, you can either keep 𝐶 or exchange 𝐶 for 𝐵, at a small cost. Let 𝐵-

express 𝐵 with the added small cost: 𝐵- = 𝐵∧-1p. So your first choice is between 𝐶
and 𝐵-. If you choose 𝐵-, you get the option to pay another penny to swap 𝐵 for 𝐴.
If you accept, you are left with 𝐴-- = 𝐴∧-2p. You are then offered a third choice, in
which you can stick with 𝐴-- or end up with 𝐶--- = 𝐶∧-3p.

We can picture the whole sequential decision problem in a tree diagram, called
an extensive form representation.
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1

2

𝐶

𝐵-

𝐶

3

𝐵-

𝐴--

𝐵 -

𝐶---

𝐴--

𝐶---

𝐴 --

The circled nodes are choice points. What path through this tree would you take?
Above, I assumed that you would choose 𝐵- at node 1. My reasoning was that you

prefer 𝐵 to 𝐶, and we take for granted that the preference is strong enough that you
also prefer 𝐵- to 𝐶. For analogous reasons, I assumed that you would choose 𝐴-- at
node 2 (because you prefer 𝐴 to 𝐵), and 𝐶--- at node 3 (because you prefer 𝐶 to 𝐴).
You end up with 𝐶--- = 𝐶∧-3p, even though you could have gotten 𝐶 at no cost by
“turning right” at the first node.

But would you really make these choices?
Look again at node 1. Superficially, you are here offered a choice between 𝐶 and

𝐵-. But if you “choose 𝐵-” you aren’t actually getting 𝐵- unless you “turn right” at
node 2. If you turn left at node 2 and again at node 3, as we assumed you will, then
“choosing 𝐵-” at node 1 actually means getting 𝐶---. And 𝐶--- is worse than 𝐶. If
you can foresee that you will turn left at nodes 2 and 3, then you will not turn left at
node 1.

The flaw in my argument is that I have ignored any information you might have
about your predicament and about what you might do at later stages in the scenario.
We have adopted what is called a myopic approach to sequential choice. The my-
opic approach treats each choice as if it were the only decision the agent ever faces,
ignoring any downstream consequences. We shouldn’t be myopic. An adequate
evaluation of the agent’s options should take into account what the agent is likely to
do later. This approach to sequential choice is called sophisticated.

To investigate our decision problem from a sophisticated perspective, we need to
say what you know about your situation. Let’s assume that you are fully informed
about the sequential decision problem. Let’s also assume that you have perfect
knowledge of your preferences, so that you can figure out what you will do at any
future choice point.
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What you should do at node 1 now depends on what you might do at node 2, which
similarly depends on what you might do at node 3. But if there are no relevant choices
after node 3 then we can figure out what you would do here. The choice at node 3
is between 𝐴-- and 𝐶---. Since you prefer 𝐶 to 𝐴, it is plausible that you will choose
𝐶---.

With this information in hand, we can return to node 2. Your choice at node 2 is
effectively between 𝐶--- (via node 3) and 𝐵-. You prefer 𝐵 to 𝐶. So we can expect
you to choose 𝐵- at node 2.

Now return to node 1. Given what we have just figured out, the choice at node 1 is
effectively between 𝐶 and 𝐵-. You prefer 𝐵 (and 𝐵-) to 𝐶. We may therefore expect
you to choose 𝐵- at node 1. You will “turn left” at node 1 and right at node 2.

This kind of reasoning is called backward induction. We’ll meet it again in
section 10.5, where we will see that it is not as harmless at it might appear.

Exercise 8.1 †††
Draw a decision matrix (without utilities) for your choice at node 1.

The money pump argument from the previous section doesn’t work – at least not if
you know about my plot. But this can be fixed. In the following sequential decision
problem, an agent who prefers 𝐴 to 𝐵 to 𝐶 to 𝐴 would trade 𝐴 for 𝐴- at node 1,
assuming they know about the scenario and their preferences. They would make a
guaranteed and avoidable loss of 1 penny.

1

2

𝐴-

𝐴

𝐴 -

3

𝐵

𝐴

𝐵

𝐴

𝐶

𝐴

𝐶
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Exercise 8.2 ††
Explain by backward induction why “you” (the agent with cyclical prefer-
ences) would choose 𝐴- at node 1.

Exercise 8.3 †
Which choices would you make at which nodes if your preferences were tran-
sitive, so that 𝐴 ≻ 𝐵, 𝐵 ≻ 𝐶, and 𝐴 ≻ 𝐶?

The real point is, of course, not about money. The point is that cyclical preferences
effectively lead to the choice of a dominated strategy. You could have gotten 𝐴, by
“turning left” at each node. Due to your cyclical preferences, you end up with a
strictly worse outcome 𝐴-.

We have assumed that you prefer 𝐴 to 𝐵, 𝐵 to 𝐶, and 𝐶 to 𝐴. Not all violations
of Transitivity involve cycles of this kind. Instead of preferring 𝐶 to 𝐴, you could
be indifferent between 𝐶 and 𝐴. You could also have no attitude at all about the
comparison between 𝐴 and 𝐶, violating both Transitivity and Completeness. These
preferences, too, can be shown to support the choice of a dominated strategy. The
same is true, more generally, for (almost) all preferences that violate the von Neu-
mann and Morgenstern axioms.

8.3 The long run

I want to look at one more argument for the MEU Principle. This one turns on a
connection between probability and relative frequency.

Suppose you repeatedly toss a fair coin, keeping track of the number of heads and
tails. You will find that over time, the proportion of heads approaches its objective
probability, 1/2. After one toss, you will have 100% heads or 100% tails. After ten
tosses, it’s very unlikely that you’ll still have 100% heads or 100% tails. 60% heads
and 40% tails wouldn’t be unusual. The (objective) probability of getting 40% tails
or less in 10 independent tosses of a coin is 0.377. For 100 tosses, it is 0.028; for
1000, it is less than 0.000001. After 1000 tosses, the probability that the proportion
of tails lies between 45% and 55% is 0.999.
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In general, the rules of probability entail that if there is a sequence of “trials”
𝑇1, 𝑇2, 𝑇3 … in which the same outcomes (like heads and tails) can occur with the
same probabilities, then the probability that the proportion of any outcome in the
sequence differs from its probability by more than an arbitrarily small amount 𝜖
converges to 0 as the number of trials gets larger and larger. This is known as the
(weak) law of large numbers. Loosely speaking: in the long run, probabilities turn
into proportions.

How is this relevant to the MEU Principle? Consider a bet on a fair coin flip:
if the coin lands heads, you get £1, otherwise you get £0. The bet costs £0.40. If
you are offered this deal again and again, the law of large numbers entails that the
percentage of heads will (with high probability) converge to 50%. If you buy the
bet each time, you can be confident that you will loose £0.40 in about half the trials
and win £0.60 in the other half. The £0.10 expected payoff turns into an average
payoff. In this kind of scenario, the MEU Principle effectively says that you should
prefer acts with greater average utility (and therefore greater total utility) over acts
with lower average (and total) utility. If you face the same decision problem over
and over, then you are almost certain to achieve greater total utility if you follow the
MEU Principle than if you follow any other rule.

In reality, of course, there are limits to how often one can encounter the very
same decision problem. “In the long run, we are all dead”, as John Maynard Keynes
quipped. Fortunately, we saw in the coin flip example that the convergence of pro-
portions to probabilities tends to be quick. It does not take millions of tosses until
the percentage of heads is almost certain to exceed 40%.

As it stands, the long-run argument still assumes that the same decision problem
is faced over and over. But we can weaken this assumption. Suppose you face a
sequence of decision problems that may involve different outcomes, different states,
and different probabilities. One can show that if the states in these problems are
probabilistically independent, and the relevant probabilities and utilities are not too
extreme, then over time, maximizing expected utility is likely to maximize average
(and total) utility.

From all this, you might expect that professional gamblers and investors generally
put their money on the options with greatest expected payoff, since this would give
them the greatest overall profit in the long run. But they do not. (Those who do
don’t remain professional gamblers or investors for long.) To see why, imagine you
are offered an investment in a startup that tries to find a cure for snoring. If the startup
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succeeds, your investment will pay back tenfold. If the startup fails, the investment is
lost. The chance of success is 20%, so the expected return is 0.2⋅1000%+0.8⋅0% =
200%. Even if this exceeds the expected return of all other investment possibilities,
you would be mad to put all your money into this gamble. If you repeatedly face this
kind of decision and go all-in each time, then after ten rounds you are bankrupt with
a probability of 1 − 0.210 = 0.9999998976.

This does not contradict the law of large numbers. In the startup example, you are
not facing the same decision problem again and again. If you lose all your money
in the first round, you don’t have anything left to invest in later rounds. Still, the ex-
ample illustrates that by maximizing expected utility you don’t always make it likely
that you will maximize average or total utility in the long run. More importantly,
the example suggests that there is something wrong with the MEU Principle. Sen-
sible investors balance expected returns and risks. A safe investment with lower ex-
pected returns is often preferred to a risky investment with greater expected returns.
Shouldn’t we adjust the MEU Principle, so that agents can factor in the riskiness of
their options?

Exercise 8.4 ††
Every year, an investor is given £100,000, which she can either invest in a
risky startup of the kind described (a different one each year), or put in a bank
account at 0% interest. If she always chooses the second option, she will have
£1,000,000 after ten years.

(a) What are the chances that she would do at least as well (after ten years) if
she always chooses the first option, without reinvesting previous profits?

(b) How does the answer to (a) mesh with my claim in the text that an in-
vestor who always goes with the risky option is virtually guaranteed to
go bankrupt?

8.4 Risk aversion

Many people are risk averse, at least for certain kinds of choices. They prefer situa-
tions with a predictable outcome over highly unpredictable situations. This does not
seem irrational. Does it pose a threat to the MEU Principle?
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A standard way to measure risk aversion involves lotteries. Consider a lottery
with an 80% chance of £0 and a 20% chance of £1000. The expected payoff is £200.
Given a choice between the lottery and £100 for sure, a risk averse agent might prefer
the £100. Can we account for these preferences?

We can. We could, for example, assume that the difference in utility between
£1000 and £100 is, for this agent, less than five times the difference in utility between
£100 and £0. For example, if U(£0) = 0, U(£100) = 1, and U(£1000) = 4, then the
lottery has expected utility 0.8 ⋅ 0 + 0.2 ⋅ 4 = 0.8, which is less than the guaranteed
utility of the £100.

This is how economists model risk aversion. They assume that for risk averse
agents, utility is a “concave function of money”, meaning that the amount of utility
that an extra £100 would add to an outcome of £1000 is less than the amount of
utility the same £100 would add to a lesser outcome of, say, £100. We have already
encountered this phenomenon in chapter 5, where we saw that money has declining
marginal utility: the more you have, the less utility you get from an extra £100. Ac-
cording to standard economics, risk aversion is the flip side of declining marginal
utility.

This should seem strange. Intuitively, the fact that the same amount of money
becomes less valuable the more money you already have has nothing to do with risk.
Money could have declining marginal utility even for an agent who loves the thrill of
risky options. Conversely, an agent might value every penny as much as the previous
one, but shy away from risks.

No doubt some actions that appear to display risk aversion (say, among profes-
sional gamblers) are really explained by the declining marginal utility of money.
But many people prefer predictable situations in a way that can’t be explained along
these lines. The following example is due to Maurice Allais,

Example 8.1 (Allais’s Paradox)
A ball is drawn from an urn containing 80 red balls, 19 green balls, and 1 blue
ball. Consider first a choice between the following two lotteries. Which do
you prefer?
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Red (0.8) Green (0.19) Blue (0.01)

𝐴 £0 £1000 £1000
𝐵 £0 £1200 £0

Next, consider the alternative lotteries 𝐶 and 𝐷, based on the same draw from
the urn. Which of these do you prefer?

Red (0.8) Green (0.19) Blue (0.01)

𝐶 £1000 £1000 £1000
𝐷 £1000 £1200 £0

If you choose 𝐶 in the second choice, you get £1000 for sure. If you choose 𝐷,
you get either £1000 (most likely) or £0 (least likely) or £1200. If you’re risk averse,
it makes sense to take the sure £1000.

In the first choice, the most likely outcome is £0 no matter what you do. It may
seem reasonable to take the 19% chance of getting £1200 (by choosing 𝐵) rather
than the 20% chance of getting £1000 (by choosing 𝐴).

Many people, when confronted with Allais’s puzzle, seem to reason in this way.
They prefer 𝐶 to 𝐷 and 𝐵 to 𝐴. These preferences can’t be explained by the declining
marginal utility of money. Indeed, there is no way of assigning utilities to monetary
payoffs that makes a preference of 𝐶 over 𝐷 and 𝐵 over 𝐴 conform to the MEU
Principle. If you have the risk averse preferences, you appear to violate the MEU
Principle.

Exercise 8.5 †††
The preference for 𝐶 over 𝐷 and 𝐵 over 𝐴 appears to violate the Independence
axiom of von Neumann and Morgenstern. Explain. (The axiom states that, for
any 𝐴, 𝐵, 𝐶, if 𝐴 ≿ 𝐵, and 𝐿1 is a lottery that leads to 𝐴 with some probability
𝑥 and otherwise to 𝐶, and 𝐿2 is a lottery that leads to 𝐵 with probability 𝑥 and
otherwise to 𝐶, then 𝐿1 ≿ 𝐿2. You can assume Completeness.)

Some say that the kind of risk aversion that is manifested by a preference of 𝐵
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over 𝐴 and 𝐶 over 𝐷 is irrational. Rational agents, they say, can’t prefer predictable
situations over unpredictable situations. This might be OK if our topic were a special
kind of “economic rationality”. But it’s not OK if we’re interested in a general model
of how coherent beliefs and desires relate to choice. There is nothing incoherent
about a desire for predictability.

The following scenario, presented as a counterexample to the MEU Principle by
Mark J. Machina, reinforces this verdict.

Example 8.2
A mother has a treat that she can give either to her daughter Abbie or to her
son Ben. She considers three options: giving the treat to Abbie, giving it to
Ben, and tossing a fair coin, so that Abbie gets the treat on heads and Ben
on tails. Her decision problem might be summarized by the following matrix
(assuming for simplicity that if the mother decides to give the treat directly to
one of her children, she nonetheless tosses the coin, just for fun).

Heads Tails
Give treat to Abbie (𝐴) Abbie gets treat Abbie gets treat
Give treat to Ben (𝐵) Ben gets treat Ben gets treat

Let the coin decide (𝐶) Abbie gets treat Ben gets treat

The mother’s preferences are 𝐶 ≻ 𝐴, 𝐶 ≻ 𝐵, 𝐵 ≻ 𝐴.

As in Allais’s Paradox, there is no way of assigning utilities to the outcomes in the
decision matrix in example 8.2 that makes the mother’s preferences conform to the
MEU Principle. Yet these preferences are surely not irrational. The mother prefers
𝐶 because it is the most fair of the three options. It would be absurd to claim that
rational agents cannot value fairness.

8.5 Redescribing the outcomes

When confronted with an apparent counterexample to the MEU Principle, the first
thing to check is always whether the decision matrix has been set up correctly. In
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particular, we need to check if the outcomes in the matrix specify everything that
matters to the agent.

Consider the bottom right cell of the second matrix in example 8.1. What will
happen if you choose 𝐷 and the blue ball is drawn? You get £0. But you might
also feel frustrated about your bad luck: there was a 99% chance of getting at least
£1000, and you got nothing! You probably don’t like feeling frustrated. If so, the
feeling should be included in the outcome. The outcome in the bottom right cell of
the second matrix should say something like ‘£0 and considerable frustration’.

By contrast, consider the bottom right cell in the first matrix. If you choose 𝐵
and the blue ball is drawn, you get £0. The chance of getting £0 was 81%, so you’ll
be much less frustrated about your bad luck. The outcome in that cell might say
something like ‘£0 and a little frustration’. With these changes, the preference for 𝐵
over 𝐴 and 𝐶 over 𝐷 is easily reconciled with the MEU Principle.

Exercise 8.6 †
Assign utilities to the outcomes in the two matrices, with the changes just
described, so that EU(𝐵) > EU(𝐴) and EU(𝐶) > EU(𝐷).

Do these changes reflect the values of a risk averse agent? Arguably not. Just as
(genuine) risk aversion is not the same as declining marginal utility of money, it is
not the same as fear of frustration. Imagine you face Allais’s Paradox towards the
end of your life. The ball will be drawn after your death, and the money will go
to your children. You will not be around to experience frustration or regret. Nor
might your children, if the whole process is kept secret from them. But if you like
predictable outcomes, you might still prefer 𝐵 to 𝐴 and 𝐶 to 𝐷.

Let’s ask again what will happen if you choose 𝐷 and the blue ball is drawn. One
thing that will happen is that you get £0. You may or may not experience frustration
and regret. But here’s another thing that is guaranteed to happen. You will have
chosen a risky option instead of a safe (predictable) alternative. If you are risk
averse, then plausibly (indeed, obviously!) you care about whether your choices are
risky. So we should put that into the outcome. The outcome should say something
like ‘£0 and incurred avoidable risk’.

The outcome in the bottom right cell of the first matrix does not have the second
attribute, that you have incurred an avoidable risk. There is no safe alternative in the
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first matrix. We can once again distinguish the two outcomes, and reconcile your
preferences with the MEU Principle.

Exercise 8.7 †
If you care about predictability and risk, then we should also distinguish the
outcomes in all other cells of the matrix. Can you explain how?

Exercise 8.8 †
Redescribe the outcomes in example 8.2 so that the mother’s preferences con-
form to the MEU Principle.

When social scientists discuss the MEU Principle, they generally assume that util-
ity is assigned to material goods (as I mentioned in section 5.2). On this approach,
an outcome in a decision matrix can only specify who owns which goods. Agents
who care about frustration, predictability, or fairness are said to violate the MEU
Principle.

There are reasons for this restricted conception of utility. Assuming that con-
sumers maximise expected utility, in the restricted sense, and that material goods
have declining marginal utility, one can derive various “laws” of microeconomics,
such as the “law of demand”. Even if people don’t actually maximise expected util-
ity, in the restricted sense, their behaviour as consumers might approximate what
the economics version of our model predicts to make the model theoretically useful.

But our goal is not to derive the laws of microeconomics from substantive as-
sumptions about what people ultimately care about. Our goal is to develop a general
model of belief, desire, and rational choice. In this context, we don’t want to put
unnecessary and unrealistic constraints on what agents might desire. We want to
allow for agents who care about frustration, predictability, fairness, and all sorts of
other things.

Authors in the economics tradition sometimes consider models in which an agent’s
choices are assumed to be determined by their desire towards material goods, as
reflected in their utility function, as well as their desire towards a specific further
attribute – anticipated regret, for example, or riskiness. The MEU Principle is then
revised to make room for the further parameter besides the agent’s credence function

141



8 Why MEU?

and the utility function for material goods. But this approach clearly doesn’t gener-
alise well. We have instead followed a popular tradition in philosophy that puts no
substantive constraints at all on the objects of utility.

I should emphasize that these two approaches are not necessarily in tension. We
are simply engaged in different projects.

A common objection to our unrestrictive conception of utility is that it seems
to render the MEU Principle vacuous. In the economics interpretation, the MEU
Principle predicts that rational agents don’t choose 𝐵 over 𝐴 and 𝐶 over 𝐷 in Allais’s
Paradox. It also predicts that rational agents never toss a coin to decide who gets
a treat. Our MEU Principle makes no such predictions. Indeed, for any pattern
of behaviour, we can imagine that the agent has a basic desire to display just that
behaviour. Displaying the behaviour then evidently maximizes expected utility. No
behaviour whatsoever is, all by itself, ruled out by our MEU Principle.

This isn’t necessarily a problem – not even for a descriptive understanding of the
principle. Many respectable scientific theories are unfalsifiable in isolation. Scien-
tific hypotheses can generally only be tested in conjunction with a whole range of
background assumptions.

The same is true for the MEU Principle, understood as a descriptive hypothesis
about human behaviour. Given some assumptions about an agent’s beliefs and de-
sires, we can easily find that their choices do not conform to the MEU Principle.
And we often have good evidence about the relevant beliefs and desires. It is safe to
assume that participants in the world chess tournament want to win their games, and
that they are aware of the current position of the pieces in the game.

I said that any pattern of behaviour is compatible with the MEU Principle. Didn’t
von Neumann and Morgenstern prove that an agent maximizes expected utility in
choices between lotteries if and only if their preferences (and therefore, one might
think, their choice dispositions) satisfy some non-trivial conditions – Transitivity,
Continuity, Independence, etc.?

Not quite. The proof of this result assumes that the agent’s (intrinsic) utilities are
determined by von Neumann’s method. And here we reach a genuine downside to
our approach: it breaks von Neumann’s method.

Suppose, for example, we want to determine the intrinsic utility function for the
mother in example 8.2. Let 𝑎 and 𝑏 be the outcomes of directly giving the treat to
Abby and to Ben, respectively. If the mother cares about fairness, then one relevant
aspect of both 𝑎 and 𝑏 is that the treat is not allocated through a chance process.
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By von Neumann’s method, we should now ask whether the mother prefers some
other outcome 𝑐 to a lottery 𝐿 between 𝑎 and 𝑏. This lottery would be a chance
process that leads to outcomes which don’t come about through a chance process.
That’s logically impossible. 𝐿 entails that one of 𝑎 and 𝑏 comes about, and it also
entails that neither of them come about. We can hardly assume that the mother has
interesting views about how 𝐿 compares to 𝑐.

In general, if we allow agents to care about arbitrary aspects of outcomes, then
we can’t assume that any lottery between outcomes is logically possible. Either the
Completeness axiom or most of the other axioms become highly implausible.

This is a genuine cost. We lose a popular approach to defining utility, and a popular
argument for the MEU Principle.

Exercise 8.9 †††
The money-pump argument for Transitivity from section 8.2 also makes sub-
stantive assumptions about what the agent (“you”) ultimately cares about. Ex-
plain.

Similar problems arise for other attempts to measure utility in terms of prefer-
ence, and to justify the MEU Principle. The popular theory of Leonard Savage,
for example, also assumes that an agent’s utility function pertains to a restricted set
of “outcomes” that are logically independent of the “states” to which credences are
assigned.

Ramsey’s approach, however, might still work. Remember that instead of lotteries,
Ramsey uses gambles of the form ‘𝑎 if 𝑁 , 𝑏 if ¬𝑁’, where 𝑁 is some proposition
the agent doesn’t care about and 𝑎 and 𝑏 are among the agent’s concerns. If we
understand such a gamble as a possible act that leads to 𝑎 if 𝑁 and otherwise to 𝑏,
then the gamble may become logically impossible – if, for example, 𝑎 entails that no
such act is performed. But we don’t have to interpret gambles as hypothetical acts.
A gamble could simply be a certain kind of conditional proposition.

A clear example of a preference-based approach that imposes no substantive con-
straints on basic desires was developed by Ethan Bolker and Richard Jeffrey in the
1960s. Where von Neumann uses lotteries and Ramsey gambles, Bolker and Jeffrey
use unspecific propositions. If 𝑎 and 𝑏 are two concerns, then the disjunction 𝑎 ∨ 𝑏
behaves somewhat like a lottery that “leads to” (i.e., amounts to) 𝑎 with some prob-
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ability (credence) and to 𝑏 with another. As long as 𝑎 and 𝑏 are consistent, 𝑎 ∨ 𝑏 is
guaranteed to be consistent as well.

Normally, the aim of a preference-based approach is to show that if an agent’s
preferences satisfy some plausible conditions (“axioms”), then the preferences can
be represented by a utility function U, perhaps together with a credence function Cr,
relative to which the agent ranks the things over which the preferences are defined
by expected utility. Jeffrey and Bolker’s preference relation is defined over arbitrary
propositions. It isn’t clear how we should understand the “expected utility” of, say,
a disjunction 𝑎 ∨ 𝑏. But we’ve seen above, in section 8.1, that Jeffrey’s concept of
utility, which we have adopted since chapter 5, can be seen to generalise the concept
of expected utility. Jeffrey and Bolker show that if an agent’s preferences satisfy
certain axioms, then the preferences can be represented by a utility function U and
a credence function Cr relative to which the agent ranks propositions in line with
Jeffrey’s axiom.

So we might still be able to derive utility from preference – although the relevant
preferences, relating arbitrary propositions, are even further removed from choice
dispositions than in von Neumann’s or Ramsey’s construction.

Exercise 8.10 †††
Imagine you have an anti-rational streak: one of your basic desires is to not
maximise expected utility. For simplicity, suppose your only other basic desire
is to be free from pain, and it is weaker than your desire to not maximize ex-
pected utility. You wonder whether to bang your head against the wall. What
does the MEU Principle say you should do?

Essay Question 8.1

In section 7.5, we looked at Harsanyi’s argument for utilitarianism. The argu-
ment involves lotteries, and seems to rely on von Neumann’s construction of
utility. This suggests that the argument rests on implicit assumptions about
what each individual may care about. Evaluate the prospects of trying to resist
the argument on these grounds.
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Sources and Further Reading
A useful survey of money-pump arguments for the von Neumann and Morgenstern
axioms is Johan E. Gustafsson, Money-Pump Arguments (2022). Katie Steele, “Dy-
namic Decision Theory” (2018) briefly summarizes some of the philosophical con-
troversy over these arguments.

I don’t know any good literature on the long-run argument. I describe some moves
towards generalising the argument beyond cases where the agent faces the same de-
cision problem over and over at www.umsu.de/wo/2018/678.

For an intro to Allais’s Paradox, see Philippe Mongin, “The Allais paradox: What
it became, what it really was, what it now suggests to us” (2019). The example of
the mother and the treat is from Mark J. Machina, “Dynamic Consistency and Non-
Expected Utility Models of Choice Under Uncertainty” (1989).

That risk aversion should be handled by including risk as an “attribute” of outcomes
is defended, for example, in Paul Weirich, “Expected Utility and Risk” (1986). For
arguments against our liberal approach to utility, see Jean Baccelli and Philippe Mon-
gin, “Can redescriptions of outcomes salvage the axioms of decision theory?” (2021)
and chapter 4 of Lara Buchak, Risk and Rationality (2013).

The Jeffrey-Bolker construction is described in chapter 9 of Richard Jeffrey, The
Logic of Decision (1965/83). Unless the agent’s utilities are unbounded, Jeffrey and
Bolker actually don’t manage to secure a unique representation. On this issue, see,
for example, James Joyce, “Why we still need the logic of decision” (2000).
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9 Evidential and Causal Decision
Theory

9.1 Evidential Decision Theory

The traditional method for evaluating an agent’s options in a decision situation be-
gins by setting up a decision matrix with relevant states, acts, and outcomes. The
expected utility of each act is then computed as the weighted average of the utility
of the possible outcomes, weighted by the probability of the corresponding states.

In an adequate decision matrix, the propositions we choose as the states must be
independent of the acts. The need for this was illustrated in exercise 1.3. Here we
looked at a student who wonders whether to study for an exam. The student drew
up the following matrix and found, to her delight, that not studying is the dominant
option.

Will Pass Won’t Pass
Study Pass & No Fun Fail & No Fun

Don’t Study Pass & Fun Fail & Fun

This is not an adequate matrix, unless the student is sure that studying would have
no effect on the chance of passing. The states aren’t independent of the acts.

What exactly does independence require? There are at least three notions of in-
dependence. A proposition 𝐴 is logically independent of 𝐵 if all the combinations
𝐴∧𝐵, 𝐴∧¬𝐵, ¬𝐴∧𝐵, and ¬𝐴∧¬𝐵 are logically possible. 𝐴 is probabilistically in-
dependent of 𝐵 relative to some probability function Cr if Cr(𝐴/𝐵) = Cr(𝐴). (See
section 2.4.) 𝐴 is causally independent of 𝐵 if whether or not 𝐵 is true has no causal
influence on whether 𝐴 is true.
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Exercise 9.1 †
In which of the three senses are the states in the student’s decision matrix
(‘Will Pass’, ‘Won’t Pass’) independent of the acts, assuming that studying is
known to increase the chance of passing?

When we require that the states in a decision matrix should be independent of
the acts, we don’t just mean logical independence. But it is not obvious whether
we should require probabilistic independence or causal independence. The question
turns out to mark the difference between two fundamentally different approaches to
rational choice. If we require probabilistic independence (also known as ‘evidential
independence’), we get Evidential Decision Theory (EDT, for short). If we require
causal independence, we get Causal Decision Theory (CDT).

Both forms of decision theory say that rational agents maximize expected utility,
and they both appear to accept the same definition of expected utility: if act 𝐴 leads
to outcomes 𝑂1, … , 𝑂𝑛 in states 𝑆1, … , 𝑆𝑛 respectively, then

EU(𝐴) = U(𝑂1) ⋅ Cr(𝑆1) + … + U(𝑂𝑛) ⋅ Cr(𝑆𝑛).

But EDT and CDT disagree on how the states should be construed. Each camp ac-
cuses the other of making a similar mistake as the student in exercise 1.3. If we
require states to be probabilistically independent of the acts, the equation defines ev-
idential expected utility (EUe); if we require causal independence, it defines causal
expected utility (EUc).

Before we look at examples where 𝐸𝑈e and 𝐸𝑈c come apart, I want to mention
three advantages of the evidential approach.

First, probabilistic independence is much better understood than causal indepen-
dence. Provided Cr(𝐵) > 0, probabilistic independence between 𝐴 and 𝐵 simply
means that Cr(𝐴) = Cr(𝐴∧𝐵)/Cr(𝐵). By contrast, our concept of causality or causal
influence is often thought to be ill-defined and problematic. Bertrand Russell, for
example, argued that “the word ‘cause’ is so inextricably bound up with misleading
associations as to make its complete extrusion from the philosophical vocabulary
desirable.” It would be nice if we could keep causal notions out of our model of
rational choice.

A second advantage of EDT is that it is supported by an argument I gave in section
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8.1: assuming the theory of utility from section 5.3, one can show an act’s evidential
expected utility equals its utility. It will be useful to go over the argument again.

In section 5.3, we saw that Jeffrey’s axiom is equivalent to the following schema,
which I called the “partition formulation” of Jeffrey’s axiom: for any partition 𝑆1, … , 𝑆𝑛
and proposition 𝐴 with Cr(𝐴) > 0,

U(𝐴) = U(𝐴 ∧ 𝑆1) ⋅ Cr(𝑆1/𝐴) + … + U(𝐴 ∧ 𝑆𝑛) ⋅ Cr(𝑆𝑛/𝐴). (J1)

As a special case, assume that 𝑆1, … , 𝑆𝑛 is a partition that is fine-grained enough
so that every conjunction of 𝐴 with a member of the partition settles everything the
agent ultimately cares about. That is, for each 𝑆𝑖 in the partition, 𝐴 ∧ 𝑆𝑖 entails one
of the agent’s concerns. Let 𝑂𝑖 be the concern entailed by 𝐴 ∧ 𝑆𝑖. We then have
U(𝐴 ∧ 𝑆𝑖) = U(𝑂𝑖). Plugging this into (J1), we get

U(𝐴) = U(𝑂1)Cr(𝑆1/𝐴) + … + U(𝑂𝑛)Cr(𝑆𝑛/𝐴). (J2)

Now suppose we have drawn up a decision matrix that conforms to the eviden-
tialist requirement that the states are probabilistically independent of the acts. Let
𝑆1, … , 𝑆𝑛 be the states in this matrix. The evidential expected utility of an act 𝐴 is
defined as

EUe = U(𝑂1)Cr(𝑆1) + … + U(𝑂𝑛)Cr(𝑆𝑛).
Each conjunction of an act 𝐴 with one of the states 𝑆𝑖 settles everything the agent
cares about. So equation (J2) applies. Moreover, the states are probabilistically
independent of the acts: Cr(𝑆𝑖/𝐴) = Cr(𝑆𝑖), for all 𝑖. It follows that EUe(𝐴) = U(𝐴).

The MEU Principle, as understood by EDT, says that rational agents choose acts
that are at least as desirable as the available alternatives. Friends of CDT have to
deny this. They hold that rational agents sometimes choose undesirable acts even
though they could have chosen a more desirable alternative. On the face of it, the
EDT account looks more plausible.

A third advantage of EDT is that it allows computing expected utilities in a way
that is often simpler and more intuitive than the method we’ve used so far.

We’ve seen that an act’s evidential expected utility equals the act’s utility, as de-
termined by Jeffrey’s axiom. We can therefore use (J1) or (J2) to compute EUe.
These equations are correct even for partitions 𝑆1, … , 𝑆𝑛 whose members are not
independent of the act 𝐴.
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Return to the student’s decision problem. The problem with her matrix is that
the ‘Will Pass’ state is more likely if the student studies than if she doesn’t study.
Intuitively, we should give greater weight to ‘Will Pass’ when we evaluate the option
‘Study’ than when we evaluate ‘Don’t Study’.

This suggests that instead of finding a description of the student’s decision prob-
lem with act-independent states, we might stick with the student’s matrix, but let the
probability of the states vary with the acts. Like so:

Will Pass Won’t Pass
Study Pass & No Fun Fail & No Fun

(𝑈 = 1, Cr = 0.9) (𝑈 = −8, Cr = 0.1)
Don’t Study Pass & Fun Fail & Fun

(𝑈 = 5, Cr = 0.2) (𝑈 = −2, Cr = 0.8)

‘Cr = 0.9’ in the top left cell indicates that the student is 90% confident that she
will pass if she studies. She is only 20% confident that she will pass if she doesn’t
study, as indicated by ‘Cr = 0.2’ in the bottom left cell. We no longer care about the
absolute, unconditional probability of the states. To compute the expected utility of
each act we simply multiply the utilities and credences in the relevant cells and add
up the products. The expected utility of studying is 1 ⋅ 0.9 + (−8) ⋅ 0.1 = 0.1; for not
studying we get 5 ⋅ 0.2 + (−2) ⋅ 0.8 = −0.6.

In general, our new method for computing expected utilities works as follows. As
before, we need to set up a decision matrix that distinguishes all relevant acts and
outcomes, but we no longer care whether the states are independent of the acts (in
any sense). All we require is that each state in combination with each act settles
everything the agent cares about. If an act 𝐴 leads to outcomes 𝑂1, … , 𝑂𝑛 in states
𝑆1, … , 𝑆𝑛 respectively, then we compute the expected utility of 𝐴 as

EUe(𝐴) = U(𝑂1) ⋅ Cr(𝑆1/𝐴) + … + U(𝑂𝑛) ⋅ Cr(𝑆𝑛/𝐴).

The unconditional credences Cr(𝑆𝑖) in the old method have been replaced by con-
ditional credences Cr(𝑆𝑖/𝐴), to compensate for the fact that the states may not be
independent of the acts.

When we compute an act’s expected utility with this new method, we are effec-
tively using (J2) to determine the act’s utility, which we know equals the act’s eviden-
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tial expected utility. The expected utility determined by the new method is evidential
expected utility.

Exercise 9.2 ††
You have a choice of going to party 𝐴 or party 𝐵. You prefer party 𝐴, but you’d
rather not go to a party if Bob is there. Bob, however, wants to go where you
are, and there’s a 50% chance that he will find out where you go. If he does,
he will come to the same party, otherwise he will randomly choose one of the
two parties. Here is a matrix for your decision problem.

Bob at 𝐴 (0.5) Bob at 𝐵 (0.5)
Go to 𝐴 Some fun (1) Great fun (5)
Go to 𝐵 Moderate fun (3) No fun (0)

(a) Explain why this is not an adequate matrix for computing evidential
expected utilities by the old method.

(b) Use the new method to compute the (evidential) expected utilities.

We can go further. Let 𝑂1, … , 𝑂𝑛 be the possible outcomes of act 𝐴 (or more
generally, the concerns that are logically compatible with 𝐴). Any conjunction of 𝑂𝑖
and 𝐴 obviously entails one of the outcomes – namely 𝑂𝑖. We can therefore choose
the outcomes themselves as the partition 𝑆1, … , 𝑆𝑛 in (J2). We get

U(𝐴) = U(𝑂1)Cr(𝑂1/𝐴) + … + U(𝑂𝑛)Cr(𝑂𝑛/𝐴). (J3)

This suggests yet another way of computing expected utilities. I’ll call it the state-
free method. When we use the state-free method, we only need to figure out all the
outcomes 𝑂1, … , 𝑂𝑛 a given act might bring about. We then consider how likely
each of these outcomes is on the supposition that the act is chosen, and take the sum
of the products:

EUe(𝐴) = U(𝑂1) ⋅ Cr(𝑂1/𝐴) + … + U(𝑂𝑛) ⋅ Cr(𝑂𝑛/𝐴).

By (J3), the result is the act’s utility, and therefore the act’s evidential expected utility.
In practice, the new method and the state-free method are often simpler and more

151



9 Evidential and Causal Decision Theory

intuitive than the old method.

Exercise 9.3 †
I offer you a choice between £10 for sure and a coin flip that would give you
£20 on heads or £0 on tails. The coin will not be flipped if you take the first
option. In cases like this, it is hard to find a suitable set of states. Use the state-
free method to compute the expected utility for the two options, assuming your
intrinsic utility equals monetary payoff.

Exercise 9.4 †††
When I derived the state-free method, I assumed that the different outcomes
an act might bring about form a partition. Explain why this is not generally
true, and why (J3) is correct nonetheless.

9.2 Newcomb’s Problem

In 1960, the physicist William Newcomb invented the following puzzle.

Example 9.1 (Newcomb’s Problem)
In front of you are a blue box and a transparent box. The transparent box
contains £1000. You can’t see what’s in the blue box. You have two options.
You can take just the blue box and keep whatever is inside. Alternatively, you
can take both boxes and keep their content. Last night, a demon has scanned
your brain, trying to predict what you will do. (You knew nothing about this
at the time.) If she predicted that you would take both boxes, then she has put
nothing in the blue box. If she predicted that you would take just the blue box,
she has put £1,000,000 in the box. The demon is very good at predicting this
kind of choice. Your options have been offered to many people in the past,
and the demon’s predictions have almost always been correct.

What should you do, assuming you want to get as much money as possible and have
no other relevant desires?
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Let’s see how EDT and CDT answer the question, starting with CDT. If you only
care about how much money you will get, then the following matrix is adequate,
according to CDT.

£1,000,000 in blue box £0 in blue box
Take only blue box £1,000,000 £0

Take both boxes £1,001,000 £1000

Note that the states are causally independent of the acts, as CDT requires. Whether
you take both boxes or just the blue box – in philosophy jargon, whether you two-box
or one-box – is certain to have no causal influence over what’s in the boxes. This
is crucial to understanding Newcomb’s Problem. By the time of your choice, the
content of the boxes is settled. The demon won’t magically change what’s in the
blue box in response to your choice. Her only superpower is predicting people’s
choices from their brain state in the previous night.

It is obvious from the decision matrix that taking both boxes maximizes causal
expected utility. Two-boxing dominates one-boxing: it is better in every state. We
don’t need to fill in the precise utilities and probabilities.

Turning to EDT, we do need to specify a few more details. Let’s say you are
95% confident that the demon’s prediction is correct. Your credence that there’s a
million in the blue box is 0.95 on the supposition that you one-box and 0.05 on the
supposition that you two-box. Let’s also assume (for simplicity) that your utility is
proportional to the amount of money you will get. Using the “new method” from
the previous section, the evidential expected utility of the two options then works
out as follows (‘1B’ is one-boxing, ‘2B’ is two-boxing):

EUe(1B) = U(£1,000,000) ⋅ Cr(£1,000,000/1B) + U(£0) ⋅ Cr(£0/1B)
= 1, 000, 000 ⋅ 0.95 + 0 ⋅ 0.05 = 950, 000.

EUe(2B) = U(£1,001,000) ⋅ Cr(£1,001,000/2B) + U(£1000) ⋅ Cr(£1000/2B)
= 1, 001, 000 ⋅ 0.05 + 1000 ⋅ 0.95 = 51, 000.

One-boxing comes out better than two-boxing.
CDT says that you should two-box; EDT says you should one-box. Who is right?

Philosophers have been debating the question for over 50 years, with no consensus
in sight.
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Some think one-boxing is obviously the better choice. You’re almost certain to
get more if you one-box than if you two-box. Look at all the people that have been
offered the choice in the past! Those who one-boxed almost always walked away
with a million. Most two-boxers walked away with a thousand. Wouldn’t you rather
be in the first group than in the second? It’s your choice!

Practical rationality is all about satisfying your goals in the light of your beliefs.
We have stipulated that the only goal in Newcomb’s Problem is to get as much money
as possible. It seems obvious that one-boxing is the better strategy for achieving this
goal. One-boxing is the ticket to a million, two-boxing to a thousand.

Others think it equally obvious that you should two-box. If you take both boxes
you are guaranteed to get £1000 more than whatever you’d get if you took just the
blue box. Remember that the content of the boxes is settled. The blue box either
contains a thousand or a million. One-boxing and two-boxing both give you the
blue box. It is settled that you will get however much is in that box. The only thing
that isn’t settled – the only thing over which you have any control – is whether you
also get the £1000 from the transparent box. And if you prefer more money to less
money, then clearly (so the argument) you should take the additional £1000.

Here’s another argument for two-boxing. Imagine you have a friend who helped
the demon prepare the boxes. Your friend knows what’s in the blue box. You’ve
agreed to a secret signal by which she will let you know whether it would be better
for you to choose both boxes or just the blue box. If you trust your friend, it seems
that you should follow her advice. But what will she signal? If the box is empty,
she will signal to take both boxes, so that you get at least the thousand. If the box
contains a million, she will also signal to take both boxes, so that you get £1,001,000
rather than £1,000,000. Either way, she will signal to you that you should take both
boxes. But this means you can follow your friend’s advice without even looking
at her signal. Indeed, you can (and ought to) follow her advice even if she doesn’t
actually exist.

Why should you follow the advice of your imaginary friend? Think about why
we introduced the notion of expected utility in the first place. In chapter 1, we dis-
tinguished between what an agent ought to do in light of all the facts, and what they
ought to do in light of their beliefs. In the Miners Problem (example 1.1), the best
choice in light of all the facts is to block whichever shaft the miners are in. Since
you don’t know where the miners are, you don’t know which of your options is best
in light of all the facts. You have to go by your limited information. The best choice
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in light of your information is arguably to block neither shaft. But in Newcomb’s
problem, you actually know what is best in light of all the facts. You know what
someone who knows all relevant facts would advise you to do. She would advise
you to two-box. You also know what you would decide to do if you knew what’s
in the blue box: You would (plausibly) take both boxes. EDT says that you should
one-box even though you know that two-boxing is best in light of all the facts!

Exercise 9.5 ††
Imagine that before you make your choice, the demon threatens to reveal the
contents of the blue box, unless you pay them £100,000. Explain why EDT
says that you should pay.

What about the fact that one-boxers are generally richer than two-boxers? Doesn’t
this show that the one-boxers are doing something right? Not so, say those who
advocate two-boxing. Compare: people who fly business class are generally richer
than people who fly economy. Clearly this doesn’t show that everyone should fly
business class. Flying business class wouldn’t make you rich. Similarly for one-
boxing. All the one-boxers who got a million are rich not because they made a great
choice but because they were given great options. They were put in front of a blue
box containing a million and a transparent box containing a thousand. They were,
in effect, given a choice was between £1,001,000 and £1,000,000. It’s not a great
achievement that they walked away with a million. All the two-boxers who got a
mere thousand were effectively given a choice between £1000 and £0.

9.3 More realistic Newcomb Problems?

Newcomb’s Problem is science fiction. Nobody ever faces that situation. Why
should we care about the answer?

Philosophers care because the problem brings to light a more general issue: whether
the norms of practical rationality involve causal notions. Those who favour two-
boxing in Newcomb’s Problem argue that the apparent advantage of EDT, that it
does not appeal to causal notions, is actually a flaw.

In effect, EDT recommends choosing acts whose choice would be good news.
One-boxing in Newcomb’s Problem would be good news because it would provide
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strong evidence that the blue box (which you’re certain to get) contains a million.
That’s the sense in which one-boxing is desirable. You should be delighted to learn
that you are going to one-box. Two-boxing, by contrast, is bad news. It indicates
that the blue box is empty. But the aim of rational choice, say advocates of CDT, is
to bring about good outcomes, not to receive good news. In Newcomb’s Problem,
one-boxing is evidence for something good, but it does not contribute in any way to
bringing about that good. If the million is in the blue box, then it got in there long
before you made your choice.

This difference between EDT and CDT can show up in more realistic scenarios.
Some versions of the Prisoner’s Dilemma (example 1.3) are plausible candidates.
Suppose you only care about your own prison term. We can then represent the Pris-
oner’s Dilemma by the following matrix.

Partner confesses Partner silent
Confess 5 years (-5) 0 years (0)

Remain silent 8 years (-8) 1 year (-1)

The “states” (your partner’s choice) are causally independent of the acts. No mat-
ter what your partner does, confessing leads to a better outcome. But now suppose
your partner is in certain respects much like you, so that she is likely to arrive at the
same decision as you. Concretely, suppose you are 80% confident that your part-
ner will choose whatever you will choose, so that Cr(she confesses/you confess) =
Cr(she is silent/you are silent) = 0.8. As you can check, EDT then recommends
remaining silent. Friends of CDT think that this is wrong. Under the given assump-
tions, remaining silent is good news, as it indicates that your partner will also remain
silent – and note how much better the right-hand column is than the left-hand column.
But that is no reason for you to remain silent.

Exercise 9.6 †
Compute the evidential expected utility of confessing and remaining silent.

Another potential example are so-called Medical Newcomb problems. In the
1950s, it became widely known that cancer rates are a lot higher among smokers
than among non-smokers. Fearing that a causal link between smoking and cancer
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would hurt their profits, tobacco companies promoted an alternative explanation for
the finding. The correlation between smoking and cancer, they suggested, is due to a
common cause: a genetic disposition that causes both a desire to smoke and cancer.
Cancer, on that explanation, isn’t caused by smoking, but by the genetic factors that
happen to also cause smoking.

Why would the tobacco industry be interested in promoting this hypothesis? Be-
cause they assumed that if people believed it then they would keep smoking. Ac-
cording to EDT, however, it seems that people should give up smoking even if they
believed the tobacco industry’s story.

Let’s work through a toy model to see why. Suppose you assign some (sub)value
to smoking, but greater (sub)value to not having cancer, so that your utilities for the
possible combinations of smoking (𝑆) and getting cancer (𝐶) are as follows:

U(𝑆 ∧ ¬𝐶) = 1
U(¬𝑆 ∧ ¬𝐶) = 0

U(𝑆 ∧ 𝐶) = −9
U(¬𝑆 ∧ 𝐶) = −10

Suppose you are convinced by the tobacco industry’s explanation: you are sure
that smoking does not cause cancer, but that it indicates the presence of a cancer-
causing gene. So Cr(𝐶/𝑆) is greater than Cr(𝐶/¬𝑆). Let’s say Cr(𝐶/𝑆) = 0.8
and Cr(𝐶/¬𝑆) = 0.2. It follows that the evidential expected utility of smoking is
−9 ⋅ 0.8 + 1 ⋅ 0.2 = −7, while the evidential expected utility of not smoking is
−10 ⋅ 0.2 + 0 ⋅ 0.2 = −2. According to EDT, you should stop smoking. Indeed, it
should make no difference to you whether smoking causes cancer or merely indicates
a predisposition for cancer. Either way, smoking is bad news.

This is not what the tobacco industry expected. And it does seem odd. You are
sure that smoking will not bring about anything bad. On the contrary, smoking is
guaranteed to make things better. At the same time, it would be evidence that you
have a bad gene. By not smoking, you can suppress this evidence, but you can’t
affect the likelihood of getting cancer. If what you really care about is whether or
not you get cancer, rather than whether or not you know that you get cancer, what’s
the point of making your life worse by suppressing the evidence?

Friends of EDT have a response to this kind of example. If the case is to be
realistic, they say, smoking actually won’t be evidence for cancer: Cr(𝐶/𝑆) won’t be
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greater than Cr(𝐶/¬𝑆). We have assumed that the gene causes smoking by causing a
desire to smoke. But suppose you feel a strong desire to smoke. The desire provides
evidence that you have the gene. Acting on the desire would provide no further
evidence. Similarly if you don’t feel a desire to smoke: not feeling the desire is
evidence that you don’t have the gene, and neither smoking nor not smoking then
provides any further evidence. Once you’ve taken into account the information you
get from the presence or absence of the desire, Cr(𝐶/𝑆) = Cr(𝐶/¬𝑆). And then
EDT recommends smoking (in our fictional scenario).

This response has come to be known as the “tickle defence” of EDT, because it
assumes that the cancer gene would cause a noticeable “tickle” whose presence or
absence provides all the relevant evidence.

Exercise 9.7 †
You wonder whether to vote in a large election between two candidates 𝐴 and
𝐵. You assign subvalue 100 to 𝐴 winning and -100 to 𝐵 winning. Voting
would add a subvalue of -1, since it would cause you some inconvenience.
You are confident that the election will be close, but almost sure (credence
around 0.9999) that it won’t come down to a single vote. You think you are
typical for a certain group of 𝐴 supporters: you estimate that around 1-2% of
𝐴’s supporters will reach the same decision about whether to vote that you
will reach, based on the same reasons. Explain, without computing anything,
why CDT says that you shouldn’t vote, but EDT says you probably should.

9.4 Causal Decision Theories

Those who are convinced by the case against EDT believe that some causal notion
must figure in an adequate theory of rational choice: rational agents maximize causal
expected utility.

One way to define causal expected utility is the classical definition in terms of
states, acts, and outcomes, where we now require that the states are causally inde-
pendent of the acts. But one can also construct a version of CDT that looks more
like EDT, and shares at least some of EDT’s attractive features. The key to this con-
struction is a point I briefly mentioned in section 2.4: that there are two ways of
supposing a proposition.
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Throughout the Second World War, Nazi Germany tried to develop nuclear weapons.
Consider the hypothesis that these attempts succeeded in 1944. If we entertain the
hypothesis as a subjunctive or counterfactual supposition, we wonder what would
have happened if the attempts had succeeded. Knowing Hitler’s character, it is likely
that he would have used the weapons, possibly leading to an axis victory in the war.

In general, when we subjunctively suppose that an event took place, we try to
figure out what a world would be like that closely resembles the actual world up
to the relevant time, then departs minimally to allow for the event, and afterwards
develops in accordance with the general laws of the actual world.

Things are different when we indicatively suppose that the Nazis had nuclear
weapons in 1944. Here we hypothetically add the supposed proposition to our be-
liefs and revise the other beliefs in a minimal way to restore consistency. We know,
for example, that Hitler didn’t use nuclear weapons. Supposing that Germany had
nuclear weapons, we infer that something prevented the use of the weapons – an act
of sabotage perhaps.

In a probabilistic framework, Cr(𝐵/𝐴) is an agent’s credence in 𝐵 on the indicative
supposition that 𝐴. Let ‘Cr(𝐵//𝐴)’ (with two dashes) denote an agent’s credence in
𝐵 on the subjunctive supposition that 𝐴. There is no simple analysis of Cr(𝐵//𝐴) in
terms of the agent’s credence in 𝐴 and 𝐵 and logical combinations of these. Whether
𝐵 would be the case on the supposition that 𝐴 had been the case generally depends
on the laws of nature and various particular facts besides 𝐴 and 𝐵.

Now return to the “new method” for computing (evidential) expected utilities from
section 9.1. The idea was to use conditional probabilities instead of unconditional
probabilities, which allowed us to drop the requirement that the states and acts are
independent:

EUe(𝐴) = U(𝑂1) ⋅ Cr(𝑆1/𝐴) + … + U(𝑂𝑛) ⋅ Cr(𝑆𝑛/𝐴).

These are indicative conditional probabilities. If we use subjunctive conditional
probabilities, we get a formula for causal expected utility:

EUc(𝐴) = U(𝑂1) ⋅ Cr(𝑆1//𝐴) + … + U(𝑂𝑛) ⋅ Cr(𝑆𝑛//𝐴).

Admittedly, it isn’t obvious that this is equivalent to our original definition of
EUc in terms of “causally independent” states. To establish the equivalence, we
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would have to say more about the relevant notion of causal independence and about
subjunctive supposition.

There are, in fact, many different proposals on the market for how CDT should be
spelled out. We have seen two. They may not be equivalent, but both are “causal”
insofar as they involve broadly causal notions in the definition of expected utility.

The above formula for EUc can be used with any partition 𝑆1, … , 𝑆𝑛 that is suffi-
ciently fine-grained so that each conjunction 𝑆𝑖 ∧𝐴 settles everything the agent cares
about. As before, we can therefore use the outcome partition as 𝑆1, … , 𝑆𝑛 to get a
state-free formula:

EUc(𝐴) = U(𝑂1) ⋅ Cr(𝑂1//𝐴) + … + U(𝑂𝑛) ⋅ Cr(𝑂𝑛//𝐴).

To get a feeling for how this works, let’s apply it to a simple case inspired by
Newcomb’s problem. Depending on the outcome of a coin toss, a box has been
filled with either £1,000,000 or £0. You can take the box or leave it. To consider the
causal expected utility of taking the box, we suppose, subjunctively, that you take
the box. We ask: how much you would get if you were to take the box?

Answer: it depends on what’s inside. In a world where the box contains £1,000,000,
you would get £1,000,000 if you were to take the box. In a world where the box con-
tains £0, you would get £0. Both possibilities have equal probability. So

Cr(£1,000,000 // Take box) = 0.5
Cr(£0 // Take box) = 0.5.

In general, if you have the option of taking a box that contains a certain amount
of money, and you are certain that taking the box would not alter what’s inside the
box, then on the subjunctive supposition that you take the box, you are certain to get
however much is inside. Any uncertainty about how much you would get boils down
to uncertainty about how much is in the box.

Exercise 9.8 ††
Use the state-free method for computing causal expected utility to evaluate
the two options in Newcomb’s problem.
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Exercise 9.9 †††
Consider the second argument in favour of EDT from section 9.1: that an
act’s evidential expected utility equals the act’s utility. Can we adapt this line
of argument to CDT? How would we have to change the theory of utility from
section 5.3?

9.5 Unstable decision problems

A curious phenomenon that can arise in CDT is that the choiceworthiness of an
option changes during deliberation.

Example 9.2
There are three boxes: one red, one green, one transparent. You can choose
exactly one of them. The transparent box contains £100. A demon with great
predictive powers has anticipated your choice. If she predicted that you would
take the red box, she put £120 in the red box and £130 in the green box. If she
predicted that you would take the green box, she put £70 in the green box and
£90 in the red box. If she predicted that you would take the transparent box,
she put £100 in both the red and the green box.

Here is a matrix for the example. ‘𝑅’, ‘𝐺’, ‘𝑇 ’ are the three options (red, green,
transparent).

Predicted 𝑅 Predicted 𝐺 Predicted 𝑇
𝑅 £120 £90 £100
𝐺 £130 £70 £100
𝑇 £100 £100 £100

Let’s say you initially assign equal credence to the three predictions, and your
utility for money is proportional to the amount of money. It is easy to see that 𝑅 then
maximizes (causal) expected utility. But suppose you’re inclined to take the red box.
At this point, it is no longer rational to treat all three predictions as equally likely:
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you should become confident that the demon has predicted 𝑅. And then 𝑅 no longer
maximizes expected utility. You should reconsider your choice.

Exercise 9.10 ††
Can you see where this process of deliberation will end? (Explain briefly.)

It is even possible that whatever option you currently favour makes an alternative
option look more appealing, so that it becomes impossible to reach a decision.

Example 9.3 (Death in Damascus)
At a market in Damascus, a man runs into Death, who looks surprised. “I am
coming for you tomorrow”, Death says. Terrified, the man buys a horse and
rides all through the night to Aleppo, where he plans to hide in a hidden alley.
As he enters the alley, he sees Death waiting for him. “I was surprised to see
you yesterday in Damascus”, Death explains, “for I knew I had an appointment
with you here today.”

Suppose you’re the man in the story, having just met Death in Damascus. Death
has predicted where you will be tomorrow. Like in Newcomb’s Problem, let’s as-
sume the prediction is settled, and not (causally) affected by what you decide to do.
But Death is a very good predictor. If you go to Aleppo, you can be confident that
Death will wait for you there. If you stay in Damascus, you can be confident that
Death will be in Damascus. The more you are inclined towards one option, the more
attractive the other option becomes.

If we interpret the MEU Principle causally, then our model of rationality seems
to rule out both options in Death in Damascus. You can’t rationally choose to go to
Aleppo, for then you should be confident that Death will wait in Aleppo, in which
case staying in Damascus maximizes expected utility. For parallel reasons, you also
can’t rationally choose to stay in Damascus. But you only have these two options!
How can both of them be wrong?
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Essay Question 9.1

What is the rational choice in Newcomb’s Problem? Can you think of an
argument for either side not mentioned in the text?

Sources and Further Reading
Newcomb’s Problem was first discussed in Robert Nozick “Newcomb’s Problem and
Two Principles of Choice” (1969). That a better-informed friend would advise you
to two-box is noted already by Nozick. That two-boxing is known to be better in
light of all the facts is noted in Jack Spencer and Ian Wells, “Why Take Both Boxes?”
(2017). That EDT recommends paying to not find out what’s in the blue box is noted
in Brian Skyrms, “Causal Decision Theory” (1982). For more on realistic Newcomb
cases and the tickle defence, see chapter 4 of Arif Ahmed, Evidence, Decision, and
Causality (2014).

The classical exposition of EDT is Richard Jeffrey, The Logic of Decision
(1965/1983). Classical expositions of CDT include Allan Gibbard and William L.
Harper, “Counterfactuals and two kinds of expected utility” (1978), David Lewis,
“Causal Decision Theory” (1981), and James Joyce, The Foundations of Causal De-
cision Theory (1999).

“Death in Damascus” is discussed in the Gibbard & Harper paper. For more on the
theme of section 9.5, start with Frank Arntzenius, “No Regrets, or: Edith Piaf Re-
vamps Decision Theory” (2008).
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10.1 Games

Game theory studies decision problems in which the outcome of an agent’s choice
depends on other agents’ choices. Such problems are called games, and the agents
players. The Prisoner’s Dilemma (example 1.3) is a game in this sense, because
the outcome of your choice (confessing or remaining silent) depends on what your
partner decides to do.

Whenever an agent faces a choice in a game, the MEU Principle tells us that they
ought to choose whichever option maximizes expected utility. We don’t need a new
decision theory for games. Nonetheless, there are reasons for studying the special
case where the states in a decision problem are other people’s (real or potential)
actions.

One reason is that we may be able to shed light on important social and political
issues. The way we live and behave, as a society, is in many ways not ideal. We are
depleting the Earth’s resources. We are destabilising the climate. We are woefully
underprepared for pandemics and other catastrophes. We buy goods from online
retailers where most of the products are a scam. Corruption is rampant. The political
system is broken. Dating is broken. And so on, and on. Why? Why don’t we fix
these problems? Is it because the current system benefits powerful actors who have
us under their control? Game theory suggests an alternative possibility.

Remember the Prisoner’s Dilemma. If you and your partner are rational and don’t
care about each other, you both confess and spend a long time in prison. Collectively,
you could have achieved a much better outcome by remaining silent. Things are
unnecessarily bad – you spend a long time in prison – not because a powerful third
party stands to gain from your misery. The bad outcome is simply a result of your
misaligned incentives.

This kind of situation is sadly common. Professional athletes, for example, have a
strong incentive to use steroids, as long as the chance of being caught is low. Whether
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or not their competitors do the same, using steroids provides an advantage. The
outcome is that everyone uses steroids, even though everyone would prefer that no-
one uses steroids. Structurally, the athletes’ decision problem is the same as the
Prisoner’s Dilemma. Any decision problem with this structure is nowadays called a
Prisoner’s Dilemma, even if no prisoners are evolved.

Another famous example is the “tragedy of the commons”. Fishermen have an
incentive to catch as many fish as they can, even though everyone would be better
off if everyone restrained themselves to sustainable quotas.

Thomas Hobbes (in effect) argued that the pervasiveness of Prisoner’s Dilemmas
justifies the subordination of people under a state. It is in everyone’s interest to
impose a system of control and punishment that ensures the best outcome in what
would otherwise be a Prisoner’s Dilemma.

Exercise 10.1 †
How do criminal organisations like the Mafia ensure that its members remain
silent when they are interrogated by the police? Draw the decision matrix
for the scenario of the (original) Prisoner’s Dilemma, but assuming that both
players are members of the Mafia.

Another reason to study games is that a new set of conceptual tools and techniques
become available if the states in a decision problem are other people’s actions. In
particular, we can often figure out which state obtains based on the other players’
desires. In the original Prisoner’s Dilemma, we know that if your partner is rational
any only cares about their own prison term then they will confess.

Here is how game theorists would typically draw the matrix for the Prisoner’s
Dilemma, assuming you and your partner don’t care about each other:

Confess Silent
Confess -5, -5 0, -8

Silent -8, 0 -1, -1

As before, the rows are the acts available to you. The columns are the acts available
to your partner. We generally don’t assign credences to the columns. The numbers
in the cells represent the utility of the relevant outcome for you and your partner. We
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don’t describe the outcome itself any more, for lack of space. The first number in
each cell is the utility for the row player (whom we’ll call ‘Row’ and assume to be
female); the second is the utility for the column player (‘Column’, male).

In game theory jargon, a solution to a game is a prediction of what each player is
going to do, assuming that they are rational. The solution to the Prisoner’s Dilemma
is that each player confesses. Confessing dominates remaining silent. You should
confess no matter what you think your partner will do.

Consider the following matrix, for a different kind of game.

𝐶1 𝐶2
𝑅1 2, 2 1, 3
𝑅2 1, 1 2, 2

Row no longer has a dominant option. What she should do depends on what she
thinks Column will do. If Column chooses 𝐶1, then Row should play 𝑅1; if Column
chooses 𝐶2, then Row should play 𝑅2. Can we nonetheless say what Row will do,
without specifying her beliefs?

Look at the game from Column’s perspective. No matter what Row does, Column
is better off choosing 𝐶2. 𝐶2 dominates 𝐶1. So if Row knows the utility that Column
assigns to the outcomes, then she can figure out that Column will choose 𝐶2. And
so Row should choose 𝑅2. The solution is 𝑅2, 𝐶2: Row chooses 𝑅2 and Column 𝐶2.

Here is another, more complex example.

𝐶1 𝐶2 𝐶3
𝑅1 0, 1 2, 2 3, 1
𝑅2 2, 2 1, 3 2, 2
𝑅3 1, 1 0, 2 0, 3

From Row’s perspective, 𝑅1 is the best choice if Column plays 𝐶2 or 𝐶3, and 𝑅2 is
the best choice if Column goes for 𝐶1. For Column, 𝐶2 is the best choice in case of
𝑅1 or 𝑅2, and 𝐶3 is best in case of 𝑅3. But Column can hardly expect Row to choose
𝑅3, since 𝑅3 is dominated by 𝑅2. Column can figure out that Row will play either
𝑅1 or 𝑅2, which means that Column will play 𝐶2. And since Row can figure out that
Column will play 𝐶2, Row will play 𝑅1. The solution is 𝑅1, 𝐶2.
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To reach this conclusion, we need to assume more than that both players know
each other’s utilities. To figure out that Column will play 𝐶2, Row needs to know
that Column knows her (Row’s) utilities, and she needs to know that Column knows
that she (Row) won’t choose a dominated option.

A common idealisation in game theory is that the players have complete infor-
mation about the game, meaning that

(1) all players know the structure of the game, as displayed in the matrix;
(2) all players know that all players are rational;
(3) all players know that (1)–(3) are satisfied.

By applying to itself, the clause (3) ensures that (1) and (2) hold with arbitrarily
many iterations of ‘all players know that’ stacked in front. If something is in this
way known by everyone, and known by everyone to be known by everyone, and so
on, then it is said to be common knowledge. (1)–(3) say that the structure of the
game and the rationality of all participants are common knowledge.

Exercise 10.2 ††
Under the assumptions (1)–(3), what will Row and Column do in the following
games?

a.
𝐶1 𝐶2

𝑅1 1, 0 1, 2
𝑅2 0, 3 0, 1

b.
𝐶1 𝐶2 𝐶3

𝑅1 1, 0 1, 2 0, 1
𝑅2 0, 3 0, 1 2, 0

c.
𝐶1 𝐶2 𝐶3

𝑅1 0, 1 2, 0 2, 4
𝑅2 4, 3 1, 4 2, 5
𝑅3 2, 4 3, 6 3, 1

10.2 Nash equilibria

Have a look at this game.

𝐶1 𝐶2 𝐶3
𝑅1 4, 2 2, 3 2, 3
𝑅2 2, 1 3, 2 4, 1
𝑅3 3, 3 1, 1 4, 2
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No option for either player is dominated by any other. Can we nonetheless figure out
what Row and Column will choose?

Let’s start with some trial and error. Take 𝑅1, 𝐶1. Could this be how the game
is always played, under the idealizing assumptions (1)–(3)? No. Otherwise Column
would know that Row is going to play 𝑅1. And then Column is better off playing 𝐶2
or 𝐶3. What about 𝑅1, 𝐶2? If this is how the game has to played, then Row would
know that Column plays 𝐶2, and then she would be better off playing 𝑅2. This kind
of reasoning disqualifies all combinations except 𝑅2, 𝐶2 – the middle cell. If Row
knows that Column is going to play 𝐶2, she can do no better than play 𝑅2. Likewise
for Column: if Column knows that Row is going to play 𝑅2, he can do no better than
play 𝐶2.

A combination of options that is “stable” in this way is called a Nash equilibrium
(after the economist John Nash). In general, a Nash equilibrium is a combination of
acts, one for each player, such that no player could get greater utility by deviating
from their part of the equilibrium, given that the other players stick to their part.

There is a simple algorithm for finding Nash equilibria in two-player games. Start
from the perspective of the row player. For each act of the column player, underline
the best outcome(s) Row can achieve if Column chooses this act. In the example
above, you would underline the 4 in the first column, the 3 in the middle cell, and
both 4s in the third column. Then do the same for the column player: for each act of
Row, underline the best possible outcome(s) for Column. The result looks like this.

𝐶1 𝐶2 𝐶3
𝑅1 4, 2 2, 3 2, 3
𝑅2 2, 1 3, 2 4, 1
𝑅3 3, 3 1, 1 4, 2

Any cell in which both numbers are underlined is a Nash equilibrium.
A common assumption in game theory is that if a game has a unique Nash equilib-

rium, and assumptions (1)–(3) are satisfied, then the Nash equilibrium is the game’s
solution: each player will play their part of the equilibrium.

But this isn’t obvious. Our trial-and-error reasoning from above shows that if a
game has a unique solution, and assumptions (1)–(3) are satisfied, then the solution
is a Nash equilibrium. The reason is that if a game has a unique solution, then (1)–(3)
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entail that each player knows that the other will play their part of the solution. Each
player plays their part of the solution with the full knowledge that the other player is
playing their part. So the solution must be a Nash equilibrium.

It doesn’t follow, however, that if a game has a unique Nash equilibrium, then this
is the game’s solution. Consider the following game.

𝐶1 𝐶2 𝐶3
𝑅1 2, -2 -1, 1 1, -1
𝑅2 0, 0 0, 0 -2, 2
𝑅3 0, 0 0, 0 1, -1

There is a unique Nash equilibrium: 𝑅3, 𝐶2. If this is the guaranteed outcome under
assumptions (1)–(3), then Row can be sure that Column will play 𝐶2. But if Column
plays 𝐶2, then 𝑅2 and 𝑅3 are equally good for Row. So how can we be sure Row
won’t play 𝑅2?

You might argue that if Row played 𝑅2 and Column could predict her choice, then
Column would play 𝐶3, leading to a worse result for Row. But we’re not assuming
that Column can predict Row’s choice. All we’re assuming is (1)–(3).

A better argument in support of 𝑅3, 𝐶2 as the unique solution goes as follows.
Suppose for reductio that Row could play either 𝑅3 or 𝑅2, and conditions (1)–(3) are
satisfied. Then Column can’t be sure that Row will play 𝑅2. If Column gives equal
credence to 𝑅2 and 𝑅3, then his best choice is 𝐶3. And then Row should choose 𝑅3,
contradicting our assumption that Row can play 𝑅2.

This argument is still a little shaky. Why would Column have to give equal cre-
dence to 𝑅2 and 𝑅3? Why couldn’t Column be confident that Row will play 𝑅3 and
yet Row actually plays 𝑅2?

We need more than (1)–(3) to ensure that a unique Nash equilibrium will always
be played. We seem to need the further assumption that each player can replicate the
other’s process of deliberation – or at least the end point of the process.

One reason to think that this assumption might be satisfied is that the players seem
to have the same evidence about the game. If the norms of rationality determine
how, say, Column should figure out what he should do, based on his evidence and
his goals, then Row – knowing Column’s evidence, his utilities, and his rationality –
can replicate Column’s process of deliberation: she can figure out how Column will
figure out what he should do.

170



10 Game Theory

Another, simpler, reason why each player may know about the other’s delibera-
tion is that they have played the same game before. In repeated plays, each player
has direct evidence about how the other tends to play, from what they did on the
previous iterations. If, in the above example, Row always plays 𝑅2, then Column
will start playing 𝐶2. Seeing that Column plays 𝐶2, Row should switch to 𝑅1 or 𝑅3.
Eventually, we would expect them to end up in the Nash equilibrium 𝑅3, 𝐶2.

Exercise 10.3 †
Identify the Nash equilibria in the following games.

a.
𝐶1 𝐶2

𝑅1 3, 4 4, 3
𝑅2 1, 3 5, 2
𝑅3 2, 0 1, 5

b.
𝐶1 𝐶2 𝐶3

𝑅1 1, 0 1, 2 0, 1
𝑅2 0, 3 0, 1 2, 0

c.
𝐶1 𝐶2 𝐶3

𝑅1 0, 1 2, 0 2, 4
𝑅2 4, 3 1, 4 2, 5
𝑅3 2, 4 3, 6 3, 1

Exercise 10.4 ††
Whenever the method from section 10.1, which is called elimination of dom-
inated strategies, identifies a combination of acts as a game’s solution, then
this combination of acts is a Nash equilibrium. Can you explain why?

10.3 Zero-sum games

In some games, the players’ preferences are exactly opposed: if Row prefers one
outcome to another by a certain amount, then Column prefers the second outcome
to the first by the same amount. The utilities in every cell sum to the same number.
Since utility scales don’t have a fixed zero, we can re-scale the utilities so that the
sum is zero. For this reason, games in which the players’ preferences are opposed
are called zero-sum games. Here is an example.
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𝐶1 𝐶2 𝐶3
𝑅1 1, -1 3, -3 1, -1
𝑅2 2, -2 -2, 2 -1, 1

There is a unique Nash equilibrium: 𝑅1, 𝐶3. Curiously, this equilibrium will be
reached if each player follows the maximin rule that we’ve met in section 1.4. Max-
imin says to choose an option with the best worst-case result. In our example, the
worst-case result of choosing 𝑅1 (for Row) has utility 1; the worst-case result of 𝑅2
is -2. Maximin therefore says that Row should choose 𝑅1. For Column, it similarly
recommends 𝐶3.

This is not a coincidence. Every Nash equilibrium in every zero-sum game is
supported by the maximin rule. For suppose that 𝑅𝑖, 𝐶𝑗 is a Nash equilibrium in a
(two-player) zero-sum game, but 𝑅𝑖 isn’t supported by the Maximin rule. Then there
is an alternative 𝑅𝑘 whose worst-case outcome is better for Row than the outcome
of 𝑅𝑖, 𝐶𝑗. Then every possible outcome of 𝑅𝑘 is better for Row than 𝑅𝑖, 𝐶𝑗. But if
𝑅𝑖, 𝐶𝑗 is a Nash equilibrium, then 𝑅𝑘, 𝐶𝑗 can’t be better for Row than 𝑅𝑖, 𝐶𝑗.

One might argue that even though maximin is not a generally defensible decision
rule, it makes sense in a zero-sum game with complete information. The idea would
be that whatever option 𝑅𝑖 Row chooses, she can be confident that Column will
choose an option 𝐶𝑗 that leads to the best outcome when combined with 𝑅𝑖. And the
best outcome for Column is the worst outcome for Row. Like the argument for Nash
equilibria in the previous section, however, this argument assumes that the players
can replicate each other’s reasoning.

Many games have more than one Nash equilibrium. The hypothesis that players
usually end up in a Nash equilibrium then doesn’t fully tell us what the players will
do. Here is an example.

𝐶1 𝐶2 𝐶3
𝑅1 2, -2 1, -1 1, -1
𝑅2 3, -3 1, -1 1, -1
𝑅3 0, 0 -1, 1 -2, 2

There are fur Nash equilibria. What will the players do? Should Row play 𝑅1 or 𝑅2?
Should Column play 𝐶2 or 𝐶3? Well, it doesn’t matter. The players can arbitrarily
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choose among these options. Whatever they choose, they are guaranteed to end up
at an equilibrium, and all the equilibria have the same utility.

Exercise 10.5 †††
Prove that this holds for all two-player zero-sum games: if 𝑅𝑖, 𝐶𝑗 and 𝑅𝑛, 𝐶𝑚
are Nash equilibria, then so are 𝑅𝑖, 𝐶𝑚 and 𝑅𝑛, 𝐶𝑗; moreover, all Nash equilib-
ria have the same utility.

Some games have no Nash equilibrium at all. Here is a matrix for Rock–Paper–
Scissors.

Rock Paper Scissors
Rock 0, 0 -1, 1 1, -1
Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

There is no equilibrium. What should you do in this kind of game?
A standard answer in game theory is that you should randomize. You should, say,

toss a fair die and choose Rock on 1 or 2, Paper on 3 or 4, and Scissors on 5 or 6.
Such a randomized choice is called a mixed strategy. We will write ‘[1/3 Rock, 1/3
Paper, 1/3 Scissors]’ for the mixed strategy of playing Rock, Paper, or Scissors each
with (objective) probability 1/3.

Suppose two players both play [1/3 Rock, 1/3 Paper, 1/3 Scissors]. Then neither
could do better by playing anything else (including other mixed strategies). The
combination of the two mixed strategies is a Nash Equilibrium. It is the only Nash
Equilibrium in Rock–Paper–Scissors.

It can be shown that every finite game has at least one Nash Equilibrium if mixed
strategies are included. (This was shown by John Nash.) The proof obviously as-
sumes that randomization introduces no additional costs or benefits. If you hate
randomization and prefer losing in Rock–Paper–Scissors to randomizing, then the
game has no Nash Equilibrium, not even among mixed strategies.
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Exercise 10.6 ††
Suppose your opponent plays [1/3 Rock, 1/3 Paper, 1/3 Scissors]. What is the
expected utility of playing Rock? How about Paper? And Scissors? What is
the expected utility of playing [1/3 Rock, 1/3 Paper, 1/3 Scissors]?

10.4 Harder games

Most games in real life are not zero-sum games. The following example illustrates
the class of coordination problems in which the players would like to coordinate
their actions.

Example 10.1
You and your friend Bob want to meet up, but neither of you knows to which
party the other will go. Party A is better than party B, but you will both go
home if you don’t find each other.

Party A Party B
Party A 3, 3 0, 0
Party B 0, 0 2, 2

There are two Nash equilibria (without randomization): both going to party A,
and both going to party B. The first equilibrium is better, but our assumptions (1)–
(3) appear to be compatible with either. One can imagine a scenario in which you and
Bob are both confident that the other will go to party B. Going to B then maximises
expected utility. One can also imagine a scenario in which you are confident that
Bob will go to B and Bob is confident that you will go to A, so that you end up at
different parties. If we don’t assume that you can replicate each other’s reasoning,
all outcomes appear to be possible.

I say ‘appear’ because it isn’t obvious what credences are rationally permitted
in this situation. Could you be rationally confident that Bob will go to B, under
conditions (1)–(3)? You can figure out that Bob will go to B iff he is more than 60%
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confident that you will go to B. So the question is, can you be confident that Bob is
more than 60% confident that you will go to B? Of course, Bob knows that you will
go to B only if you are more than 60% confident that he will go to B. So the question
is, can you be confident that Bob is more than 60% confident that you are more than
60% confident that he will go to B? And so on. There is nothing incoherent about
this state of mind, in which you are confident that Bob will go to B. But we may
wonder how you could have rationally arrived at this state.

Our assumptions (1)–(3) here give rise to an epistemological puzzle. If you have
no further relevant evidence, how confident should you be that Bob will go to B?
You might think your degree of belief should be 1/2, by the Principle of Indifference.
But then you should assume that Bob’s degree of belief in you going to B is also 1/2.
And that would imply that Bob goes to A. So it can’t be right that you should give
equal credence to the two possibilities.

Another tempting thought is that you must be sure that Bob will go to A. But why?
What part of your evidence rules out scenarios in which he goes to B?

Exercise 10.7 ††
Suppose you know that Bob can replicate your reasoning. What does Eviden-
tial Decision Theory say you should do in the party situation (example 10.1)?

A different kind of coordination is called for in the following game.

Example 10.2 (Chicken)
For fun, you and your friend Bob drive towards each other at high speed. If
one of you swerves and the other doesn’t, the one who swerves loses. If neither
swerves, you both die.

Swerve Straight
Swerve 0, 0 -1, 1
Straight 1, -1 -10, -10
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Games like chicken are sometimes called anti-coordination games, because each
player would prefer the other one to yield without yielding themselves. There are two
Nash Equilibria in Chicken that don’t involve randomization: ‘Swerve, Straight’ and
‘Straight, Swerve’. As above, every choice is rationally defensible, given suitable
beliefs about the opponent, and as before there is an epistemological puzzle about
how any of these beliefs could come about.

An interesting feature of many anti-coordination games is that they seem to favour
irrational agents who do not maximize expected utility. Suppose Bob is insane and
will go straight no matter what, despite the large cost of dying if you both go straight.
And suppose you know about Bob’s insanity. Then you, as an expected utility max-
imizer, will have to swerve. Bob will win.

There are rumours that during the cold war, the CIA leaked false information to the
Russians that the US President was an alcoholic, while the KGB falsified medical
reports suggesting that Brezhnev was senile. Both sides tried to gain a strategic
advantage over the other by indicating that they would irrationally retaliate against
a nuclear strike even if they had nothing to gain any more.

Exercise 10.8 †
What should you do in Chicken if you give equal credence to the hypotheses
that Bob will swerve and that he will go straight?

Exercise 10.9 †††
A third Nash equilibrium in Chicken involves randomization. Can you find it?

10.5 Games with several moves

So far, we have looked at games in which each player makes just one move, and
no player knows about the others’ moves ahead of their choice. Game theory also
studies situations in which these assumptions are relaxed. Let’s have a quick look at
games with several moves, assuming players always know what was played before.

As in section 8.2, we can picture the relevant decision situations in a tree-like
diagram (an “extensive form representation”). Below is a diagram for a game in
which Row first has a choice between 𝑅1 and 𝑅2. If she chooses 𝑅2, the game ends
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with an outcome that has utility 2 for Row and 3 for Column. If Row chooses 𝑅1,
then Column gets a choice between 𝐶1 and 𝐶2. If he chooses 𝐶2, Row gets utility 3
and Column 0; if Column chooses 𝐶1, Row gets 1 and Column 2.

1

2

2, 3

3, 0

1, 2

𝑅1

𝑅2

𝐶1

𝐶2

We can use backward induction to predict how the game is going to be played,
assuming (1)–(3).

Consider node 2, where Column has a choice between outcome ‘3, 0’ and outcome
‘1, 2’. The choice involves no relevant uncertainty, and Column prefers ‘1, 2’ over
‘3, 0’. He can be expected to play 𝐶1. Anticipating this, Row can figure out that
playing 𝑅1 at node 1 will lead to ‘1, 2’. 𝑅2 instead leads to ‘2, 3’. This is better for
Row. So Row will play 𝑅2.

In the following example, backward induction leads to a more surprising result.

Example 10.3 (Centipede)
You and Bob are playing a game. The game starts with a pot containing £2.
In round 1, you can decide whether to continue or end the game. If you end
the game, you get the £2 and Bob gets £0. If you continue, the money in the
pot increases by £2 and Bob decides whether to continue or end. If he ends
the game here (in round 2), the pot is divided so that he gets £3 and you get
£1. If he continues, the money in the pot increases by another £2 and it’s your
turn again. If you end the game (in round 3), you get £4 and Bob gets £2. And
so on. In each round, the money in the pot increases by £2 and whoever ends
the game gets £2 more than the other player. In round 100, Bob no longer has
an option to continue.

Suppose you and Bob don’t care about each other; each of you only wants to get
as much money as possible. Here is a partial diagram of the resulting game.
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1
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1, 3
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100, 98

𝐸
𝑏
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100

99, 101

𝐸
𝑦

𝐶𝑦

𝐸
𝑏

Let’s use backward induction to solve the game. At node 100, Bob doesn’t have a
choice. If you continue at node 99 (𝐶𝑦), you will get £99 and Bob £101. If you end
the game (𝐸𝑦) at node 99, you will get £100. It is obviously better to end the game.
Anticipating this, what should Bob do in round 98? If he ends the game (𝐸𝑏), he’ll
get £99; if he continues (𝐶𝑏), he’ll get £98. So he should end the game. Anticipating
this, you should end the game in round 97, to ensure that you’ll get £98 rather than
£97. And so on, all the way back to round 1. At each point, backward induction tells
us that the game should be ended. In particular, you can anticipate in round 1 that
Bob will end the game in round 2. So you should end the game in round 1. You will
get £2 and Bob £0.

When actual people play the Centipede game, almost no-one ends the game right
away. Is this a sign of either altruism or irrationality? Not necessarily.

Let’s look at your choice in round 1 from an MEU perspective. It is clear what
happens if you end the game: you’ll get £2. But what would happen if you chose to
continue? The argument from backward induction assumes that Bob would end the
game. If you could be certain that Bob would do that, then you should indeed end
the game in round 1. But why should Bob end the game? Because, so the argument,
he can be certain that you would end the game in round 3. But the argument for
ending in round 3 is exactly parallel to the argument for ending in round 1. And if
Bob faces a choice in round 2, then he has just seen that you did not end the game
in round 1. Based on this information, he can’t be sure you would end it in round 3.
On the contrary, he should be somewhat confident that you will continue in round
3. And then continuing maximizes expected utility in round 2. Anticipating this,
continuing also maximizes expected utility in round 1, as it is likely to get you at
least to round 3.

This suggests that the backward induction argument went wrong somewhere. But
where? Surely you really ought to end the game in round 99. And surely this means
that Bob should end the game in round 98. And so on! This puzzle is sometimes
called the paradox of backward induction.
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Exercise 10.10 ††
Suppose you repeatedly face the Prisoner’s Dilemma with the same partner,
for an unknown number of rounds. You only care about your own prison terms.
You expect that your partner will remain silent in the first round and from then
on imitate whatever you did in the previous round. What should you do? Does
your answer show that you should choose a dominated act?

10.6 Evolutionary game theory

One of the most successful applications of game theory lies (somewhat surprisingly)
in the study of biological and cultural evolution. Consider the following game.

Example 10.4 (The Stag Hunt)
Two players independently decide whether to hunt stag or rabbit. Hunting stag
requires cooperation, so if only one of the players decides to hunt stag, she will
get nothing. The utilities are as follows.

Stag Rabbit
Stag 5, 5 0, 1

Rabbit 1, 0 1, 1

In the evolutionary interpretation, the utilities represent the relative fitness that
results from a combination of choices, measured in terms of average number of sur-
viving offspring. Let’s assume that each strategy is played by a certain fraction of
individuals in a population. Individuals who achieve an outcome with greater util-
ity will, by definition, have more offspring on average, so their proportion in the
population will increase.

Suppose initially 1/4 of the individuals in the population goes for stags and 3/4 for
rabbits. Assuming that encounters between individuals are completely random, this
means that any given individual has a 1/4 chance of playing with someone hunting
stag, and a 3/4 chance of playing with someone hunting rabbit. The average utility
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of hunting stag is 1/4 ⋅ 5 + 3/4 ⋅ 0 = 1.25; for hunting rabbit the utility is of course
1. Individuals going for stag have greater average fitness. Their fraction in the pop-
ulation increases. As a consequence, it becomes even more advantageous to go for
stag. Eventually, everyone will hunt stag.

By contrast, suppose initially only 1/10 of the population goes for stags. Then
hunting stag has an average utility of 0.5, which is less than the utility of hunting
rabbit. The rabbit hunters will have more offspring, which makes it even worse to
hunt stags. Eventually, everyone will hunt rabbits.

The two outcomes ‘Stag, Stag’ and ‘Rabbit, Rabbit’ are the two Nash Equilibria
in the Stag Hunt. Evolutionary game theory predicts that the proportion of stag and
rabbit hunters in a population will approach one of these equilibria.

Not every Nash Equilibrium is a possible end point of evolution though. If a
population repeatedly plays the game of Chicken, and the players can’t recognize in
advance who will swerve and who will go straight, then the asymmetric equilibria
‘Swerve, Straight’ and ‘Straight, Swerve’ do not mark possible end points of evolu-
tionary dynamics. But note that in a community in which almost everyone swerves,
you’re better off going straight; similarly, in a community in which almost everyone
goes straight, the best choice is to swerve. Evolution will therefore lead to the third,
mixed strategy equilibrium. It will lead to a state in which a certain fraction of the
population swerves and the others go straight.

The assumption that individuals in a population are randomly paired with one
another is obviously an idealisation. In reality, individuals are more likely to interact
with members of their own family, which increases the chances that they will be
paired with individuals of the same type; they might also actively seek out others
who share the relevant traits. Either way, the resulting correlated play dramatically
changes the picture.

Imagine a population in which individuals repeatedly play a Prisoner’s Dilemma
wherein they can either cooperate (remain silent, in the original scenario) or defect
(confess). Since defectors do better than cooperators in any encounter, it may seem
that cooperation can never evolve. On the other hand, cooperators do much better
when paired with other cooperators than defectors when paired with defectors. If the
extent of correlation is sufficiently high, cooperators can take over (although perhaps
not completely).

In many species, one can find altruistic individuals who sacrifice their own fitness
for the sake of others. Evolutionary game theory explains how this kind of altruism
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could have evolved.

Exercise 10.11 †
What are the Nash equilibria in the following game (ignoring randomization)?
Could all the equilibria come about through an evolutionary process?

A B
A 5, 5 1, 1
B 1, 1 1, 1

Essay Question 10.1

Explain the paradox of backward induction. Why is it a paradox? How do you
think it could be resolved?

Sources and Further Reading
There are many decent introductions to Game Theory. The “Game Theory” entry
in the Stanford Encyclopedia by Don Ross (2019) provides a fairly comprehensive
overview. A suitable next step might be Steven Tadelis, Game Theory: An Introduc-
tion (2013).

The paradox of backward induction is discussed, for example, in Philip Pettit and
Robert Sugden, “The Backward Induction Paradox” (1989).

For a little more on evolutionary game theory, see Brian Skyrms, “Game Theory,
Rationality and Evolution of the Social Contract” (2000). For even more, see Brian
Skyrms, “The Stag Hunt and the Evolution of Social Structure” (2004).
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11 Bounded Rationality

11.1 Models and reality

We have studied an abstract model of rational agents. The model assumes that an
agent has some idea of what the world might be like, which we represent by a cre-
dence function Cr over a suitable space of propositions. The agent also has some
goals or values or desires, represented by a (possibly partial) utility function U on the
same space of propositions. The credence function is assumed to satisfy the formal
rules of the probability calculus. It evolves over time by conditionalizing on sensory
information, and it satisfies some further constraints like the Probability Coordina-
tion Principle. An agent’s utility function is assumed to satisfy Jeffrey’s axiom, so
that it is jointly determined by the agent’s credences and their “intrinsic utility func-
tion” that assigns a value to the agent’s “concerns” – combinations of things the
agent ultimately cares about. These intrinsic utilities may in turn be determined by
aggregating subvalues. When the agent faces a choice, they are assumed to choose
an act that maximizes the credence-weighted average of the utility of the possible
outcomes.

Our model is really a family of models, as there are different ways of filling in
the details. Should expected utility be understood causally or evidentially? Should
credences satisfy some version of the Indifference Principle? Should we rule out
some basic desires as irrational? Should we require time consistency? Should we
impose constraints on how basic desires may change over time? Different answers
yield different models.

Each model in this family can be understood either normatively or descriptively.
Understood normatively, the model would purport to describe an ideal to which real
agents should perhaps aspire. Understood descriptively, the model would purport to
describe the attitudes and choices of ordinary humans.

It is a commonplace in current economics and psychology that our model is de-
scriptively inadequate (no matter how the details are spelled out): that real people
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are not expected utility maximizers. In itself, this is not necessarily a problem – not
even for the descriptive interpretation of our models. Remember that “all models are
wrong”. With the possible exception of the standard model of particle physics, the
purpose of a model is to identify interesting and robust patterns in the phenomena,
not to get every detail right. Nonetheless, it is worth looking at how our model aligns
with reality, and what we could change to make it more realistic.

Many supposed cases where people are said to violate the MEU Principle are not
counterexamples to the descriptive adequacy of the model we have been studying.
Our model can easily accommodate agents who care about risk or fairness or regret
(chapter 8). We can accommodate altruistic behaviour (section 1.2), the endowment
effect (section 5.2), and apparent failures of time consistency (section 7.4).

Other phenomena are harder to accommodate. People often make mistakes when
evaluating the impact of inconclusive information. They don’t take into account the
“base rate” (section 4.2) or the fact that the information comes from a biased source.
They ignore evidence that goes against their opinions.

More simply, most people are bad at maths. Suppose I offer you £100 for telling
me the prime factors of 82,717. You have 10 seconds. All you’d have to do, to
get the money, is utter ‘181 and 457’. Moreover, that this is the correct answer
logically follows from simpler facts of which you are highly confident. By the rules
of probability, you should be confident that ‘181 and 457’ is the correct answer. But
you are not.

Exercise 11.1 †††
Explain why, if some proposition 𝐶 is entailed by two propositions 𝐴 and 𝐵
whose probability is greater than 0.99, then the probability of 𝐶 is greater than
0.98.

In 1913, Ernst Zermelo proved that in the game of chess, there is either a strategy
for the starting player, White, that guarantees victory no matter what Black does, or
there is such a strategy for Black, or there is a strategy for either player to force a
draw. Consequently, if two ideal Bayesian agents sat down to a game of chess, and
their only interest was in winning, they would either agree to a draw or one of them
would resign immediately, before the first move. Real people don’t play like this.

Another respect in which real people plausibly deviate from our model is that
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they often overlook certain options. You go to the shop, but forget to buy soap. You
walk along the highway because it doesn’t occur to you that you could take the nicer
route through the park. The relevant options (buying soap, taking the nicer route)
are available to you, and they are better by the lights of your beliefs and desires, so
it is a mistake that you don’t choose them.

Relatedly, real people are forgetful. I don’t remember what I had for dinner last
Monday. As an ideal Bayesian agent, I would still know what I had for dinner on
every day of my life.

Exercise 11.2 ††
Show that if an agent conditionalizes on some information 𝐸 then their cre-
dence in 𝐸 will remain at 1 as long as the agent only changes their beliefs by
further applications of conditionalisation. (Conditionalization was introduced
in section 4.2.)

There is also indirect evidence that our model does not fit real agents in every re-
spect. The evidence comes from research on artificial intelligence, where our model
forms the background for much recent research. Various parts of the model – in-
cluding the MEU Principle and the Principle of Conditionalization – turn out to be
computationally intractable. Real agents with limited cognitive resources, it seems,
couldn’t possibly conform to our model.

11.2 Avoiding computational costs

Before we look at ways of making our model more realistic, I want to address another
common misunderstanding.

Suppose you walk back to the shop to buy soap. At any point on your way, you
could change course. You could decide to turn around, or start running. You could
check if your shoe laces are tied. You could mentally compute 181 + 457, or start
humming the national anthem. There are millions of things you could do. Many of
these would lead to significantly different outcomes, especially if you consider long-
term consequences. (Hitler almost certainly would not have existed if hours or even
months before his conception, his father had decided to run rather than walk to buy
soap.) Some authors take the MEU Principle to imply that at each point on your walk,
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you should explicitly consider all your options, envisage all their possible outcomes,
assess their utility and probability, and on that basis compute their expected utility.
This is clearly unrealistic and infeasible.

But the MEU Principle requires no such thing. The MEU Principle says that
rational agents choose acts that maximize expected utility; it specifies which acts
an agent should choose, given their beliefs and desires. It says nothing about the
internal processes that lead to these choices. It does not say that the agent must
explicitly consider all their options and compute expected utilities.

Exercise 11.3 ††
The opposite is closer to the truth. Suppose an agent has a choice between
turning left (𝐿), turning right (𝑅), and sitting down to compute the expected
utility of 𝐿 and 𝑅 and then choosing whichever comes out best. Let 𝐶 be this
third option. If computing expected utilities involves some costs in terms of
effort or time, then either 𝐿 or 𝑅 generally has greater expected utility than 𝐶.
Explain why.

The MEU Principle does not require calculating expected utilities. But this raises
a puzzle. An agent who conforms to our model always chooses acts with greatest
expected utility. How are they supposed to do this without calculating? It doesn’t
seem rational to choose one’s acts randomly and maximize expected utility by sheer
luck.

Part of the answer is that our model abstracts away from cognitive limitations.
Agents who conform to our model have no need to calculate anything. If their ev-
idence entails that a certain act maximizes expected utility, then they are already
certain that the act maximizes expected utility: anything that is entailed by their
evidence automatically has credence 1.

The idea that expected utility maximizers would constantly have to go through in-
tricate computations also assumes that credences and utilities are conceptually prior
to choices. On a preference-based approach, preferences and choices come first.
The MEU Principle boils down to certain constraints on preferences, which in turn
boil down to constraints on choices. One might hope that even real people, who
aren’t logically omniscient, can reliably satisfy these constraints without computing
expected utilities.
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Exercise 11.4 †
Suppose you’re a musician in the middle of a performance. Trying to compute
the expected utility of all the notes you could play next would probably derail
your play. Even if it wouldn’t, it would change your experience of playing,
probably for the worse. Give another example where conceptualizing one’s
acts as maximizing expected utility would undermine the value of performing
the acts.

In many decision situations, there is no need for sophisticated calculations because
one of the acts clearly dominates the others. Whether this is the case depends on the
agent’s utility function. This suggests that wemight reduce the computational costs
of decision-making by tweaking our utilities.

For example, suppose you assign significant (sub)value to obeying orders. Doing
whatever you’re ordered to do is then a reliable way of maximizing expected utility,
and it requires little cognitive effort. Similarly if you value imitating whatever your
peers are doing.

Our capacity for planning and commitment can also be seen in this light. Before
you went to the shop, you probably decided to go to the shop. The direct result
of your decision was an intention to go to the shop. Once an intention or plan is
formed, we are motivated to execute it. Revising a plan or overturning a commitment
has negative (sub)value. Consequently, once you’ve formed an intention, simply
following it reliably maximizes expected utility. You don’t need to think any more
about what to do unless you receive surprising new information or your basic values
suddenly change. (This is true even if you’ve made a mistake when you originally
formed the intention.)

Habits can play a similar role. Most of us spend little effort deciding whether we
should brush our teeth in the morning. We do it out of habit. Habitual behaviour is
computationally cheap, and it can reliably maximize expected utility – especially if
we assign (sub)value to habitual behaviour. And we do, at least on a motivational
conception of desire: habits motivate.

The upshot is that various cognitive strategies that are often described as alterna-
tives to computing expected utilities – habits, instincts, heuristics, etc. – may well
be efficient techniques for maximizing expected utility. Far from ruling out such
strategies, our model predicts that we should use them.
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An example in which something like this might play a role is Ellsberg’s Paradox,
another classical “counterexample” to the MEU Principle.

Example 11.1 (Ellsberg’s Paradox)
An urn contains 300 balls. 100 of the balls are red, the others are green or
blue, in unknown proportion. A ball is drawn at random from the urn. Which
of the following two gambles (𝐴 and 𝐵) do you prefer?

Red Green Blue
𝐴 £1000 £0 £0
𝐵 £0 £1000 £0

Next, which of 𝐶 and 𝐷 do you prefer?

Red Green Blue
𝐶 £1000 £0 £1000
𝐷 £0 £1000 £1000

Many people prefer 𝐴 to 𝐵 and 𝐷 to 𝐶. Like in Allais’s Paradox, there is no way
of assigning utilities to the monetary outcomes that supports these preferences.

Exercise 11.5 †
Assume the outcomes in Ellsberg’s paradox are described correctly and
you prefer more money to less. By the Probability Coordination Principle,
Cr(Red) = 1/3. What would your credences in Green and Blue have to be so
that EU(𝐴) > EU(𝐵)? What would they have to be so that EU(𝐷) > EU(𝐶)?

In Ellsberg’s Paradox, risk aversion doesn’t seem to be at issue. What makes the
difference is that you know the objective probability of winning for options 𝐴 and
𝐷: it is 1/3 for 𝐴 and 2/3 for 𝐷. You don’t know the objective probability of winning
with 𝐵 and 𝐶, since you have too little information about the non-red balls.

Why does this matter? One explanation is that people simply prefer lotteries, in
which the outcomes have known objective probabilities, to gambles in which the
outcomes can only be assigned subjective probabilities. With such a utility function,
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the outcome labelled ‘£1000’ in 𝐴 is actually better than the corresponding outcome
in 𝐶, because only the former involves having chosen a lottery.

But why would agents prefer lotteries? A possible answer is that such a preference
tends to reduce computational costs. If you know the objective probabilities of a
state, it is easy to figure out the credence you should give to the state: it should
match the objective probabilities. If you don’t know the objective probability, more
work may be required to figure out the extent to which the state is supported by
your total evidence. In Ellsberg’s Paradox, Cr(Red) is a easier to figure out than
Cr(Green) and Cr(Blue). If you have a preference for lotteries, you don’t need to
figure out Cr(Green) and Cr(Blue): from eyeballing the options, you can already
see that the expected monetary payoff of 𝐴 and 𝐵 is approximately the same (as is
the expected payoff of 𝐶 and 𝐷); a preference for lotteries tips the balance in favour
of 𝐴 (and 𝐷).

11.3 Reducing computational costs

I will now review a few ideas from theoretical computer science for rendering our
models computationally tractable.

Imagine we want to design a robot – an artificial agent with a probabilistic repre-
sentation of its environment and some goals. Let’s assume that we want our agent
to assign credences and utilities to a total of 50 logically independent propositions
𝐴1, … , 𝐴50 (an absurdly small number). How large of a database do we need?

You might think that we need 50 records for the probabilities and 50 for the utilities.
But we generally can’t compute 𝐶𝑟(𝐴∧𝐵) or Cr(𝐴∨𝐵) from Cr(𝐴) and Cr(𝐵). Nor
can we compute U(𝐴∧𝐵) or U(𝐴∨𝐵) from U(𝐴) and U(𝐵). If we want to determine
the agent’s entire credence and utility functions (without further assumptions), we
need to store at least the probability and utility of every “possible world” – every
maximally consistent conjunction of 𝐴1, … , 𝐴50 and their negations.

Exercise 11.6 †††
Explain why the probability of every proposition that can be defined in
terms of 𝐴1, … , 𝐴50 can be computed from the probability assigned to these
“worlds”. Then explain why the utility of every such proposition can be com-
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puted from the probability and utility assigned to the worlds.

There are 250 = 1, 125, 899, 906, 842, 624 maximally consistent conjunctions of
𝐴1, … , 𝐴50 and their negations. Since we need to store both credences and utili-
ties, we need a database with 2, 251, 799, 813, 685, 248 records. (I am exaggerat-
ing. Once we’ve fixed the probability of the first 1,125,899,906,842,623 worlds, the
probability of the last world is 1 minus the sum of the others, so we really only need
2, 251, 799, 813, 685, 247 records.)

We’ll need to buy a lot of hard drives for our robot if we want to store 2 quadrillion
floating point numbers. Worse, updating all these records in response to sensory
information, or computing expected utilities on their basis, will take a very long
time, and use a large amount of energy.

In chapters 5.4 and 7, we have encountered two tricks that allow us to simplify
the representation of an agent’s utility function. First, if the agent cares about some
attributes of the world and not about others, it is enough to store the agent’s utility
for her “concerns”: the maximally consistent conjunctions of the attributes they care
about (section 5.4). If, for example, our robot only cares about the possible combi-
nations of 20 among the 50 propositions 𝐴1, … , 𝐴𝑛, we only need to store 220 values.
Second, if our robot’s preferences are separable with respect to these attributes, then
the value of any combination of the 20 propositions and their negations can be deter-
mined by adding up relevant subvalues (section 7.2). We can cut down the number
of utility records from 220 to 2 ⋅ 20 = 40.

Similar tricks are available for the agent’s credence function. Mirroring the first
trick, we could explicitly store only the robot’s credence in certain sets of worlds,
and assume that its credence is distributed uniformly within these sets. The trick
can be extended to non-uniform distributions. For example, suppose our robot has
imperfect information about how far it is from the next charging station. Instead of ex-
plicitly storing a probability for every possible distance (1m, 2m, 3m, …), we might
assume that the robot’s credence over these possibilities follows a Gaussian distribu-
tion, which can be specified by two numbers (mean and variance). Researchers in
artificial intelligence make heavy use of this trick.

An analogue of separability, for credences, is probabilistic independence. If 𝐴 and
𝐵 are probabilistically independent, then Cr(𝐴 ∧ 𝐵) = Cr(𝐴) ⋅ Cr(𝐵). If all the 50
propositions 𝐴1, … , 𝐴50 are mutually independent, then we can fix the probability of
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all possible worlds (and therefore of all logical combinations of the 50 propositions)
by specifying their individual probability.

Independence is sometimes plausible. Whether the next charging station is 100
meters away plausibly doesn’t depend on whether the outside temperature is above
20∘C. For many other propositions, however, independence is implausible. On the
supposition that it is warm outside (𝑊 ), it may well be more likely that the window is
open (𝑂), or that there are people on the street (𝑃), than on the supposition that it isn’t
warm (¬𝑊 ). If our agent is unsure whether it is warm, it follows that Cr(𝑂/𝑊) >
Cr(𝑂), and Cr(𝑃/𝑊) > Cr(𝑃). We can’t assume probabilistic independence across
all the 50 propositions 𝐴1, … , 𝐴50.

Even where independence fails, however, we often have conditional indepen-
dence. If warm temperatures make it more likely that the window is open and that
there are people on the street, then an open window is also evidence that there are
people on the street: Cr(𝑃/𝑂) > Cr(𝑃). So 𝑃 and 𝑂 are not independent. However,
on the supposition that it is warm outside, the window being open may no longer
increase the probability of people on the street:

Cr(𝑃/𝑂 ∧ 𝑊) = Cr(𝑃/𝑊).

In this case, we say that 𝑃 and 𝑂 are independent conditional on 𝑊 .
Now consider the possible combinations of 𝑊 , 𝑃, 𝑂 and their negations. By the

probability calculus (compare exercise 2.10),

Cr(𝑊 ∧ 𝑃 ∧ 𝑂) = Cr(𝑊) ⋅ Cr(𝑂/𝑊) ⋅ Cr(𝑃/𝑂 ∧ 𝑊).

By the above assumption of conditional independence, this simplifies to

Cr(𝑊 ∧ 𝑃 ∧ 𝑂) = Cr(𝑊) ⋅ Cr(𝑂/𝑊) ⋅ Cr(𝑃/𝑊).

In general, with the assumption of conditional independence, we can fix the prob-
ability of all combinations of 𝑊 , 𝑃, 𝑂, and their negations by specifying the proba-
bility of 𝑊 , the probability of 𝑃 conditional on 𝑊 and on ¬𝑊 , and the probability
of 𝑂 conditional on 𝑊 and on ¬𝑊 . The number of required records shrinks from
23 − 1 = 7 to 5. This may not look all that impressive, but the method really pays
off if more than three propositions are involved.

The present technique for exploiting conditional independence to simplify proba-
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bilistic models is formalized in the theory of Bayesian networks (or Bayes nets, for
short). Bayes nets have proved useful in wide range of applications.

A special case of Bayes nets is widely used in artificial intelligence to model
decision-making agents.

A decision maker needs information not only about the present state of the world,
but also about the future. We can represent a history of states as a sequence 𝑆1, 𝑆2,
𝑆3,…, where 𝑆1 is a particular hypothesis about the present state, 𝑆2 about the next
state, and so on. If there are 100 possible states at any given time, there will be
10010 = 100, 000, 000, 000, 000, 000, 000 possible histories with length 10. Instead
of storing individual probabilities for each of these possibilities, it helps to assume
that a later state (probabilistically) depends only on its immediate predecessor, so
that Cr(𝑆3 / 𝑆1 ∧𝑆2) = Cr(𝑆3/𝑆2). This is known as the Markov assumption. It
reduces the number of records we’d need to store from 10010 to 990,100.

To further simplify the task of decision-making, computer scientists usually as-
sume that the decision maker’s intrinsic preferences are stationary and separable
across times, so that the value of a history of states is a discounted sum of a sub-
value for individual states. To specify the whole utility function, we then only need
to store the discounting factor 𝛿 and 100 values for the individual states. The task
of conditionalization can also be simplified, by assuming that sensory evidence only
contains direct information about the present state of the world.

These simplifications define what computer scientists call a ‘POMDP’: a Par-
tially Observable Markov Decision Process. There is a simple recursive algorithm
for computing expected utilities in POMDPs.

In practice, even these simplifications generally don’t suffice to make condition-
alization and expected utility maximization tractable. Further simplifications are
needed. It often helps to ignore states in the distant future and let the agent maximize
the expected total utility in the next few states only. Several techniques have been
developed that allow an efficient approximate computation of expected utilities and
posterior probabilities. These techniques are often supplemented by a meta-decision
process that lets the system choose a level of precision: when a lot is at stake, it is
worth spending more effort on getting the computations right.

While originating in theoretical computer science, these models and techniques
have in recent years had a great influence on our models of human cognition. There
is evidence that when our brain processes sensory information or decides on a mo-
tor action, it employs the same techniques computer scientists have found useful in
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approximating the Bayesian ideal. Several quirks of human perception and decision-
making have been argued to be a consequence of the shortcuts our brain uses to
approximate conditionalization and computing expected utilities.

11.4 “Non-expected utility theories”

Meanwhile, researchers at the intersection of psychology and economics have also
tried to develop more realistic models of decision-making. The most influential of
these alternatives is prospect theory, developed by Daniel Kahneman and Amon
Tversky in the 1970s-1990s.

Prospect theory has to be understood on the background of a highly restricted
version of decision theory that dominates economics. The highly restricted theory
assumes that utility is only defined for money and other material goods, and it only
deals with choices between lotteries, where the objective probabilities are known.
People are assumed to want more money and goods, but with declining marginal
utility. When you find social scientists discuss “Expected Utility Theory”, this highly
restricted theory is what they usually have in mind. Prospect theory now proposes
four main changes.

1. Reference dependence. According to prospect theory, agents classify possible
outcomes into gains and losses, by comparing the outcomes with a contextually de-
termined reference point. Outcomes better than the reference point are modelled as
having positive utility, outcomes worse than the reference point have negative utility.

2. Diminishing sensitivity. Prospect theory holds that both gains and losses have
diminishing marginal utility: the same objective difference in wealth makes a larger
difference in utility near the reference point than further away, on either side. For
example, the utility difference between a loss of £100 and a loss of £200 is greater
than that between a loss of £1000 and a loss of £1100. This predicts that people are
risk averse about gains but risk seeking about losses: they prefer a sure gain of £500
to a 50 percent chance of £1000, but they prefer a 50 percent chance of losing £1000
to losing £500 for sure.

3. Loss aversion: According to prospect theory, people are more sensitive to
losses than to gains of the same magnitude. The utility difference between a loss of
£100 and a loss of £200 is greater than that between a gain of £200 and a gain of
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£100. This explains why many people turn down a lottery in which they can either
win £110 or lose £100, with equal probability.

4. Probability weighting. According to prospect theory, the outcomes are weighted
not by their objective probability, but by transformed probabilities known as ‘deci-
sion weights’ that are meant to reflect how seriously people take the relevant states
in their choices. Decision weights generally overweight low-probability outcomes.
Thus probability 0 events have weight 0, probability 1 events have weight 1, but in
between the weight curve is steep at the edges and flatter in the middle: probability
0.01 events might have weight 0.05, probability 0.02 events weight 0.08, …, prob-
ability 0.99 events weight 0.95. Among other things, this is meant to explain why
people play the lottery, and why they tend to pay a high price for certainty: they pre-
fer a settlement of £90000 over a trial in which they have a 99% chance of getting
£100000 but a 1% chance of getting nothing.

Prospect theory is clearly an alternative to the simplistic economical model men-
tioned above. It is not so obvious whether it is an alternative to the more liberal
model that we have been studying. Diminishing sensitivity and loss aversion cer-
tainly don’t contradict our model. Reference dependence and probability weighting
are a little more subtle.

Our model assumes that if an agent knows the objective probability of a state,
then in decision-making she will weight that state in proportion to the known prob-
ability. Prospect theory says that people don’t actually do this. If we measure an
agent’s credences in terms of preferences or choices, then the decision weights of
prospect theory are the agent’s credences: they play precisely the role of credences
in guiding behaviour. From this perspective, prospect theory assumes that people
systematically violate the Probability Coordination Principle. Their credence in low-
probability events is greater than the known objective probability.

Some have argued that the observations that motivate probability weighting are
better explained by redescribing the outcomes and allowing people to care about
things like risk or fairness. But there is evidence that people really do fail to coordi-
nate their beliefs with known objective probabilities, especially if the probabilities
are communicated verbally. People’s decision weights tend to be closer to the objec-
tive probabilities if they have experienced the probabilities as relative frequencies in
repeated trials.

Reference dependence may also raise a genuine challenge. Many forms of ref-
erence dependence can easily be accommodated in our model. We can allow that
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people care about how much they own in comparison to what they have owned be-
fore, or in comparison to what their peers own. But sometimes the reference point is
affected by intuitively irrelevant features of the context, and this is harder to square
with our model.

Exercise 11.7 †
When people compete in sports, average performance sometimes seems to
function as a reference point, insofar as the effort people put in to avoid per-
forming below average is higher than the effort they put in to exceed the aver-
age. Can you explain this observation by “redescribing the outcomes” in the
model we have studied, without appealing to reference points?

The problematic type of reference dependence is related to so-called framing ef-
fects. In experiments, people’s choices can systematically depend on how one and
the same decision problem is described. When presented with a hypothetical situa-
tion in which 1000 people are in danger of death, and a certain act would save exactly
600 of them, subjects are more favourable towards the act if it is described in terms
of ‘600 survivors’ than if it is described in terms of ‘400 deaths’. In prospect theory,
the difference might be explained by a change in reference point: if the outcome is
described in terms of survivors, it is classified as a gain; if it is described in terms of
deaths, it is classified as a loss.

In principle, our liberal model could explain the relevance of the description. Per-
haps people assign basic value to choosing options that have been described in terms
of survivors rather than in terms of deaths. On reflection, however, most people
would certainly deny that the verbal description of an outcome is of great concern
to them. As in the case of decision weights, a more adequate model would arguably
have to take into account our incomplete grasp of a verbally described scenario.
When hearing about survivors, we focus on a certain attribute of the outcome, on
all the people who are saved. This attribute is desirable. When hearing about deaths,
a different, and much less desirable, attribute of the same outcome becomes salient.

Ideal agents always weigh up all attributes of every possible outcome. Real agents
arguably don’t do that, as it requires considerable cognitive effort. As a result, the
attributes we consider depend on contextual clues such as details of a verbal descrip-
tion. Some recent models of decision making take this kind of attribute selection
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into account.

11.5 Imprecise credence and utility

One respect in which our model is often found unrealistic is that its credences and
utilities are too precise. What is your credence that there will be a nuclear war before
2100? Is it 0.31832? Or 0.20993? Any such answer may seem wrong. You haven’t
made up your mind up to the 5th (let alone the 500th) decimal point.

Across several disciplines, researchers have developed models that don’t assume
unique and precise credences and utilities. On this approach, your credence in a
nuclear war might be given by a whole range of numbers – perhaps by the interval
[0.2, 0.5] that contains all numbers from 0.2 up to 0.5.

If we want to specify rational norms for such “imprecise” credences, it helps to
assume that they are determined by a set of precise credence functions. We would
model your imprecise belief state by a set ℂ𝕣 of credence functions that assign dif-
ferent numbers to the nuclear war hypothesis. For each number in [0.2, 0.5], there
would be a member of ℂ𝕣 that assigns this number to the nuclear war hypothesis. We
can then implicitly constrain your imprecise credences by saying that each member
of ℂ𝕣 should satisfy the Kolmogorov axioms.

We can adopt a similar account of utility, replacing our single utility function 𝑈
by a set of utility functions 𝕌.

On a preference-based approach, “imprecise” credences and utilities naturally
arise through violations of the Completeness axiom. Completeness says that for
any propositions 𝐴 and 𝐵, you either prefer 𝐴 to 𝐵, or you prefer 𝐵 to 𝐴, or you are
indifferent between 𝐴 and 𝐵. This is trivial if we define preference in terms of choice.
Indeed, in a forced choice between 𝐴 and 𝐵, you will inevitably choose either 𝐴 or 𝐵;
even indifference can be ruled out. But we’ve seen that if we want to measure cre-
dence and utility in terms of preference, then the relevant preference relation can’t
be directly defined in terms of choices. Once we take a step back from choice be-
haviour, it is conceivable that you neither prefer 𝐴 to 𝐵, nor 𝐵 to 𝐴, and yet you’re
not indifferent between the two. You simply haven’t made up your mind. The two
propositions seem roughly “on a par”, but you wouldn’t say they are exactly equal
in value.

For example, would you rather lose your capacity to hear or your capacity to walk?

196



11 Bounded Rationality

You may well have no clear preference, even after considerable reflection. Does
this mean that you’re exactly indifferent? Not necessarily. If you were, you should
definitely prefer losing the capacity to hear and getting £10 to losing the capacity to
walk. In reality, the added £10 may not make a difference.

Exercise 11.8 ††
Suppose we define ‘𝐴 ∼ 𝐵’ as ‘not 𝐴 ≻ 𝐵 and not 𝐵 ≻ 𝐴’. It is then logically
guaranteed that either 𝐴 ≻ 𝐵 or 𝐵 ≻ 𝐴 or 𝐴 ∼ 𝐵. But Transitivity might fail,
if you haven’t fully made up your mind. Explain why.

Even if we give up completeness, however, we might still require completability.
We might want to say that if an agent’s preferences violate, say, Ramsey’s axioms be-
cause they fail to rank certain options, then there is a refinement of their preferences,
filling in the missing rankings, that does satisfy the axioms. Ramsey’s representa-
tion theorem then implies that the agent’s preferences are represented by a set of
credence and utility functions.

Allowing for a set of credence and utility functions requires some changes to our
model. How should a set of credence functions be revised when new information
comes in? How should an agent choose based on a set of credence and utility func-
tions? Both questions raise serious problems.

The most obvious answer to the first question is that if an agent has a set of cre-
dence functions ℂ𝕣 and receives total evidence 𝐸, then her new set of credence
functions should result from ℂ𝕣 by conditionalising each member of ℂ𝕣 on 𝐸.

One problem with this answer is that this process is, in general, computationally
harder than conditionalising a single probability measure. In this respect, our model
has become less realistic, not more.

Here is another problem. Suppose I have an urn containing 2 balls, one of which
is white. The other is either white or red. You have no opinion about how the other
ball’s colour: your belief state ℂ𝕣 contains all possible probability assignments to
the hypothesis that the other ball is white. Now I shuffle the urn, draw a ball, and
show it to you. The ball is white. If you conditionalise each member of ℂ𝕣 on this
information, your belief state remains unchanged! Your new imprecise credence is
still ℂ𝕣. It remains at ℂ𝕣 no matter how often I draw a white ball, each time replacing
the previously drawn ball. This seems wrong.
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Exercise 11.9 †††
Explain why seeing a white ball doesn’t change ℂ𝕣.

Let’s briefly turn to the other question. How should you choose between some
options if you have a set of credence and utility functions? Suppose option 𝐴 max-
imizes expected utility relative to one of your credence and utility functions, while
option 𝐵 maximizes expected utility according to another. Should you choose 𝐴 or
𝐵? A popular “permissivist” answer is that either choice is acceptable.

Exercise 11.10 ††
Explain how the preference of 𝐴 over 𝐵 and 𝐷 over 𝐶 in Ellsberg’s paradox
might be justified by the permissivist approach, without redescribing the out-
comes.

But now imagine you are offered two bets 𝐴 and 𝐵, one after the other, on a propo-
sition 𝐻 to which you don’t assign a precise credence. Let’s say your credence in 𝐻
spans the range from 0.2 to 0.8. Bet 𝐴 would give you £1.40 if 𝐻 and £-1 if ¬𝐻. Bet
𝐵 would give you £-1 if 𝐻 and £1.40 if ¬𝐻. Assume for simplicity that your utility
is precise and proportional to the monetary payoff. The permissivst account then
classifies both bets as optional: you may take them or leave them. But accepting
both bets yields a guaranteed gain of £0.40. By refusing both bets, you would miss
out on a sure gain.

Sources and Further Reading
A standard textbook on artificial intelligence is Stuart Russell and Peter Norvig, Ar-
tificial Intelligence: A Modern Approach (4th ed., 2020). Part IV covers most of the
material I have summarized in section 11.3.

For evidence that our brains might use some of the tricks AI researchers have found
see, for example, Samuel Gershman and Nathaniel Daw, “Perception, Action and
Utility” (2012). For a more high-level view on the idea that cognitive systems try to
approximate the Bayesian ideal, see Thomas Griffiths et al, “Rational Use of Cog-
nitive Resources” (2015), or Samuel Gershman et al, “Computational rationality: A
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converging paradigm” (2015).

For a brief overview of prospect theory and related models, motivated by the idea of
bounded rationality, see Daniel Kahneman, “A Perspective on Judgment and Choice”
(2003). The empirical claims about probabilities, frequencies, and reference points
in section 11.4 are from Kahneman’s Thinking Fast and Slow (2011).

For a model of attribute selection in the evaluation of options, see Franz Dietrich and
Christian List, “Reason-Based Choice and Context-Dependence” (2016). There are
also models for how to selectively use different aspects of a credence function. See
Peter Fritz and Harvey Lederman, “Standard State Space Models of Unawareness”
(2015).

The Stanford Encyclopedia Entry “Imprecise Probabilities” by Saemus Bradley
(2019) provides a good overview of research on the topic of section 11.5. The urn
problem is an instance of “belief inertia”.

The Ellsberg Paradox was presented in Daniel Ellsberg, “Risk, Ambiguity, and the
Savage Axioms” (1961).
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