# Super simple Elliptic Curve Presentation. No imported libraries, wrappers, nothing. # For educational purposes only. Remember to use Python 2.7.6 or lower. You'll need to make changes for Python 3. # Below are the public specs for Bitcoin's curve - the secp256k1 Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1 # The proven prime N=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # Number of points in the field Acurve = 0; Bcurve = 7 # These two defines the elliptic curve. y^2 = x^3 + Acurve * x + Bcurve Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240 Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424 GPoint = (Gx,Gy) # This is our generator point. Trillions of dif ones possible #Individual Transaction/Personal Information privKey = 0xA0DC65FFCA799873CBEA0AC274015B9526505DAAAED385155425F7337704883E #replace with any private key def modinv(a,n=Pcurve): #Extended Euclidean Algorithm/'division' in elliptic curves lm, hm = 1,0 low, high = a%n,n while low > 1: ratio = high/low nm, new = hm-lm*ratio, high-low*ratio lm, low, hm, high = nm, new, lm, low return lm % n def ECadd(a,b): # Not true addition, invented for EC. Could have been called anything. LamAdd = ((b[1]-a[1]) * modinv(b[0]-a[0],Pcurve)) % Pcurve x = (LamAdd*LamAdd-a[0]-b[0]) % Pcurve y = (LamAdd*(a[0]-x)-a[1]) % Pcurve return (x,y) def ECdouble(a): # This is called point doubling, also invented for EC. Lam = ((3*a[0]*a[0]+Acurve) * modinv((2*a[1]),Pcurve)) % Pcurve x = (Lam*Lam-2*a[0]) % Pcurve y = (Lam*(a[0]-x)-a[1]) % Pcurve return (x,y) def EccMultiply(GenPoint,ScalarHex): #Double & add. Not true multiplication if ScalarHex == 0 or ScalarHex >= N: raise Exception("Invalid Scalar/Private Key") ScalarBin = str(bin(ScalarHex))[2:] Q=GenPoint for i in range (1, len(ScalarBin)): # This is invented EC multiplication. Q=ECdouble(Q); # print "DUB", Q[0]; print if ScalarBin[i] == "1": Q=ECadd(Q,GenPoint); # print "ADD", Q[0]; print return (Q) print; print "******* Public Key Generation *********"; print PublicKey = EccMultiply(GPoint,privKey) print "the private key:"; print privKey; print print "the uncompressed public key (not address):"; print PublicKey; print print "the uncompressed public key (HEX):"; print "04" + "%064x" % PublicKey[0] + "%064x" % PublicKey[1]; print; print "the official Public Key - compressed:"; if PublicKey[1] % 2 == 1: # If the Y value for the Public Key is odd. print "03"+str(hex(PublicKey[0])[2:-1]).zfill(64) else: # Or else, if the Y value is even. print "02"+str(hex(PublicKey[0])[2:-1]).zfill(64)