/* ssl.c * * Copyright (C) 2006-2023 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include #endif #include #if defined(OPENSSL_EXTRA) && !defined(_WIN32) /* turn on GNU extensions for XISASCII */ #undef _GNU_SOURCE #define _GNU_SOURCE #endif #if !defined(WOLFCRYPT_ONLY) || defined(OPENSSL_EXTRA) || \ defined(OPENSSL_EXTRA_X509_SMALL) #include #include #include #include #ifdef NO_INLINE #include #else #define WOLFSSL_MISC_INCLUDED #include #endif #ifdef HAVE_ERRNO_H #include #endif #if !defined(WOLFSSL_ALLOW_NO_SUITES) && !defined(WOLFCRYPT_ONLY) #if defined(NO_DH) && !defined(HAVE_ECC) && !defined(WOLFSSL_STATIC_RSA) \ && !defined(WOLFSSL_STATIC_DH) && !defined(WOLFSSL_STATIC_PSK) \ && !defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448) #error "No cipher suites defined because DH disabled, ECC disabled, " "and no static suites defined. Please see top of README" #endif #ifdef WOLFSSL_CERT_GEN /* need access to Cert struct for creating certificate */ #include #endif #endif #if !defined(WOLFCRYPT_ONLY) && (defined(OPENSSL_EXTRA) \ || defined(OPENSSL_EXTRA_X509_SMALL) \ || defined(HAVE_WEBSERVER) || defined(WOLFSSL_KEY_GEN)) #include /* openssl headers end, wolfssl internal headers next */ #endif #include #ifndef NO_RSA #include #endif #ifdef OPENSSL_EXTRA /* openssl headers begin */ #include #include #ifndef WOLFCRYPT_ONLY #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* openssl headers end, wolfssl internal headers next */ #include #include #include #include #include #include #include #include #include #include #if defined(HAVE_PQC) #if defined(HAVE_FALCON) #include #endif /* HAVE_FALCON */ #if defined(HAVE_DILITHIUM) #include #endif /* HAVE_DILITHIUM */ #if defined(HAVE_SPHINCS) #include #endif /* HAVE_SPHINCS */ #endif /* HAVE_PQC */ #if defined(OPENSSL_ALL) || defined(HAVE_STUNNEL) #ifdef HAVE_OCSP #include #endif #include #include #endif /* WITH_STUNNEL */ #if defined(WOLFSSL_SHA512) || defined(WOLFSSL_SHA384) #include #endif #if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \ && !defined(WC_NO_RNG) #include #endif #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) #include int wolfssl_bn_get_value(WOLFSSL_BIGNUM* bn, mp_int* mpi); int wolfssl_bn_set_value(WOLFSSL_BIGNUM** bn, mp_int* mpi); #endif #if defined(WOLFSSL_QT) #include #endif #ifdef NO_ASN #include #endif #endif /* !WOLFCRYPT_ONLY || OPENSSL_EXTRA */ /* * OPENSSL_COMPATIBLE_DEFAULTS: * Enable default behaviour that is compatible with OpenSSL. For example * SSL_CTX by default doesn't verify the loaded certs. Enabling this * should make porting to new projects easier. * WOLFSSL_CHECK_ALERT_ON_ERR: * Check for alerts during the handshake in the event of an error. * NO_SESSION_CACHE_REF: * wolfSSL_get_session on a client will return a reference to the internal * ClientCache by default for backwards compatibility. This define will * make wolfSSL_get_session return a reference to ssl->session. The returned * pointer will be freed with the related WOLFSSL object. * SESSION_CACHE_DYNAMIC_MEM: * Dynamically allocate sessions for the session cache from the heap, as * opposed to the default which allocates from the stack. Allocates * memory only when a session is added to the cache, frees memory after the * session is no longer being used. Recommended for memory-constrained * systems. * WOLFSSL_SYS_CA_CERTS * Enables ability to load system CA certs from the OS via * wolfSSL_CTX_load_system_CA_certs. */ #define WOLFSSL_SSL_MISC_INCLUDED #include "src/ssl_misc.c" #define WOLFSSL_EVP_INCLUDED #include "wolfcrypt/src/evp.c" /* Crypto code uses EVP APIs. */ #define WOLFSSL_SSL_CRYPTO_INCLUDED #include "src/ssl_crypto.c" #ifndef WOLFCRYPT_ONLY #define WOLFSSL_SSL_CERTMAN_INCLUDED #include "src/ssl_certman.c" #define WOLFSSL_SSL_SESS_INCLUDED #include "src/ssl_sess.c" #endif #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ !defined(WOLFCRYPT_ONLY) /* Convert shortname to NID. * * For OpenSSL compatibility. * * This function shouldn't exist! * Uses defines in wolfssl/openssl/evp.h. * Uses EccEnumToNID which uses defines in wolfssl/openssl/ec.h. * * @param [in] sn Short name of OID. * @return NID corresponding to shortname on success. * @return NID_undef when not recognized. */ int wc_OBJ_sn2nid(const char *sn) { const struct { const char *sn; int nid; } sn2nid[] = { #ifndef NO_CERTS {WOLFSSL_COMMON_NAME, NID_commonName}, {WOLFSSL_COUNTRY_NAME, NID_countryName}, {WOLFSSL_LOCALITY_NAME, NID_localityName}, {WOLFSSL_STATE_NAME, NID_stateOrProvinceName}, {WOLFSSL_ORG_NAME, NID_organizationName}, {WOLFSSL_ORGUNIT_NAME, NID_organizationalUnitName}, #ifdef WOLFSSL_CERT_NAME_ALL {WOLFSSL_NAME, NID_name}, {WOLFSSL_INITIALS, NID_initials}, {WOLFSSL_GIVEN_NAME, NID_givenName}, {WOLFSSL_DNQUALIFIER, NID_dnQualifier}, #endif {WOLFSSL_EMAIL_ADDR, NID_emailAddress}, #endif {"SHA1", NID_sha1}, {NULL, -1}}; int i; #ifdef HAVE_ECC char curveName[ECC_MAXNAME + 1]; int eccEnum; #endif WOLFSSL_ENTER("wc_OBJ_sn2nid"); for(i=0; sn2nid[i].sn != NULL; i++) { if (XSTRCMP(sn, sn2nid[i].sn) == 0) { return sn2nid[i].nid; } } #ifdef HAVE_ECC if (XSTRLEN(sn) > ECC_MAXNAME) return NID_undef; /* Nginx uses this OpenSSL string. */ if (XSTRCMP(sn, "prime256v1") == 0) sn = "SECP256R1"; /* OpenSSL allows lowercase curve names */ for (i = 0; i < (int)(sizeof(curveName) - 1) && *sn; i++) { curveName[i] = (char)XTOUPPER((unsigned char) *sn++); } curveName[i] = '\0'; /* find based on name and return NID */ for (i = 0; #ifndef WOLFSSL_ECC_CURVE_STATIC ecc_sets[i].size != 0 && ecc_sets[i].name != NULL; #else ecc_sets[i].size != 0; #endif i++) { if (XSTRCMP(curveName, ecc_sets[i].name) == 0) { eccEnum = ecc_sets[i].id; /* Convert enum value in ecc_curve_id to OpenSSL NID */ return EccEnumToNID(eccEnum); } } #endif /* HAVE_ECC */ return NID_undef; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifndef WOLFCRYPT_ONLY #if !defined(NO_RSA) || !defined(NO_DH) || defined(HAVE_ECC) || \ (defined(OPENSSL_EXTRA) && defined(WOLFSSL_KEY_GEN) && !defined(NO_DSA)) #define HAVE_GLOBAL_RNG /* consolidate flags for using globalRNG */ static WC_RNG globalRNG; static volatile int initGlobalRNG = 0; static WC_MAYBE_UNUSED wolfSSL_Mutex globalRNGMutex WOLFSSL_MUTEX_INITIALIZER_CLAUSE(globalRNGMutex); #ifndef WOLFSSL_MUTEX_INITIALIZER static int globalRNGMutex_valid = 0; #endif #if defined(OPENSSL_EXTRA) && defined(HAVE_HASHDRBG) static WOLFSSL_DRBG_CTX* gDrbgDefCtx = NULL; #endif WC_RNG* wolfssl_get_global_rng(void) { WC_RNG* ret = NULL; if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else ret = &globalRNG; return ret; } /* Make a global RNG and return. * * @return Global RNG on success. * @return NULL on error. */ WC_RNG* wolfssl_make_global_rng(void) { WC_RNG* ret; #ifdef HAVE_GLOBAL_RNG /* Get the global random number generator instead. */ ret = wolfssl_get_global_rng(); #ifdef OPENSSL_EXTRA if (ret == NULL) { /* Create a global random if possible. */ (void)wolfSSL_RAND_Init(); ret = wolfssl_get_global_rng(); } #endif #else WOLFSSL_ERROR_MSG("Bad RNG Init"); ret = NULL; #endif return ret; } /* Too many defines to check explicitly - prototype it and always include * for RSA, DH, ECC and DSA for BN. */ WC_RNG* wolfssl_make_rng(WC_RNG* rng, int* local); /* Make a random number generator or get global if possible. * * Global may not be available and NULL will be returned. * * @param [in, out] rng Local random number generator. * @param [out] local Local random number generator returned. * @return NULL on failure. * @return A random number generator object. */ WC_RNG* wolfssl_make_rng(WC_RNG* rng, int* local) { WC_RNG* ret = NULL; /* Assume not local until one created. */ *local = 0; #ifdef WOLFSSL_SMALL_STACK /* Allocate RNG object . */ rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); #endif /* Check we have a local RNG object and initialize. */ if ((rng != NULL) && (wc_InitRng(rng) == 0)) { ret = rng; *local = 1; } if (ret == NULL) { #ifdef HAVE_GLOBAL_RNG WOLFSSL_MSG("Bad RNG Init, trying global"); #endif ret = wolfssl_make_global_rng(); } if (ret != rng) { #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } return ret; } #endif #ifdef OPENSSL_EXTRA /* WOLFSSL_NO_OPENSSL_RAND_CB: Allows way to reduce code size for * OPENSSL_EXTRA where RAND callbacks are not used */ #ifndef WOLFSSL_NO_OPENSSL_RAND_CB static const WOLFSSL_RAND_METHOD* gRandMethods = NULL; static wolfSSL_Mutex gRandMethodMutex WOLFSSL_MUTEX_INITIALIZER_CLAUSE(gRandMethodMutex); #ifndef WOLFSSL_MUTEX_INITIALIZER static int gRandMethodsInit = 0; #endif #endif /* !WOLFSSL_NO_OPENSSL_RAND_CB */ #endif /* OPENSSL_EXTRA */ #define WOLFSSL_SSL_BN_INCLUDED #include "src/ssl_bn.c" #ifndef OPENSSL_EXTRA_NO_ASN1 #define WOLFSSL_SSL_ASN1_INCLUDED #include "src/ssl_asn1.c" #endif /* OPENSSL_EXTRA_NO_ASN1 */ #define WOLFSSL_PK_INCLUDED #include "src/pk.c" #include #if defined(OPENSSL_EXTRA) && defined(HAVE_ECC) const WOLF_EC_NIST_NAME kNistCurves[] = { {XSTR_SIZEOF("P-192"), "P-192", NID_X9_62_prime192v1}, {XSTR_SIZEOF("P-256"), "P-256", NID_X9_62_prime256v1}, {XSTR_SIZEOF("P-112"), "P-112", NID_secp112r1}, {XSTR_SIZEOF("P-112-2"), "P-112-2", NID_secp112r2}, {XSTR_SIZEOF("P-128"), "P-128", NID_secp128r1}, {XSTR_SIZEOF("P-128-2"), "P-128-2", NID_secp128r2}, {XSTR_SIZEOF("P-160"), "P-160", NID_secp160r1}, {XSTR_SIZEOF("P-160-2"), "P-160-2", NID_secp160r2}, {XSTR_SIZEOF("P-224"), "P-224", NID_secp224r1}, {XSTR_SIZEOF("P-384"), "P-384", NID_secp384r1}, {XSTR_SIZEOF("P-521"), "P-521", NID_secp521r1}, {XSTR_SIZEOF("K-160"), "K-160", NID_secp160k1}, {XSTR_SIZEOF("K-192"), "K-192", NID_secp192k1}, {XSTR_SIZEOF("K-224"), "K-224", NID_secp224k1}, {XSTR_SIZEOF("K-256"), "K-256", NID_secp256k1}, {XSTR_SIZEOF("B-160"), "B-160", NID_brainpoolP160r1}, {XSTR_SIZEOF("B-192"), "B-192", NID_brainpoolP192r1}, {XSTR_SIZEOF("B-224"), "B-224", NID_brainpoolP224r1}, {XSTR_SIZEOF("B-256"), "B-256", NID_brainpoolP256r1}, {XSTR_SIZEOF("B-320"), "B-320", NID_brainpoolP320r1}, {XSTR_SIZEOF("B-384"), "B-384", NID_brainpoolP384r1}, {XSTR_SIZEOF("B-512"), "B-512", NID_brainpoolP512r1}, #ifdef HAVE_PQC {XSTR_SIZEOF("KYBER_LEVEL1"), "KYBER_LEVEL1", WOLFSSL_KYBER_LEVEL1}, {XSTR_SIZEOF("KYBER_LEVEL3"), "KYBER_LEVEL3", WOLFSSL_KYBER_LEVEL3}, {XSTR_SIZEOF("KYBER_LEVEL5"), "KYBER_LEVEL5", WOLFSSL_KYBER_LEVEL5}, #ifdef HAVE_LIBOQS {XSTR_SIZEOF("P256_KYBER_LEVEL1"), "P256_KYBER_LEVEL1", WOLFSSL_P256_KYBER_LEVEL1}, {XSTR_SIZEOF("P384_KYBER_LEVEL3"), "P384_KYBER_LEVEL3", WOLFSSL_P384_KYBER_LEVEL3}, {XSTR_SIZEOF("P521_KYBER_LEVEL5"), "P521_KYBER_LEVEL5", WOLFSSL_P521_KYBER_LEVEL5}, #endif #endif #ifdef WOLFSSL_SM2 {XSTR_SIZEOF("SM2"), "SM2", NID_sm2}, #endif {0, NULL, 0}, }; #endif #if defined(WOLFSSL_TLS13) && defined(HAVE_ECH) /* create the hpke key and ech config to send to clients */ int wolfSSL_CTX_GenerateEchConfig(WOLFSSL_CTX* ctx, const char* publicName, word16 kemId, word16 kdfId, word16 aeadId) { int ret = 0; word16 encLen = DHKEM_X25519_ENC_LEN; #ifdef WOLFSSL_SMALL_STACK Hpke* hpke = NULL; WC_RNG* rng; #else Hpke hpke[1]; WC_RNG rng[1]; #endif if (ctx == NULL || publicName == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_SMALL_STACK rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG); if (rng == NULL) return MEMORY_E; #endif ret = wc_InitRng(rng); if (ret != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG); #endif return ret; } ctx->echConfigs = (WOLFSSL_EchConfig*)XMALLOC(sizeof(WOLFSSL_EchConfig), ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); if (ctx->echConfigs == NULL) ret = MEMORY_E; else XMEMSET(ctx->echConfigs, 0, sizeof(WOLFSSL_EchConfig)); /* set random config id */ if (ret == 0) ret = wc_RNG_GenerateByte(rng, &ctx->echConfigs->configId); /* if 0 is selected for algorithms use default, may change with draft */ if (kemId == 0) kemId = DHKEM_X25519_HKDF_SHA256; if (kdfId == 0) kdfId = HKDF_SHA256; if (aeadId == 0) aeadId = HPKE_AES_128_GCM; if (ret == 0) { /* set the kem id */ ctx->echConfigs->kemId = kemId; /* set the cipher suite, only 1 for now */ ctx->echConfigs->numCipherSuites = 1; ctx->echConfigs->cipherSuites = (EchCipherSuite*)XMALLOC( sizeof(EchCipherSuite), ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); if (ctx->echConfigs->cipherSuites == NULL) { ret = MEMORY_E; } else { ctx->echConfigs->cipherSuites[0].kdfId = kdfId; ctx->echConfigs->cipherSuites[0].aeadId = aeadId; } } #ifdef WOLFSSL_SMALL_STACK if (ret == 0) { hpke = (Hpke*)XMALLOC(sizeof(Hpke), ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); if (hpke == NULL) ret = MEMORY_E; } #endif if (ret == 0) ret = wc_HpkeInit(hpke, kemId, kdfId, aeadId, ctx->heap); /* generate the receiver private key */ if (ret == 0) ret = wc_HpkeGenerateKeyPair(hpke, &ctx->echConfigs->receiverPrivkey, rng); /* done with RNG */ wc_FreeRng(rng); /* serialize the receiver key */ if (ret == 0) ret = wc_HpkeSerializePublicKey(hpke, ctx->echConfigs->receiverPrivkey, ctx->echConfigs->receiverPubkey, &encLen); if (ret == 0) { ctx->echConfigs->publicName = (char*)XMALLOC(XSTRLEN(publicName) + 1, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); if (ctx->echConfigs->publicName == NULL) { ret = MEMORY_E; } else { XMEMCPY(ctx->echConfigs->publicName, publicName, XSTRLEN(publicName) + 1); } } if (ret != 0) { if (ctx->echConfigs) { XFREE(ctx->echConfigs->cipherSuites, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(ctx->echConfigs->publicName, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(ctx->echConfigs, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); /* set to null to avoid double free in cleanup */ ctx->echConfigs = NULL; } } if (ret == 0) ret = WOLFSSL_SUCCESS; #ifdef WOLFSSL_SMALL_STACK XFREE(hpke, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG); #endif return ret; } /* get the ech configs that the server context is using */ int wolfSSL_CTX_GetEchConfigs(WOLFSSL_CTX* ctx, byte* output, word32* outputLen) { if (ctx == NULL || outputLen == NULL) return BAD_FUNC_ARG; /* if we don't have ech configs */ if (ctx->echConfigs == NULL) { return WOLFSSL_FATAL_ERROR; } return GetEchConfigsEx(ctx->echConfigs, output, outputLen); } /* set the ech config from base64 for our client ssl object, base64 is the * format ech configs are sent using dns records */ int wolfSSL_SetEchConfigsBase64(WOLFSSL* ssl, char* echConfigs64, word32 echConfigs64Len) { int ret = 0; word32 decodedLen = echConfigs64Len * 3 / 4 + 1; byte* decodedConfigs; if (ssl == NULL || echConfigs64 == NULL || echConfigs64Len == 0) return BAD_FUNC_ARG; /* already have ech configs */ if (ssl->options.useEch == 1) { return WOLFSSL_FATAL_ERROR; } decodedConfigs = (byte*)XMALLOC(decodedLen, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (decodedConfigs == NULL) return MEMORY_E; decodedConfigs[decodedLen - 1] = 0; /* decode the echConfigs */ ret = Base64_Decode((byte*)echConfigs64, echConfigs64Len, decodedConfigs, &decodedLen); if (ret != 0) { XFREE(decodedConfigs, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } ret = wolfSSL_SetEchConfigs(ssl, decodedConfigs, decodedLen); XFREE(decodedConfigs, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } /* set the ech config from a raw buffer, this is the format ech configs are * sent using retry_configs from the ech server */ int wolfSSL_SetEchConfigs(WOLFSSL* ssl, const byte* echConfigs, word32 echConfigsLen) { int ret = 0; int i; int j; word16 totalLength; word16 version; word16 length; word16 hpkePubkeyLen; word16 cipherSuitesLen; word16 publicNameLen; WOLFSSL_EchConfig* configList = NULL; WOLFSSL_EchConfig* workingConfig = NULL; WOLFSSL_EchConfig* lastConfig = NULL; byte* echConfig = NULL; if (ssl == NULL || echConfigs == NULL || echConfigsLen == 0) return BAD_FUNC_ARG; /* already have ech configs */ if (ssl->options.useEch == 1) { return WOLFSSL_FATAL_ERROR; } /* check that the total length is well formed */ ato16(echConfigs, &totalLength); if (totalLength != echConfigsLen - 2) { return WOLFSSL_FATAL_ERROR; } /* skip the total length uint16_t */ i = 2; do { echConfig = (byte*)echConfigs + i; ato16(echConfig, &version); ato16(echConfig + 2, &length); /* if the version does not match */ if (version != TLSX_ECH) { /* we hit the end of the configs */ if ( (word32)i + 2 >= echConfigsLen ) { break; } /* skip this config, +4 for version and length */ i += length + 4; continue; } /* check if the length will overrun the buffer */ if ((word32)i + length + 4 > echConfigsLen) { break; } if (workingConfig == NULL) { workingConfig = (WOLFSSL_EchConfig*)XMALLOC(sizeof(WOLFSSL_EchConfig), ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); configList = workingConfig; if (workingConfig != NULL) { workingConfig->next = NULL; } } else { lastConfig = workingConfig; workingConfig->next = (WOLFSSL_EchConfig*)XMALLOC(sizeof(WOLFSSL_EchConfig), ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); workingConfig = workingConfig->next; } if (workingConfig == NULL) { ret = MEMORY_E; break; } XMEMSET(workingConfig, 0, sizeof(WOLFSSL_EchConfig)); /* rawLen */ workingConfig->rawLen = length + 4; /* raw body */ workingConfig->raw = (byte*)XMALLOC(workingConfig->rawLen, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (workingConfig->raw == NULL) { ret = MEMORY_E; break; } XMEMCPY(workingConfig->raw, echConfig, workingConfig->rawLen); /* skip over version and length */ echConfig += 4; /* configId, 1 byte */ workingConfig->configId = *(echConfig); echConfig++; /* kemId, 2 bytes */ ato16(echConfig, &workingConfig->kemId); echConfig += 2; /* hpke public_key length, 2 bytes */ ato16(echConfig, &hpkePubkeyLen); echConfig += 2; /* hpke public_key */ XMEMCPY(workingConfig->receiverPubkey, echConfig, hpkePubkeyLen); echConfig += hpkePubkeyLen; /* cipherSuitesLen */ ato16(echConfig, &cipherSuitesLen); workingConfig->cipherSuites = (EchCipherSuite*)XMALLOC(cipherSuitesLen, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (workingConfig->cipherSuites == NULL) { ret = MEMORY_E; break; } echConfig += 2; workingConfig->numCipherSuites = cipherSuitesLen / 4; /* cipherSuites */ for (j = 0; j < workingConfig->numCipherSuites; j++) { ato16(echConfig + j * 4, &workingConfig->cipherSuites[j].kdfId); ato16(echConfig + j * 4 + 2, &workingConfig->cipherSuites[j].aeadId); } echConfig += cipherSuitesLen; /* publicNameLen */ ato16(echConfig, &publicNameLen); workingConfig->publicName = (char*)XMALLOC(publicNameLen + 1, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (workingConfig->publicName == NULL) { ret = MEMORY_E; break; } echConfig += 2; /* publicName */ XMEMCPY(workingConfig->publicName, echConfig, publicNameLen); /* null terminated */ workingConfig->publicName[publicNameLen] = 0; /* add length to go to next config, +4 for version and length */ i += length + 4; /* check that we support this config */ for (j = 0; j < HPKE_SUPPORTED_KEM_LEN; j++) { if (hpkeSupportedKem[j] == workingConfig->kemId) break; } /* if we don't support the kem or at least one cipher suite */ if (j >= HPKE_SUPPORTED_KEM_LEN || EchConfigGetSupportedCipherSuite(workingConfig) < 0) { XFREE(workingConfig->cipherSuites, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(workingConfig->publicName, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(workingConfig->raw, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); workingConfig = lastConfig; } } while ((word32)i < echConfigsLen); /* if we found valid configs */ if (ret == 0 && configList != NULL) { ssl->options.useEch = 1; ssl->echConfigs = configList; return WOLFSSL_SUCCESS; } workingConfig = configList; while (workingConfig != NULL) { lastConfig = workingConfig; workingConfig = workingConfig->next; XFREE(lastConfig->cipherSuites, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(lastConfig->publicName, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(lastConfig->raw, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(lastConfig, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); } if (ret == 0) return WOLFSSL_FATAL_ERROR; return ret; } /* get the raw ech config from our struct */ int GetEchConfig(WOLFSSL_EchConfig* config, byte* output, word32* outputLen) { int i; word16 totalLen = 0; if (config == NULL || (output == NULL && outputLen == NULL)) return BAD_FUNC_ARG; /* 2 for version */ totalLen += 2; /* 2 for length */ totalLen += 2; /* 1 for configId */ totalLen += 1; /* 2 for kemId */ totalLen += 2; /* 2 for hpke_len */ totalLen += 2; /* hpke_pub_key */ switch (config->kemId) { case DHKEM_P256_HKDF_SHA256: totalLen += DHKEM_P256_ENC_LEN; break; case DHKEM_P384_HKDF_SHA384: totalLen += DHKEM_P384_ENC_LEN; break; case DHKEM_P521_HKDF_SHA512: totalLen += DHKEM_P521_ENC_LEN; break; case DHKEM_X25519_HKDF_SHA256: totalLen += DHKEM_X25519_ENC_LEN; break; case DHKEM_X448_HKDF_SHA512: totalLen += DHKEM_X448_ENC_LEN; break; } /* cipherSuitesLen */ totalLen += 2; /* cipherSuites */ totalLen += config->numCipherSuites * 4; /* public name len */ totalLen += 2; /* public name */ totalLen += XSTRLEN(config->publicName); /* trailing zeros */ totalLen += 2; if (output == NULL) { *outputLen = totalLen; return LENGTH_ONLY_E; } if (totalLen > *outputLen) { *outputLen = totalLen; return INPUT_SIZE_E; } /* version */ c16toa(TLSX_ECH, output); output += 2; /* length - 4 for version and length itself */ c16toa(totalLen - 4, output); output += 2; /* configId */ *output = config->configId; output++; /* kemId */ c16toa(config->kemId, output); output += 2; /* length and key itself */ switch (config->kemId) { case DHKEM_P256_HKDF_SHA256: c16toa(DHKEM_P256_ENC_LEN, output); output += 2; XMEMCPY(output, config->receiverPubkey, DHKEM_P256_ENC_LEN); output += DHKEM_P256_ENC_LEN; break; case DHKEM_P384_HKDF_SHA384: c16toa(DHKEM_P384_ENC_LEN, output); output += 2; XMEMCPY(output, config->receiverPubkey, DHKEM_P384_ENC_LEN); output += DHKEM_P384_ENC_LEN; break; case DHKEM_P521_HKDF_SHA512: c16toa(DHKEM_P521_ENC_LEN, output); output += 2; XMEMCPY(output, config->receiverPubkey, DHKEM_P521_ENC_LEN); output += DHKEM_P521_ENC_LEN; break; case DHKEM_X25519_HKDF_SHA256: c16toa(DHKEM_X25519_ENC_LEN, output); output += 2; XMEMCPY(output, config->receiverPubkey, DHKEM_X25519_ENC_LEN); output += DHKEM_X25519_ENC_LEN; break; case DHKEM_X448_HKDF_SHA512: c16toa(DHKEM_X448_ENC_LEN, output); output += 2; XMEMCPY(output, config->receiverPubkey, DHKEM_X448_ENC_LEN); output += DHKEM_X448_ENC_LEN; break; } /* cipherSuites len */ c16toa(config->numCipherSuites * 4, output); output += 2; /* cipherSuites */ for (i = 0; i < config->numCipherSuites; i++) { c16toa(config->cipherSuites[i].kdfId, output); output += 2; c16toa(config->cipherSuites[i].aeadId, output); output += 2; } /* publicName len */ c16toa(XSTRLEN(config->publicName), output); output += 2; /* publicName */ XMEMCPY(output, config->publicName, XSTRLEN(config->publicName)); output += XSTRLEN(config->publicName); /* terminating zeros */ c16toa(0, output); /* output += 2; */ *outputLen = totalLen; return 0; } /* wrapper function to get ech configs from application code */ int wolfSSL_GetEchConfigs(WOLFSSL* ssl, byte* output, word32* outputLen) { if (ssl == NULL || outputLen == NULL) return BAD_FUNC_ARG; /* if we don't have ech configs */ if (ssl->options.useEch != 1) { return WOLFSSL_FATAL_ERROR; } return GetEchConfigsEx(ssl->echConfigs, output, outputLen); } /* get the raw ech configs from our linked list of ech config structs */ int GetEchConfigsEx(WOLFSSL_EchConfig* configs, byte* output, word32* outputLen) { int ret = 0; WOLFSSL_EchConfig* workingConfig = NULL; byte* outputStart = output; word32 totalLen = 2; word32 workingOutputLen; if (configs == NULL || outputLen == NULL) return BAD_FUNC_ARG; workingOutputLen = *outputLen - totalLen; /* skip over total length which we fill in later */ if (output != NULL) output += 2; workingConfig = configs; while (workingConfig != NULL) { /* get this config */ ret = GetEchConfig(workingConfig, output, &workingOutputLen); if (output != NULL) output += workingOutputLen; /* add this config's length to the total length */ totalLen += workingOutputLen; if (totalLen > *outputLen) workingOutputLen = 0; else workingOutputLen = *outputLen - totalLen; /* only error we break on, other 2 we need to keep finding length */ if (ret == BAD_FUNC_ARG) return BAD_FUNC_ARG; workingConfig = workingConfig->next; } if (output == NULL) { *outputLen = totalLen; return LENGTH_ONLY_E; } if (totalLen > *outputLen) { *outputLen = totalLen; return INPUT_SIZE_E; } /* total size -2 for size itself */ c16toa(totalLen - 2, outputStart); *outputLen = totalLen; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TLS13 && HAVE_ECH */ #if defined(WOLFSSL_RENESAS_TSIP_TLS) || defined(WOLFSSL_RENESAS_FSPSM_TLS) #include #endif /* prevent multiple mutex initializations */ static volatile WOLFSSL_GLOBAL int initRefCount = 0; /* init ref count mutex */ static WOLFSSL_GLOBAL wolfSSL_Mutex inits_count_mutex WOLFSSL_MUTEX_INITIALIZER_CLAUSE(inits_count_mutex); #ifndef WOLFSSL_MUTEX_INITIALIZER static WOLFSSL_GLOBAL int inits_count_mutex_valid = 0; #endif /* Create a new WOLFSSL_CTX struct and return the pointer to created struct. WOLFSSL_METHOD pointer passed in is given to ctx to manage. This function frees the passed in WOLFSSL_METHOD struct on failure and on success is freed when ctx is freed. */ WOLFSSL_CTX* wolfSSL_CTX_new_ex(WOLFSSL_METHOD* method, void* heap) { WOLFSSL_CTX* ctx = NULL; WOLFSSL_ENTER("wolfSSL_CTX_new_ex"); if (initRefCount == 0) { /* user no longer forced to call Init themselves */ int ret = wolfSSL_Init(); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_Init failed"); WOLFSSL_LEAVE("wolfSSL_CTX_new_ex", 0); if (method != NULL) { XFREE(method, heap, DYNAMIC_TYPE_METHOD); } return NULL; } } if (method == NULL) return ctx; ctx = (WOLFSSL_CTX*)XMALLOC(sizeof(WOLFSSL_CTX), heap, DYNAMIC_TYPE_CTX); if (ctx) { int ret; ret = InitSSL_Ctx(ctx, method, heap); #ifdef WOLFSSL_STATIC_MEMORY if (heap != NULL) { ctx->onHeapHint = 1; /* free the memory back to heap when done */ } #endif if (ret < 0) { WOLFSSL_MSG("Init CTX failed"); wolfSSL_CTX_free(ctx); ctx = NULL; } #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) else { ctx->srp = (Srp*)XMALLOC(sizeof(Srp), heap, DYNAMIC_TYPE_SRP); if (ctx->srp == NULL){ WOLFSSL_MSG("Init CTX failed"); wolfSSL_CTX_free(ctx); return NULL; } XMEMSET(ctx->srp, 0, sizeof(Srp)); } #endif } else { WOLFSSL_MSG("Alloc CTX failed, method freed"); XFREE(method, heap, DYNAMIC_TYPE_METHOD); } #ifdef OPENSSL_COMPATIBLE_DEFAULTS if (ctx) { wolfSSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, NULL); wolfSSL_CTX_set_mode(ctx, SSL_MODE_AUTO_RETRY); if (wolfSSL_CTX_set_min_proto_version(ctx, (method->version.major == DTLS_MAJOR) ? DTLS1_VERSION : SSL3_VERSION) != WOLFSSL_SUCCESS || #ifdef HAVE_ANON wolfSSL_CTX_allow_anon_cipher(ctx) != WOLFSSL_SUCCESS || #endif wolfSSL_CTX_set_group_messages(ctx) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Setting OpenSSL CTX defaults failed"); wolfSSL_CTX_free(ctx); ctx = NULL; } } #endif WOLFSSL_LEAVE("wolfSSL_CTX_new_ex", 0); return ctx; } WOLFSSL_ABI WOLFSSL_CTX* wolfSSL_CTX_new(WOLFSSL_METHOD* method) { #ifdef WOLFSSL_HEAP_TEST /* if testing the heap hint then set top level CTX to have test value */ return wolfSSL_CTX_new_ex(method, (void*)WOLFSSL_HEAP_TEST); #else return wolfSSL_CTX_new_ex(method, NULL); #endif } /* increases CTX reference count to track proper time to "free" */ int wolfSSL_CTX_up_ref(WOLFSSL_CTX* ctx) { int ret; wolfSSL_RefInc(&ctx->ref, &ret); #ifdef WOLFSSL_REFCNT_ERROR_RETURN return ((ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE); #else (void)ret; return WOLFSSL_SUCCESS; #endif } WOLFSSL_ABI void wolfSSL_CTX_free(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_free"); if (ctx) { #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) if (ctx->srp != NULL) { if (ctx->srp_password != NULL){ XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } wc_SrpTerm(ctx->srp); XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp = NULL; } #endif FreeSSL_Ctx(ctx); } WOLFSSL_LEAVE("wolfSSL_CTX_free", 0); } #ifdef HAVE_ENCRYPT_THEN_MAC /** * Sets whether Encrypt-Then-MAC extension can be negotiated against context. * The default value: enabled. * * ctx SSL/TLS context. * set Whether to allow or not: 1 is allow and 0 is disallow. * returns WOLFSSL_SUCCESS */ int wolfSSL_CTX_AllowEncryptThenMac(WOLFSSL_CTX *ctx, int set) { ctx->disallowEncThenMac = !set; return WOLFSSL_SUCCESS; } /** * Sets whether Encrypt-Then-MAC extension can be negotiated against context. * The default value comes from context. * * ctx SSL/TLS context. * set Whether to allow or not: 1 is allow and 0 is disallow. * returns WOLFSSL_SUCCESS */ int wolfSSL_AllowEncryptThenMac(WOLFSSL *ssl, int set) { ssl->options.disallowEncThenMac = !set; return WOLFSSL_SUCCESS; } #endif #ifdef SINGLE_THREADED /* no locking in single threaded mode, allow a CTX level rng to be shared with * WOLFSSL objects, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_new_rng(WOLFSSL_CTX* ctx) { WC_RNG* rng; int ret; if (ctx == NULL) { return BAD_FUNC_ARG; } rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG); if (rng == NULL) { return MEMORY_E; } #ifndef HAVE_FIPS ret = wc_InitRng_ex(rng, ctx->heap, ctx->devId); #else ret = wc_InitRng(rng); #endif if (ret != 0) { XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG); return ret; } ctx->rng = rng; return WOLFSSL_SUCCESS; } #endif WOLFSSL_ABI WOLFSSL* wolfSSL_new(WOLFSSL_CTX* ctx) { WOLFSSL* ssl = NULL; int ret = 0; WOLFSSL_ENTER("wolfSSL_new"); if (ctx == NULL) { WOLFSSL_MSG("wolfSSL_new ctx is null"); return NULL; } ssl = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ctx->heap, DYNAMIC_TYPE_SSL); if (ssl == NULL) { WOLFSSL_MSG_EX("ssl xmalloc failed to allocate %d bytes", (int)sizeof(WOLFSSL)); } else { ret = InitSSL(ssl, ctx, 0); if (ret < 0) { WOLFSSL_MSG_EX("wolfSSL_new failed during InitSSL. err = %d", ret); FreeSSL(ssl, ctx->heap); ssl = NULL; } else if (ret == 0) { WOLFSSL_MSG("wolfSSL_new InitSSL success"); } else { /* Only success (0) or negative values should ever be seen. */ WOLFSSL_MSG_EX("WARNING: wolfSSL_new unexpected InitSSL return" " value = %d", ret); } /* InitSSL check */ } /* ssl XMALLOC success */ WOLFSSL_LEAVE("wolfSSL_new InitSSL =", ret); (void)ret; return ssl; } WOLFSSL_ABI void wolfSSL_free(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_free"); if (ssl) { WOLFSSL_MSG_EX("Free SSL: %p", (wc_ptr_t)ssl); FreeSSL(ssl, ssl->ctx->heap); } else { WOLFSSL_MSG("Free SSL: wolfSSL_free already null"); } WOLFSSL_LEAVE("wolfSSL_free", 0); } int wolfSSL_is_server(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->options.side == WOLFSSL_SERVER_END; } #ifdef HAVE_WRITE_DUP /* * Release resources around WriteDup object * * ssl WOLFSSL object * * no return, destruction so make best attempt */ void FreeWriteDup(WOLFSSL* ssl) { int doFree = 0; WOLFSSL_ENTER("FreeWriteDup"); if (ssl->dupWrite) { if (wc_LockMutex(&ssl->dupWrite->dupMutex) == 0) { ssl->dupWrite->dupCount--; if (ssl->dupWrite->dupCount == 0) { doFree = 1; } else { WOLFSSL_MSG("WriteDup count not zero, no full free"); } wc_UnLockMutex(&ssl->dupWrite->dupMutex); } } if (doFree) { WOLFSSL_MSG("Doing WriteDup full free, count to zero"); wc_FreeMutex(&ssl->dupWrite->dupMutex); XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP); } } /* * duplicate existing ssl members into dup needed for writing * * dup write only WOLFSSL * ssl existing WOLFSSL * * 0 on success */ static int DupSSL(WOLFSSL* dup, WOLFSSL* ssl) { word16 tmp_weOwnRng; /* shared dupWrite setup */ ssl->dupWrite = (WriteDup*)XMALLOC(sizeof(WriteDup), ssl->heap, DYNAMIC_TYPE_WRITEDUP); if (ssl->dupWrite == NULL) { return MEMORY_E; } XMEMSET(ssl->dupWrite, 0, sizeof(WriteDup)); if (wc_InitMutex(&ssl->dupWrite->dupMutex) != 0) { XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP); ssl->dupWrite = NULL; return BAD_MUTEX_E; } ssl->dupWrite->dupCount = 2; /* both sides have a count to start */ dup->dupWrite = ssl->dupWrite; /* each side uses */ tmp_weOwnRng = dup->options.weOwnRng; /* copy write parts over to dup writer */ XMEMCPY(&dup->specs, &ssl->specs, sizeof(CipherSpecs)); XMEMCPY(&dup->options, &ssl->options, sizeof(Options)); XMEMCPY(&dup->keys, &ssl->keys, sizeof(Keys)); XMEMCPY(&dup->encrypt, &ssl->encrypt, sizeof(Ciphers)); XMEMCPY(&dup->version, &ssl->version, sizeof(ProtocolVersion)); XMEMCPY(&dup->chVersion, &ssl->chVersion, sizeof(ProtocolVersion)); #ifdef HAVE_ONE_TIME_AUTH #ifdef HAVE_POLY1305 if (ssl->auth.setup && ssl->auth.poly1305 != NULL) { dup->auth.poly1305 = (Poly1305*)XMALLOC(sizeof(Poly1305), dup->heap, DYNAMIC_TYPE_CIPHER); if (dup->auth.poly1305 == NULL) return MEMORY_E; dup->auth.setup = 1; } #endif #endif /* dup side now owns encrypt/write ciphers */ XMEMSET(&ssl->encrypt, 0, sizeof(Ciphers)); dup->IOCB_WriteCtx = ssl->IOCB_WriteCtx; dup->CBIOSend = ssl->CBIOSend; #ifdef OPENSSL_EXTRA dup->cbioFlag = ssl->cbioFlag; #endif dup->wfd = ssl->wfd; dup->wflags = ssl->wflags; #ifndef WOLFSSL_AEAD_ONLY dup->hmac = ssl->hmac; #endif #ifdef HAVE_TRUNCATED_HMAC dup->truncated_hmac = ssl->truncated_hmac; #endif /* Restore rng option */ dup->options.weOwnRng = tmp_weOwnRng; /* unique side dup setup */ dup->dupSide = WRITE_DUP_SIDE; ssl->dupSide = READ_DUP_SIDE; return 0; } /* * duplicate a WOLFSSL object post handshake for writing only * turn existing object into read only. Allows concurrent access from two * different threads. * * ssl existing WOLFSSL object * * return dup'd WOLFSSL object on success */ WOLFSSL* wolfSSL_write_dup(WOLFSSL* ssl) { WOLFSSL* dup = NULL; int ret = 0; (void)ret; WOLFSSL_ENTER("wolfSSL_write_dup"); if (ssl == NULL) { return ssl; } if (ssl->options.handShakeDone == 0) { WOLFSSL_MSG("wolfSSL_write_dup called before handshake complete"); return NULL; } if (ssl->dupWrite) { WOLFSSL_MSG("wolfSSL_write_dup already called once"); return NULL; } dup = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ssl->ctx->heap, DYNAMIC_TYPE_SSL); if (dup) { if ( (ret = InitSSL(dup, ssl->ctx, 1)) < 0) { FreeSSL(dup, ssl->ctx->heap); dup = NULL; } else if ( (ret = DupSSL(dup, ssl)) < 0) { FreeSSL(dup, ssl->ctx->heap); dup = NULL; } } WOLFSSL_LEAVE("wolfSSL_write_dup", ret); return dup; } /* * Notify write dup side of fatal error or close notify * * ssl WOLFSSL object * err Notify err * * 0 on success */ int NotifyWriteSide(WOLFSSL* ssl, int err) { int ret; WOLFSSL_ENTER("NotifyWriteSide"); ret = wc_LockMutex(&ssl->dupWrite->dupMutex); if (ret == 0) { ssl->dupWrite->dupErr = err; ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex); } return ret; } #endif /* HAVE_WRITE_DUP */ #ifdef HAVE_POLY1305 /* set if to use old poly 1 for yes 0 to use new poly */ int wolfSSL_use_old_poly(WOLFSSL* ssl, int value) { (void)ssl; (void)value; #ifndef WOLFSSL_NO_TLS12 WOLFSSL_ENTER("wolfSSL_use_old_poly"); WOLFSSL_MSG("Warning SSL connection auto detects old/new and this function" "is depreciated"); ssl->options.oldPoly = (word16)value; WOLFSSL_LEAVE("wolfSSL_use_old_poly", 0); #endif return 0; } #endif WOLFSSL_ABI int wolfSSL_set_fd(WOLFSSL* ssl, int fd) { int ret; WOLFSSL_ENTER("wolfSSL_set_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfSSL_set_read_fd(ssl, fd); if (ret == WOLFSSL_SUCCESS) { ret = wolfSSL_set_write_fd(ssl, fd); } return ret; } #ifdef WOLFSSL_DTLS int wolfSSL_set_dtls_fd_connected(WOLFSSL* ssl, int fd) { int ret; WOLFSSL_ENTER("wolfSSL_set_dtls_fd_connected"); if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfSSL_set_fd(ssl, fd); if (ret == WOLFSSL_SUCCESS) ssl->buffers.dtlsCtx.connected = 1; return ret; } #endif int wolfSSL_set_read_fd(WOLFSSL* ssl, int fd) { WOLFSSL_ENTER("wolfSSL_set_read_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->rfd = fd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; #ifdef WOLFSSL_DTLS ssl->buffers.dtlsCtx.connected = 0; if (ssl->options.dtls) { ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.rfd = fd; } #endif WOLFSSL_LEAVE("wolfSSL_set_read_fd", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } int wolfSSL_set_write_fd(WOLFSSL* ssl, int fd) { WOLFSSL_ENTER("wolfSSL_set_write_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->wfd = fd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; #ifdef WOLFSSL_DTLS ssl->buffers.dtlsCtx.connected = 0; if (ssl->options.dtls) { ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.wfd = fd; } #endif WOLFSSL_LEAVE("wolfSSL_set_write_fd", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } /** * Get the name of cipher at priority level passed in. */ char* wolfSSL_get_cipher_list(int priority) { const CipherSuiteInfo* ciphers = GetCipherNames(); if (priority >= GetCipherNamesSize() || priority < 0) { return 0; } return (char*)ciphers[priority].name; } /** * Get the name of cipher at priority level passed in. */ char* wolfSSL_get_cipher_list_ex(WOLFSSL* ssl, int priority) { if (ssl == NULL) { return NULL; } else { const char* cipher; if ((cipher = wolfSSL_get_cipher_name_internal(ssl)) != NULL) { if (priority == 0) { return (char*)cipher; } else { return NULL; } } else { return wolfSSL_get_cipher_list(priority); } } } int wolfSSL_get_ciphers(char* buf, int len) { const CipherSuiteInfo* ciphers = GetCipherNames(); int ciphersSz = GetCipherNamesSize(); int i; if (buf == NULL || len <= 0) return BAD_FUNC_ARG; /* Add each member to the buffer delimited by a : */ for (i = 0; i < ciphersSz; i++) { int cipherNameSz = (int)XSTRLEN(ciphers[i].name); if (cipherNameSz + 1 < len) { XSTRNCPY(buf, ciphers[i].name, len); buf += cipherNameSz; if (i < ciphersSz - 1) *buf++ = ':'; *buf = 0; len -= cipherNameSz + 1; } else return BUFFER_E; } return WOLFSSL_SUCCESS; } #ifndef NO_ERROR_STRINGS /* places a list of all supported cipher suites in TLS_* format into "buf" * return WOLFSSL_SUCCESS on success */ int wolfSSL_get_ciphers_iana(char* buf, int len) { const CipherSuiteInfo* ciphers = GetCipherNames(); int ciphersSz = GetCipherNamesSize(); int i; int cipherNameSz; if (buf == NULL || len <= 0) return BAD_FUNC_ARG; /* Add each member to the buffer delimited by a : */ for (i = 0; i < ciphersSz; i++) { #ifndef NO_CIPHER_SUITE_ALIASES if (ciphers[i].flags & WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS) continue; #endif cipherNameSz = (int)XSTRLEN(ciphers[i].name_iana); if (cipherNameSz + 1 < len) { XSTRNCPY(buf, ciphers[i].name_iana, len); buf += cipherNameSz; if (i < ciphersSz - 1) *buf++ = ':'; *buf = 0; len -= cipherNameSz + 1; } else return BUFFER_E; } return WOLFSSL_SUCCESS; } #endif /* NO_ERROR_STRINGS */ const char* wolfSSL_get_shared_ciphers(WOLFSSL* ssl, char* buf, int len) { const char* cipher; if (ssl == NULL) return NULL; cipher = wolfSSL_get_cipher_name_iana(ssl); len = min(len, (int)(XSTRLEN(cipher) + 1)); XMEMCPY(buf, cipher, len); return buf; } int wolfSSL_get_fd(const WOLFSSL* ssl) { int fd = -1; WOLFSSL_ENTER("wolfSSL_get_fd"); if (ssl) { fd = ssl->rfd; } WOLFSSL_LEAVE("wolfSSL_get_fd", fd); return fd; } int wolfSSL_dtls(WOLFSSL* ssl) { int dtlsOpt = 0; if (ssl) dtlsOpt = ssl->options.dtls; return dtlsOpt; } #if !defined(NO_CERTS) /* Set whether mutual authentication is required for connections. * Server side only. * * ctx The SSL/TLS CTX object. * req 1 to indicate required and 0 when not. * returns BAD_FUNC_ARG when ctx is NULL, SIDE_ERROR when not a server and * 0 on success. */ int wolfSSL_CTX_mutual_auth(WOLFSSL_CTX* ctx, int req) { if (ctx == NULL) return BAD_FUNC_ARG; if (ctx->method->side == WOLFSSL_CLIENT_END) return SIDE_ERROR; ctx->mutualAuth = (byte)req; return 0; } /* Set whether mutual authentication is required for the connection. * Server side only. * * ssl The SSL/TLS object. * req 1 to indicate required and 0 when not. * returns BAD_FUNC_ARG when ssl is NULL, or not using TLS v1.3, * SIDE_ERROR when not a client and 0 on success. */ int wolfSSL_mutual_auth(WOLFSSL* ssl, int req) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.side == WOLFSSL_SERVER_END) return SIDE_ERROR; ssl->options.mutualAuth = (word16)req; return 0; } #endif /* NO_CERTS */ #ifdef WOLFSSL_WOLFSENTRY_HOOKS int wolfSSL_CTX_set_AcceptFilter( WOLFSSL_CTX *ctx, NetworkFilterCallback_t AcceptFilter, void *AcceptFilter_arg) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->AcceptFilter = AcceptFilter; ctx->AcceptFilter_arg = AcceptFilter_arg; return 0; } int wolfSSL_set_AcceptFilter( WOLFSSL *ssl, NetworkFilterCallback_t AcceptFilter, void *AcceptFilter_arg) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->AcceptFilter = AcceptFilter; ssl->AcceptFilter_arg = AcceptFilter_arg; return 0; } int wolfSSL_CTX_set_ConnectFilter( WOLFSSL_CTX *ctx, NetworkFilterCallback_t ConnectFilter, void *ConnectFilter_arg) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ConnectFilter = ConnectFilter; ctx->ConnectFilter_arg = ConnectFilter_arg; return 0; } int wolfSSL_set_ConnectFilter( WOLFSSL *ssl, NetworkFilterCallback_t ConnectFilter, void *ConnectFilter_arg) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->ConnectFilter = ConnectFilter; ssl->ConnectFilter_arg = ConnectFilter_arg; return 0; } #endif /* WOLFSSL_WOLFSENTRY_HOOKS */ #ifndef WOLFSSL_LEANPSK #if defined(WOLFSSL_DTLS) && defined(XINET_PTON) && \ !defined(WOLFSSL_NO_SOCK) && defined(HAVE_SOCKADDR) void* wolfSSL_dtls_create_peer(int port, char* ip) { SOCKADDR_IN *addr; addr = (SOCKADDR_IN*)XMALLOC(sizeof(*addr), NULL, DYNAMIC_TYPE_SOCKADDR); if (addr == NULL) { return NULL; } addr->sin_family = AF_INET; addr->sin_port = XHTONS((word16)port); if (XINET_PTON(AF_INET, ip, &addr->sin_addr) < 1) { XFREE(addr, NULL, DYNAMIC_TYPE_SOCKADDR); return NULL; } return addr; } int wolfSSL_dtls_free_peer(void* addr) { XFREE(addr, NULL, DYNAMIC_TYPE_SOCKADDR); return WOLFSSL_SUCCESS; } #endif int wolfSSL_dtls_set_peer(WOLFSSL* ssl, void* peer, unsigned int peerSz) { #ifdef WOLFSSL_DTLS void* sa; if (ssl == NULL) return WOLFSSL_FAILURE; if (peer == NULL || peerSz == 0) { if (ssl->buffers.dtlsCtx.peer.sa != NULL) XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR); ssl->buffers.dtlsCtx.peer.sa = NULL; ssl->buffers.dtlsCtx.peer.sz = 0; ssl->buffers.dtlsCtx.peer.bufSz = 0; ssl->buffers.dtlsCtx.userSet = 0; return WOLFSSL_SUCCESS; } sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR); if (sa != NULL) { if (ssl->buffers.dtlsCtx.peer.sa != NULL) { XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR); ssl->buffers.dtlsCtx.peer.sa = NULL; } XMEMCPY(sa, peer, peerSz); ssl->buffers.dtlsCtx.peer.sa = sa; ssl->buffers.dtlsCtx.peer.sz = peerSz; ssl->buffers.dtlsCtx.peer.bufSz = peerSz; ssl->buffers.dtlsCtx.userSet = 1; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return WOLFSSL_NOT_IMPLEMENTED; #endif } int wolfSSL_dtls_get_peer(WOLFSSL* ssl, void* peer, unsigned int* peerSz) { #ifdef WOLFSSL_DTLS if (ssl == NULL) { return WOLFSSL_FAILURE; } if (peer != NULL && peerSz != NULL && *peerSz >= ssl->buffers.dtlsCtx.peer.sz && ssl->buffers.dtlsCtx.peer.sa != NULL) { *peerSz = ssl->buffers.dtlsCtx.peer.sz; XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz); return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return WOLFSSL_NOT_IMPLEMENTED; #endif } #if defined(WOLFSSL_SCTP) && defined(WOLFSSL_DTLS) int wolfSSL_CTX_dtls_set_sctp(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_sctp"); if (ctx == NULL) return BAD_FUNC_ARG; ctx->dtlsSctp = 1; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_set_sctp(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_dtls_set_sctp"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.dtlsSctp = 1; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS && WOLFSSL_SCTP */ #if (defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU)) && \ defined(WOLFSSL_DTLS) int wolfSSL_CTX_dtls_set_mtu(WOLFSSL_CTX* ctx, word16 newMtu) { if (ctx == NULL || newMtu > MAX_RECORD_SIZE) return BAD_FUNC_ARG; ctx->dtlsMtuSz = newMtu; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_set_mtu(WOLFSSL* ssl, word16 newMtu) { if (ssl == NULL) return BAD_FUNC_ARG; if (newMtu > MAX_RECORD_SIZE) { ssl->error = BAD_FUNC_ARG; return WOLFSSL_FAILURE; } ssl->dtlsMtuSz = newMtu; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS && (WOLFSSL_SCTP || WOLFSSL_DTLS_MTU) */ #ifdef WOLFSSL_SRTP static const WOLFSSL_SRTP_PROTECTION_PROFILE gSrtpProfiles[] = { /* AES CCM 128, Salt:112-bits, Auth HMAC-SHA1 Tag: 80-bits * (master_key:128bits + master_salt:112bits) * 2 = 480 bits (60) */ {"SRTP_AES128_CM_SHA1_80", SRTP_AES128_CM_SHA1_80, (((128 + 112) * 2) / 8) }, /* AES CCM 128, Salt:112-bits, Auth HMAC-SHA1 Tag: 32-bits * (master_key:128bits + master_salt:112bits) * 2 = 480 bits (60) */ {"SRTP_AES128_CM_SHA1_32", SRTP_AES128_CM_SHA1_32, (((128 + 112) * 2) / 8) }, /* NULL Cipher, Salt:112-bits, Auth HMAC-SHA1 Tag 80-bits */ {"SRTP_NULL_SHA1_80", SRTP_NULL_SHA1_80, ((112 * 2) / 8)}, /* NULL Cipher, Salt:112-bits, Auth HMAC-SHA1 Tag 32-bits */ {"SRTP_NULL_SHA1_32", SRTP_NULL_SHA1_32, ((112 * 2) / 8)}, /* AES GCM 128, Salt: 96-bits, Auth GCM Tag 128-bits * (master_key:128bits + master_salt:96bits) * 2 = 448 bits (56) */ {"SRTP_AEAD_AES_128_GCM", SRTP_AEAD_AES_128_GCM, (((128 + 96) * 2) / 8) }, /* AES GCM 256, Salt: 96-bits, Auth GCM Tag 128-bits * (master_key:256bits + master_salt:96bits) * 2 = 704 bits (88) */ {"SRTP_AEAD_AES_256_GCM", SRTP_AEAD_AES_256_GCM, (((256 + 96) * 2) / 8) }, }; static const WOLFSSL_SRTP_PROTECTION_PROFILE* DtlsSrtpFindProfile( const char* profile_str, word32 profile_str_len, unsigned long id) { int i; const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL; for (i=0; i<(int)(sizeof(gSrtpProfiles)/sizeof(WOLFSSL_SRTP_PROTECTION_PROFILE)); i++) { if (profile_str != NULL) { word32 srtp_profile_len = (word32)XSTRLEN(gSrtpProfiles[i].name); if (srtp_profile_len == profile_str_len && XMEMCMP(gSrtpProfiles[i].name, profile_str, profile_str_len) == 0) { profile = &gSrtpProfiles[i]; break; } } else if (id != 0 && gSrtpProfiles[i].id == id) { profile = &gSrtpProfiles[i]; break; } } return profile; } /* profile_str: accepts ":" colon separated list of SRTP profiles */ static int DtlsSrtpSelProfiles(word16* id, const char* profile_str) { const WOLFSSL_SRTP_PROTECTION_PROFILE* profile; const char *current, *next = NULL; word32 length = 0, current_length; *id = 0; /* reset destination ID's */ if (profile_str == NULL) { return WOLFSSL_FAILURE; } /* loop on end of line or colon ":" */ next = profile_str; length = (word32)XSTRLEN(profile_str); do { current = next; next = XSTRSTR(current, ":"); if (next) { current_length = (word32)(next - current); ++next; /* ++ needed to skip ':' */ } else { current_length = (word32)XSTRLEN(current); } if (current_length < length) length = current_length; profile = DtlsSrtpFindProfile(current, current_length, 0); if (profile != NULL) { *id |= (1 << profile->id); /* selected bit based on ID */ } } while (next != NULL); return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_tlsext_use_srtp(WOLFSSL_CTX* ctx, const char* profile_str) { int ret = WOLFSSL_FAILURE; if (ctx != NULL) { ret = DtlsSrtpSelProfiles(&ctx->dtlsSrtpProfiles, profile_str); } return ret; } int wolfSSL_set_tlsext_use_srtp(WOLFSSL* ssl, const char* profile_str) { int ret = WOLFSSL_FAILURE; if (ssl != NULL) { ret = DtlsSrtpSelProfiles(&ssl->dtlsSrtpProfiles, profile_str); } return ret; } const WOLFSSL_SRTP_PROTECTION_PROFILE* wolfSSL_get_selected_srtp_profile( WOLFSSL* ssl) { const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL; if (ssl) { profile = DtlsSrtpFindProfile(NULL, 0, ssl->dtlsSrtpId); } return profile; } #ifndef NO_WOLFSSL_STUB WOLF_STACK_OF(WOLFSSL_SRTP_PROTECTION_PROFILE)* wolfSSL_get_srtp_profiles( WOLFSSL* ssl) { /* Not yet implemented - should return list of available SRTP profiles * ssl->dtlsSrtpProfiles */ (void)ssl; return NULL; } #endif #define DTLS_SRTP_KEYING_MATERIAL_LABEL "EXTRACTOR-dtls_srtp" int wolfSSL_export_dtls_srtp_keying_material(WOLFSSL* ssl, unsigned char* out, size_t* olen) { const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL; if (ssl == NULL || olen == NULL) { return BAD_FUNC_ARG; } profile = DtlsSrtpFindProfile(NULL, 0, ssl->dtlsSrtpId); if (profile == NULL) { WOLFSSL_MSG("Not using DTLS SRTP"); return EXT_MISSING; } if (out == NULL) { *olen = profile->kdfBits; return LENGTH_ONLY_E; } if (*olen < (size_t)profile->kdfBits) { return BUFFER_E; } return wolfSSL_export_keying_material(ssl, out, profile->kdfBits, DTLS_SRTP_KEYING_MATERIAL_LABEL, XSTR_SIZEOF(DTLS_SRTP_KEYING_MATERIAL_LABEL), NULL, 0, 0); } #endif /* WOLFSSL_SRTP */ #ifdef WOLFSSL_DTLS_DROP_STATS int wolfSSL_dtls_get_drop_stats(WOLFSSL* ssl, word32* macDropCount, word32* replayDropCount) { int ret; WOLFSSL_ENTER("wolfSSL_dtls_get_drop_stats"); if (ssl == NULL) ret = BAD_FUNC_ARG; else { ret = WOLFSSL_SUCCESS; if (macDropCount != NULL) *macDropCount = ssl->macDropCount; if (replayDropCount != NULL) *replayDropCount = ssl->replayDropCount; } WOLFSSL_LEAVE("wolfSSL_dtls_get_drop_stats", ret); return ret; } #endif /* WOLFSSL_DTLS_DROP_STATS */ #if defined(WOLFSSL_MULTICAST) int wolfSSL_CTX_mcast_set_member_id(WOLFSSL_CTX* ctx, word16 id) { int ret = 0; WOLFSSL_ENTER("wolfSSL_CTX_mcast_set_member_id"); if (ctx == NULL || id > 255) ret = BAD_FUNC_ARG; if (ret == 0) { ctx->haveEMS = 0; ctx->haveMcast = 1; ctx->mcastID = (byte)id; #ifndef WOLFSSL_USER_IO ctx->CBIORecv = EmbedReceiveFromMcast; #endif /* WOLFSSL_USER_IO */ ret = WOLFSSL_SUCCESS; } WOLFSSL_LEAVE("wolfSSL_CTX_mcast_set_member_id", ret); return ret; } int wolfSSL_mcast_get_max_peers(void) { return WOLFSSL_MULTICAST_PEERS; } #ifdef WOLFSSL_DTLS static WC_INLINE word32 UpdateHighwaterMark(word32 cur, word32 first, word32 second, word32 high) { word32 newCur = 0; if (cur < first) newCur = first; else if (cur < second) newCur = second; else if (cur < high) newCur = high; return newCur; } #endif /* WOLFSSL_DTLS */ int wolfSSL_set_secret(WOLFSSL* ssl, word16 epoch, const byte* preMasterSecret, word32 preMasterSz, const byte* clientRandom, const byte* serverRandom, const byte* suite) { int ret = 0; WOLFSSL_ENTER("wolfSSL_set_secret"); if (ssl == NULL || preMasterSecret == NULL || preMasterSz == 0 || preMasterSz > ENCRYPT_LEN || clientRandom == NULL || serverRandom == NULL || suite == NULL) { ret = BAD_FUNC_ARG; } if (ret == 0 && ssl->arrays->preMasterSecret == NULL) { ssl->arrays->preMasterSz = ENCRYPT_LEN; ssl->arrays->preMasterSecret = (byte*)XMALLOC(ENCRYPT_LEN, ssl->heap, DYNAMIC_TYPE_SECRET); if (ssl->arrays->preMasterSecret == NULL) { ret = MEMORY_E; } } if (ret == 0) { XMEMCPY(ssl->arrays->preMasterSecret, preMasterSecret, preMasterSz); XMEMSET(ssl->arrays->preMasterSecret + preMasterSz, 0, ENCRYPT_LEN - preMasterSz); ssl->arrays->preMasterSz = preMasterSz; XMEMCPY(ssl->arrays->clientRandom, clientRandom, RAN_LEN); XMEMCPY(ssl->arrays->serverRandom, serverRandom, RAN_LEN); ssl->options.cipherSuite0 = suite[0]; ssl->options.cipherSuite = suite[1]; ret = SetCipherSpecs(ssl); } if (ret == 0) ret = MakeTlsMasterSecret(ssl); if (ret == 0) { ssl->keys.encryptionOn = 1; ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE); } if (ret == 0) { if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS WOLFSSL_DTLS_PEERSEQ* peerSeq; int i; ssl->keys.dtls_epoch = epoch; for (i = 0, peerSeq = ssl->keys.peerSeq; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++, peerSeq++) { peerSeq->nextEpoch = epoch; peerSeq->prevSeq_lo = peerSeq->nextSeq_lo; peerSeq->prevSeq_hi = peerSeq->nextSeq_hi; peerSeq->nextSeq_lo = 0; peerSeq->nextSeq_hi = 0; XMEMCPY(peerSeq->prevWindow, peerSeq->window, DTLS_SEQ_SZ); XMEMSET(peerSeq->window, 0, DTLS_SEQ_SZ); peerSeq->highwaterMark = UpdateHighwaterMark(0, ssl->ctx->mcastFirstSeq, ssl->ctx->mcastSecondSeq, ssl->ctx->mcastMaxSeq); } #else (void)epoch; #endif } FreeHandshakeResources(ssl); ret = WOLFSSL_SUCCESS; } else { if (ssl) ssl->error = ret; ret = WOLFSSL_FATAL_ERROR; } WOLFSSL_LEAVE("wolfSSL_set_secret", ret); return ret; } #ifdef WOLFSSL_DTLS int wolfSSL_mcast_peer_add(WOLFSSL* ssl, word16 peerId, int sub) { WOLFSSL_DTLS_PEERSEQ* p = NULL; int ret = WOLFSSL_SUCCESS; int i; WOLFSSL_ENTER("wolfSSL_mcast_peer_add"); if (ssl == NULL || peerId > 255) return BAD_FUNC_ARG; if (!sub) { /* Make sure it isn't already present, while keeping the first * open spot. */ for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == INVALID_PEER_ID) p = &ssl->keys.peerSeq[i]; if (ssl->keys.peerSeq[i].peerId == peerId) { WOLFSSL_MSG("Peer ID already in multicast peer list."); p = NULL; } } if (p != NULL) { XMEMSET(p, 0, sizeof(WOLFSSL_DTLS_PEERSEQ)); p->peerId = peerId; p->highwaterMark = UpdateHighwaterMark(0, ssl->ctx->mcastFirstSeq, ssl->ctx->mcastSecondSeq, ssl->ctx->mcastMaxSeq); } else { WOLFSSL_MSG("No room in peer list."); ret = -1; } } else { for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == peerId) p = &ssl->keys.peerSeq[i]; } if (p != NULL) { p->peerId = INVALID_PEER_ID; } else { WOLFSSL_MSG("Peer not found in list."); } } WOLFSSL_LEAVE("wolfSSL_mcast_peer_add", ret); return ret; } /* If peerId is in the list of peers and its last sequence number is non-zero, * return 1, otherwise return 0. */ int wolfSSL_mcast_peer_known(WOLFSSL* ssl, unsigned short peerId) { int known = 0; int i; WOLFSSL_ENTER("wolfSSL_mcast_peer_known"); if (ssl == NULL || peerId > 255) { return BAD_FUNC_ARG; } for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == peerId) { if (ssl->keys.peerSeq[i].nextSeq_hi || ssl->keys.peerSeq[i].nextSeq_lo) { known = 1; } break; } } WOLFSSL_LEAVE("wolfSSL_mcast_peer_known", known); return known; } int wolfSSL_CTX_mcast_set_highwater_cb(WOLFSSL_CTX* ctx, word32 maxSeq, word32 first, word32 second, CallbackMcastHighwater cb) { if (ctx == NULL || (second && first > second) || first > maxSeq || second > maxSeq || cb == NULL) { return BAD_FUNC_ARG; } ctx->mcastHwCb = cb; ctx->mcastFirstSeq = first; ctx->mcastSecondSeq = second; ctx->mcastMaxSeq = maxSeq; return WOLFSSL_SUCCESS; } int wolfSSL_mcast_set_highwater_ctx(WOLFSSL* ssl, void* ctx) { if (ssl == NULL || ctx == NULL) return BAD_FUNC_ARG; ssl->mcastHwCbCtx = ctx; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS */ #endif /* WOLFSSL_MULTICAST */ #endif /* WOLFSSL_LEANPSK */ /* return underlying connect or accept, WOLFSSL_SUCCESS on ok */ int wolfSSL_negotiate(WOLFSSL* ssl) { int err = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_negotiate"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_SERVER_END) { #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) err = wolfSSL_accept_TLSv13(ssl); else #endif err = wolfSSL_accept(ssl); } #endif #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_CLIENT_END) { #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) err = wolfSSL_connect_TLSv13(ssl); else #endif err = wolfSSL_connect(ssl); } #endif (void)ssl; WOLFSSL_LEAVE("wolfSSL_negotiate", err); return err; } WOLFSSL_ABI WC_RNG* wolfSSL_GetRNG(WOLFSSL* ssl) { if (ssl) { return ssl->rng; } return NULL; } #ifndef WOLFSSL_LEANPSK /* object size based on build */ int wolfSSL_GetObjectSize(void) { #ifdef SHOW_SIZES printf("sizeof suites = %lu\n", (unsigned long)sizeof(Suites)); printf("sizeof ciphers(2) = %lu\n", (unsigned long)sizeof(Ciphers)); #ifndef NO_RC4 printf("\tsizeof arc4 = %lu\n", (unsigned long)sizeof(Arc4)); #endif printf("\tsizeof aes = %lu\n", (unsigned long)sizeof(Aes)); #ifndef NO_DES3 printf("\tsizeof des3 = %lu\n", (unsigned long)sizeof(Des3)); #endif #ifdef HAVE_CHACHA printf("\tsizeof chacha = %lu\n", (unsigned long)sizeof(ChaCha)); #endif #ifdef WOLFSSL_SM4 printf("\tsizeof sm4 = %lu\n", (unsigned long)sizeof(Sm4)); #endif printf("sizeof cipher specs = %lu\n", (unsigned long) sizeof(CipherSpecs)); printf("sizeof keys = %lu\n", (unsigned long)sizeof(Keys)); printf("sizeof Hashes(2) = %lu\n", (unsigned long)sizeof(Hashes)); #ifndef NO_MD5 printf("\tsizeof MD5 = %lu\n", (unsigned long)sizeof(wc_Md5)); #endif #ifndef NO_SHA printf("\tsizeof SHA = %lu\n", (unsigned long)sizeof(wc_Sha)); #endif #ifdef WOLFSSL_SHA224 printf("\tsizeof SHA224 = %lu\n", (unsigned long)sizeof(wc_Sha224)); #endif #ifndef NO_SHA256 printf("\tsizeof SHA256 = %lu\n", (unsigned long)sizeof(wc_Sha256)); #endif #ifdef WOLFSSL_SHA384 printf("\tsizeof SHA384 = %lu\n", (unsigned long)sizeof(wc_Sha384)); #endif #ifdef WOLFSSL_SHA384 printf("\tsizeof SHA512 = %lu\n", (unsigned long)sizeof(wc_Sha512)); #endif #ifdef WOLFSSL_SM3 printf("\tsizeof sm3 = %lu\n", (unsigned long)sizeof(Sm3)); #endif printf("sizeof Buffers = %lu\n", (unsigned long)sizeof(Buffers)); printf("sizeof Options = %lu\n", (unsigned long)sizeof(Options)); printf("sizeof Arrays = %lu\n", (unsigned long)sizeof(Arrays)); #ifndef NO_RSA printf("sizeof RsaKey = %lu\n", (unsigned long)sizeof(RsaKey)); #endif #ifdef HAVE_ECC printf("sizeof ecc_key = %lu\n", (unsigned long)sizeof(ecc_key)); #endif printf("sizeof WOLFSSL_CIPHER = %lu\n", (unsigned long) sizeof(WOLFSSL_CIPHER)); printf("sizeof WOLFSSL_SESSION = %lu\n", (unsigned long) sizeof(WOLFSSL_SESSION)); printf("sizeof WOLFSSL = %lu\n", (unsigned long)sizeof(WOLFSSL)); printf("sizeof WOLFSSL_CTX = %lu\n", (unsigned long) sizeof(WOLFSSL_CTX)); #endif return sizeof(WOLFSSL); } int wolfSSL_CTX_GetObjectSize(void) { return sizeof(WOLFSSL_CTX); } int wolfSSL_METHOD_GetObjectSize(void) { return sizeof(WOLFSSL_METHOD); } #endif #ifdef WOLFSSL_STATIC_MEMORY int wolfSSL_CTX_load_static_memory(WOLFSSL_CTX** ctx, wolfSSL_method_func method, unsigned char* buf, unsigned int sz, int flag, int maxSz) { WOLFSSL_HEAP* heap; WOLFSSL_HEAP_HINT* hint; word32 idx = 0; if (ctx == NULL || buf == NULL) { return BAD_FUNC_ARG; } if (*ctx == NULL && method == NULL) { return BAD_FUNC_ARG; } if (*ctx == NULL || (*ctx)->heap == NULL) { if (sizeof(WOLFSSL_HEAP) + sizeof(WOLFSSL_HEAP_HINT) > sz - idx) { return BUFFER_E; /* not enough memory for structures */ } heap = (WOLFSSL_HEAP*)buf; idx += sizeof(WOLFSSL_HEAP); if (wolfSSL_init_memory_heap(heap) != 0) { return WOLFSSL_FAILURE; } hint = (WOLFSSL_HEAP_HINT*)(buf + idx); idx += sizeof(WOLFSSL_HEAP_HINT); XMEMSET(hint, 0, sizeof(WOLFSSL_HEAP_HINT)); hint->memory = heap; if (*ctx && (*ctx)->heap == NULL) { (*ctx)->heap = (void*)hint; } } else { #ifdef WOLFSSL_HEAP_TEST /* do not load in memory if test has been set */ if ((*ctx)->heap == (void*)WOLFSSL_HEAP_TEST) { return WOLFSSL_SUCCESS; } #endif hint = (WOLFSSL_HEAP_HINT*)((*ctx)->heap); heap = hint->memory; } if (wolfSSL_load_static_memory(buf + idx, sz - idx, flag, heap) != 1) { WOLFSSL_MSG("Error partitioning memory"); return WOLFSSL_FAILURE; } /* create ctx if needed */ if (*ctx == NULL) { *ctx = wolfSSL_CTX_new_ex(method(hint), hint); if (*ctx == NULL) { WOLFSSL_MSG("Error creating ctx"); return WOLFSSL_FAILURE; } } /* determine what max applies too */ if (flag & WOLFMEM_IO_POOL || flag & WOLFMEM_IO_POOL_FIXED) { heap->maxIO = maxSz; } else { /* general memory used in handshakes */ heap->maxHa = maxSz; } heap->flag |= flag; (void)maxSz; (void)method; return WOLFSSL_SUCCESS; } int wolfSSL_is_static_memory(WOLFSSL* ssl, WOLFSSL_MEM_CONN_STATS* mem_stats) { if (ssl == NULL) { return BAD_FUNC_ARG; } WOLFSSL_ENTER("wolfSSL_is_static_memory"); /* fill out statistics if wanted and WOLFMEM_TRACK_STATS flag */ if (mem_stats != NULL && ssl->heap != NULL) { WOLFSSL_HEAP_HINT* hint = ((WOLFSSL_HEAP_HINT*)(ssl->heap)); WOLFSSL_HEAP* heap = hint->memory; if (heap->flag & WOLFMEM_TRACK_STATS && hint->stats != NULL) { XMEMCPY(mem_stats, hint->stats, sizeof(WOLFSSL_MEM_CONN_STATS)); } } return (ssl->heap) ? 1 : 0; } int wolfSSL_CTX_is_static_memory(WOLFSSL_CTX* ctx, WOLFSSL_MEM_STATS* mem_stats) { if (ctx == NULL) { return BAD_FUNC_ARG; } WOLFSSL_ENTER("wolfSSL_CTX_is_static_memory"); /* fill out statistics if wanted */ if (mem_stats != NULL && ctx->heap != NULL) { WOLFSSL_HEAP* heap = ((WOLFSSL_HEAP_HINT*)(ctx->heap))->memory; if (wolfSSL_GetMemStats(heap, mem_stats) != 1) { return MEMORY_E; } } return (ctx->heap) ? 1 : 0; } #endif /* WOLFSSL_STATIC_MEMORY */ /* return max record layer size plaintext input size */ int wolfSSL_GetMaxOutputSize(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_GetMaxOutputSize"); if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.handShakeState != HANDSHAKE_DONE) { WOLFSSL_MSG("Handshake not complete yet"); return BAD_FUNC_ARG; } return wolfSSL_GetMaxFragSize(ssl, OUTPUT_RECORD_SIZE); } /* return record layer size of plaintext input size */ int wolfSSL_GetOutputSize(WOLFSSL* ssl, int inSz) { int maxSize; WOLFSSL_ENTER("wolfSSL_GetOutputSize"); if (inSz < 0) return BAD_FUNC_ARG; maxSize = wolfSSL_GetMaxOutputSize(ssl); if (maxSize < 0) return maxSize; /* error */ if (inSz > maxSize) return INPUT_SIZE_E; return BuildMessage(ssl, NULL, 0, NULL, inSz, application_data, 0, 1, 0, CUR_ORDER); } #ifdef HAVE_ECC int wolfSSL_CTX_SetMinEccKey_Sz(WOLFSSL_CTX* ctx, short keySz) { if (ctx == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null"); return BAD_FUNC_ARG; } ctx->minEccKeySz = keySz / 8; #ifndef NO_CERTS ctx->cm->minEccKeySz = keySz / 8; #endif return WOLFSSL_SUCCESS; } int wolfSSL_SetMinEccKey_Sz(WOLFSSL* ssl, short keySz) { if (ssl == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null"); return BAD_FUNC_ARG; } ssl->options.minEccKeySz = keySz / 8; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC */ #ifndef NO_RSA int wolfSSL_CTX_SetMinRsaKey_Sz(WOLFSSL_CTX* ctx, short keySz) { if (ctx == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null"); return BAD_FUNC_ARG; } ctx->minRsaKeySz = keySz / 8; ctx->cm->minRsaKeySz = keySz / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMinRsaKey_Sz(WOLFSSL* ssl, short keySz) { if (ssl == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null"); return BAD_FUNC_ARG; } ssl->options.minRsaKeySz = keySz / 8; return WOLFSSL_SUCCESS; } #endif /* !NO_RSA */ #ifndef NO_DH #if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \ !defined(HAVE_SELFTEST) /* Enables or disables the session's DH key prime test. */ int wolfSSL_SetEnableDhKeyTest(WOLFSSL* ssl, int enable) { WOLFSSL_ENTER("wolfSSL_SetEnableDhKeyTest"); if (ssl == NULL) return BAD_FUNC_ARG; if (!enable) ssl->options.dhDoKeyTest = 0; else ssl->options.dhDoKeyTest = 1; WOLFSSL_LEAVE("wolfSSL_SetEnableDhKeyTest", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } #endif int wolfSSL_CTX_SetMinDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz_bits) { if (ctx == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ctx->minDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMinDhKey_Sz(WOLFSSL* ssl, word16 keySz_bits) { if (ssl == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ssl->options.minDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_SetMaxDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz_bits) { if (ctx == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ctx->maxDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMaxDhKey_Sz(WOLFSSL* ssl, word16 keySz_bits) { if (ssl == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ssl->options.maxDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_GetDhKey_Sz(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return (ssl->options.dhKeySz * 8); } #endif /* !NO_DH */ WOLFSSL_ABI int wolfSSL_write(WOLFSSL* ssl, const void* data, int sz) { int ret; WOLFSSL_ENTER("wolfSSL_write"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #ifdef WOLFSSL_QUIC if (WOLFSSL_IS_QUIC(ssl)) { WOLFSSL_MSG("SSL_write() on QUIC not allowed"); return BAD_FUNC_ARG; } #endif #ifdef HAVE_WRITE_DUP { /* local variable scope */ int dupErr = 0; /* local copy */ ret = 0; if (ssl->dupWrite && ssl->dupSide == READ_DUP_SIDE) { WOLFSSL_MSG("Read dup side cannot write"); return WRITE_DUP_WRITE_E; } if (ssl->dupWrite) { if (wc_LockMutex(&ssl->dupWrite->dupMutex) != 0) { return BAD_MUTEX_E; } dupErr = ssl->dupWrite->dupErr; ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex); } if (ret != 0) { ssl->error = ret; /* high priority fatal error */ return WOLFSSL_FATAL_ERROR; } if (dupErr != 0) { WOLFSSL_MSG("Write dup error from other side"); ssl->error = dupErr; return WOLFSSL_FATAL_ERROR; } } #endif #ifdef HAVE_ERRNO_H errno = 0; #endif #ifdef OPENSSL_EXTRA if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_CB_WRITE, WOLFSSL_SUCCESS); ssl->cbmode = SSL_CB_WRITE; } #endif ret = SendData(ssl, data, sz); WOLFSSL_LEAVE("wolfSSL_write", ret); if (ret < 0) return WOLFSSL_FATAL_ERROR; else return ret; } static int wolfSSL_read_internal(WOLFSSL* ssl, void* data, int sz, int peek) { int ret; WOLFSSL_ENTER("wolfSSL_read_internal"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #ifdef WOLFSSL_QUIC if (WOLFSSL_IS_QUIC(ssl)) { WOLFSSL_MSG("SSL_read() on QUIC not allowed"); return BAD_FUNC_ARG; } #endif #if defined(WOLFSSL_ERROR_CODE_OPENSSL) && defined(OPENSSL_EXTRA) /* This additional logic is meant to simulate following openSSL behavior: * After bidirectional SSL_shutdown complete, SSL_read returns 0 and * SSL_get_error_code returns SSL_ERROR_ZERO_RETURN. * This behavior is used to know the disconnect of the underlying * transport layer. * * In this logic, CBIORecv is called with a read size of 0 to check the * transport layer status. It also returns WOLFSSL_FAILURE so that * SSL_read does not return a positive number on failure. */ /* make sure bidirectional TLS shutdown completes */ if (ssl->error == WOLFSSL_ERROR_SYSCALL || ssl->options.shutdownDone) { /* ask the underlying transport the connection is closed */ if (ssl->CBIORecv(ssl, (char*)data, 0, ssl->IOCB_ReadCtx) == WOLFSSL_CBIO_ERR_CONN_CLOSE) { ssl->options.isClosed = 1; ssl->error = WOLFSSL_ERROR_ZERO_RETURN; } return WOLFSSL_FAILURE; } #endif #ifdef HAVE_WRITE_DUP if (ssl->dupWrite && ssl->dupSide == WRITE_DUP_SIDE) { WOLFSSL_MSG("Write dup side cannot read"); return WRITE_DUP_READ_E; } #endif #ifdef HAVE_ERRNO_H errno = 0; #endif ret = ReceiveData(ssl, (byte*)data, sz, peek); #ifdef HAVE_WRITE_DUP if (ssl->dupWrite) { if (ssl->error != 0 && ssl->error != WANT_READ #ifdef WOLFSSL_ASYNC_CRYPT && ssl->error != WC_PENDING_E #endif ) { int notifyErr; WOLFSSL_MSG("Notifying write side of fatal read error"); notifyErr = NotifyWriteSide(ssl, ssl->error); if (notifyErr < 0) { ret = ssl->error = notifyErr; } } } #endif WOLFSSL_LEAVE("wolfSSL_read_internal", ret); if (ret < 0) return WOLFSSL_FATAL_ERROR; else return ret; } int wolfSSL_peek(WOLFSSL* ssl, void* data, int sz) { WOLFSSL_ENTER("wolfSSL_peek"); return wolfSSL_read_internal(ssl, data, sz, TRUE); } WOLFSSL_ABI int wolfSSL_read(WOLFSSL* ssl, void* data, int sz) { WOLFSSL_ENTER("wolfSSL_read"); #ifdef OPENSSL_EXTRA if (ssl == NULL) { return BAD_FUNC_ARG; } if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_CB_READ, WOLFSSL_SUCCESS); ssl->cbmode = SSL_CB_READ; } #endif return wolfSSL_read_internal(ssl, data, sz, FALSE); } #ifdef WOLFSSL_MULTICAST int wolfSSL_mcast_read(WOLFSSL* ssl, word16* id, void* data, int sz) { int ret = 0; WOLFSSL_ENTER("wolfSSL_mcast_read"); if (ssl == NULL) return BAD_FUNC_ARG; ret = wolfSSL_read_internal(ssl, data, sz, FALSE); if (ssl->options.dtls && ssl->options.haveMcast && id != NULL) *id = ssl->keys.curPeerId; return ret; } #endif /* WOLFSSL_MULTICAST */ /* helpers to set the device id, WOLFSSL_SUCCESS on ok */ WOLFSSL_ABI int wolfSSL_SetDevId(WOLFSSL* ssl, int devId) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->devId = devId; return WOLFSSL_SUCCESS; } WOLFSSL_ABI int wolfSSL_CTX_SetDevId(WOLFSSL_CTX* ctx, int devId) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->devId = devId; return WOLFSSL_SUCCESS; } /* helpers to get device id and heap */ WOLFSSL_ABI int wolfSSL_CTX_GetDevId(WOLFSSL_CTX* ctx, WOLFSSL* ssl) { int devId = INVALID_DEVID; if (ssl != NULL) devId = ssl->devId; if (ctx != NULL && devId == INVALID_DEVID) devId = ctx->devId; return devId; } void* wolfSSL_CTX_GetHeap(WOLFSSL_CTX* ctx, WOLFSSL* ssl) { void* heap = NULL; if (ctx != NULL) heap = ctx->heap; else if (ssl != NULL) heap = ssl->heap; return heap; } #ifdef HAVE_SNI WOLFSSL_ABI int wolfSSL_UseSNI(WOLFSSL* ssl, byte type, const void* data, word16 size) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ssl->extensions, type, data, size, ssl->heap); } WOLFSSL_ABI int wolfSSL_CTX_UseSNI(WOLFSSL_CTX* ctx, byte type, const void* data, word16 size) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ctx->extensions, type, data, size, ctx->heap); } #ifndef NO_WOLFSSL_SERVER void wolfSSL_SNI_SetOptions(WOLFSSL* ssl, byte type, byte options) { if (ssl && ssl->extensions) TLSX_SNI_SetOptions(ssl->extensions, type, options); } void wolfSSL_CTX_SNI_SetOptions(WOLFSSL_CTX* ctx, byte type, byte options) { if (ctx && ctx->extensions) TLSX_SNI_SetOptions(ctx->extensions, type, options); } byte wolfSSL_SNI_Status(WOLFSSL* ssl, byte type) { return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type); } word16 wolfSSL_SNI_GetRequest(WOLFSSL* ssl, byte type, void** data) { if (data) *data = NULL; if (ssl && ssl->extensions) return TLSX_SNI_GetRequest(ssl->extensions, type, data); return 0; } int wolfSSL_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz, byte type, byte* sni, word32* inOutSz) { if (clientHello && helloSz > 0 && sni && inOutSz && *inOutSz > 0) return TLSX_SNI_GetFromBuffer(clientHello, helloSz, type, sni, inOutSz); return BAD_FUNC_ARG; } #endif /* NO_WOLFSSL_SERVER */ #endif /* HAVE_SNI */ #ifdef HAVE_TRUSTED_CA int wolfSSL_UseTrustedCA(WOLFSSL* ssl, byte type, const byte* certId, word32 certIdSz) { if (ssl == NULL) return BAD_FUNC_ARG; if (type == WOLFSSL_TRUSTED_CA_PRE_AGREED) { if (certId != NULL || certIdSz != 0) return BAD_FUNC_ARG; } else if (type == WOLFSSL_TRUSTED_CA_X509_NAME) { if (certId == NULL || certIdSz == 0) return BAD_FUNC_ARG; } #ifndef NO_SHA else if (type == WOLFSSL_TRUSTED_CA_KEY_SHA1 || type == WOLFSSL_TRUSTED_CA_CERT_SHA1) { if (certId == NULL || certIdSz != WC_SHA_DIGEST_SIZE) return BAD_FUNC_ARG; } #endif else return BAD_FUNC_ARG; return TLSX_UseTrustedCA(&ssl->extensions, type, certId, certIdSz, ssl->heap); } #endif /* HAVE_TRUSTED_CA */ #ifdef HAVE_MAX_FRAGMENT #ifndef NO_WOLFSSL_CLIENT int wolfSSL_UseMaxFragment(WOLFSSL* ssl, byte mfl) { if (ssl == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_ALLOW_MAX_FRAGMENT_ADJUST /* The following is a non-standard way to reconfigure the max packet size post-handshake for wolfSSL_write/wolfSSL_read */ if (ssl->options.handShakeState == HANDSHAKE_DONE) { switch (mfl) { case WOLFSSL_MFL_2_8 : ssl->max_fragment = 256; break; case WOLFSSL_MFL_2_9 : ssl->max_fragment = 512; break; case WOLFSSL_MFL_2_10: ssl->max_fragment = 1024; break; case WOLFSSL_MFL_2_11: ssl->max_fragment = 2048; break; case WOLFSSL_MFL_2_12: ssl->max_fragment = 4096; break; case WOLFSSL_MFL_2_13: ssl->max_fragment = 8192; break; default: ssl->max_fragment = MAX_RECORD_SIZE; break; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_MAX_FRAGMENT_ADJUST */ /* This call sets the max fragment TLS extension, which gets sent to server. The server_hello response is what sets the `ssl->max_fragment` in TLSX_MFL_Parse */ return TLSX_UseMaxFragment(&ssl->extensions, mfl, ssl->heap); } int wolfSSL_CTX_UseMaxFragment(WOLFSSL_CTX* ctx, byte mfl) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseMaxFragment(&ctx->extensions, mfl, ctx->heap); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_MAX_FRAGMENT */ #ifdef HAVE_TRUNCATED_HMAC #ifndef NO_WOLFSSL_CLIENT int wolfSSL_UseTruncatedHMAC(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ssl->extensions, ssl->heap); } int wolfSSL_CTX_UseTruncatedHMAC(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ctx->extensions, ctx->heap); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_TRUNCATED_HMAC */ #ifdef HAVE_CERTIFICATE_STATUS_REQUEST int wolfSSL_UseOCSPStapling(WOLFSSL* ssl, byte status_type, byte options) { WOLFSSL_ENTER("wolfSSL_UseOCSPStapling"); if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequest(&ssl->extensions, status_type, options, NULL, ssl->heap, ssl->devId); } int wolfSSL_CTX_UseOCSPStapling(WOLFSSL_CTX* ctx, byte status_type, byte options) { WOLFSSL_ENTER("wolfSSL_CTX_UseOCSPStapling"); if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequest(&ctx->extensions, status_type, options, NULL, ctx->heap, ctx->devId); } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST */ #ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2 int wolfSSL_UseOCSPStaplingV2(WOLFSSL* ssl, byte status_type, byte options) { if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequestV2(&ssl->extensions, status_type, options, ssl->heap, ssl->devId); } int wolfSSL_CTX_UseOCSPStaplingV2(WOLFSSL_CTX* ctx, byte status_type, byte options) { if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequestV2(&ctx->extensions, status_type, options, ctx->heap, ctx->devId); } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */ /* Elliptic Curves */ #if defined(HAVE_SUPPORTED_CURVES) static int isValidCurveGroup(word16 name) { switch (name) { case WOLFSSL_ECC_SECP160K1: case WOLFSSL_ECC_SECP160R1: case WOLFSSL_ECC_SECP160R2: case WOLFSSL_ECC_SECP192K1: case WOLFSSL_ECC_SECP192R1: case WOLFSSL_ECC_SECP224K1: case WOLFSSL_ECC_SECP224R1: case WOLFSSL_ECC_SECP256K1: case WOLFSSL_ECC_SECP256R1: case WOLFSSL_ECC_SECP384R1: case WOLFSSL_ECC_SECP521R1: case WOLFSSL_ECC_BRAINPOOLP256R1: case WOLFSSL_ECC_BRAINPOOLP384R1: case WOLFSSL_ECC_BRAINPOOLP512R1: case WOLFSSL_ECC_SM2P256V1: case WOLFSSL_ECC_X25519: case WOLFSSL_ECC_X448: case WOLFSSL_FFDHE_2048: case WOLFSSL_FFDHE_3072: case WOLFSSL_FFDHE_4096: case WOLFSSL_FFDHE_6144: case WOLFSSL_FFDHE_8192: #ifdef HAVE_PQC case WOLFSSL_KYBER_LEVEL1: case WOLFSSL_KYBER_LEVEL3: case WOLFSSL_KYBER_LEVEL5: #ifdef HAVE_LIBOQS case WOLFSSL_P256_KYBER_LEVEL1: case WOLFSSL_P384_KYBER_LEVEL3: case WOLFSSL_P521_KYBER_LEVEL5: #endif #endif return 1; default: return 0; } } int wolfSSL_UseSupportedCurve(WOLFSSL* ssl, word16 name) { if (ssl == NULL || !isValidCurveGroup(name)) return BAD_FUNC_ARG; ssl->options.userCurves = 1; #if defined(NO_TLS) return WOLFSSL_FAILURE; #else return TLSX_UseSupportedCurve(&ssl->extensions, name, ssl->heap); #endif /* NO_TLS */ } int wolfSSL_CTX_UseSupportedCurve(WOLFSSL_CTX* ctx, word16 name) { if (ctx == NULL || !isValidCurveGroup(name)) return BAD_FUNC_ARG; ctx->userCurves = 1; #if defined(NO_TLS) return WOLFSSL_FAILURE; #else return TLSX_UseSupportedCurve(&ctx->extensions, name, ctx->heap); #endif /* NO_TLS */ } #if defined(OPENSSL_EXTRA) && defined(WOLFSSL_TLS13) int wolfSSL_CTX_set1_groups(WOLFSSL_CTX* ctx, int* groups, int count) { int i; int _groups[WOLFSSL_MAX_GROUP_COUNT]; WOLFSSL_ENTER("wolfSSL_CTX_set1_groups"); if (count == 0) { WOLFSSL_MSG("Group count is zero"); return WOLFSSL_FAILURE; } for (i = 0; i < count; i++) { if (isValidCurveGroup((word16)groups[i])) { _groups[i] = groups[i]; } #ifdef HAVE_ECC else { /* groups may be populated with curve NIDs */ int oid = nid2oid(groups[i], oidCurveType); int name = (int)GetCurveByOID(oid); if (name == 0) { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } _groups[i] = name; } #else else { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } #endif } return wolfSSL_CTX_set_groups(ctx, _groups, count) == WOLFSSL_SUCCESS ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_set1_groups(WOLFSSL* ssl, int* groups, int count) { int i; int _groups[WOLFSSL_MAX_GROUP_COUNT]; WOLFSSL_ENTER("wolfSSL_CTX_set1_groups"); if (count == 0) { WOLFSSL_MSG("Group count is zero"); return WOLFSSL_FAILURE; } for (i = 0; i < count; i++) { if (isValidCurveGroup((word16)groups[i])) { _groups[i] = groups[i]; } #ifdef HAVE_ECC else { /* groups may be populated with curve NIDs */ int oid = nid2oid(groups[i], oidCurveType); int name = (int)GetCurveByOID(oid); if (name == 0) { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } _groups[i] = name; } #else else { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } #endif } return wolfSSL_set_groups(ssl, _groups, count) == WOLFSSL_SUCCESS ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #endif /* OPENSSL_EXTRA && WOLFSSL_TLS13 */ #endif /* HAVE_SUPPORTED_CURVES */ /* Application-Layer Protocol Negotiation */ #ifdef HAVE_ALPN WOLFSSL_ABI int wolfSSL_UseALPN(WOLFSSL* ssl, char *protocol_name_list, word32 protocol_name_listSz, byte options) { char *list, *ptr, **token; word16 len; int idx = 0; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_UseALPN"); if (ssl == NULL || protocol_name_list == NULL) return BAD_FUNC_ARG; if (protocol_name_listSz > (WOLFSSL_MAX_ALPN_NUMBER * WOLFSSL_MAX_ALPN_PROTO_NAME_LEN + WOLFSSL_MAX_ALPN_NUMBER)) { WOLFSSL_MSG("Invalid arguments, protocol name list too long"); return BAD_FUNC_ARG; } if (!(options & WOLFSSL_ALPN_CONTINUE_ON_MISMATCH) && !(options & WOLFSSL_ALPN_FAILED_ON_MISMATCH)) { WOLFSSL_MSG("Invalid arguments, options not supported"); return BAD_FUNC_ARG; } list = (char *)XMALLOC(protocol_name_listSz+1, ssl->heap, DYNAMIC_TYPE_ALPN); if (list == NULL) { WOLFSSL_MSG("Memory failure"); return MEMORY_ERROR; } token = (char **)XMALLOC(sizeof(char *) * (WOLFSSL_MAX_ALPN_NUMBER+1), ssl->heap, DYNAMIC_TYPE_ALPN); if (token == NULL) { XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN); WOLFSSL_MSG("Memory failure"); return MEMORY_ERROR; } XMEMSET(token, 0, sizeof(char *) * (WOLFSSL_MAX_ALPN_NUMBER+1)); XSTRNCPY(list, protocol_name_list, protocol_name_listSz); list[protocol_name_listSz] = '\0'; /* read all protocol name from the list */ token[idx] = XSTRTOK(list, ",", &ptr); while (idx < WOLFSSL_MAX_ALPN_NUMBER && token[idx] != NULL) token[++idx] = XSTRTOK(NULL, ",", &ptr); /* add protocol name list in the TLS extension in reverse order */ while ((idx--) > 0) { len = (word16)XSTRLEN(token[idx]); ret = TLSX_UseALPN(&ssl->extensions, token[idx], len, options, ssl->heap); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("TLSX_UseALPN failure"); break; } } XFREE(token, ssl->heap, DYNAMIC_TYPE_ALPN); XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN); return ret; } int wolfSSL_ALPN_GetProtocol(WOLFSSL* ssl, char **protocol_name, word16 *size) { return TLSX_ALPN_GetRequest(ssl ? ssl->extensions : NULL, (void **)protocol_name, size); } int wolfSSL_ALPN_GetPeerProtocol(WOLFSSL* ssl, char **list, word16 *listSz) { int i, len; char *p; byte *s; if (ssl == NULL || list == NULL || listSz == NULL) return BAD_FUNC_ARG; if (ssl->alpn_peer_requested == NULL || ssl->alpn_peer_requested_length == 0) return BUFFER_ERROR; /* ssl->alpn_peer_requested are the original bytes sent in a ClientHello, * formatted as (len-byte chars+)+. To turn n protocols into a * comma-separated C string, one needs (n-1) commas and a final 0 byte * which has the same length as the original. * The returned length is the strlen() of the C string, so -1 of that. */ *listSz = ssl->alpn_peer_requested_length-1; *list = p = (char *)XMALLOC(ssl->alpn_peer_requested_length, ssl->heap, DYNAMIC_TYPE_TLSX); if (p == NULL) return MEMORY_ERROR; for (i = 0, s = ssl->alpn_peer_requested; i < ssl->alpn_peer_requested_length; p += len, i += len) { if (i) *p++ = ','; len = s[i++]; /* guard against bad length bytes. */ if (i + len > ssl->alpn_peer_requested_length) { XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX); *list = NULL; return WOLFSSL_FAILURE; } XMEMCPY(p, s + i, len); } *p = 0; return WOLFSSL_SUCCESS; } /* used to free memory allocated by wolfSSL_ALPN_GetPeerProtocol */ int wolfSSL_ALPN_FreePeerProtocol(WOLFSSL* ssl, char **list) { if (ssl == NULL) { return BAD_FUNC_ARG; } XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX); *list = NULL; return WOLFSSL_SUCCESS; } #endif /* HAVE_ALPN */ /* Secure Renegotiation */ #ifdef HAVE_SERVER_RENEGOTIATION_INFO /* user is forcing ability to use secure renegotiation, we discourage it */ int wolfSSL_UseSecureRenegotiation(WOLFSSL* ssl) { int ret = BAD_FUNC_ARG; #if defined(NO_TLS) (void)ssl; #else if (ssl) ret = TLSX_UseSecureRenegotiation(&ssl->extensions, ssl->heap); if (ret == WOLFSSL_SUCCESS) { TLSX* extension = TLSX_Find(ssl->extensions, TLSX_RENEGOTIATION_INFO); if (extension) ssl->secure_renegotiation = (SecureRenegotiation*)extension->data; } #endif /* !NO_TLS */ return ret; } int wolfSSL_CTX_UseSecureRenegotiation(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->useSecureReneg = 1; return WOLFSSL_SUCCESS; } #ifdef HAVE_SECURE_RENEGOTIATION /* do a secure renegotiation handshake, user forced, we discourage */ static int _Rehandshake(WOLFSSL* ssl) { int ret; if (ssl == NULL) return BAD_FUNC_ARG; if (IsAtLeastTLSv1_3(ssl->version)) { WOLFSSL_MSG("Secure Renegotiation not supported in TLS 1.3"); return SECURE_RENEGOTIATION_E; } if (ssl->secure_renegotiation == NULL) { WOLFSSL_MSG("Secure Renegotiation not forced on by user"); return SECURE_RENEGOTIATION_E; } if (ssl->secure_renegotiation->enabled == 0) { WOLFSSL_MSG("Secure Renegotiation not enabled at extension level"); return SECURE_RENEGOTIATION_E; } #ifdef WOLFSSL_DTLS if (ssl->options.dtls && ssl->keys.dtls_epoch == 0xFFFF) { WOLFSSL_MSG("Secure Renegotiation not allowed. Epoch would wrap"); return SECURE_RENEGOTIATION_E; } #endif /* If the client started the renegotiation, the server will already * have processed the client's hello. */ if (ssl->options.side != WOLFSSL_SERVER_END || ssl->options.acceptState != ACCEPT_FIRST_REPLY_DONE) { if (ssl->options.handShakeState != HANDSHAKE_DONE) { if (!ssl->options.handShakeDone) { WOLFSSL_MSG("Can't renegotiate until initial " "handshake complete"); return SECURE_RENEGOTIATION_E; } else { WOLFSSL_MSG("Renegotiation already started. " "Moving it forward."); ret = wolfSSL_negotiate(ssl); if (ret == WOLFSSL_SUCCESS) ssl->secure_rene_count++; return ret; } } /* reset handshake states */ ssl->options.sendVerify = 0; ssl->options.serverState = NULL_STATE; ssl->options.clientState = NULL_STATE; ssl->options.connectState = CONNECT_BEGIN; ssl->options.acceptState = ACCEPT_BEGIN_RENEG; ssl->options.handShakeState = NULL_STATE; ssl->options.processReply = 0; /* TODO, move states in internal.h */ XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived)); ssl->secure_renegotiation->cache_status = SCR_CACHE_NEEDED; #if !defined(NO_WOLFSSL_SERVER) if (ssl->options.side == WOLFSSL_SERVER_END) { ret = SendHelloRequest(ssl); if (ret != 0) { ssl->error = ret; return WOLFSSL_FATAL_ERROR; } } #endif /* !NO_WOLFSSL_SERVER */ ret = InitHandshakeHashes(ssl); if (ret != 0) { ssl->error = ret; return WOLFSSL_FATAL_ERROR; } } ret = wolfSSL_negotiate(ssl); if (ret == WOLFSSL_SUCCESS) ssl->secure_rene_count++; return ret; } /* do a secure renegotiation handshake, user forced, we discourage */ int wolfSSL_Rehandshake(WOLFSSL* ssl) { int ret; WOLFSSL_ENTER("wolfSSL_Rehandshake"); if (ssl == NULL) return WOLFSSL_FAILURE; #ifdef HAVE_SESSION_TICKET ret = WOLFSSL_SUCCESS; #endif if (ssl->options.side == WOLFSSL_SERVER_END) { /* Reset option to send certificate verify. */ ssl->options.sendVerify = 0; /* Reset resuming flag to do full secure handshake. */ ssl->options.resuming = 0; } else { /* Reset resuming flag to do full secure handshake. */ ssl->options.resuming = 0; #if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_CLIENT) /* Clearing the ticket. */ ret = wolfSSL_UseSessionTicket(ssl); #endif } /* CLIENT/SERVER: Reset peer authentication for full secure handshake. */ ssl->options.peerAuthGood = 0; #ifdef HAVE_SESSION_TICKET if (ret == WOLFSSL_SUCCESS) #endif ret = _Rehandshake(ssl); return ret; } #ifndef NO_WOLFSSL_CLIENT /* do a secure resumption handshake, user forced, we discourage */ int wolfSSL_SecureResume(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_SecureResume"); if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.side == WOLFSSL_SERVER_END) { ssl->error = SIDE_ERROR; return WOLFSSL_FATAL_ERROR; } return _Rehandshake(ssl); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_SECURE_RENEGOTIATION */ long wolfSSL_SSL_get_secure_renegotiation_support(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_SSL_get_secure_renegotiation_support"); if (!ssl || !ssl->secure_renegotiation) return WOLFSSL_FAILURE; return ssl->secure_renegotiation->enabled; } #endif /* HAVE_SECURE_RENEGOTIATION_INFO */ #if defined(HAVE_SESSION_TICKET) /* Session Ticket */ #if !defined(NO_WOLFSSL_SERVER) int wolfSSL_CTX_NoTicketTLSv12(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->noTicketTls12 = 1; return WOLFSSL_SUCCESS; } int wolfSSL_NoTicketTLSv12(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.noTicketTls12 = 1; return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketEncCb(WOLFSSL_CTX* ctx, SessionTicketEncCb cb) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketEncCb = cb; return WOLFSSL_SUCCESS; } /* set hint interval, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketHint = hint; return WOLFSSL_SUCCESS; } /* set user context, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketEncCtx(WOLFSSL_CTX* ctx, void* userCtx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketEncCtx = userCtx; return WOLFSSL_SUCCESS; } /* get user context - returns userCtx on success, NULL on failure */ void* wolfSSL_CTX_get_TicketEncCtx(WOLFSSL_CTX* ctx) { if (ctx == NULL) return NULL; return ctx->ticketEncCtx; } #ifdef WOLFSSL_TLS13 /* set the maximum number of tickets to send * return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on fail */ int wolfSSL_CTX_set_num_tickets(WOLFSSL_CTX* ctx, size_t mxTickets) { if (ctx == NULL) return WOLFSSL_FAILURE; ctx->maxTicketTls13 = (unsigned int)mxTickets; return WOLFSSL_SUCCESS; } /* get the maximum number of tickets to send * return number of tickets set to be sent */ size_t wolfSSL_CTX_get_num_tickets(WOLFSSL_CTX* ctx) { if (ctx == NULL) return 0; return (size_t)ctx->maxTicketTls13; } #endif /* WOLFSSL_TLS13 */ #endif /* !NO_WOLFSSL_SERVER */ #if !defined(NO_WOLFSSL_CLIENT) int wolfSSL_UseSessionTicket(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap); } int wolfSSL_CTX_UseSessionTicket(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseSessionTicket(&ctx->extensions, NULL, ctx->heap); } int wolfSSL_get_SessionTicket(WOLFSSL* ssl, byte* buf, word32* bufSz) { if (ssl == NULL || buf == NULL || bufSz == NULL || *bufSz == 0) return BAD_FUNC_ARG; if (ssl->session->ticketLen <= *bufSz) { XMEMCPY(buf, ssl->session->ticket, ssl->session->ticketLen); *bufSz = ssl->session->ticketLen; } else *bufSz = 0; return WOLFSSL_SUCCESS; } int wolfSSL_set_SessionTicket(WOLFSSL* ssl, const byte* buf, word32 bufSz) { if (ssl == NULL || (buf == NULL && bufSz > 0)) return BAD_FUNC_ARG; if (bufSz > 0) { /* Ticket will fit into static ticket */ if (bufSz <= SESSION_TICKET_LEN) { if (ssl->session->ticketLenAlloc > 0) { XFREE(ssl->session->ticket, ssl->session->heap, DYNAMIC_TYPE_SESSION_TICK); ssl->session->ticketLenAlloc = 0; ssl->session->ticket = ssl->session->staticTicket; } } else { /* Ticket requires dynamic ticket storage */ /* is dyn buffer big enough */ if (ssl->session->ticketLen < bufSz) { if (ssl->session->ticketLenAlloc > 0) { XFREE(ssl->session->ticket, ssl->session->heap, DYNAMIC_TYPE_SESSION_TICK); } ssl->session->ticket = (byte*)XMALLOC(bufSz, ssl->session->heap, DYNAMIC_TYPE_SESSION_TICK); if(ssl->session->ticket == NULL) { ssl->session->ticket = ssl->session->staticTicket; ssl->session->ticketLenAlloc = 0; return MEMORY_ERROR; } ssl->session->ticketLenAlloc = (word16)bufSz; } } XMEMCPY(ssl->session->ticket, buf, bufSz); } ssl->session->ticketLen = (word16)bufSz; return WOLFSSL_SUCCESS; } int wolfSSL_set_SessionTicket_cb(WOLFSSL* ssl, CallbackSessionTicket cb, void* ctx) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->session_ticket_cb = cb; ssl->session_ticket_ctx = ctx; return WOLFSSL_SUCCESS; } #endif /* !NO_WOLFSSL_CLIENT */ #endif /* HAVE_SESSION_TICKET */ #ifdef HAVE_EXTENDED_MASTER #ifndef NO_WOLFSSL_CLIENT int wolfSSL_CTX_DisableExtendedMasterSecret(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->haveEMS = 0; return WOLFSSL_SUCCESS; } int wolfSSL_DisableExtendedMasterSecret(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.haveEMS = 0; return WOLFSSL_SUCCESS; } #endif #endif #ifndef WOLFSSL_LEANPSK int wolfSSL_send(WOLFSSL* ssl, const void* data, int sz, int flags) { int ret; int oldFlags; WOLFSSL_ENTER("wolfSSL_send"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->wflags; ssl->wflags = flags; ret = wolfSSL_write(ssl, data, sz); ssl->wflags = oldFlags; WOLFSSL_LEAVE("wolfSSL_send", ret); return ret; } int wolfSSL_recv(WOLFSSL* ssl, void* data, int sz, int flags) { int ret; int oldFlags; WOLFSSL_ENTER("wolfSSL_recv"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->rflags; ssl->rflags = flags; ret = wolfSSL_read(ssl, data, sz); ssl->rflags = oldFlags; WOLFSSL_LEAVE("wolfSSL_recv", ret); return ret; } #endif /* WOLFSSL_SUCCESS on ok */ WOLFSSL_ABI int wolfSSL_shutdown(WOLFSSL* ssl) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_shutdown"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; if (ssl->options.quietShutdown) { WOLFSSL_MSG("quiet shutdown, no close notify sent"); ret = WOLFSSL_SUCCESS; } else { /* try to send close notify, not an error if can't */ if (!ssl->options.isClosed && !ssl->options.connReset && !ssl->options.sentNotify) { ssl->error = SendAlert(ssl, alert_warning, close_notify); if (ssl->error < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.sentNotify = 1; /* don't send close_notify twice */ if (ssl->options.closeNotify) { ret = WOLFSSL_SUCCESS; ssl->options.shutdownDone = 1; } else { ret = WOLFSSL_SHUTDOWN_NOT_DONE; WOLFSSL_LEAVE("wolfSSL_shutdown", ret); return ret; } } #ifdef WOLFSSL_SHUTDOWNONCE if (ssl->options.isClosed || ssl->options.connReset) { /* Shutdown has already occurred. * Caller is free to ignore this error. */ return SSL_SHUTDOWN_ALREADY_DONE_E; } #endif /* call wolfSSL_shutdown again for bidirectional shutdown */ if (ssl->options.sentNotify && !ssl->options.closeNotify) { ret = ProcessReply(ssl); if ((ret == ZERO_RETURN) || (ret == SOCKET_ERROR_E)) { /* simulate OpenSSL behavior */ ssl->options.shutdownDone = 1; /* Clear error */ ssl->error = WOLFSSL_ERROR_NONE; ret = WOLFSSL_SUCCESS; } else if (ret == MEMORY_E) { ret = WOLFSSL_FATAL_ERROR; } else if (ssl->error == WOLFSSL_ERROR_NONE) { ret = WOLFSSL_SHUTDOWN_NOT_DONE; } else { WOLFSSL_ERROR(ssl->error); ret = WOLFSSL_FATAL_ERROR; } } } #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* reset WOLFSSL structure state for possible reuse */ if (ret == WOLFSSL_SUCCESS) { if (wolfSSL_clear(ssl) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("could not clear WOLFSSL"); ret = WOLFSSL_FATAL_ERROR; } } #endif WOLFSSL_LEAVE("wolfSSL_shutdown", ret); return ret; } /* get current error state value */ int wolfSSL_state(WOLFSSL* ssl) { if (ssl == NULL) { return BAD_FUNC_ARG; } return ssl->error; } WOLFSSL_ABI int wolfSSL_get_error(WOLFSSL* ssl, int ret) { WOLFSSL_ENTER("wolfSSL_get_error"); if (ret > 0) return WOLFSSL_ERROR_NONE; if (ssl == NULL) return BAD_FUNC_ARG; WOLFSSL_LEAVE("wolfSSL_get_error", ssl->error); /* make sure converted types are handled in SetErrorString() too */ if (ssl->error == WANT_READ) return WOLFSSL_ERROR_WANT_READ; /* convert to OpenSSL type */ else if (ssl->error == WANT_WRITE) return WOLFSSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */ else if (ssl->error == ZERO_RETURN || ssl->options.shutdownDone) return WOLFSSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */ #ifdef OPENSSL_EXTRA else if (ssl->error == SOCKET_PEER_CLOSED_E) return WOLFSSL_ERROR_SYSCALL; /* convert to OpenSSL type */ #endif #if defined(WOLFSSL_HAPROXY) return GetX509Error(ssl->error); #else return (ssl->error); #endif } /* retrieve alert history, WOLFSSL_SUCCESS on ok */ int wolfSSL_get_alert_history(WOLFSSL* ssl, WOLFSSL_ALERT_HISTORY *h) { if (ssl && h) { *h = ssl->alert_history; } return WOLFSSL_SUCCESS; } #ifdef OPENSSL_EXTRA /* returns SSL_WRITING, SSL_READING or SSL_NOTHING */ int wolfSSL_want(WOLFSSL* ssl) { int rw_state = SSL_NOTHING; if (ssl) { if (ssl->error == WANT_READ) rw_state = SSL_READING; else if (ssl->error == WANT_WRITE) rw_state = SSL_WRITING; } return rw_state; } #endif /* return TRUE if current error is want read */ int wolfSSL_want_read(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_want_read"); if (ssl->error == WANT_READ) return 1; return 0; } /* return TRUE if current error is want write */ int wolfSSL_want_write(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_want_write"); if (ssl->error == WANT_WRITE) return 1; return 0; } char* wolfSSL_ERR_error_string(unsigned long errNumber, char* data) { WOLFSSL_ENTER("wolfSSL_ERR_error_string"); if (data) { SetErrorString((int)errNumber, data); return data; } else { static char tmp[WOLFSSL_MAX_ERROR_SZ] = {0}; SetErrorString((int)errNumber, tmp); return tmp; } } void wolfSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len) { WOLFSSL_ENTER("wolfSSL_ERR_error_string_n"); if (len >= WOLFSSL_MAX_ERROR_SZ) wolfSSL_ERR_error_string(e, buf); else { WOLFSSL_MSG("Error buffer too short, truncating"); if (len) { char tmp[WOLFSSL_MAX_ERROR_SZ]; wolfSSL_ERR_error_string(e, tmp); XMEMCPY(buf, tmp, len-1); buf[len-1] = '\0'; } } } /* don't free temporary arrays at end of handshake */ void wolfSSL_KeepArrays(WOLFSSL* ssl) { if (ssl) ssl->options.saveArrays = 1; } /* user doesn't need temporary arrays anymore, Free */ void wolfSSL_FreeArrays(WOLFSSL* ssl) { if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) { ssl->options.saveArrays = 0; FreeArrays(ssl, 1); } } /* Set option to indicate that the resources are not to be freed after * handshake. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_KeepHandshakeResources(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.keepResources = 1; return 0; } /* Free the handshake resources after handshake. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_FreeHandshakeResources(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; FreeHandshakeResources(ssl); return 0; } /* Use the client's order of preference when matching cipher suites. * * ssl The SSL/TLS context object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_CTX_UseClientSuites(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->useClientOrder = 1; return 0; } /* Use the client's order of preference when matching cipher suites. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_UseClientSuites(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.useClientOrder = 1; return 0; } #ifdef WOLFSSL_DTLS const byte* wolfSSL_GetDtlsMacSecret(WOLFSSL* ssl, int verify, int epochOrder) { #ifndef WOLFSSL_AEAD_ONLY Keys* keys = NULL; (void)epochOrder; if (ssl == NULL) return NULL; #ifdef HAVE_SECURE_RENEGOTIATION switch (epochOrder) { case PEER_ORDER: if (IsDtlsMsgSCRKeys(ssl)) keys = &ssl->secure_renegotiation->tmp_keys; else keys = &ssl->keys; break; case PREV_ORDER: keys = &ssl->keys; break; case CUR_ORDER: if (DtlsUseSCRKeys(ssl)) keys = &ssl->secure_renegotiation->tmp_keys; else keys = &ssl->keys; break; default: WOLFSSL_MSG("Unknown epoch order"); return NULL; } #else keys = &ssl->keys; #endif if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) || (ssl->options.side == WOLFSSL_SERVER_END && verify) ) return keys->client_write_MAC_secret; else return keys->server_write_MAC_secret; #else (void)ssl; (void)verify; (void)epochOrder; return NULL; #endif } #endif /* WOLFSSL_DTLS */ const byte* wolfSSL_GetMacSecret(WOLFSSL* ssl, int verify) { #ifndef WOLFSSL_AEAD_ONLY if (ssl == NULL) return NULL; if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) || (ssl->options.side == WOLFSSL_SERVER_END && verify) ) return ssl->keys.client_write_MAC_secret; else return ssl->keys.server_write_MAC_secret; #else (void)ssl; (void)verify; return NULL; #endif } int wolfSSL_GetSide(WOLFSSL* ssl) { if (ssl) return ssl->options.side; return BAD_FUNC_ARG; } #ifdef ATOMIC_USER void wolfSSL_CTX_SetMacEncryptCb(WOLFSSL_CTX* ctx, CallbackMacEncrypt cb) { if (ctx) ctx->MacEncryptCb = cb; } void wolfSSL_SetMacEncryptCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->MacEncryptCtx = ctx; } void* wolfSSL_GetMacEncryptCtx(WOLFSSL* ssl) { if (ssl) return ssl->MacEncryptCtx; return NULL; } void wolfSSL_CTX_SetDecryptVerifyCb(WOLFSSL_CTX* ctx, CallbackDecryptVerify cb) { if (ctx) ctx->DecryptVerifyCb = cb; } void wolfSSL_SetDecryptVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->DecryptVerifyCtx = ctx; } void* wolfSSL_GetDecryptVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->DecryptVerifyCtx; return NULL; } #if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY) /** * Set the callback, against the context, that encrypts then MACs. * * ctx SSL/TLS context. * cb Callback function to use with Encrypt-Then-MAC. */ void wolfSSL_CTX_SetEncryptMacCb(WOLFSSL_CTX* ctx, CallbackEncryptMac cb) { if (ctx) ctx->EncryptMacCb = cb; } /** * Set the context to use with callback that encrypts then MACs. * * ssl SSL/TLS object. * ctx Callback function's context. */ void wolfSSL_SetEncryptMacCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EncryptMacCtx = ctx; } /** * Get the context being used with callback that encrypts then MACs. * * ssl SSL/TLS object. * returns callback function's context or NULL if SSL/TLS object is NULL. */ void* wolfSSL_GetEncryptMacCtx(WOLFSSL* ssl) { if (ssl) return ssl->EncryptMacCtx; return NULL; } /** * Set the callback, against the context, that MAC verifies then decrypts. * * ctx SSL/TLS context. * cb Callback function to use with Encrypt-Then-MAC. */ void wolfSSL_CTX_SetVerifyDecryptCb(WOLFSSL_CTX* ctx, CallbackVerifyDecrypt cb) { if (ctx) ctx->VerifyDecryptCb = cb; } /** * Set the context to use with callback that MAC verifies then decrypts. * * ssl SSL/TLS object. * ctx Callback function's context. */ void wolfSSL_SetVerifyDecryptCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->VerifyDecryptCtx = ctx; } /** * Get the context being used with callback that MAC verifies then decrypts. * * ssl SSL/TLS object. * returns callback function's context or NULL if SSL/TLS object is NULL. */ void* wolfSSL_GetVerifyDecryptCtx(WOLFSSL* ssl) { if (ssl) return ssl->VerifyDecryptCtx; return NULL; } #endif /* HAVE_ENCRYPT_THEN_MAC !WOLFSSL_AEAD_ONLY */ const byte* wolfSSL_GetClientWriteKey(WOLFSSL* ssl) { if (ssl) return ssl->keys.client_write_key; return NULL; } const byte* wolfSSL_GetClientWriteIV(WOLFSSL* ssl) { if (ssl) return ssl->keys.client_write_IV; return NULL; } const byte* wolfSSL_GetServerWriteKey(WOLFSSL* ssl) { if (ssl) return ssl->keys.server_write_key; return NULL; } const byte* wolfSSL_GetServerWriteIV(WOLFSSL* ssl) { if (ssl) return ssl->keys.server_write_IV; return NULL; } int wolfSSL_GetKeySize(WOLFSSL* ssl) { if (ssl) return ssl->specs.key_size; return BAD_FUNC_ARG; } int wolfSSL_GetIVSize(WOLFSSL* ssl) { if (ssl) return ssl->specs.iv_size; return BAD_FUNC_ARG; } int wolfSSL_GetBulkCipher(WOLFSSL* ssl) { if (ssl) return ssl->specs.bulk_cipher_algorithm; return BAD_FUNC_ARG; } int wolfSSL_GetCipherType(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; #ifndef WOLFSSL_AEAD_ONLY if (ssl->specs.cipher_type == block) return WOLFSSL_BLOCK_TYPE; if (ssl->specs.cipher_type == stream) return WOLFSSL_STREAM_TYPE; #endif if (ssl->specs.cipher_type == aead) return WOLFSSL_AEAD_TYPE; return -1; } int wolfSSL_GetCipherBlockSize(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.block_size; } int wolfSSL_GetAeadMacSize(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.aead_mac_size; } int wolfSSL_IsTLSv1_1(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.tls1_1) return 1; return 0; } int wolfSSL_GetHmacSize(WOLFSSL* ssl) { /* AEAD ciphers don't have HMAC keys */ if (ssl) return (ssl->specs.cipher_type != aead) ? ssl->specs.hash_size : 0; return BAD_FUNC_ARG; } #ifdef WORD64_AVAILABLE int wolfSSL_GetPeerSequenceNumber(WOLFSSL* ssl, word64 *seq) { if ((ssl == NULL) || (seq == NULL)) return BAD_FUNC_ARG; *seq = ((word64)ssl->keys.peer_sequence_number_hi << 32) | ssl->keys.peer_sequence_number_lo; return !(*seq); } int wolfSSL_GetSequenceNumber(WOLFSSL* ssl, word64 *seq) { if ((ssl == NULL) || (seq == NULL)) return BAD_FUNC_ARG; *seq = ((word64)ssl->keys.sequence_number_hi << 32) | ssl->keys.sequence_number_lo; return !(*seq); } #endif #endif /* ATOMIC_USER */ #ifndef NO_CERTS WOLFSSL_CERT_MANAGER* wolfSSL_CTX_GetCertManager(WOLFSSL_CTX* ctx) { WOLFSSL_CERT_MANAGER* cm = NULL; if (ctx) cm = ctx->cm; return cm; } #endif /* NO_CERTS */ #if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM) \ && defined(XFPRINTF) void wolfSSL_ERR_print_errors_fp(XFILE fp, int err) { char data[WOLFSSL_MAX_ERROR_SZ + 1]; WOLFSSL_ENTER("wolfSSL_ERR_print_errors_fp"); SetErrorString(err, data); if (XFPRINTF(fp, "%s", data) < 0) WOLFSSL_MSG("fprintf failed in wolfSSL_ERR_print_errors_fp"); } #if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE) void wolfSSL_ERR_dump_errors_fp(XFILE fp) { wc_ERR_print_errors_fp(fp); } void wolfSSL_ERR_print_errors_cb (int (*cb)(const char *str, size_t len, void *u), void *u) { wc_ERR_print_errors_cb(cb, u); } #endif #endif /* !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM && XFPRINTF */ /* * TODO This ssl parameter needs to be changed to const once our ABI checker * stops flagging qualifier additions as ABI breaking. */ WOLFSSL_ABI int wolfSSL_pending(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_pending"); if (ssl == NULL) return WOLFSSL_FAILURE; return ssl->buffers.clearOutputBuffer.length; } int wolfSSL_has_pending(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_has_pending"); if (ssl == NULL) return WOLFSSL_FAILURE; return ssl->buffers.clearOutputBuffer.length > 0; } #ifndef WOLFSSL_LEANPSK /* turn on handshake group messages for context */ int wolfSSL_CTX_set_group_messages(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->groupMessages = 1; return WOLFSSL_SUCCESS; } #endif #ifndef NO_WOLFSSL_CLIENT /* connect enough to get peer cert chain */ int wolfSSL_connect_cert(WOLFSSL* ssl) { int ret; if (ssl == NULL) return WOLFSSL_FAILURE; ssl->options.certOnly = 1; ret = wolfSSL_connect(ssl); ssl->options.certOnly = 0; return ret; } #endif #ifndef WOLFSSL_LEANPSK /* turn on handshake group messages for ssl object */ int wolfSSL_set_group_messages(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.groupMessages = 1; return WOLFSSL_SUCCESS; } /* make minVersion the internal equivalent SSL version */ static int SetMinVersionHelper(byte* minVersion, int version) { #ifdef NO_TLS (void)minVersion; #endif switch (version) { #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) case WOLFSSL_SSLV3: *minVersion = SSLv3_MINOR; break; #endif #ifndef NO_TLS #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_TLSV10 case WOLFSSL_TLSV1: *minVersion = TLSv1_MINOR; break; #endif case WOLFSSL_TLSV1_1: *minVersion = TLSv1_1_MINOR; break; #endif #ifndef WOLFSSL_NO_TLS12 case WOLFSSL_TLSV1_2: *minVersion = TLSv1_2_MINOR; break; #endif #endif #ifdef WOLFSSL_TLS13 case WOLFSSL_TLSV1_3: *minVersion = TLSv1_3_MINOR; break; #endif #ifdef WOLFSSL_DTLS case WOLFSSL_DTLSV1: *minVersion = DTLS_MINOR; break; case WOLFSSL_DTLSV1_2: *minVersion = DTLSv1_2_MINOR; break; #ifdef WOLFSSL_DTLS13 case WOLFSSL_DTLSV1_3: *minVersion = DTLSv1_3_MINOR; break; #endif /* WOLFSSL_DTLS13 */ #endif /* WOLFSSL_DTLS */ default: WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return WOLFSSL_SUCCESS; } /* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */ WOLFSSL_ABI int wolfSSL_CTX_SetMinVersion(WOLFSSL_CTX* ctx, int version) { WOLFSSL_ENTER("wolfSSL_CTX_SetMinVersion"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return SetMinVersionHelper(&ctx->minDowngrade, version); } /* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetMinVersion(WOLFSSL* ssl, int version) { WOLFSSL_ENTER("wolfSSL_SetMinVersion"); if (ssl == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return SetMinVersionHelper(&ssl->options.minDowngrade, version); } /* Function to get version as WOLFSSL_ enum value for wolfSSL_SetVersion */ int wolfSSL_GetVersion(const WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { case SSLv3_MINOR : return WOLFSSL_SSLV3; case TLSv1_MINOR : return WOLFSSL_TLSV1; case TLSv1_1_MINOR : return WOLFSSL_TLSV1_1; case TLSv1_2_MINOR : return WOLFSSL_TLSV1_2; case TLSv1_3_MINOR : return WOLFSSL_TLSV1_3; default: break; } } return VERSION_ERROR; } int wolfSSL_SetVersion(WOLFSSL* ssl, int version) { word16 haveRSA = 1; word16 havePSK = 0; int keySz = 0; WOLFSSL_ENTER("wolfSSL_SetVersion"); if (ssl == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } switch (version) { #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) case WOLFSSL_SSLV3: ssl->version = MakeSSLv3(); break; #endif #ifndef NO_TLS #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_TLSV10 case WOLFSSL_TLSV1: ssl->version = MakeTLSv1(); break; #endif case WOLFSSL_TLSV1_1: ssl->version = MakeTLSv1_1(); break; #endif #ifndef WOLFSSL_NO_TLS12 case WOLFSSL_TLSV1_2: ssl->version = MakeTLSv1_2(); break; #endif #ifdef WOLFSSL_TLS13 case WOLFSSL_TLSV1_3: ssl->version = MakeTLSv1_3(); break; #endif /* WOLFSSL_TLS13 */ #endif default: WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif if (AllocateSuites(ssl) != 0) return WOLFSSL_FAILURE; InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, TRUE, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveDilithiumSig, ssl->options.useAnon, TRUE, ssl->options.side); return WOLFSSL_SUCCESS; } #endif /* !leanpsk */ #ifndef NO_CERTS /* hash is the SHA digest of name, just use first 32 bits as hash */ static WC_INLINE word32 HashSigner(const byte* hash) { return MakeWordFromHash(hash) % CA_TABLE_SIZE; } /* does CA already exist on signer list */ int AlreadySigner(WOLFSSL_CERT_MANAGER* cm, byte* hash) { Signer* signers; int ret = 0; word32 row; if (cm == NULL || hash == NULL) { return ret; } row = HashSigner(hash); if (wc_LockMutex(&cm->caLock) != 0) { return ret; } signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = 1; /* success */ break; } signers = signers->next; } wc_UnLockMutex(&cm->caLock); return ret; } #ifdef WOLFSSL_TRUST_PEER_CERT /* hash is the SHA digest of name, just use first 32 bits as hash */ static WC_INLINE word32 TrustedPeerHashSigner(const byte* hash) { return MakeWordFromHash(hash) % TP_TABLE_SIZE; } /* does trusted peer already exist on signer list */ int AlreadyTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DecodedCert* cert) { TrustedPeerCert* tp; int ret = 0; word32 row = TrustedPeerHashSigner(cert->subjectHash); if (wc_LockMutex(&cm->tpLock) != 0) return ret; tp = cm->tpTable[row]; while (tp) { if (XMEMCMP(cert->subjectHash, tp->subjectNameHash, SIGNER_DIGEST_SIZE) == 0) ret = 1; #ifndef NO_SKID if (cert->extSubjKeyIdSet) { /* Compare SKID as well if available */ if (ret == 1 && XMEMCMP(cert->extSubjKeyId, tp->subjectKeyIdHash, SIGNER_DIGEST_SIZE) != 0) ret = 0; } #endif if (ret == 1) break; tp = tp->next; } wc_UnLockMutex(&cm->tpLock); return ret; } /* return Trusted Peer if found, otherwise NULL type is what to match on */ TrustedPeerCert* GetTrustedPeer(void* vp, DecodedCert* cert) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; TrustedPeerCert* ret = NULL; TrustedPeerCert* tp = NULL; word32 row; if (cm == NULL || cert == NULL) return NULL; row = TrustedPeerHashSigner(cert->subjectHash); if (wc_LockMutex(&cm->tpLock) != 0) return ret; tp = cm->tpTable[row]; while (tp) { if (XMEMCMP(cert->subjectHash, tp->subjectNameHash, SIGNER_DIGEST_SIZE) == 0) ret = tp; #ifndef NO_SKID if (cert->extSubjKeyIdSet) { /* Compare SKID as well if available */ if (ret != NULL && XMEMCMP(cert->extSubjKeyId, tp->subjectKeyIdHash, SIGNER_DIGEST_SIZE) != 0) ret = NULL; } #endif if (ret != NULL) break; tp = tp->next; } wc_UnLockMutex(&cm->tpLock); return ret; } int MatchTrustedPeer(TrustedPeerCert* tp, DecodedCert* cert) { if (tp == NULL || cert == NULL) return BAD_FUNC_ARG; /* subject key id or subject hash has been compared when searching tpTable for the cert from function GetTrustedPeer */ /* compare signatures */ if (tp->sigLen == cert->sigLength) { if (XMEMCMP(tp->sig, cert->signature, cert->sigLength)) { return WOLFSSL_FAILURE; } } else { return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* return CA if found, otherwise NULL */ Signer* GetCA(void* vp, byte* hash) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row = 0; if (cm == NULL || hash == NULL) return NULL; row = HashSigner(hash); if (wc_LockMutex(&cm->caLock) != 0) return ret; signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = signers; break; } signers = signers->next; } wc_UnLockMutex(&cm->caLock); return ret; } #ifdef WOLFSSL_AKID_NAME Signer* GetCAByAKID(void* vp, const byte* issuer, word32 issuerSz, const byte* serial, word32 serialSz) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; byte nameHash[SIGNER_DIGEST_SIZE]; byte serialHash[SIGNER_DIGEST_SIZE]; word32 row; if (cm == NULL || issuer == NULL || issuerSz == 0 || serial == NULL || serialSz == 0) return NULL; if (CalcHashId(issuer, issuerSz, nameHash) != 0 || CalcHashId(serial, serialSz, serialHash) != 0) return NULL; if (wc_LockMutex(&cm->caLock) != 0) return ret; /* Unfortunately we need to look through the entire table */ for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) { for (signers = cm->caTable[row]; signers != NULL; signers = signers->next) { if (XMEMCMP(signers->subjectNameHash, nameHash, SIGNER_DIGEST_SIZE) == 0 && XMEMCMP(signers->serialHash, serialHash, SIGNER_DIGEST_SIZE) == 0) { ret = signers; break; } } } wc_UnLockMutex(&cm->caLock); return ret; } #endif #ifndef NO_SKID /* return CA if found, otherwise NULL. Walk through hash table. */ Signer* GetCAByName(void* vp, byte* hash) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row; if (cm == NULL) return NULL; if (wc_LockMutex(&cm->caLock) != 0) return ret; for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) { signers = cm->caTable[row]; while (signers && ret == NULL) { if (XMEMCMP(hash, signers->subjectNameHash, SIGNER_DIGEST_SIZE) == 0) { ret = signers; } signers = signers->next; } } wc_UnLockMutex(&cm->caLock); return ret; } #endif #ifdef WOLFSSL_TRUST_PEER_CERT /* add a trusted peer cert to linked list */ int AddTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int verify) { int ret = 0; int row = 0; TrustedPeerCert* peerCert; DecodedCert* cert; DerBuffer* der = *pDer; WOLFSSL_MSG("Adding a Trusted Peer Cert"); cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) { FreeDer(&der); return MEMORY_E; } InitDecodedCert(cert, der->buffer, der->length, cm->heap); if ((ret = ParseCert(cert, TRUSTED_PEER_TYPE, verify, cm)) != 0) { FreeDecodedCert(cert); XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); FreeDer(&der); return ret; } WOLFSSL_MSG("\tParsed new trusted peer cert"); peerCert = (TrustedPeerCert*)XMALLOC(sizeof(TrustedPeerCert), cm->heap, DYNAMIC_TYPE_CERT); if (peerCert == NULL) { FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeDer(&der); return MEMORY_E; } XMEMSET(peerCert, 0, sizeof(TrustedPeerCert)); #ifndef IGNORE_NAME_CONSTRAINTS if (peerCert->permittedNames) FreeNameSubtrees(peerCert->permittedNames, cm->heap); if (peerCert->excludedNames) FreeNameSubtrees(peerCert->excludedNames, cm->heap); #endif if (AlreadyTrustedPeer(cm, cert)) { WOLFSSL_MSG("\tAlready have this CA, not adding again"); FreeTrustedPeer(peerCert, cm->heap); (void)ret; } else { /* add trusted peer signature */ peerCert->sigLen = cert->sigLength; peerCert->sig = (byte *)XMALLOC(cert->sigLength, cm->heap, DYNAMIC_TYPE_SIGNATURE); if (peerCert->sig == NULL) { FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeTrustedPeer(peerCert, cm->heap); FreeDer(&der); return MEMORY_E; } XMEMCPY(peerCert->sig, cert->signature, cert->sigLength); /* add trusted peer name */ peerCert->nameLen = cert->subjectCNLen; peerCert->name = cert->subjectCN; #ifndef IGNORE_NAME_CONSTRAINTS peerCert->permittedNames = cert->permittedNames; peerCert->excludedNames = cert->excludedNames; #endif /* add SKID when available and hash of name */ #ifndef NO_SKID XMEMCPY(peerCert->subjectKeyIdHash, cert->extSubjKeyId, SIGNER_DIGEST_SIZE); #endif XMEMCPY(peerCert->subjectNameHash, cert->subjectHash, SIGNER_DIGEST_SIZE); /* If Key Usage not set, all uses valid. */ peerCert->next = NULL; cert->subjectCN = 0; #ifndef IGNORE_NAME_CONSTRAINTS cert->permittedNames = NULL; cert->excludedNames = NULL; #endif row = TrustedPeerHashSigner(peerCert->subjectNameHash); if (wc_LockMutex(&cm->tpLock) == 0) { peerCert->next = cm->tpTable[row]; cm->tpTable[row] = peerCert; /* takes ownership */ wc_UnLockMutex(&cm->tpLock); } else { WOLFSSL_MSG("\tTrusted Peer Cert Mutex Lock failed"); FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeTrustedPeer(peerCert, cm->heap); FreeDer(&der); return BAD_MUTEX_E; } } WOLFSSL_MSG("\tFreeing parsed trusted peer cert"); FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); WOLFSSL_MSG("\tFreeing der trusted peer cert"); FreeDer(&der); WOLFSSL_MSG("\t\tOK Freeing der trusted peer cert"); WOLFSSL_LEAVE("AddTrustedPeer", ret); return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* owns der, internal now uses too */ /* type flag ids from user or from chain received during verify don't allow chain ones to be added w/o isCA extension */ int AddCA(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int type, int verify) { int ret; Signer* signer = NULL; word32 row; byte* subjectHash; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif DerBuffer* der = *pDer; WOLFSSL_MSG("Adding a CA"); if (cm == NULL) { FreeDer(pDer); return BAD_FUNC_ARG; } #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) { FreeDer(pDer); return MEMORY_E; } #endif InitDecodedCert(cert, der->buffer, der->length, cm->heap); ret = ParseCert(cert, CA_TYPE, verify, cm); WOLFSSL_MSG("\tParsed new CA"); #ifndef NO_SKID subjectHash = cert->extSubjKeyId; #else subjectHash = cert->subjectHash; #endif /* check CA key size */ if (verify) { switch (cert->keyOID) { #ifndef NO_RSA #ifdef WC_RSA_PSS case RSAPSSk: #endif case RSAk: if (cm->minRsaKeySz < 0 || cert->pubKeySize < (word16)cm->minRsaKeySz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("\tCA RSA key size error"); } break; #endif /* !NO_RSA */ #ifdef HAVE_ECC case ECDSAk: if (cm->minEccKeySz < 0 || cert->pubKeySize < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 case ED25519k: if (cm->minEccKeySz < 0 || ED25519_KEY_SIZE < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ED25519 */ #ifdef HAVE_ED448 case ED448k: if (cm->minEccKeySz < 0 || ED448_KEY_SIZE < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ED448 */ #if defined(HAVE_PQC) #if defined(HAVE_FALCON) case FALCON_LEVEL1k: if (cm->minFalconKeySz < 0 || FALCON_LEVEL1_KEY_SIZE < (word16)cm->minFalconKeySz) { ret = FALCON_KEY_SIZE_E; WOLFSSL_MSG("\tCA Falcon level 1 key size error"); } break; case FALCON_LEVEL5k: if (cm->minFalconKeySz < 0 || FALCON_LEVEL5_KEY_SIZE < (word16)cm->minFalconKeySz) { ret = FALCON_KEY_SIZE_E; WOLFSSL_MSG("\tCA Falcon level 5 key size error"); } break; #endif /* HAVE_FALCON */ #if defined(HAVE_DILITHIUM) case DILITHIUM_LEVEL2k: if (cm->minDilithiumKeySz < 0 || DILITHIUM_LEVEL2_KEY_SIZE < (word16)cm->minDilithiumKeySz) { ret = DILITHIUM_KEY_SIZE_E; WOLFSSL_MSG("\tCA Dilithium level 2 key size error"); } break; case DILITHIUM_LEVEL3k: if (cm->minDilithiumKeySz < 0 || DILITHIUM_LEVEL3_KEY_SIZE < (word16)cm->minDilithiumKeySz) { ret = DILITHIUM_KEY_SIZE_E; WOLFSSL_MSG("\tCA Dilithium level 3 key size error"); } break; case DILITHIUM_LEVEL5k: if (cm->minDilithiumKeySz < 0 || DILITHIUM_LEVEL5_KEY_SIZE < (word16)cm->minDilithiumKeySz) { ret = DILITHIUM_KEY_SIZE_E; WOLFSSL_MSG("\tCA Dilithium level 5 key size error"); } break; #endif /* HAVE_DILITHIUM */ #endif /* HAVE_PQC */ default: WOLFSSL_MSG("\tNo key size check done on CA"); break; /* no size check if key type is not in switch */ } } if (ret == 0 && cert->isCA == 0 && type != WOLFSSL_USER_CA) { WOLFSSL_MSG("\tCan't add as CA if not actually one"); ret = NOT_CA_ERROR; } #ifndef ALLOW_INVALID_CERTSIGN else if (ret == 0 && cert->isCA == 1 && type != WOLFSSL_USER_CA && !cert->selfSigned && (cert->extKeyUsage & KEYUSE_KEY_CERT_SIGN) == 0) { /* Intermediate CA certs are required to have the keyCertSign * extension set. User loaded root certs are not. */ WOLFSSL_MSG("\tDoesn't have key usage certificate signing"); ret = NOT_CA_ERROR; } #endif else if (ret == 0 && AlreadySigner(cm, subjectHash)) { WOLFSSL_MSG("\tAlready have this CA, not adding again"); (void)ret; } else if (ret == 0) { /* take over signer parts */ signer = MakeSigner(cm->heap); if (!signer) ret = MEMORY_ERROR; } #if defined(WOLFSSL_AKID_NAME) || defined(HAVE_CRL) if (ret == 0 && signer != NULL) ret = CalcHashId(cert->serial, cert->serialSz, signer->serialHash); #endif if (ret == 0 && signer != NULL) { #ifdef WOLFSSL_SIGNER_DER_CERT ret = AllocDer(&signer->derCert, der->length, der->type, NULL); } if (ret == 0 && signer != NULL) { XMEMCPY(signer->derCert->buffer, der->buffer, der->length); #endif signer->keyOID = cert->keyOID; if (cert->pubKeyStored) { signer->publicKey = cert->publicKey; signer->pubKeySize = cert->pubKeySize; } #ifdef WOLFSSL_DUAL_ALG_CERTS if (cert->extSapkiSet && cert->sapkiLen > 0) { /* Allocated space for alternative public key. */ signer->sapkiDer = (byte*)XMALLOC(cert->sapkiLen, cm->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (signer->sapkiDer == NULL) { ret = MEMORY_E; } else { XMEMCPY(signer->sapkiDer, cert->sapkiDer, cert->sapkiLen); signer->sapkiLen = cert->sapkiLen; signer->sapkiOID = cert->sapkiOID; } } #endif /* WOLFSSL_DUAL_ALG_CERTS */ if (cert->subjectCNStored) { signer->nameLen = cert->subjectCNLen; signer->name = cert->subjectCN; } signer->maxPathLen = cert->maxPathLen; signer->selfSigned = cert->selfSigned; #ifndef IGNORE_NAME_CONSTRAINTS signer->permittedNames = cert->permittedNames; signer->excludedNames = cert->excludedNames; #endif #ifndef NO_SKID XMEMCPY(signer->subjectKeyIdHash, cert->extSubjKeyId, SIGNER_DIGEST_SIZE); #endif XMEMCPY(signer->subjectNameHash, cert->subjectHash, SIGNER_DIGEST_SIZE); #if defined(HAVE_OCSP) || defined(HAVE_CRL) XMEMCPY(signer->issuerNameHash, cert->issuerHash, SIGNER_DIGEST_SIZE); #endif #ifdef HAVE_OCSP XMEMCPY(signer->subjectKeyHash, cert->subjectKeyHash, KEYID_SIZE); #endif signer->keyUsage = cert->extKeyUsageSet ? cert->extKeyUsage : 0xFFFF; signer->next = NULL; /* If Key Usage not set, all uses valid. */ cert->publicKey = 0; /* in case lock fails don't free here. */ cert->subjectCN = 0; #ifndef IGNORE_NAME_CONSTRAINTS cert->permittedNames = NULL; cert->excludedNames = NULL; #endif signer->type = (byte)type; #ifndef NO_SKID row = HashSigner(signer->subjectKeyIdHash); #else row = HashSigner(signer->subjectNameHash); #endif if (wc_LockMutex(&cm->caLock) == 0) { signer->next = cm->caTable[row]; cm->caTable[row] = signer; /* takes ownership */ wc_UnLockMutex(&cm->caLock); if (cm->caCacheCallback) cm->caCacheCallback(der->buffer, (int)der->length, type); } else { WOLFSSL_MSG("\tCA Mutex Lock failed"); ret = BAD_MUTEX_E; } } #if defined(WOLFSSL_RENESAS_TSIP_TLS) || defined(WOLFSSL_RENESAS_FSPSM_TLS) /* Verify CA by TSIP so that generated tsip key is going to be able to */ /* be used for peer's cert verification */ /* TSIP is only able to handle USER CA, and only one CA. */ /* Therefore, it doesn't need to call TSIP again if there is already */ /* verified CA. */ if ( ret == 0 && signer != NULL ) { signer->cm_idx = row; if (type == WOLFSSL_USER_CA) { if ((ret = wc_Renesas_cmn_RootCertVerify(cert->source, cert->maxIdx, cert->sigCtx.CertAtt.pubkey_n_start, cert->sigCtx.CertAtt.pubkey_n_len - 1, cert->sigCtx.CertAtt.pubkey_e_start, cert->sigCtx.CertAtt.pubkey_e_len - 1, row/* cm index */)) < 0) WOLFSSL_MSG("Renesas_RootCertVerify() failed"); else WOLFSSL_MSG("Renesas_RootCertVerify() succeed or skipped"); } } #endif /* TSIP or SCE */ WOLFSSL_MSG("\tFreeing Parsed CA"); FreeDecodedCert(cert); if (ret != 0 && signer != NULL) FreeSigner(signer, cm->heap); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif WOLFSSL_MSG("\tFreeing der CA"); FreeDer(pDer); WOLFSSL_MSG("\t\tOK Freeing der CA"); WOLFSSL_LEAVE("AddCA", ret); return ret == 0 ? WOLFSSL_SUCCESS : ret; } #endif /* !NO_CERTS */ #if defined(OPENSSL_EXTRA) && !defined(WOLFSSL_NO_OPENSSL_RAND_CB) static int wolfSSL_RAND_InitMutex(void); #endif #if defined(OPENSSL_EXTRA) && defined(HAVE_ATEXIT) static void AtExitCleanup(void) { if (initRefCount > 0) { initRefCount = 1; (void)wolfSSL_Cleanup(); } } #endif WOLFSSL_ABI int wolfSSL_Init(void) { int ret = WOLFSSL_SUCCESS; #if !defined(NO_SESSION_CACHE) && defined(ENABLE_SESSION_CACHE_ROW_LOCK) int i; #endif WOLFSSL_ENTER("wolfSSL_Init"); #ifndef WOLFSSL_MUTEX_INITIALIZER if (inits_count_mutex_valid == 0) { if (wc_InitMutex(&inits_count_mutex) != 0) { WOLFSSL_MSG("Bad Init Mutex count"); return BAD_MUTEX_E; } else { inits_count_mutex_valid = 1; } } #endif /* !WOLFSSL_MUTEX_INITIALIZER */ if (wc_LockMutex(&inits_count_mutex) != 0) { WOLFSSL_MSG("Bad Lock Mutex count"); return BAD_MUTEX_E; } #if FIPS_VERSION_GE(5,1) if ((ret == WOLFSSL_SUCCESS) && (initRefCount == 0)) { ret = wolfCrypt_SetPrivateKeyReadEnable_fips(1, WC_KEYTYPE_ALL); if (ret == 0) ret = WOLFSSL_SUCCESS; } #endif if ((ret == WOLFSSL_SUCCESS) && (initRefCount == 0)) { /* Initialize crypto for use with TLS connection */ if (wolfCrypt_Init() != 0) { WOLFSSL_MSG("Bad wolfCrypt Init"); ret = WC_INIT_E; } #if defined(HAVE_GLOBAL_RNG) && !defined(WOLFSSL_MUTEX_INITIALIZER) if (ret == WOLFSSL_SUCCESS) { if (wc_InitMutex(&globalRNGMutex) != 0) { WOLFSSL_MSG("Bad Init Mutex rng"); ret = BAD_MUTEX_E; } else { globalRNGMutex_valid = 1; } } #endif #ifdef WC_RNG_SEED_CB wc_SetSeed_Cb(wc_GenerateSeed); #endif #ifdef OPENSSL_EXTRA #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if ((ret == WOLFSSL_SUCCESS) && (wolfSSL_RAND_InitMutex() != 0)) { ret = BAD_MUTEX_E; } #endif if ((ret == WOLFSSL_SUCCESS) && (wolfSSL_RAND_seed(NULL, 0) != WOLFSSL_SUCCESS)) { WOLFSSL_MSG("wolfSSL_RAND_seed failed"); ret = WC_INIT_E; } #endif #ifndef NO_SESSION_CACHE #ifdef ENABLE_SESSION_CACHE_ROW_LOCK for (i = 0; i < SESSION_ROWS; ++i) { SessionCache[i].lock_valid = 0; } for (i = 0; (ret == WOLFSSL_SUCCESS) && (i < SESSION_ROWS); ++i) { if (wc_InitRwLock(&SessionCache[i].row_lock) != 0) { WOLFSSL_MSG("Bad Init Mutex session"); ret = BAD_MUTEX_E; } else { SessionCache[i].lock_valid = 1; } } #else if (ret == WOLFSSL_SUCCESS) { if (wc_InitRwLock(&session_lock) != 0) { WOLFSSL_MSG("Bad Init Mutex session"); ret = BAD_MUTEX_E; } else { session_lock_valid = 1; } } #endif #ifndef NO_CLIENT_CACHE #ifndef WOLFSSL_MUTEX_INITIALIZER if (ret == WOLFSSL_SUCCESS) { if (wc_InitMutex(&clisession_mutex) != 0) { WOLFSSL_MSG("Bad Init Mutex session"); ret = BAD_MUTEX_E; } else { clisession_mutex_valid = 1; } } #endif #endif #endif #if defined(OPENSSL_EXTRA) && defined(HAVE_ATEXIT) /* OpenSSL registers cleanup using atexit */ if ((ret == WOLFSSL_SUCCESS) && (atexit(AtExitCleanup) != 0)) { WOLFSSL_MSG("Bad atexit registration"); ret = WC_INIT_E; } #endif } if (ret == WOLFSSL_SUCCESS) { initRefCount++; } else { initRefCount = 1; /* Force cleanup */ } wc_UnLockMutex(&inits_count_mutex); if (ret != WOLFSSL_SUCCESS) { (void)wolfSSL_Cleanup(); /* Ignore any error from cleanup */ } return ret; } #define WOLFSSL_SSL_LOAD_INCLUDED #include #ifndef NO_CERTS #ifdef HAVE_CRL int wolfSSL_CTX_LoadCRLBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRLBuffer"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, buff, sz, type); } int wolfSSL_LoadCRLBuffer(WOLFSSL* ssl, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_LoadCRLBuffer"); if (ssl == NULL || ssl->ctx == NULL) return BAD_FUNC_ARG; SSL_CM_WARNING(ssl); return wolfSSL_CertManagerLoadCRLBuffer(SSL_CM(ssl), buff, sz, type); } #endif /* HAVE_CRL */ #ifdef HAVE_OCSP int wolfSSL_EnableOCSP(WOLFSSL* ssl, int options) { WOLFSSL_ENTER("wolfSSL_EnableOCSP"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerEnableOCSP(SSL_CM(ssl), options); } else return BAD_FUNC_ARG; } int wolfSSL_DisableOCSP(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableOCSP"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerDisableOCSP(SSL_CM(ssl)); } else return BAD_FUNC_ARG; } int wolfSSL_EnableOCSPStapling(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_EnableOCSPStapling"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerEnableOCSPStapling(SSL_CM(ssl)); } else return BAD_FUNC_ARG; } int wolfSSL_DisableOCSPStapling(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableOCSPStapling"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerDisableOCSPStapling(SSL_CM(ssl)); } else return BAD_FUNC_ARG; } int wolfSSL_SetOCSP_OverrideURL(WOLFSSL* ssl, const char* url) { WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerSetOCSPOverrideURL(SSL_CM(ssl), url); } else return BAD_FUNC_ARG; } int wolfSSL_SetOCSP_Cb(WOLFSSL* ssl, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_SetOCSP_Cb"); if (ssl) { SSL_CM_WARNING(ssl); ssl->ocspIOCtx = ioCbCtx; /* use SSL specific ioCbCtx */ return wolfSSL_CertManagerSetOCSP_Cb(SSL_CM(ssl), ioCb, respFreeCb, NULL); } else return BAD_FUNC_ARG; } int wolfSSL_CTX_EnableOCSP(WOLFSSL_CTX* ctx, int options) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSP"); if (ctx) return wolfSSL_CertManagerEnableOCSP(ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSP(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSP"); if (ctx) return wolfSSL_CertManagerDisableOCSP(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_SetOCSP_OverrideURL(WOLFSSL_CTX* ctx, const char* url) { WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL"); if (ctx) return wolfSSL_CertManagerSetOCSPOverrideURL(ctx->cm, url); else return BAD_FUNC_ARG; } int wolfSSL_CTX_SetOCSP_Cb(WOLFSSL_CTX* ctx, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_CTX_SetOCSP_Cb"); if (ctx) return wolfSSL_CertManagerSetOCSP_Cb(ctx->cm, ioCb, respFreeCb, ioCbCtx); else return BAD_FUNC_ARG; } #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) int wolfSSL_CTX_EnableOCSPStapling(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPStapling"); if (ctx) return wolfSSL_CertManagerEnableOCSPStapling(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSPStapling(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPStapling"); if (ctx) return wolfSSL_CertManagerDisableOCSPStapling(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_EnableOCSPMustStaple(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPMustStaple"); if (ctx) return wolfSSL_CertManagerEnableOCSPMustStaple(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSPMustStaple(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPMustStaple"); if (ctx) return wolfSSL_CertManagerDisableOCSPMustStaple(ctx->cm); else return BAD_FUNC_ARG; } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST || \ * HAVE_CERTIFICATE_STATUS_REQUEST_V2 */ #endif /* HAVE_OCSP */ #ifdef HAVE_CRL int wolfSSL_EnableCRL(WOLFSSL* ssl, int options) { WOLFSSL_ENTER("wolfSSL_EnableCRL"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerEnableCRL(SSL_CM(ssl), options); } else return BAD_FUNC_ARG; } int wolfSSL_DisableCRL(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableCRL"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerDisableCRL(SSL_CM(ssl)); } else return BAD_FUNC_ARG; } #ifndef NO_FILESYSTEM int wolfSSL_LoadCRL(WOLFSSL* ssl, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_LoadCRL"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerLoadCRL(SSL_CM(ssl), path, type, monitor); } else return BAD_FUNC_ARG; } int wolfSSL_LoadCRLFile(WOLFSSL* ssl, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_LoadCRLFile"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerLoadCRLFile(SSL_CM(ssl), file, type); } else return BAD_FUNC_ARG; } #endif int wolfSSL_SetCRL_Cb(WOLFSSL* ssl, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_SetCRL_Cb"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerSetCRL_Cb(SSL_CM(ssl), cb); } else return BAD_FUNC_ARG; } #ifdef HAVE_CRL_IO int wolfSSL_SetCRL_IOCb(WOLFSSL* ssl, CbCrlIO cb) { WOLFSSL_ENTER("wolfSSL_SetCRL_Cb"); if (ssl) { SSL_CM_WARNING(ssl); return wolfSSL_CertManagerSetCRL_IOCb(SSL_CM(ssl), cb); } else return BAD_FUNC_ARG; } #endif int wolfSSL_CTX_EnableCRL(WOLFSSL_CTX* ctx, int options) { WOLFSSL_ENTER("wolfSSL_CTX_EnableCRL"); if (ctx) return wolfSSL_CertManagerEnableCRL(ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableCRL(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableCRL"); if (ctx) return wolfSSL_CertManagerDisableCRL(ctx->cm); else return BAD_FUNC_ARG; } #ifndef NO_FILESYSTEM int wolfSSL_CTX_LoadCRL(WOLFSSL_CTX* ctx, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL"); if (ctx) return wolfSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor); else return BAD_FUNC_ARG; } int wolfSSL_CTX_LoadCRLFile(WOLFSSL_CTX* ctx, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL"); if (ctx) return wolfSSL_CertManagerLoadCRLFile(ctx->cm, file, type); else return BAD_FUNC_ARG; } #endif int wolfSSL_CTX_SetCRL_Cb(WOLFSSL_CTX* ctx, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_Cb"); if (ctx) return wolfSSL_CertManagerSetCRL_Cb(ctx->cm, cb); else return BAD_FUNC_ARG; } #ifdef HAVE_CRL_IO int wolfSSL_CTX_SetCRL_IOCb(WOLFSSL_CTX* ctx, CbCrlIO cb) { WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_IOCb"); if (ctx) return wolfSSL_CertManagerSetCRL_IOCb(ctx->cm, cb); else return BAD_FUNC_ARG; } #endif #endif /* HAVE_CRL */ /* Sets the max chain depth when verifying a certificate chain. Default depth * is set to MAX_CHAIN_DEPTH. * * ctx WOLFSSL_CTX structure to set depth in * depth max depth */ void wolfSSL_CTX_set_verify_depth(WOLFSSL_CTX *ctx, int depth) { WOLFSSL_ENTER("wolfSSL_CTX_set_verify_depth"); if (ctx == NULL || depth < 0 || depth > MAX_CHAIN_DEPTH) { WOLFSSL_MSG("Bad depth argument, too large or less than 0"); return; } ctx->verifyDepth = (byte)depth; } /* get cert chaining depth using ssl struct */ long wolfSSL_get_verify_depth(WOLFSSL* ssl) { if(ssl == NULL) { return BAD_FUNC_ARG; } #ifndef OPENSSL_EXTRA return MAX_CHAIN_DEPTH; #else return ssl->options.verifyDepth; #endif } /* get cert chaining depth using ctx struct */ long wolfSSL_CTX_get_verify_depth(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return BAD_FUNC_ARG; } #ifndef OPENSSL_EXTRA return MAX_CHAIN_DEPTH; #else return ctx->verifyDepth; #endif } #ifndef NO_CHECK_PRIVATE_KEY #ifdef WOLF_PRIVATE_KEY_ID /* Check private against public in certificate for match using external * device with given devId */ static int check_cert_key_dev(word32 keyOID, byte* privKey, word32 privSz, const byte* pubKey, word32 pubSz, int label, int id, void* heap, int devId) { int ret = 0; int type = 0; void *pkey = NULL; if (privKey == NULL) { return MISSING_KEY; } #ifndef NO_RSA if (keyOID == RSAk) { type = DYNAMIC_TYPE_RSA; } #ifdef WC_RSA_PSS if (keyOID == RSAPSSk) { type = DYNAMIC_TYPE_RSA; } #endif #endif #ifdef HAVE_ECC if (keyOID == ECDSAk) { type = DYNAMIC_TYPE_ECC; } #endif #if defined(HAVE_PQC) && defined(HAVE_DILITHIUM) if ((keyOID == DILITHIUM_LEVEL2k) || (keyOID == DILITHIUM_LEVEL3k) || (keyOID == DILITHIUM_LEVEL5k)) { type = DYNAMIC_TYPE_DILITHIUM; } #endif #if defined(HAVE_PQC) && defined(HAVE_FALCON) if ((keyOID == FALCON_LEVEL1k) || (keyOID == FALCON_LEVEL5k)) { type = DYNAMIC_TYPE_FALCON; } #endif ret = CreateDevPrivateKey(&pkey, privKey, privSz, type, label, id, heap, devId); #ifdef WOLF_CRYPTO_CB if (ret == 0) { #ifndef NO_RSA if (keyOID == RSAk #ifdef WC_RSA_PSS || keyOID == RSAPSSk #endif ) { ret = wc_CryptoCb_RsaCheckPrivKey((RsaKey*)pkey, pubKey, pubSz); } #endif #ifdef HAVE_ECC if (keyOID == ECDSAk) { ret = wc_CryptoCb_EccCheckPrivKey((ecc_key*)pkey, pubKey, pubSz); } #endif #if defined(HAVE_PQC) && defined(HAVE_DILITHIUM) if ((keyOID == DILITHIUM_LEVEL2k) || (keyOID == DILITHIUM_LEVEL3k) || (keyOID == DILITHIUM_LEVEL5k)) { ret = wc_CryptoCb_PqcSignatureCheckPrivKey(pkey, WC_PQC_SIG_TYPE_DILITHIUM, pubKey, pubSz); } #endif #if defined(HAVE_PQC) && defined(HAVE_FALCON) if ((keyOID == FALCON_LEVEL1k) || (keyOID == FALCON_LEVEL5k)) { ret = wc_CryptoCb_PqcSignatureCheckPrivKey(pkey, WC_PQC_SIG_TYPE_FALCON, pubKey, pubSz); } #endif } #else /* devId was set, don't check, for now */ /* TODO: Add callback for private key check? */ (void) pubKey; (void) pubSz; #endif if (pkey != NULL) { #ifndef NO_RSA if (keyOID == RSAk #ifdef WC_RSA_PSS || keyOID == RSAPSSk #endif ) { wc_FreeRsaKey((RsaKey*)pkey); } #endif #ifdef HAVE_ECC if (keyOID == ECDSAk) { wc_ecc_free((ecc_key*)pkey); } #endif #if defined(HAVE_PQC) && defined(HAVE_DILITHIUM) if ((keyOID == DILITHIUM_LEVEL2k) || (keyOID == DILITHIUM_LEVEL3k) || (keyOID == DILITHIUM_LEVEL5k)) { wc_dilithium_free((dilithium_key*)pkey); } #endif #if defined(HAVE_PQC) && defined(HAVE_FALCON) if ((keyOID == FALCON_LEVEL1k) || (keyOID == FALCON_LEVEL5k)) { wc_falcon_free((falcon_key*)pkey); } #endif XFREE(pkey, heap, type); } return ret; } #endif /* WOLF_PRIVATE_KEY_ID */ /* Check private against public in certificate for match * * Returns WOLFSSL_SUCCESS on good private key * WOLFSSL_FAILURE if mismatched */ static int check_cert_key(DerBuffer* cert, DerBuffer* key, DerBuffer* altKey, void* heap, int devId, int isKeyLabel, int isKeyId, int altDevId, int isAltKeyLabel, int isAltKeyId) { #ifdef WOLFSSL_SMALL_STACK DecodedCert* der = NULL; #else DecodedCert der[1]; #endif word32 size; byte* buff; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("check_cert_key"); if (cert == NULL || key == NULL) { return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK der = (DecodedCert*)XMALLOC(sizeof(DecodedCert), heap, DYNAMIC_TYPE_DCERT); if (der == NULL) return MEMORY_E; #endif size = cert->length; buff = cert->buffer; InitDecodedCert_ex(der, buff, size, heap, devId); if (ParseCertRelative(der, CERT_TYPE, NO_VERIFY, NULL) != 0) { FreeDecodedCert(der); #ifdef WOLFSSL_SMALL_STACK XFREE(der, heap, DYNAMIC_TYPE_DCERT); #endif return WOLFSSL_FAILURE; } size = key->length; buff = key->buffer; #ifdef WOLF_PRIVATE_KEY_ID if (devId != INVALID_DEVID) { ret = check_cert_key_dev(der->keyOID, buff, size, der->publicKey, der->pubKeySize, isKeyLabel, isKeyId, heap, devId); if (ret != CRYPTOCB_UNAVAILABLE) { ret = (ret == 0) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE; } } else { /* fall through if unavailable */ ret = CRYPTOCB_UNAVAILABLE; } if (ret == CRYPTOCB_UNAVAILABLE) #endif /* WOLF_PRIVATE_KEY_ID */ { ret = wc_CheckPrivateKeyCert(buff, size, der, 0); ret = (ret == 1) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE; } #ifdef WOLFSSL_DUAL_ALG_CERTS if (ret == WOLFSSL_SUCCESS && der->extSapkiSet && der->sapkiDer != NULL) { /* Certificate contains an alternative public key. Hence, we also * need an alternative private key. */ if (altKey == NULL) { ret = MISSING_KEY; buff = NULL; size = 0; } else { size = altKey->length; buff = altKey->buffer; } #ifdef WOLF_PRIVATE_KEY_ID if (ret == WOLFSSL_SUCCESS && altDevId != INVALID_DEVID) { /* We have to decode the public key first */ word32 idx = 0; /* Dilithium has the largest public key at the moment */ word32 pubKeyLen = DILITHIUM_MAX_PUB_KEY_SIZE; byte* decodedPubKey = (byte*)XMALLOC(pubKeyLen, heap, DYNAMIC_TYPE_PUBLIC_KEY); if (decodedPubKey == NULL) { ret = MEMORY_E; } if (ret == WOLFSSL_SUCCESS) { if (der->sapkiOID == RSAk || der->sapkiOID == ECDSAk) { /* Simply copy the data */ XMEMCPY(decodedPubKey, der->sapkiDer, der->sapkiLen); pubKeyLen = der->sapkiLen; ret = 0; } else { ret = DecodeAsymKeyPublic(der->sapkiDer, &idx, der->sapkiLen, decodedPubKey, &pubKeyLen, der->sapkiOID); } } if (ret == 0) { ret = check_cert_key_dev(der->sapkiOID, buff, size, decodedPubKey, pubKeyLen, isAltKeyLabel, isAltKeyId, heap, altDevId); } XFREE(decodedPubKey, heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ret != CRYPTOCB_UNAVAILABLE) { ret = (ret == 0) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE; } } else { /* fall through if unavailable */ ret = CRYPTOCB_UNAVAILABLE; } if (ret == CRYPTOCB_UNAVAILABLE) #endif /* WOLF_PRIVATE_KEY_ID */ { ret = wc_CheckPrivateKeyCert(buff, size, der, 1); ret = (ret == 1) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE; } } #endif /* WOLFSSL_DUAL_ALG_CERTS */ FreeDecodedCert(der); #ifdef WOLFSSL_SMALL_STACK XFREE(der, heap, DYNAMIC_TYPE_DCERT); #endif (void)devId; (void)isKeyLabel; (void)isKeyId; (void)altKey; (void)altDevId; (void)isAltKeyLabel; (void)isAltKeyId; return ret; } /* Check private against public in certificate for match * * ctx WOLFSSL_CTX structure to check private key in * * Returns WOLFSSL_SUCCESS on good private key * WOLFSSL_FAILURE if mismatched. */ int wolfSSL_CTX_check_private_key(const WOLFSSL_CTX* ctx) { if (ctx == NULL) { return WOLFSSL_FAILURE; } #ifdef WOLFSSL_DUAL_ALG_CERTS return check_cert_key(ctx->certificate, ctx->privateKey, ctx->altPrivateKey, ctx->heap, ctx->privateKeyDevId, ctx->privateKeyLabel, ctx->privateKeyId, ctx->altPrivateKeyDevId, ctx->altPrivateKeyLabel, ctx->altPrivateKeyId); #else return check_cert_key(ctx->certificate, ctx->privateKey, NULL, ctx->heap, ctx->privateKeyDevId, ctx->privateKeyLabel, ctx->privateKeyId, INVALID_DEVID, 0, 0); #endif } #endif /* !NO_CHECK_PRIVATE_KEY */ #ifdef OPENSSL_ALL /** * Return the private key of the WOLFSSL_CTX struct * @return WOLFSSL_EVP_PKEY* The caller doesn *NOT*` free the returned object. */ WOLFSSL_EVP_PKEY* wolfSSL_CTX_get0_privatekey(const WOLFSSL_CTX* ctx) { const unsigned char *key; int type; WOLFSSL_ENTER("wolfSSL_CTX_get0_privatekey"); if (ctx == NULL || ctx->privateKey == NULL || ctx->privateKey->buffer == NULL) { WOLFSSL_MSG("Bad parameter or key not set"); return NULL; } switch (ctx->privateKeyType) { #ifndef NO_RSA case rsa_sa_algo: type = EVP_PKEY_RSA; break; #endif #ifdef HAVE_ECC case ecc_dsa_sa_algo: type = EVP_PKEY_EC; break; #endif #ifdef WOLFSSL_SM2 case sm2_sa_algo: type = EVP_PKEY_EC; break; #endif default: /* Other key types not supported either as ssl private keys * or in the EVP layer */ WOLFSSL_MSG("Unsupported key type"); return NULL; } key = ctx->privateKey->buffer; if (ctx->privateKeyPKey != NULL) return ctx->privateKeyPKey; else return wolfSSL_d2i_PrivateKey(type, (WOLFSSL_EVP_PKEY**)&ctx->privateKeyPKey, &key, (long)ctx->privateKey->length); } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) #if !defined(NO_RSA) static int d2iTryRsaKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem, long memSz, int priv) { WOLFSSL_EVP_PKEY* pkey; word32 keyIdx = 0; int isRsaKey; int ret = 1; #ifndef WOLFSSL_SMALL_STACK RsaKey rsa[1]; #else RsaKey *rsa = (RsaKey*)XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA); if (rsa == NULL) return 0; #endif XMEMSET(rsa, 0, sizeof(RsaKey)); if (wc_InitRsaKey(rsa, NULL) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(rsa, NULL, DYNAMIC_TYPE_RSA); #endif return 0; } /* test if RSA key */ if (priv) { isRsaKey = (wc_RsaPrivateKeyDecode(mem, &keyIdx, rsa, (word32)memSz) == 0); } else { isRsaKey = (wc_RsaPublicKeyDecode(mem, &keyIdx, rsa, (word32)memSz) == 0); } wc_FreeRsaKey(rsa); #ifdef WOLFSSL_SMALL_STACK XFREE(rsa, NULL, DYNAMIC_TYPE_RSA); #endif if (!isRsaKey) { return -1; } if (*out != NULL) { pkey = *out; } else { pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { WOLFSSL_MSG("RSA wolfSSL_EVP_PKEY_new error"); return 0; } } pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { ret = 0; } if (ret == 1) { XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_RSA; pkey->ownRsa = 1; pkey->rsa = wolfssl_rsa_d2i(NULL, mem, memSz, priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC); if (pkey->rsa == NULL) { ret = 0; } } if (ret == 1) { *out = pkey; } if ((ret == 0) && (*out == NULL)) { wolfSSL_EVP_PKEY_free(pkey); } return ret; } #endif /* !NO_RSA */ #if defined(HAVE_ECC) && defined(OPENSSL_EXTRA) static int d2iTryEccKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem, long memSz, int priv) { WOLFSSL_EVP_PKEY* pkey; word32 keyIdx = 0; int isEccKey; int ret = 1; #ifndef WOLFSSL_SMALL_STACK ecc_key ecc[1]; #else ecc_key *ecc = (ecc_key*)XMALLOC(sizeof(ecc_key), NULL, DYNAMIC_TYPE_ECC); if (ecc == NULL) return 0; #endif XMEMSET(ecc, 0, sizeof(ecc_key)); if (wc_ecc_init(ecc) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(ecc, NULL, DYNAMIC_TYPE_ECC); #endif return 0; } if (priv) { isEccKey = (wc_EccPrivateKeyDecode(mem, &keyIdx, ecc, (word32)memSz) == 0); } else { isEccKey = (wc_EccPublicKeyDecode(mem, &keyIdx, ecc, (word32)memSz) == 0); } wc_ecc_free(ecc); #ifdef WOLFSSL_SMALL_STACK XFREE(ecc, NULL, DYNAMIC_TYPE_ECC); #endif if (!isEccKey) { return -1; } if (*out != NULL) { pkey = *out; } else { pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { WOLFSSL_MSG("ECC wolfSSL_EVP_PKEY_new error"); return 0; } } pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(keyIdx, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { ret = 0; } if (ret == 1) { XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_EC; pkey->ownEcc = 1; pkey->ecc = wolfSSL_EC_KEY_new(); if (pkey->ecc == NULL) { ret = 0; } } if ((ret == 1) && (wolfSSL_EC_KEY_LoadDer_ex(pkey->ecc, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC) != 1)) { ret = 0; } if (ret == 1) { *out = pkey; } if ((ret == 0) && (*out == NULL)) { wolfSSL_EVP_PKEY_free(pkey); } return ret; } #endif /* HAVE_ECC && OPENSSL_EXTRA */ #if !defined(NO_DSA) static int d2iTryDsaKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem, long memSz, int priv) { WOLFSSL_EVP_PKEY* pkey; word32 keyIdx = 0; int isDsaKey; int ret = 1; #ifndef WOLFSSL_SMALL_STACK DsaKey dsa[1]; #else DsaKey *dsa = (DsaKey*)XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA); if (dsa == NULL) return 0; #endif XMEMSET(dsa, 0, sizeof(DsaKey)); if (wc_InitDsaKey(dsa) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(dsa, NULL, DYNAMIC_TYPE_DSA); #endif return 0; } if (priv) { isDsaKey = (wc_DsaPrivateKeyDecode(mem, &keyIdx, dsa, (word32)memSz) == 0); } else { isDsaKey = (wc_DsaPublicKeyDecode(mem, &keyIdx, dsa, (word32)memSz) == 0); } wc_FreeDsaKey(dsa); #ifdef WOLFSSL_SMALL_STACK XFREE(dsa, NULL, DYNAMIC_TYPE_DSA); #endif /* test if DSA key */ if (!isDsaKey) { return -1; } if (*out != NULL) { pkey = *out; } else { pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { WOLFSSL_MSG("DSA wolfSSL_EVP_PKEY_new error"); return 0; } } pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { ret = 0; } if (ret == 1) { XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_DSA; pkey->ownDsa = 1; pkey->dsa = wolfSSL_DSA_new(); if (pkey->dsa == NULL) { ret = 0; } } if ((ret == 1) && (wolfSSL_DSA_LoadDer_ex(pkey->dsa, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC) != 1)) { ret = 0; } if (ret == 1) { *out = pkey; } if ((ret == 0) && (*out == NULL)) { wolfSSL_EVP_PKEY_free(pkey); } return ret; } #endif /* NO_DSA */ #if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL)) #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) static int d2iTryDhKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem, long memSz, int priv) { WOLFSSL_EVP_PKEY* pkey; int isDhKey; word32 keyIdx = 0; int ret = 1; #ifndef WOLFSSL_SMALL_STACK DhKey dh[1]; #else DhKey *dh = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (dh == NULL) return 0; #endif XMEMSET(dh, 0, sizeof(DhKey)); if (wc_InitDhKey(dh) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(dh, NULL, DYNAMIC_TYPE_DH); #endif return 0; } isDhKey = (wc_DhKeyDecode(mem, &keyIdx, dh, (word32)memSz) == 0); wc_FreeDhKey(dh); #ifdef WOLFSSL_SMALL_STACK XFREE(dh, NULL, DYNAMIC_TYPE_DH); #endif /* test if DH key */ if (!isDhKey) { return -1; } if (*out != NULL) { pkey = *out; } else { pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { WOLFSSL_MSG("DH wolfSSL_EVP_PKEY_new error"); return 0; } } pkey->pkey_sz = (int)memSz; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { ret = 0; } if (ret == 1) { XMEMCPY(pkey->pkey.ptr, mem, memSz); pkey->type = EVP_PKEY_DH; pkey->ownDh = 1; pkey->dh = wolfSSL_DH_new(); if (pkey->dh == NULL) { ret = 0; } } if ((ret == 1) && (wolfSSL_DH_LoadDer(pkey->dh, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz) != WOLFSSL_SUCCESS)) { ret = 0; } if (ret == 1) { *out = pkey; } if ((ret == 0) && (*out == NULL)) { wolfSSL_EVP_PKEY_free(pkey); } return ret; } #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */ #if !defined(NO_DH) && defined(OPENSSL_EXTRA) && defined(WOLFSSL_DH_EXTRA) #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) static int d2iTryAltDhKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem, long memSz, int priv) { WOLFSSL_EVP_PKEY* pkey; word32 keyIdx = 0; DhKey* key = NULL; int elements; int ret; #ifndef WOLFSSL_SMALL_STACK DhKey dh[1]; #else DhKey* dh = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (dh == NULL) return 0; #endif XMEMSET(dh, 0, sizeof(DhKey)); /* test if DH-public key */ if (wc_InitDhKey(dh) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(dh, NULL, DYNAMIC_TYPE_DH); #endif return 0; } ret = wc_DhKeyDecode(mem, &keyIdx, dh, (word32)memSz); wc_FreeDhKey(dh); #ifdef WOLFSSL_SMALL_STACK XFREE(dh, NULL, DYNAMIC_TYPE_DH); #endif if (ret != 0) { return -1; } if (*out != NULL) { pkey = *out; } else { pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { return 0; } } ret = 1; pkey->type = EVP_PKEY_DH; pkey->pkey_sz = (int)memSz; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { ret = 0; } if (ret == 1) { XMEMCPY(pkey->pkey.ptr, mem, memSz); pkey->ownDh = 1; pkey->dh = wolfSSL_DH_new(); if (pkey->dh == NULL) { ret = 0; } } if (ret == 1) { key = (DhKey*)pkey->dh->internal; keyIdx = 0; if (wc_DhKeyDecode(mem, &keyIdx, key, (word32)memSz) != 0) { ret = 0; } } if (ret == 1) { elements = ELEMENT_P | ELEMENT_G | ELEMENT_Q | ELEMENT_PUB; if (priv) { elements |= ELEMENT_PRV; } if (SetDhExternal_ex(pkey->dh, elements) != WOLFSSL_SUCCESS ) { ret = 0; } } if (ret == 1) { *out = pkey; } if ((ret == 0) && (*out == NULL)) { wolfSSL_EVP_PKEY_free(pkey); } return ret; } #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* !NO_DH && OPENSSL_EXTRA && WOLFSSL_DH_EXTRA */ #ifdef HAVE_PQC #ifdef HAVE_FALCON static int d2iTryFalconKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem, long memSz, int priv) { WOLFSSL_EVP_PKEY* pkey; int isFalcon = 0; #ifndef WOLFSSL_SMALL_STACK falcon_key falcon[1]; #else falcon_key *falcon = (falcon_key *)XMALLOC(sizeof(falcon_key), NULL, DYNAMIC_TYPE_FALCON); if (falcon == NULL) { return 0; } #endif if (wc_falcon_init(falcon) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(falcon, NULL, DYNAMIC_TYPE_FALCON); #endif return 0; } /* test if Falcon key */ if (priv) { /* Try level 1 */ isFalcon = ((wc_falcon_set_level(falcon, 1) == 0) && (wc_falcon_import_private_only(mem, (word32)memSz, falcon) == 0)); if (!isFalcon) { /* Try level 5 */ isFalcon = ((wc_falcon_set_level(falcon, 5) == 0) && (wc_falcon_import_private_only(mem, (word32)memSz, falcon) == 0)); } } else { /* Try level 1 */ isFalcon = ((wc_falcon_set_level(falcon, 1) == 0) && (wc_falcon_import_public(mem, (word32)memSz, falcon) == 0)); if (!isFalcon) { /* Try level 5 */ isFalcon = ((wc_falcon_set_level(falcon, 5) == 0) && (wc_falcon_import_public(mem, (word32)memSz, falcon) == 0)); } } wc_falcon_free(falcon); #ifdef WOLFSSL_SMALL_STACK XFREE(falcon, NULL, DYNAMIC_TYPE_FALCON); #endif if (!isFalcon) { return -1; } if (*out != NULL) { pkey = *out; } else { /* Create a fake Falcon EVP_PKEY. In the future, we might integrate * Falcon into the compatibility layer. */ pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { WOLFSSL_MSG("Falcon wolfSSL_EVP_PKEY_new error"); return 0; } } pkey->type = EVP_PKEY_FALCON; pkey->pkey.ptr = NULL; pkey->pkey_sz = 0; *out = pkey; return 1; } #endif /* HAVE_FALCON */ #ifdef HAVE_DILITHIUM static int d2iTryDilithiumKey(WOLFSSL_EVP_PKEY** out, const unsigned char* mem, long memSz, int priv) { WOLFSSL_EVP_PKEY* pkey; int isDilithium = 0; #ifndef WOLFSSL_SMALL_STACK dilithium_key dilithium[1]; #else dilithium_key *dilithium = (dilithium_key *) XMALLOC(sizeof(dilithium_key), NULL, DYNAMIC_TYPE_DILITHIUM); if (dilithium == NULL) { return 0; } #endif if (wc_dilithium_init(dilithium) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(dilithium, NULL, DYNAMIC_TYPE_DILITHIUM); #endif return 0; } /* Test if Dilithium key. Try all levels. */ if (priv) { isDilithium = ((wc_dilithium_set_level(dilithium, 2) == 0) && (wc_dilithium_import_private_only(mem, (word32)memSz, dilithium) == 0)); if (!isDilithium) { isDilithium = ((wc_dilithium_set_level(dilithium, 3) == 0) && (wc_dilithium_import_private_only(mem, (word32)memSz, dilithium) == 0)); } if (!isDilithium) { isDilithium = ((wc_dilithium_set_level(dilithium, 5) == 0) && (wc_dilithium_import_private_only(mem, (word32)memSz, dilithium) == 0)); } } else { isDilithium = ((wc_dilithium_set_level(dilithium, 2) == 0) && (wc_dilithium_import_public(mem, (word32)memSz, dilithium) == 0)); if (!isDilithium) { isDilithium = ((wc_dilithium_set_level(dilithium, 3) == 0) && (wc_dilithium_import_public(mem, (word32)memSz, dilithium) == 0)); } if (!isDilithium) { isDilithium = ((wc_dilithium_set_level(dilithium, 5) == 0) && (wc_dilithium_import_public(mem, (word32)memSz, dilithium) == 0)); } } wc_dilithium_free(dilithium); #ifdef WOLFSSL_SMALL_STACK XFREE(dilithium, NULL, DYNAMIC_TYPE_DILITHIUM); #endif if (!isDilithium) { return -1; } if (*out != NULL) { pkey = *out; } else { /* Create a fake Dilithium EVP_PKEY. In the future, we might * integrate Dilithium into the compatibility layer. */ pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { WOLFSSL_MSG("Dilithium wolfSSL_EVP_PKEY_new error"); return 0; } } pkey->type = EVP_PKEY_DILITHIUM; pkey->pkey.ptr = NULL; pkey->pkey_sz = 0; *out = pkey; return 1; } #endif /* HAVE_DILITHIUM */ #endif /* HAVE_PQC */ static WOLFSSL_EVP_PKEY* d2iGenericKey(WOLFSSL_EVP_PKEY** out, const unsigned char** in, long inSz, int priv) { WOLFSSL_EVP_PKEY* pkey = NULL; WOLFSSL_ENTER("d2iGenericKey"); if (in == NULL || *in == NULL || inSz < 0) { WOLFSSL_MSG("Bad argument"); return NULL; } if ((out != NULL) && (*out != NULL)) { pkey = *out; } #if !defined(NO_RSA) if (d2iTryRsaKey(&pkey, *in, inSz, priv) >= 0) { ; } else #endif /* NO_RSA */ #if defined(HAVE_ECC) && defined(OPENSSL_EXTRA) if (d2iTryEccKey(&pkey, *in, inSz, priv) >= 0) { ; } else #endif /* HAVE_ECC && OPENSSL_EXTRA */ #if !defined(NO_DSA) if (d2iTryDsaKey(&pkey, *in, inSz, priv) >= 0) { ; } else #endif /* NO_DSA */ #if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL)) #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) if (d2iTryDhKey(&pkey, *in, inSz, priv) >= 0) { ; } else #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */ #if !defined(NO_DH) && defined(OPENSSL_EXTRA) && defined(WOLFSSL_DH_EXTRA) #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) if (d2iTryAltDhKey(&pkey, *in, inSz, priv) >= 0) { ; } else #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* !NO_DH && OPENSSL_EXTRA && WOLFSSL_DH_EXTRA */ #ifdef HAVE_PQC #ifdef HAVE_FALCON if (d2iTryFalconKey(&pkey, *in, inSz, priv) >= 0) { ; } else #endif /* HAVE_FALCON */ #ifdef HAVE_DILITHIUM if (d2iTryDilithiumKey(&pkey, *in, inSz, priv) >= 0) { ; } else #endif /* HAVE_DILITHIUM */ #endif /* HAVE_PQC */ { WOLFSSL_MSG("wolfSSL_d2i_PUBKEY couldn't determine key type"); } if ((pkey != NULL) && (out != NULL)) { *out = pkey; } return pkey; } #endif /* OPENSSL_EXTRA || WPA_SMALL */ #ifdef OPENSSL_EXTRA WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY( WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey, const unsigned char** keyBuf, long keyLen) { WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL; #ifdef WOLFSSL_PEM_TO_DER int ret; DerBuffer* der = NULL; if (keyBuf == NULL || *keyBuf == NULL || keyLen <= 0) { WOLFSSL_MSG("Bad key PEM/DER args"); return NULL; } ret = PemToDer(*keyBuf, keyLen, PRIVATEKEY_TYPE, &der, NULL, NULL, NULL); if (ret < 0) { WOLFSSL_MSG("Not PEM format"); ret = AllocDer(&der, (word32)keyLen, PRIVATEKEY_TYPE, NULL); if (ret == 0) { XMEMCPY(der->buffer, *keyBuf, keyLen); } } if (ret == 0) { /* Verify this is PKCS8 Key */ word32 inOutIdx = 0; word32 algId; ret = ToTraditionalInline_ex(der->buffer, &inOutIdx, der->length, &algId); if (ret >= 0) { ret = 0; /* good DER */ } } if (ret == 0) { pkcs8 = wolfSSL_EVP_PKEY_new(); if (pkcs8 == NULL) ret = MEMORY_E; } if (ret == 0) { pkcs8->pkey.ptr = (char*)XMALLOC(der->length, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pkcs8->pkey.ptr == NULL) ret = MEMORY_E; } if (ret == 0) { XMEMCPY(pkcs8->pkey.ptr, der->buffer, der->length); pkcs8->pkey_sz = der->length; } FreeDer(&der); if (ret != 0) { wolfSSL_EVP_PKEY_free(pkcs8); pkcs8 = NULL; } if (pkey != NULL) { *pkey = pkcs8; } #else (void)bio; (void)pkey; #endif /* WOLFSSL_PEM_TO_DER */ return pkcs8; } #ifndef NO_BIO /* put SSL type in extra for now, not very common */ /* Converts a DER format key read from "bio" to a PKCS8 structure. * * bio input bio to read DER from * pkey If not NULL then this pointer will be overwritten with a new PKCS8 * structure. * * returns a WOLFSSL_PKCS8_PRIV_KEY_INFO pointer on success and NULL in fail * case. */ WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY_bio(WOLFSSL_BIO* bio, WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey) { WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL; #ifdef WOLFSSL_PEM_TO_DER unsigned char* mem = NULL; int memSz; WOLFSSL_ENTER("wolfSSL_d2i_PKCS8_PKEY_bio"); if (bio == NULL) { return NULL; } if ((memSz = wolfSSL_BIO_get_mem_data(bio, &mem)) < 0) { return NULL; } pkcs8 = wolfSSL_d2i_PKCS8_PKEY(pkey, (const unsigned char**)&mem, memSz); #else (void)bio; (void)pkey; #endif /* WOLFSSL_PEM_TO_DER */ return pkcs8; } /* expecting DER format public key * * bio input bio to read DER from * out If not NULL then this pointer will be overwritten with a new * WOLFSSL_EVP_PKEY pointer * * returns a WOLFSSL_EVP_PKEY pointer on success and NULL in fail case. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY_bio(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** out) { unsigned char* mem; long memSz; WOLFSSL_EVP_PKEY* pkey = NULL; WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY_bio"); if (bio == NULL) { return NULL; } (void)out; memSz = wolfSSL_BIO_get_len(bio); if (memSz <= 0) { return NULL; } mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { return NULL; } if (wolfSSL_BIO_read(bio, mem, (int)memSz) == memSz) { pkey = wolfSSL_d2i_PUBKEY(NULL, (const unsigned char**)&mem, memSz); if (out != NULL && pkey != NULL) { *out = pkey; } } XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return pkey; } #endif /* !NO_BIO */ /* Converts a DER encoded public key to a WOLFSSL_EVP_PKEY structure. * * out pointer to new WOLFSSL_EVP_PKEY structure. Can be NULL * in DER buffer to convert * inSz size of in buffer * * returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL * on fail */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY(WOLFSSL_EVP_PKEY** out, const unsigned char** in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY"); return d2iGenericKey(out, in, inSz, 0); } #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && !defined(NO_ASN) && \ !defined(NO_PWDBASED) /* helper function to get raw pointer to DER buffer from WOLFSSL_EVP_PKEY */ static int wolfSSL_EVP_PKEY_get_der(const WOLFSSL_EVP_PKEY* key, unsigned char** der) { int sz; word16 pkcs8HeaderSz; if (!key || !key->pkey_sz) return WOLFSSL_FATAL_ERROR; /* return the key without PKCS8 for compatibility */ /* if pkcs8HeaderSz is invalid, use 0 and return all of pkey */ pkcs8HeaderSz = 0; if (key->pkey_sz > key->pkcs8HeaderSz) pkcs8HeaderSz = key->pkcs8HeaderSz; sz = key->pkey_sz - pkcs8HeaderSz; if (der) { unsigned char* pt = (unsigned char*)key->pkey.ptr; if (*der) { /* since this function signature has no size value passed in it is * assumed that the user has allocated a large enough buffer */ XMEMCPY(*der, pt + pkcs8HeaderSz, sz); *der += sz; } else { *der = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_OPENSSL); if (*der == NULL) { return WOLFSSL_FATAL_ERROR; } XMEMCPY(*der, pt + pkcs8HeaderSz, sz); } } return sz; } int wolfSSL_i2d_PUBKEY(const WOLFSSL_EVP_PKEY *key, unsigned char **der) { return wolfSSL_i2d_PublicKey(key, der); } #endif /* OPENSSL_EXTRA && !NO_CERTS && !NO_ASN && !NO_PWDBASED */ static WOLFSSL_EVP_PKEY* _d2i_PublicKey(int type, WOLFSSL_EVP_PKEY** out, const unsigned char **in, long inSz, int priv) { int ret = 0; word32 idx = 0, algId; word16 pkcs8HeaderSz = 0; WOLFSSL_EVP_PKEY* local; int opt = 0; (void)opt; if (in == NULL || inSz < 0) { WOLFSSL_MSG("Bad argument"); return NULL; } if (priv == 1) { /* Check if input buffer has PKCS8 header. In the case that it does not * have a PKCS8 header then do not error out. */ if ((ret = ToTraditionalInline_ex((const byte*)(*in), &idx, (word32)inSz, &algId)) > 0) { WOLFSSL_MSG("Found PKCS8 header"); pkcs8HeaderSz = (word16)idx; if ((type == EVP_PKEY_RSA && algId != RSAk #ifdef WC_RSA_PSS && algId != RSAPSSk #endif ) || (type == EVP_PKEY_EC && algId != ECDSAk) || (type == EVP_PKEY_DSA && algId != DSAk) || (type == EVP_PKEY_DH && algId != DHk)) { WOLFSSL_MSG("PKCS8 does not match EVP key type"); return NULL; } (void)idx; /* not used */ } else { if (ret != ASN_PARSE_E) { WOLFSSL_MSG("Unexpected error with trying to remove PKCS8 " "header"); return NULL; } } } if (out != NULL && *out != NULL) { wolfSSL_EVP_PKEY_free(*out); *out = NULL; } local = wolfSSL_EVP_PKEY_new(); if (local == NULL) { return NULL; } local->type = type; local->pkey_sz = (int)inSz; local->pkcs8HeaderSz = pkcs8HeaderSz; local->pkey.ptr = (char*)XMALLOC(inSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (local->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(local); local = NULL; return NULL; } else { XMEMCPY(local->pkey.ptr, *in, inSz); } switch (type) { #ifndef NO_RSA case EVP_PKEY_RSA: opt = priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC; local->ownRsa = 1; local->rsa = wolfssl_rsa_d2i(NULL, (const unsigned char*)local->pkey.ptr, local->pkey_sz, opt); if (local->rsa == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* NO_RSA */ #ifdef HAVE_ECC case EVP_PKEY_EC: local->ownEcc = 1; local->ecc = wolfSSL_EC_KEY_new(); if (local->ecc == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } opt = priv ? WOLFSSL_EC_KEY_LOAD_PRIVATE : WOLFSSL_EC_KEY_LOAD_PUBLIC; if (wolfSSL_EC_KEY_LoadDer_ex(local->ecc, (const unsigned char*)local->pkey.ptr, local->pkey_sz, opt) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* HAVE_ECC */ #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH) #ifndef NO_DSA case EVP_PKEY_DSA: local->ownDsa = 1; local->dsa = wolfSSL_DSA_new(); if (local->dsa == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } opt = priv ? WOLFSSL_DSA_LOAD_PRIVATE : WOLFSSL_DSA_LOAD_PUBLIC; if (wolfSSL_DSA_LoadDer_ex(local->dsa, (const unsigned char*)local->pkey.ptr, local->pkey_sz, opt) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* NO_DSA */ #ifndef NO_DH #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2)) case EVP_PKEY_DH: local->ownDh = 1; local->dh = wolfSSL_DH_new(); if (local->dh == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } if (wolfSSL_DH_LoadDer(local->dh, (const unsigned char*)local->pkey.ptr, local->pkey_sz) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* HAVE_DH */ #endif /* WOLFSSL_QT || OPENSSL_ALL || WOLFSSL_OPENSSH */ default: WOLFSSL_MSG("Unsupported key type"); wolfSSL_EVP_PKEY_free(local); return NULL; } /* advance pointer with success */ if (local != NULL) { if (local->pkey_sz <= (int)inSz) { *in += local->pkey_sz; } if (out != NULL) { *out = local; } } return local; } WOLFSSL_EVP_PKEY* wolfSSL_d2i_PublicKey(int type, WOLFSSL_EVP_PKEY** out, const unsigned char **in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PublicKey"); return _d2i_PublicKey(type, out, in, inSz, 0); } /* Reads in a DER format key. If PKCS8 headers are found they are stripped off. * * type type of key * out newly created WOLFSSL_EVP_PKEY structure * in pointer to input key DER * inSz size of in buffer * * On success a non null pointer is returned and the pointer in is advanced the * same number of bytes read. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey(int type, WOLFSSL_EVP_PKEY** out, const unsigned char **in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey"); return _d2i_PublicKey(type, out, in, inSz, 1); } #ifdef WOLF_PRIVATE_KEY_ID /* Create an EVP structure for use with crypto callbacks */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_id(int type, WOLFSSL_EVP_PKEY** out, void* heap, int devId) { WOLFSSL_EVP_PKEY* local; if (out != NULL && *out != NULL) { wolfSSL_EVP_PKEY_free(*out); *out = NULL; } local = wolfSSL_EVP_PKEY_new_ex(heap); if (local == NULL) { return NULL; } local->type = type; local->pkey_sz = 0; local->pkcs8HeaderSz = 0; switch (type) { #ifndef NO_RSA case EVP_PKEY_RSA: { RsaKey* key; local->ownRsa = 1; local->rsa = wolfSSL_RSA_new_ex(heap, devId); if (local->rsa == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } key = (RsaKey*)local->rsa->internal; #ifdef WOLF_CRYPTO_CB key->devId = devId; #endif (void)key; local->rsa->inSet = 1; break; } #endif /* !NO_RSA */ #ifdef HAVE_ECC case EVP_PKEY_EC: { ecc_key* key; local->ownEcc = 1; local->ecc = wolfSSL_EC_KEY_new_ex(heap, devId); if (local->ecc == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } key = (ecc_key*)local->ecc->internal; #ifdef WOLF_CRYPTO_CB key->devId = devId; #endif key->type = ECC_PRIVATEKEY; /* key is required to have a key size / curve set, although * actual one used is determined by devId callback function */ wc_ecc_set_curve(key, ECDHE_SIZE, ECC_CURVE_DEF); local->ecc->inSet = 1; break; } #endif /* HAVE_ECC */ default: WOLFSSL_MSG("Unsupported private key id type"); wolfSSL_EVP_PKEY_free(local); return NULL; } if (local != NULL && out != NULL) { *out = local; } return local; } #endif /* WOLF_PRIVATE_KEY_ID */ #ifndef NO_CERTS /* // NOLINT(readability-redundant-preprocessor) */ #ifndef NO_CHECK_PRIVATE_KEY /* Check private against public in certificate for match * * ssl WOLFSSL structure to check private key in * * Returns WOLFSSL_SUCCESS on good private key * WOLFSSL_FAILURE if mismatched. */ int wolfSSL_check_private_key(const WOLFSSL* ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } #ifdef WOLFSSL_DUAL_ALG_CERTS return check_cert_key(ssl->buffers.certificate, ssl->buffers.key, ssl->buffers.altKey, ssl->heap, ssl->buffers.keyDevId, ssl->buffers.keyLabel, ssl->buffers.keyId, ssl->buffers.altKeyDevId, ssl->buffers.altKeyLabel, ssl->buffers.altKeyId); #else return check_cert_key(ssl->buffers.certificate, ssl->buffers.key, NULL, ssl->heap, ssl->buffers.keyDevId, ssl->buffers.keyLabel, ssl->buffers.keyId, INVALID_DEVID, 0, 0); #endif } #endif /* !NO_CHECK_PRIVATE_KEY */ #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ #if defined(HAVE_RPK) /* Confirm that all the byte data in the buffer is unique. * return 1 if all the byte data in the buffer is unique, otherwise 0. */ static int isArrayUnique(const char* buf, size_t len) { size_t i, j; /* check the array is unique */ for (i = 0; i < len -1; ++i) { for (j = i+ 1; j < len; ++j) { if (buf[i] == buf[j]) { return 0; } } } return 1; } /* Set user preference for the client_cert_type exetnsion. * Takes byte array containing cert types the caller can provide to its peer. * Cert types are in preferred order in the array. */ WOLFSSL_API int wolfSSL_CTX_set_client_cert_type(WOLFSSL_CTX* ctx, const char* buf, int bufLen) { int i; if (ctx == NULL || bufLen > MAX_CLIENT_CERT_TYPE_CNT) { return BAD_FUNC_ARG; } /* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/ if (buf == NULL || bufLen == 0) { ctx->rpkConfig.preferred_ClientCertTypeCnt = 1; ctx->rpkConfig.preferred_ClientCertTypes[0]= WOLFSSL_CERT_TYPE_X509; ctx->rpkConfig.preferred_ClientCertTypes[1]= WOLFSSL_CERT_TYPE_X509; return WOLFSSL_SUCCESS; } if (!isArrayUnique(buf, bufLen)) return BAD_FUNC_ARG; for (i = 0; i < bufLen; i++){ if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509) return BAD_FUNC_ARG; ctx->rpkConfig.preferred_ClientCertTypes[i] = buf[i]; } ctx->rpkConfig.preferred_ClientCertTypeCnt = bufLen; return WOLFSSL_SUCCESS; } /* Set user preference for the server_cert_type exetnsion. * Takes byte array containing cert types the caller can provide to its peer. * Cert types are in preferred order in the array. */ WOLFSSL_API int wolfSSL_CTX_set_server_cert_type(WOLFSSL_CTX* ctx, const char* buf, int bufLen) { int i; if (ctx == NULL || bufLen > MAX_SERVER_CERT_TYPE_CNT) { return BAD_FUNC_ARG; } /* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/ if (buf == NULL || bufLen == 0) { ctx->rpkConfig.preferred_ServerCertTypeCnt = 1; ctx->rpkConfig.preferred_ServerCertTypes[0]= WOLFSSL_CERT_TYPE_X509; ctx->rpkConfig.preferred_ServerCertTypes[1]= WOLFSSL_CERT_TYPE_X509; return WOLFSSL_SUCCESS; } if (!isArrayUnique(buf, bufLen)) return BAD_FUNC_ARG; for (i = 0; i < bufLen; i++){ if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509) return BAD_FUNC_ARG; ctx->rpkConfig.preferred_ServerCertTypes[i] = buf[i]; } ctx->rpkConfig.preferred_ServerCertTypeCnt = bufLen; return WOLFSSL_SUCCESS; } /* Set user preference for the client_cert_type exetnsion. * Takes byte array containing cert types the caller can provide to its peer. * Cert types are in preferred order in the array. */ WOLFSSL_API int wolfSSL_set_client_cert_type(WOLFSSL* ssl, const char* buf, int bufLen) { int i; if (ssl == NULL || bufLen > MAX_CLIENT_CERT_TYPE_CNT) { return BAD_FUNC_ARG; } /* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/ if (buf == NULL || bufLen == 0) { ssl->options.rpkConfig.preferred_ClientCertTypeCnt = 1; ssl->options.rpkConfig.preferred_ClientCertTypes[0] = WOLFSSL_CERT_TYPE_X509; ssl->options.rpkConfig.preferred_ClientCertTypes[1] = WOLFSSL_CERT_TYPE_X509; return WOLFSSL_SUCCESS; } if (!isArrayUnique(buf, bufLen)) return BAD_FUNC_ARG; for (i = 0; i < bufLen; i++){ if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509) return BAD_FUNC_ARG; ssl->options.rpkConfig.preferred_ClientCertTypes[i] = buf[i]; } ssl->options.rpkConfig.preferred_ClientCertTypeCnt = bufLen; return WOLFSSL_SUCCESS; } /* Set user preference for the server_cert_type exetnsion. * Takes byte array containing cert types the caller can provide to its peer. * Cert types are in preferred order in the array. */ WOLFSSL_API int wolfSSL_set_server_cert_type(WOLFSSL* ssl, const char* buf, int bufLen) { int i; if (ssl == NULL || bufLen > MAX_SERVER_CERT_TYPE_CNT) { return BAD_FUNC_ARG; } /* if buf is set to NULL or bufLen is set to zero, it defaults the setting*/ if (buf == NULL || bufLen == 0) { ssl->options.rpkConfig.preferred_ServerCertTypeCnt = 1; ssl->options.rpkConfig.preferred_ServerCertTypes[0] = WOLFSSL_CERT_TYPE_X509; ssl->options.rpkConfig.preferred_ServerCertTypes[1] = WOLFSSL_CERT_TYPE_X509; return WOLFSSL_SUCCESS; } if (!isArrayUnique(buf, bufLen)) return BAD_FUNC_ARG; for (i = 0; i < bufLen; i++){ if (buf[i] != WOLFSSL_CERT_TYPE_RPK && buf[i] != WOLFSSL_CERT_TYPE_X509) return BAD_FUNC_ARG; ssl->options.rpkConfig.preferred_ServerCertTypes[i] = buf[i]; } ssl->options.rpkConfig.preferred_ServerCertTypeCnt = bufLen; return WOLFSSL_SUCCESS; } /* get negotiated certificate type value and return it to the second parameter. * cert type value: * -1: WOLFSSL_CERT_TYPE_UNKNOWN * 0: WOLFSSL_CERT_TYPE_X509 * 2: WOLFSSL_CERT_TYPE_RPK * return WOLFSSL_SUCCESS on success, otherwise negative value. * in case no negotiation performed, it returns WOLFSSL_SUCCESS and -1 is for * cert type. */ WOLFSSL_API int wolfSSL_get_negotiated_client_cert_type(WOLFSSL* ssl, int* tp) { int ret = WOLFSSL_SUCCESS; if (ssl == NULL || tp == NULL) return BAD_FUNC_ARG; if (ssl->options.side == WOLFSSL_CLIENT_END) { if (ssl->options.rpkState.received_ClientCertTypeCnt == 1) *tp = ssl->options.rpkState.received_ClientCertTypes[0]; else *tp = WOLFSSL_CERT_TYPE_UNKNOWN; } else { if (ssl->options.rpkState.sending_ClientCertTypeCnt == 1) *tp = ssl->options.rpkState.sending_ClientCertTypes[0]; else *tp = WOLFSSL_CERT_TYPE_UNKNOWN; } return ret; } /* get negotiated certificate type value and return it to the second parameter. * cert type value: * -1: WOLFSSL_CERT_TYPE_UNKNOWN * 0: WOLFSSL_CERT_TYPE_X509 * 2: WOLFSSL_CERT_TYPE_RPK * return WOLFSSL_SUCCESS on success, otherwise negative value. * in case no negotiation performed, it returns WOLFSSL_SUCCESS and -1 is for * cert type. */ WOLFSSL_API int wolfSSL_get_negotiated_server_cert_type(WOLFSSL* ssl, int* tp) { int ret = WOLFSSL_SUCCESS; if (ssl == NULL || tp == NULL) return BAD_FUNC_ARG; if (ssl->options.side == WOLFSSL_CLIENT_END) { if (ssl->options.rpkState.received_ServerCertTypeCnt == 1) *tp = ssl->options.rpkState.received_ServerCertTypes[0]; else *tp = WOLFSSL_CERT_TYPE_UNKNOWN; } else { if (ssl->options.rpkState.sending_ServerCertTypeCnt == 1) *tp = ssl->options.rpkState.sending_ServerCertTypes[0]; else *tp = WOLFSSL_CERT_TYPE_UNKNOWN; } return ret; } #endif /* HAVE_RPK */ #ifdef HAVE_ECC /* Set Temp CTX EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */ int wolfSSL_CTX_SetTmpEC_DHE_Sz(WOLFSSL_CTX* ctx, word16 sz) { if (ctx == NULL) return BAD_FUNC_ARG; /* if 0 then get from loaded private key */ if (sz == 0) { /* applies only to ECDSA */ if (ctx->privateKeyType != ecc_dsa_sa_algo) return WOLFSSL_SUCCESS; if (ctx->privateKeySz == 0) { WOLFSSL_MSG("Must set private key/cert first"); return BAD_FUNC_ARG; } sz = (word16)ctx->privateKeySz; } /* check size */ #if ECC_MIN_KEY_SZ > 0 if (sz < ECC_MINSIZE) return BAD_FUNC_ARG; #endif if (sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ctx->eccTempKeySz = sz; return WOLFSSL_SUCCESS; } /* Set Temp SSL EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */ int wolfSSL_SetTmpEC_DHE_Sz(WOLFSSL* ssl, word16 sz) { if (ssl == NULL) return BAD_FUNC_ARG; /* check size */ #if ECC_MIN_KEY_SZ > 0 if (sz < ECC_MINSIZE) return BAD_FUNC_ARG; #endif if (sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ssl->eccTempKeySz = sz; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC */ typedef struct { byte verifyPeer:1; byte verifyNone:1; byte failNoCert:1; byte failNoCertxPSK:1; byte verifyPostHandshake:1; } SetVerifyOptions; static SetVerifyOptions ModeToVerifyOptions(int mode) { SetVerifyOptions opts; XMEMSET(&opts, 0, sizeof(SetVerifyOptions)); if (mode != WOLFSSL_VERIFY_DEFAULT) { opts.verifyNone = (mode == WOLFSSL_VERIFY_NONE); if (!opts.verifyNone) { opts.verifyPeer = (mode & WOLFSSL_VERIFY_PEER) != 0; opts.failNoCertxPSK = (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) != 0; opts.failNoCert = (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT) != 0; #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) opts.verifyPostHandshake = (mode & WOLFSSL_VERIFY_POST_HANDSHAKE) != 0; #endif } } return opts; } WOLFSSL_ABI void wolfSSL_CTX_set_verify(WOLFSSL_CTX* ctx, int mode, VerifyCallback vc) { SetVerifyOptions opts; WOLFSSL_ENTER("wolfSSL_CTX_set_verify"); if (ctx == NULL) return; opts = ModeToVerifyOptions(mode); ctx->verifyNone = opts.verifyNone; ctx->verifyPeer = opts.verifyPeer; ctx->failNoCert = opts.failNoCert; ctx->failNoCertxPSK = opts.failNoCertxPSK; #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) ctx->verifyPostHandshake = opts.verifyPostHandshake; #endif ctx->verifyCallback = vc; } #ifdef OPENSSL_ALL void wolfSSL_CTX_set_cert_verify_callback(WOLFSSL_CTX* ctx, CertVerifyCallback cb, void* arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_cert_verify_callback"); if (ctx == NULL) return; ctx->verifyCertCb = cb; ctx->verifyCertCbArg = arg; } #endif void wolfSSL_set_verify(WOLFSSL* ssl, int mode, VerifyCallback vc) { SetVerifyOptions opts; WOLFSSL_ENTER("wolfSSL_set_verify"); if (ssl == NULL) return; opts = ModeToVerifyOptions(mode); ssl->options.verifyNone = opts.verifyNone; ssl->options.verifyPeer = opts.verifyPeer; ssl->options.failNoCert = opts.failNoCert; ssl->options.failNoCertxPSK = opts.failNoCertxPSK; #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) ssl->options.verifyPostHandshake = opts.verifyPostHandshake; #endif ssl->verifyCallback = vc; } void wolfSSL_set_verify_result(WOLFSSL *ssl, long v) { WOLFSSL_ENTER("wolfSSL_set_verify_result"); if (ssl == NULL) return; #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(OPENSSL_ALL) ssl->peerVerifyRet = v; #else (void)v; WOLFSSL_STUB("wolfSSL_set_verify_result"); #endif } #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) /* For TLS v1.3 send handshake messages after handshake completes. */ /* Returns 1=WOLFSSL_SUCCESS or 0=WOLFSSL_FAILURE */ int wolfSSL_verify_client_post_handshake(WOLFSSL* ssl) { int ret = wolfSSL_request_certificate(ssl); if (ret != WOLFSSL_SUCCESS) { if (!IsAtLeastTLSv1_3(ssl->version)) { /* specific error of wrong version expected */ WOLFSSL_ERROR(UNSUPPORTED_PROTO_VERSION); } else { WOLFSSL_ERROR(ret); /* log the error in the error queue */ } } return (ret == WOLFSSL_SUCCESS) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_CTX_set_post_handshake_auth(WOLFSSL_CTX* ctx, int val) { int ret = wolfSSL_CTX_allow_post_handshake_auth(ctx); if (ret == 0) { ctx->postHandshakeAuth = (val != 0); } return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_set_post_handshake_auth(WOLFSSL* ssl, int val) { int ret = wolfSSL_allow_post_handshake_auth(ssl); if (ret == 0) { ssl->options.postHandshakeAuth = (val != 0); } return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #endif /* OPENSSL_EXTRA && !NO_CERTS && WOLFSSL_TLS13 && * WOLFSSL_POST_HANDSHAKE_AUTH */ /* store user ctx for verify callback */ void wolfSSL_SetCertCbCtx(WOLFSSL* ssl, void* ctx) { WOLFSSL_ENTER("wolfSSL_SetCertCbCtx"); if (ssl) ssl->verifyCbCtx = ctx; } /* store user ctx for verify callback */ void wolfSSL_CTX_SetCertCbCtx(WOLFSSL_CTX* ctx, void* userCtx) { WOLFSSL_ENTER("wolfSSL_CTX_SetCertCbCtx"); if (ctx) ctx->verifyCbCtx = userCtx; } /* store context CA Cache addition callback */ void wolfSSL_CTX_SetCACb(WOLFSSL_CTX* ctx, CallbackCACache cb) { if (ctx && ctx->cm) ctx->cm->caCacheCallback = cb; } #if defined(PERSIST_CERT_CACHE) #if !defined(NO_FILESYSTEM) /* Persist cert cache to file */ int wolfSSL_CTX_save_cert_cache(WOLFSSL_CTX* ctx, const char* fname) { WOLFSSL_ENTER("wolfSSL_CTX_save_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_SaveCertCache(ctx->cm, fname); } /* Persist cert cache from file */ int wolfSSL_CTX_restore_cert_cache(WOLFSSL_CTX* ctx, const char* fname) { WOLFSSL_ENTER("wolfSSL_CTX_restore_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_RestoreCertCache(ctx->cm, fname); } #endif /* NO_FILESYSTEM */ /* Persist cert cache to memory */ int wolfSSL_CTX_memsave_cert_cache(WOLFSSL_CTX* ctx, void* mem, int sz, int* used) { WOLFSSL_ENTER("wolfSSL_CTX_memsave_cert_cache"); if (ctx == NULL || mem == NULL || used == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemSaveCertCache(ctx->cm, mem, sz, used); } /* Restore cert cache from memory */ int wolfSSL_CTX_memrestore_cert_cache(WOLFSSL_CTX* ctx, const void* mem, int sz) { WOLFSSL_ENTER("wolfSSL_CTX_memrestore_cert_cache"); if (ctx == NULL || mem == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemRestoreCertCache(ctx->cm, mem, sz); } /* get how big the the cert cache save buffer needs to be */ int wolfSSL_CTX_get_cert_cache_memsize(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_cert_cache_memsize"); if (ctx == NULL) return BAD_FUNC_ARG; return CM_GetCertCacheMemSize(ctx->cm); } #endif /* PERSIST_CERT_CACHE */ #endif /* !NO_CERTS */ void wolfSSL_load_error_strings(void) { /* compatibility only */ } int wolfSSL_library_init(void) { WOLFSSL_ENTER("wolfSSL_library_init"); if (wolfSSL_Init() == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; else return WOLFSSL_FATAL_ERROR; } #ifdef HAVE_SECRET_CALLBACK int wolfSSL_set_session_secret_cb(WOLFSSL* ssl, SessionSecretCb cb, void* ctx) { WOLFSSL_ENTER("wolfSSL_set_session_secret_cb"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; ssl->sessionSecretCb = cb; ssl->sessionSecretCtx = ctx; if (cb != NULL) { /* If using a pre-set key, assume session resumption. */ ssl->session->sessionIDSz = 0; ssl->options.resuming = 1; } return WOLFSSL_SUCCESS; } int wolfSSL_set_secret_cb(WOLFSSL* ssl, TlsSecretCb cb, void* ctx) { WOLFSSL_ENTER("wolfSSL_set_secret_cb"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; ssl->tlsSecretCb = cb; ssl->tlsSecretCtx = ctx; return WOLFSSL_SUCCESS; } #ifdef SHOW_SECRETS int tlsShowSecrets(WOLFSSL* ssl, void* secret, int secretSz, void* ctx) { /* Wireshark Pre-Master-Secret Format: * CLIENT_RANDOM */ const char* CLIENT_RANDOM_LABEL = "CLIENT_RANDOM"; int i, pmsPos = 0; char pmsBuf[13 + 1 + 64 + 1 + 96 + 1 + 1]; byte clientRandom[RAN_LEN]; int clientRandomSz; (void)ctx; clientRandomSz = (int)wolfSSL_get_client_random(ssl, clientRandom, sizeof(clientRandom)); if (clientRandomSz <= 0) { printf("Error getting server random %d\n", clientRandomSz); return BAD_FUNC_ARG; } XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "%s ", CLIENT_RANDOM_LABEL); pmsPos += XSTRLEN(CLIENT_RANDOM_LABEL) + 1; for (i = 0; i < clientRandomSz; i++) { XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "%02x", clientRandom[i]); pmsPos += 2; } XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, " "); pmsPos += 1; for (i = 0; i < secretSz; i++) { XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "%02x", ((byte*)secret)[i]); pmsPos += 2; } XSNPRINTF(&pmsBuf[pmsPos], sizeof(pmsBuf) - pmsPos, "\n"); pmsPos += 1; /* print master secret */ puts(pmsBuf); #if !defined(NO_FILESYSTEM) && defined(WOLFSSL_SSLKEYLOGFILE) { FILE* f = XFOPEN(WOLFSSL_SSLKEYLOGFILE_OUTPUT, "a"); if (f != XBADFILE) { XFWRITE(pmsBuf, 1, pmsPos, f); XFCLOSE(f); } } #endif return 0; } #endif /* SHOW_SECRETS */ #endif #ifdef OPENSSL_EXTRA /* * check if the list has TLS13 and pre-TLS13 suites * @param list cipher suite list that user want to set * @return mixed: 0, only pre-TLS13: 1, only TLS13: 2 */ static int CheckcipherList(const char* list) { int ret; int findTLSv13Suites = 0; int findbeforeSuites = 0; byte cipherSuite0; byte cipherSuite1; int flags; char* next = (char*)list; do { char* current = next; char name[MAX_SUITE_NAME + 1]; word32 length = MAX_SUITE_NAME; word32 current_length; next = XSTRSTR(next, ":"); current_length = (!next) ? (word32)XSTRLEN(current) : (word32)(next - current); if (current_length < length) { length = current_length; } XMEMCPY(name, current, length); name[length] = 0; if (XSTRCMP(name, "ALL") == 0 || XSTRCMP(name, "DEFAULT") == 0 || XSTRCMP(name, "HIGH") == 0) { findTLSv13Suites = 1; findbeforeSuites = 1; break; } ret = wolfSSL_get_cipher_suite_from_name(name, &cipherSuite0, &cipherSuite1, &flags); if (ret == 0) { if (cipherSuite0 == TLS13_BYTE) { /* TLSv13 suite */ findTLSv13Suites = 1; } else { findbeforeSuites = 1; } } #if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) /* check if mixed due to names like RSA:ECDHE+AESGCM etc. */ if (ret != 0) { char* subStr = name; char* subStrNext; do { subStrNext = XSTRSTR(subStr, "+"); if ((XSTRCMP(subStr, "ECDHE") == 0) || (XSTRCMP(subStr, "RSA") == 0)) { return 0; } if (subStrNext && (XSTRLEN(subStrNext) > 0)) { subStr = subStrNext + 1; /* +1 to skip past '+' */ } } while (subStrNext != NULL); } #endif if (findTLSv13Suites == 1 && findbeforeSuites == 1) { /* list has mixed suites */ return 0; } } while (next++); /* ++ needed to skip ':' */ if (findTLSv13Suites == 0 && findbeforeSuites == 1) { ret = 1;/* only before TLSv13 suites */ } else if (findTLSv13Suites == 1 && findbeforeSuites == 0) { ret = 2;/* only TLSv13 suties */ } else { ret = 0;/* handle as mixed */ } return ret; } /* parse some bulk lists like !eNULL / !aNULL * * returns WOLFSSL_SUCCESS on success and sets the cipher suite list */ static int wolfSSL_parse_cipher_list(WOLFSSL_CTX* ctx, WOLFSSL* ssl, Suites* suites, const char* list) { int ret = 0; int listattribute = 0; int tls13Only = 0; #ifndef WOLFSSL_SMALL_STACK byte suitesCpy[WOLFSSL_MAX_SUITE_SZ]; #else byte* suitesCpy = NULL; #endif word16 suitesCpySz = 0; word16 i = 0; word16 j = 0; if (suites == NULL || list == NULL) { WOLFSSL_MSG("NULL argument"); return WOLFSSL_FAILURE; } listattribute = CheckcipherList(list); if (listattribute == 0) { /* list has mixed(pre-TLSv13 and TLSv13) suites * update cipher suites the same as before */ return (SetCipherList_ex(ctx, ssl, suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } else if (listattribute == 1) { /* list has only pre-TLSv13 suites. * Only update before TLSv13 suites. */ tls13Only = 0; } else if (listattribute == 2) { /* list has only TLSv13 suites. Only update TLv13 suites * simulate set_ciphersuites() compatibility layer API */ tls13Only = 1; if ((ctx != NULL && !IsAtLeastTLSv1_3(ctx->method->version)) || (ssl != NULL && !IsAtLeastTLSv1_3(ssl->version))) { /* Silently ignore TLS 1.3 ciphers if we don't support it. */ return WOLFSSL_SUCCESS; } } /* list contains ciphers either only for TLS 1.3 or <= TLS 1.2 */ if (suites->suiteSz == 0) { WOLFSSL_MSG("Warning suites->suiteSz = 0 set to WOLFSSL_MAX_SUITE_SZ"); suites->suiteSz = WOLFSSL_MAX_SUITE_SZ; } #ifdef WOLFSSL_SMALL_STACK if (suites->suiteSz > 0) { suitesCpy = (byte*)XMALLOC(suites->suiteSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (suitesCpy == NULL) { return WOLFSSL_FAILURE; } XMEMSET(suitesCpy, 0, suites->suiteSz); } #else XMEMSET(suitesCpy, 0, sizeof(suitesCpy)); #endif if (suites->suiteSz > 0) XMEMCPY(suitesCpy, suites->suites, suites->suiteSz); suitesCpySz = suites->suiteSz; ret = SetCipherList_ex(ctx, ssl, suites, list); if (ret != 1) { #ifdef WOLFSSL_SMALL_STACK XFREE(suitesCpy, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return WOLFSSL_FAILURE; } for (i = 0; i < suitesCpySz && suites->suiteSz <= (WOLFSSL_MAX_SUITE_SZ - SUITE_LEN); i += 2) { /* Check for duplicates */ int duplicate = 0; for (j = 0; j < suites->suiteSz; j += 2) { if (suitesCpy[i] == suites->suites[j] && suitesCpy[i+1] == suites->suites[j+1]) { duplicate = 1; break; } } if (!duplicate) { if (tls13Only) { /* Updating TLS 1.3 ciphers */ if (suitesCpy[i] != TLS13_BYTE) { /* Only copy over <= TLS 1.2 ciphers */ /* TLS 1.3 ciphers take precedence */ suites->suites[suites->suiteSz++] = suitesCpy[i]; suites->suites[suites->suiteSz++] = suitesCpy[i+1]; } } else { /* Updating <= TLS 1.2 ciphers */ if (suitesCpy[i] == TLS13_BYTE) { /* Only copy over TLS 1.3 ciphers */ /* TLS 1.3 ciphers take precedence */ XMEMMOVE(suites->suites + SUITE_LEN, suites->suites, suites->suiteSz); suites->suites[0] = suitesCpy[i]; suites->suites[1] = suitesCpy[i+1]; suites->suiteSz += 2; } } } } #ifdef WOLFSSL_SMALL_STACK XFREE(suitesCpy, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } #endif int wolfSSL_CTX_set_cipher_list(WOLFSSL_CTX* ctx, const char* list) { WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list"); if (ctx == NULL) return WOLFSSL_FAILURE; if (AllocateCtxSuites(ctx) != 0) return WOLFSSL_FAILURE; #ifdef OPENSSL_EXTRA return wolfSSL_parse_cipher_list(ctx, NULL, ctx->suites, list); #else return (SetCipherList(ctx, ctx->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; #endif } #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_SET_CIPHER_BYTES) int wolfSSL_CTX_set_cipher_list_bytes(WOLFSSL_CTX* ctx, const byte* list, const int listSz) { WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list_bytes"); if (ctx == NULL) return WOLFSSL_FAILURE; if (AllocateCtxSuites(ctx) != 0) return WOLFSSL_FAILURE; return (SetCipherListFromBytes(ctx, ctx->suites, list, listSz)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #endif /* OPENSSL_EXTRA || WOLFSSL_SET_CIPHER_BYTES */ int wolfSSL_set_cipher_list(WOLFSSL* ssl, const char* list) { WOLFSSL_ENTER("wolfSSL_set_cipher_list"); if (ssl == NULL || ssl->ctx == NULL) { return WOLFSSL_FAILURE; } if (AllocateSuites(ssl) != 0) return WOLFSSL_FAILURE; #ifdef OPENSSL_EXTRA return wolfSSL_parse_cipher_list(NULL, ssl, ssl->suites, list); #else return (SetCipherList_ex(NULL, ssl, ssl->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; #endif } #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_SET_CIPHER_BYTES) int wolfSSL_set_cipher_list_bytes(WOLFSSL* ssl, const byte* list, const int listSz) { WOLFSSL_ENTER("wolfSSL_set_cipher_list_bytes"); if (ssl == NULL || ssl->ctx == NULL) { return WOLFSSL_FAILURE; } if (AllocateSuites(ssl) != 0) return WOLFSSL_FAILURE; return (SetCipherListFromBytes(ssl->ctx, ssl->suites, list, listSz)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #endif /* OPENSSL_EXTRA || WOLFSSL_SET_CIPHER_BYTES */ #ifdef HAVE_KEYING_MATERIAL #define TLS_PRF_LABEL_CLIENT_FINISHED "client finished" #define TLS_PRF_LABEL_SERVER_FINISHED "server finished" #define TLS_PRF_LABEL_MASTER_SECRET "master secret" #define TLS_PRF_LABEL_EXT_MASTER_SECRET "extended master secret" #define TLS_PRF_LABEL_KEY_EXPANSION "key expansion" static const struct ForbiddenLabels { const char* label; size_t labelLen; } forbiddenLabels[] = { {TLS_PRF_LABEL_CLIENT_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_CLIENT_FINISHED)}, {TLS_PRF_LABEL_SERVER_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_SERVER_FINISHED)}, {TLS_PRF_LABEL_MASTER_SECRET, XSTR_SIZEOF(TLS_PRF_LABEL_MASTER_SECRET)}, {TLS_PRF_LABEL_EXT_MASTER_SECRET, XSTR_SIZEOF(TLS_PRF_LABEL_EXT_MASTER_SECRET)}, {TLS_PRF_LABEL_KEY_EXPANSION, XSTR_SIZEOF(TLS_PRF_LABEL_KEY_EXPANSION)}, {NULL, 0}, }; /** * Implement RFC 5705 * TLS 1.3 uses a different exporter definition (section 7.5 of RFC 8446) * @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error */ int wolfSSL_export_keying_material(WOLFSSL *ssl, unsigned char *out, size_t outLen, const char *label, size_t labelLen, const unsigned char *context, size_t contextLen, int use_context) { byte* seed = NULL; word32 seedLen; const struct ForbiddenLabels* fl; WOLFSSL_ENTER("wolfSSL_export_keying_material"); if (ssl == NULL || out == NULL || label == NULL || (use_context && contextLen && context == NULL)) { WOLFSSL_MSG("Bad argument"); return WOLFSSL_FAILURE; } /* clientRandom + serverRandom * OR * clientRandom + serverRandom + ctx len encoding + ctx */ seedLen = !use_context ? (word32)SEED_LEN : (word32)SEED_LEN + 2 + (word32)contextLen; if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) { WOLFSSL_MSG("To export keying material wolfSSL needs to keep handshake " "data. Call wolfSSL_KeepArrays before attempting to " "export keyid material."); return WOLFSSL_FAILURE; } /* check forbidden labels */ for (fl = &forbiddenLabels[0]; fl->label != NULL; fl++) { if (labelLen >= fl->labelLen && XMEMCMP(label, fl->label, fl->labelLen) == 0) { WOLFSSL_MSG("Forbidden label"); return WOLFSSL_FAILURE; } } #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) { /* Path for TLS 1.3 */ if (!use_context) { contextLen = 0; context = (byte*)""; /* Give valid pointer for 0 length memcpy */ } if (Tls13_Exporter(ssl, out, (word32)outLen, label, labelLen, context, contextLen) != 0) { WOLFSSL_MSG("Tls13_Exporter error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* Path for <=TLS 1.2 */ seed = (byte*)XMALLOC(seedLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (seed == NULL) { WOLFSSL_MSG("malloc error"); return WOLFSSL_FAILURE; } XMEMCPY(seed, ssl->arrays->clientRandom, RAN_LEN); XMEMCPY(seed + RAN_LEN, ssl->arrays->serverRandom, RAN_LEN); if (use_context) { /* Encode len in big endian */ seed[SEED_LEN ] = (contextLen >> 8) & 0xFF; seed[SEED_LEN + 1] = (contextLen) & 0xFF; if (contextLen) { /* 0 length context is allowed */ XMEMCPY(seed + SEED_LEN + 2, context, contextLen); } } PRIVATE_KEY_UNLOCK(); if (wc_PRF_TLS(out, (word32)outLen, ssl->arrays->masterSecret, SECRET_LEN, (byte*)label, (word32)labelLen, seed, seedLen, IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm, ssl->heap, ssl->devId) != 0) { WOLFSSL_MSG("wc_PRF_TLS error"); PRIVATE_KEY_LOCK(); XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } PRIVATE_KEY_LOCK(); XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_SUCCESS; } #endif /* HAVE_KEYING_MATERIAL */ int wolfSSL_dtls_get_using_nonblock(WOLFSSL* ssl) { int useNb = 0; if (ssl == NULL) return WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_dtls_get_using_nonblock"); if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS useNb = ssl->options.dtlsUseNonblock; #endif } else { WOLFSSL_MSG("wolfSSL_dtls_get_using_nonblock() is " "DEPRECATED for non-DTLS use."); } return useNb; } #ifndef WOLFSSL_LEANPSK void wolfSSL_dtls_set_using_nonblock(WOLFSSL* ssl, int nonblock) { (void)nonblock; WOLFSSL_ENTER("wolfSSL_dtls_set_using_nonblock"); if (ssl == NULL) return; if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS ssl->options.dtlsUseNonblock = (nonblock != 0); #endif } else { WOLFSSL_MSG("wolfSSL_dtls_set_using_nonblock() is " "DEPRECATED for non-DTLS use."); } } #ifdef WOLFSSL_DTLS int wolfSSL_dtls_get_current_timeout(WOLFSSL* ssl) { int timeout = 0; if (ssl) timeout = ssl->dtls_timeout; WOLFSSL_LEAVE("wolfSSL_dtls_get_current_timeout", timeout); return timeout; } #ifdef WOLFSSL_DTLS13 /* * This API returns 1 when the user should set a short timeout for receiving * data. It is recommended that it is at most 1/4 the value returned by * wolfSSL_dtls_get_current_timeout(). */ int wolfSSL_dtls13_use_quick_timeout(WOLFSSL* ssl) { return ssl->dtls13FastTimeout; } /* * When this is set, a DTLS 1.3 connection will send acks immediately when a * disruption is detected to shortcut timeouts. This results in potentially * more traffic but may make the handshake quicker. */ void wolfSSL_dtls13_set_send_more_acks(WOLFSSL* ssl, int value) { if (ssl != NULL) ssl->options.dtls13SendMoreAcks = !!value; } #endif /* WOLFSSL_DTLS13 */ int wolfSSL_DTLSv1_get_timeout(WOLFSSL* ssl, WOLFSSL_TIMEVAL* timeleft) { if (ssl && timeleft) { XMEMSET(timeleft, 0, sizeof(WOLFSSL_TIMEVAL)); timeleft->tv_sec = ssl->dtls_timeout; } return 0; } #ifndef NO_WOLFSSL_STUB int wolfSSL_DTLSv1_handle_timeout(WOLFSSL* ssl) { WOLFSSL_STUB("SSL_DTLSv1_handle_timeout"); (void)ssl; return 0; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_DTLSv1_set_initial_timeout_duration(WOLFSSL* ssl, word32 duration_ms) { WOLFSSL_STUB("SSL_DTLSv1_set_initial_timeout_duration"); (void)ssl; (void)duration_ms; } #endif /* user may need to alter init dtls recv timeout, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_set_timeout_init(WOLFSSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout > ssl->dtls_timeout_max) { WOLFSSL_MSG("Can't set dtls timeout init greater than dtls timeout " "max"); return BAD_FUNC_ARG; } ssl->dtls_timeout_init = timeout; ssl->dtls_timeout = timeout; return WOLFSSL_SUCCESS; } /* user may need to alter max dtls recv timeout, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_set_timeout_max(WOLFSSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout < ssl->dtls_timeout_init) { WOLFSSL_MSG("Can't set dtls timeout max less than dtls timeout init"); return BAD_FUNC_ARG; } ssl->dtls_timeout_max = timeout; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_got_timeout(WOLFSSL* ssl) { int result = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_dtls_got_timeout"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) { result = Dtls13RtxTimeout(ssl); if (result < 0) { if (result == WANT_WRITE) ssl->dtls13SendingAckOrRtx = 1; ssl->error = result; WOLFSSL_ERROR(result); return WOLFSSL_FATAL_ERROR; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS13 */ if ((IsSCR(ssl) || !ssl->options.handShakeDone)) { if (DtlsMsgPoolTimeout(ssl) < 0){ ssl->error = SOCKET_ERROR_E; WOLFSSL_ERROR(ssl->error); result = WOLFSSL_FATAL_ERROR; } else if ((result = DtlsMsgPoolSend(ssl, 0)) < 0) { ssl->error = result; WOLFSSL_ERROR(result); result = WOLFSSL_FATAL_ERROR; } else { /* Reset return value to success */ result = WOLFSSL_SUCCESS; } } WOLFSSL_LEAVE("wolfSSL_dtls_got_timeout", result); return result; } /* retransmit all the saves messages, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_retransmit(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_dtls_retransmit"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; if (!ssl->options.handShakeDone) { int result = DtlsMsgPoolSend(ssl, 0); if (result < 0) { ssl->error = result; WOLFSSL_ERROR(result); return WOLFSSL_FATAL_ERROR; } } return 0; } #endif /* DTLS */ #endif /* LEANPSK */ #if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER) /* Not an SSL function, return 0 for success, error code otherwise */ /* Prereq: ssl's RNG needs to be initialized. */ int wolfSSL_DTLS_SetCookieSecret(WOLFSSL* ssl, const byte* secret, word32 secretSz) { int ret = 0; WOLFSSL_ENTER("wolfSSL_DTLS_SetCookieSecret"); if (ssl == NULL) { WOLFSSL_MSG("need a SSL object"); return BAD_FUNC_ARG; } if (secret != NULL && secretSz == 0) { WOLFSSL_MSG("can't have a new secret without a size"); return BAD_FUNC_ARG; } /* If secretSz is 0, use the default size. */ if (secretSz == 0) secretSz = COOKIE_SECRET_SZ; if (secretSz != ssl->buffers.dtlsCookieSecret.length) { byte* newSecret; if (ssl->buffers.dtlsCookieSecret.buffer != NULL) { ForceZero(ssl->buffers.dtlsCookieSecret.buffer, ssl->buffers.dtlsCookieSecret.length); XFREE(ssl->buffers.dtlsCookieSecret.buffer, ssl->heap, DYNAMIC_TYPE_COOKIE_PWD); } newSecret = (byte*)XMALLOC(secretSz, ssl->heap,DYNAMIC_TYPE_COOKIE_PWD); if (newSecret == NULL) { ssl->buffers.dtlsCookieSecret.buffer = NULL; ssl->buffers.dtlsCookieSecret.length = 0; WOLFSSL_MSG("couldn't allocate new cookie secret"); return MEMORY_ERROR; } ssl->buffers.dtlsCookieSecret.buffer = newSecret; ssl->buffers.dtlsCookieSecret.length = secretSz; #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("wolfSSL_DTLS_SetCookieSecret secret", ssl->buffers.dtlsCookieSecret.buffer, ssl->buffers.dtlsCookieSecret.length); #endif } /* If the supplied secret is NULL, randomly generate a new secret. */ if (secret == NULL) { ret = wc_RNG_GenerateBlock(ssl->rng, ssl->buffers.dtlsCookieSecret.buffer, secretSz); } else XMEMCPY(ssl->buffers.dtlsCookieSecret.buffer, secret, secretSz); WOLFSSL_LEAVE("wolfSSL_DTLS_SetCookieSecret", 0); return ret; } #endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */ /* EITHER SIDE METHODS */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE) WOLFSSL_METHOD* wolfSSLv23_method(void) { return wolfSSLv23_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv23_method_ex(void* heap) { WOLFSSL_METHOD* m = NULL; WOLFSSL_ENTER("wolfSSLv23_method"); #if !defined(NO_WOLFSSL_CLIENT) m = wolfSSLv23_client_method_ex(heap); #elif !defined(NO_WOLFSSL_SERVER) m = wolfSSLv23_server_method_ex(heap); #else (void)heap; #endif if (m != NULL) { m->side = WOLFSSL_NEITHER_END; } return m; } #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_SSLV3 WOLFSSL_METHOD* wolfSSLv3_method(void) { return wolfSSLv3_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv3_method_ex(void* heap) { WOLFSSL_METHOD* m = NULL; WOLFSSL_ENTER("wolfSSLv3_method_ex"); #if !defined(NO_WOLFSSL_CLIENT) m = wolfSSLv3_client_method_ex(heap); #elif !defined(NO_WOLFSSL_SERVER) m = wolfSSLv3_server_method_ex(heap); #endif if (m != NULL) { m->side = WOLFSSL_NEITHER_END; } return m; } #endif #endif #endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */ /* client only parts */ #ifndef NO_WOLFSSL_CLIENT #if defined(OPENSSL_EXTRA) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv2_client_method(void) { WOLFSSL_STUB("wolfSSLv2_client_method"); return NULL; } #endif #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_client_method(void) { return wolfSSLv3_client_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv3_client_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("wolfSSLv3_client_method_ex"); if (method) InitSSL_Method(method, MakeSSLv3()); return method; } #endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */ WOLFSSL_METHOD* wolfSSLv23_client_method(void) { return wolfSSLv23_client_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv23_client_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("wolfSSLv23_client_method_ex"); if (method) { #if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || \ defined(WOLFSSL_SHA512) #if defined(WOLFSSL_TLS13) InitSSL_Method(method, MakeTLSv1_3()); #elif !defined(WOLFSSL_NO_TLS12) InitSSL_Method(method, MakeTLSv1_2()); #elif !defined(NO_OLD_TLS) InitSSL_Method(method, MakeTLSv1_1()); #endif #else #ifndef NO_OLD_TLS InitSSL_Method(method, MakeTLSv1_1()); #endif #endif #if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13) method->downgrade = 1; #endif } return method; } /* please see note at top of README if you get an error from connect */ WOLFSSL_ABI int wolfSSL_connect(WOLFSSL* ssl) { #if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && \ defined(WOLFSSL_TLS13)) int neededState; byte advanceState; #endif int ret = 0; (void)ret; #ifdef HAVE_ERRNO_H errno = 0; #endif if (ssl == NULL) return BAD_FUNC_ARG; #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE) if (ssl->options.side == WOLFSSL_NEITHER_END) { ssl->error = InitSSL_Side(ssl, WOLFSSL_CLIENT_END); if (ssl->error != WOLFSSL_SUCCESS) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->error = 0; /* expected to be zero here */ } #ifdef OPENSSL_EXTRA if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_ST_CONNECT, WOLFSSL_SUCCESS); ssl->cbmode = SSL_CB_WRITE; } #endif #endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */ #if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && \ defined(WOLFSSL_TLS13) return wolfSSL_connect_TLSv13(ssl); #else #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) { WOLFSSL_MSG("TLS 1.3"); return wolfSSL_connect_TLSv13(ssl); } #endif WOLFSSL_MSG("TLS 1.2 or lower"); WOLFSSL_ENTER("wolfSSL_connect"); /* make sure this wolfSSL object has arrays and rng setup. Protects * case where the WOLFSSL object is reused via wolfSSL_clear() */ if ((ret = ReinitSSL(ssl, ssl->ctx, 0)) != 0) { return ret; } #ifdef WOLFSSL_WOLFSENTRY_HOOKS if ((ssl->ConnectFilter != NULL) && (ssl->options.connectState == CONNECT_BEGIN)) { wolfSSL_netfilter_decision_t res; if ((ssl->ConnectFilter(ssl, ssl->ConnectFilter_arg, &res) == WOLFSSL_SUCCESS) && (res == WOLFSSL_NETFILTER_REJECT)) { ssl->error = SOCKET_FILTERED_E; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_WOLFSENTRY_HOOKS */ if (ssl->options.side != WOLFSSL_CLIENT_END) { ssl->error = SIDE_ERROR; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; ssl->options.dtlsStateful = 1; } #endif /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ advanceState = ssl->fragOffset == 0 && (ssl->options.connectState == CONNECT_BEGIN || ssl->options.connectState == HELLO_AGAIN || (ssl->options.connectState >= FIRST_REPLY_DONE && ssl->options.connectState <= FIRST_REPLY_FOURTH)); #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) advanceState = advanceState && !ssl->dtls13SendingAckOrRtx; #endif /* WOLFSSL_DTLS13 */ if (ssl->buffers.outputBuffer.length > 0 #ifdef WOLFSSL_ASYNC_CRYPT /* do not send buffered or advance state if last error was an async pending operation */ && ssl->error != WC_PENDING_E #endif ) { ret = SendBuffered(ssl); if (ret == 0) { if (ssl->fragOffset == 0 && !ssl->options.buildingMsg) { if (advanceState) { ssl->options.connectState++; WOLFSSL_MSG("connect state: Advanced from last " "buffered fragment send"); #ifdef WOLFSSL_ASYNC_IO /* Cleanup async */ FreeAsyncCtx(ssl, 0); #endif } } else { WOLFSSL_MSG("connect state: " "Not advanced, more fragments to send"); } } else { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls) ssl->dtls13SendingAckOrRtx = 0; #endif /* WOLFSSL_DTLS13 */ } ret = RetrySendAlert(ssl); if (ret != 0) { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } switch (ssl->options.connectState) { case CONNECT_BEGIN : /* always send client hello first */ if ( (ssl->error = SendClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.connectState = CLIENT_HELLO_SENT; WOLFSSL_MSG("connect state: CLIENT_HELLO_SENT"); FALL_THROUGH; case CLIENT_HELLO_SENT : neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; #ifdef WOLFSSL_DTLS /* In DTLS, when resuming, we can go straight to FINISHED, * or do a cookie exchange and then skip to FINISHED, assume * we need the cookie exchange first. */ if (IsDtlsNotSctpMode(ssl)) neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; #endif /* get response */ WOLFSSL_MSG("Server state up to needed state."); while (ssl->options.serverState < neededState) { WOLFSSL_MSG("Progressing server state..."); #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif WOLFSSL_MSG("ProcessReply..."); if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) { if (!ssl->options.resuming) { #ifdef WOLFSSL_DTLS if (IsDtlsNotSctpMode(ssl)) neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; else #endif neededState = SERVER_HELLODONE_COMPLETE; } } WOLFSSL_MSG("ProcessReply done."); #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version) && ssl->dtls13Rtx.sendAcks == 1 && ssl->options.seenUnifiedHdr) { /* we aren't negotiated the version yet, so we aren't sure * the other end can speak v1.3. On the other side we have * received a unified records, assuming that the * ServerHello got lost, we will send an empty ACK. In case * the server is a DTLS with version less than 1.3, it * should just ignore the message */ ssl->dtls13Rtx.sendAcks = 0; if ((ssl->error = SendDtls13Ack(ssl)) < 0) { if (ssl->error == WANT_WRITE) ssl->dtls13SendingAckOrRtx = 1; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_DTLS13 */ } ssl->options.connectState = HELLO_AGAIN; WOLFSSL_MSG("connect state: HELLO_AGAIN"); FALL_THROUGH; case HELLO_AGAIN : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif #ifdef WOLFSSL_DTLS if (ssl->options.serverState == SERVER_HELLOVERIFYREQUEST_COMPLETE) { if (IsDtlsNotSctpMode(ssl)) { /* re-init hashes, exclude first hello and verify request */ if ((ssl->error = InitHandshakeHashes(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } if ( (ssl->error = SendClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } } #endif ssl->options.connectState = HELLO_AGAIN_REPLY; WOLFSSL_MSG("connect state: HELLO_AGAIN_REPLY"); FALL_THROUGH; case HELLO_AGAIN_REPLY : #ifdef WOLFSSL_DTLS if (IsDtlsNotSctpMode(ssl)) { neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; /* get response */ while (ssl->options.serverState < neededState) { if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ if (neededState == SERVER_FINISHED_COMPLETE) { if (!ssl->options.resuming) neededState = SERVER_HELLODONE_COMPLETE; } } } #endif ssl->options.connectState = FIRST_REPLY_DONE; WOLFSSL_MSG("connect state: FIRST_REPLY_DONE"); FALL_THROUGH; case FIRST_REPLY_DONE : if (ssl->options.certOnly) return WOLFSSL_SUCCESS; #if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH) #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificate(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate"); } #endif ssl->options.connectState = FIRST_REPLY_FIRST; WOLFSSL_MSG("connect state: FIRST_REPLY_FIRST"); FALL_THROUGH; case FIRST_REPLY_FIRST : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if (!ssl->options.resuming) { if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif #ifdef WOLFSSL_EXTRA_ALERTS if (ssl->error == NO_PEER_KEY || ssl->error == PSK_KEY_ERROR) { SendAlert(ssl, alert_fatal, handshake_failure); } #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: client key exchange"); } ssl->options.connectState = FIRST_REPLY_SECOND; WOLFSSL_MSG("connect state: FIRST_REPLY_SECOND"); FALL_THROUGH; #if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS) case FIRST_REPLY_SECOND : /* CLIENT: Fail-safe for Server Authentication. */ if (!ssl->options.peerAuthGood) { WOLFSSL_MSG("Server authentication did not happen"); ssl->error = NO_PEER_VERIFY; return WOLFSSL_FATAL_ERROR; } #if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH) if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificateVerify(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate verify"); } #endif /* !NO_CERTS && !WOLFSSL_NO_CLIENT_AUTH */ ssl->options.connectState = FIRST_REPLY_THIRD; WOLFSSL_MSG("connect state: FIRST_REPLY_THIRD"); FALL_THROUGH; case FIRST_REPLY_THIRD : if ( (ssl->error = SendChangeCipher(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: change cipher spec"); ssl->options.connectState = FIRST_REPLY_FOURTH; WOLFSSL_MSG("connect state: FIRST_REPLY_FOURTH"); FALL_THROUGH; case FIRST_REPLY_FOURTH : if ( (ssl->error = SendFinished(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: finished"); ssl->options.connectState = FINISHED_DONE; WOLFSSL_MSG("connect state: FINISHED_DONE"); FALL_THROUGH; #ifdef WOLFSSL_DTLS13 case WAIT_FINISHED_ACK: ssl->options.connectState = FINISHED_DONE; FALL_THROUGH; #endif /* WOLFSSL_DTLS13 */ case FINISHED_DONE : /* get response */ while (ssl->options.serverState < SERVER_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.connectState = SECOND_REPLY_DONE; WOLFSSL_MSG("connect state: SECOND_REPLY_DONE"); FALL_THROUGH; case SECOND_REPLY_DONE: #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return WOLFSSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ if (!ssl->options.dtls) { if (!ssl->options.keepResources) { FreeHandshakeResources(ssl); } } #ifdef WOLFSSL_DTLS else { ssl->options.dtlsHsRetain = 1; } #endif /* WOLFSSL_DTLS */ #if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION) /* This may be necessary in async so that we don't try to * renegotiate again */ if (ssl->secure_renegotiation && ssl->secure_renegotiation->startScr) { ssl->secure_renegotiation->startScr = 0; } #endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */ #if defined(WOLFSSL_ASYNC_IO) && !defined(WOLFSSL_ASYNC_CRYPT) /* Free the remaining async context if not using it for crypto */ FreeAsyncCtx(ssl, 1); #endif ssl->error = 0; /* clear the error */ WOLFSSL_LEAVE("wolfSSL_connect", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; #endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS */ default: WOLFSSL_MSG("Unknown connect state ERROR"); return WOLFSSL_FATAL_ERROR; /* unknown connect state */ } #endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS || !WOLFSSL_TLS13 */ } #endif /* NO_WOLFSSL_CLIENT */ /* server only parts */ #ifndef NO_WOLFSSL_SERVER #if defined(OPENSSL_EXTRA) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv2_server_method(void) { WOLFSSL_STUB("wolfSSLv2_server_method"); return 0; } #endif #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_server_method(void) { return wolfSSLv3_server_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv3_server_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("wolfSSLv3_server_method_ex"); if (method) { InitSSL_Method(method, MakeSSLv3()); method->side = WOLFSSL_SERVER_END; } return method; } #endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */ WOLFSSL_METHOD* wolfSSLv23_server_method(void) { return wolfSSLv23_server_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv23_server_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("wolfSSLv23_server_method_ex"); if (method) { #if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || \ defined(WOLFSSL_SHA512) #ifdef WOLFSSL_TLS13 InitSSL_Method(method, MakeTLSv1_3()); #elif !defined(WOLFSSL_NO_TLS12) InitSSL_Method(method, MakeTLSv1_2()); #elif !defined(NO_OLD_TLS) InitSSL_Method(method, MakeTLSv1_1()); #endif #else #ifndef NO_OLD_TLS InitSSL_Method(method, MakeTLSv1_1()); #else #error Must have SHA256, SHA384 or SHA512 enabled for TLS 1.2 #endif #endif #if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13) method->downgrade = 1; #endif method->side = WOLFSSL_SERVER_END; } return method; } WOLFSSL_ABI int wolfSSL_accept(WOLFSSL* ssl) { #if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && \ defined(WOLFSSL_TLS13)) word16 havePSK = 0; word16 haveAnon = 0; word16 haveMcast = 0; #endif int ret = 0; (void)ret; if (ssl == NULL) return WOLFSSL_FATAL_ERROR; #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE) if (ssl->options.side == WOLFSSL_NEITHER_END) { WOLFSSL_MSG("Setting WOLFSSL_SSL to be server side"); ssl->error = InitSSL_Side(ssl, WOLFSSL_SERVER_END); if (ssl->error != WOLFSSL_SUCCESS) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->error = 0; /* expected to be zero here */ } #endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */ #if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13) return wolfSSL_accept_TLSv13(ssl); #else #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_accept_TLSv13(ssl); #endif WOLFSSL_ENTER("wolfSSL_accept"); /* make sure this wolfSSL object has arrays and rng setup. Protects * case where the WOLFSSL object is reused via wolfSSL_clear() */ if ((ret = ReinitSSL(ssl, ssl->ctx, 0)) != 0) { return ret; } #ifdef WOLFSSL_WOLFSENTRY_HOOKS if ((ssl->AcceptFilter != NULL) && ((ssl->options.acceptState == ACCEPT_BEGIN) #ifdef HAVE_SECURE_RENEGOTIATION || (ssl->options.acceptState == ACCEPT_BEGIN_RENEG) #endif )) { wolfSSL_netfilter_decision_t res; if ((ssl->AcceptFilter(ssl, ssl->AcceptFilter_arg, &res) == WOLFSSL_SUCCESS) && (res == WOLFSSL_NETFILTER_REJECT)) { ssl->error = SOCKET_FILTERED_E; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_WOLFSENTRY_HOOKS */ #ifdef HAVE_ERRNO_H errno = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif (void)havePSK; #ifdef HAVE_ANON haveAnon = ssl->options.useAnon; #endif (void)haveAnon; #ifdef WOLFSSL_MULTICAST haveMcast = ssl->options.haveMcast; #endif (void)haveMcast; if (ssl->options.side != WOLFSSL_SERVER_END) { ssl->error = SIDE_ERROR; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifndef NO_CERTS /* in case used set_accept_state after init */ if (!havePSK && !haveAnon && !haveMcast) { #ifdef OPENSSL_EXTRA if (ssl->ctx->certSetupCb != NULL) { WOLFSSL_MSG("CertSetupCb set. server cert and " "key not checked"); } else #endif { if (!ssl->buffers.certificate || !ssl->buffers.certificate->buffer) { WOLFSSL_MSG("accept error: server cert required"); ssl->error = NO_PRIVATE_KEY; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } if (!ssl->buffers.key || !ssl->buffers.key->buffer) { /* allow no private key if using existing key */ #ifdef WOLF_PRIVATE_KEY_ID if (ssl->devId != INVALID_DEVID #ifdef HAVE_PK_CALLBACKS || wolfSSL_CTX_IsPrivatePkSet(ssl->ctx) #endif ) { WOLFSSL_MSG("Allowing no server private key " "(external)"); } else #endif { WOLFSSL_MSG("accept error: server key required"); ssl->error = NO_PRIVATE_KEY; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } } } #endif #ifdef WOLFSSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; if (!IsDtlsNotSctpMode(ssl) || !IsDtlsNotSrtpMode(ssl) || IsSCR(ssl)) ssl->options.dtlsStateful = 1; } #endif if (ssl->buffers.outputBuffer.length > 0 #ifdef WOLFSSL_ASYNC_CRYPT /* do not send buffered or advance state if last error was an async pending operation */ && ssl->error != WC_PENDING_E #endif ) { ret = SendBuffered(ssl); if (ret == 0) { /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ if (ssl->fragOffset == 0 && !ssl->options.buildingMsg) { if (ssl->options.acceptState == ACCEPT_FIRST_REPLY_DONE || ssl->options.acceptState == SERVER_HELLO_SENT || ssl->options.acceptState == CERT_SENT || ssl->options.acceptState == CERT_STATUS_SENT || ssl->options.acceptState == KEY_EXCHANGE_SENT || ssl->options.acceptState == CERT_REQ_SENT || ssl->options.acceptState == ACCEPT_SECOND_REPLY_DONE || ssl->options.acceptState == TICKET_SENT || ssl->options.acceptState == CHANGE_CIPHER_SENT) { ssl->options.acceptState++; WOLFSSL_MSG("accept state: Advanced from last " "buffered fragment send"); #ifdef WOLFSSL_ASYNC_IO /* Cleanup async */ FreeAsyncCtx(ssl, 0); #endif } } else { WOLFSSL_MSG("accept state: " "Not advanced, more fragments to send"); } } else { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls) ssl->dtls13SendingAckOrRtx = 0; #endif /* WOLFSSL_DTLS13 */ } ret = RetrySendAlert(ssl); if (ret != 0) { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } switch (ssl->options.acceptState) { case ACCEPT_BEGIN : #ifdef HAVE_SECURE_RENEGOTIATION case ACCEPT_BEGIN_RENEG: #endif /* get response */ while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_TLS13 ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE; WOLFSSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE"); FALL_THROUGH; case ACCEPT_CLIENT_HELLO_DONE : if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE"); FALL_THROUGH; case ACCEPT_FIRST_REPLY_DONE : if ( (ssl->error = SendServerHello(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_SENT; WOLFSSL_MSG("accept state SERVER_HELLO_SENT"); FALL_THROUGH; case SERVER_HELLO_SENT : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif #ifndef NO_CERTS if (!ssl->options.resuming) if ( (ssl->error = SendCertificate(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_SENT; WOLFSSL_MSG("accept state CERT_SENT"); FALL_THROUGH; case CERT_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) if ( (ssl->error = SendCertificateStatus(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_STATUS_SENT; WOLFSSL_MSG("accept state CERT_STATUS_SENT"); FALL_THROUGH; case CERT_STATUS_SENT : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif if (!ssl->options.resuming) if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = KEY_EXCHANGE_SENT; WOLFSSL_MSG("accept state KEY_EXCHANGE_SENT"); FALL_THROUGH; case KEY_EXCHANGE_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) { if (ssl->options.verifyPeer) { if ( (ssl->error = SendCertificateRequest(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR /* See if an alert was sent. */ ProcessReplyEx(ssl, 1); #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } else { /* SERVER: Peer auth good if not verifying client. */ ssl->options.peerAuthGood = 1; } } #endif ssl->options.acceptState = CERT_REQ_SENT; WOLFSSL_MSG("accept state CERT_REQ_SENT"); FALL_THROUGH; case CERT_REQ_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendServerHelloDone(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_DONE; WOLFSSL_MSG("accept state SERVER_HELLO_DONE"); FALL_THROUGH; case SERVER_HELLO_DONE : if (!ssl->options.resuming) { while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE"); FALL_THROUGH; case ACCEPT_SECOND_REPLY_DONE : #ifndef NO_CERTS /* SERVER: When not resuming and verifying peer but no certificate * received and not failing when not received then peer auth good. */ if (!ssl->options.resuming && ssl->options.verifyPeer && !ssl->options.havePeerCert && !ssl->options.failNoCert) { ssl->options.peerAuthGood = 1; } #endif /* !NO_CERTS */ #ifdef WOLFSSL_NO_CLIENT_AUTH if (!ssl->options.resuming) { ssl->options.peerAuthGood = 1; } #endif #ifdef HAVE_SESSION_TICKET if (ssl->options.createTicket && !ssl->options.noTicketTls12) { if ( (ssl->error = SendTicket(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_MSG("Thought we need ticket but failed"); WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* HAVE_SESSION_TICKET */ ssl->options.acceptState = TICKET_SENT; WOLFSSL_MSG("accept state TICKET_SENT"); FALL_THROUGH; case TICKET_SENT: /* SERVER: Fail-safe for CLient Authentication. */ if (!ssl->options.peerAuthGood) { WOLFSSL_MSG("Client authentication did not happen"); return WOLFSSL_FATAL_ERROR; } if ( (ssl->error = SendChangeCipher(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = CHANGE_CIPHER_SENT; WOLFSSL_MSG("accept state CHANGE_CIPHER_SENT"); FALL_THROUGH; case CHANGE_CIPHER_SENT : if ( (ssl->error = SendFinished(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_FINISHED_DONE; WOLFSSL_MSG("accept state ACCEPT_FINISHED_DONE"); FALL_THROUGH; case ACCEPT_FINISHED_DONE : if (ssl->options.resuming) { while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) { if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } } ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE"); FALL_THROUGH; case ACCEPT_THIRD_REPLY_DONE : #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return WOLFSSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ if (!ssl->options.dtls) { if (!ssl->options.keepResources) { FreeHandshakeResources(ssl); } } #ifdef WOLFSSL_DTLS else { ssl->options.dtlsHsRetain = 1; } #endif /* WOLFSSL_DTLS */ #if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION) /* This may be necessary in async so that we don't try to * renegotiate again */ if (ssl->secure_renegotiation && ssl->secure_renegotiation->startScr) { ssl->secure_renegotiation->startScr = 0; } #endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */ #if defined(WOLFSSL_ASYNC_IO) && !defined(WOLFSSL_ASYNC_CRYPT) /* Free the remaining async context if not using it for crypto */ FreeAsyncCtx(ssl, 1); #endif #if defined(WOLFSSL_SESSION_EXPORT) && defined(WOLFSSL_DTLS) if (ssl->dtls_export) { if ((ssl->error = wolfSSL_send_session(ssl)) != 0) { WOLFSSL_MSG("Export DTLS session error"); WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif ssl->error = 0; /* clear the error */ WOLFSSL_LEAVE("wolfSSL_accept", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; default : WOLFSSL_MSG("Unknown accept state ERROR"); return WOLFSSL_FATAL_ERROR; } #endif /* !WOLFSSL_NO_TLS12 */ } #endif /* NO_WOLFSSL_SERVER */ #if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER) int wolfDTLS_SetChGoodCb(WOLFSSL* ssl, ClientHelloGoodCb cb, void* user_ctx) { WOLFSSL_ENTER("wolfDTLS_SetChGoodCb"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->chGoodCb = cb; ssl->chGoodCtx = user_ctx; return WOLFSSL_SUCCESS; } #endif #ifndef NO_HANDSHAKE_DONE_CB int wolfSSL_SetHsDoneCb(WOLFSSL* ssl, HandShakeDoneCb cb, void* user_ctx) { WOLFSSL_ENTER("wolfSSL_SetHsDoneCb"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->hsDoneCb = cb; ssl->hsDoneCtx = user_ctx; return WOLFSSL_SUCCESS; } #endif /* NO_HANDSHAKE_DONE_CB */ WOLFSSL_ABI int wolfSSL_Cleanup(void) { int ret = WOLFSSL_SUCCESS; /* Only the first error will be returned */ int release = 0; #if !defined(NO_SESSION_CACHE) int i; int j; #endif WOLFSSL_ENTER("wolfSSL_Cleanup"); #ifndef WOLFSSL_MUTEX_INITIALIZER if (inits_count_mutex_valid == 1) { #endif if (wc_LockMutex(&inits_count_mutex) != 0) { WOLFSSL_MSG("Bad Lock Mutex count"); return BAD_MUTEX_E; } #ifndef WOLFSSL_MUTEX_INITIALIZER } #endif if (initRefCount > 0) { --initRefCount; if (initRefCount == 0) release = 1; } #ifndef WOLFSSL_MUTEX_INITIALIZER if (inits_count_mutex_valid == 1) { #endif wc_UnLockMutex(&inits_count_mutex); #ifndef WOLFSSL_MUTEX_INITIALIZER } #endif if (!release) return ret; #ifdef OPENSSL_EXTRA wolfSSL_BN_free_one(); #endif #ifndef NO_SESSION_CACHE #ifdef ENABLE_SESSION_CACHE_ROW_LOCK for (i = 0; i < SESSION_ROWS; ++i) { if ((SessionCache[i].lock_valid == 1) && (wc_FreeRwLock(&SessionCache[i].row_lock) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } SessionCache[i].lock_valid = 0; } #else if ((session_lock_valid == 1) && (wc_FreeRwLock(&session_lock) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } session_lock_valid = 0; #endif for (i = 0; i < SESSION_ROWS; i++) { for (j = 0; j < SESSIONS_PER_ROW; j++) { #ifdef SESSION_CACHE_DYNAMIC_MEM if (SessionCache[i].Sessions[j]) { EvictSessionFromCache(SessionCache[i].Sessions[j]); XFREE(SessionCache[i].Sessions[j], SessionCache[i].heap, DYNAMIC_TYPE_SESSION); SessionCache[i].Sessions[j] = NULL; } #else EvictSessionFromCache(&SessionCache[i].Sessions[j]); #endif } } #ifndef NO_CLIENT_CACHE #ifndef WOLFSSL_MUTEX_INITIALIZER if ((clisession_mutex_valid == 1) && (wc_FreeMutex(&clisession_mutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } clisession_mutex_valid = 0; #endif #endif #endif /* !NO_SESSION_CACHE */ #ifndef WOLFSSL_MUTEX_INITIALIZER if ((inits_count_mutex_valid == 1) && (wc_FreeMutex(&inits_count_mutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } inits_count_mutex_valid = 0; #endif #ifdef OPENSSL_EXTRA wolfSSL_RAND_Cleanup(); #endif if (wolfCrypt_Cleanup() != 0) { WOLFSSL_MSG("Error with wolfCrypt_Cleanup call"); if (ret == WOLFSSL_SUCCESS) ret = WC_CLEANUP_E; } #if FIPS_VERSION_GE(5,1) if (wolfCrypt_SetPrivateKeyReadEnable_fips(0, WC_KEYTYPE_ALL) < 0) { if (ret == WOLFSSL_SUCCESS) ret = WC_CLEANUP_E; } #endif #ifdef HAVE_GLOBAL_RNG #ifndef WOLFSSL_MUTEX_INITIALIZER if ((globalRNGMutex_valid == 1) && (wc_FreeMutex(&globalRNGMutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } globalRNGMutex_valid = 0; #endif /* !WOLFSSL_MUTEX_INITIALIZER */ #if defined(OPENSSL_EXTRA) && defined(HAVE_HASHDRBG) wolfSSL_FIPS_drbg_free(gDrbgDefCtx); gDrbgDefCtx = NULL; #endif #endif #if defined(HAVE_EX_DATA) && \ (defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || \ defined(HAVE_LIGHTY)) || defined(HAVE_EX_DATA) || \ defined(WOLFSSL_WPAS_SMALL) crypto_ex_cb_free(crypto_ex_cb_ctx_session); crypto_ex_cb_ctx_session = NULL; #endif #ifdef WOLFSSL_MEM_FAIL_COUNT wc_MemFailCount_Free(); #endif return ret; } /* call before SSL_connect, if verifying will add name check to date check and signature check */ WOLFSSL_ABI int wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn) { WOLFSSL_ENTER("wolfSSL_check_domain_name"); if (ssl == NULL || dn == NULL) { WOLFSSL_MSG("Bad function argument: NULL"); return WOLFSSL_FAILURE; } if (ssl->buffers.domainName.buffer) XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN); ssl->buffers.domainName.length = (word32)XSTRLEN(dn); ssl->buffers.domainName.buffer = (byte*)XMALLOC( ssl->buffers.domainName.length + 1, ssl->heap, DYNAMIC_TYPE_DOMAIN); if (ssl->buffers.domainName.buffer) { unsigned char* domainName = ssl->buffers.domainName.buffer; XMEMCPY(domainName, dn, ssl->buffers.domainName.length); domainName[ssl->buffers.domainName.length] = '\0'; return WOLFSSL_SUCCESS; } else { ssl->error = MEMORY_ERROR; return WOLFSSL_FAILURE; } } /* turn on wolfSSL zlib compression returns WOLFSSL_SUCCESS for success, else error (not built in) */ int wolfSSL_set_compression(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_set_compression"); (void)ssl; #ifdef HAVE_LIBZ ssl->options.usingCompression = 1; return WOLFSSL_SUCCESS; #else return NOT_COMPILED_IN; #endif } #ifndef USE_WINDOWS_API #ifndef NO_WRITEV /* simulate writev semantics, doesn't actually do block at a time though because of SSL_write behavior and because front adds may be small */ int wolfSSL_writev(WOLFSSL* ssl, const struct iovec* iov, int iovcnt) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; int sending = 0; int idx = 0; int i; int ret; WOLFSSL_ENTER("wolfSSL_writev"); for (i = 0; i < iovcnt; i++) sending += (int)iov[i].iov_len; if (sending > (int)sizeof(staticBuffer)) { myBuffer = (byte*)XMALLOC(sending, ssl->heap, DYNAMIC_TYPE_WRITEV); if (!myBuffer) return MEMORY_ERROR; dynamic = 1; } for (i = 0; i < iovcnt; i++) { XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len); idx += (int)iov[i].iov_len; } /* myBuffer may not be initialized fully, but the span up to the * sending length will be. */ PRAGMA_GCC_DIAG_PUSH PRAGMA_GCC("GCC diagnostic ignored \"-Wmaybe-uninitialized\"") ret = wolfSSL_write(ssl, myBuffer, sending); PRAGMA_GCC_DIAG_POP if (dynamic) XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV); return ret; } #endif #endif #ifdef WOLFSSL_CALLBACKS typedef struct itimerval Itimerval; /* don't keep calling simple functions while setting up timer and signals if no inlining these are the next best */ #define AddTimes(a, b, c) \ do { \ (c).tv_sec = (a).tv_sec + (b).tv_sec; \ (c).tv_usec = (a).tv_usec + (b).tv_usec;\ if ((c).tv_usec >= 1000000) { \ (c).tv_sec++; \ (c).tv_usec -= 1000000; \ } \ } while (0) #define SubtractTimes(a, b, c) \ do { \ (c).tv_sec = (a).tv_sec - (b).tv_sec; \ (c).tv_usec = (a).tv_usec - (b).tv_usec;\ if ((c).tv_usec < 0) { \ (c).tv_sec--; \ (c).tv_usec += 1000000; \ } \ } while (0) #define CmpTimes(a, b, cmp) \ (((a).tv_sec == (b).tv_sec) ? \ ((a).tv_usec cmp (b).tv_usec) : \ ((a).tv_sec cmp (b).tv_sec)) \ /* do nothing handler */ static void myHandler(int signo) { (void)signo; return; } static int wolfSSL_ex_wrapper(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout) { int ret = WOLFSSL_FATAL_ERROR; int oldTimerOn = 0; /* was timer already on */ WOLFSSL_TIMEVAL startTime; WOLFSSL_TIMEVAL endTime; WOLFSSL_TIMEVAL totalTime; Itimerval myTimeout; Itimerval oldTimeout; /* if old timer adjust from total time to reset */ struct sigaction act, oact; #define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; } if (hsCb) { ssl->hsInfoOn = 1; InitHandShakeInfo(&ssl->handShakeInfo, ssl); } if (toCb) { ssl->toInfoOn = 1; InitTimeoutInfo(&ssl->timeoutInfo); if (gettimeofday(&startTime, 0) < 0) ERR_OUT(GETTIME_ERROR); /* use setitimer to simulate getitimer, init 0 myTimeout */ myTimeout.it_interval.tv_sec = 0; myTimeout.it_interval.tv_usec = 0; myTimeout.it_value.tv_sec = 0; myTimeout.it_value.tv_usec = 0; if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0) ERR_OUT(SETITIMER_ERROR); if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) { oldTimerOn = 1; /* is old timer going to expire before ours */ if (CmpTimes(oldTimeout.it_value, timeout, <)) { timeout.tv_sec = oldTimeout.it_value.tv_sec; timeout.tv_usec = oldTimeout.it_value.tv_usec; } } myTimeout.it_value.tv_sec = timeout.tv_sec; myTimeout.it_value.tv_usec = timeout.tv_usec; /* set up signal handler, don't restart socket send/recv */ act.sa_handler = myHandler; sigemptyset(&act.sa_mask); act.sa_flags = 0; #ifdef SA_INTERRUPT act.sa_flags |= SA_INTERRUPT; #endif if (sigaction(SIGALRM, &act, &oact) < 0) ERR_OUT(SIGACT_ERROR); if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0) ERR_OUT(SETITIMER_ERROR); } /* do main work */ #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_CLIENT_END) ret = wolfSSL_connect(ssl); #endif #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_SERVER_END) ret = wolfSSL_accept(ssl); #endif /* do callbacks */ if (toCb) { if (oldTimerOn) { if (gettimeofday(&endTime, 0) < 0) ERR_OUT(SYSLIB_FAILED_E); SubtractTimes(endTime, startTime, totalTime); /* adjust old timer for elapsed time */ if (CmpTimes(totalTime, oldTimeout.it_value, <)) SubtractTimes(oldTimeout.it_value, totalTime, oldTimeout.it_value); else { /* reset value to interval, may be off */ oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec; oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec; } /* keep iter the same whether there or not */ } /* restore old handler */ if (sigaction(SIGALRM, &oact, 0) < 0) ret = SIGACT_ERROR; /* more pressing error, stomp */ else /* use old settings which may turn off (expired or not there) */ if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0) ret = SETITIMER_ERROR; /* if we had a timeout call callback */ if (ssl->timeoutInfo.timeoutName[0]) { ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec; ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec; (toCb)(&ssl->timeoutInfo); } ssl->toInfoOn = 0; } /* clean up buffers allocated by AddPacketInfo */ FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap); if (hsCb) { FinishHandShakeInfo(&ssl->handShakeInfo); (hsCb)(&ssl->handShakeInfo); ssl->hsInfoOn = 0; } return ret; } #ifndef NO_WOLFSSL_CLIENT int wolfSSL_connect_ex(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout) { WOLFSSL_ENTER("wolfSSL_connect_ex"); return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #ifndef NO_WOLFSSL_SERVER int wolfSSL_accept_ex(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout) { WOLFSSL_ENTER("wolfSSL_accept_ex"); return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #endif /* WOLFSSL_CALLBACKS */ #ifndef NO_PSK void wolfSSL_CTX_set_psk_client_callback(WOLFSSL_CTX* ctx, wc_psk_client_callback cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_psk_client_callback"); if (ctx == NULL) return; ctx->havePSK = 1; ctx->client_psk_cb = cb; } void wolfSSL_set_psk_client_callback(WOLFSSL* ssl,wc_psk_client_callback cb) { byte haveRSA = 1; int keySz = 0; WOLFSSL_ENTER("wolfSSL_set_psk_client_callback"); if (ssl == NULL) return; ssl->options.havePSK = 1; ssl->options.client_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif if (AllocateSuites(ssl) != 0) return; InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, TRUE, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveDilithiumSig, ssl->options.useAnon, TRUE, ssl->options.side); } #ifdef OPENSSL_EXTRA /** * set call back function for psk session use * @param ssl a pointer to WOLFSSL structure * @param cb a function pointer to wc_psk_use_session_cb * @return none */ void wolfSSL_set_psk_use_session_callback(WOLFSSL* ssl, wc_psk_use_session_cb_func cb) { WOLFSSL_ENTER("wolfSSL_set_psk_use_session_callback"); if (ssl != NULL) { ssl->options.havePSK = 1; ssl->options.session_psk_cb = cb; } WOLFSSL_LEAVE("wolfSSL_set_psk_use_session_callback", WOLFSSL_SUCCESS); } #endif void wolfSSL_CTX_set_psk_server_callback(WOLFSSL_CTX* ctx, wc_psk_server_callback cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_psk_server_callback"); if (ctx == NULL) return; ctx->havePSK = 1; ctx->server_psk_cb = cb; } void wolfSSL_set_psk_server_callback(WOLFSSL* ssl,wc_psk_server_callback cb) { byte haveRSA = 1; int keySz = 0; WOLFSSL_ENTER("wolfSSL_set_psk_server_callback"); if (ssl == NULL) return; ssl->options.havePSK = 1; ssl->options.server_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif if (AllocateSuites(ssl) != 0) return; InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, TRUE, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveDilithiumSig, ssl->options.useAnon, TRUE, ssl->options.side); } const char* wolfSSL_get_psk_identity_hint(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->server_hint; } const char* wolfSSL_get_psk_identity(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_psk_identity"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->client_identity; } int wolfSSL_CTX_use_psk_identity_hint(WOLFSSL_CTX* ctx, const char* hint) { WOLFSSL_ENTER("wolfSSL_CTX_use_psk_identity_hint"); if (hint == 0) ctx->server_hint[0] = '\0'; else { /* Qt does not call CTX_set_*_psk_callbacks where havePSK is set */ #ifdef WOLFSSL_QT ctx->havePSK=1; #endif XSTRNCPY(ctx->server_hint, hint, MAX_PSK_ID_LEN); ctx->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */ } return WOLFSSL_SUCCESS; } int wolfSSL_use_psk_identity_hint(WOLFSSL* ssl, const char* hint) { WOLFSSL_ENTER("wolfSSL_use_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return WOLFSSL_FAILURE; if (hint == 0) ssl->arrays->server_hint[0] = 0; else { XSTRNCPY(ssl->arrays->server_hint, hint, sizeof(ssl->arrays->server_hint)-1); ssl->arrays->server_hint[sizeof(ssl->arrays->server_hint)-1] = '\0'; } return WOLFSSL_SUCCESS; } void* wolfSSL_get_psk_callback_ctx(WOLFSSL* ssl) { return ssl ? ssl->options.psk_ctx : NULL; } void* wolfSSL_CTX_get_psk_callback_ctx(WOLFSSL_CTX* ctx) { return ctx ? ctx->psk_ctx : NULL; } int wolfSSL_set_psk_callback_ctx(WOLFSSL* ssl, void* psk_ctx) { if (ssl == NULL) return WOLFSSL_FAILURE; ssl->options.psk_ctx = psk_ctx; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_psk_callback_ctx(WOLFSSL_CTX* ctx, void* psk_ctx) { if (ctx == NULL) return WOLFSSL_FAILURE; ctx->psk_ctx = psk_ctx; return WOLFSSL_SUCCESS; } #endif /* NO_PSK */ #ifdef HAVE_ANON int wolfSSL_CTX_allow_anon_cipher(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_allow_anon_cipher"); if (ctx == NULL) return WOLFSSL_FAILURE; ctx->useAnon = 1; return WOLFSSL_SUCCESS; } #endif /* HAVE_ANON */ #ifndef NO_CERTS /* unload any certs or keys that SSL owns, leave CTX as is WOLFSSL_SUCCESS on ok */ int wolfSSL_UnloadCertsKeys(WOLFSSL* ssl) { if (ssl == NULL) { WOLFSSL_MSG("Null function arg"); return BAD_FUNC_ARG; } if (ssl->buffers.weOwnCert && !ssl->keepCert) { WOLFSSL_MSG("Unloading cert"); FreeDer(&ssl->buffers.certificate); #ifdef KEEP_OUR_CERT wolfSSL_X509_free(ssl->ourCert); ssl->ourCert = NULL; #endif ssl->buffers.weOwnCert = 0; } if (ssl->buffers.weOwnCertChain) { WOLFSSL_MSG("Unloading cert chain"); FreeDer(&ssl->buffers.certChain); ssl->buffers.weOwnCertChain = 0; } if (ssl->buffers.weOwnKey) { WOLFSSL_MSG("Unloading key"); ForceZero(ssl->buffers.key->buffer, ssl->buffers.key->length); FreeDer(&ssl->buffers.key); ssl->buffers.weOwnKey = 0; } #ifdef WOLFSSL_DUAL_ALG_CERTS if (ssl->buffers.weOwnAltKey) { WOLFSSL_MSG("Unloading alt key"); ForceZero(ssl->buffers.altKey->buffer, ssl->buffers.altKey->length); FreeDer(&ssl->buffers.altKey); ssl->buffers.weOwnAltKey = 0; } #endif /* WOLFSSL_DUAL_ALG_CERTS */ return WOLFSSL_SUCCESS; } int wolfSSL_CTX_UnloadCAs(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_UnloadCAs"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerUnloadCAs(ctx->cm); } int wolfSSL_CTX_UnloadIntermediateCerts(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_UnloadIntermediateCerts"); if (ctx == NULL) return BAD_FUNC_ARG; if (ctx->ref.count > 1) { WOLFSSL_MSG("ctx object must have a ref count of 1 before " "unloading intermediate certs"); return BAD_STATE_E; } return wolfSSL_CertManagerUnloadIntermediateCerts(ctx->cm); } #ifdef WOLFSSL_TRUST_PEER_CERT int wolfSSL_CTX_Unload_trust_peers(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerUnload_trust_peers(ctx->cm); } #ifdef WOLFSSL_LOCAL_X509_STORE int wolfSSL_Unload_trust_peers(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers"); if (ssl == NULL) return BAD_FUNC_ARG; SSL_CM_WARNING(ssl); return wolfSSL_CertManagerUnload_trust_peers(SSL_CM(ssl)); } #endif /* WOLFSSL_LOCAL_X509_STORE */ #endif /* WOLFSSL_TRUST_PEER_CERT */ /* old NO_FILESYSTEM end */ #endif /* !NO_CERTS */ #ifdef OPENSSL_EXTRA int wolfSSL_add_all_algorithms(void) { WOLFSSL_ENTER("wolfSSL_add_all_algorithms"); if (initRefCount != 0 || wolfSSL_Init() == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; else return WOLFSSL_FATAL_ERROR; } int wolfSSL_OpenSSL_add_all_algorithms_noconf(void) { WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_noconf"); if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR) return WOLFSSL_FATAL_ERROR; return WOLFSSL_SUCCESS; } int wolfSSL_OpenSSL_add_all_algorithms_conf(void) { WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_conf"); /* This function is currently the same as wolfSSL_OpenSSL_add_all_algorithms_noconf since we do not employ the use of a wolfssl.cnf type configuration file and is only used for OpenSSL compatibility. */ if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR) { return WOLFSSL_FATAL_ERROR; } return WOLFSSL_SUCCESS; } #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(WOLFSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) void wolfSSL_CTX_set_quiet_shutdown(WOLFSSL_CTX* ctx, int mode) { WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown"); if (mode) ctx->quietShutdown = 1; } void wolfSSL_set_quiet_shutdown(WOLFSSL* ssl, int mode) { WOLFSSL_ENTER("wolfSSL_set_quiet_shutdown"); if (mode) ssl->options.quietShutdown = 1; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA #ifndef NO_BIO void wolfSSL_set_bio(WOLFSSL* ssl, WOLFSSL_BIO* rd, WOLFSSL_BIO* wr) { WOLFSSL_ENTER("wolfSSL_set_bio"); if (ssl == NULL) { WOLFSSL_MSG("Bad argument, ssl was NULL"); return; } /* free any existing WOLFSSL_BIOs in use but don't free those in * a chain */ if (ssl->biord != NULL) { if (ssl->biord != ssl->biowr) { if (ssl->biowr != NULL && ssl->biowr->prev != NULL) wolfSSL_BIO_free(ssl->biowr); ssl->biowr = NULL; } if (ssl->biord->prev != NULL) wolfSSL_BIO_free(ssl->biord); ssl->biord = NULL; } /* set flag obviously */ if (rd && !(rd->flags & WOLFSSL_BIO_FLAG_READ)) rd->flags |= WOLFSSL_BIO_FLAG_READ; if (wr && !(wr->flags & WOLFSSL_BIO_FLAG_WRITE)) wr->flags |= WOLFSSL_BIO_FLAG_WRITE; ssl->biord = rd; ssl->biowr = wr; /* set SSL to use BIO callbacks instead */ if (((ssl->cbioFlag & WOLFSSL_CBIO_RECV) == 0)) { ssl->CBIORecv = BioReceive; } if (((ssl->cbioFlag & WOLFSSL_CBIO_SEND) == 0)) { ssl->CBIOSend = BioSend; } /* User programs should always retry reading from these BIOs */ if (rd) { /* User writes to rd */ BIO_set_retry_write(rd); } if (wr) { /* User reads from wr */ BIO_set_retry_read(wr); } } #endif /* !NO_BIO */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) void wolfSSL_CTX_set_client_CA_list(WOLFSSL_CTX* ctx, WOLF_STACK_OF(WOLFSSL_X509_NAME)* names) { WOLFSSL_ENTER("wolfSSL_CTX_set_client_CA_list"); if (ctx != NULL) { wolfSSL_sk_X509_NAME_pop_free(ctx->client_ca_names, NULL); ctx->client_ca_names = names; } } void wolfSSL_set_client_CA_list(WOLFSSL* ssl, WOLF_STACK_OF(WOLFSSL_X509_NAME)* names) { WOLFSSL_ENTER("wolfSSL_set_client_CA_list"); if (ssl != NULL) { if (ssl->client_ca_names != ssl->ctx->client_ca_names) wolfSSL_sk_X509_NAME_pop_free(ssl->client_ca_names, NULL); ssl->client_ca_names = names; } } #ifdef OPENSSL_EXTRA /* registers client cert callback, called during handshake if server requests client auth but user has not loaded client cert/key */ void wolfSSL_CTX_set_client_cert_cb(WOLFSSL_CTX *ctx, client_cert_cb cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_client_cert_cb"); if (ctx != NULL) { ctx->CBClientCert = cb; } } void wolfSSL_CTX_set_cert_cb(WOLFSSL_CTX* ctx, CertSetupCallback cb, void *arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_cert_cb"); if (ctx == NULL) return; ctx->certSetupCb = cb; ctx->certSetupCbArg = arg; } int wolfSSL_get_client_suites_sigalgs(const WOLFSSL* ssl, const byte** suites, word16* suiteSz, const byte** hashSigAlgo, word16* hashSigAlgoSz) { WOLFSSL_ENTER("wolfSSL_get_client_suites_sigalgs"); if (suites != NULL) *suites = NULL; if (suiteSz != NULL) *suiteSz = 0; if (hashSigAlgo != NULL) *hashSigAlgo = NULL; if (hashSigAlgoSz != NULL) *hashSigAlgoSz = 0; if (ssl != NULL && ssl->clSuites != NULL) { if (suites != NULL && suiteSz != NULL) { *suites = ssl->clSuites->suites; *suiteSz = ssl->clSuites->suiteSz; } if (hashSigAlgo != NULL && hashSigAlgoSz != NULL) { *hashSigAlgo = ssl->clSuites->hashSigAlgo; *hashSigAlgoSz = ssl->clSuites->hashSigAlgoSz; } return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } WOLFSSL_CIPHERSUITE_INFO wolfSSL_get_ciphersuite_info(byte first, byte second) { WOLFSSL_CIPHERSUITE_INFO info; info.rsaAuth = (byte)(CipherRequires(first, second, REQUIRES_RSA) || CipherRequires(first, second, REQUIRES_RSA_SIG)); info.eccAuth = (byte)(CipherRequires(first, second, REQUIRES_ECC) || /* Static ECC ciphers may require RSA for authentication */ (CipherRequires(first, second, REQUIRES_ECC_STATIC) && !CipherRequires(first, second, REQUIRES_RSA_SIG))); info.eccStatic = (byte)CipherRequires(first, second, REQUIRES_ECC_STATIC); info.psk = (byte)CipherRequires(first, second, REQUIRES_PSK); return info; } /** * @param first First byte of the hash and signature algorithm * @param second Second byte of the hash and signature algorithm * @param hashAlgo The enum wc_HashType of the MAC algorithm * @param sigAlgo The enum Key_Sum of the authentication algorithm */ int wolfSSL_get_sigalg_info(byte first, byte second, int* hashAlgo, int* sigAlgo) { byte input[2]; byte hashType; byte sigType; if (hashAlgo == NULL || sigAlgo == NULL) return BAD_FUNC_ARG; input[0] = first; input[1] = second; DecodeSigAlg(input, &hashType, &sigType); /* cast so that compiler reminds us of unimplemented values */ switch ((enum SignatureAlgorithm)sigType) { case anonymous_sa_algo: *sigAlgo = ANONk; break; case rsa_sa_algo: *sigAlgo = RSAk; break; case dsa_sa_algo: *sigAlgo = DSAk; break; case ecc_dsa_sa_algo: *sigAlgo = ECDSAk; break; case rsa_pss_sa_algo: *sigAlgo = RSAPSSk; break; case ed25519_sa_algo: *sigAlgo = ED25519k; break; case rsa_pss_pss_algo: *sigAlgo = RSAPSSk; break; case ed448_sa_algo: *sigAlgo = ED448k; break; case falcon_level1_sa_algo: *sigAlgo = FALCON_LEVEL1k; break; case falcon_level5_sa_algo: *sigAlgo = FALCON_LEVEL5k; break; case dilithium_level2_sa_algo: *sigAlgo = DILITHIUM_LEVEL2k; break; case dilithium_level3_sa_algo: *sigAlgo = DILITHIUM_LEVEL3k; break; case dilithium_level5_sa_algo: *sigAlgo = DILITHIUM_LEVEL5k; break; case sm2_sa_algo: *sigAlgo = SM2k; break; case invalid_sa_algo: default: *hashAlgo = WC_HASH_TYPE_NONE; *sigAlgo = 0; return BAD_FUNC_ARG; } /* cast so that compiler reminds us of unimplemented values */ switch((enum wc_MACAlgorithm)hashType) { case no_mac: case rmd_mac: /* Don't have a RIPEMD type in wc_HashType */ *hashAlgo = WC_HASH_TYPE_NONE; break; case md5_mac: *hashAlgo = WC_HASH_TYPE_MD5; break; case sha_mac: *hashAlgo = WC_HASH_TYPE_SHA; break; case sha224_mac: *hashAlgo = WC_HASH_TYPE_SHA224; break; case sha256_mac: *hashAlgo = WC_HASH_TYPE_SHA256; break; case sha384_mac: *hashAlgo = WC_HASH_TYPE_SHA384; break; case sha512_mac: *hashAlgo = WC_HASH_TYPE_SHA512; break; case blake2b_mac: *hashAlgo = WC_HASH_TYPE_BLAKE2B; break; case sm3_mac: #ifdef WOLFSSL_SM3 *hashAlgo = WC_HASH_TYPE_SM3; #else *hashAlgo = WC_HASH_TYPE_NONE; #endif break; default: *hashAlgo = WC_HASH_TYPE_NONE; *sigAlgo = 0; return BAD_FUNC_ARG; } return 0; } /** * Internal wrapper for calling certSetupCb * @param ssl The SSL/TLS Object * @return 0 on success */ int CertSetupCbWrapper(WOLFSSL* ssl) { int ret = 0; if (ssl->ctx->certSetupCb != NULL) { WOLFSSL_MSG("Calling user cert setup callback"); ret = ssl->ctx->certSetupCb(ssl, ssl->ctx->certSetupCbArg); if (ret == 1) { WOLFSSL_MSG("User cert callback returned success"); ret = 0; } else if (ret == 0) { SendAlert(ssl, alert_fatal, internal_error); ret = CLIENT_CERT_CB_ERROR; } else if (ret < 0) { ret = WOLFSSL_ERROR_WANT_X509_LOOKUP; } else { WOLFSSL_MSG("Unexpected user callback return"); ret = CLIENT_CERT_CB_ERROR; } } return ret; } #endif /* OPENSSL_EXTRA */ #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || HAVE_WEBSERVER */ #ifndef WOLFSSL_NO_CA_NAMES WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_CTX_get_client_CA_list( const WOLFSSL_CTX *ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_client_CA_list"); if (ctx == NULL) { WOLFSSL_MSG("Bad argument passed to " "wolfSSL_CTX_get_client_CA_list"); return NULL; } return ctx->client_ca_names; } /* returns the CA's set on server side or the CA's sent from server when * on client side */ WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_get_client_CA_list( const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_client_CA_list"); if (ssl == NULL) { WOLFSSL_MSG("Bad argument passed to wolfSSL_get_client_CA_list"); return NULL; } return SSL_CA_NAMES(ssl); } #if !defined(NO_CERTS) int wolfSSL_CTX_add_client_CA(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509) { WOLFSSL_X509_NAME *nameCopy = NULL; WOLFSSL_ENTER("wolfSSL_CTX_add_client_CA"); if (ctx == NULL || x509 == NULL){ WOLFSSL_MSG("Bad argument"); return WOLFSSL_FAILURE; } if (ctx->client_ca_names == NULL) { ctx->client_ca_names = wolfSSL_sk_X509_NAME_new(NULL); if (ctx->client_ca_names == NULL) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_new error"); return WOLFSSL_FAILURE; } } nameCopy = wolfSSL_X509_NAME_dup(wolfSSL_X509_get_subject_name(x509)); if (nameCopy == NULL) { WOLFSSL_MSG("wolfSSL_X509_NAME_dup error"); return WOLFSSL_FAILURE; } if (wolfSSL_sk_X509_NAME_push(ctx->client_ca_names, nameCopy) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_push error"); wolfSSL_X509_NAME_free(nameCopy); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif #ifndef NO_BIO #if !defined(NO_RSA) && !defined(NO_CERTS) WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_load_client_CA_file( const char* fname) { /* The webserver build is using this to load a CA into the server * for client authentication as an option. Have this return NULL in * that case. If OPENSSL_EXTRA is enabled, go ahead and include * the function. */ #ifdef OPENSSL_EXTRA WOLFSSL_STACK *list = NULL; WOLFSSL_BIO* bio = NULL; WOLFSSL_X509 *cert = NULL; WOLFSSL_X509_NAME *nameCopy = NULL; unsigned long err = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_load_client_CA_file"); bio = wolfSSL_BIO_new_file(fname, "rb"); if (bio == NULL) { WOLFSSL_MSG("wolfSSL_BIO_new_file error"); goto cleanup; } list = wolfSSL_sk_X509_NAME_new(NULL); if (list == NULL) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_new error"); goto cleanup; } /* Read each certificate in the chain out of the file. */ while (wolfSSL_PEM_read_bio_X509(bio, &cert, NULL, NULL) != NULL) { /* Need a persistent copy of the subject name. */ nameCopy = wolfSSL_X509_NAME_dup( wolfSSL_X509_get_subject_name(cert)); if (nameCopy == NULL) { WOLFSSL_MSG("wolfSSL_X509_NAME_dup error"); goto cleanup; } /* * Original cert will be freed so make sure not to try to access * it in the future. */ nameCopy->x509 = NULL; if (wolfSSL_sk_X509_NAME_push(list, nameCopy) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_push error"); /* Do free in loop because nameCopy is now responsibility * of list to free and adding jumps to cleanup after this * might result in a double free. */ wolfSSL_X509_NAME_free(nameCopy); goto cleanup; } wolfSSL_X509_free(cert); cert = NULL; } CLEAR_ASN_NO_PEM_HEADER_ERROR(err); err = WOLFSSL_SUCCESS; cleanup: wolfSSL_X509_free(cert); wolfSSL_BIO_free(bio); if (err != WOLFSSL_SUCCESS) { /* We failed so return NULL */ wolfSSL_sk_X509_NAME_pop_free(list, NULL); list = NULL; } return list; #else (void)fname; return NULL; #endif } #endif #endif /* !NO_BIO */ #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA */ #ifdef OPENSSL_EXTRA #if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \ && !defined(WC_NO_RNG) static const byte srp_N[] = { 0xEE, 0xAF, 0x0A, 0xB9, 0xAD, 0xB3, 0x8D, 0xD6, 0x9C, 0x33, 0xF8, 0x0A, 0xFA, 0x8F, 0xC5, 0xE8, 0x60, 0x72, 0x61, 0x87, 0x75, 0xFF, 0x3C, 0x0B, 0x9E, 0xA2, 0x31, 0x4C, 0x9C, 0x25, 0x65, 0x76, 0xD6, 0x74, 0xDF, 0x74, 0x96, 0xEA, 0x81, 0xD3, 0x38, 0x3B, 0x48, 0x13, 0xD6, 0x92, 0xC6, 0xE0, 0xE0, 0xD5, 0xD8, 0xE2, 0x50, 0xB9, 0x8B, 0xE4, 0x8E, 0x49, 0x5C, 0x1D, 0x60, 0x89, 0xDA, 0xD1, 0x5D, 0xC7, 0xD7, 0xB4, 0x61, 0x54, 0xD6, 0xB6, 0xCE, 0x8E, 0xF4, 0xAD, 0x69, 0xB1, 0x5D, 0x49, 0x82, 0x55, 0x9B, 0x29, 0x7B, 0xCF, 0x18, 0x85, 0xC5, 0x29, 0xF5, 0x66, 0x66, 0x0E, 0x57, 0xEC, 0x68, 0xED, 0xBC, 0x3C, 0x05, 0x72, 0x6C, 0xC0, 0x2F, 0xD4, 0xCB, 0xF4, 0x97, 0x6E, 0xAA, 0x9A, 0xFD, 0x51, 0x38, 0xFE, 0x83, 0x76, 0x43, 0x5B, 0x9F, 0xC6, 0x1D, 0x2F, 0xC0, 0xEB, 0x06, 0xE3 }; static const byte srp_g[] = { 0x02 }; int wolfSSL_CTX_set_srp_username(WOLFSSL_CTX* ctx, char* username) { int r = 0; SrpSide srp_side = SRP_CLIENT_SIDE; byte salt[SRP_SALT_SIZE]; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_username"); if (ctx == NULL || ctx->srp == NULL || username==NULL) return WOLFSSL_FAILURE; if (ctx->method->side == WOLFSSL_SERVER_END){ srp_side = SRP_SERVER_SIDE; } else if (ctx->method->side == WOLFSSL_CLIENT_END){ srp_side = SRP_CLIENT_SIDE; } else { WOLFSSL_MSG("Init CTX failed"); return WOLFSSL_FAILURE; } if (wc_SrpInit(ctx->srp, SRP_TYPE_SHA256, srp_side) < 0) { WOLFSSL_MSG("Init SRP CTX failed"); XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp = NULL; return WOLFSSL_FAILURE; } r = wc_SrpSetUsername(ctx->srp, (const byte*)username, (word32)XSTRLEN(username)); if (r < 0) { WOLFSSL_MSG("fail to set srp username."); return WOLFSSL_FAILURE; } /* if wolfSSL_CTX_set_srp_password has already been called, */ /* execute wc_SrpSetPassword here */ if (ctx->srp_password != NULL) { WC_RNG rng; if (wc_InitRng(&rng) < 0){ WOLFSSL_MSG("wc_InitRng failed"); return WOLFSSL_FAILURE; } XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0])); r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0])); wc_FreeRng(&rng); if (r < 0) { WOLFSSL_MSG("wc_RNG_GenerateBlock failed"); return WOLFSSL_FAILURE; } if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]), srp_g, sizeof(srp_g)/sizeof(srp_g[0]), salt, sizeof(salt)/sizeof(salt[0])) < 0) { WOLFSSL_MSG("wc_SrpSetParam failed"); return WOLFSSL_FAILURE; } r = wc_SrpSetPassword(ctx->srp, (const byte*)ctx->srp_password, (word32)XSTRLEN((char *)ctx->srp_password)); if (r < 0) { WOLFSSL_MSG("fail to set srp password."); return WOLFSSL_FAILURE; } XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_srp_password(WOLFSSL_CTX* ctx, char* password) { int r; byte salt[SRP_SALT_SIZE]; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_password"); if (ctx == NULL || ctx->srp == NULL || password == NULL) return WOLFSSL_FAILURE; if (ctx->srp->user != NULL) { WC_RNG rng; if (wc_InitRng(&rng) < 0) { WOLFSSL_MSG("wc_InitRng failed"); return WOLFSSL_FAILURE; } XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0])); r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0])); wc_FreeRng(&rng); if (r < 0) { WOLFSSL_MSG("wc_RNG_GenerateBlock failed"); return WOLFSSL_FAILURE; } if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]), srp_g, sizeof(srp_g)/sizeof(srp_g[0]), salt, sizeof(salt)/sizeof(salt[0])) < 0){ WOLFSSL_MSG("wc_SrpSetParam failed"); wc_FreeRng(&rng); return WOLFSSL_FAILURE; } r = wc_SrpSetPassword(ctx->srp, (const byte*)password, (word32)XSTRLEN(password)); if (r < 0) { WOLFSSL_MSG("wc_SrpSetPassword failed."); wc_FreeRng(&rng); return WOLFSSL_FAILURE; } if (ctx->srp_password != NULL){ XFREE(ctx->srp_password,NULL, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } wc_FreeRng(&rng); } else { /* save password for wolfSSL_set_srp_username */ if (ctx->srp_password != NULL) XFREE(ctx->srp_password,ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = (byte*)XMALLOC(XSTRLEN(password) + 1, ctx->heap, DYNAMIC_TYPE_SRP); if (ctx->srp_password == NULL){ WOLFSSL_MSG("memory allocation error"); return WOLFSSL_FAILURE; } XMEMCPY(ctx->srp_password, password, XSTRLEN(password) + 1); } return WOLFSSL_SUCCESS; } /** * The modulus passed to wc_SrpSetParams in ssl.c is constant so check * that the requested strength is less than or equal to the size of the * static modulus size. * @param ctx Not used * @param strength Minimum number of bits for the modulus * @return 1 if strength is less than or equal to static modulus * 0 if strength is greater than static modulus */ int wolfSSL_CTX_set_srp_strength(WOLFSSL_CTX *ctx, int strength) { (void)ctx; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_strength"); if (strength > (int)(sizeof(srp_N)*8)) { WOLFSSL_MSG("Bad Parameter"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } char* wolfSSL_get_srp_username(WOLFSSL *ssl) { if (ssl && ssl->ctx && ssl->ctx->srp) { return (char*) ssl->ctx->srp->user; } return NULL; } #endif /* WOLFCRYPT_HAVE_SRP && !NO_SHA256 && !WC_NO_RNG */ /* keyblock size in bytes or -1 */ int wolfSSL_get_keyblock_size(WOLFSSL* ssl) { if (ssl == NULL) return WOLFSSL_FATAL_ERROR; return 2 * (ssl->specs.key_size + ssl->specs.iv_size + ssl->specs.hash_size); } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || \ defined(WOLFSSL_WPAS_SMALL) /* store keys returns WOLFSSL_SUCCESS or -1 on error */ int wolfSSL_get_keys(WOLFSSL* ssl, unsigned char** ms, unsigned int* msLen, unsigned char** sr, unsigned int* srLen, unsigned char** cr, unsigned int* crLen) { if (ssl == NULL || ssl->arrays == NULL) return WOLFSSL_FATAL_ERROR; *ms = ssl->arrays->masterSecret; *sr = ssl->arrays->serverRandom; *cr = ssl->arrays->clientRandom; *msLen = SECRET_LEN; *srLen = RAN_LEN; *crLen = RAN_LEN; return WOLFSSL_SUCCESS; } void wolfSSL_set_accept_state(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_set_accept_state"); if (ssl == NULL) return; if (ssl->options.side == WOLFSSL_CLIENT_END) { #ifdef HAVE_ECC #ifdef WOLFSSL_SMALL_STACK ecc_key* key = NULL; #else ecc_key key[1]; #endif word32 idx = 0; #ifdef WOLFSSL_SMALL_STACK key = (ecc_key*)XMALLOC(sizeof(ecc_key), ssl->heap, DYNAMIC_TYPE_ECC); if (key == NULL) { WOLFSSL_MSG("Error allocating memory for ecc_key"); } #endif if (ssl->options.haveStaticECC && ssl->buffers.key != NULL) { if (wc_ecc_init(key) >= 0) { if (wc_EccPrivateKeyDecode(ssl->buffers.key->buffer, &idx, key, ssl->buffers.key->length) != 0) { ssl->options.haveECDSAsig = 0; ssl->options.haveECC = 0; ssl->options.haveStaticECC = 0; } wc_ecc_free(key); } } #ifdef WOLFSSL_SMALL_STACK XFREE(key, ssl->heap, DYNAMIC_TYPE_ECC); #endif #endif #ifndef NO_DH if (!ssl->options.haveDH && ssl->ctx->haveDH) { ssl->buffers.serverDH_P = ssl->ctx->serverDH_P; ssl->buffers.serverDH_G = ssl->ctx->serverDH_G; ssl->options.haveDH = 1; } #endif } if (InitSSL_Side(ssl, WOLFSSL_SERVER_END) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error initializing server side"); } } #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */ /* return true if connection established */ int wolfSSL_is_init_finished(const WOLFSSL* ssl) { if (ssl == NULL) return 0; /* Can't use ssl->options.connectState and ssl->options.acceptState * because they differ in meaning for TLS <=1.2 and 1.3 */ if (ssl->options.handShakeState == HANDSHAKE_DONE) return 1; return 0; } #ifdef OPENSSL_EXTRA void wolfSSL_CTX_set_tmp_rsa_callback(WOLFSSL_CTX* ctx, WOLFSSL_RSA*(*f)(WOLFSSL*, int, int)) { /* wolfSSL verifies all these internally */ (void)ctx; (void)f; } void wolfSSL_set_shutdown(WOLFSSL* ssl, int opt) { WOLFSSL_ENTER("wolfSSL_set_shutdown"); if(ssl==NULL) { WOLFSSL_MSG("Shutdown not set. ssl is null"); return; } ssl->options.sentNotify = (opt&WOLFSSL_SENT_SHUTDOWN) > 0; ssl->options.closeNotify = (opt&WOLFSSL_RECEIVED_SHUTDOWN) > 0; } #endif long wolfSSL_CTX_get_options(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_options"); WOLFSSL_MSG("wolfSSL options are set through API calls and macros"); if(ctx == NULL) return BAD_FUNC_ARG; return ctx->mask; } /* forward declaration */ static long wolf_set_options(long old_op, long op); long wolfSSL_CTX_set_options(WOLFSSL_CTX* ctx, long opt) { WOLFSSL_ENTER("wolfSSL_CTX_set_options"); if (ctx == NULL) return BAD_FUNC_ARG; ctx->mask = wolf_set_options(ctx->mask, opt); #if defined(HAVE_SESSION_TICKET) && (defined(OPENSSL_EXTRA) \ || defined(HAVE_WEBSERVER) || defined(WOLFSSL_WPAS_SMALL)) if ((ctx->mask & WOLFSSL_OP_NO_TICKET) == WOLFSSL_OP_NO_TICKET) { ctx->noTicketTls12 = 1; } /* This code is here for documentation purpose. You must not turn off * session tickets with the WOLFSSL_OP_NO_TICKET option for TLSv1.3. * Because we need to support both stateful and stateless tickets. #ifdef WOLFSSL_TLS13 if ((ctx->mask & WOLFSSL_OP_NO_TICKET) == WOLFSSL_OP_NO_TICKET) { ctx->noTicketTls13 = 1; } #endif */ #endif return ctx->mask; } long wolfSSL_CTX_clear_options(WOLFSSL_CTX* ctx, long opt) { WOLFSSL_ENTER("wolfSSL_CTX_clear_options"); if(ctx == NULL) return BAD_FUNC_ARG; ctx->mask &= ~opt; return ctx->mask; } #ifdef OPENSSL_EXTRA int wolfSSL_set_rfd(WOLFSSL* ssl, int rfd) { WOLFSSL_ENTER("wolfSSL_set_rfd"); ssl->rfd = rfd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; #ifdef WOLFSSL_DTLS if (ssl->options.dtls) { ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.rfd = rfd; } #endif return WOLFSSL_SUCCESS; } int wolfSSL_set_wfd(WOLFSSL* ssl, int wfd) { WOLFSSL_ENTER("wolfSSL_set_wfd"); ssl->wfd = wfd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA */ #if !defined(NO_CERTS) && (defined(OPENSSL_EXTRA) || \ defined(WOLFSSL_WPAS_SMALL)) #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) /** * Implemented in a similar way that ngx_ssl_ocsp_validate does it when * SSL_get0_verified_chain is not available. * @param ssl WOLFSSL object to extract certs from * @return Stack of verified certs */ WOLF_STACK_OF(WOLFSSL_X509) *wolfSSL_get0_verified_chain(const WOLFSSL *ssl) { WOLF_STACK_OF(WOLFSSL_X509)* chain = NULL; WOLFSSL_X509_STORE_CTX* storeCtx = NULL; WOLFSSL_X509* peerCert = NULL; WOLFSSL_ENTER("wolfSSL_get0_verified_chain"); if (ssl == NULL || ssl->ctx == NULL) { WOLFSSL_MSG("Bad parameter"); return NULL; } peerCert = wolfSSL_get_peer_certificate((WOLFSSL*)ssl); if (peerCert == NULL) { WOLFSSL_MSG("wolfSSL_get_peer_certificate error"); return NULL; } /* wolfSSL_get_peer_certificate returns a copy. We want the internal * member so that we don't have to worry about free'ing it. We call * wolfSSL_get_peer_certificate so that we don't have to worry about * setting up the internal pointer. */ wolfSSL_X509_free(peerCert); peerCert = (WOLFSSL_X509*)&ssl->peerCert; chain = wolfSSL_get_peer_cert_chain(ssl); if (chain == NULL) { WOLFSSL_MSG("wolfSSL_get_peer_cert_chain error"); return NULL; } storeCtx = wolfSSL_X509_STORE_CTX_new(); if (storeCtx == NULL) { WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_new error"); return NULL; } if (wolfSSL_X509_STORE_CTX_init(storeCtx, SSL_STORE(ssl), peerCert, chain) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_init error"); wolfSSL_X509_STORE_CTX_free(storeCtx); return NULL; } if (wolfSSL_X509_verify_cert(storeCtx) <= 0) { WOLFSSL_MSG("wolfSSL_X509_verify_cert error"); wolfSSL_X509_STORE_CTX_free(storeCtx); return NULL; } wolfSSL_X509_STORE_CTX_free(storeCtx); return chain; } #endif /* SESSION_CERTS && OPENSSL_EXTRA */ WOLFSSL_X509_STORE* wolfSSL_CTX_get_cert_store(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return NULL; } if (ctx->x509_store_pt != NULL) return ctx->x509_store_pt; return &ctx->x509_store; } void wolfSSL_CTX_set_cert_store(WOLFSSL_CTX* ctx, WOLFSSL_X509_STORE* str) { WOLFSSL_ENTER("wolfSSL_CTX_set_cert_store"); if (ctx == NULL || str == NULL || ctx->cm == str->cm) { return; } if (wolfSSL_CertManager_up_ref(str->cm) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_CertManager_up_ref error"); return; } /* free cert manager if have one */ if (ctx->cm != NULL) { wolfSSL_CertManagerFree(ctx->cm); } ctx->cm = str->cm; ctx->x509_store.cm = str->cm; /* free existing store if it exists */ wolfSSL_X509_STORE_free(ctx->x509_store_pt); ctx->x509_store.cache = str->cache; ctx->x509_store_pt = str; /* take ownership of store and free it with CTX free */ ctx->cm->x509_store_p = ctx->x509_store_pt;/* CTX has ownership and free it with CTX free*/ } #ifdef OPENSSL_ALL int wolfSSL_CTX_set1_verify_cert_store(WOLFSSL_CTX* ctx, WOLFSSL_X509_STORE* str) { WOLFSSL_ENTER("wolfSSL_CTX_set1_verify_cert_store"); if (ctx == NULL || str == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } /* NO-OP when setting existing store */ if (str == CTX_STORE(ctx)) return WOLFSSL_SUCCESS; if (wolfSSL_X509_STORE_up_ref(str) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_X509_STORE_up_ref error"); return WOLFSSL_FAILURE; } /* free existing store if it exists */ wolfSSL_X509_STORE_free(ctx->x509_store_pt); ctx->x509_store_pt = str; /* take ownership of store and free it with CTX free */ return WOLFSSL_SUCCESS; } #endif int wolfSSL_set0_verify_cert_store(WOLFSSL *ssl, WOLFSSL_X509_STORE* str) { WOLFSSL_ENTER("wolfSSL_set0_verify_cert_store"); if (ssl == NULL || str == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } /* NO-OP when setting existing store */ if (str == SSL_STORE(ssl)) return WOLFSSL_SUCCESS; /* free existing store if it exists */ wolfSSL_X509_STORE_free(ssl->x509_store_pt); if (str == ssl->ctx->x509_store_pt) ssl->x509_store_pt = NULL; /* if setting ctx store then just revert to using that instead */ else ssl->x509_store_pt = str; /* take ownership of store and free it with SSL free */ return WOLFSSL_SUCCESS; } int wolfSSL_set1_verify_cert_store(WOLFSSL *ssl, WOLFSSL_X509_STORE* str) { WOLFSSL_ENTER("wolfSSL_set1_verify_cert_store"); if (ssl == NULL || str == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } /* NO-OP when setting existing store */ if (str == SSL_STORE(ssl)) return WOLFSSL_SUCCESS; if (wolfSSL_X509_STORE_up_ref(str) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_X509_STORE_up_ref error"); return WOLFSSL_FAILURE; } /* free existing store if it exists */ wolfSSL_X509_STORE_free(ssl->x509_store_pt); if (str == ssl->ctx->x509_store_pt) ssl->x509_store_pt = NULL; /* if setting ctx store then just revert to using that instead */ else ssl->x509_store_pt = str; /* take ownership of store and free it with SSL free */ return WOLFSSL_SUCCESS; } #endif /* !NO_CERTS && (OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL) */ #ifdef WOLFSSL_ENCRYPTED_KEYS void wolfSSL_CTX_set_default_passwd_cb_userdata(WOLFSSL_CTX* ctx, void* userdata) { WOLFSSL_ENTER("wolfSSL_CTX_set_default_passwd_cb_userdata"); if (ctx) ctx->passwd_userdata = userdata; } void wolfSSL_CTX_set_default_passwd_cb(WOLFSSL_CTX* ctx, wc_pem_password_cb* cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_default_passwd_cb"); if (ctx) ctx->passwd_cb = cb; } wc_pem_password_cb* wolfSSL_CTX_get_default_passwd_cb(WOLFSSL_CTX *ctx) { if (ctx == NULL || ctx->passwd_cb == NULL) { return NULL; } return ctx->passwd_cb; } void* wolfSSL_CTX_get_default_passwd_cb_userdata(WOLFSSL_CTX *ctx) { if (ctx == NULL) { return NULL; } return ctx->passwd_userdata; } #endif /* WOLFSSL_ENCRYPTED_KEYS */ #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || defined(HAVE_MEMCACHED) unsigned long wolfSSL_ERR_get_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_get_error"); #ifdef WOLFSSL_HAVE_ERROR_QUEUE return wc_GetErrorNodeErr(); #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) int wolfSSL_num_locks(void) { return 0; } void wolfSSL_set_locking_callback(mutex_cb* f) { WOLFSSL_ENTER("wolfSSL_set_locking_callback"); if (wc_SetMutexCb(f) != 0) { WOLFSSL_MSG("Error when setting mutex call back"); } } mutex_cb* wolfSSL_get_locking_callback(void) { WOLFSSL_ENTER("wolfSSL_get_locking_callback"); return wc_GetMutexCb(); } typedef unsigned long (idCb)(void); static idCb* inner_idCb = NULL; unsigned long wolfSSL_thread_id(void) { if (inner_idCb != NULL) { return inner_idCb(); } else { return 0; } } void wolfSSL_set_id_callback(unsigned long (*f)(void)) { inner_idCb = f; } #ifdef WOLFSSL_HAVE_ERROR_QUEUE #ifndef NO_BIO /* print out and clear all errors */ void wolfSSL_ERR_print_errors(WOLFSSL_BIO* bio) { const char* file = NULL; const char* reason = NULL; int ret; int line = 0; char buf[WOLFSSL_MAX_ERROR_SZ * 2]; WOLFSSL_ENTER("wolfSSL_ERR_print_errors"); if (bio == NULL) { WOLFSSL_MSG("BIO passed in was null"); return; } do { ret = wc_PeekErrorNode(0, &file, &reason, &line); if (ret >= 0) { const char* r = wolfSSL_ERR_reason_error_string(0 - ret); if (XSNPRINTF(buf, sizeof(buf), "error:%d:wolfSSL library:%s:%s:%d\n", ret, r, file, line) >= (int)sizeof(buf)) { WOLFSSL_MSG("Buffer overrun formatting error message"); } wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf)); wc_RemoveErrorNode(0); } } while (ret >= 0); if (wolfSSL_BIO_write(bio, "", 1) != 1) { WOLFSSL_MSG("Issue writing final string terminator"); } } #endif /* !NO_BIO */ #endif /* WOLFSSL_HAVE_ERROR_QUEUE */ #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \ defined(HAVE_SECRET_CALLBACK) #if !defined(NO_WOLFSSL_SERVER) /* Return the amount of random bytes copied over or error case. * ssl : ssl struct after handshake * out : buffer to hold random bytes * outSz : either 0 (return max buffer sz) or size of out buffer */ size_t wolfSSL_get_server_random(const WOLFSSL *ssl, unsigned char *out, size_t outSz) { size_t size; /* return max size of buffer */ if (outSz == 0) { return RAN_LEN; } if (ssl == NULL || out == NULL) { return 0; } if (ssl->arrays == NULL) { WOLFSSL_MSG("Arrays struct not saved after handshake"); return 0; } if (outSz > RAN_LEN) { size = RAN_LEN; } else { size = outSz; } XMEMCPY(out, ssl->arrays->serverRandom, size); return size; } #endif /* !NO_WOLFSSL_SERVER */ #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || HAVE_SECRET_CALLBACK */ #ifdef OPENSSL_EXTRA #if !defined(NO_WOLFSSL_SERVER) /* Used to get the peer ephemeral public key sent during the connection * NOTE: currently wolfSSL_KeepHandshakeResources(WOLFSSL* ssl) must be called * before the ephemeral key is stored. * return WOLFSSL_SUCCESS on success */ int wolfSSL_get_peer_tmp_key(const WOLFSSL* ssl, WOLFSSL_EVP_PKEY** pkey) { WOLFSSL_EVP_PKEY* ret = NULL; WOLFSSL_ENTER("wolfSSL_get_server_tmp_key"); if (ssl == NULL || pkey == NULL) { WOLFSSL_MSG("Bad argument passed in"); return WOLFSSL_FAILURE; } #ifdef HAVE_ECC if (ssl->peerEccKey != NULL) { unsigned char* der; const unsigned char* pt; unsigned int derSz = 0; int sz; PRIVATE_KEY_UNLOCK(); if (wc_ecc_export_x963(ssl->peerEccKey, NULL, &derSz) != LENGTH_ONLY_E) { WOLFSSL_MSG("get ecc der size failed"); PRIVATE_KEY_LOCK(); return WOLFSSL_FAILURE; } PRIVATE_KEY_LOCK(); derSz += MAX_SEQ_SZ + (2 * MAX_ALGO_SZ) + MAX_SEQ_SZ + TRAILING_ZERO; der = (unsigned char*)XMALLOC(derSz, ssl->heap, DYNAMIC_TYPE_KEY); if (der == NULL) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } if ((sz = wc_EccPublicKeyToDer(ssl->peerEccKey, der, derSz, 1)) <= 0) { WOLFSSL_MSG("get ecc der failed"); XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY); return WOLFSSL_FAILURE; } pt = der; /* in case pointer gets advanced */ ret = wolfSSL_d2i_PUBKEY(NULL, &pt, sz); XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY); } #endif *pkey = ret; #ifdef HAVE_ECC if (ret != NULL) return WOLFSSL_SUCCESS; else #endif return WOLFSSL_FAILURE; } #endif /* !NO_WOLFSSL_SERVER */ /** * This function checks if any compiled in protocol versions are * left enabled after calls to set_min or set_max API. * @param major The SSL/TLS major version * @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no * protocol versions are left enabled. */ static int CheckSslMethodVersion(byte major, unsigned long options) { int sanityConfirmed = 0; (void)options; switch (major) { #ifndef NO_TLS case SSLv3_MAJOR: #ifdef WOLFSSL_ALLOW_SSLV3 if (!(options & WOLFSSL_OP_NO_SSLv3)) { sanityConfirmed = 1; } #endif #ifndef NO_OLD_TLS if (!(options & WOLFSSL_OP_NO_TLSv1)) sanityConfirmed = 1; if (!(options & WOLFSSL_OP_NO_TLSv1_1)) sanityConfirmed = 1; #endif #ifndef WOLFSSL_NO_TLS12 if (!(options & WOLFSSL_OP_NO_TLSv1_2)) sanityConfirmed = 1; #endif #ifdef WOLFSSL_TLS13 if (!(options & WOLFSSL_OP_NO_TLSv1_3)) sanityConfirmed = 1; #endif break; #endif #ifdef WOLFSSL_DTLS case DTLS_MAJOR: sanityConfirmed = 1; break; #endif default: WOLFSSL_MSG("Invalid major version"); return WOLFSSL_FAILURE; } if (!sanityConfirmed) { WOLFSSL_MSG("All compiled in TLS versions disabled"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /** * protoVerTbl holds (D)TLS version numbers in ascending order. * Except DTLS versions, the newer version is located in the latter part of * the table. This table is referred by wolfSSL_CTX_set_min_proto_version and * wolfSSL_CTX_set_max_proto_version. */ static const int protoVerTbl[] = { SSL3_VERSION, TLS1_VERSION, TLS1_1_VERSION, TLS1_2_VERSION, TLS1_3_VERSION, DTLS1_VERSION, DTLS1_2_VERSION }; /* number of protocol versions listed in protoVerTbl */ #define NUMBER_OF_PROTOCOLS (sizeof(protoVerTbl)/sizeof(int)) /** * wolfSSL_CTX_set_min_proto_version attempts to set the minimum protocol * version to use by SSL objects created from this WOLFSSL_CTX. * This API guarantees that a version of SSL/TLS lower than specified * here will not be allowed. If the version specified is not compiled in * then this API sets the lowest compiled in protocol version. * This API also accept 0 as version, to set the minimum version automatically. * CheckSslMethodVersion() is called to check if any remaining protocol versions * are enabled. * @param ctx The wolfSSL CONTEXT factory for spawning SSL/TLS objects * @param version Any of the following * * 0 * * SSL3_VERSION * * TLS1_VERSION * * TLS1_1_VERSION * * TLS1_2_VERSION * * TLS1_3_VERSION * * DTLS1_VERSION * * DTLS1_2_VERSION * @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no * protocol versions are left enabled. */ static int Set_CTX_min_proto_version(WOLFSSL_CTX* ctx, int version) { WOLFSSL_ENTER("wolfSSL_CTX_set_min_proto_version_ex"); if (ctx == NULL) { return WOLFSSL_FAILURE; } switch (version) { #ifndef NO_TLS case SSL3_VERSION: #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) ctx->minDowngrade = SSLv3_MINOR; break; #endif case TLS1_VERSION: #ifdef WOLFSSL_ALLOW_TLSV10 ctx->minDowngrade = TLSv1_MINOR; break; #endif case TLS1_1_VERSION: #ifndef NO_OLD_TLS ctx->minDowngrade = TLSv1_1_MINOR; break; #endif case TLS1_2_VERSION: #ifndef WOLFSSL_NO_TLS12 ctx->minDowngrade = TLSv1_2_MINOR; break; #endif case TLS1_3_VERSION: #ifdef WOLFSSL_TLS13 ctx->minDowngrade = TLSv1_3_MINOR; break; #endif #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: #ifndef NO_OLD_TLS ctx->minDowngrade = DTLS_MINOR; break; #endif case DTLS1_2_VERSION: ctx->minDowngrade = DTLSv1_2_MINOR; break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } switch (version) { #ifndef NO_TLS case TLS1_3_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2); FALL_THROUGH; case TLS1_2_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1); FALL_THROUGH; case TLS1_1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1); FALL_THROUGH; case TLS1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_SSLv3); break; case SSL3_VERSION: case SSL2_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } return CheckSslMethodVersion(ctx->method->version.major, ctx->mask); } /* Sets the min protocol version allowed with WOLFSSL_CTX * returns WOLFSSL_SUCCESS on success */ int wolfSSL_CTX_set_min_proto_version(WOLFSSL_CTX* ctx, int version) { int ret; int proto = 0; int maxProto = 0; int i; int idx = 0; WOLFSSL_ENTER("wolfSSL_CTX_set_min_proto_version"); if (ctx == NULL) { return WOLFSSL_FAILURE; } if (version != 0) { proto = version; ctx->minProto = 0; /* turn min proto flag off */ for (i = 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) { if (protoVerTbl[i] == version) { break; } } } else { /* when 0 is specified as version, try to find out the min version */ for (i = 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) { ret = Set_CTX_min_proto_version(ctx, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) { proto = protoVerTbl[i]; ctx->minProto = 1; /* turn min proto flag on */ break; } } } /* check case where max > min , if so then clear the NO_* options * i is the index into the table for proto version used, see if the max * proto version index found is smaller */ maxProto = wolfSSL_CTX_get_max_proto_version(ctx); for (idx = 0; (unsigned)idx < NUMBER_OF_PROTOCOLS; idx++) { if (protoVerTbl[idx] == maxProto) { break; } } if (idx < i) { wolfSSL_CTX_clear_options(ctx, WOLFSSL_OP_NO_TLSv1 | WOLFSSL_OP_NO_TLSv1_1 | WOLFSSL_OP_NO_TLSv1_2 | WOLFSSL_OP_NO_TLSv1_3); } ret = Set_CTX_min_proto_version(ctx, proto); return ret; } /** * wolfSSL_CTX_set_max_proto_version attempts to set the maximum protocol * version to use by SSL objects created from this WOLFSSL_CTX. * This API guarantees that a version of SSL/TLS higher than specified * here will not be allowed. If the version specified is not compiled in * then this API sets the highest compiled in protocol version. * This API also accept 0 as version, to set the maximum version automatically. * CheckSslMethodVersion() is called to check if any remaining protocol versions * are enabled. * @param ctx The wolfSSL CONTEXT factory for spawning SSL/TLS objects * @param ver Any of the following * * 0 * * SSL3_VERSION * * TLS1_VERSION * * TLS1_1_VERSION * * TLS1_2_VERSION * * TLS1_3_VERSION * * DTLS1_VERSION * * DTLS1_2_VERSION * @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no * protocol versions are left enabled. */ static int Set_CTX_max_proto_version(WOLFSSL_CTX* ctx, int ver) { int ret; WOLFSSL_ENTER("Set_CTX_max_proto_version"); if (!ctx || !ctx->method) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } switch (ver) { case SSL2_VERSION: WOLFSSL_MSG("wolfSSL does not support SSLv2"); return WOLFSSL_FAILURE; #ifndef NO_TLS case SSL3_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1); FALL_THROUGH; case TLS1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1); FALL_THROUGH; case TLS1_1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2); FALL_THROUGH; case TLS1_2_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_3); FALL_THROUGH; case TLS1_3_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } ret = CheckSslMethodVersion(ctx->method->version.major, ctx->mask); if (ret == WOLFSSL_SUCCESS) { /* Check the major */ switch (ver) { #ifndef NO_TLS case SSL3_VERSION: case TLS1_VERSION: case TLS1_1_VERSION: case TLS1_2_VERSION: case TLS1_3_VERSION: if (ctx->method->version.major != SSLv3_MAJOR) { WOLFSSL_MSG("Mismatched protocol version"); return WOLFSSL_FAILURE; } break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: if (ctx->method->version.major != DTLS_MAJOR) { WOLFSSL_MSG("Mismatched protocol version"); return WOLFSSL_FAILURE; } break; #endif } /* Update the method */ switch (ver) { case SSL2_VERSION: WOLFSSL_MSG("wolfSSL does not support SSLv2"); return WOLFSSL_FAILURE; #ifndef NO_TLS case SSL3_VERSION: ctx->method->version.minor = SSLv3_MINOR; break; case TLS1_VERSION: ctx->method->version.minor = TLSv1_MINOR; break; case TLS1_1_VERSION: ctx->method->version.minor = TLSv1_1_MINOR; break; case TLS1_2_VERSION: ctx->method->version.minor = TLSv1_2_MINOR; break; case TLS1_3_VERSION: ctx->method->version.minor = TLSv1_3_MINOR; break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: ctx->method->version.minor = DTLS_MINOR; break; case DTLS1_2_VERSION: ctx->method->version.minor = DTLSv1_2_MINOR; break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } } return ret; } /* Sets the max protocol version allowed with WOLFSSL_CTX * returns WOLFSSL_SUCCESS on success */ int wolfSSL_CTX_set_max_proto_version(WOLFSSL_CTX* ctx, int version) { int i; int ret = WOLFSSL_FAILURE; int minProto; WOLFSSL_ENTER("wolfSSL_CTX_set_max_proto_version"); if (ctx == NULL) { return ret; } /* clear out flags and reset min protocol version */ minProto = wolfSSL_CTX_get_min_proto_version(ctx); wolfSSL_CTX_clear_options(ctx, WOLFSSL_OP_NO_TLSv1 | WOLFSSL_OP_NO_TLSv1_1 | WOLFSSL_OP_NO_TLSv1_2 | WOLFSSL_OP_NO_TLSv1_3); wolfSSL_CTX_set_min_proto_version(ctx, minProto); if (version != 0) { ctx->maxProto = 0; /* turn max proto flag off */ return Set_CTX_max_proto_version(ctx, version); } /* when 0 is specified as version, try to find out the min version from * the bottom to top of the protoverTbl. */ for (i = NUMBER_OF_PROTOCOLS -1; i >= 0; i--) { ret = Set_CTX_max_proto_version(ctx, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) { ctx->maxProto = 1; /* turn max proto flag on */ break; } } return ret; } static int Set_SSL_min_proto_version(WOLFSSL* ssl, int ver) { WOLFSSL_ENTER("Set_SSL_min_proto_version"); if (ssl == NULL) { return WOLFSSL_FAILURE; } switch (ver) { #ifndef NO_TLS case SSL3_VERSION: #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) ssl->options.minDowngrade = SSLv3_MINOR; break; #endif case TLS1_VERSION: #ifdef WOLFSSL_ALLOW_TLSV10 ssl->options.minDowngrade = TLSv1_MINOR; break; #endif case TLS1_1_VERSION: #ifndef NO_OLD_TLS ssl->options.minDowngrade = TLSv1_1_MINOR; break; #endif case TLS1_2_VERSION: #ifndef WOLFSSL_NO_TLS12 ssl->options.minDowngrade = TLSv1_2_MINOR; break; #endif case TLS1_3_VERSION: #ifdef WOLFSSL_TLS13 ssl->options.minDowngrade = TLSv1_3_MINOR; break; #endif #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: #ifndef NO_OLD_TLS ssl->options.minDowngrade = DTLS_MINOR; break; #endif case DTLS1_2_VERSION: ssl->options.minDowngrade = DTLSv1_2_MINOR; break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } switch (ver) { #ifndef NO_TLS case TLS1_3_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_2; FALL_THROUGH; case TLS1_2_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_1; FALL_THROUGH; case TLS1_1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1; FALL_THROUGH; case TLS1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_SSLv3; break; case SSL3_VERSION: case SSL2_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } return CheckSslMethodVersion(ssl->version.major, ssl->options.mask); } int wolfSSL_set_min_proto_version(WOLFSSL* ssl, int version) { int i; int ret = WOLFSSL_FAILURE;; WOLFSSL_ENTER("wolfSSL_set_min_proto_version"); if (ssl == NULL) { return WOLFSSL_FAILURE; } if (version != 0) { return Set_SSL_min_proto_version(ssl, version); } /* when 0 is specified as version, try to find out the min version */ for (i= 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) { ret = Set_SSL_min_proto_version(ssl, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) break; } return ret; } static int Set_SSL_max_proto_version(WOLFSSL* ssl, int ver) { WOLFSSL_ENTER("Set_SSL_max_proto_version"); if (!ssl) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } switch (ver) { case SSL2_VERSION: WOLFSSL_MSG("wolfSSL does not support SSLv2"); return WOLFSSL_FAILURE; #ifndef NO_TLS case SSL3_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1; FALL_THROUGH; case TLS1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_1; FALL_THROUGH; case TLS1_1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_2; FALL_THROUGH; case TLS1_2_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_3; FALL_THROUGH; case TLS1_3_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } return CheckSslMethodVersion(ssl->version.major, ssl->options.mask); } int wolfSSL_set_max_proto_version(WOLFSSL* ssl, int version) { int i; int ret = WOLFSSL_FAILURE;; WOLFSSL_ENTER("wolfSSL_set_max_proto_version"); if (ssl == NULL) { return WOLFSSL_FAILURE; } if (version != 0) { return Set_SSL_max_proto_version(ssl, version); } /* when 0 is specified as version, try to find out the min version from * the bottom to top of the protoverTbl. */ for (i = NUMBER_OF_PROTOCOLS -1; i >= 0; i--) { ret = Set_SSL_max_proto_version(ssl, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) break; } return ret; } static int GetMinProtoVersion(int minDowngrade) { int ret; switch (minDowngrade) { #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_SSLV3 case SSLv3_MINOR: ret = SSL3_VERSION; break; #endif #ifdef WOLFSSL_ALLOW_TLSV10 case TLSv1_MINOR: ret = TLS1_VERSION; break; #endif case TLSv1_1_MINOR: ret = TLS1_1_VERSION; break; #endif #ifndef WOLFSSL_NO_TLS12 case TLSv1_2_MINOR: ret = TLS1_2_VERSION; break; #endif #ifdef WOLFSSL_TLS13 case TLSv1_3_MINOR: ret = TLS1_3_VERSION; break; #endif default: ret = 0; break; } return ret; } int wolfSSL_CTX_get_min_proto_version(WOLFSSL_CTX* ctx) { int ret = 0; WOLFSSL_ENTER("wolfSSL_CTX_get_min_proto_version"); if (ctx != NULL) { if (ctx->minProto) { ret = 0; } else { ret = GetMinProtoVersion(ctx->minDowngrade); } } else { ret = GetMinProtoVersion(WOLFSSL_MIN_DOWNGRADE); } WOLFSSL_LEAVE("wolfSSL_CTX_get_min_proto_version", ret); return ret; } /* returns the maximum allowed protocol version given the 'options' used * returns WOLFSSL_FATAL_ERROR on no match */ static int GetMaxProtoVersion(long options) { #ifndef NO_TLS #ifdef WOLFSSL_TLS13 if (!(options & WOLFSSL_OP_NO_TLSv1_3)) return TLS1_3_VERSION; #endif #ifndef WOLFSSL_NO_TLS12 if (!(options & WOLFSSL_OP_NO_TLSv1_2)) return TLS1_2_VERSION; #endif #ifndef NO_OLD_TLS if (!(options & WOLFSSL_OP_NO_TLSv1_1)) return TLS1_1_VERSION; #ifdef WOLFSSL_ALLOW_TLSV10 if (!(options & WOLFSSL_OP_NO_TLSv1)) return TLS1_VERSION; #endif #ifdef WOLFSSL_ALLOW_SSLV3 if (!(options & WOLFSSL_OP_NO_SSLv3)) return SSL3_VERSION; #endif #endif #else (void)options; #endif /* NO_TLS */ return WOLFSSL_FATAL_ERROR; } /* returns the maximum protocol version for 'ctx' */ int wolfSSL_CTX_get_max_proto_version(WOLFSSL_CTX* ctx) { int ret = 0; long options = 0; /* default to nothing set */ WOLFSSL_ENTER("wolfSSL_CTX_get_max_proto_version"); if (ctx != NULL) { options = wolfSSL_CTX_get_options(ctx); } if ((ctx != NULL) && ctx->maxProto) { ret = 0; } else { ret = GetMaxProtoVersion(options); } WOLFSSL_LEAVE("wolfSSL_CTX_get_max_proto_version", ret); if (ret == WOLFSSL_FATAL_ERROR) { WOLFSSL_MSG("Error getting max proto version"); ret = 0; /* setting ret to 0 to match compat return */ } return ret; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \ defined(HAVE_SECRET_CALLBACK) #if !defined(NO_WOLFSSL_CLIENT) /* Return the amount of random bytes copied over or error case. * ssl : ssl struct after handshake * out : buffer to hold random bytes * outSz : either 0 (return max buffer sz) or size of out buffer */ size_t wolfSSL_get_client_random(const WOLFSSL* ssl, unsigned char* out, size_t outSz) { size_t size; /* return max size of buffer */ if (outSz == 0) { return RAN_LEN; } if (ssl == NULL || out == NULL) { return 0; } if (ssl->arrays == NULL) { WOLFSSL_MSG("Arrays struct not saved after handshake"); return 0; } if (outSz > RAN_LEN) { size = RAN_LEN; } else { size = outSz; } XMEMCPY(out, ssl->arrays->clientRandom, size); return size; } #endif /* !NO_WOLFSSL_CLIENT */ #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || HAVE_SECRET_CALLBACK */ #ifdef OPENSSL_EXTRA unsigned long wolfSSLeay(void) { return SSLEAY_VERSION_NUMBER; } unsigned long wolfSSL_OpenSSL_version_num(void) { return OPENSSL_VERSION_NUMBER; } const char* wolfSSLeay_version(int type) { (void)type; #if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L return wolfSSL_OpenSSL_version(type); #else return wolfSSL_OpenSSL_version(); #endif } #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA void wolfSSL_ERR_free_strings(void) { /* handled internally */ } void wolfSSL_cleanup_all_ex_data(void) { /* nothing to do here */ } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE) || \ defined(HAVE_CURL) void wolfSSL_ERR_clear_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_clear_error"); #if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE) wc_ClearErrorNodes(); #endif } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) int wolfSSL_clear(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_clear"); if (ssl == NULL) { return WOLFSSL_FAILURE; } if (!ssl->options.handShakeDone) { /* Only reset the session if we didn't complete a handshake */ wolfSSL_FreeSession(ssl->ctx, ssl->session); ssl->session = wolfSSL_NewSession(ssl->heap); if (ssl->session == NULL) { return WOLFSSL_FAILURE; } } /* reset error */ ssl->error = 0; /* reset option bits */ ssl->options.isClosed = 0; ssl->options.connReset = 0; ssl->options.sentNotify = 0; ssl->options.closeNotify = 0; ssl->options.sendVerify = 0; ssl->options.serverState = NULL_STATE; ssl->options.clientState = NULL_STATE; ssl->options.connectState = CONNECT_BEGIN; ssl->options.acceptState = ACCEPT_BEGIN; ssl->options.handShakeState = NULL_STATE; ssl->options.handShakeDone = 0; ssl->options.processReply = 0; /* doProcessInit */ ssl->options.havePeerVerify = 0; ssl->options.havePeerCert = 0; ssl->options.peerAuthGood = 0; ssl->options.tls1_3 = 0; ssl->options.haveSessionId = 0; ssl->options.tls = 0; ssl->options.tls1_1 = 0; #ifdef WOLFSSL_DTLS ssl->options.dtlsStateful = 0; #endif #if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK) ssl->options.noPskDheKe = 0; #ifdef HAVE_SUPPORTED_CURVES ssl->options.onlyPskDheKe = 0; #endif #endif #ifdef HAVE_SESSION_TICKET #ifdef WOLFSSL_TLS13 ssl->options.ticketsSent = 0; #endif ssl->options.rejectTicket = 0; #endif #ifdef WOLFSSL_EARLY_DATA ssl->earlyData = no_early_data; ssl->earlyDataSz = 0; #endif #if defined(HAVE_TLS_EXTENSIONS) && !defined(NO_TLS) TLSX_FreeAll(ssl->extensions, ssl->heap); ssl->extensions = NULL; #endif if (ssl->keys.encryptionOn) { ForceZero(ssl->buffers.inputBuffer.buffer - ssl->buffers.inputBuffer.offset, ssl->buffers.inputBuffer.bufferSize); #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Check(ssl->buffers.inputBuffer.buffer - ssl->buffers.inputBuffer.offset, ssl->buffers.inputBuffer.bufferSize); #endif } ssl->keys.encryptionOn = 0; XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived)); if (InitSSL_Suites(ssl) != WOLFSSL_SUCCESS) return WOLFSSL_FAILURE; if (InitHandshakeHashes(ssl) != 0) return WOLFSSL_FAILURE; #ifdef KEEP_PEER_CERT FreeX509(&ssl->peerCert); InitX509(&ssl->peerCert, 0, ssl->heap); #endif #ifdef WOLFSSL_QUIC wolfSSL_quic_clear(ssl); #endif return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || defined(HAVE_MEMCACHED) long wolfSSL_CTX_set_mode(WOLFSSL_CTX* ctx, long mode) { /* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */ WOLFSSL_ENTER("wolfSSL_CTX_set_mode"); switch(mode) { case SSL_MODE_ENABLE_PARTIAL_WRITE: ctx->partialWrite = 1; break; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) case SSL_MODE_RELEASE_BUFFERS: WOLFSSL_MSG("SSL_MODE_RELEASE_BUFFERS not implemented."); break; #endif case SSL_MODE_AUTO_RETRY: ctx->autoRetry = 1; break; default: WOLFSSL_MSG("Mode Not Implemented"); } /* SSL_MODE_AUTO_RETRY * Should not return -1 with renegotiation on read/write */ return mode; } long wolfSSL_CTX_clear_mode(WOLFSSL_CTX* ctx, long mode) { /* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */ WOLFSSL_ENTER("wolfSSL_CTX_clear_mode"); switch(mode) { case SSL_MODE_ENABLE_PARTIAL_WRITE: ctx->partialWrite = 0; break; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) case SSL_MODE_RELEASE_BUFFERS: WOLFSSL_MSG("SSL_MODE_RELEASE_BUFFERS not implemented."); break; #endif case SSL_MODE_AUTO_RETRY: ctx->autoRetry = 0; break; default: WOLFSSL_MSG("Mode Not Implemented"); } /* SSL_MODE_AUTO_RETRY * Should not return -1 with renegotiation on read/write */ return 0; } #endif #ifdef OPENSSL_EXTRA #ifndef NO_WOLFSSL_STUB long wolfSSL_SSL_get_mode(WOLFSSL* ssl) { /* TODO: */ (void)ssl; WOLFSSL_STUB("SSL_get_mode"); return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_get_mode(WOLFSSL_CTX* ctx) { /* TODO: */ (void)ctx; WOLFSSL_STUB("SSL_CTX_get_mode"); return 0; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_CTX_set_default_read_ahead(WOLFSSL_CTX* ctx, int m) { /* TODO: maybe? */ (void)ctx; (void)m; WOLFSSL_STUB("SSL_CTX_set_default_read_ahead"); } #endif /* returns the unsigned error value and increments the pointer into the * error queue. * * file pointer to file name * line gets set to line number of error when not NULL */ unsigned long wolfSSL_ERR_get_error_line(const char** file, int* line) { #ifdef WOLFSSL_HAVE_ERROR_QUEUE int ret = wc_PullErrorNode(file, NULL, line); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Issue getting error node"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; #else (void)file; (void)line; return 0; #endif } #if (defined(DEBUG_WOLFSSL) || defined(OPENSSL_EXTRA)) && \ (!defined(_WIN32) && !defined(NO_ERROR_QUEUE)) static const char WOLFSSL_SYS_ACCEPT_T[] = "accept"; static const char WOLFSSL_SYS_BIND_T[] = "bind"; static const char WOLFSSL_SYS_CONNECT_T[] = "connect"; static const char WOLFSSL_SYS_FOPEN_T[] = "fopen"; static const char WOLFSSL_SYS_FREAD_T[] = "fread"; static const char WOLFSSL_SYS_GETADDRINFO_T[] = "getaddrinfo"; static const char WOLFSSL_SYS_GETSOCKOPT_T[] = "getsockopt"; static const char WOLFSSL_SYS_GETSOCKNAME_T[] = "getsockname"; static const char WOLFSSL_SYS_GETHOSTBYNAME_T[] = "gethostbyname"; static const char WOLFSSL_SYS_GETNAMEINFO_T[] = "getnameinfo"; static const char WOLFSSL_SYS_GETSERVBYNAME_T[] = "getservbyname"; static const char WOLFSSL_SYS_IOCTLSOCKET_T[] = "ioctlsocket"; static const char WOLFSSL_SYS_LISTEN_T[] = "listen"; static const char WOLFSSL_SYS_OPENDIR_T[] = "opendir"; static const char WOLFSSL_SYS_SETSOCKOPT_T[] = "setsockopt"; static const char WOLFSSL_SYS_SOCKET_T[] = "socket"; /* switch with int mapped to function name for compatibility */ static const char* wolfSSL_ERR_sys_func(int fun) { switch (fun) { case WOLFSSL_SYS_ACCEPT: return WOLFSSL_SYS_ACCEPT_T; case WOLFSSL_SYS_BIND: return WOLFSSL_SYS_BIND_T; case WOLFSSL_SYS_CONNECT: return WOLFSSL_SYS_CONNECT_T; case WOLFSSL_SYS_FOPEN: return WOLFSSL_SYS_FOPEN_T; case WOLFSSL_SYS_FREAD: return WOLFSSL_SYS_FREAD_T; case WOLFSSL_SYS_GETADDRINFO: return WOLFSSL_SYS_GETADDRINFO_T; case WOLFSSL_SYS_GETSOCKOPT: return WOLFSSL_SYS_GETSOCKOPT_T; case WOLFSSL_SYS_GETSOCKNAME: return WOLFSSL_SYS_GETSOCKNAME_T; case WOLFSSL_SYS_GETHOSTBYNAME: return WOLFSSL_SYS_GETHOSTBYNAME_T; case WOLFSSL_SYS_GETNAMEINFO: return WOLFSSL_SYS_GETNAMEINFO_T; case WOLFSSL_SYS_GETSERVBYNAME: return WOLFSSL_SYS_GETSERVBYNAME_T; case WOLFSSL_SYS_IOCTLSOCKET: return WOLFSSL_SYS_IOCTLSOCKET_T; case WOLFSSL_SYS_LISTEN: return WOLFSSL_SYS_LISTEN_T; case WOLFSSL_SYS_OPENDIR: return WOLFSSL_SYS_OPENDIR_T; case WOLFSSL_SYS_SETSOCKOPT: return WOLFSSL_SYS_SETSOCKOPT_T; case WOLFSSL_SYS_SOCKET: return WOLFSSL_SYS_SOCKET_T; default: return "NULL"; } } #endif /* DEBUG_WOLFSSL */ void wolfSSL_ERR_put_error(int lib, int fun, int err, const char* file, int line) { WOLFSSL_ENTER("wolfSSL_ERR_put_error"); #if !defined(DEBUG_WOLFSSL) && !defined(OPENSSL_EXTRA) (void)fun; (void)err; (void)file; (void)line; WOLFSSL_MSG("Not compiled in debug mode"); #elif defined(OPENSSL_EXTRA) && \ (defined(_WIN32) || defined(NO_ERROR_QUEUE)) (void)fun; (void)file; (void)line; WOLFSSL_ERROR(err); #else WOLFSSL_ERROR_LINE(err, wolfSSL_ERR_sys_func(fun), (unsigned int)line, file, NULL); #endif (void)lib; } /* Similar to wolfSSL_ERR_get_error_line but takes in a flags argument for * more flexibility. * * file output pointer to file where error happened * line output to line number of error * data output data. Is a string if ERR_TXT_STRING flag is used * flags output format of output * * Returns the error value or 0 if no errors are in the queue */ unsigned long wolfSSL_ERR_get_error_line_data(const char** file, int* line, const char** data, int *flags) { #ifdef WOLFSSL_HAVE_ERROR_QUEUE int ret; WOLFSSL_ENTER("wolfSSL_ERR_get_error_line_data"); if (flags != NULL) *flags = ERR_TXT_STRING; /* Clear the flags */ ret = wc_PullErrorNode(file, data, line); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Error with pulling error node!"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line_data", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; #else WOLFSSL_ENTER("wolfSSL_ERR_get_error_line_data"); WOLFSSL_MSG("Error queue turned off, can not get error line"); (void)file; (void)line; (void)data; (void)flags; return 0; #endif } #endif /* OPENSSL_EXTRA */ #if (defined(KEEP_PEER_CERT) && defined(SESSION_CERTS)) || \ (defined(OPENSSL_EXTRA) && defined(SESSION_CERTS)) /* Decode the X509 DER encoded certificate into a WOLFSSL_X509 object. * * x509 WOLFSSL_X509 object to decode into. * in X509 DER data. * len Length of the X509 DER data. * returns the new certificate on success, otherwise NULL. */ static int DecodeToX509(WOLFSSL_X509* x509, const byte* in, int len) { int ret; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert; #else DecodedCert cert[1]; #endif if (x509 == NULL || in == NULL || len <= 0) return BAD_FUNC_ARG; #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif /* Create a DecodedCert object and copy fields into WOLFSSL_X509 object. */ InitDecodedCert(cert, (byte*)in, len, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) == 0) { /* Check if x509 was not previously initialized by wolfSSL_X509_new() */ if (x509->dynamicMemory != TRUE) InitX509(x509, 0, NULL); ret = CopyDecodedToX509(x509, cert); } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif return ret; } #endif /* (KEEP_PEER_CERT & SESSION_CERTS) || (OPENSSL_EXTRA & SESSION_CERTS) */ #ifdef KEEP_PEER_CERT WOLFSSL_ABI WOLFSSL_X509* wolfSSL_get_peer_certificate(WOLFSSL* ssl) { WOLFSSL_X509* ret = NULL; WOLFSSL_ENTER("wolfSSL_get_peer_certificate"); if (ssl != NULL) { if (ssl->peerCert.issuer.sz) ret = wolfSSL_X509_dup(&ssl->peerCert); #ifdef SESSION_CERTS else if (ssl->session->chain.count > 0) { if (DecodeToX509(&ssl->peerCert, ssl->session->chain.certs[0].buffer, ssl->session->chain.certs[0].length) == 0) { ret = wolfSSL_X509_dup(&ssl->peerCert); } } #endif } WOLFSSL_LEAVE("wolfSSL_get_peer_certificate", ret != NULL); return ret; } #endif /* KEEP_PEER_CERT */ #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) /* Return stack of peer certs. * Caller does not need to free return. The stack is Free'd when WOLFSSL* ssl * is. */ WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_get_peer_cert_chain(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_cert_chain"); if (ssl == NULL) return NULL; /* Try to populate if NULL or empty */ if (ssl->peerCertChain == NULL || wolfSSL_sk_X509_num(ssl->peerCertChain) == 0) wolfSSL_set_peer_cert_chain((WOLFSSL*) ssl); return ssl->peerCertChain; } #ifndef WOLFSSL_QT static int x509GetIssuerFromCM(WOLFSSL_X509 **issuer, WOLFSSL_CERT_MANAGER* cm, WOLFSSL_X509 *x); /** * Recursively push the issuer CA chain onto the stack * @param cm The cert manager that is queried for the issuer * @param x This cert's issuer will be queried in cm * @param sk The issuer is pushed onto this stack * @return WOLFSSL_SUCCESS on success * WOLFSSL_FAILURE on no issuer found * WOLFSSL_FATAL_ERROR on a fatal error */ static int PushCAx509Chain(WOLFSSL_CERT_MANAGER* cm, WOLFSSL_X509 *x, WOLFSSL_STACK* sk) { WOLFSSL_X509* issuer[MAX_CHAIN_DEPTH]; int i; int push = 1; int ret = WOLFSSL_SUCCESS; for (i = 0; i < MAX_CHAIN_DEPTH; i++) { if (x509GetIssuerFromCM(&issuer[i], cm, x) != WOLFSSL_SUCCESS) break; x = issuer[i]; } if (i == 0) /* No further chain found */ return WOLFSSL_FAILURE; i--; for (; i >= 0; i--) { if (push) { if (wolfSSL_sk_X509_push(sk, issuer[i]) != WOLFSSL_SUCCESS) { wolfSSL_X509_free(issuer[i]); ret = WOLFSSL_FATAL_ERROR; push = 0; /* Free the rest of the unpushed certs */ } } else { wolfSSL_X509_free(issuer[i]); } } return ret; } #endif /* !WOLFSSL_QT */ /* Builds up and creates a stack of peer certificates for ssl->peerCertChain based off of the ssl session chain. Attempts to place CA certificates at the bottom of the stack. Returns stack of WOLFSSL_X509 certs or NULL on failure */ WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_set_peer_cert_chain(WOLFSSL* ssl) { WOLFSSL_STACK* sk; WOLFSSL_X509* x509; int i = 0; int ret; WOLFSSL_ENTER("wolfSSL_set_peer_cert_chain"); if ((ssl == NULL) || (ssl->session->chain.count == 0)) return NULL; sk = wolfSSL_sk_X509_new_null(); i = ssl->session->chain.count-1; for (; i >= 0; i--) { x509 = wolfSSL_X509_new_ex(ssl->heap); if (x509 == NULL) { WOLFSSL_MSG("Error Creating X509"); wolfSSL_sk_X509_pop_free(sk, NULL); return NULL; } ret = DecodeToX509(x509, ssl->session->chain.certs[i].buffer, ssl->session->chain.certs[i].length); #if !defined(WOLFSSL_QT) if (ret == 0 && i == ssl->session->chain.count-1) { /* On the last element in the chain try to add the CA chain * first if we have one for this cert */ SSL_CM_WARNING(ssl); if (PushCAx509Chain(SSL_CM(ssl), x509, sk) == WOLFSSL_FATAL_ERROR) { ret = WOLFSSL_FATAL_ERROR; } } #endif if (ret != 0 || wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error decoding cert"); wolfSSL_X509_free(x509); wolfSSL_sk_X509_pop_free(sk, NULL); return NULL; } } if (sk == NULL) { WOLFSSL_MSG("Null session chain"); } #if defined(OPENSSL_ALL) else if (ssl->options.side == WOLFSSL_SERVER_END) { /* to be compliant with openssl first element is kept as peer cert on server side.*/ wolfSSL_sk_X509_pop(sk); } #endif if (ssl->peerCertChain != NULL) wolfSSL_sk_X509_pop_free(ssl->peerCertChain, NULL); /* This is Free'd when ssl is Free'd */ ssl->peerCertChain = sk; return sk; } #endif /* SESSION_CERTS && OPENSSL_EXTRA */ #ifndef NO_CERTS #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* create a generic wolfSSL stack node * returns a new WOLFSSL_STACK structure on success */ WOLFSSL_STACK* wolfSSL_sk_new_node(void* heap) { WOLFSSL_STACK* sk; WOLFSSL_ENTER("wolfSSL_sk_new_node"); sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), heap, DYNAMIC_TYPE_OPENSSL); if (sk != NULL) { XMEMSET(sk, 0, sizeof(*sk)); sk->heap = heap; } return sk; } /* free's node but does not free internal data such as in->data.x509 */ void wolfSSL_sk_free_node(WOLFSSL_STACK* in) { if (in != NULL) { XFREE(in, in->heap, DYNAMIC_TYPE_OPENSSL); } } /* pushes node "in" onto "stack" and returns pointer to the new stack on success * also handles internal "num" for number of nodes on stack * return WOLFSSL_SUCCESS on success */ int wolfSSL_sk_push_node(WOLFSSL_STACK** stack, WOLFSSL_STACK* in) { if (stack == NULL || in == NULL) { return WOLFSSL_FAILURE; } if (*stack == NULL) { in->num = 1; *stack = in; return WOLFSSL_SUCCESS; } in->num = (*stack)->num + 1; in->next = *stack; *stack = in; return WOLFSSL_SUCCESS; } #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) static WC_INLINE int compare_WOLFSSL_CIPHER( WOLFSSL_CIPHER *a, WOLFSSL_CIPHER *b) { if ((a->cipherSuite0 == b->cipherSuite0) && (a->cipherSuite == b->cipherSuite) && (a->ssl == b->ssl) && (XMEMCMP(a->description, b->description, sizeof a->description) == 0) && (a->offset == b->offset) && (a->in_stack == b->in_stack) && (a->bits == b->bits)) return 0; else return -1; } #endif /* OPENSSL_ALL || WOLFSSL_QT */ /* return 1 on success 0 on fail */ int wolfSSL_sk_push(WOLFSSL_STACK* sk, const void *data) { WOLFSSL_STACK* node; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) WOLFSSL_CIPHER ciph; #endif WOLFSSL_ENTER("wolfSSL_sk_push"); if (!sk) { return WOLFSSL_FAILURE; } /* Check if empty data */ switch (sk->type) { case STACK_TYPE_CIPHER: #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) /* check if entire struct is zero */ XMEMSET(&ciph, 0, sizeof(WOLFSSL_CIPHER)); if (compare_WOLFSSL_CIPHER(&sk->data.cipher, &ciph) == 0) { sk->data.cipher = *(WOLFSSL_CIPHER*)data; sk->num = 1; if (sk->hash_fn) { sk->hash = sk->hash_fn(&sk->data.cipher); } return WOLFSSL_SUCCESS; } break; #endif case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: /* All other types are pointers */ if (!sk->data.generic) { sk->data.generic = (void*)data; sk->num = 1; #ifdef OPENSSL_ALL if (sk->hash_fn) { sk->hash = sk->hash_fn(sk->data.generic); } #endif return WOLFSSL_SUCCESS; } break; } /* stack already has value(s) create a new node and add more */ node = wolfSSL_sk_new_node(sk->heap); if (!node) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } /* push new x509 onto head of stack */ node->next = sk->next; node->type = sk->type; sk->next = node; sk->num += 1; #ifdef OPENSSL_ALL node->hash_fn = sk->hash_fn; node->hash = sk->hash; sk->hash = 0; #endif switch (sk->type) { case STACK_TYPE_CIPHER: #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) node->data.cipher = sk->data.cipher; sk->data.cipher = *(WOLFSSL_CIPHER*)data; if (sk->hash_fn) { sk->hash = sk->hash_fn(&sk->data.cipher); } break; #endif case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: /* All other types are pointers */ node->data.generic = sk->data.generic; sk->data.generic = (void*)data; #ifdef OPENSSL_ALL if (sk->hash_fn) { sk->hash = sk->hash_fn(sk->data.generic); } #endif break; } return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA /* returns the node at index "idx", NULL if not found */ WOLFSSL_STACK* wolfSSL_sk_get_node(WOLFSSL_STACK* sk, int idx) { int i; WOLFSSL_STACK* ret = NULL; WOLFSSL_STACK* current; current = sk; for (i = 0; i <= idx && current != NULL; i++) { if (i == idx) { ret = current; break; } current = current->next; } return ret; } #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA #if defined(OPENSSL_ALL) void *wolfSSL_lh_retrieve(WOLFSSL_STACK *sk, void *data) { unsigned long hash; WOLFSSL_ENTER("wolfSSL_lh_retrieve"); if (!sk || !data) { WOLFSSL_MSG("Bad parameters"); return NULL; } if (!sk->hash_fn) { WOLFSSL_MSG("No hash function defined"); return NULL; } hash = sk->hash_fn(data); while (sk) { /* Calc hash if not done so yet */ if (!sk->hash) { switch (sk->type) { case STACK_TYPE_CIPHER: sk->hash = sk->hash_fn(&sk->data.cipher); break; case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: sk->hash = sk->hash_fn(sk->data.generic); break; } } if (sk->hash == hash) { switch (sk->type) { case STACK_TYPE_CIPHER: return &sk->data.cipher; case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: return sk->data.generic; } } sk = sk->next; } return NULL; } #endif /* OPENSSL_ALL */ #endif /* OPENSSL_EXTRA */ /* OPENSSL_EXTRA is needed for wolfSSL_X509_d21 function KEEP_OUR_CERT is to insure ability for returning ssl certificate */ #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ defined(KEEP_OUR_CERT) WOLFSSL_X509* wolfSSL_get_certificate(WOLFSSL* ssl) { if (ssl == NULL) { return NULL; } if (ssl->buffers.weOwnCert) { if (ssl->ourCert == NULL) { if (ssl->buffers.certificate == NULL) { WOLFSSL_MSG("Certificate buffer not set!"); return NULL; } #ifndef WOLFSSL_X509_STORE_CERTS ssl->ourCert = wolfSSL_X509_d2i_ex(NULL, ssl->buffers.certificate->buffer, ssl->buffers.certificate->length, ssl->heap); #endif } return ssl->ourCert; } else { /* if cert not owned get parent ctx cert or return null */ if (ssl->ctx) { if (ssl->ctx->ourCert == NULL) { if (ssl->ctx->certificate == NULL) { WOLFSSL_MSG("Ctx Certificate buffer not set!"); return NULL; } #ifndef WOLFSSL_X509_STORE_CERTS ssl->ctx->ourCert = wolfSSL_X509_d2i_ex(NULL, ssl->ctx->certificate->buffer, ssl->ctx->certificate->length, ssl->heap); #endif ssl->ctx->ownOurCert = 1; } return ssl->ctx->ourCert; } } return NULL; } WOLFSSL_X509* wolfSSL_CTX_get0_certificate(WOLFSSL_CTX* ctx) { if (ctx) { if (ctx->ourCert == NULL) { if (ctx->certificate == NULL) { WOLFSSL_MSG("Ctx Certificate buffer not set!"); return NULL; } #ifndef WOLFSSL_X509_STORE_CERTS ctx->ourCert = wolfSSL_X509_d2i_ex(NULL, ctx->certificate->buffer, ctx->certificate->length, ctx->heap); #endif ctx->ownOurCert = 1; } return ctx->ourCert; } return NULL; } #endif /* OPENSSL_EXTRA && KEEP_OUR_CERT */ #endif /* NO_CERTS */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) void wolfSSL_set_connect_state(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_set_connect_state"); if (ssl == NULL) { WOLFSSL_MSG("WOLFSSL struct pointer passed in was null"); return; } #ifndef NO_DH /* client creates its own DH parameters on handshake */ if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); } ssl->buffers.serverDH_P.buffer = NULL; if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); } ssl->buffers.serverDH_G.buffer = NULL; #endif if (InitSSL_Side(ssl, WOLFSSL_CLIENT_END) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error initializing client side"); } } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ int wolfSSL_get_shutdown(const WOLFSSL* ssl) { int isShutdown = 0; WOLFSSL_ENTER("wolfSSL_get_shutdown"); if (ssl) { #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) if (ssl->options.shutdownDone) { /* The SSL object was possibly cleared with wolfSSL_clear after * a successful shutdown. Simulate a response for a full * bidirectional shutdown. */ isShutdown = WOLFSSL_SENT_SHUTDOWN | WOLFSSL_RECEIVED_SHUTDOWN; } else #endif { /* in OpenSSL, WOLFSSL_SENT_SHUTDOWN = 1, when closeNotifySent * * WOLFSSL_RECEIVED_SHUTDOWN = 2, from close notify or fatal err */ if (ssl->options.sentNotify) isShutdown |= WOLFSSL_SENT_SHUTDOWN; if (ssl->options.closeNotify||ssl->options.connReset) isShutdown |= WOLFSSL_RECEIVED_SHUTDOWN; } } WOLFSSL_LEAVE("wolfSSL_get_shutdown", isShutdown); return isShutdown; } int wolfSSL_session_reused(WOLFSSL* ssl) { int resuming = 0; WOLFSSL_ENTER("wolfSSL_session_reused"); if (ssl) { #ifndef HAVE_SECURE_RENEGOTIATION resuming = ssl->options.resuming; #else resuming = ssl->options.resuming || ssl->options.resumed; #endif } WOLFSSL_LEAVE("wolfSSL_session_reused", resuming); return resuming; } /* helper function that takes in a protocol version struct and returns string */ static const char* wolfSSL_internal_get_version(const ProtocolVersion* version) { WOLFSSL_ENTER("wolfSSL_get_version"); if (version == NULL) { return "Bad arg"; } if (version->major == SSLv3_MAJOR) { switch (version->minor) { case SSLv3_MINOR : return "SSLv3"; case TLSv1_MINOR : return "TLSv1"; case TLSv1_1_MINOR : return "TLSv1.1"; case TLSv1_2_MINOR : return "TLSv1.2"; case TLSv1_3_MINOR : return "TLSv1.3"; default: return "unknown"; } } #ifdef WOLFSSL_DTLS else if (version->major == DTLS_MAJOR) { switch (version->minor) { case DTLS_MINOR : return "DTLS"; case DTLSv1_2_MINOR : return "DTLSv1.2"; case DTLSv1_3_MINOR : return "DTLSv1.3"; default: return "unknown"; } } #endif /* WOLFSSL_DTLS */ return "unknown"; } const char* wolfSSL_get_version(const WOLFSSL* ssl) { if (ssl == NULL) { WOLFSSL_MSG("Bad argument"); return "unknown"; } return wolfSSL_internal_get_version(&ssl->version); } /* current library version */ const char* wolfSSL_lib_version(void) { return LIBWOLFSSL_VERSION_STRING; } #ifdef OPENSSL_EXTRA #if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L const char* wolfSSL_OpenSSL_version(int a) { (void)a; return "wolfSSL " LIBWOLFSSL_VERSION_STRING; } #else const char* wolfSSL_OpenSSL_version(void) { return "wolfSSL " LIBWOLFSSL_VERSION_STRING; } #endif /* WOLFSSL_QT */ #endif /* current library version in hex */ word32 wolfSSL_lib_version_hex(void) { return LIBWOLFSSL_VERSION_HEX; } int wolfSSL_get_current_cipher_suite(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_current_cipher_suite"); if (ssl) return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite; return 0; } WOLFSSL_CIPHER* wolfSSL_get_current_cipher(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_current_cipher"); if (ssl) { ssl->cipher.cipherSuite0 = ssl->options.cipherSuite0; ssl->cipher.cipherSuite = ssl->options.cipherSuite; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) ssl->cipher.bits = ssl->specs.key_size * 8; #endif return &ssl->cipher; } else return NULL; } const char* wolfSSL_CIPHER_get_name(const WOLFSSL_CIPHER* cipher) { WOLFSSL_ENTER("wolfSSL_CIPHER_get_name"); if (cipher == NULL) { return NULL; } #if !defined(WOLFSSL_CIPHER_INTERNALNAME) && !defined(NO_ERROR_STRINGS) && \ !defined(WOLFSSL_QT) return GetCipherNameIana(cipher->cipherSuite0, cipher->cipherSuite); #else return wolfSSL_get_cipher_name_from_suite(cipher->cipherSuite0, cipher->cipherSuite); #endif } const char* wolfSSL_CIPHER_get_version(const WOLFSSL_CIPHER* cipher) { WOLFSSL_ENTER("wolfSSL_CIPHER_get_version"); if (cipher == NULL || cipher->ssl == NULL) { return NULL; } return wolfSSL_get_version(cipher->ssl); } const char* wolfSSL_get_cipher(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_cipher"); return wolfSSL_CIPHER_get_name(wolfSSL_get_current_cipher(ssl)); } /* gets cipher name in the format DHE-RSA-... rather then TLS_DHE... */ const char* wolfSSL_get_cipher_name(WOLFSSL* ssl) { /* get access to cipher_name_idx in internal.c */ return wolfSSL_get_cipher_name_internal(ssl); } const char* wolfSSL_get_cipher_name_from_suite(const byte cipherSuite0, const byte cipherSuite) { return GetCipherNameInternal(cipherSuite0, cipherSuite); } const char* wolfSSL_get_cipher_name_iana_from_suite(const byte cipherSuite0, const byte cipherSuite) { return GetCipherNameIana(cipherSuite0, cipherSuite); } int wolfSSL_get_cipher_suite_from_name(const char* name, byte* cipherSuite0, byte* cipherSuite, int *flags) { if ((name == NULL) || (cipherSuite0 == NULL) || (cipherSuite == NULL) || (flags == NULL)) return BAD_FUNC_ARG; return GetCipherSuiteFromName(name, cipherSuite0, cipherSuite, flags); } #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) /* Creates and returns a new WOLFSSL_CIPHER stack. */ WOLFSSL_STACK* wolfSSL_sk_new_cipher(void) { WOLFSSL_STACK* sk; WOLFSSL_ENTER("wolfSSL_sk_new_cipher"); sk = wolfSSL_sk_new_null(); if (sk == NULL) return NULL; sk->type = STACK_TYPE_CIPHER; return sk; } /* return 1 on success 0 on fail */ int wolfSSL_sk_CIPHER_push(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk, WOLFSSL_CIPHER* cipher) { return wolfSSL_sk_push(sk, cipher); } #ifndef NO_WOLFSSL_STUB WOLFSSL_CIPHER* wolfSSL_sk_CIPHER_pop(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk) { WOLFSSL_STUB("wolfSSL_sk_CIPHER_pop"); (void)sk; return NULL; } #endif /* NO_WOLFSSL_STUB */ #endif /* WOLFSSL_QT || OPENSSL_ALL */ word32 wolfSSL_CIPHER_get_id(const WOLFSSL_CIPHER* cipher) { word16 cipher_id = 0; WOLFSSL_ENTER("wolfSSL_CIPHER_get_id"); if (cipher && cipher->ssl) { cipher_id = (cipher->ssl->options.cipherSuite0 << 8) | cipher->ssl->options.cipherSuite; } return cipher_id; } const WOLFSSL_CIPHER* wolfSSL_get_cipher_by_value(word16 value) { const WOLFSSL_CIPHER* cipher = NULL; byte cipherSuite0, cipherSuite; WOLFSSL_ENTER("wolfSSL_get_cipher_by_value"); /* extract cipher id information */ cipherSuite = (value & 0xFF); cipherSuite0 = ((value >> 8) & 0xFF); /* TODO: lookup by cipherSuite0 / cipherSuite */ (void)cipherSuite0; (void)cipherSuite; return cipher; } #if defined(OPENSSL_EXTRA) /* Free the structure for WOLFSSL_CIPHER stack * * sk stack to free nodes in */ void wolfSSL_sk_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk) { WOLFSSL_ENTER("wolfSSL_sk_CIPHER_free"); wolfSSL_sk_free(sk); } #endif /* OPENSSL_ALL */ #if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448) || \ !defined(NO_DH) #ifdef HAVE_FFDHE static const char* wolfssl_ffdhe_name(word16 group) { const char* str = NULL; switch (group) { case WOLFSSL_FFDHE_2048: str = "FFDHE_2048"; break; case WOLFSSL_FFDHE_3072: str = "FFDHE_3072"; break; case WOLFSSL_FFDHE_4096: str = "FFDHE_4096"; break; case WOLFSSL_FFDHE_6144: str = "FFDHE_6144"; break; case WOLFSSL_FFDHE_8192: str = "FFDHE_8192"; break; default: break; } return str; } #endif /* Return the name of the curve used for key exchange as a printable string. * * ssl The SSL/TLS object. * returns NULL if ECDH was not used, otherwise the name as a string. */ const char* wolfSSL_get_curve_name(WOLFSSL* ssl) { const char* cName = NULL; WOLFSSL_ENTER("wolfSSL_get_curve_name"); if (ssl == NULL) return NULL; #if defined(WOLFSSL_TLS13) && defined(HAVE_PQC) /* Check for post-quantum groups. Return now because we do not want the ECC * check to override this result in the case of a hybrid. */ if (IsAtLeastTLSv1_3(ssl->version)) { switch (ssl->namedGroup) { #ifdef HAVE_LIBOQS case WOLFSSL_KYBER_LEVEL1: return "KYBER_LEVEL1"; case WOLFSSL_KYBER_LEVEL3: return "KYBER_LEVEL3"; case WOLFSSL_KYBER_LEVEL5: return "KYBER_LEVEL5"; case WOLFSSL_P256_KYBER_LEVEL1: return "P256_KYBER_LEVEL1"; case WOLFSSL_P384_KYBER_LEVEL3: return "P384_KYBER_LEVEL3"; case WOLFSSL_P521_KYBER_LEVEL5: return "P521_KYBER_LEVEL5"; #elif defined(HAVE_PQM4) case WOLFSSL_KYBER_LEVEL1: return "KYBER_LEVEL1"; #elif defined(WOLFSSL_WC_KYBER) #ifdef WOLFSSL_KYBER512 case WOLFSSL_KYBER_LEVEL1: return "KYBER_LEVEL1"; #endif #ifdef WOLFSSL_KYBER768 case WOLFSSL_KYBER_LEVEL3: return "KYBER_LEVEL3"; #endif #ifdef WOLFSSL_KYBER1024 case WOLFSSL_KYBER_LEVEL5: return "KYBER_LEVEL5"; #endif #endif } } #endif /* WOLFSSL_TLS13 && HAVE_PQC */ #ifdef HAVE_FFDHE if (ssl->namedGroup != 0) { cName = wolfssl_ffdhe_name(ssl->namedGroup); } #endif #ifdef HAVE_CURVE25519 if (ssl->ecdhCurveOID == ECC_X25519_OID && cName == NULL) { cName = "X25519"; } #endif #ifdef HAVE_CURVE448 if (ssl->ecdhCurveOID == ECC_X448_OID && cName == NULL) { cName = "X448"; } #endif #ifdef HAVE_ECC if (ssl->ecdhCurveOID != 0 && cName == NULL) { cName = wc_ecc_get_name(wc_ecc_get_oid(ssl->ecdhCurveOID, NULL, NULL)); } #endif return cName; } #endif #ifdef OPENSSL_EXTRA #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) /* return authentication NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_auth_nid(const WOLFSSL_CIPHER* cipher) { static const struct authnid { const char* alg_name; const int nid; } authnid_tbl[] = { {"RSA", NID_auth_rsa}, {"PSK", NID_auth_psk}, {"SRP", NID_auth_srp}, {"ECDSA", NID_auth_ecdsa}, {"None", NID_auth_null}, {NULL, NID_undef} }; const char* authStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } authStr = GetCipherAuthStr(n); if (authStr != NULL) { const struct authnid* sa; for(sa = authnid_tbl; sa->alg_name != NULL; sa++) { if (XSTRCMP(sa->alg_name, authStr) == 0) { return sa->nid; } } } return NID_undef; } /* return cipher NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_cipher_nid(const WOLFSSL_CIPHER* cipher) { static const struct ciphernid { const char* alg_name; const int nid; } ciphernid_tbl[] = { {"AESGCM(256)", NID_aes_256_gcm}, {"AESGCM(128)", NID_aes_128_gcm}, {"AESCCM(128)", NID_aes_128_ccm}, {"AES(128)", NID_aes_128_cbc}, {"AES(256)", NID_aes_256_cbc}, {"CAMELLIA(256)", NID_camellia_256_cbc}, {"CAMELLIA(128)", NID_camellia_128_cbc}, {"RC4", NID_rc4}, {"3DES", NID_des_ede3_cbc}, {"CHACHA20/POLY1305(256)", NID_chacha20_poly1305}, {"None", NID_undef}, {NULL, NID_undef} }; const char* encStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; WOLFSSL_ENTER("wolfSSL_CIPHER_get_cipher_nid"); if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } encStr = GetCipherEncStr(n); if (encStr != NULL) { const struct ciphernid* c; for(c = ciphernid_tbl; c->alg_name != NULL; c++) { if (XSTRCMP(c->alg_name, encStr) == 0) { return c->nid; } } } return NID_undef; } /* return digest NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_digest_nid(const WOLFSSL_CIPHER* cipher) { static const struct macnid { const char* alg_name; const int nid; } macnid_tbl[] = { {"SHA1", NID_sha1}, {"SHA256", NID_sha256}, {"SHA384", NID_sha384}, {NULL, NID_undef} }; const char* name; const char* macStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; (void)name; WOLFSSL_ENTER("wolfSSL_CIPHER_get_digest_nid"); if ((name = GetCipherSegment(cipher, n)) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } /* in MD5 case, NID will be NID_md5 */ if (XSTRSTR(name, "MD5") != NULL) { return NID_md5; } macStr = GetCipherMacStr(n); if (macStr != NULL) { const struct macnid* mc; for(mc = macnid_tbl; mc->alg_name != NULL; mc++) { if (XSTRCMP(mc->alg_name, macStr) == 0) { return mc->nid; } } } return NID_undef; } /* return key exchange NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_kx_nid(const WOLFSSL_CIPHER* cipher) { static const struct kxnid { const char* name; const int nid; } kxnid_table[] = { {"ECDHEPSK", NID_kx_ecdhe_psk}, {"ECDH", NID_kx_ecdhe}, {"DHEPSK", NID_kx_dhe_psk}, {"DH", NID_kx_dhe}, {"RSAPSK", NID_kx_rsa_psk}, {"SRP", NID_kx_srp}, {"EDH", NID_kx_dhe}, {"RSA", NID_kx_rsa}, {NULL, NID_undef} }; const char* keaStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; WOLFSSL_ENTER("wolfSSL_CIPHER_get_kx_nid"); if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } /* in TLS 1.3 case, NID will be NID_kx_any */ if (XSTRCMP(n[0], "TLS13") == 0) { return NID_kx_any; } keaStr = GetCipherKeaStr(n); if (keaStr != NULL) { const struct kxnid* k; for(k = kxnid_table; k->name != NULL; k++) { if (XSTRCMP(k->name, keaStr) == 0) { return k->nid; } } } return NID_undef; } /* check if cipher suite is AEAD * @param cipher a pointer to WOLFSSL_CIPHER * return 1 if cipher is AEAD, 0 otherwise */ int wolfSSL_CIPHER_is_aead(const WOLFSSL_CIPHER* cipher) { char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; WOLFSSL_ENTER("wolfSSL_CIPHER_is_aead"); if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } return IsCipherAEAD(n); } /* Creates cipher->description based on cipher->offset * cipher->offset is set in wolfSSL_get_ciphers_compat when it is added * to a stack of ciphers. * @param [in] cipher: A cipher from a stack of ciphers. * return WOLFSSL_SUCCESS if cipher->description is set, else WOLFSSL_FAILURE */ int wolfSSL_sk_CIPHER_description(WOLFSSL_CIPHER* cipher) { int strLen; unsigned long offset; char* dp; const char* name; const char *keaStr, *authStr, *encStr, *macStr, *protocol; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; int len = MAX_DESCRIPTION_SZ-1; const CipherSuiteInfo* cipher_names; ProtocolVersion pv; WOLFSSL_ENTER("wolfSSL_sk_CIPHER_description"); if (cipher == NULL) return WOLFSSL_FAILURE; dp = cipher->description; if (dp == NULL) return WOLFSSL_FAILURE; cipher_names = GetCipherNames(); offset = cipher->offset; if (offset >= (unsigned long)GetCipherNamesSize()) return WOLFSSL_FAILURE; pv.major = cipher_names[offset].major; pv.minor = cipher_names[offset].minor; protocol = wolfSSL_internal_get_version(&pv); if ((name = GetCipherSegment(cipher, n)) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return WOLFSSL_FAILURE; } /* keaStr */ keaStr = GetCipherKeaStr(n); /* authStr */ authStr = GetCipherAuthStr(n); /* encStr */ encStr = GetCipherEncStr(n); if ((cipher->bits = SetCipherBits(encStr)) == WOLFSSL_FAILURE) { WOLFSSL_MSG("Cipher Bits Not Set."); } /* macStr */ macStr = GetCipherMacStr(n); /* Build up the string by copying onto the end. */ XSTRNCPY(dp, name, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " ", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, protocol, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Kx=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, keaStr, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Au=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, authStr, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Enc=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, encStr, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Mac=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, macStr, len); dp[len-1] = '\0'; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_ALL || WOLFSSL_QT */ static WC_INLINE const char* wolfssl_kea_to_string(int kea) { const char* keaStr; switch (kea) { case no_kea: keaStr = "None"; break; #ifndef NO_RSA case rsa_kea: keaStr = "RSA"; break; #endif #ifndef NO_DH case diffie_hellman_kea: keaStr = "DHE"; break; #endif case fortezza_kea: keaStr = "FZ"; break; #ifndef NO_PSK case psk_kea: keaStr = "PSK"; break; #ifndef NO_DH case dhe_psk_kea: keaStr = "DHEPSK"; break; #endif #ifdef HAVE_ECC case ecdhe_psk_kea: keaStr = "ECDHEPSK"; break; #endif #endif #ifdef HAVE_ECC case ecc_diffie_hellman_kea: keaStr = "ECDHE"; break; case ecc_static_diffie_hellman_kea: keaStr = "ECDH"; break; #endif default: keaStr = "unknown"; break; } return keaStr; } static WC_INLINE const char* wolfssl_sigalg_to_string(int sig_algo) { const char* authStr; switch (sig_algo) { case anonymous_sa_algo: authStr = "None"; break; #ifndef NO_RSA case rsa_sa_algo: authStr = "RSA"; break; #ifdef WC_RSA_PSS case rsa_pss_sa_algo: authStr = "RSA-PSS"; break; #endif #endif #ifndef NO_DSA case dsa_sa_algo: authStr = "DSA"; break; #endif #ifdef HAVE_ECC case ecc_dsa_sa_algo: authStr = "ECDSA"; break; #endif #ifdef WOLFSSL_SM2 case sm2_sa_algo: authStr = "SM2"; break; #endif #ifdef HAVE_ED25519 case ed25519_sa_algo: authStr = "Ed25519"; break; #endif #ifdef HAVE_ED448 case ed448_sa_algo: authStr = "Ed448"; break; #endif default: authStr = "unknown"; break; } return authStr; } static WC_INLINE const char* wolfssl_cipher_to_string(int cipher, int key_size) { const char* encStr; (void)key_size; switch (cipher) { case wolfssl_cipher_null: encStr = "None"; break; #ifndef NO_RC4 case wolfssl_rc4: encStr = "RC4(128)"; break; #endif #ifndef NO_DES3 case wolfssl_triple_des: encStr = "3DES(168)"; break; #endif #ifndef NO_AES case wolfssl_aes: if (key_size == 128) encStr = "AES(128)"; else if (key_size == 256) encStr = "AES(256)"; else encStr = "AES(?)"; break; #ifdef HAVE_AESGCM case wolfssl_aes_gcm: if (key_size == 128) encStr = "AESGCM(128)"; else if (key_size == 256) encStr = "AESGCM(256)"; else encStr = "AESGCM(?)"; break; #endif #ifdef HAVE_AESCCM case wolfssl_aes_ccm: if (key_size == 128) encStr = "AESCCM(128)"; else if (key_size == 256) encStr = "AESCCM(256)"; else encStr = "AESCCM(?)"; break; #endif #endif #ifdef HAVE_CHACHA case wolfssl_chacha: encStr = "CHACHA20/POLY1305(256)"; break; #endif #ifdef HAVE_ARIA case wolfssl_aria_gcm: if (key_size == 128) encStr = "Aria(128)"; else if (key_size == 192) encStr = "Aria(192)"; else if (key_size == 256) encStr = "Aria(256)"; else encStr = "Aria(?)"; break; #endif #ifdef HAVE_CAMELLIA case wolfssl_camellia: if (key_size == 128) encStr = "Camellia(128)"; else if (key_size == 256) encStr = "Camellia(256)"; else encStr = "Camellia(?)"; break; #endif default: encStr = "unknown"; break; } return encStr; } static WC_INLINE const char* wolfssl_mac_to_string(int mac) { const char* macStr; switch (mac) { case no_mac: macStr = "None"; break; #ifndef NO_MD5 case md5_mac: macStr = "MD5"; break; #endif #ifndef NO_SHA case sha_mac: macStr = "SHA1"; break; #endif #ifdef HAVE_SHA224 case sha224_mac: macStr = "SHA224"; break; #endif #ifndef NO_SHA256 case sha256_mac: macStr = "SHA256"; break; #endif #ifdef HAVE_SHA384 case sha384_mac: macStr = "SHA384"; break; #endif #ifdef HAVE_SHA512 case sha512_mac: macStr = "SHA512"; break; #endif default: macStr = "unknown"; break; } return macStr; } char* wolfSSL_CIPHER_description(const WOLFSSL_CIPHER* cipher, char* in, int len) { char *ret = in; const char *keaStr, *authStr, *encStr, *macStr; size_t strLen; WOLFSSL_ENTER("wolfSSL_CIPHER_description"); if (cipher == NULL || in == NULL) return NULL; #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) /* if cipher is in the stack from wolfSSL_get_ciphers_compat then * Return the description based on cipher_names[cipher->offset] */ if (cipher->in_stack == TRUE) { wolfSSL_sk_CIPHER_description((WOLFSSL_CIPHER*)cipher); XSTRNCPY(in,cipher->description,len); return ret; } #endif /* Get the cipher description based on the SSL session cipher */ keaStr = wolfssl_kea_to_string(cipher->ssl->specs.kea); authStr = wolfssl_sigalg_to_string(cipher->ssl->specs.sig_algo); encStr = wolfssl_cipher_to_string(cipher->ssl->specs.bulk_cipher_algorithm, cipher->ssl->specs.key_size); macStr = wolfssl_mac_to_string(cipher->ssl->specs.mac_algorithm); /* Build up the string by copying onto the end. */ XSTRNCPY(in, wolfSSL_CIPHER_get_name(cipher), len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " ", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, wolfSSL_get_version(cipher->ssl), len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Kx=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, keaStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Au=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, authStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Enc=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, encStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Mac=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, macStr, len); in[len-1] = '\0'; return ret; } #ifndef NO_WOLFSSL_STUB int wolfSSL_OCSP_parse_url(char* url, char** host, char** port, char** path, int* ssl) { (void)url; (void)host; (void)port; (void)path; (void)ssl; WOLFSSL_STUB("OCSP_parse_url"); return 0; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_COMP_METHOD* wolfSSL_COMP_zlib(void) { WOLFSSL_STUB("COMP_zlib"); return 0; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_COMP_METHOD* wolfSSL_COMP_rle(void) { WOLFSSL_STUB("COMP_rle"); return 0; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_COMP_add_compression_method(int method, void* data) { (void)method; (void)data; WOLFSSL_STUB("COMP_add_compression_method"); return 0; } #endif /* wolfSSL_set_dynlock_create_callback * CRYPTO_set_dynlock_create_callback has been deprecated since openSSL 1.0.1. * This function exists for compatibility purposes because wolfSSL satisfies * thread safety without relying on the callback. */ void wolfSSL_set_dynlock_create_callback(WOLFSSL_dynlock_value* (*f)( const char*, int)) { WOLFSSL_STUB("CRYPTO_set_dynlock_create_callback"); (void)f; } /* wolfSSL_set_dynlock_lock_callback * CRYPTO_set_dynlock_lock_callback has been deprecated since openSSL 1.0.1. * This function exists for compatibility purposes because wolfSSL satisfies * thread safety without relying on the callback. */ void wolfSSL_set_dynlock_lock_callback( void (*f)(int, WOLFSSL_dynlock_value*, const char*, int)) { WOLFSSL_STUB("CRYPTO_set_set_dynlock_lock_callback"); (void)f; } /* wolfSSL_set_dynlock_destroy_callback * CRYPTO_set_dynlock_destroy_callback has been deprecated since openSSL 1.0.1. * This function exists for compatibility purposes because wolfSSL satisfies * thread safety without relying on the callback. */ void wolfSSL_set_dynlock_destroy_callback( void (*f)(WOLFSSL_dynlock_value*, const char*, int)) { WOLFSSL_STUB("CRYPTO_set_set_dynlock_destroy_callback"); (void)f; } #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA #ifndef NO_CERTS #if !defined(NO_ASN) && !defined(NO_PWDBASED) /* Copies unencrypted DER key buffer into "der". If "der" is null then the size * of buffer needed is returned. If *der == NULL then it allocates a buffer. * NOTE: This also advances the "der" pointer to be at the end of buffer. * * Returns size of key buffer on success */ int wolfSSL_i2d_PrivateKey(const WOLFSSL_EVP_PKEY* key, unsigned char** der) { return wolfSSL_EVP_PKEY_get_der(key, der); } int wolfSSL_i2d_PublicKey(const WOLFSSL_EVP_PKEY *key, unsigned char **der) { #if !defined(NO_RSA) || defined(HAVE_ECC) #ifdef HAVE_ECC unsigned char *local_der = NULL; word32 local_derSz = 0; unsigned char *pub_der = NULL; ecc_key *eccKey = NULL; word32 inOutIdx = 0; #endif word32 pub_derSz = 0; int ret; int key_type = 0; if (key == NULL) { return WOLFSSL_FATAL_ERROR; } key_type = key->type; if ((key_type != EVP_PKEY_EC) && (key_type != EVP_PKEY_RSA)) { return WOLFSSL_FATAL_ERROR; } #ifndef NO_RSA if (key_type == EVP_PKEY_RSA) { return wolfSSL_i2d_RSAPublicKey(key->rsa, der); } #endif /* Now that RSA is taken care of, we only need to consider the ECC case. */ #ifdef HAVE_ECC /* We need to get the DER, then convert it to a public key. But what we get * might be a buffered private key so we need to decode it and then encode * the public part. */ ret = wolfSSL_EVP_PKEY_get_der(key, &local_der); if (ret <= 0) { /* In this case, there was no buffered DER at all. This could be the * case where the key that was passed in was generated. So now we * have to create the local DER. */ local_derSz = wolfSSL_i2d_ECPrivateKey(key->ecc, &local_der); if (local_derSz == 0) { ret = WOLFSSL_FATAL_ERROR; } } else { local_derSz = ret; ret = 0; } if (ret == 0) { eccKey = (ecc_key *)XMALLOC(sizeof(*eccKey), NULL, DYNAMIC_TYPE_ECC); if (eccKey == NULL) { WOLFSSL_MSG("Failed to allocate key buffer."); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { ret = wc_ecc_init(eccKey); } if (ret == 0) { ret = wc_EccPublicKeyDecode(local_der, &inOutIdx, eccKey, local_derSz); if (ret < 0) { /* We now try again as x.963 [point type][x][opt y]. */ ret = wc_ecc_import_x963(local_der, local_derSz, eccKey); } } if (ret == 0) { pub_derSz = wc_EccPublicKeyDerSize(eccKey, 0); if ((int)pub_derSz <= 0) { ret = WOLFSSL_FAILURE; } } if (ret == 0) { pub_der = (unsigned char*)XMALLOC(pub_derSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pub_der == NULL) { WOLFSSL_MSG("Failed to allocate output buffer."); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { pub_derSz = wc_EccPublicKeyToDer(eccKey, pub_der, pub_derSz, 0); if ((int)pub_derSz <= 0) { ret = WOLFSSL_FATAL_ERROR; } } /* This block is for actually returning the DER of the public key */ if ((ret == 0) && (der != NULL)) { if (*der == NULL) { *der = (unsigned char*)XMALLOC(pub_derSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (*der == NULL) { WOLFSSL_MSG("Failed to allocate output buffer."); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { XMEMCPY(*der, pub_der, pub_derSz); } } else { XMEMCPY(*der, pub_der, pub_derSz); *der += pub_derSz; } } XFREE(pub_der, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(local_der, NULL, DYNAMIC_TYPE_PUBLIC_KEY); wc_ecc_free(eccKey); XFREE(eccKey, NULL, DYNAMIC_TYPE_ECC); #else ret = WOLFSSL_FATAL_ERROR; #endif /* HAVE_ECC */ if (ret == 0) { return pub_derSz; } return ret; #else return WOLFSSL_FATAL_ERROR; #endif /* !NO_RSA || HAVE_ECC */ } #endif /* !NO_ASN && !NO_PWDBASED */ #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA /* Sets the DNS hostname to name. * Hostname is cleared if name is NULL or empty. */ int wolfSSL_set1_host(WOLFSSL * ssl, const char* name) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return wolfSSL_X509_VERIFY_PARAM_set1_host(ssl->param, name, 0); } /****************************************************************************** * wolfSSL_CTX_set1_param - set a pointer to the SSL verification parameters * * RETURNS: * WOLFSSL_SUCCESS on success, otherwise returns WOLFSSL_FAILURE * Note: Returns WOLFSSL_SUCCESS, in case either parameter is NULL, * same as openssl. */ int wolfSSL_CTX_set1_param(WOLFSSL_CTX* ctx, WOLFSSL_X509_VERIFY_PARAM *vpm) { if (ctx == NULL || vpm == NULL) return WOLFSSL_SUCCESS; return wolfSSL_X509_VERIFY_PARAM_set1(ctx->param, vpm); } /****************************************************************************** * wolfSSL_CTX/_get0_param - return a pointer to the SSL verification parameters * * RETURNS: * returns pointer to the SSL verification parameters on success, * otherwise returns NULL */ WOLFSSL_X509_VERIFY_PARAM* wolfSSL_CTX_get0_param(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return NULL; } return ctx->param; } WOLFSSL_X509_VERIFY_PARAM* wolfSSL_get0_param(WOLFSSL* ssl) { if (ssl == NULL) { return NULL; } return ssl->param; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* Gets an index to store SSL structure at. * * Returns positive index on success and negative values on failure */ int wolfSSL_get_ex_data_X509_STORE_CTX_idx(void) { WOLFSSL_ENTER("wolfSSL_get_ex_data_X509_STORE_CTX_idx"); /* store SSL at index 0 */ return 0; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA /* Sets a function callback that will send information about the state of all * WOLFSSL objects that have been created by the WOLFSSL_CTX structure passed * in. * * ctx WOLFSSL_CTX structure to set callback function in * f callback function to use */ void wolfSSL_CTX_set_info_callback(WOLFSSL_CTX* ctx, void (*f)(const WOLFSSL* ssl, int type, int val)) { WOLFSSL_ENTER("wolfSSL_CTX_set_info_callback"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); } else { ctx->CBIS = f; } } void wolfSSL_set_info_callback(WOLFSSL* ssl, void (*f)(const WOLFSSL* ssl, int type, int val)) { WOLFSSL_ENTER("wolfSSL_set_info_callback"); if (ssl == NULL) { WOLFSSL_MSG("Bad function argument"); } else { ssl->CBIS = f; } } unsigned long wolfSSL_ERR_peek_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_peek_error"); return wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL); } int wolfSSL_ERR_GET_LIB(unsigned long err) { unsigned long value; value = (err & 0xFFFFFFL); switch (value) { case -SSL_R_HTTP_REQUEST: return ERR_LIB_SSL; case -ASN_NO_PEM_HEADER: case PEM_R_NO_START_LINE: case PEM_R_PROBLEMS_GETTING_PASSWORD: case PEM_R_BAD_PASSWORD_READ: case PEM_R_BAD_DECRYPT: return ERR_LIB_PEM; case EVP_R_BAD_DECRYPT: case EVP_R_BN_DECODE_ERROR: case EVP_R_DECODE_ERROR: case EVP_R_PRIVATE_KEY_DECODE_ERROR: return ERR_LIB_EVP; case ASN1_R_HEADER_TOO_LONG: return ERR_LIB_ASN1; default: return 0; } } /* This function is to find global error values that are the same through out * all library version. With wolfSSL having only one set of error codes the * return value is pretty straight forward. The only thing needed is all wolfSSL * error values are typically negative. * * Returns the error reason */ int wolfSSL_ERR_GET_REASON(unsigned long err) { int ret = (int)err; WOLFSSL_ENTER("wolfSSL_ERR_GET_REASON"); #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) /* Nginx looks for this error to know to stop parsing certificates. * Same for HAProxy. */ if (err == ((ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE) || ((err & 0xFFFFFFL) == -ASN_NO_PEM_HEADER) || ((err & 0xFFFL) == PEM_R_NO_START_LINE )) return PEM_R_NO_START_LINE; if (err == ((ERR_LIB_SSL << 24) | -SSL_R_HTTP_REQUEST)) return SSL_R_HTTP_REQUEST; #endif #if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON) if (err == ((ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG)) return ASN1_R_HEADER_TOO_LONG; #endif /* check if error value is in range of wolfSSL errors */ ret = 0 - ret; /* setting as negative value */ /* wolfCrypt range is less than MAX (-100) wolfSSL range is MIN (-300) and lower */ if (ret < MAX_CODE_E && ret > MIN_CODE_E) { return ret; } else { WOLFSSL_MSG("Not in range of typical error values"); ret = (int)err; } return ret; } /* returns a string that describes the alert * * alertID the alert value to look up */ const char* wolfSSL_alert_type_string_long(int alertID) { WOLFSSL_ENTER("wolfSSL_alert_type_string_long"); return AlertTypeToString(alertID); } const char* wolfSSL_alert_desc_string_long(int alertID) { WOLFSSL_ENTER("wolfSSL_alert_desc_string_long"); return AlertTypeToString(alertID); } #define STATE_STRINGS_PROTO(s) \ { \ {"SSLv3 " s, \ "SSLv3 " s, \ "SSLv3 " s}, \ {"TLSv1 " s, \ "TLSv1 " s, \ "TLSv1 " s}, \ {"TLSv1_1 " s, \ "TLSv1_1 " s, \ "TLSv1_1 " s}, \ {"TLSv1_2 " s, \ "TLSv1_2 " s, \ "TLSv1_2 " s}, \ {"TLSv1_3 " s, \ "TLSv1_3 " s, \ "TLSv1_3 " s}, \ {"DTLSv1 " s, \ "DTLSv1 " s, \ "DTLSv1 " s}, \ {"DTLSv1_2 " s, \ "DTLSv1_2 " s, \ "DTLSv1_2 " s}, \ {"DTLSv1_3 " s, \ "DTLSv1_3 " s, \ "DTLSv1_3 " s}, \ } #define STATE_STRINGS_PROTO_RW(s) \ { \ {"SSLv3 read " s, \ "SSLv3 write " s, \ "SSLv3 " s}, \ {"TLSv1 read " s, \ "TLSv1 write " s, \ "TLSv1 " s}, \ {"TLSv1_1 read " s, \ "TLSv1_1 write " s, \ "TLSv1_1 " s}, \ {"TLSv1_2 read " s, \ "TLSv1_2 write " s, \ "TLSv1_2 " s}, \ {"TLSv1_3 read " s, \ "TLSv1_3 write " s, \ "TLSv1_3 " s}, \ {"DTLSv1 read " s, \ "DTLSv1 write " s, \ "DTLSv1 " s}, \ {"DTLSv1_2 read " s, \ "DTLSv1_2 write " s, \ "DTLSv1_2 " s}, \ {"DTLSv1_3 read " s, \ "DTLSv1_3 write " s, \ "DTLSv1_3 " s}, \ } /* Gets the current state of the WOLFSSL structure * * ssl WOLFSSL structure to get state of * * Returns a human readable string of the WOLFSSL structure state */ const char* wolfSSL_state_string_long(const WOLFSSL* ssl) { static const char* OUTPUT_STR[24][8][3] = { STATE_STRINGS_PROTO("Initialization"), STATE_STRINGS_PROTO_RW("Server Hello Request"), STATE_STRINGS_PROTO_RW("Server Hello Verify Request"), STATE_STRINGS_PROTO_RW("Server Hello Retry Request"), STATE_STRINGS_PROTO_RW("Server Hello"), STATE_STRINGS_PROTO_RW("Server Certificate Status"), STATE_STRINGS_PROTO_RW("Server Encrypted Extensions"), STATE_STRINGS_PROTO_RW("Server Session Ticket"), STATE_STRINGS_PROTO_RW("Server Certificate Request"), STATE_STRINGS_PROTO_RW("Server Cert"), STATE_STRINGS_PROTO_RW("Server Key Exchange"), STATE_STRINGS_PROTO_RW("Server Hello Done"), STATE_STRINGS_PROTO_RW("Server Change CipherSpec"), STATE_STRINGS_PROTO_RW("Server Finished"), STATE_STRINGS_PROTO_RW("server Key Update"), STATE_STRINGS_PROTO_RW("Client Hello"), STATE_STRINGS_PROTO_RW("Client Key Exchange"), STATE_STRINGS_PROTO_RW("Client Cert"), STATE_STRINGS_PROTO_RW("Client Change CipherSpec"), STATE_STRINGS_PROTO_RW("Client Certificate Verify"), STATE_STRINGS_PROTO_RW("Client End Of Early Data"), STATE_STRINGS_PROTO_RW("Client Finished"), STATE_STRINGS_PROTO_RW("Client Key Update"), STATE_STRINGS_PROTO("Handshake Done"), }; enum ProtocolVer { SSL_V3 = 0, TLS_V1, TLS_V1_1, TLS_V1_2, TLS_V1_3, DTLS_V1, DTLS_V1_2, DTLS_V1_3, UNKNOWN = 100 }; enum IOMode { SS_READ = 0, SS_WRITE, SS_NEITHER }; enum SslState { ss_null_state = 0, ss_server_hellorequest, ss_server_helloverify, ss_server_helloretryrequest, ss_server_hello, ss_server_certificatestatus, ss_server_encryptedextensions, ss_server_sessionticket, ss_server_certrequest, ss_server_cert, ss_server_keyexchange, ss_server_hellodone, ss_server_changecipherspec, ss_server_finished, ss_server_keyupdate, ss_client_hello, ss_client_keyexchange, ss_client_cert, ss_client_changecipherspec, ss_client_certverify, ss_client_endofearlydata, ss_client_finished, ss_client_keyupdate, ss_handshake_done }; int protocol = 0; int cbmode = 0; int state = 0; WOLFSSL_ENTER("wolfSSL_state_string_long"); if (ssl == NULL) { WOLFSSL_MSG("Null argument passed in"); return NULL; } /* Get state of callback */ if (ssl->cbmode == SSL_CB_MODE_WRITE) { cbmode = SS_WRITE; } else if (ssl->cbmode == SSL_CB_MODE_READ) { cbmode = SS_READ; } else { cbmode = SS_NEITHER; } /* Get protocol version */ switch (ssl->version.major) { case SSLv3_MAJOR: switch (ssl->version.minor) { case SSLv3_MINOR: protocol = SSL_V3; break; case TLSv1_MINOR: protocol = TLS_V1; break; case TLSv1_1_MINOR: protocol = TLS_V1_1; break; case TLSv1_2_MINOR: protocol = TLS_V1_2; break; case TLSv1_3_MINOR: protocol = TLS_V1_3; break; default: protocol = UNKNOWN; } break; case DTLS_MAJOR: switch (ssl->version.minor) { case DTLS_MINOR: protocol = DTLS_V1; break; case DTLSv1_2_MINOR: protocol = DTLS_V1_2; break; case DTLSv1_3_MINOR: protocol = DTLS_V1_3; break; default: protocol = UNKNOWN; } break; default: protocol = UNKNOWN; } /* accept process */ if (ssl->cbmode == SSL_CB_MODE_READ) { state = ssl->cbtype; switch (state) { case hello_request: state = ss_server_hellorequest; break; case client_hello: state = ss_client_hello; break; case server_hello: state = ss_server_hello; break; case hello_verify_request: state = ss_server_helloverify; break; case session_ticket: state = ss_server_sessionticket; break; case end_of_early_data: state = ss_client_endofearlydata; break; case hello_retry_request: state = ss_server_helloretryrequest; break; case encrypted_extensions: state = ss_server_encryptedextensions; break; case certificate: if (ssl->options.side == WOLFSSL_SERVER_END) state = ss_client_cert; else if (ssl->options.side == WOLFSSL_CLIENT_END) state = ss_server_cert; else { WOLFSSL_MSG("Unknown State"); state = ss_null_state; } break; case server_key_exchange: state = ss_server_keyexchange; break; case certificate_request: state = ss_server_certrequest; break; case server_hello_done: state = ss_server_hellodone; break; case certificate_verify: state = ss_client_certverify; break; case client_key_exchange: state = ss_client_keyexchange; break; case finished: if (ssl->options.side == WOLFSSL_SERVER_END) state = ss_client_finished; else if (ssl->options.side == WOLFSSL_CLIENT_END) state = ss_server_finished; else { WOLFSSL_MSG("Unknown State"); state = ss_null_state; } break; case certificate_status: state = ss_server_certificatestatus; break; case key_update: if (ssl->options.side == WOLFSSL_SERVER_END) state = ss_client_keyupdate; else if (ssl->options.side == WOLFSSL_CLIENT_END) state = ss_server_keyupdate; else { WOLFSSL_MSG("Unknown State"); state = ss_null_state; } break; case change_cipher_hs: if (ssl->options.side == WOLFSSL_SERVER_END) state = ss_client_changecipherspec; else if (ssl->options.side == WOLFSSL_CLIENT_END) state = ss_server_changecipherspec; else { WOLFSSL_MSG("Unknown State"); state = ss_null_state; } break; default: WOLFSSL_MSG("Unknown State"); state = ss_null_state; } } else { /* Send process */ if (ssl->options.side == WOLFSSL_SERVER_END) state = ssl->options.serverState; else state = ssl->options.clientState; switch (state) { case SERVER_HELLOVERIFYREQUEST_COMPLETE: state = ss_server_helloverify; break; case SERVER_HELLO_RETRY_REQUEST_COMPLETE: state = ss_server_helloretryrequest; break; case SERVER_HELLO_COMPLETE: state = ss_server_hello; break; case SERVER_ENCRYPTED_EXTENSIONS_COMPLETE: state = ss_server_encryptedextensions; break; case SERVER_CERT_COMPLETE: state = ss_server_cert; break; case SERVER_KEYEXCHANGE_COMPLETE: state = ss_server_keyexchange; break; case SERVER_HELLODONE_COMPLETE: state = ss_server_hellodone; break; case SERVER_CHANGECIPHERSPEC_COMPLETE: state = ss_server_changecipherspec; break; case SERVER_FINISHED_COMPLETE: state = ss_server_finished; break; case CLIENT_HELLO_RETRY: case CLIENT_HELLO_COMPLETE: state = ss_client_hello; break; case CLIENT_KEYEXCHANGE_COMPLETE: state = ss_client_keyexchange; break; case CLIENT_CHANGECIPHERSPEC_COMPLETE: state = ss_client_changecipherspec; break; case CLIENT_FINISHED_COMPLETE: state = ss_client_finished; break; case HANDSHAKE_DONE: state = ss_handshake_done; break; default: WOLFSSL_MSG("Unknown State"); state = ss_null_state; } } if (protocol == UNKNOWN) { WOLFSSL_MSG("Unknown protocol"); return ""; } else { return OUTPUT_STR[state][protocol][cbmode]; } } #endif /* OPENSSL_EXTRA */ static long wolf_set_options(long old_op, long op) { /* if SSL_OP_ALL then turn all bug workarounds on */ if ((op & WOLFSSL_OP_ALL) == WOLFSSL_OP_ALL) { WOLFSSL_MSG("\tSSL_OP_ALL"); } /* by default cookie exchange is on with DTLS */ if ((op & WOLFSSL_OP_COOKIE_EXCHANGE) == WOLFSSL_OP_COOKIE_EXCHANGE) { WOLFSSL_MSG("\tSSL_OP_COOKIE_EXCHANGE : on by default"); } if ((op & WOLFSSL_OP_NO_SSLv2) == WOLFSSL_OP_NO_SSLv2) { WOLFSSL_MSG("\tWOLFSSL_OP_NO_SSLv2 : wolfSSL does not support SSLv2"); } #ifdef SSL_OP_NO_TLSv1_3 if ((op & WOLFSSL_OP_NO_TLSv1_3) == WOLFSSL_OP_NO_TLSv1_3) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_3"); } #endif if ((op & WOLFSSL_OP_NO_TLSv1_2) == WOLFSSL_OP_NO_TLSv1_2) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_2"); } if ((op & WOLFSSL_OP_NO_TLSv1_1) == WOLFSSL_OP_NO_TLSv1_1) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_1"); } if ((op & WOLFSSL_OP_NO_TLSv1) == WOLFSSL_OP_NO_TLSv1) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1"); } if ((op & WOLFSSL_OP_NO_SSLv3) == WOLFSSL_OP_NO_SSLv3) { WOLFSSL_MSG("\tSSL_OP_NO_SSLv3"); } if ((op & WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) == WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) { WOLFSSL_MSG("\tWOLFSSL_OP_CIPHER_SERVER_PREFERENCE"); } if ((op & WOLFSSL_OP_NO_COMPRESSION) == WOLFSSL_OP_NO_COMPRESSION) { #ifdef HAVE_LIBZ WOLFSSL_MSG("SSL_OP_NO_COMPRESSION"); #else WOLFSSL_MSG("SSL_OP_NO_COMPRESSION: compression not compiled in"); #endif } return old_op | op; } long wolfSSL_set_options(WOLFSSL* ssl, long op) { word16 haveRSA = 1; word16 havePSK = 0; int keySz = 0; WOLFSSL_ENTER("wolfSSL_set_options"); if (ssl == NULL) { return 0; } ssl->options.mask = wolf_set_options(ssl->options.mask, op); if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3) == WOLFSSL_OP_NO_TLSv1_3) { if (ssl->version.minor == TLSv1_3_MINOR) ssl->version.minor = TLSv1_2_MINOR; } if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2) == WOLFSSL_OP_NO_TLSv1_2) { if (ssl->version.minor == TLSv1_2_MINOR) ssl->version.minor = TLSv1_1_MINOR; } if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1) == WOLFSSL_OP_NO_TLSv1_1) { if (ssl->version.minor == TLSv1_1_MINOR) ssl->version.minor = TLSv1_MINOR; } if ((ssl->options.mask & WOLFSSL_OP_NO_TLSv1) == WOLFSSL_OP_NO_TLSv1) { if (ssl->version.minor == TLSv1_MINOR) ssl->version.minor = SSLv3_MINOR; } if ((ssl->options.mask & WOLFSSL_OP_NO_COMPRESSION) == WOLFSSL_OP_NO_COMPRESSION) { #ifdef HAVE_LIBZ ssl->options.usingCompression = 0; #endif } #if defined(HAVE_SESSION_TICKET) && (defined(OPENSSL_EXTRA) \ || defined(HAVE_WEBSERVER) || defined(WOLFSSL_WPAS_SMALL)) if ((ssl->options.mask & WOLFSSL_OP_NO_TICKET) == WOLFSSL_OP_NO_TICKET) { ssl->options.noTicketTls12 = 1; } #endif /* in the case of a version change the cipher suites should be reset */ #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif if (ssl->options.side != WOLFSSL_NEITHER_END) { if (AllocateSuites(ssl) != 0) return 0; InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, TRUE, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveDilithiumSig, ssl->options.useAnon, TRUE, ssl->options.side); } return ssl->options.mask; } long wolfSSL_get_options(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_options"); if(ssl == NULL) return WOLFSSL_FAILURE; return ssl->options.mask; } #if defined(HAVE_SECURE_RENEGOTIATION) \ || defined(HAVE_SERVER_RENEGOTIATION_INFO) /* clears the counter for number of renegotiations done * returns the current count before it is cleared */ long wolfSSL_clear_num_renegotiations(WOLFSSL *s) { long total; WOLFSSL_ENTER("wolfSSL_clear_num_renegotiations"); if (s == NULL) return 0; total = s->secure_rene_count; s->secure_rene_count = 0; return total; } /* return the number of renegotiations since wolfSSL_new */ long wolfSSL_total_renegotiations(WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_total_renegotiations"); return wolfSSL_num_renegotiations(s); } /* return the number of renegotiations since wolfSSL_new */ long wolfSSL_num_renegotiations(WOLFSSL* s) { if (s == NULL) { return 0; } return s->secure_rene_count; } /* Is there a renegotiation currently in progress? */ int wolfSSL_SSL_renegotiate_pending(WOLFSSL *s) { return s && s->options.handShakeDone && s->options.handShakeState != HANDSHAKE_DONE ? 1 : 0; } #endif /* HAVE_SECURE_RENEGOTIATION || HAVE_SERVER_RENEGOTIATION_INFO */ #ifdef OPENSSL_EXTRA long wolfSSL_clear_options(WOLFSSL* ssl, long opt) { WOLFSSL_ENTER("wolfSSL_clear_options"); if(ssl == NULL) return WOLFSSL_FAILURE; ssl->options.mask &= ~opt; return ssl->options.mask; } #ifdef HAVE_PK_CALLBACKS long wolfSSL_set_tlsext_debug_arg(WOLFSSL* ssl, void *arg) { if (ssl == NULL) { return WOLFSSL_FAILURE; } ssl->loggingCtx = arg; return WOLFSSL_SUCCESS; } #endif /* HAVE_PK_CALLBACKS */ /*** TBD ***/ #ifndef NO_WOLFSSL_STUB int wolfSSL_sk_SSL_COMP_zero(WOLFSSL_STACK* st) { (void)st; WOLFSSL_STUB("wolfSSL_sk_SSL_COMP_zero"); /* wolfSSL_set_options(ssl, SSL_OP_NO_COMPRESSION); */ return WOLFSSL_FAILURE; } #endif #ifdef HAVE_CERTIFICATE_STATUS_REQUEST long wolfSSL_set_tlsext_status_type(WOLFSSL *s, int type) { WOLFSSL_ENTER("wolfSSL_set_tlsext_status_type"); if (s == NULL){ return BAD_FUNC_ARG; } if (type == TLSEXT_STATUSTYPE_ocsp){ int r = TLSX_UseCertificateStatusRequest(&s->extensions, (byte)type, 0, s, s->heap, s->devId); return (long)r; } else { WOLFSSL_MSG( "SSL_set_tlsext_status_type only supports TLSEXT_STATUSTYPE_ocsp type."); return WOLFSSL_FAILURE; } } long wolfSSL_get_tlsext_status_type(WOLFSSL *s) { TLSX* extension; if (s == NULL) return WOLFSSL_FATAL_ERROR; extension = TLSX_Find(s->extensions, TLSX_STATUS_REQUEST); return extension != NULL ? TLSEXT_STATUSTYPE_ocsp : WOLFSSL_FATAL_ERROR; } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST */ #ifndef NO_WOLFSSL_STUB long wolfSSL_get_tlsext_status_exts(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_get_tlsext_status_exts"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB long wolfSSL_set_tlsext_status_exts(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_set_tlsext_status_exts"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB long wolfSSL_get_tlsext_status_ids(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_get_tlsext_status_ids"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB long wolfSSL_set_tlsext_status_ids(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_set_tlsext_status_ids"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_EVP_PKEY *wolfSSL_get_privatekey(const WOLFSSL *ssl) { (void)ssl; WOLFSSL_STUB("SSL_get_privatekey"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ void SSL_CTX_set_tmp_dh_callback(WOLFSSL_CTX *ctx, WOLFSSL_DH *(*dh) (WOLFSSL *ssl, int is_export, int keylength)) { (void)ctx; (void)dh; WOLFSSL_STUB("SSL_CTX_set_tmp_dh_callback"); } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLF_STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { WOLFSSL_STUB("SSL_COMP_get_compression_methods"); return NULL; } #endif int wolfSSL_sk_SSL_CIPHER_num(const WOLF_STACK_OF(WOLFSSL_CIPHER)* p) { WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_num"); if (p == NULL) { return WOLFSSL_FATAL_ERROR; } return (int)p->num; } WOLFSSL_CIPHER* wolfSSL_sk_SSL_CIPHER_value(WOLFSSL_STACK* sk, int i) { WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_value"); return (WOLFSSL_CIPHER*)wolfSSL_sk_value(sk, i); } #if !defined(NETOS) void ERR_load_SSL_strings(void) { } #endif #ifdef HAVE_OCSP long wolfSSL_get_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char **resp) { if (s == NULL || resp == NULL) return 0; *resp = s->ocspResp; return s->ocspRespSz; } long wolfSSL_set_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char *resp, int len) { if (s == NULL) return WOLFSSL_FAILURE; s->ocspResp = resp; s->ocspRespSz = len; return WOLFSSL_SUCCESS; } #endif /* HAVE_OCSP */ #ifdef HAVE_MAX_FRAGMENT #ifndef NO_WOLFSSL_CLIENT /** * Set max fragment tls extension * @param c a pointer to WOLFSSL_CTX object * @param mode maximum fragment length mode * @return 1 on success, otherwise 0 or negative error code */ int wolfSSL_CTX_set_tlsext_max_fragment_length(WOLFSSL_CTX *c, unsigned char mode) { if (c == NULL || (mode < WOLFSSL_MFL_2_9 || mode > WOLFSSL_MFL_2_12 )) return BAD_FUNC_ARG; return wolfSSL_CTX_UseMaxFragment(c, mode); } /** * Set max fragment tls extension * @param c a pointer to WOLFSSL object * @param mode maximum fragment length mode * @return 1 on success, otherwise 0 or negative error code */ int wolfSSL_set_tlsext_max_fragment_length(WOLFSSL *s, unsigned char mode) { if (s == NULL || (mode < WOLFSSL_MFL_2_9 || mode > WOLFSSL_MFL_2_12 )) return BAD_FUNC_ARG; return wolfSSL_UseMaxFragment(s, mode); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_MAX_FRAGMENT */ #endif /* OPENSSL_EXTRA */ #ifdef WOLFSSL_HAVE_TLS_UNIQUE size_t wolfSSL_get_finished(const WOLFSSL *ssl, void *buf, size_t count) { byte len = 0; WOLFSSL_ENTER("wolfSSL_get_finished"); if (!ssl || !buf || count < TLS_FINISHED_SZ) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } if (ssl->options.side == WOLFSSL_SERVER_END) { len = ssl->serverFinished_len; XMEMCPY(buf, ssl->serverFinished, len); } else { len = ssl->clientFinished_len; XMEMCPY(buf, ssl->clientFinished, len); } return len; } size_t wolfSSL_get_peer_finished(const WOLFSSL *ssl, void *buf, size_t count) { byte len = 0; WOLFSSL_ENTER("wolfSSL_get_peer_finished"); if (!ssl || !buf || count < TLS_FINISHED_SZ) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } if (ssl->options.side == WOLFSSL_CLIENT_END) { len = ssl->serverFinished_len; XMEMCPY(buf, ssl->serverFinished, len); } else { len = ssl->clientFinished_len; XMEMCPY(buf, ssl->clientFinished, len); } return len; } #endif /* WOLFSSL_HAVE_TLS_UNIQUE */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(OPENSSL_ALL) long wolfSSL_get_verify_result(const WOLFSSL *ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return ssl->peerVerifyRet; } #endif #ifdef OPENSSL_EXTRA #ifndef NO_WOLFSSL_STUB /* shows the number of accepts attempted by CTX in it's lifetime */ long wolfSSL_CTX_sess_accept(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of connects attempted CTX in it's lifetime */ long wolfSSL_CTX_sess_connect(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of accepts completed by CTX in it's lifetime */ long wolfSSL_CTX_sess_accept_good(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept_good"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of connects completed by CTX in it's lifetime */ long wolfSSL_CTX_sess_connect_good(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect_good"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of renegotiation accepts attempted by CTX */ long wolfSSL_CTX_sess_accept_renegotiate(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept_renegotiate"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of renegotiation accepts attempted by CTX */ long wolfSSL_CTX_sess_connect_renegotiate(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect_renegotiate"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_hits(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_hits"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_cb_hits(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_cb_hits"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_cache_full(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_cache_full"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_misses(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_misses"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_timeouts(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_timeouts"); (void)ctx; return 0; } #endif #ifndef NO_CERTS long wolfSSL_CTX_set_tlsext_status_arg(WOLFSSL_CTX* ctx, void* arg) { if (ctx == NULL || ctx->cm == NULL) { return WOLFSSL_FAILURE; } ctx->cm->ocspIOCtx = arg; return WOLFSSL_SUCCESS; } #endif /* !NO_CERTS */ int wolfSSL_get_read_ahead(const WOLFSSL* ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return ssl->readAhead; } int wolfSSL_set_read_ahead(WOLFSSL* ssl, int v) { if (ssl == NULL) { return WOLFSSL_FAILURE; } ssl->readAhead = (byte)v; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_get_read_ahead(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return WOLFSSL_FAILURE; } return ctx->readAhead; } int wolfSSL_CTX_set_read_ahead(WOLFSSL_CTX* ctx, int v) { if (ctx == NULL) { return WOLFSSL_FAILURE; } ctx->readAhead = (byte)v; return WOLFSSL_SUCCESS; } long wolfSSL_CTX_set_tlsext_opaque_prf_input_callback_arg(WOLFSSL_CTX* ctx, void* arg) { if (ctx == NULL) { return WOLFSSL_FAILURE; } ctx->userPRFArg = arg; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) int wolfSSL_sk_num(const WOLFSSL_STACK* sk) { WOLFSSL_ENTER("wolfSSL_sk_num"); if (sk == NULL) return 0; return (int)sk->num; } void* wolfSSL_sk_value(const WOLFSSL_STACK* sk, int i) { WOLFSSL_ENTER("wolfSSL_sk_value"); for (; sk != NULL && i > 0; i--) sk = sk->next; if (sk == NULL) return NULL; switch (sk->type) { case STACK_TYPE_X509: return (void*)sk->data.x509; case STACK_TYPE_GEN_NAME: return (void*)sk->data.gn; case STACK_TYPE_BIO: return (void*)sk->data.bio; case STACK_TYPE_OBJ: return (void*)sk->data.obj; case STACK_TYPE_STRING: return (void*)sk->data.string; case STACK_TYPE_CIPHER: return (void*)&sk->data.cipher; case STACK_TYPE_ACCESS_DESCRIPTION: return (void*)sk->data.access; case STACK_TYPE_X509_EXT: return (void*)sk->data.ext; case STACK_TYPE_X509_REQ_ATTR: return (void*)sk->data.generic; case STACK_TYPE_NULL: return (void*)sk->data.generic; case STACK_TYPE_X509_NAME: return (void*)sk->data.name; case STACK_TYPE_X509_NAME_ENTRY: return (void*)sk->data.name_entry; case STACK_TYPE_CONF_VALUE: #ifdef OPENSSL_EXTRA return (void*)sk->data.conf; #else return NULL; #endif case STACK_TYPE_X509_INFO: return (void*)sk->data.info; case STACK_TYPE_BY_DIR_entry: return (void*)sk->data.dir_entry; case STACK_TYPE_BY_DIR_hash: return (void*)sk->data.dir_hash; case STACK_TYPE_X509_OBJ: return (void*)sk->data.x509_obj; case STACK_TYPE_DIST_POINT: return (void*)sk->data.dp; case STACK_TYPE_X509_CRL: return (void*)sk->data.crl; default: return (void*)sk->data.generic; } } /* copies over data of "in" to "out" */ static void wolfSSL_CIPHER_copy(WOLFSSL_CIPHER* in, WOLFSSL_CIPHER* out) { if (in == NULL || out == NULL) return; *out = *in; } WOLFSSL_STACK* wolfSSL_sk_dup(WOLFSSL_STACK* sk) { WOLFSSL_STACK* ret = NULL; WOLFSSL_STACK* last = NULL; WOLFSSL_ENTER("wolfSSL_sk_dup"); while (sk) { WOLFSSL_STACK* cur = wolfSSL_sk_new_node(sk->heap); if (!cur) { WOLFSSL_MSG("wolfSSL_sk_new_node error"); goto error; } if (!ret) { /* Set first node */ ret = cur; } if (last) { last->next = cur; } XMEMCPY(cur, sk, sizeof(WOLFSSL_STACK)); /* We will allocate new memory for this */ XMEMSET(&cur->data, 0, sizeof(cur->data)); cur->next = NULL; switch (sk->type) { case STACK_TYPE_X509: if (!sk->data.x509) break; cur->data.x509 = wolfSSL_X509_dup(sk->data.x509); if (!cur->data.x509) { WOLFSSL_MSG("wolfSSL_X509_dup error"); goto error; } break; case STACK_TYPE_CIPHER: wolfSSL_CIPHER_copy(&sk->data.cipher, &cur->data.cipher); break; case STACK_TYPE_GEN_NAME: if (!sk->data.gn) break; cur->data.gn = wolfSSL_GENERAL_NAME_dup(sk->data.gn); if (!cur->data.gn) { WOLFSSL_MSG("wolfSSL_GENERAL_NAME_new error"); goto error; } break; case STACK_TYPE_OBJ: if (!sk->data.obj) break; cur->data.obj = wolfSSL_ASN1_OBJECT_dup(sk->data.obj); if (!cur->data.obj) { WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_dup error"); goto error; } break; case STACK_TYPE_BIO: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: WOLFSSL_MSG("Unsupported stack type"); goto error; } sk = sk->next; last = cur; } return ret; error: if (ret) { wolfSSL_sk_GENERAL_NAME_free(ret); } return NULL; } WOLFSSL_STACK* wolfSSL_shallow_sk_dup(WOLFSSL_STACK* sk) { WOLFSSL_STACK* ret = NULL; WOLFSSL_STACK** prev = &ret; WOLFSSL_ENTER("wolfSSL_shallow_sk_dup"); for (; sk != NULL; sk = sk->next) { WOLFSSL_STACK* cur = wolfSSL_sk_new_node(sk->heap); if (!cur) { WOLFSSL_MSG("wolfSSL_sk_new_node error"); goto error; } XMEMCPY(cur, sk, sizeof(WOLFSSL_STACK)); cur->next = NULL; *prev = cur; prev = &cur->next; } return ret; error: if (ret) { wolfSSL_sk_free(ret); } return NULL; } /* Free the just the stack structure */ void wolfSSL_sk_free(WOLFSSL_STACK* sk) { WOLFSSL_ENTER("wolfSSL_sk_free"); while (sk != NULL) { WOLFSSL_STACK* next = sk->next; XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL); sk = next; } } /* Frees each node in the stack and frees the stack. */ void wolfSSL_sk_GENERIC_pop_free(WOLFSSL_STACK* sk, void (*f) (void*)) { WOLFSSL_ENTER("wolfSSL_sk_GENERIC_pop_free"); wolfSSL_sk_pop_free(sk, (wolfSSL_sk_freefunc)f); } /* return 1 on success 0 on fail */ int wolfSSL_sk_GENERIC_push(WOLFSSL_STACK* sk, void* generic) { WOLFSSL_ENTER("wolfSSL_sk_GENERIC_push"); return wolfSSL_sk_push(sk, generic); } void wolfSSL_sk_GENERIC_free(WOLFSSL_STACK* sk) { wolfSSL_sk_free(sk); } /* Pop off data from the stack. Checks that the type matches the stack type. * * @param [in, out] sk Stack of objects. * @param [in] type Type of stack. * @return Object on success. * @return NULL when stack is NULL or no nodes left in stack. */ void* wolfssl_sk_pop_type(WOLFSSL_STACK* sk, WOLF_STACK_TYPE type) { WOLFSSL_STACK* node; void* data = NULL; /* Check we have a stack passed in of the right type. */ if ((sk != NULL) && (sk->type == type)) { /* Get the next node to become the new first node. */ node = sk->next; /* Get the ASN.1 OBJECT_ID object in the first node. */ data = sk->data.generic; /* Check whether there is a next node. */ if (node != NULL) { /* Move content out of next node into current node. */ sk->data.obj = node->data.obj; sk->next = node->next; /* Dispose of node. */ XFREE(node, NULL, DYNAMIC_TYPE_ASN1); } else { /* No more nodes - clear out data. */ sk->data.obj = NULL; } /* Decrement count as long as we thought we had nodes. */ if (sk->num > 0) { sk->num -= 1; } } return data; } /* Free all nodes in a stack including the pushed objects */ void wolfSSL_sk_pop_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk, wolfSSL_sk_freefunc func) { WOLFSSL_ENTER("wolfSSL_sk_pop_free"); if (sk == NULL) { /* pop_free can be called with NULL, do not print bad argument */ return; } #if defined(WOLFSSL_QT) /* In Qt v15.5, it calls OPENSSL_sk_free(xxx, OPENSSL_sk_free). * By using OPENSSL_sk_free for free causes access violation. * Therefore, switching free func to wolfSSL_ACCESS_DESCRIPTION_free * is needed even the func isn't NULL. */ if (sk->type == STACK_TYPE_ACCESS_DESCRIPTION) { func = (wolfSSL_sk_freefunc)wolfSSL_ACCESS_DESCRIPTION_free; } #endif if (func == NULL) { switch(sk->type) { case STACK_TYPE_ACCESS_DESCRIPTION: #if defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_ACCESS_DESCRIPTION_free; #endif break; case STACK_TYPE_X509: func = (wolfSSL_sk_freefunc)wolfSSL_X509_free; break; case STACK_TYPE_X509_OBJ: #ifdef OPENSSL_ALL func = (wolfSSL_sk_freefunc)wolfSSL_X509_OBJECT_free; #endif break; case STACK_TYPE_OBJ: func = (wolfSSL_sk_freefunc)wolfSSL_ASN1_OBJECT_free; break; case STACK_TYPE_DIST_POINT: #ifdef OPENSSL_EXTRA func = (wolfSSL_sk_freefunc)wolfSSL_DIST_POINT_free; #endif break; case STACK_TYPE_GEN_NAME: func = (wolfSSL_sk_freefunc)wolfSSL_GENERAL_NAME_free; break; case STACK_TYPE_STRING: #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \ defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_WOLFSSL_STRING_free; #endif break; case STACK_TYPE_X509_NAME: #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) \ && !defined(WOLFCRYPT_ONLY) func = (wolfSSL_sk_freefunc)wolfSSL_X509_NAME_free; #endif break; case STACK_TYPE_X509_NAME_ENTRY: #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) \ && !defined(WOLFCRYPT_ONLY) func = (wolfSSL_sk_freefunc)wolfSSL_X509_NAME_ENTRY_free; #endif break; case STACK_TYPE_X509_EXT: #if defined(OPENSSL_ALL) || defined(OPENSSL_EXTRA) func = (wolfSSL_sk_freefunc)wolfSSL_X509_EXTENSION_free; #endif break; case STACK_TYPE_X509_REQ_ATTR: #if defined(OPENSSL_ALL) && \ (defined(WOLFSSL_CERT_GEN) || defined(WOLFSSL_CERT_REQ)) func = (wolfSSL_sk_freefunc)wolfSSL_X509_ATTRIBUTE_free; #endif break; case STACK_TYPE_CONF_VALUE: #if defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_X509V3_conf_free; #endif break; case STACK_TYPE_X509_INFO: #if defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_X509_INFO_free; #endif break; case STACK_TYPE_BIO: #if !defined(NO_BIO) && defined(OPENSSL_EXTRA) func = (wolfSSL_sk_freefunc)wolfSSL_BIO_vfree; #endif break; case STACK_TYPE_BY_DIR_entry: #if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR) func = (wolfSSL_sk_freefunc)wolfSSL_BY_DIR_entry_free; #endif break; case STACK_TYPE_BY_DIR_hash: #if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR) func = (wolfSSL_sk_freefunc)wolfSSL_BY_DIR_HASH_free; #endif break; case STACK_TYPE_X509_CRL: #if defined(HAVE_CRL) && (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)) func = (wolfSSL_sk_freefunc)wolfSSL_X509_CRL_free; #endif break; case STACK_TYPE_CIPHER: case STACK_TYPE_NULL: default: break; } } while (sk != NULL) { WOLFSSL_STACK* next = sk->next; if (func != NULL) { if (sk->type != STACK_TYPE_CIPHER) func(sk->data.generic); } XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL); sk = next; } } /* Creates a new stack of the requested type. * * @param [in] type Type of stack. * @return Empty stack on success. * @return NULL when dynamic memory allocation fails. */ WOLFSSL_STACK* wolfssl_sk_new_type(WOLF_STACK_TYPE type) { WOLFSSL_STACK* sk; /* Allocate a new stack - first node. */ sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_OPENSSL); if (sk == NULL) { WOLFSSL_MSG("WOLFSSL_STACK memory error"); } else { /* Clear node and set type. */ XMEMSET(sk, 0, sizeof(WOLFSSL_STACK)); sk->type = type; } return sk; } /* Creates and returns a new null stack. */ WOLFSSL_STACK* wolfSSL_sk_new_null(void) { WOLFSSL_ENTER("wolfSSL_sk_new_null"); return wolfssl_sk_new_type(STACK_TYPE_NULL); } int wolfSSL_sk_SSL_COMP_num(WOLF_STACK_OF(WOLFSSL_COMP)* sk) { if (sk == NULL) return 0; return (int)sk->num; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA #if defined(HAVE_EX_DATA) && !defined(NO_FILESYSTEM) int wolfSSL_cmp_peer_cert_to_file(WOLFSSL* ssl, const char *fname) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_cmp_peer_cert_to_file"); if (ssl != NULL && fname != NULL) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; XFILE file; long sz = 0; WOLFSSL_CTX* ctx = ssl->ctx; WOLFSSL_X509* peer_cert = &ssl->peerCert; DerBuffer* fileDer = NULL; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; if (XFSEEK(file, 0, XSEEK_END) != 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } sz = XFTELL(file); if (XFSEEK(file, 0, XSEEK_SET) != 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } if (sz > MAX_WOLFSSL_FILE_SIZE || sz < 0) { WOLFSSL_MSG("cmp_peer_cert_to_file size error"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*)XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); dynamic = 1; } if ((myBuffer != NULL) && (sz > 0) && (XFREAD(myBuffer, 1, sz, file) == (size_t)sz) && (PemToDer(myBuffer, (long)sz, CERT_TYPE, &fileDer, ctx->heap, NULL, NULL) == 0) && (fileDer->length != 0) && (fileDer->length == peer_cert->derCert->length) && (XMEMCMP(peer_cert->derCert->buffer, fileDer->buffer, fileDer->length) == 0)) { ret = 0; } FreeDer(&fileDer); if (dynamic) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE); XFCLOSE(file); } return ret; } #endif #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) const WOLFSSL_ObjectInfo wolfssl_object_info[] = { #ifndef NO_CERTS /* oidCertExtType */ { NID_basic_constraints, BASIC_CA_OID, oidCertExtType, "basicConstraints", "X509v3 Basic Constraints"}, { NID_subject_alt_name, ALT_NAMES_OID, oidCertExtType, "subjectAltName", "X509v3 Subject Alternative Name"}, { NID_crl_distribution_points, CRL_DIST_OID, oidCertExtType, "crlDistributionPoints", "X509v3 CRL Distribution Points"}, { NID_info_access, AUTH_INFO_OID, oidCertExtType, "authorityInfoAccess", "Authority Information Access"}, { NID_authority_key_identifier, AUTH_KEY_OID, oidCertExtType, "authorityKeyIdentifier", "X509v3 Authority Key Identifier"}, { NID_subject_key_identifier, SUBJ_KEY_OID, oidCertExtType, "subjectKeyIdentifier", "X509v3 Subject Key Identifier"}, { NID_key_usage, KEY_USAGE_OID, oidCertExtType, "keyUsage", "X509v3 Key Usage"}, { NID_inhibit_any_policy, INHIBIT_ANY_OID, oidCertExtType, "inhibitAnyPolicy", "X509v3 Inhibit Any Policy"}, { NID_ext_key_usage, EXT_KEY_USAGE_OID, oidCertExtType, "extendedKeyUsage", "X509v3 Extended Key Usage"}, { NID_name_constraints, NAME_CONS_OID, oidCertExtType, "nameConstraints", "X509v3 Name Constraints"}, { NID_certificate_policies, CERT_POLICY_OID, oidCertExtType, "certificatePolicies", "X509v3 Certificate Policies"}, /* oidCertAuthInfoType */ { NID_ad_OCSP, AIA_OCSP_OID, oidCertAuthInfoType, "OCSP", "OCSP"}, { NID_ad_ca_issuers, AIA_CA_ISSUER_OID, oidCertAuthInfoType, "caIssuers", "CA Issuers"}, /* oidCertPolicyType */ { NID_any_policy, CP_ANY_OID, oidCertPolicyType, "anyPolicy", "X509v3 Any Policy"}, /* oidCertAltNameType */ { NID_hw_name_oid, HW_NAME_OID, oidCertAltNameType, "Hardware name",""}, /* oidCertKeyUseType */ { NID_anyExtendedKeyUsage, EKU_ANY_OID, oidCertKeyUseType, "anyExtendedKeyUsage", "Any Extended Key Usage"}, { EKU_SERVER_AUTH_OID, EKU_SERVER_AUTH_OID, oidCertKeyUseType, "serverAuth", "TLS Web Server Authentication"}, { EKU_CLIENT_AUTH_OID, EKU_CLIENT_AUTH_OID, oidCertKeyUseType, "clientAuth", "TLS Web Client Authentication"}, { EKU_OCSP_SIGN_OID, EKU_OCSP_SIGN_OID, oidCertKeyUseType, "OCSPSigning", "OCSP Signing"}, /* oidCertNameType */ { NID_commonName, NID_commonName, oidCertNameType, "CN", "commonName"}, #if !defined(WOLFSSL_CERT_REQ) { NID_surname, NID_surname, oidCertNameType, "SN", "surname"}, #endif { NID_serialNumber, NID_serialNumber, oidCertNameType, "serialNumber", "serialNumber"}, { NID_userId, NID_userId, oidCertNameType, "UID", "userid"}, { NID_countryName, NID_countryName, oidCertNameType, "C", "countryName"}, { NID_localityName, NID_localityName, oidCertNameType, "L", "localityName"}, { NID_stateOrProvinceName, NID_stateOrProvinceName, oidCertNameType, "ST", "stateOrProvinceName"}, { NID_streetAddress, NID_streetAddress, oidCertNameType, "street", "streetAddress"}, { NID_organizationName, NID_organizationName, oidCertNameType, "O", "organizationName"}, { NID_organizationalUnitName, NID_organizationalUnitName, oidCertNameType, "OU", "organizationalUnitName"}, { NID_emailAddress, NID_emailAddress, oidCertNameType, "emailAddress", "emailAddress"}, { NID_domainComponent, NID_domainComponent, oidCertNameType, "DC", "domainComponent"}, { NID_favouriteDrink, NID_favouriteDrink, oidCertNameType, "favouriteDrink", "favouriteDrink"}, { NID_businessCategory, NID_businessCategory, oidCertNameType, "businessCategory", "businessCategory"}, { NID_jurisdictionCountryName, NID_jurisdictionCountryName, oidCertNameType, "jurisdictionC", "jurisdictionCountryName"}, { NID_jurisdictionStateOrProvinceName, NID_jurisdictionStateOrProvinceName, oidCertNameType, "jurisdictionST", "jurisdictionStateOrProvinceName"}, { NID_postalCode, NID_postalCode, oidCertNameType, "postalCode", "postalCode"}, { NID_userId, NID_userId, oidCertNameType, "UID", "userId"}, #if defined(WOLFSSL_CERT_REQ) || defined(WOLFSSL_CERT_NAME_ALL) { NID_pkcs9_challengePassword, CHALLENGE_PASSWORD_OID, oidCsrAttrType, "challengePassword", "challengePassword"}, { NID_pkcs9_contentType, PKCS9_CONTENT_TYPE_OID, oidCsrAttrType, "contentType", "contentType" }, { NID_pkcs9_unstructuredName, UNSTRUCTURED_NAME_OID, oidCsrAttrType, "unstructuredName", "unstructuredName" }, { NID_name, NAME_OID, oidCsrAttrType, "name", "name" }, { NID_surname, SURNAME_OID, oidCsrAttrType, "surname", "surname" }, { NID_givenName, GIVEN_NAME_OID, oidCsrAttrType, "givenName", "givenName" }, { NID_initials, INITIALS_OID, oidCsrAttrType, "initials", "initials" }, { NID_dnQualifier, DNQUALIFIER_OID, oidCsrAttrType, "dnQualifer", "dnQualifier" }, #endif #endif #ifdef OPENSSL_EXTRA /* OPENSSL_EXTRA_X509_SMALL only needs the above */ /* oidHashType */ #ifdef WOLFSSL_MD2 { NID_md2, MD2h, oidHashType, "MD2", "md2"}, #endif #ifdef WOLFSSL_MD5 { NID_md5, MD5h, oidHashType, "MD5", "md5"}, #endif #ifndef NO_SHA { NID_sha1, SHAh, oidHashType, "SHA1", "sha1"}, #endif #ifdef WOLFSSL_SHA224 { NID_sha224, SHA224h, oidHashType, "SHA224", "sha224"}, #endif #ifndef NO_SHA256 { NID_sha256, SHA256h, oidHashType, "SHA256", "sha256"}, #endif #ifdef WOLFSSL_SHA384 { NID_sha384, SHA384h, oidHashType, "SHA384", "sha384"}, #endif #ifdef WOLFSSL_SHA512 { NID_sha512, SHA512h, oidHashType, "SHA512", "sha512"}, #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 { NID_sha3_224, SHA3_224h, oidHashType, "SHA3-224", "sha3-224"}, #endif #ifndef WOLFSSL_NOSHA3_256 { NID_sha3_256, SHA3_256h, oidHashType, "SHA3-256", "sha3-256"}, #endif #ifndef WOLFSSL_NOSHA3_384 { NID_sha3_384, SHA3_384h, oidHashType, "SHA3-384", "sha3-384"}, #endif #ifndef WOLFSSL_NOSHA3_512 { NID_sha3_512, SHA3_512h, oidHashType, "SHA3-512", "sha3-512"}, #endif #endif /* WOLFSSL_SHA3 */ #ifdef WOLFSSL_SM3 { NID_sm3, SM3h, oidHashType, "SM3", "sm3"}, #endif /* oidSigType */ #ifndef NO_DSA #ifndef NO_SHA { NID_dsaWithSHA1, CTC_SHAwDSA, oidSigType, "DSA-SHA1", "dsaWithSHA1"}, { NID_dsa_with_SHA256, CTC_SHA256wDSA, oidSigType, "dsa_with_SHA256", "dsa_with_SHA256"}, #endif #endif /* NO_DSA */ #ifndef NO_RSA #ifdef WOLFSSL_MD2 { NID_md2WithRSAEncryption, CTC_MD2wRSA, oidSigType, "RSA-MD2", "md2WithRSAEncryption"}, #endif #ifndef NO_MD5 { NID_md5WithRSAEncryption, CTC_MD5wRSA, oidSigType, "RSA-MD5", "md5WithRSAEncryption"}, #endif #ifndef NO_SHA { NID_sha1WithRSAEncryption, CTC_SHAwRSA, oidSigType, "RSA-SHA1", "sha1WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA224 { NID_sha224WithRSAEncryption, CTC_SHA224wRSA, oidSigType, "RSA-SHA224", "sha224WithRSAEncryption"}, #endif #ifndef NO_SHA256 { NID_sha256WithRSAEncryption, CTC_SHA256wRSA, oidSigType, "RSA-SHA256", "sha256WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA384 { NID_sha384WithRSAEncryption, CTC_SHA384wRSA, oidSigType, "RSA-SHA384", "sha384WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA512 { NID_sha512WithRSAEncryption, CTC_SHA512wRSA, oidSigType, "RSA-SHA512", "sha512WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 { NID_RSA_SHA3_224, CTC_SHA3_224wRSA, oidSigType, "RSA-SHA3-224", "sha3-224WithRSAEncryption"}, #endif #ifndef WOLFSSL_NOSHA3_256 { NID_RSA_SHA3_256, CTC_SHA3_256wRSA, oidSigType, "RSA-SHA3-256", "sha3-256WithRSAEncryption"}, #endif #ifndef WOLFSSL_NOSHA3_384 { NID_RSA_SHA3_384, CTC_SHA3_384wRSA, oidSigType, "RSA-SHA3-384", "sha3-384WithRSAEncryption"}, #endif #ifndef WOLFSSL_NOSHA3_512 { NID_RSA_SHA3_512, CTC_SHA3_512wRSA, oidSigType, "RSA-SHA3-512", "sha3-512WithRSAEncryption"}, #endif #endif #ifdef WC_RSA_PSS { NID_rsassaPss, CTC_RSASSAPSS, oidSigType, "RSASSA-PSS", "rsassaPss" }, #endif #endif /* NO_RSA */ #ifdef HAVE_ECC #ifndef NO_SHA { NID_ecdsa_with_SHA1, CTC_SHAwECDSA, oidSigType, "ecdsa-with-SHA1", "shaWithECDSA"}, #endif #ifdef WOLFSSL_SHA224 { NID_ecdsa_with_SHA224, CTC_SHA224wECDSA, oidSigType, "ecdsa-with-SHA224","sha224WithECDSA"}, #endif #ifndef NO_SHA256 { NID_ecdsa_with_SHA256, CTC_SHA256wECDSA, oidSigType, "ecdsa-with-SHA256","sha256WithECDSA"}, #endif #ifdef WOLFSSL_SHA384 { NID_ecdsa_with_SHA384, CTC_SHA384wECDSA, oidSigType, "ecdsa-with-SHA384","sha384WithECDSA"}, #endif #ifdef WOLFSSL_SHA512 { NID_ecdsa_with_SHA512, CTC_SHA512wECDSA, oidSigType, "ecdsa-with-SHA512","sha512WithECDSA"}, #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 { NID_ecdsa_with_SHA3_224, CTC_SHA3_224wECDSA, oidSigType, "id-ecdsa-with-SHA3-224", "ecdsa_with_SHA3-224"}, #endif #ifndef WOLFSSL_NOSHA3_256 { NID_ecdsa_with_SHA3_256, CTC_SHA3_256wECDSA, oidSigType, "id-ecdsa-with-SHA3-256", "ecdsa_with_SHA3-256"}, #endif #ifndef WOLFSSL_NOSHA3_384 { NID_ecdsa_with_SHA3_384, CTC_SHA3_384wECDSA, oidSigType, "id-ecdsa-with-SHA3-384", "ecdsa_with_SHA3-384"}, #endif #ifndef WOLFSSL_NOSHA3_512 { NID_ecdsa_with_SHA3_512, CTC_SHA3_512wECDSA, oidSigType, "id-ecdsa-with-SHA3-512", "ecdsa_with_SHA3-512"}, #endif #endif #endif /* HAVE_ECC */ /* oidKeyType */ #ifndef NO_DSA { NID_dsa, DSAk, oidKeyType, "DSA", "dsaEncryption"}, #endif /* NO_DSA */ #ifndef NO_RSA { NID_rsaEncryption, RSAk, oidKeyType, "rsaEncryption", "rsaEncryption"}, #ifdef WC_RSA_PSS { NID_rsassaPss, RSAPSSk, oidKeyType, "RSASSA-PSS", "rsassaPss"}, #endif #endif /* NO_RSA */ #ifdef HAVE_ECC { NID_X9_62_id_ecPublicKey, ECDSAk, oidKeyType, "id-ecPublicKey", "id-ecPublicKey"}, #endif /* HAVE_ECC */ #ifndef NO_DH { NID_dhKeyAgreement, DHk, oidKeyType, "dhKeyAgreement", "dhKeyAgreement"}, #endif #ifdef HAVE_ED448 { NID_ED448, ED448k, oidKeyType, "ED448", "ED448"}, #endif #ifdef HAVE_ED25519 { NID_ED25519, ED25519k, oidKeyType, "ED25519", "ED25519"}, #endif #ifdef HAVE_PQC #ifdef HAVE_FALCON { CTC_FALCON_LEVEL1, FALCON_LEVEL1k, oidKeyType, "Falcon Level 1", "Falcon Level 1"}, { CTC_FALCON_LEVEL5, FALCON_LEVEL5k, oidKeyType, "Falcon Level 5", "Falcon Level 5"}, #endif /* HAVE_FALCON */ #ifdef HAVE_DILITHIUM { CTC_DILITHIUM_LEVEL2, DILITHIUM_LEVEL2k, oidKeyType, "Dilithium Level 2", "Dilithium Level 2"}, { CTC_DILITHIUM_LEVEL3, DILITHIUM_LEVEL3k, oidKeyType, "Dilithium Level 3", "Dilithium Level 3"}, { CTC_DILITHIUM_LEVEL5, DILITHIUM_LEVEL5k, oidKeyType, "Dilithium Level 5", "Dilithium Level 5"}, #endif /* HAVE_DILITHIUM */ #endif /* HAVE_PQC */ /* oidCurveType */ #ifdef HAVE_ECC { NID_X9_62_prime192v1, ECC_SECP192R1_OID, oidCurveType, "prime192v1", "prime192v1"}, { NID_X9_62_prime192v2, ECC_PRIME192V2_OID, oidCurveType, "prime192v2", "prime192v2"}, { NID_X9_62_prime192v3, ECC_PRIME192V3_OID, oidCurveType, "prime192v3", "prime192v3"}, { NID_X9_62_prime239v1, ECC_PRIME239V1_OID, oidCurveType, "prime239v1", "prime239v1"}, { NID_X9_62_prime239v2, ECC_PRIME239V2_OID, oidCurveType, "prime239v2", "prime239v2"}, { NID_X9_62_prime239v3, ECC_PRIME239V3_OID, oidCurveType, "prime239v3", "prime239v3"}, { NID_X9_62_prime256v1, ECC_SECP256R1_OID, oidCurveType, "prime256v1", "prime256v1"}, { NID_secp112r1, ECC_SECP112R1_OID, oidCurveType, "secp112r1", "secp112r1"}, { NID_secp112r2, ECC_SECP112R2_OID, oidCurveType, "secp112r2", "secp112r2"}, { NID_secp128r1, ECC_SECP128R1_OID, oidCurveType, "secp128r1", "secp128r1"}, { NID_secp128r2, ECC_SECP128R2_OID, oidCurveType, "secp128r2", "secp128r2"}, { NID_secp160r1, ECC_SECP160R1_OID, oidCurveType, "secp160r1", "secp160r1"}, { NID_secp160r2, ECC_SECP160R2_OID, oidCurveType, "secp160r2", "secp160r2"}, { NID_secp224r1, ECC_SECP224R1_OID, oidCurveType, "secp224r1", "secp224r1"}, { NID_secp384r1, ECC_SECP384R1_OID, oidCurveType, "secp384r1", "secp384r1"}, { NID_secp521r1, ECC_SECP521R1_OID, oidCurveType, "secp521r1", "secp521r1"}, { NID_secp160k1, ECC_SECP160K1_OID, oidCurveType, "secp160k1", "secp160k1"}, { NID_secp192k1, ECC_SECP192K1_OID, oidCurveType, "secp192k1", "secp192k1"}, { NID_secp224k1, ECC_SECP224K1_OID, oidCurveType, "secp224k1", "secp224k1"}, { NID_secp256k1, ECC_SECP256K1_OID, oidCurveType, "secp256k1", "secp256k1"}, { NID_brainpoolP160r1, ECC_BRAINPOOLP160R1_OID, oidCurveType, "brainpoolP160r1", "brainpoolP160r1"}, { NID_brainpoolP192r1, ECC_BRAINPOOLP192R1_OID, oidCurveType, "brainpoolP192r1", "brainpoolP192r1"}, { NID_brainpoolP224r1, ECC_BRAINPOOLP224R1_OID, oidCurveType, "brainpoolP224r1", "brainpoolP224r1"}, { NID_brainpoolP256r1, ECC_BRAINPOOLP256R1_OID, oidCurveType, "brainpoolP256r1", "brainpoolP256r1"}, { NID_brainpoolP320r1, ECC_BRAINPOOLP320R1_OID, oidCurveType, "brainpoolP320r1", "brainpoolP320r1"}, { NID_brainpoolP384r1, ECC_BRAINPOOLP384R1_OID, oidCurveType, "brainpoolP384r1", "brainpoolP384r1"}, { NID_brainpoolP512r1, ECC_BRAINPOOLP512R1_OID, oidCurveType, "brainpoolP512r1", "brainpoolP512r1"}, #ifdef WOLFSSL_SM2 { NID_sm2, ECC_SM2P256V1_OID, oidCurveType, "sm2", "sm2"}, #endif #endif /* HAVE_ECC */ /* oidBlkType */ #ifdef WOLFSSL_AES_128 { AES128CBCb, AES128CBCb, oidBlkType, "AES-128-CBC", "aes-128-cbc"}, #endif #ifdef WOLFSSL_AES_192 { AES192CBCb, AES192CBCb, oidBlkType, "AES-192-CBC", "aes-192-cbc"}, #endif #ifdef WOLFSSL_AES_256 { AES256CBCb, AES256CBCb, oidBlkType, "AES-256-CBC", "aes-256-cbc"}, #endif #ifndef NO_DES3 { NID_des, DESb, oidBlkType, "DES-CBC", "des-cbc"}, { NID_des3, DES3b, oidBlkType, "DES-EDE3-CBC", "des-ede3-cbc"}, #endif /* !NO_DES3 */ #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) { NID_chacha20_poly1305, NID_chacha20_poly1305, oidBlkType, "ChaCha20-Poly1305", "chacha20-poly1305"}, #endif /* oidOcspType */ #ifdef HAVE_OCSP { NID_id_pkix_OCSP_basic, OCSP_BASIC_OID, oidOcspType, "basicOCSPResponse", "Basic OCSP Response"}, { OCSP_NONCE_OID, OCSP_NONCE_OID, oidOcspType, "Nonce", "OCSP Nonce"}, #endif /* HAVE_OCSP */ #ifndef NO_PWDBASED /* oidKdfType */ { PBKDF2_OID, PBKDF2_OID, oidKdfType, "PBKDFv2", "PBKDF2"}, /* oidPBEType */ { PBE_SHA1_RC4_128, PBE_SHA1_RC4_128, oidPBEType, "PBE-SHA1-RC4-128", "pbeWithSHA1And128BitRC4"}, { PBE_SHA1_DES, PBE_SHA1_DES, oidPBEType, "PBE-SHA1-DES", "pbeWithSHA1AndDES-CBC"}, { PBE_SHA1_DES3, PBE_SHA1_DES3, oidPBEType, "PBE-SHA1-3DES", "pbeWithSHA1And3-KeyTripleDES-CBC"}, #endif /* oidKeyWrapType */ #ifdef WOLFSSL_AES_128 { AES128_WRAP, AES128_WRAP, oidKeyWrapType, "AES-128 wrap", "aes128-wrap"}, #endif #ifdef WOLFSSL_AES_192 { AES192_WRAP, AES192_WRAP, oidKeyWrapType, "AES-192 wrap", "aes192-wrap"}, #endif #ifdef WOLFSSL_AES_256 { AES256_WRAP, AES256_WRAP, oidKeyWrapType, "AES-256 wrap", "aes256-wrap"}, #endif #ifndef NO_PKCS7 #ifndef NO_DH /* oidCmsKeyAgreeType */ #ifndef NO_SHA { dhSinglePass_stdDH_sha1kdf_scheme, dhSinglePass_stdDH_sha1kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha1kdf-scheme", "dhSinglePass-stdDH-sha1kdf-scheme"}, #endif #ifdef WOLFSSL_SHA224 { dhSinglePass_stdDH_sha224kdf_scheme, dhSinglePass_stdDH_sha224kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha224kdf-scheme", "dhSinglePass-stdDH-sha224kdf-scheme"}, #endif #ifndef NO_SHA256 { dhSinglePass_stdDH_sha256kdf_scheme, dhSinglePass_stdDH_sha256kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha256kdf-scheme", "dhSinglePass-stdDH-sha256kdf-scheme"}, #endif #ifdef WOLFSSL_SHA384 { dhSinglePass_stdDH_sha384kdf_scheme, dhSinglePass_stdDH_sha384kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha384kdf-scheme", "dhSinglePass-stdDH-sha384kdf-scheme"}, #endif #ifdef WOLFSSL_SHA512 { dhSinglePass_stdDH_sha512kdf_scheme, dhSinglePass_stdDH_sha512kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha512kdf-scheme", "dhSinglePass-stdDH-sha512kdf-scheme"}, #endif #endif #endif #if defined(WOLFSSL_APACHE_HTTPD) /* "1.3.6.1.5.5.7.8.7" */ { NID_id_on_dnsSRV, NID_id_on_dnsSRV, oidCertNameType, WOLFSSL_SN_DNS_SRV, WOLFSSL_LN_DNS_SRV }, /* "1.3.6.1.4.1.311.20.2.3" */ { NID_ms_upn, WOLFSSL_MS_UPN_SUM, oidCertExtType, WOLFSSL_SN_MS_UPN, WOLFSSL_LN_MS_UPN }, /* "1.3.6.1.5.5.7.1.24" */ { NID_tlsfeature, WOLFSSL_TLS_FEATURE_SUM, oidTlsExtType, WOLFSSL_SN_TLS_FEATURE, WOLFSSL_LN_TLS_FEATURE }, #endif #endif /* OPENSSL_EXTRA */ }; #define WOLFSSL_OBJECT_INFO_SZ \ (sizeof(wolfssl_object_info) / sizeof(*wolfssl_object_info)) const size_t wolfssl_object_info_sz = WOLFSSL_OBJECT_INFO_SZ; #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Free the dynamically allocated data. * * p Pointer to dynamically allocated memory. */ void wolfSSL_OPENSSL_free(void* p) { WOLFSSL_MSG("wolfSSL_OPENSSL_free"); XFREE(p, NULL, DYNAMIC_TYPE_OPENSSL); } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA void *wolfSSL_OPENSSL_malloc(size_t a) { return (void *)XMALLOC(a, NULL, DYNAMIC_TYPE_OPENSSL); } int wolfSSL_OPENSSL_hexchar2int(unsigned char c) { /* 'char' is unsigned on some platforms. */ return (int)(signed char)HexCharToByte((char)c); } unsigned char *wolfSSL_OPENSSL_hexstr2buf(const char *str, long *len) { unsigned char* targetBuf; int srcDigitHigh = 0; int srcDigitLow = 0; size_t srcLen; size_t srcIdx = 0; long targetIdx = 0; srcLen = XSTRLEN(str); targetBuf = (unsigned char*)XMALLOC(srcLen / 2, NULL, DYNAMIC_TYPE_OPENSSL); if (targetBuf == NULL) { return NULL; } while (srcIdx < srcLen) { if (str[srcIdx] == ':') { srcIdx++; continue; } srcDigitHigh = wolfSSL_OPENSSL_hexchar2int(str[srcIdx++]); srcDigitLow = wolfSSL_OPENSSL_hexchar2int(str[srcIdx++]); if (srcDigitHigh < 0 || srcDigitLow < 0) { WOLFSSL_MSG("Invalid hex character."); XFREE(targetBuf, NULL, DYNAMIC_TYPE_OPENSSL); return NULL; } targetBuf[targetIdx++] = (unsigned char)((srcDigitHigh << 4) | srcDigitLow ); } if (len != NULL) *len = targetIdx; return targetBuf; } int wolfSSL_OPENSSL_init_ssl(word64 opts, const OPENSSL_INIT_SETTINGS *settings) { (void)opts; (void)settings; return wolfSSL_library_init(); } int wolfSSL_OPENSSL_init_crypto(word64 opts, const OPENSSL_INIT_SETTINGS* settings) { (void)opts; (void)settings; return wolfSSL_library_init(); } /* Colon separated list of + algorithms. * Replaces list in context. */ int wolfSSL_CTX_set1_sigalgs_list(WOLFSSL_CTX* ctx, const char* list) { WOLFSSL_MSG("wolfSSL_CTX_set1_sigalg_list"); if (ctx == NULL || list == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } if (AllocateCtxSuites(ctx) != 0) return WOLFSSL_FAILURE; return SetSuitesHashSigAlgo(ctx->suites, list); } /* Colon separated list of + algorithms. * Replaces list in SSL. */ int wolfSSL_set1_sigalgs_list(WOLFSSL* ssl, const char* list) { WOLFSSL_MSG("wolfSSL_set1_sigalg_list"); if (ssl == NULL || list == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } if (AllocateSuites(ssl) != 0) return WOLFSSL_FAILURE; return SetSuitesHashSigAlgo(ssl->suites, list); } static int HashToNid(byte hashAlgo, int* nid) { int ret = WOLFSSL_SUCCESS; /* Cast for compiler to check everything is implemented */ switch ((enum wc_MACAlgorithm)hashAlgo) { case no_mac: case rmd_mac: *nid = NID_undef; break; case md5_mac: *nid = NID_md5; break; case sha_mac: *nid = NID_sha1; break; case sha224_mac: *nid = NID_sha224; break; case sha256_mac: *nid = NID_sha256; break; case sha384_mac: *nid = NID_sha384; break; case sha512_mac: *nid = NID_sha512; break; case blake2b_mac: *nid = NID_blake2b512; break; case sm3_mac: *nid = NID_sm3; break; default: ret = WOLFSSL_FAILURE; break; } return ret; } static int SaToNid(byte sa, int* nid) { int ret = WOLFSSL_SUCCESS; /* Cast for compiler to check everything is implemented */ switch ((enum SignatureAlgorithm)sa) { case anonymous_sa_algo: *nid = NID_undef; break; case rsa_sa_algo: *nid = NID_rsaEncryption; break; case dsa_sa_algo: *nid = NID_dsa; break; case ecc_dsa_sa_algo: *nid = NID_X9_62_id_ecPublicKey; break; case rsa_pss_sa_algo: *nid = NID_rsassaPss; break; case ed25519_sa_algo: #ifdef HAVE_ED25519 *nid = NID_ED25519; #else ret = WOLFSSL_FAILURE; #endif break; case rsa_pss_pss_algo: *nid = NID_rsassaPss; break; case ed448_sa_algo: #ifdef HAVE_ED448 *nid = NID_ED448; #else ret = WOLFSSL_FAILURE; #endif break; case falcon_level1_sa_algo: *nid = CTC_FALCON_LEVEL1; break; case falcon_level5_sa_algo: *nid = CTC_FALCON_LEVEL5; break; case dilithium_level2_sa_algo: *nid = CTC_DILITHIUM_LEVEL2; break; case dilithium_level3_sa_algo: *nid = CTC_DILITHIUM_LEVEL3; break; case dilithium_level5_sa_algo: *nid = CTC_DILITHIUM_LEVEL5; break; case sm2_sa_algo: *nid = NID_sm2; break; case invalid_sa_algo: default: ret = WOLFSSL_FAILURE; break; } return ret; } /* This API returns the hash selected. */ int wolfSSL_get_signature_nid(WOLFSSL *ssl, int* nid) { WOLFSSL_MSG("wolfSSL_get_signature_nid"); if (ssl == NULL || nid == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } return HashToNid(ssl->options.hashAlgo, nid); } /* This API returns the signature selected. */ int wolfSSL_get_signature_type_nid(const WOLFSSL* ssl, int* nid) { WOLFSSL_MSG("wolfSSL_get_signature_type_nid"); if (ssl == NULL || nid == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } return SaToNid(ssl->options.sigAlgo, nid); } int wolfSSL_get_peer_signature_nid(WOLFSSL* ssl, int* nid) { WOLFSSL_MSG("wolfSSL_get_peer_signature_nid"); if (ssl == NULL || nid == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } return HashToNid(ssl->options.peerHashAlgo, nid); } int wolfSSL_get_peer_signature_type_nid(const WOLFSSL* ssl, int* nid) { WOLFSSL_MSG("wolfSSL_get_peer_signature_type_nid"); if (ssl == NULL || nid == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } return SaToNid(ssl->options.peerSigAlgo, nid); } #ifdef HAVE_ECC #if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES) static int populate_groups(int* groups, int max_count, const char *list) { const char *end; int count = 0; const WOLF_EC_NIST_NAME* nist_name; if (!groups || !list) { return -1; } for (end = list; ; list = ++end) { int len; if (count > max_count) { WOLFSSL_MSG("Too many curves in list"); return -1; } while (*end != ':' && *end != '\0') end++; len = (int)(end - list); /* end points to char after end * of curve name so no need for -1 */ if ((len < kNistCurves_MIN_NAME_LEN) || (len > kNistCurves_MAX_NAME_LEN)) { WOLFSSL_MSG("Unrecognized curve name in list"); return -1; } for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) { if (len == nist_name->name_len && XSTRNCMP(list, nist_name->name, nist_name->name_len) == 0) { break; } } if (!nist_name->name) { WOLFSSL_MSG("Unrecognized curve name in list"); return -1; } groups[count++] = nist_name->nid; if (*end == '\0') break; } return count; } int wolfSSL_CTX_set1_groups_list(WOLFSSL_CTX *ctx, const char *list) { int groups[WOLFSSL_MAX_GROUP_COUNT]; int count = 0; if (!ctx || !list) { return WOLFSSL_FAILURE; } if ((count = populate_groups(groups, WOLFSSL_MAX_GROUP_COUNT, list)) == -1) { return WOLFSSL_FAILURE; } return wolfSSL_CTX_set1_groups(ctx, groups, count); } int wolfSSL_set1_groups_list(WOLFSSL *ssl, const char *list) { int groups[WOLFSSL_MAX_GROUP_COUNT]; int count = 0; if (!ssl || !list) { return WOLFSSL_FAILURE; } if ((count = populate_groups(groups, WOLFSSL_MAX_GROUP_COUNT, list)) == -1) { return WOLFSSL_FAILURE; } return wolfSSL_set1_groups(ssl, groups, count); } #endif /* WOLFSSL_TLS13 */ #endif /* HAVE_ECC */ #endif /* OPENSSL_EXTRA */ #ifdef WOLFSSL_ALT_CERT_CHAINS int wolfSSL_is_peer_alt_cert_chain(const WOLFSSL* ssl) { int isUsing = 0; if (ssl) isUsing = ssl->options.usingAltCertChain; return isUsing; } #endif /* WOLFSSL_ALT_CERT_CHAINS */ #ifdef SESSION_CERTS #ifdef WOLFSSL_ALT_CERT_CHAINS /* Get peer's alternate certificate chain */ WOLFSSL_X509_CHAIN* wolfSSL_get_peer_alt_chain(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_alt_chain"); if (ssl) return &ssl->session->altChain; return 0; } #endif /* WOLFSSL_ALT_CERT_CHAINS */ /* Get peer's certificate chain */ WOLFSSL_X509_CHAIN* wolfSSL_get_peer_chain(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_chain"); if (ssl) return &ssl->session->chain; return 0; } /* Get peer's certificate chain total count */ int wolfSSL_get_chain_count(WOLFSSL_X509_CHAIN* chain) { WOLFSSL_ENTER("wolfSSL_get_chain_count"); if (chain) return chain->count; return 0; } /* Get peer's ASN.1 DER certificate at index (idx) length in bytes */ int wolfSSL_get_chain_length(WOLFSSL_X509_CHAIN* chain, int idx) { WOLFSSL_ENTER("wolfSSL_get_chain_length"); if (chain) return chain->certs[idx].length; return 0; } /* Get peer's ASN.1 DER certificate at index (idx) */ byte* wolfSSL_get_chain_cert(WOLFSSL_X509_CHAIN* chain, int idx) { WOLFSSL_ENTER("wolfSSL_get_chain_cert"); if (chain) return chain->certs[idx].buffer; return 0; } /* Get peer's wolfSSL X509 certificate at index (idx) */ WOLFSSL_X509* wolfSSL_get_chain_X509(WOLFSSL_X509_CHAIN* chain, int idx) { int ret = 0; WOLFSSL_X509* x509 = NULL; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_get_chain_X509"); if (chain != NULL) { #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert != NULL) #endif { InitDecodedCert(cert, chain->certs[idx].buffer, chain->certs[idx].length, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) != 0) { WOLFSSL_MSG("Failed to parse cert"); } else { x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL, DYNAMIC_TYPE_X509); if (x509 == NULL) { WOLFSSL_MSG("Failed alloc X509"); } else { InitX509(x509, 1, NULL); if ((ret = CopyDecodedToX509(x509, cert)) != 0) { WOLFSSL_MSG("Failed to copy decoded"); wolfSSL_X509_free(x509); x509 = NULL; } } } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif } } (void)ret; return x509; } /* Get peer's PEM certificate at index (idx), output to buffer if inLen big enough else return error (-1). If buffer is NULL only calculate outLen. Output length is in *outLen WOLFSSL_SUCCESS on ok */ int wolfSSL_get_chain_cert_pem(WOLFSSL_X509_CHAIN* chain, int idx, unsigned char* buf, int inLen, int* outLen) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) const char* header = NULL; const char* footer = NULL; int headerLen; int footerLen; int i; int err; word32 szNeeded = 0; WOLFSSL_ENTER("wolfSSL_get_chain_cert_pem"); if (!chain || !outLen || idx < 0 || idx >= wolfSSL_get_chain_count(chain)) return BAD_FUNC_ARG; err = wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer); if (err != 0) return err; headerLen = (int)XSTRLEN(header); footerLen = (int)XSTRLEN(footer); /* Null output buffer return size needed in outLen */ if(!buf) { if(Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length, NULL, &szNeeded) != LENGTH_ONLY_E) return WOLFSSL_FAILURE; *outLen = szNeeded + headerLen + footerLen; return LENGTH_ONLY_E; } /* don't even try if inLen too short */ if (inLen < headerLen + footerLen + chain->certs[idx].length) return BAD_FUNC_ARG; /* header */ if (XMEMCPY(buf, header, headerLen) == NULL) return WOLFSSL_FATAL_ERROR; i = headerLen; /* body */ *outLen = inLen; /* input to Base64_Encode */ if ( (err = Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length, buf + i, (word32*)outLen)) < 0) return err; i += *outLen; /* footer */ if ( (i + footerLen) > inLen) return BAD_FUNC_ARG; if (XMEMCPY(buf + i, footer, footerLen) == NULL) return WOLFSSL_FATAL_ERROR; *outLen += headerLen + footerLen; return WOLFSSL_SUCCESS; #else (void)chain; (void)idx; (void)buf; (void)inLen; (void)outLen; return WOLFSSL_FAILURE; #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ } #endif /* SESSION_CERTS */ #ifdef HAVE_FUZZER void wolfSSL_SetFuzzerCb(WOLFSSL* ssl, CallbackFuzzer cbf, void* fCtx) { if (ssl) { ssl->fuzzerCb = cbf; ssl->fuzzerCtx = fCtx; } } #endif #ifndef NO_CERTS #ifdef HAVE_PK_CALLBACKS #ifdef HAVE_ECC void wolfSSL_CTX_SetEccKeyGenCb(WOLFSSL_CTX* ctx, CallbackEccKeyGen cb) { if (ctx) ctx->EccKeyGenCb = cb; } void wolfSSL_SetEccKeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccKeyGenCtx = ctx; } void* wolfSSL_GetEccKeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccKeyGenCtx; return NULL; } void wolfSSL_CTX_SetEccSignCtx(WOLFSSL_CTX* ctx, void *userCtx) { if (ctx) ctx->EccSignCtx = userCtx; } void* wolfSSL_CTX_GetEccSignCtx(WOLFSSL_CTX* ctx) { if (ctx) return ctx->EccSignCtx; return NULL; } WOLFSSL_ABI void wolfSSL_CTX_SetEccSignCb(WOLFSSL_CTX* ctx, CallbackEccSign cb) { if (ctx) ctx->EccSignCb = cb; } void wolfSSL_SetEccSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccSignCtx = ctx; } void* wolfSSL_GetEccSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccSignCtx; return NULL; } void wolfSSL_CTX_SetEccVerifyCb(WOLFSSL_CTX* ctx, CallbackEccVerify cb) { if (ctx) ctx->EccVerifyCb = cb; } void wolfSSL_SetEccVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccVerifyCtx = ctx; } void* wolfSSL_GetEccVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccVerifyCtx; return NULL; } void wolfSSL_CTX_SetEccSharedSecretCb(WOLFSSL_CTX* ctx, CallbackEccSharedSecret cb) { if (ctx) ctx->EccSharedSecretCb = cb; } void wolfSSL_SetEccSharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccSharedSecretCtx = ctx; } void* wolfSSL_GetEccSharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccSharedSecretCtx; return NULL; } #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 void wolfSSL_CTX_SetEd25519SignCb(WOLFSSL_CTX* ctx, CallbackEd25519Sign cb) { if (ctx) ctx->Ed25519SignCb = cb; } void wolfSSL_SetEd25519SignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed25519SignCtx = ctx; } void* wolfSSL_GetEd25519SignCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed25519SignCtx; return NULL; } void wolfSSL_CTX_SetEd25519VerifyCb(WOLFSSL_CTX* ctx, CallbackEd25519Verify cb) { if (ctx) ctx->Ed25519VerifyCb = cb; } void wolfSSL_SetEd25519VerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed25519VerifyCtx = ctx; } void* wolfSSL_GetEd25519VerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed25519VerifyCtx; return NULL; } #endif /* HAVE_ED25519 */ #ifdef HAVE_CURVE25519 void wolfSSL_CTX_SetX25519KeyGenCb(WOLFSSL_CTX* ctx, CallbackX25519KeyGen cb) { if (ctx) ctx->X25519KeyGenCb = cb; } void wolfSSL_SetX25519KeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X25519KeyGenCtx = ctx; } void* wolfSSL_GetX25519KeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->X25519KeyGenCtx; return NULL; } void wolfSSL_CTX_SetX25519SharedSecretCb(WOLFSSL_CTX* ctx, CallbackX25519SharedSecret cb) { if (ctx) ctx->X25519SharedSecretCb = cb; } void wolfSSL_SetX25519SharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X25519SharedSecretCtx = ctx; } void* wolfSSL_GetX25519SharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->X25519SharedSecretCtx; return NULL; } #endif /* HAVE_CURVE25519 */ #ifdef HAVE_ED448 void wolfSSL_CTX_SetEd448SignCb(WOLFSSL_CTX* ctx, CallbackEd448Sign cb) { if (ctx) ctx->Ed448SignCb = cb; } void wolfSSL_SetEd448SignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed448SignCtx = ctx; } void* wolfSSL_GetEd448SignCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed448SignCtx; return NULL; } void wolfSSL_CTX_SetEd448VerifyCb(WOLFSSL_CTX* ctx, CallbackEd448Verify cb) { if (ctx) ctx->Ed448VerifyCb = cb; } void wolfSSL_SetEd448VerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed448VerifyCtx = ctx; } void* wolfSSL_GetEd448VerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed448VerifyCtx; return NULL; } #endif /* HAVE_ED448 */ #ifdef HAVE_CURVE448 void wolfSSL_CTX_SetX448KeyGenCb(WOLFSSL_CTX* ctx, CallbackX448KeyGen cb) { if (ctx) ctx->X448KeyGenCb = cb; } void wolfSSL_SetX448KeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X448KeyGenCtx = ctx; } void* wolfSSL_GetX448KeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->X448KeyGenCtx; return NULL; } void wolfSSL_CTX_SetX448SharedSecretCb(WOLFSSL_CTX* ctx, CallbackX448SharedSecret cb) { if (ctx) ctx->X448SharedSecretCb = cb; } void wolfSSL_SetX448SharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X448SharedSecretCtx = ctx; } void* wolfSSL_GetX448SharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->X448SharedSecretCtx; return NULL; } #endif /* HAVE_CURVE448 */ #ifndef NO_RSA void wolfSSL_CTX_SetRsaSignCb(WOLFSSL_CTX* ctx, CallbackRsaSign cb) { if (ctx) ctx->RsaSignCb = cb; } void wolfSSL_CTX_SetRsaSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb) { if (ctx) ctx->RsaSignCheckCb = cb; } void wolfSSL_SetRsaSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaSignCtx = ctx; } void* wolfSSL_GetRsaSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaSignCtx; return NULL; } void wolfSSL_CTX_SetRsaVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb) { if (ctx) ctx->RsaVerifyCb = cb; } void wolfSSL_SetRsaVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaVerifyCtx = ctx; } void* wolfSSL_GetRsaVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaVerifyCtx; return NULL; } #ifdef WC_RSA_PSS void wolfSSL_CTX_SetRsaPssSignCb(WOLFSSL_CTX* ctx, CallbackRsaPssSign cb) { if (ctx) ctx->RsaPssSignCb = cb; } void wolfSSL_CTX_SetRsaPssSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb) { if (ctx) ctx->RsaPssSignCheckCb = cb; } void wolfSSL_SetRsaPssSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaPssSignCtx = ctx; } void* wolfSSL_GetRsaPssSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaPssSignCtx; return NULL; } void wolfSSL_CTX_SetRsaPssVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb) { if (ctx) ctx->RsaPssVerifyCb = cb; } void wolfSSL_SetRsaPssVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaPssVerifyCtx = ctx; } void* wolfSSL_GetRsaPssVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaPssVerifyCtx; return NULL; } #endif /* WC_RSA_PSS */ void wolfSSL_CTX_SetRsaEncCb(WOLFSSL_CTX* ctx, CallbackRsaEnc cb) { if (ctx) ctx->RsaEncCb = cb; } void wolfSSL_SetRsaEncCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaEncCtx = ctx; } void* wolfSSL_GetRsaEncCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaEncCtx; return NULL; } void wolfSSL_CTX_SetRsaDecCb(WOLFSSL_CTX* ctx, CallbackRsaDec cb) { if (ctx) ctx->RsaDecCb = cb; } void wolfSSL_SetRsaDecCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaDecCtx = ctx; } void* wolfSSL_GetRsaDecCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaDecCtx; return NULL; } #endif /* NO_RSA */ /* callback for premaster secret generation */ void wolfSSL_CTX_SetGenPreMasterCb(WOLFSSL_CTX* ctx, CallbackGenPreMaster cb) { if (ctx) ctx->GenPreMasterCb = cb; } /* Set premaster secret generation callback context */ void wolfSSL_SetGenPreMasterCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->GenPreMasterCtx = ctx; } /* Get premaster secret generation callback context */ void* wolfSSL_GetGenPreMasterCtx(WOLFSSL* ssl) { if (ssl) return ssl->GenPreMasterCtx; return NULL; } /* callback for master secret generation */ void wolfSSL_CTX_SetGenMasterSecretCb(WOLFSSL_CTX* ctx, CallbackGenMasterSecret cb) { if (ctx) ctx->GenMasterCb = cb; } /* Set master secret generation callback context */ void wolfSSL_SetGenMasterSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->GenMasterCtx = ctx; } /* Get master secret generation callback context */ void* wolfSSL_GetGenMasterSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->GenMasterCtx; return NULL; } /* callback for session key generation */ void wolfSSL_CTX_SetGenSessionKeyCb(WOLFSSL_CTX* ctx, CallbackGenSessionKey cb) { if (ctx) ctx->GenSessionKeyCb = cb; } /* Set session key generation callback context */ void wolfSSL_SetGenSessionKeyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->GenSessionKeyCtx = ctx; } /* Get session key generation callback context */ void* wolfSSL_GetGenSessionKeyCtx(WOLFSSL* ssl) { if (ssl) return ssl->GenSessionKeyCtx; return NULL; } /* callback for setting encryption keys */ void wolfSSL_CTX_SetEncryptKeysCb(WOLFSSL_CTX* ctx, CallbackEncryptKeys cb) { if (ctx) ctx->EncryptKeysCb = cb; } /* Set encryption keys callback context */ void wolfSSL_SetEncryptKeysCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EncryptKeysCtx = ctx; } /* Get encryption keys callback context */ void* wolfSSL_GetEncryptKeysCtx(WOLFSSL* ssl) { if (ssl) return ssl->EncryptKeysCtx; return NULL; } /* callback for Tls finished */ /* the callback can be used to build TLS Finished message if enabled */ void wolfSSL_CTX_SetTlsFinishedCb(WOLFSSL_CTX* ctx, CallbackTlsFinished cb) { if (ctx) ctx->TlsFinishedCb = cb; } /* Set Tls finished callback context */ void wolfSSL_SetTlsFinishedCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->TlsFinishedCtx = ctx; } /* Get Tls finished callback context */ void* wolfSSL_GetTlsFinishedCtx(WOLFSSL* ssl) { if (ssl) return ssl->TlsFinishedCtx; return NULL; } #if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_AEAD_ONLY) /* callback for verify data */ void wolfSSL_CTX_SetVerifyMacCb(WOLFSSL_CTX* ctx, CallbackVerifyMac cb) { if (ctx) ctx->VerifyMacCb = cb; } /* Set set keys callback context */ void wolfSSL_SetVerifyMacCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->VerifyMacCtx = ctx; } /* Get set keys callback context */ void* wolfSSL_GetVerifyMacCtx(WOLFSSL* ssl) { if (ssl) return ssl->VerifyMacCtx; return NULL; } #endif /* !WOLFSSL_NO_TLS12 && !WOLFSSL_AEAD_ONLY */ void wolfSSL_CTX_SetHKDFExpandLabelCb(WOLFSSL_CTX* ctx, CallbackHKDFExpandLabel cb) { if (ctx) ctx->HKDFExpandLabelCb = cb; } #ifdef WOLFSSL_PUBLIC_ASN void wolfSSL_CTX_SetProcessPeerCertCb(WOLFSSL_CTX* ctx, CallbackProcessPeerCert cb) { if (ctx) ctx->ProcessPeerCertCb = cb; } #endif /* WOLFSSL_PUBLIC_ASN */ void wolfSSL_CTX_SetProcessServerSigKexCb(WOLFSSL_CTX* ctx, CallbackProcessServerSigKex cb) { if (ctx) ctx->ProcessServerSigKexCb = cb; } void wolfSSL_CTX_SetPerformTlsRecordProcessingCb(WOLFSSL_CTX* ctx, CallbackPerformTlsRecordProcessing cb) { if (ctx) ctx->PerformTlsRecordProcessingCb = cb; } #endif /* HAVE_PK_CALLBACKS */ #endif /* NO_CERTS */ #if defined(HAVE_PK_CALLBACKS) && !defined(NO_DH) void wolfSSL_CTX_SetDhGenerateKeyPair(WOLFSSL_CTX* ctx, CallbackDhGenerateKeyPair cb) { if (ctx) ctx->DhGenerateKeyPairCb = cb; } void wolfSSL_CTX_SetDhAgreeCb(WOLFSSL_CTX* ctx, CallbackDhAgree cb) { if (ctx) ctx->DhAgreeCb = cb; } void wolfSSL_SetDhAgreeCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->DhAgreeCtx = ctx; } void* wolfSSL_GetDhAgreeCtx(WOLFSSL* ssl) { if (ssl) return ssl->DhAgreeCtx; return NULL; } #endif /* HAVE_PK_CALLBACKS && !NO_DH */ #if defined(HAVE_PK_CALLBACKS) && defined(HAVE_HKDF) void wolfSSL_CTX_SetHKDFExtractCb(WOLFSSL_CTX* ctx, CallbackHKDFExtract cb) { if (ctx) ctx->HkdfExtractCb = cb; } void wolfSSL_SetHKDFExtractCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->HkdfExtractCtx = ctx; } void* wolfSSL_GetHKDFExtractCtx(WOLFSSL* ssl) { if (ssl) return ssl->HkdfExtractCtx; return NULL; } #endif /* HAVE_PK_CALLBACKS && HAVE_HKDF */ #ifdef WOLFSSL_HAVE_WOLFSCEP /* Used by autoconf to see if wolfSCEP is available */ void wolfSSL_wolfSCEP(void) {} #endif #ifdef WOLFSSL_HAVE_CERT_SERVICE /* Used by autoconf to see if cert service is available */ void wolfSSL_cert_service(void) {} #endif #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ !defined(WOLFCRYPT_ONLY) /* NID variables are dependent on compatibility header files currently * * returns a pointer to a new WOLFSSL_ASN1_OBJECT struct on success and NULL * on fail */ WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj(int id) { return wolfSSL_OBJ_nid2obj_ex(id, NULL); } WOLFSSL_LOCAL WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj_ex(int id, WOLFSSL_ASN1_OBJECT* arg_obj) { word32 oidSz = 0; int nid = 0; const byte* oid; word32 type = 0; WOLFSSL_ASN1_OBJECT* obj = arg_obj; byte objBuf[MAX_OID_SZ + MAX_LENGTH_SZ + 1]; /* +1 for object tag */ word32 objSz = 0; const char* sName = NULL; int i; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_OBJ_nid2obj"); #endif for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) { if (wolfssl_object_info[i].nid == id) { nid = id; id = wolfssl_object_info[i].id; sName = wolfssl_object_info[i].sName; type = wolfssl_object_info[i].type; break; } } if (i == (int)WOLFSSL_OBJECT_INFO_SZ) { WOLFSSL_MSG("NID not in table"); #ifdef WOLFSSL_QT sName = NULL; type = id; #else return NULL; #endif } #ifdef HAVE_ECC if (type == 0 && wc_ecc_get_oid(id, &oid, &oidSz) > 0) { type = oidCurveType; } #endif /* HAVE_ECC */ if (sName != NULL) { if (XSTRLEN(sName) > WOLFSSL_MAX_SNAME - 1) { WOLFSSL_MSG("Attempted short name is too large"); return NULL; } } oid = OidFromId(id, type, &oidSz); /* set object ID to buffer */ if (obj == NULL){ obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); return NULL; } } obj->nid = nid; obj->type = id; obj->grp = type; obj->sName[0] = '\0'; if (sName != NULL) { XMEMCPY(obj->sName, (char*)sName, XSTRLEN((char*)sName)); } objBuf[0] = ASN_OBJECT_ID; objSz++; objSz += SetLength(oidSz, objBuf + 1); if (oidSz) { XMEMCPY(objBuf + objSz, oid, oidSz); objSz += oidSz; } if (obj->objSz == 0 || objSz != obj->objSz) { obj->objSz = objSz; if(((obj->dynamic & WOLFSSL_ASN1_DYNAMIC_DATA) != 0) || (obj->obj == NULL)) { if (obj->obj != NULL) XFREE((byte*)obj->obj, NULL, DYNAMIC_TYPE_ASN1); obj->obj = (byte*)XMALLOC(obj->objSz, NULL, DYNAMIC_TYPE_ASN1); if (obj->obj == NULL) { wolfSSL_ASN1_OBJECT_free(obj); return NULL; } obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA; } else { obj->dynamic &= ~WOLFSSL_ASN1_DYNAMIC_DATA; } } XMEMCPY((byte*)obj->obj, objBuf, obj->objSz); (void)type; return obj; } static const char* oid_translate_num_to_str(const char* oid) { const struct oid_dict { const char* num; const char* desc; } oid_dict[] = { { "2.5.29.37.0", "Any Extended Key Usage" }, { "1.3.6.1.5.5.7.3.1", "TLS Web Server Authentication" }, { "1.3.6.1.5.5.7.3.2", "TLS Web Client Authentication" }, { "1.3.6.1.5.5.7.3.3", "Code Signing" }, { "1.3.6.1.5.5.7.3.4", "E-mail Protection" }, { "1.3.6.1.5.5.7.3.8", "Time Stamping" }, { "1.3.6.1.5.5.7.3.9", "OCSP Signing" }, { NULL, NULL } }; const struct oid_dict* idx; for (idx = oid_dict; idx->num != NULL; idx++) { if (!XSTRCMP(oid, idx->num)) { return idx->desc; } } return NULL; } static int wolfssl_obj2txt_numeric(char *buf, int bufLen, const WOLFSSL_ASN1_OBJECT *a) { int bufSz; int length; word32 idx = 0; byte tag; if (GetASNTag(a->obj, &idx, &tag, a->objSz) != 0) { return WOLFSSL_FAILURE; } if (tag != ASN_OBJECT_ID) { WOLFSSL_MSG("Bad ASN1 Object"); return WOLFSSL_FAILURE; } if (GetLength((const byte*)a->obj, &idx, &length, a->objSz) < 0 || length < 0) { return ASN_PARSE_E; } if (bufLen < MAX_OID_STRING_SZ) { bufSz = bufLen - 1; } else { bufSz = MAX_OID_STRING_SZ; } if ((bufSz = DecodePolicyOID(buf, (word32)bufSz, a->obj + idx, (word32)length)) <= 0) { WOLFSSL_MSG("Error decoding OID"); return WOLFSSL_FAILURE; } buf[bufSz] = '\0'; return bufSz; } /* If no_name is one then use numerical form, otherwise short name. * * Returns the buffer size on success, WOLFSSL_FAILURE on error */ int wolfSSL_OBJ_obj2txt(char *buf, int bufLen, const WOLFSSL_ASN1_OBJECT *a, int no_name) { int bufSz; const char* desc; const char* name; WOLFSSL_ENTER("wolfSSL_OBJ_obj2txt"); if (buf == NULL || bufLen <= 1 || a == NULL) { WOLFSSL_MSG("Bad input argument"); return WOLFSSL_FAILURE; } if (no_name == 1) { return wolfssl_obj2txt_numeric(buf, bufLen, a); } /* return long name unless using x509small, then return short name */ #if defined(OPENSSL_EXTRA_X509_SMALL) && !defined(OPENSSL_EXTRA) name = a->sName; #else name = wolfSSL_OBJ_nid2ln(wolfSSL_OBJ_obj2nid(a)); #endif if (name == NULL) { WOLFSSL_MSG("Name not found"); bufSz = 0; } else if (XSTRLEN(name) + 1 < (word32)bufLen - 1) { bufSz = (int)XSTRLEN(name); } else { bufSz = bufLen - 1; } if (bufSz) { XMEMCPY(buf, name, bufSz); } else if (a->type == GEN_DNS || a->type == GEN_EMAIL || a->type == GEN_URI) { bufSz = (int)XSTRLEN((const char*)a->obj); XMEMCPY(buf, a->obj, min(bufSz, bufLen)); } else if ((bufSz = wolfssl_obj2txt_numeric(buf, bufLen, a)) > 0) { if ((desc = oid_translate_num_to_str(buf))) { bufSz = (int)XSTRLEN(desc); bufSz = min(bufSz, bufLen - 1); XMEMCPY(buf, desc, bufSz); } } else { bufSz = 0; } buf[bufSz] = '\0'; return bufSz; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \ defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_WPAS_SMALL) /* Returns the long name that corresponds with an ASN1_OBJECT nid value. * n : NID value of ASN1_OBJECT to search */ const char* wolfSSL_OBJ_nid2ln(int n) { const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info; size_t i; WOLFSSL_ENTER("wolfSSL_OBJ_nid2ln"); for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) { if (obj_info->nid == n) { return obj_info->lName; } } WOLFSSL_MSG("NID not found in table"); return NULL; } #endif /* OPENSSL_EXTRA, HAVE_LIGHTY, WOLFSSL_MYSQL_COMPATIBLE, HAVE_STUNNEL, WOLFSSL_NGINX, HAVE_POCO_LIB, WOLFSSL_HAPROXY, WOLFSSL_WPAS_SMALL */ #if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \ defined(WOLFSSL_HAPROXY) /* Return the corresponding short name for the nid . * or NULL if short name can't be found. */ const char * wolfSSL_OBJ_nid2sn(int n) { const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info; size_t i; WOLFSSL_ENTER("wolfSSL_OBJ_nid2sn"); if (n == NID_md5) { /* NID_surname == NID_md5 and NID_surname comes before NID_md5 in * wolfssl_object_info. As a result, the loop below will incorrectly * return "SN" instead of "MD5." NID_surname isn't the true OpenSSL * NID, but other functions rely on this table and modifying it to * conform with OpenSSL's NIDs isn't trivial. */ return "MD5"; } for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) { if (obj_info->nid == n) { return obj_info->sName; } } WOLFSSL_MSG_EX("SN not found (nid:%d)",n); return NULL; } #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) int wolfSSL_OBJ_sn2nid(const char *sn) { WOLFSSL_ENTER("wolfSSL_OBJ_sn2nid"); if (sn == NULL) return NID_undef; return wc_OBJ_sn2nid(sn); } #endif size_t wolfSSL_OBJ_length(const WOLFSSL_ASN1_OBJECT* o) { size_t ret = 0; int err = 0; word32 idx = 0; int len = 0; WOLFSSL_ENTER("wolfSSL_OBJ_length"); if (o == NULL || o->obj == NULL) { WOLFSSL_MSG("Bad argument."); err = 1; } if (err == 0 && GetASNObjectId(o->obj, &idx, &len, o->objSz)) { WOLFSSL_MSG("Error parsing ASN.1 header."); err = 1; } if (err == 0) { ret = len; } WOLFSSL_LEAVE("wolfSSL_OBJ_length", (int)ret); return ret; } const unsigned char* wolfSSL_OBJ_get0_data(const WOLFSSL_ASN1_OBJECT* o) { const unsigned char* ret = NULL; int err = 0; word32 idx = 0; int len = 0; WOLFSSL_ENTER("wolfSSL_OBJ_get0_data"); if (o == NULL || o->obj == NULL) { WOLFSSL_MSG("Bad argument."); err = 1; } if (err == 0 && GetASNObjectId(o->obj, &idx, &len, o->objSz)) { WOLFSSL_MSG("Error parsing ASN.1 header."); err = 1; } if (err == 0) { ret = o->obj + idx; } return ret; } /* Gets the NID value that corresponds with the ASN1 object. * * o ASN1 object to get NID of * * Return NID on success and a negative value on failure */ int wolfSSL_OBJ_obj2nid(const WOLFSSL_ASN1_OBJECT *o) { word32 oid = 0; word32 idx = 0; int ret; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_OBJ_obj2nid"); #endif if (o == NULL) { return -1; } #ifdef WOLFSSL_QT if (o->grp == oidCertExtType) { /* If nid is an unknown extension, return NID_undef */ if (wolfSSL_OBJ_nid2sn(o->nid) == NULL) return NID_undef; } #endif if (o->nid > 0) return o->nid; if ((ret = GetObjectId(o->obj, &idx, &oid, o->grp, o->objSz)) < 0) { if (ret == ASN_OBJECT_ID_E) { /* Put ASN object tag in front and try again */ int len = SetObjectId(o->objSz, NULL) + o->objSz; byte* buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (!buf) { WOLFSSL_MSG("malloc error"); return -1; } idx = SetObjectId(o->objSz, buf); XMEMCPY(buf + idx, o->obj, o->objSz); idx = 0; ret = GetObjectId(buf, &idx, &oid, o->grp, len); XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (ret < 0) { WOLFSSL_MSG("Issue getting OID of object"); return -1; } } else { WOLFSSL_MSG("Issue getting OID of object"); return -1; } } return oid2nid(oid, o->grp); } /* Return the corresponding NID for the long name * or NID_undef if NID can't be found. */ int wolfSSL_OBJ_ln2nid(const char *ln) { const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info; size_t lnlen; WOLFSSL_ENTER("wolfSSL_OBJ_ln2nid"); if (ln && (lnlen = XSTRLEN(ln)) > 0) { /* Accept input like "/commonName=" */ if (ln[0] == '/') { ln++; lnlen--; } if (lnlen) { size_t i; if (ln[lnlen-1] == '=') { lnlen--; } for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) { if (lnlen == XSTRLEN(obj_info->lName) && XSTRNCMP(ln, obj_info->lName, lnlen) == 0) { return obj_info->nid; } } } } return NID_undef; } /* compares two objects, return 0 if equal */ int wolfSSL_OBJ_cmp(const WOLFSSL_ASN1_OBJECT* a, const WOLFSSL_ASN1_OBJECT* b) { WOLFSSL_ENTER("wolfSSL_OBJ_cmp"); if (a && b && a->obj && b->obj) { if (a->objSz == b->objSz) { return XMEMCMP(a->obj, b->obj, a->objSz); } else if (a->type == EXT_KEY_USAGE_OID || b->type == EXT_KEY_USAGE_OID) { /* Special case for EXT_KEY_USAGE_OID so that * cmp will be treated as a substring search */ /* Used in libest to check for id-kp-cmcRA in * EXT_KEY_USAGE extension */ unsigned int idx; const byte* s; /* shorter */ unsigned int sLen; const byte* l; /* longer */ unsigned int lLen; if (a->objSz > b->objSz) { s = b->obj; sLen = b->objSz; l = a->obj; lLen = a->objSz; } else { s = a->obj; sLen = a->objSz; l = b->obj; lLen = b->objSz; } for (idx = 0; idx <= lLen - sLen; idx++) { if (XMEMCMP(l + idx, s, sLen) == 0) { /* Found substring */ return 0; } } } } return WOLFSSL_FATAL_ERROR; } #endif /* OPENSSL_EXTRA, HAVE_LIGHTY, WOLFSSL_MYSQL_COMPATIBLE, HAVE_STUNNEL, WOLFSSL_NGINX, HAVE_POCO_LIB, WOLFSSL_HAPROXY */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \ defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_POCO_LIB) || defined(WOLFSSL_HAPROXY) /* Gets the NID value that is related to the OID string passed in. Example * string would be "2.5.29.14" for subject key ID. * * returns NID value on success and NID_undef on error */ int wolfSSL_OBJ_txt2nid(const char* s) { unsigned int i; #ifdef WOLFSSL_CERT_EXT int ret; unsigned int sum = 0; unsigned int outSz = MAX_OID_SZ; unsigned char out[MAX_OID_SZ]; #endif WOLFSSL_ENTER("wolfSSL_OBJ_txt2nid"); if (s == NULL) { return NID_undef; } #ifdef WOLFSSL_CERT_EXT ret = EncodePolicyOID(out, &outSz, s, NULL); if (ret == 0) { /* sum OID */ for (i = 0; i < outSz; i++) { sum += out[i]; } } #endif /* WOLFSSL_CERT_EXT */ /* get the group that the OID's sum is in * @TODO possible conflict with multiples */ for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) { int len; #ifdef WOLFSSL_CERT_EXT if (ret == 0) { if (wolfssl_object_info[i].id == (int)sum) { return wolfssl_object_info[i].nid; } } #endif /* try as a short name */ len = (int)XSTRLEN(s); if ((int)XSTRLEN(wolfssl_object_info[i].sName) == len && XSTRNCMP(wolfssl_object_info[i].sName, s, len) == 0) { return wolfssl_object_info[i].nid; } /* try as a long name */ if ((int)XSTRLEN(wolfssl_object_info[i].lName) == len && XSTRNCMP(wolfssl_object_info[i].lName, s, len) == 0) { return wolfssl_object_info[i].nid; } } return NID_undef; } #endif #if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \ defined(WOLFSSL_HAPROXY) /* Creates new ASN1_OBJECT from short name, long name, or text * representation of oid. If no_name is 0, then short name, long name, and * numerical value of oid are interpreted. If no_name is 1, then only the * numerical value of the oid is interpreted. * * Returns pointer to ASN1_OBJECT on success, or NULL on error. */ #if defined(WOLFSSL_CERT_EXT) && defined(WOLFSSL_CERT_GEN) WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_txt2obj(const char* s, int no_name) { int i, ret; int nid = NID_undef; unsigned int outSz = MAX_OID_SZ; unsigned char out[MAX_OID_SZ]; WOLFSSL_ASN1_OBJECT* obj; WOLFSSL_ENTER("wolfSSL_OBJ_txt2obj"); if (s == NULL) return NULL; /* If s is numerical value, try to sum oid */ ret = EncodePolicyOID(out, &outSz, s, NULL); if (ret == 0 && outSz > 0) { /* If numerical encode succeeded then just * create object from that because sums are * not unique and can cause confusion. */ obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); return NULL; } obj->dynamic |= WOLFSSL_ASN1_DYNAMIC; obj->obj = (byte*)XMALLOC(1 + MAX_LENGTH_SZ + outSz, NULL, DYNAMIC_TYPE_ASN1); if (obj->obj == NULL) { wolfSSL_ASN1_OBJECT_free(obj); return NULL; } obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA; i = SetObjectId(outSz, (byte*)obj->obj); XMEMCPY((byte*)obj->obj + i, out, outSz); obj->objSz = i + outSz; return obj; } /* TODO: update short names in wolfssl_object_info and check OID sums are correct */ for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) { /* Short name, long name, and numerical value are interpreted */ if (no_name == 0 && ((XSTRCMP(s, wolfssl_object_info[i].sName) == 0) || (XSTRCMP(s, wolfssl_object_info[i].lName) == 0))) { nid = wolfssl_object_info[i].nid; } } if (nid != NID_undef) return wolfSSL_OBJ_nid2obj(nid); return NULL; } #endif /* compatibility function. Its intended use is to remove OID's from an * internal table that have been added with OBJ_create. wolfSSL manages its * own internal OID values and does not currently support OBJ_create. */ void wolfSSL_OBJ_cleanup(void) { WOLFSSL_ENTER("wolfSSL_OBJ_cleanup"); } #ifndef NO_WOLFSSL_STUB int wolfSSL_OBJ_create(const char *oid, const char *sn, const char *ln) { (void)oid; (void)sn; (void)ln; WOLFSSL_STUB("wolfSSL_OBJ_create"); return WOLFSSL_FAILURE; } #endif void wolfSSL_set_verify_depth(WOLFSSL *ssl, int depth) { #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) WOLFSSL_ENTER("wolfSSL_set_verify_depth"); ssl->options.verifyDepth = (byte)depth; #endif } #endif /* OPENSSL_ALL || HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE || HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */ #ifdef OPENSSL_EXTRA /* wolfSSL uses negative values for error states. This function returns an * unsigned type so the value returned is the absolute value of the error. */ unsigned long wolfSSL_ERR_peek_last_error_line(const char **file, int *line) { WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error"); (void)line; (void)file; #ifdef WOLFSSL_HAVE_ERROR_QUEUE { int ret; if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) \ || defined(WOLFSSL_HAPROXY) if (ret == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; #endif #if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON) if (ret == ASN1_R_HEADER_TOO_LONG) { return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG; } #endif return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif /* OPENSSL_EXTRA */ #if defined(HAVE_EX_DATA) && \ (defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || \ defined(HAVE_LIGHTY)) || defined(HAVE_EX_DATA) || \ defined(WOLFSSL_WPAS_SMALL) CRYPTO_EX_cb_ctx* crypto_ex_cb_ctx_session = NULL; static int crypto_ex_cb_new(CRYPTO_EX_cb_ctx** dst, long ctx_l, void* ctx_ptr, WOLFSSL_CRYPTO_EX_new* new_func, WOLFSSL_CRYPTO_EX_dup* dup_func, WOLFSSL_CRYPTO_EX_free* free_func) { CRYPTO_EX_cb_ctx* new_ctx = (CRYPTO_EX_cb_ctx*)XMALLOC( sizeof(CRYPTO_EX_cb_ctx), NULL, DYNAMIC_TYPE_OPENSSL); if (new_ctx == NULL) return -1; new_ctx->ctx_l = ctx_l; new_ctx->ctx_ptr = ctx_ptr; new_ctx->new_func = new_func; new_ctx->free_func = free_func; new_ctx->dup_func = dup_func; new_ctx->next = NULL; /* Push to end of list */ while (*dst != NULL) dst = &(*dst)->next; *dst = new_ctx; return 0; } void crypto_ex_cb_free(CRYPTO_EX_cb_ctx* cb_ctx) { while (cb_ctx != NULL) { CRYPTO_EX_cb_ctx* next = cb_ctx->next; XFREE(cb_ctx, NULL, DYNAMIC_TYPE_OPENSSL); cb_ctx = next; } } void crypto_ex_cb_setup_new_data(void *new_obj, CRYPTO_EX_cb_ctx* cb_ctx, WOLFSSL_CRYPTO_EX_DATA* ex_data) { int idx = 0; for (; cb_ctx != NULL; idx++, cb_ctx = cb_ctx->next) { if (cb_ctx->new_func != NULL) cb_ctx->new_func(new_obj, NULL, ex_data, idx, cb_ctx->ctx_l, cb_ctx->ctx_ptr); } } int crypto_ex_cb_dup_data(const WOLFSSL_CRYPTO_EX_DATA *in, WOLFSSL_CRYPTO_EX_DATA *out, CRYPTO_EX_cb_ctx* cb_ctx) { int idx = 0; for (; cb_ctx != NULL; idx++, cb_ctx = cb_ctx->next) { if (cb_ctx->dup_func != NULL) { void* ptr = wolfSSL_CRYPTO_get_ex_data(in, idx); if (!cb_ctx->dup_func(out, in, &ptr, idx, cb_ctx->ctx_l, cb_ctx->ctx_ptr)) { return WOLFSSL_FAILURE; } wolfSSL_CRYPTO_set_ex_data(out, idx, ptr); } } return WOLFSSL_SUCCESS; } void crypto_ex_cb_free_data(void *obj, CRYPTO_EX_cb_ctx* cb_ctx, WOLFSSL_CRYPTO_EX_DATA* ex_data) { int idx = 0; for (; cb_ctx != NULL; idx++, cb_ctx = cb_ctx->next) { if (cb_ctx->free_func != NULL) cb_ctx->free_func(obj, NULL, ex_data, idx, cb_ctx->ctx_l, cb_ctx->ctx_ptr); } } /** * get_ex_new_index is a helper function for the following * xx_get_ex_new_index functions: * - wolfSSL_CRYPTO_get_ex_new_index * - wolfSSL_CTX_get_ex_new_index * - wolfSSL_get_ex_new_index * Issues a unique index number for the specified class-index. * Returns an index number greater or equal to zero on success, * -1 on failure. */ int wolfssl_get_ex_new_index(int class_index, long ctx_l, void* ctx_ptr, WOLFSSL_CRYPTO_EX_new* new_func, WOLFSSL_CRYPTO_EX_dup* dup_func, WOLFSSL_CRYPTO_EX_free* free_func) { /* index counter for each class index*/ static int ctx_idx = 0; static int ssl_idx = 0; static int ssl_session_idx = 0; static int x509_idx = 0; int idx = -1; switch(class_index) { case WOLF_CRYPTO_EX_INDEX_SSL: WOLFSSL_CRYPTO_EX_DATA_IGNORE_PARAMS(ctx_l, ctx_ptr, new_func, dup_func, free_func); idx = ssl_idx++; break; case WOLF_CRYPTO_EX_INDEX_SSL_CTX: WOLFSSL_CRYPTO_EX_DATA_IGNORE_PARAMS(ctx_l, ctx_ptr, new_func, dup_func, free_func); idx = ctx_idx++; break; case WOLF_CRYPTO_EX_INDEX_X509: WOLFSSL_CRYPTO_EX_DATA_IGNORE_PARAMS(ctx_l, ctx_ptr, new_func, dup_func, free_func); idx = x509_idx++; break; case WOLF_CRYPTO_EX_INDEX_SSL_SESSION: if (crypto_ex_cb_new(&crypto_ex_cb_ctx_session, ctx_l, ctx_ptr, new_func, dup_func, free_func) != 0) return -1; idx = ssl_session_idx++; break; /* following class indexes are not supoprted */ case WOLF_CRYPTO_EX_INDEX_X509_STORE: case WOLF_CRYPTO_EX_INDEX_X509_STORE_CTX: case WOLF_CRYPTO_EX_INDEX_DH: case WOLF_CRYPTO_EX_INDEX_DSA: case WOLF_CRYPTO_EX_INDEX_EC_KEY: case WOLF_CRYPTO_EX_INDEX_RSA: case WOLF_CRYPTO_EX_INDEX_ENGINE: case WOLF_CRYPTO_EX_INDEX_UI: case WOLF_CRYPTO_EX_INDEX_BIO: case WOLF_CRYPTO_EX_INDEX_APP: case WOLF_CRYPTO_EX_INDEX_UI_METHOD: case WOLF_CRYPTO_EX_INDEX_DRBG: default: break; } if (idx >= MAX_EX_DATA) return -1; return idx; } #endif /* HAVE_EX_DATA || WOLFSSL_WPAS_SMALL */ #if defined(HAVE_EX_DATA) || defined(WOLFSSL_WPAS_SMALL) void* wolfSSL_CTX_get_ex_data(const WOLFSSL_CTX* ctx, int idx) { WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data"); #ifdef HAVE_EX_DATA if(ctx != NULL) { return wolfSSL_CRYPTO_get_ex_data(&ctx->ex_data, idx); } #else (void)ctx; (void)idx; #endif return NULL; } int wolfSSL_CTX_get_ex_new_index(long idx, void* arg, WOLFSSL_CRYPTO_EX_new* new_func, WOLFSSL_CRYPTO_EX_dup* dup_func, WOLFSSL_CRYPTO_EX_free* free_func) { WOLFSSL_ENTER("wolfSSL_CTX_get_ex_new_index"); return wolfssl_get_ex_new_index(WOLF_CRYPTO_EX_INDEX_SSL_CTX, idx, arg, new_func, dup_func, free_func); } /* Return the index that can be used for the WOLFSSL structure to store * application data. * */ int wolfSSL_get_ex_new_index(long argValue, void* arg, WOLFSSL_CRYPTO_EX_new* cb1, WOLFSSL_CRYPTO_EX_dup* cb2, WOLFSSL_CRYPTO_EX_free* cb3) { WOLFSSL_ENTER("wolfSSL_get_ex_new_index"); return wolfssl_get_ex_new_index(WOLF_CRYPTO_EX_INDEX_SSL, argValue, arg, cb1, cb2, cb3); } int wolfSSL_CTX_set_ex_data(WOLFSSL_CTX* ctx, int idx, void* data) { WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data"); #ifdef HAVE_EX_DATA if (ctx != NULL) { return wolfSSL_CRYPTO_set_ex_data(&ctx->ex_data, idx, data); } #else (void)ctx; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } #ifdef HAVE_EX_DATA_CLEANUP_HOOKS int wolfSSL_CTX_set_ex_data_with_cleanup( WOLFSSL_CTX* ctx, int idx, void* data, wolfSSL_ex_data_cleanup_routine_t cleanup_routine) { WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data_with_cleanup"); if (ctx != NULL) { return wolfSSL_CRYPTO_set_ex_data_with_cleanup(&ctx->ex_data, idx, data, cleanup_routine); } return WOLFSSL_FAILURE; } #endif /* HAVE_EX_DATA_CLEANUP_HOOKS */ #endif /* defined(HAVE_EX_DATA) || defined(WOLFSSL_WPAS_SMALL) */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Returns char* to app data stored in ex[0]. * * ssl WOLFSSL structure to get app data from */ void* wolfSSL_get_app_data(const WOLFSSL *ssl) { /* checkout exdata stuff... */ WOLFSSL_ENTER("wolfSSL_get_app_data"); return wolfSSL_get_ex_data(ssl, 0); } /* Set ex array 0 to have app data * * ssl WOLFSSL struct to set app data in * arg data to be stored * * Returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure */ int wolfSSL_set_app_data(WOLFSSL *ssl, void* arg) { WOLFSSL_ENTER("wolfSSL_set_app_data"); return wolfSSL_set_ex_data(ssl, 0, arg); } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(HAVE_EX_DATA) || defined(OPENSSL_EXTRA) || \ defined(OPENSSL_EXTRA_X509_SMALL) || defined(WOLFSSL_WPAS_SMALL) int wolfSSL_set_ex_data(WOLFSSL* ssl, int idx, void* data) { WOLFSSL_ENTER("wolfSSL_set_ex_data"); #ifdef HAVE_EX_DATA if (ssl != NULL) { return wolfSSL_CRYPTO_set_ex_data(&ssl->ex_data, idx, data); } #else WOLFSSL_MSG("HAVE_EX_DATA macro is not defined"); (void)ssl; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } #ifdef HAVE_EX_DATA_CLEANUP_HOOKS int wolfSSL_set_ex_data_with_cleanup( WOLFSSL* ssl, int idx, void* data, wolfSSL_ex_data_cleanup_routine_t cleanup_routine) { WOLFSSL_ENTER("wolfSSL_set_ex_data_with_cleanup"); if (ssl != NULL) { return wolfSSL_CRYPTO_set_ex_data_with_cleanup(&ssl->ex_data, idx, data, cleanup_routine); } return WOLFSSL_FAILURE; } #endif /* HAVE_EX_DATA_CLEANUP_HOOKS */ void* wolfSSL_get_ex_data(const WOLFSSL* ssl, int idx) { WOLFSSL_ENTER("wolfSSL_get_ex_data"); #ifdef HAVE_EX_DATA if (ssl != NULL) { return wolfSSL_CRYPTO_get_ex_data(&ssl->ex_data, idx); } #else WOLFSSL_MSG("HAVE_EX_DATA macro is not defined"); (void)ssl; (void)idx; #endif return 0; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || WOLFSSL_WPAS_SMALL */ #if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \ || defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA) /* returns the enum value associated with handshake state * * ssl the WOLFSSL structure to get state of */ int wolfSSL_get_state(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_state"); if (ssl == NULL) { WOLFSSL_MSG("Null argument passed in"); return WOLFSSL_FAILURE; } return ssl->options.handShakeState; } #endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE */ #ifdef OPENSSL_EXTRA void wolfSSL_certs_clear(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_certs_clear"); if (ssl == NULL) return; /* ctx still owns certificate, certChain, key, dh, and cm */ if (ssl->buffers.weOwnCert) FreeDer(&ssl->buffers.certificate); ssl->buffers.certificate = NULL; if (ssl->buffers.weOwnCertChain) FreeDer(&ssl->buffers.certChain); ssl->buffers.certChain = NULL; #ifdef WOLFSSL_TLS13 ssl->buffers.certChainCnt = 0; #endif if (ssl->buffers.weOwnKey) FreeDer(&ssl->buffers.key); ssl->buffers.key = NULL; ssl->buffers.keyType = 0; ssl->buffers.keyId = 0; ssl->buffers.keyLabel = 0; ssl->buffers.keySz = 0; ssl->buffers.keyDevId = 0; #ifdef WOLFSSL_DUAL_ALG_CERTS if (ssl->buffers.weOwnAltKey) FreeDer(&ssl->buffers.altKey); ssl->buffers.altKey = NULL; #endif /* WOLFSSL_DUAL_ALG_CERTS */ } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || defined(WOLFSSL_HAPROXY) \ || defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) long wolfSSL_ctrl(WOLFSSL* ssl, int cmd, long opt, void* pt) { WOLFSSL_ENTER("wolfSSL_ctrl"); if (ssl == NULL) return BAD_FUNC_ARG; switch (cmd) { #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) || \ defined(OPENSSL_ALL) #ifdef HAVE_SNI case SSL_CTRL_SET_TLSEXT_HOSTNAME: WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TLSEXT_HOSTNAME."); if (pt == NULL) { WOLFSSL_MSG("Passed in NULL Host Name."); break; } return wolfSSL_set_tlsext_host_name(ssl, (const char*) pt); #endif /* HAVE_SNI */ #endif /* WOLFSSL_NGINX || WOLFSSL_QT || OPENSSL_ALL */ default: WOLFSSL_MSG("Case not implemented."); } (void)opt; (void)pt; return WOLFSSL_FAILURE; } long wolfSSL_CTX_ctrl(WOLFSSL_CTX* ctx, int cmd, long opt, void* pt) { #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) long ctrl_opt; #endif long ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_CTX_ctrl"); if (ctx == NULL) return WOLFSSL_FAILURE; switch (cmd) { case SSL_CTRL_CHAIN: #ifdef SESSION_CERTS { /* * We don't care about opt here because a copy of the certificate is * stored anyway so increasing the reference counter is not necessary. * Just check to make sure that it is set to one of the correct values. */ WOLF_STACK_OF(WOLFSSL_X509)* sk = (WOLF_STACK_OF(WOLFSSL_X509)*) pt; WOLFSSL_X509* x509; int i; if (opt != 0 && opt != 1) { ret = WOLFSSL_FAILURE; break; } /* Clear certificate chain */ FreeDer(&ctx->certChain); if (sk) { for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) { x509 = wolfSSL_sk_X509_value(sk, i); /* Prevent wolfSSL_CTX_add_extra_chain_cert from freeing cert */ if (wolfSSL_X509_up_ref(x509) != 1) { WOLFSSL_MSG("Error increasing reference count"); continue; } if (wolfSSL_CTX_add_extra_chain_cert(ctx, x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error adding certificate to context"); /* Decrease reference count on failure */ wolfSSL_X509_free(x509); } } } /* Free previous chain */ wolfSSL_sk_X509_pop_free(ctx->x509Chain, NULL); ctx->x509Chain = sk; if (sk && opt == 1) { /* up all refs when opt == 1 */ for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) { x509 = wolfSSL_sk_X509_value(sk, i); if (wolfSSL_X509_up_ref(x509) != 1) { WOLFSSL_MSG("Error increasing reference count"); continue; } } } } #else WOLFSSL_MSG("Session certificates not compiled in"); ret = WOLFSSL_FAILURE; #endif break; #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) case SSL_CTRL_OPTIONS: WOLFSSL_MSG("Entering Case: SSL_CTRL_OPTIONS."); ctrl_opt = wolfSSL_CTX_set_options(ctx, opt); #ifdef WOLFSSL_QT /* Set whether to use client or server cipher preference */ if ((ctrl_opt & WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) == WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) { WOLFSSL_MSG("Using Server's Cipher Preference."); ctx->useClientOrder = FALSE; } else { WOLFSSL_MSG("Using Client's Cipher Preference."); ctx->useClientOrder = TRUE; } #endif /* WOLFSSL_QT */ return ctrl_opt; #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ case SSL_CTRL_EXTRA_CHAIN_CERT: WOLFSSL_MSG("Entering Case: SSL_CTRL_EXTRA_CHAIN_CERT."); if (pt == NULL) { WOLFSSL_MSG("Passed in x509 pointer NULL."); ret = WOLFSSL_FAILURE; break; } return wolfSSL_CTX_add_extra_chain_cert(ctx, (WOLFSSL_X509*)pt); #ifndef NO_DH case SSL_CTRL_SET_TMP_DH: WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_DH."); if (pt == NULL) { WOLFSSL_MSG("Passed in DH pointer NULL."); ret = WOLFSSL_FAILURE; break; } return wolfSSL_CTX_set_tmp_dh(ctx, (WOLFSSL_DH*)pt); #endif #ifdef HAVE_ECC case SSL_CTRL_SET_TMP_ECDH: WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_ECDH."); if (pt == NULL) { WOLFSSL_MSG("Passed in ECDH pointer NULL."); ret = WOLFSSL_FAILURE; break; } return wolfSSL_SSL_CTX_set_tmp_ecdh(ctx, (WOLFSSL_EC_KEY*)pt); #endif case SSL_CTRL_MODE: wolfSSL_CTX_set_mode(ctx,opt); break; case SSL_CTRL_SET_MIN_PROTO_VERSION: WOLFSSL_MSG("set min proto version"); return wolfSSL_CTX_set_min_proto_version(ctx, (int)opt); case SSL_CTRL_SET_MAX_PROTO_VERSION: WOLFSSL_MSG("set max proto version"); return wolfSSL_CTX_set_max_proto_version(ctx, (int)opt); case SSL_CTRL_GET_MIN_PROTO_VERSION: WOLFSSL_MSG("get min proto version"); return wolfSSL_CTX_get_min_proto_version(ctx); case SSL_CTRL_GET_MAX_PROTO_VERSION: WOLFSSL_MSG("get max proto version"); return wolfSSL_CTX_get_max_proto_version(ctx); default: WOLFSSL_MSG("CTX_ctrl cmd not implemented"); ret = WOLFSSL_FAILURE; break; } (void)ctx; (void)cmd; (void)opt; (void)pt; WOLFSSL_LEAVE("wolfSSL_CTX_ctrl", (int)ret); return ret; } #ifndef WOLFSSL_NO_STUB long wolfSSL_CTX_callback_ctrl(WOLFSSL_CTX* ctx, int cmd, void (*fp)(void)) { (void) ctx; (void) cmd; (void) fp; WOLFSSL_STUB("wolfSSL_CTX_callback_ctrl"); return WOLFSSL_FAILURE; } #endif /* WOLFSSL_NO_STUB */ #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_clear_extra_chain_certs(WOLFSSL_CTX* ctx) { return wolfSSL_CTX_ctrl(ctx, SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS, 0L, NULL); } #endif /* Returns the verifyCallback from the ssl structure if successful. Returns NULL otherwise. */ VerifyCallback wolfSSL_get_verify_callback(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_verify_callback"); if (ssl) { return ssl->verifyCallback; } return NULL; } #ifndef NO_BIO /* Converts EVP_PKEY data from a bio buffer to a WOLFSSL_EVP_PKEY structure. Returns pointer to private EVP_PKEY struct upon success, NULL if there is a failure.*/ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_bio(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** out) { unsigned char* mem = NULL; int memSz = 0; WOLFSSL_EVP_PKEY* key = NULL; unsigned char* extraBioMem = NULL; WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_bio"); if (bio == NULL) { return NULL; } (void)out; memSz = wolfSSL_BIO_get_len(bio); if (memSz <= 0) { WOLFSSL_MSG("wolfSSL_BIO_get_len() failure"); return NULL; } mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { WOLFSSL_MSG("Malloc failure"); return NULL; } if (wolfSSL_BIO_read(bio, (unsigned char*)mem, memSz) == memSz) { int extraBioMemSz; int derLength; /* Determines key type and returns the new private EVP_PKEY object */ if ((key = wolfSSL_d2i_PrivateKey_EVP(NULL, &mem, (long)memSz)) == NULL) { WOLFSSL_MSG("wolfSSL_d2i_PrivateKey_EVP() failure"); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } /* Write extra data back into bio object if necessary. */ derLength = key->pkey_sz; extraBioMemSz = (memSz - derLength); if (extraBioMemSz > 0) { int i; int j = 0; extraBioMem = (unsigned char *)XMALLOC(extraBioMemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (extraBioMem == NULL) { WOLFSSL_MSG("Malloc failure"); XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } for (i = derLength; i < memSz; i++) { *(extraBioMem + j) = *(mem + i); j++; } wolfSSL_BIO_write(bio, extraBioMem, extraBioMemSz); if (wolfSSL_BIO_get_len(bio) <= 0) { WOLFSSL_MSG("Failed to write memory to bio"); XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); } if (out != NULL) { *out = key; } } XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return key; } #endif /* !NO_BIO */ #endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || \ defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_QT) || defined(WOLFSSL_WPAS_SMALL) /* Converts a DER encoded private key to a WOLFSSL_EVP_PKEY structure. * returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL * on fail */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_EVP(WOLFSSL_EVP_PKEY** out, unsigned char** in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_EVP"); return d2iGenericKey(out, (const unsigned char**)in, inSz, 1); } #endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT || * WOLFSSL_WPAS_SMALL*/ /* stunnel compatibility functions*/ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \ (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \ defined(WOLFSSL_OPENSSH))) void wolfSSL_ERR_remove_thread_state(void* pid) { (void) pid; return; } #ifndef NO_FILESYSTEM /***TBD ***/ void wolfSSL_print_all_errors_fp(XFILE fp) { (void)fp; } #endif /* !NO_FILESYSTEM */ #endif /* OPENSSL_ALL || OPENSSL_EXTRA || HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH */ /* Note: This is a huge section of API's - through * wolfSSL_X509_OBJECT_get0_X509_CRL */ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \ (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \ defined(WOLFSSL_OPENSSH) || defined(HAVE_SBLIM_SFCB))) #if defined(USE_WOLFSSL_MEMORY) && !defined(WOLFSSL_DEBUG_MEMORY) && \ !defined(WOLFSSL_STATIC_MEMORY) static wolfSSL_OSSL_Malloc_cb ossl_malloc = NULL; static wolfSSL_OSSL_Free_cb ossl_free = NULL; static wolfSSL_OSSL_Realloc_cb ossl_realloc = NULL; static void* OSSL_Malloc(size_t size) { if (ossl_malloc != NULL) return ossl_malloc(size, NULL, 0); else return NULL; } static void OSSL_Free(void *ptr) { if (ossl_free != NULL) ossl_free(ptr, NULL, 0); } static void* OSSL_Realloc(void *ptr, size_t size) { if (ossl_realloc != NULL) return ossl_realloc(ptr, size, NULL, 0); else return NULL; } #endif /* USE_WOLFSSL_MEMORY && !WOLFSSL_DEBUG_MEMORY && * !WOLFSSL_STATIC_MEMORY */ int wolfSSL_CRYPTO_set_mem_functions( wolfSSL_OSSL_Malloc_cb m, wolfSSL_OSSL_Realloc_cb r, wolfSSL_OSSL_Free_cb f) { #if defined(USE_WOLFSSL_MEMORY) && !defined(WOLFSSL_STATIC_MEMORY) #ifdef WOLFSSL_DEBUG_MEMORY WOLFSSL_MSG("mem functions will receive function name instead of " "file name"); if (wolfSSL_SetAllocators((wolfSSL_Malloc_cb)m, (wolfSSL_Free_cb)f, (wolfSSL_Realloc_cb)r) == 0) return WOLFSSL_SUCCESS; #else WOLFSSL_MSG("wolfSSL was compiled without WOLFSSL_DEBUG_MEMORY mem " "functions will receive a NULL file name and 0 for the " "line number."); if (wolfSSL_SetAllocators((wolfSSL_Malloc_cb)OSSL_Malloc, (wolfSSL_Free_cb)OSSL_Free, (wolfSSL_Realloc_cb)OSSL_Realloc) == 0) { ossl_malloc = m; ossl_free = f; ossl_realloc = r; return WOLFSSL_SUCCESS; } #endif else return WOLFSSL_FAILURE; #else (void)m; (void)r; (void)f; WOLFSSL_MSG("wolfSSL allocator callback functions not compiled in"); return WOLFSSL_FAILURE; #endif } int wolfSSL_ERR_load_ERR_strings(void) { return WOLFSSL_SUCCESS; } void wolfSSL_ERR_load_crypto_strings(void) { WOLFSSL_ENTER("wolfSSL_ERR_load_crypto_strings"); /* Do nothing */ return; } int wolfSSL_FIPS_mode(void) { #ifdef HAVE_FIPS return 1; #else return 0; #endif } int wolfSSL_FIPS_mode_set(int r) { #ifdef HAVE_FIPS if (r == 0) { WOLFSSL_MSG("Cannot disable FIPS at runtime."); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; #else if (r == 0) { return WOLFSSL_SUCCESS; } WOLFSSL_MSG("Cannot enable FIPS. This isn't the wolfSSL FIPS code."); return WOLFSSL_FAILURE; #endif } int wolfSSL_CIPHER_get_bits(const WOLFSSL_CIPHER *c, int *alg_bits) { int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_CIPHER_get_bits"); #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) (void)alg_bits; if (c!= NULL) ret = c->bits; #else if (c != NULL && c->ssl != NULL) { ret = 8 * c->ssl->specs.key_size; if (alg_bits != NULL) { *alg_bits = ret; } } #endif return ret; } /* returns value less than 0 on fail to match * On a successful match the priority level found is returned */ int wolfSSL_sk_SSL_CIPHER_find( WOLF_STACK_OF(WOLFSSL_CIPHER)* sk, const WOLFSSL_CIPHER* toFind) { WOLFSSL_STACK* next; int i, sz; if (sk == NULL || toFind == NULL) { return WOLFSSL_FATAL_ERROR; } sz = wolfSSL_sk_SSL_CIPHER_num(sk); next = sk; for (i = 0; i < sz && next != NULL; i++) { if (next->data.cipher.cipherSuite0 == toFind->cipherSuite0 && next->data.cipher.cipherSuite == toFind->cipherSuite) { return sz - i; /* reverse because stack pushed highest on first */ } next = next->next; } return WOLFSSL_FATAL_ERROR; } /* free's all nodes in the stack and there data */ void wolfSSL_sk_SSL_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk) { WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_free"); wolfSSL_sk_free(sk); } #ifdef HAVE_SNI int wolfSSL_set_tlsext_host_name(WOLFSSL* ssl, const char* host_name) { int ret; WOLFSSL_ENTER("wolfSSL_set_tlsext_host_name"); ret = wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, host_name, (word16)XSTRLEN(host_name)); WOLFSSL_LEAVE("wolfSSL_set_tlsext_host_name", ret); return ret; } #ifndef NO_WOLFSSL_SERVER const char * wolfSSL_get_servername(WOLFSSL* ssl, byte type) { void * serverName = NULL; if (ssl == NULL) return NULL; TLSX_SNI_GetRequest(ssl->extensions, type, &serverName); return (const char *)serverName; } #endif /* NO_WOLFSSL_SERVER */ #endif /* HAVE_SNI */ WOLFSSL_CTX* wolfSSL_set_SSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx) { int ret; /* This method requires some explanation. Its sibling is * int SetSSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx, int writeDup) * which re-inits the WOLFSSL* with all settings in the new CTX. * That one is the right one to use *before* a handshake is started. * * This method was added by OpenSSL to be used *during* the handshake, e.g. * when a server inspects the SNI in a ClientHello callback and * decides which set of certificates to use. * * Since, at the time the SNI callback is run, some decisions on * Extensions or the ServerHello might already have been taken, this * method is very restricted in what it does: * - changing the server certificate(s) * - changing the server id for session handling * and everything else in WOLFSSL* needs to remain untouched. */ WOLFSSL_ENTER("wolfSSL_set_SSL_CTX"); if (ssl == NULL || ctx == NULL) return NULL; if (ssl->ctx == ctx) return ssl->ctx; wolfSSL_RefInc(&ctx->ref, &ret); #ifdef WOLFSSL_REFCNT_ERROR_RETURN if (ret != 0) { /* can only fail on serious stuff, like mutex not working * or ctx refcount out of whack. */ return NULL; } #else (void)ret; #endif if (ssl->ctx != NULL) wolfSSL_CTX_free(ssl->ctx); ssl->ctx = ctx; #ifndef NO_CERTS /* ctx owns certificate, certChain and key */ ssl->buffers.certificate = ctx->certificate; ssl->buffers.certChain = ctx->certChain; #ifdef WOLFSSL_TLS13 ssl->buffers.certChainCnt = ctx->certChainCnt; #endif ssl->buffers.key = ctx->privateKey; ssl->buffers.keyType = ctx->privateKeyType; ssl->buffers.keyId = ctx->privateKeyId; ssl->buffers.keyLabel = ctx->privateKeyLabel; ssl->buffers.keySz = ctx->privateKeySz; ssl->buffers.keyDevId = ctx->privateKeyDevId; /* flags indicating what certs/keys are available */ ssl->options.haveRSA = ctx->haveRSA; ssl->options.haveDH = ctx->haveDH; ssl->options.haveECDSAsig = ctx->haveECDSAsig; ssl->options.haveECC = ctx->haveECC; ssl->options.haveStaticECC = ctx->haveStaticECC; ssl->options.haveFalconSig = ctx->haveFalconSig; ssl->options.haveDilithiumSig = ctx->haveDilithiumSig; #ifdef WOLFSSL_DUAL_ALG_CERTS ssl->buffers.altKey = ctx->altPrivateKey; ssl->buffers.altKeySz = ctx->altPrivateKeySz; ssl->buffers.altKeyType = ctx->altPrivateKeyType; #endif /* WOLFSSL_DUAL_ALG_CERTS */ #endif #ifdef WOLFSSL_SESSION_ID_CTX /* copy over application session context ID */ ssl->sessionCtxSz = ctx->sessionCtxSz; XMEMCPY(ssl->sessionCtx, ctx->sessionCtx, ctx->sessionCtxSz); #endif return ssl->ctx; } VerifyCallback wolfSSL_CTX_get_verify_callback(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_verify_callback"); if(ctx) return ctx->verifyCallback; return NULL; } #ifdef HAVE_SNI void wolfSSL_CTX_set_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_servername_callback"); if (ctx) ctx->sniRecvCb = cb; } int wolfSSL_CTX_set_tlsext_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_tlsext_servername_callback"); if (ctx) { ctx->sniRecvCb = cb; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } int wolfSSL_CTX_set_servername_arg(WOLFSSL_CTX* ctx, void* arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_servername_arg"); if (ctx) { ctx->sniRecvCbArg = arg; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #endif /* HAVE_SNI */ #ifndef NO_BIO void wolfSSL_ERR_load_BIO_strings(void) { WOLFSSL_ENTER("wolfSSL_ERR_load_BIO_strings"); /* do nothing */ } #endif #ifndef NO_WOLFSSL_STUB /* Set THREADID callback, return 1 on success, 0 on error */ int wolfSSL_THREADID_set_callback( void(*threadid_func)(WOLFSSL_CRYPTO_THREADID*)) { WOLFSSL_ENTER("wolfSSL_THREADID_set_callback"); WOLFSSL_STUB("CRYPTO_THREADID_set_callback"); (void)threadid_func; return 1; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_THREADID_set_numeric(void* id, unsigned long val) { WOLFSSL_ENTER("wolfSSL_THREADID_set_numeric"); WOLFSSL_STUB("CRYPTO_THREADID_set_numeric"); (void)id; (void)val; return; } #endif #endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (HAVE_STUNNEL || WOLFSSL_NGINX || * HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH || * HAVE_SBLIM_SFCB)) */ #if defined(OPENSSL_EXTRA) int wolfSSL_CRYPTO_memcmp(const void *a, const void *b, size_t size) { if (!a || !b) return 0; return ConstantCompare((const byte*)a, (const byte*)b, (int)size); } unsigned long wolfSSL_ERR_peek_last_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error"); #ifdef WOLFSSL_HAVE_ERROR_QUEUE { int ret; if ((ret = wc_PeekErrorNode(-1, NULL, NULL, NULL)) < 0) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } if (ret == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; #if defined(WOLFSSL_PYTHON) if (ret == ASN1_R_HEADER_TOO_LONG) return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG; #endif return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif /* OPENSSL_EXTRA */ int wolfSSL_version(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_version"); if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { case SSLv3_MINOR : return SSL3_VERSION; case TLSv1_MINOR : return TLS1_VERSION; case TLSv1_1_MINOR : return TLS1_1_VERSION; case TLSv1_2_MINOR : return TLS1_2_VERSION; case TLSv1_3_MINOR : return TLS1_3_VERSION; default: return WOLFSSL_FAILURE; } } else if (ssl->version.major == DTLS_MAJOR) { switch (ssl->version.minor) { case DTLS_MINOR : return DTLS1_VERSION; case DTLSv1_2_MINOR : return DTLS1_2_VERSION; case DTLSv1_3_MINOR: return DTLS1_3_VERSION; default: return WOLFSSL_FAILURE; } } return WOLFSSL_FAILURE; } WOLFSSL_CTX* wolfSSL_get_SSL_CTX(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_SSL_CTX"); return ssl->ctx; } #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && defined(HAVE_STUNNEL)) \ || defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) /* TODO: Doesn't currently track SSL_VERIFY_CLIENT_ONCE */ int wolfSSL_get_verify_mode(const WOLFSSL* ssl) { int mode = 0; WOLFSSL_ENTER("wolfSSL_get_verify_mode"); if (!ssl) { return WOLFSSL_FAILURE; } if (ssl->options.verifyNone) { mode = WOLFSSL_VERIFY_NONE; } else { if (ssl->options.verifyPeer) { mode |= WOLFSSL_VERIFY_PEER; } if (ssl->options.failNoCert) { mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT; } if (ssl->options.failNoCertxPSK) { mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK; } #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) if (ssl->options.verifyPostHandshake) { mode |= WOLFSSL_VERIFY_POST_HANDSHAKE; } #endif } WOLFSSL_LEAVE("wolfSSL_get_verify_mode", mode); return mode; } int wolfSSL_CTX_get_verify_mode(const WOLFSSL_CTX* ctx) { int mode = 0; WOLFSSL_ENTER("wolfSSL_CTX_get_verify_mode"); if (!ctx) { return WOLFSSL_FAILURE; } if (ctx->verifyNone) { mode = WOLFSSL_VERIFY_NONE; } else { if (ctx->verifyPeer) { mode |= WOLFSSL_VERIFY_PEER; } if (ctx->failNoCert) { mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT; } if (ctx->failNoCertxPSK) { mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK; } #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) if (ctx->verifyPostHandshake) { mode |= WOLFSSL_VERIFY_POST_HANDSHAKE; } #endif } WOLFSSL_LEAVE("wolfSSL_CTX_get_verify_mode", mode); return mode; } #endif #ifdef WOLFSSL_JNI int wolfSSL_set_jobject(WOLFSSL* ssl, void* objPtr) { WOLFSSL_ENTER("wolfSSL_set_jobject"); if (ssl != NULL) { ssl->jObjectRef = objPtr; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } void* wolfSSL_get_jobject(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_jobject"); if (ssl != NULL) return ssl->jObjectRef; return NULL; } #endif /* WOLFSSL_JNI */ #ifdef WOLFSSL_ASYNC_CRYPT int wolfSSL_CTX_AsyncPoll(WOLFSSL_CTX* ctx, WOLF_EVENT** events, int maxEvents, WOLF_EVENT_FLAG flags, int* eventCount) { if (ctx == NULL) { return BAD_FUNC_ARG; } return wolfAsync_EventQueuePoll(&ctx->event_queue, NULL, events, maxEvents, flags, eventCount); } int wolfSSL_AsyncPoll(WOLFSSL* ssl, WOLF_EVENT_FLAG flags) { int ret, eventCount = 0; WOLF_EVENT* events[1]; if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfAsync_EventQueuePoll(&ssl->ctx->event_queue, ssl, events, sizeof(events)/sizeof(events[0]), flags, &eventCount); if (ret == 0) { ret = eventCount; } return ret; } #endif /* WOLFSSL_ASYNC_CRYPT */ #ifdef OPENSSL_EXTRA static int peek_ignore_err(int err) { switch(err) { case -WANT_READ: case -WANT_WRITE: case -ZERO_RETURN: case -WOLFSSL_ERROR_ZERO_RETURN: case -SOCKET_PEER_CLOSED_E: case -SOCKET_ERROR_E: return 1; default: return 0; } } unsigned long wolfSSL_ERR_peek_error_line_data(const char **file, int *line, const char **data, int *flags) { unsigned long err; WOLFSSL_ENTER("wolfSSL_ERR_peek_error_line_data"); err = wc_PeekErrorNodeLineData(file, line, data, flags, peek_ignore_err); if (err == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; #ifdef OPENSSL_ALL /* PARSE_ERROR is returned if an HTTP request is detected. */ else if (err == -SSL_R_HTTP_REQUEST) return (ERR_LIB_SSL << 24) | -SSL_R_HTTP_REQUEST; #endif #if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON) else if (err == ASN1_R_HEADER_TOO_LONG) return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG; #endif return err; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) #if !defined(WOLFSSL_USER_IO) /* converts an IPv6 or IPv4 address into an octet string for use with rfc3280 * example input would be "127.0.0.1" and the returned value would be 7F000001 */ WOLFSSL_ASN1_STRING* wolfSSL_a2i_IPADDRESS(const char* ipa) { int ipaSz = WOLFSSL_IP4_ADDR_LEN; char buf[WOLFSSL_IP6_ADDR_LEN + 1]; /* plus 1 for terminator */ int af = WOLFSSL_IP4; WOLFSSL_ASN1_STRING *ret = NULL; if (ipa == NULL) return NULL; if (XSTRSTR(ipa, ":") != NULL) { af = WOLFSSL_IP6; ipaSz = WOLFSSL_IP6_ADDR_LEN; } buf[WOLFSSL_IP6_ADDR_LEN] = '\0'; if (XINET_PTON(af, ipa, (void*)buf) != 1) { WOLFSSL_MSG("Error parsing IP address"); return NULL; } ret = wolfSSL_ASN1_STRING_new(); if (ret != NULL) { if (wolfSSL_ASN1_STRING_set(ret, buf, ipaSz) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error setting the string"); wolfSSL_ASN1_STRING_free(ret); ret = NULL; } } return ret; } #endif /* !WOLFSSL_USER_IO */ /* Is the specified cipher suite a fake one used an an extension proxy? */ static WC_INLINE int SCSV_Check(byte suite0, byte suite) { (void)suite0; (void)suite; #ifdef HAVE_RENEGOTIATION_INDICATION if (suite0 == CIPHER_BYTE && suite == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) return 1; #endif return 0; } static WC_INLINE int sslCipherMinMaxCheck(const WOLFSSL *ssl, byte suite0, byte suite) { const CipherSuiteInfo* cipher_names = GetCipherNames(); int cipherSz = GetCipherNamesSize(); int i; for (i = 0; i < cipherSz; i++) if (cipher_names[i].cipherSuite0 == suite0 && cipher_names[i].cipherSuite == suite) break; if (i == cipherSz) return 1; /* Check min version */ if (cipher_names[i].minor < ssl->options.minDowngrade) { if (ssl->options.minDowngrade <= TLSv1_2_MINOR && cipher_names[i].minor >= TLSv1_MINOR) /* 1.0 ciphersuites are in general available in 1.1 and * 1.1 ciphersuites are in general available in 1.2 */ return 0; return 1; } /* Check max version */ switch (cipher_names[i].minor) { case SSLv3_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_SSLv3; case TLSv1_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1; case TLSv1_1_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1; case TLSv1_2_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2; case TLSv1_3_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3; default: WOLFSSL_MSG("Unrecognized minor version"); return 1; } } /* returns a pointer to internal cipher suite list. Should not be free'd by * caller. */ WOLF_STACK_OF(WOLFSSL_CIPHER) *wolfSSL_get_ciphers_compat(const WOLFSSL *ssl) { WOLF_STACK_OF(WOLFSSL_CIPHER)* ret = NULL; const Suites* suites; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) const CipherSuiteInfo* cipher_names = GetCipherNames(); int cipherSz = GetCipherNamesSize(); #endif WOLFSSL_ENTER("wolfSSL_get_ciphers_compat"); if (ssl == NULL) return NULL; suites = WOLFSSL_SUITES(ssl); if (suites == NULL) return NULL; /* check if stack needs populated */ if (ssl->suitesStack == NULL) { int i; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) int j; /* higher priority of cipher suite will be on top of stack */ for (i = suites->suiteSz - 2; i >=0; i-=2) { #else for (i = 0; i < suites->suiteSz; i+=2) { #endif WOLFSSL_STACK* add; /* A couple of suites are placeholders for special options, * skip those. */ if (SCSV_Check(suites->suites[i], suites->suites[i+1]) || sslCipherMinMaxCheck(ssl, suites->suites[i], suites->suites[i+1])) { continue; } add = wolfSSL_sk_new_node(ssl->heap); if (add != NULL) { add->type = STACK_TYPE_CIPHER; add->data.cipher.cipherSuite0 = suites->suites[i]; add->data.cipher.cipherSuite = suites->suites[i+1]; add->data.cipher.ssl = ssl; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) for (j = 0; j < cipherSz; j++) { if (cipher_names[j].cipherSuite0 == add->data.cipher.cipherSuite0 && cipher_names[j].cipherSuite == add->data.cipher.cipherSuite) { add->data.cipher.offset = j; break; } } #endif #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) /* in_stack is checked in wolfSSL_CIPHER_description */ add->data.cipher.in_stack = 1; #endif add->next = ret; if (ret != NULL) { add->num = ret->num + 1; } else { add->num = 1; } ret = add; } } ((WOLFSSL*)ssl)->suitesStack = ret; } return ssl->suitesStack; } #endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || \ defined(HAVE_LIGHTY) || defined(HAVE_SECRET_CALLBACK) long wolfSSL_SSL_CTX_get_timeout(const WOLFSSL_CTX *ctx) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_timeout"); if (ctx == NULL) return 0; return ctx->timeout; } /* returns the time in seconds of the current timeout */ long wolfSSL_get_timeout(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_timeout"); if (ssl == NULL) return 0; return ssl->timeout; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) \ || defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) #ifdef HAVE_ECC int wolfSSL_SSL_CTX_set_tmp_ecdh(WOLFSSL_CTX *ctx, WOLFSSL_EC_KEY *ecdh) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_tmp_ecdh"); if (ctx == NULL || ecdh == NULL) return BAD_FUNC_ARG; ctx->ecdhCurveOID = ecdh->group->curve_oid; return WOLFSSL_SUCCESS; } #endif #ifndef NO_BIO BIO *wolfSSL_SSL_get_rbio(const WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_get_rbio"); /* Nginx sets the buffer size if the read BIO is different to write BIO. * The setting buffer size doesn't do anything so return NULL for both. */ if (s == NULL) return NULL; return s->biord; } BIO *wolfSSL_SSL_get_wbio(const WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_get_wbio"); (void)s; /* Nginx sets the buffer size if the read BIO is different to write BIO. * The setting buffer size doesn't do anything so return NULL for both. */ if (s == NULL) return NULL; return s->biowr; } #endif /* !NO_BIO */ int wolfSSL_SSL_do_handshake_internal(WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_do_handshake_internal"); if (s == NULL) return WOLFSSL_FAILURE; if (s->options.side == WOLFSSL_CLIENT_END) { #ifndef NO_WOLFSSL_CLIENT return wolfSSL_connect(s); #else WOLFSSL_MSG("Client not compiled in"); return WOLFSSL_FAILURE; #endif } #ifndef NO_WOLFSSL_SERVER return wolfSSL_accept(s); #else WOLFSSL_MSG("Server not compiled in"); return WOLFSSL_FAILURE; #endif } int wolfSSL_SSL_do_handshake(WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_do_handshake"); #ifdef WOLFSSL_QUIC if (WOLFSSL_IS_QUIC(s)) { return wolfSSL_quic_do_handshake(s); } #endif return wolfSSL_SSL_do_handshake_internal(s); } #if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L int wolfSSL_SSL_in_init(const WOLFSSL *ssl) #else int wolfSSL_SSL_in_init(WOLFSSL *ssl) #endif { WOLFSSL_ENTER("wolfSSL_SSL_in_init"); return !wolfSSL_is_init_finished(ssl); } int wolfSSL_SSL_in_before(const WOLFSSL *ssl) { WOLFSSL_ENTER("wolfSSL_SSL_in_before"); if (ssl == NULL) return WOLFSSL_FAILURE; return ssl->options.handShakeState == NULL_STATE; } int wolfSSL_SSL_in_connect_init(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_SSL_in_connect_init"); if (ssl == NULL) return WOLFSSL_FAILURE; if (ssl->options.side == WOLFSSL_CLIENT_END) { return ssl->options.connectState > CONNECT_BEGIN && ssl->options.connectState < SECOND_REPLY_DONE; } return ssl->options.acceptState > ACCEPT_BEGIN && ssl->options.acceptState < ACCEPT_THIRD_REPLY_DONE; } #if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER) /* Expected return values from implementations of OpenSSL ticket key callback. */ #define TICKET_KEY_CB_RET_FAILURE (-1) #define TICKET_KEY_CB_RET_NOT_FOUND 0 #define TICKET_KEY_CB_RET_OK 1 #define TICKET_KEY_CB_RET_RENEW 2 /* Implementation of session ticket encryption/decryption using OpenSSL * callback to initialize the cipher and HMAC. * * ssl The SSL/TLS object. * keyName The key name - used to identify the key to be used. * iv The IV to use. * mac The MAC of the encrypted data. * enc Encrypt ticket. * encTicket The ticket data. * encTicketLen The length of the ticket data. * encLen The encrypted/decrypted ticket length - output length. * ctx Ignored. Application specific data. * returns WOLFSSL_TICKET_RET_OK to indicate success, * WOLFSSL_TICKET_RET_CREATE if a new ticket is required and * WOLFSSL_TICKET_RET_FATAL on error. */ static int wolfSSL_TicketKeyCb(WOLFSSL* ssl, unsigned char keyName[WOLFSSL_TICKET_NAME_SZ], unsigned char iv[WOLFSSL_TICKET_IV_SZ], unsigned char mac[WOLFSSL_TICKET_MAC_SZ], int enc, unsigned char* encTicket, int encTicketLen, int* encLen, void* ctx) { byte digest[WC_MAX_DIGEST_SIZE]; #ifdef WOLFSSL_SMALL_STACK WOLFSSL_EVP_CIPHER_CTX *evpCtx; #else WOLFSSL_EVP_CIPHER_CTX evpCtx[1]; #endif WOLFSSL_HMAC_CTX hmacCtx; unsigned int mdSz = 0; int len = 0; int ret = WOLFSSL_TICKET_RET_FATAL; int res; int totalSz = 0; (void)ctx; WOLFSSL_ENTER("wolfSSL_TicketKeyCb"); if (ssl == NULL || ssl->ctx == NULL || ssl->ctx->ticketEncWrapCb == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_TICKET_RET_FATAL; } #ifdef WOLFSSL_SMALL_STACK evpCtx = (WOLFSSL_EVP_CIPHER_CTX *)XMALLOC(sizeof(*evpCtx), ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (evpCtx == NULL) { WOLFSSL_MSG("out of memory"); return WOLFSSL_TICKET_RET_FATAL; } #endif /* Initialize the cipher and HMAC. */ wolfSSL_EVP_CIPHER_CTX_init(evpCtx); if (wolfSSL_HMAC_CTX_Init(&hmacCtx) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_HMAC_CTX_Init error"); #ifdef WOLFSSL_SMALL_STACK XFREE(evpCtx, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); #endif return WOLFSSL_TICKET_RET_FATAL; } res = ssl->ctx->ticketEncWrapCb(ssl, keyName, iv, evpCtx, &hmacCtx, enc); if (res != TICKET_KEY_CB_RET_OK && res != TICKET_KEY_CB_RET_RENEW) { WOLFSSL_MSG("Ticket callback error"); ret = WOLFSSL_TICKET_RET_FATAL; goto end; } if (wolfSSL_HMAC_size(&hmacCtx) > WOLFSSL_TICKET_MAC_SZ) { WOLFSSL_MSG("Ticket cipher MAC size error"); goto end; } if (enc) { /* Encrypt in place. */ if (!wolfSSL_EVP_CipherUpdate(evpCtx, encTicket, &len, encTicket, encTicketLen)) goto end; totalSz = len; if (totalSz > *encLen) goto end; if (!wolfSSL_EVP_EncryptFinal(evpCtx, &encTicket[len], &len)) goto end; /* Total length of encrypted data. */ totalSz += len; if (totalSz > *encLen) goto end; /* HMAC the encrypted data into the parameter 'mac'. */ if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, totalSz)) goto end; if (!wolfSSL_HMAC_Final(&hmacCtx, mac, &mdSz)) goto end; } else { /* HMAC the encrypted data and compare it to the passed in data. */ if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen)) goto end; if (!wolfSSL_HMAC_Final(&hmacCtx, digest, &mdSz)) goto end; if (XMEMCMP(mac, digest, mdSz) != 0) goto end; /* Decrypt the ticket data in place. */ if (!wolfSSL_EVP_CipherUpdate(evpCtx, encTicket, &len, encTicket, encTicketLen)) goto end; totalSz = len; if (totalSz > encTicketLen) goto end; if (!wolfSSL_EVP_DecryptFinal(evpCtx, &encTicket[len], &len)) goto end; /* Total length of decrypted data. */ totalSz += len; if (totalSz > encTicketLen) goto end; } *encLen = totalSz; if (res == TICKET_KEY_CB_RET_RENEW && !IsAtLeastTLSv1_3(ssl->version) && !enc) ret = WOLFSSL_TICKET_RET_CREATE; else ret = WOLFSSL_TICKET_RET_OK; end: (void)wc_HmacFree(&hmacCtx.hmac); (void)wolfSSL_EVP_CIPHER_CTX_cleanup(evpCtx); #ifdef WOLFSSL_SMALL_STACK XFREE(evpCtx, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } /* Set the callback to use when encrypting/decrypting tickets. * * ctx The SSL/TLS context object. * cb The OpenSSL session ticket callback. * returns WOLFSSL_SUCCESS to indicate success. */ int wolfSSL_CTX_set_tlsext_ticket_key_cb(WOLFSSL_CTX *ctx, ticketCompatCb cb) { /* Set the ticket encryption callback to be a wrapper around OpenSSL * callback. */ ctx->ticketEncCb = wolfSSL_TicketKeyCb; ctx->ticketEncWrapCb = cb; return WOLFSSL_SUCCESS; } #endif /* HAVE_SESSION_TICKET */ #endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || HAVE_LIGHTY */ #if defined(HAVE_SESSION_TICKET) && !defined(WOLFSSL_NO_DEF_TICKET_ENC_CB) && \ !defined(NO_WOLFSSL_SERVER) /* Serialize the session ticket encryption keys. * * @param [in] ctx SSL/TLS context object. * @param [in] keys Buffer to hold session ticket keys. * @param [in] keylen Length of buffer. * @return WOLFSSL_SUCCESS on success. * @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the * correct length. */ long wolfSSL_CTX_get_tlsext_ticket_keys(WOLFSSL_CTX *ctx, unsigned char *keys, int keylen) { if (ctx == NULL || keys == NULL) { return WOLFSSL_FAILURE; } if (keylen != WOLFSSL_TICKET_KEYS_SZ) { return WOLFSSL_FAILURE; } XMEMCPY(keys, ctx->ticketKeyCtx.name, WOLFSSL_TICKET_NAME_SZ); keys += WOLFSSL_TICKET_NAME_SZ; XMEMCPY(keys, ctx->ticketKeyCtx.key[0], WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; XMEMCPY(keys, ctx->ticketKeyCtx.key[1], WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; c32toa(ctx->ticketKeyCtx.expirary[0], keys); keys += OPAQUE32_LEN; c32toa(ctx->ticketKeyCtx.expirary[1], keys); return WOLFSSL_SUCCESS; } /* Deserialize the session ticket encryption keys. * * @param [in] ctx SSL/TLS context object. * @param [in] keys Session ticket keys. * @param [in] keylen Length of data. * @return WOLFSSL_SUCCESS on success. * @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the * correct length. */ long wolfSSL_CTX_set_tlsext_ticket_keys(WOLFSSL_CTX *ctx, unsigned char *keys, int keylen) { if (ctx == NULL || keys == NULL) { return WOLFSSL_FAILURE; } if (keylen != WOLFSSL_TICKET_KEYS_SZ) { return WOLFSSL_FAILURE; } XMEMCPY(ctx->ticketKeyCtx.name, keys, WOLFSSL_TICKET_NAME_SZ); keys += WOLFSSL_TICKET_NAME_SZ; XMEMCPY(ctx->ticketKeyCtx.key[0], keys, WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; XMEMCPY(ctx->ticketKeyCtx.key[1], keys, WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; ato32(keys, &ctx->ticketKeyCtx.expirary[0]); keys += OPAQUE32_LEN; ato32(keys, &ctx->ticketKeyCtx.expirary[1]); return WOLFSSL_SUCCESS; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) #ifdef HAVE_OCSP /* Not an OpenSSL API. */ int wolfSSL_get_ocsp_response(WOLFSSL* ssl, byte** response) { *response = ssl->ocspResp; return ssl->ocspRespSz; } /* Not an OpenSSL API. */ char* wolfSSL_get_ocsp_url(WOLFSSL* ssl) { return ssl->url; } /* Not an OpenSSL API. */ int wolfSSL_set_ocsp_url(WOLFSSL* ssl, char* url) { if (ssl == NULL) return WOLFSSL_FAILURE; ssl->url = url; return WOLFSSL_SUCCESS; } #endif /* OCSP */ #endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */ #if defined(HAVE_OCSP) && !defined(NO_ASN_TIME) int wolfSSL_get_ocsp_producedDate( WOLFSSL *ssl, byte *producedDate, size_t producedDate_space, int *producedDateFormat) { if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) && (ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME)) return BAD_FUNC_ARG; if ((producedDate == NULL) || (producedDateFormat == NULL)) return BAD_FUNC_ARG; if (XSTRLEN((char *)ssl->ocspProducedDate) >= producedDate_space) return BUFFER_E; XSTRNCPY((char *)producedDate, (const char *)ssl->ocspProducedDate, producedDate_space); *producedDateFormat = ssl->ocspProducedDateFormat; return 0; } int wolfSSL_get_ocsp_producedDate_tm(WOLFSSL *ssl, struct tm *produced_tm) { int idx = 0; if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) && (ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME)) return BAD_FUNC_ARG; if (produced_tm == NULL) return BAD_FUNC_ARG; if (ExtractDate(ssl->ocspProducedDate, (unsigned char)ssl->ocspProducedDateFormat, produced_tm, &idx)) return 0; else return ASN_PARSE_E; } #endif #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \ defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) int wolfSSL_CTX_get_extra_chain_certs(WOLFSSL_CTX* ctx, WOLF_STACK_OF(X509)** chain) { word32 idx; word32 length; WOLFSSL_STACK* node; WOLFSSL_STACK* last = NULL; if (ctx == NULL || chain == NULL) { chain = NULL; return WOLFSSL_FAILURE; } if (ctx->x509Chain != NULL) { *chain = ctx->x509Chain; return WOLFSSL_SUCCESS; } /* If there are no chains then success! */ *chain = NULL; if (ctx->certChain == NULL || ctx->certChain->length == 0) { return WOLFSSL_SUCCESS; } /* Create a new stack of WOLFSSL_X509 object from chain buffer. */ for (idx = 0; idx < ctx->certChain->length; ) { node = wolfSSL_sk_X509_new_null(); if (node == NULL) return WOLFSSL_FAILURE; node->next = NULL; /* 3 byte length | X509 DER data */ ato24(ctx->certChain->buffer + idx, &length); idx += 3; /* Create a new X509 from DER encoded data. */ node->data.x509 = wolfSSL_X509_d2i_ex(NULL, ctx->certChain->buffer + idx, length, ctx->heap); if (node->data.x509 == NULL) { XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL); /* Return as much of the chain as we created. */ ctx->x509Chain = *chain; return WOLFSSL_FAILURE; } idx += length; /* Add object to the end of the stack. */ if (last == NULL) { node->num = 1; *chain = node; } else { (*chain)->num++; last->next = node; } last = node; } ctx->x509Chain = *chain; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_get_tlsext_status_cb(WOLFSSL_CTX* ctx, tlsextStatusCb* cb) { if (ctx == NULL || ctx->cm == NULL || cb == NULL) return WOLFSSL_FAILURE; #if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)) if (ctx->cm->ocsp_stapling == NULL) return WOLFSSL_FAILURE; *cb = ctx->cm->ocsp_stapling->statusCb; #else (void)cb; *cb = NULL; #endif return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_tlsext_status_cb(WOLFSSL_CTX* ctx, tlsextStatusCb cb) { if (ctx == NULL || ctx->cm == NULL) return WOLFSSL_FAILURE; #if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)) /* Ensure stapling is on for callback to be used. */ wolfSSL_CTX_EnableOCSPStapling(ctx); if (ctx->cm->ocsp_stapling == NULL) return WOLFSSL_FAILURE; ctx->cm->ocsp_stapling->statusCb = cb; #else (void)cb; #endif return WOLFSSL_SUCCESS; } int wolfSSL_CTX_get0_chain_certs(WOLFSSL_CTX *ctx, WOLF_STACK_OF(WOLFSSL_X509) **sk) { WOLFSSL_ENTER("wolfSSL_CTX_get0_chain_certs"); if (ctx == NULL || sk == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } /* This function should return ctx->x509Chain if it is populated, otherwise it should be populated from ctx->certChain. This matches the behavior of wolfSSL_CTX_get_extra_chain_certs, so it is used directly. */ return wolfSSL_CTX_get_extra_chain_certs(ctx, sk); } #ifdef KEEP_OUR_CERT int wolfSSL_get0_chain_certs(WOLFSSL *ssl, WOLF_STACK_OF(WOLFSSL_X509) **sk) { WOLFSSL_ENTER("wolfSSL_get0_chain_certs"); if (ssl == NULL || sk == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } *sk = ssl->ourCertChain; return WOLFSSL_SUCCESS; } #endif WOLF_STACK_OF(WOLFSSL_STRING)* wolfSSL_sk_WOLFSSL_STRING_new(void) { WOLF_STACK_OF(WOLFSSL_STRING)* ret = wolfSSL_sk_new_node(NULL); if (ret) { ret->type = STACK_TYPE_STRING; } return ret; } void wolfSSL_WOLFSSL_STRING_free(WOLFSSL_STRING s) { WOLFSSL_ENTER("wolfSSL_WOLFSSL_STRING_free"); if (s != NULL) XFREE(s, NULL, DYNAMIC_TYPE_OPENSSL); } void wolfSSL_sk_WOLFSSL_STRING_free(WOLF_STACK_OF(WOLFSSL_STRING)* sk) { WOLFSSL_STACK* tmp; WOLFSSL_ENTER("wolfSSL_sk_WOLFSSL_STRING_free"); if (sk == NULL) return; /* parse through stack freeing each node */ while (sk) { tmp = sk->next; XFREE(sk->data.string, NULL, DYNAMIC_TYPE_OPENSSL); XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL); sk = tmp; } } WOLFSSL_STRING wolfSSL_sk_WOLFSSL_STRING_value( WOLF_STACK_OF(WOLFSSL_STRING)* strings, int idx) { for (; idx > 0 && strings != NULL; idx--) strings = strings->next; if (strings == NULL) return NULL; return strings->data.string; } int wolfSSL_sk_WOLFSSL_STRING_num(WOLF_STACK_OF(WOLFSSL_STRING)* strings) { if (strings) return (int)strings->num; return 0; } #endif /* WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || OPENSSL_ALL */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_QUIC) #ifdef HAVE_ALPN void wolfSSL_get0_alpn_selected(const WOLFSSL *ssl, const unsigned char **data, unsigned int *len) { word16 nameLen; if (ssl != NULL && data != NULL && len != NULL) { TLSX_ALPN_GetRequest(ssl->extensions, (void **)data, &nameLen); *len = nameLen; } } int wolfSSL_select_next_proto(unsigned char **out, unsigned char *outLen, const unsigned char *in, unsigned int inLen, const unsigned char *clientNames, unsigned int clientLen) { unsigned int i, j; byte lenIn, lenClient; if (out == NULL || outLen == NULL || in == NULL || clientNames == NULL) return OPENSSL_NPN_UNSUPPORTED; for (i = 0; i < inLen; i += lenIn) { lenIn = in[i++]; for (j = 0; j < clientLen; j += lenClient) { lenClient = clientNames[j++]; if (lenIn != lenClient) continue; if (XMEMCMP(in + i, clientNames + j, lenIn) == 0) { *out = (unsigned char *)(in + i); *outLen = lenIn; return OPENSSL_NPN_NEGOTIATED; } } } *out = (unsigned char *)clientNames + 1; *outLen = clientNames[0]; return OPENSSL_NPN_NO_OVERLAP; } void wolfSSL_set_alpn_select_cb(WOLFSSL *ssl, int (*cb) (WOLFSSL *ssl, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg), void *arg) { if (ssl != NULL) { ssl->alpnSelect = cb; ssl->alpnSelectArg = arg; } } void wolfSSL_CTX_set_alpn_select_cb(WOLFSSL_CTX *ctx, int (*cb) (WOLFSSL *ssl, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg), void *arg) { if (ctx != NULL) { ctx->alpnSelect = cb; ctx->alpnSelectArg = arg; } } void wolfSSL_CTX_set_next_protos_advertised_cb(WOLFSSL_CTX *s, int (*cb) (WOLFSSL *ssl, const unsigned char **out, unsigned int *outlen, void *arg), void *arg) { (void)s; (void)cb; (void)arg; WOLFSSL_STUB("wolfSSL_CTX_set_next_protos_advertised_cb"); } void wolfSSL_CTX_set_next_proto_select_cb(WOLFSSL_CTX *s, int (*cb) (WOLFSSL *ssl, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg), void *arg) { (void)s; (void)cb; (void)arg; WOLFSSL_STUB("wolfSSL_CTX_set_next_proto_select_cb"); } void wolfSSL_get0_next_proto_negotiated(const WOLFSSL *s, const unsigned char **data, unsigned *len) { (void)s; (void)data; (void)len; WOLFSSL_STUB("wolfSSL_get0_next_proto_negotiated"); } #endif /* HAVE_ALPN */ #endif /* WOLFSSL_NGINX / WOLFSSL_HAPROXY */ #if defined(OPENSSL_EXTRA) || defined(HAVE_CURL) int wolfSSL_curve_is_disabled(const WOLFSSL* ssl, word16 curve_id) { if (curve_id >= WOLFSSL_FFDHE_START) { /* DH parameters are never disabled. */ return 0; } if (curve_id > WOLFSSL_ECC_MAX_AVAIL) { WOLFSSL_MSG("Curve id out of supported range"); /* Disabled if not in valid range. */ return 1; } if (curve_id >= 32) { /* 0 is for invalid and 1-14 aren't used otherwise. */ return (ssl->disabledCurves & (1U << (curve_id - 32))) != 0; } return (ssl->disabledCurves & (1U << curve_id)) != 0; } #if (defined(HAVE_ECC) || \ defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)) static int set_curves_list(WOLFSSL* ssl, WOLFSSL_CTX *ctx, const char* names) { int idx, start = 0, len, i, ret = WOLFSSL_FAILURE; word16 curve; word32 disabled; char name[MAX_CURVE_NAME_SZ]; byte groups_len = 0; #ifdef WOLFSSL_SMALL_STACK void *heap = ssl? ssl->heap : ctx ? ctx->heap : NULL; int *groups; #else int groups[WOLFSSL_MAX_GROUP_COUNT]; #endif #ifdef WOLFSSL_SMALL_STACK groups = (int*)XMALLOC(sizeof(int)*WOLFSSL_MAX_GROUP_COUNT, heap, DYNAMIC_TYPE_TMP_BUFFER); if (groups == NULL) { ret = MEMORY_E; goto leave; } #endif for (idx = 1; names[idx-1] != '\0'; idx++) { if (names[idx] != ':' && names[idx] != '\0') continue; len = idx - start; if (len > MAX_CURVE_NAME_SZ - 1) goto leave; XMEMCPY(name, names + start, len); name[len++] = 0; /* Use XSTRNCMP to avoid valgrind error. */ if ((XSTRNCMP(name, "prime256v1", len) == 0) || (XSTRNCMP(name, "secp256r1", len) == 0) || (XSTRNCMP(name, "P-256", len) == 0)) { curve = WOLFSSL_ECC_SECP256R1; } else if ((XSTRNCMP(name, "secp384r1", len) == 0) || (XSTRNCMP(name, "P-384", len) == 0)) { curve = WOLFSSL_ECC_SECP384R1; } else if ((XSTRNCMP(name, "secp521r1", len) == 0) || (XSTRNCMP(name, "P-521", len) == 0)) { curve = WOLFSSL_ECC_SECP521R1; } #ifdef WOLFSSL_SM2 else if ((XSTRNCMP(name, "sm2p256v1", len) == 0) || (XSTRNCMP(name, "SM2", len) == 0)) { curve = WOLFSSL_ECC_SM2P256V1; } #endif #ifdef HAVE_CURVE25519 else if (XSTRNCMP(name, "X25519", len) == 0) { curve = WOLFSSL_ECC_X25519; } #endif #ifdef HAVE_CURVE448 else if (XSTRNCMP(name, "X448", len) == 0) { curve = WOLFSSL_ECC_X448; } #endif else { #if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) && defined(HAVE_ECC) int nret; const ecc_set_type *eccSet; nret = wc_ecc_get_curve_idx_from_name(name); if (nret < 0) { WOLFSSL_MSG("Could not find name in set"); goto leave; } eccSet = wc_ecc_get_curve_params(ret); if (eccSet == NULL) { WOLFSSL_MSG("NULL set returned"); goto leave; } curve = GetCurveByOID(eccSet->oidSum); #else WOLFSSL_MSG("API not present to search farther using name"); goto leave; #endif } if (curve >= WOLFSSL_ECC_MAX_AVAIL) { WOLFSSL_MSG("curve value is not supported"); goto leave; } for (i = 0; i < groups_len; ++i) { if (groups[i] == curve) { /* silently drop duplicates */ break; } } if (i >= groups_len) { if (groups_len >= WOLFSSL_MAX_GROUP_COUNT) { WOLFSSL_MSG_EX("setting %d or more supported " "curves is not permitted", groups_len); goto leave; } groups[groups_len++] = (int)curve; } start = idx + 1; } /* Disable all curves so that only the ones the user wants are enabled. */ disabled = 0xFFFFFFFFUL; for (i = 0; i < groups_len; ++i) { /* Switch the bit to off and therefore is enabled. */ curve = (word16)groups[i]; if (curve >= 32) { /* 0 is for invalid and 1-14 aren't used otherwise. */ disabled &= ~(1U << (curve - 32)); } else { disabled &= ~(1U << curve); } #ifdef HAVE_SUPPORTED_CURVES #if defined(WOLFSSL_TLS13) && !defined(WOLFSSL_OLD_SET_CURVES_LIST) /* using the wolfSSL API to set the groups, this will populate * (ssl|ctx)->groups and reset any TLSX_SUPPORTED_GROUPS. * The order in (ssl|ctx)->groups will then be respected * when TLSX_KEY_SHARE needs to be established */ if ((ssl && wolfSSL_set_groups(ssl, groups, groups_len) != WOLFSSL_SUCCESS) || (ctx && wolfSSL_CTX_set_groups(ctx, groups, groups_len) != WOLFSSL_SUCCESS)) { WOLFSSL_MSG("Unable to set supported curve"); goto leave; } #elif !defined(NO_WOLFSSL_CLIENT) /* set the supported curve so client TLS extension contains only the * desired curves */ if ((ssl && wolfSSL_UseSupportedCurve(ssl, curve) != WOLFSSL_SUCCESS) || (ctx && wolfSSL_CTX_UseSupportedCurve(ctx, curve) != WOLFSSL_SUCCESS)) { WOLFSSL_MSG("Unable to set supported curve"); goto leave; } #endif #endif /* HAVE_SUPPORTED_CURVES */ } if (ssl) ssl->disabledCurves = disabled; else ctx->disabledCurves = disabled; ret = WOLFSSL_SUCCESS; leave: #ifdef WOLFSSL_SMALL_STACK if (groups) XFREE((void*)groups, heap, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } int wolfSSL_CTX_set1_curves_list(WOLFSSL_CTX* ctx, const char* names) { if (ctx == NULL || names == NULL) { WOLFSSL_MSG("ctx or names was NULL"); return WOLFSSL_FAILURE; } return set_curves_list(NULL, ctx, names); } int wolfSSL_set1_curves_list(WOLFSSL* ssl, const char* names) { if (ssl == NULL || names == NULL) { WOLFSSL_MSG("ssl or names was NULL"); return WOLFSSL_FAILURE; } return set_curves_list(ssl, NULL, names); } #endif /* (HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448) */ #endif /* OPENSSL_EXTRA || HAVE_CURL */ #ifdef OPENSSL_EXTRA /* Sets a callback for when sending and receiving protocol messages. * This callback is copied to all WOLFSSL objects created from the ctx. * * ctx WOLFSSL_CTX structure to set callback in * cb callback to use * * return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE with error case */ int wolfSSL_CTX_set_msg_callback(WOLFSSL_CTX *ctx, SSL_Msg_Cb cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_msg_callback"); if (ctx == NULL) { WOLFSSL_MSG("Null ctx passed in"); return WOLFSSL_FAILURE; } ctx->protoMsgCb = cb; return WOLFSSL_SUCCESS; } /* Sets a callback for when sending and receiving protocol messages. * * ssl WOLFSSL structure to set callback in * cb callback to use * * return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE with error case */ int wolfSSL_set_msg_callback(WOLFSSL *ssl, SSL_Msg_Cb cb) { WOLFSSL_ENTER("wolfSSL_set_msg_callback"); if (ssl == NULL) { return WOLFSSL_FAILURE; } if (cb != NULL) { ssl->toInfoOn = 1; } ssl->protoMsgCb = cb; return WOLFSSL_SUCCESS; } /* set the user argument to pass to the msg callback when called * return WOLFSSL_SUCCESS on success */ int wolfSSL_CTX_set_msg_callback_arg(WOLFSSL_CTX *ctx, void* arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_msg_callback_arg"); if (ctx == NULL) { WOLFSSL_MSG("Null WOLFSSL_CTX passed in"); return WOLFSSL_FAILURE; } ctx->protoMsgCtx = arg; return WOLFSSL_SUCCESS; } int wolfSSL_set_msg_callback_arg(WOLFSSL *ssl, void* arg) { WOLFSSL_ENTER("wolfSSL_set_msg_callback_arg"); if (ssl == NULL) return WOLFSSL_FAILURE; ssl->protoMsgCtx = arg; return WOLFSSL_SUCCESS; } void *wolfSSL_OPENSSL_memdup(const void *data, size_t siz, const char* file, int line) { void *ret; (void)file; (void)line; if (data == NULL || siz >= INT_MAX) return NULL; ret = OPENSSL_malloc(siz); if (ret == NULL) { return NULL; } return XMEMCPY(ret, data, siz); } void wolfSSL_OPENSSL_cleanse(void *ptr, size_t len) { if (ptr) ForceZero(ptr, (word32)len); } int wolfSSL_CTX_set_alpn_protos(WOLFSSL_CTX *ctx, const unsigned char *p, unsigned int p_len) { WOLFSSL_ENTER("wolfSSL_CTX_set_alpn_protos"); if (ctx == NULL) return BAD_FUNC_ARG; if (ctx->alpn_cli_protos != NULL) { XFREE((void*)ctx->alpn_cli_protos, ctx->heap, DYNAMIC_TYPE_OPENSSL); } ctx->alpn_cli_protos = (const unsigned char*)XMALLOC(p_len, ctx->heap, DYNAMIC_TYPE_OPENSSL); if (ctx->alpn_cli_protos == NULL) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } XMEMCPY((void*)ctx->alpn_cli_protos, p, p_len); ctx->alpn_cli_protos_len = p_len; #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 0; #else return WOLFSSL_SUCCESS; #endif } #ifdef HAVE_ALPN #ifndef NO_BIO /* Sets the ALPN extension protos * * example format is * unsigned char p[] = { * 8, 'h', 't', 't', 'p', '/', '1', '.', '1' * }; * * returns WOLFSSL_SUCCESS on success */ int wolfSSL_set_alpn_protos(WOLFSSL* ssl, const unsigned char* p, unsigned int p_len) { WOLFSSL_BIO* bio; char* pt = NULL; unsigned int sz; unsigned int idx = 0; int alpn_opt = WOLFSSL_ALPN_CONTINUE_ON_MISMATCH; WOLFSSL_ENTER("wolfSSL_set_alpn_protos"); if (ssl == NULL || p_len <= 1) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem()); if (bio == NULL) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } /* convert into comma separated list */ while (idx < p_len - 1) { unsigned int i; sz = p[idx++]; if (idx + sz > p_len) { WOLFSSL_MSG("Bad list format"); wolfSSL_BIO_free(bio); #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } if (sz > 0) { for (i = 0; i < sz; i++) { wolfSSL_BIO_write(bio, &p[idx++], 1); } if (idx < p_len - 1) wolfSSL_BIO_write(bio, ",", 1); } } wolfSSL_BIO_write(bio, "\0", 1); /* clears out all current ALPN extensions set */ TLSX_Remove(&ssl->extensions, TLSX_APPLICATION_LAYER_PROTOCOL, ssl->heap); if ((sz = wolfSSL_BIO_get_mem_data(bio, &pt)) > 0) { wolfSSL_UseALPN(ssl, pt, sz, (byte) alpn_opt); } wolfSSL_BIO_free(bio); #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 0; #else return WOLFSSL_SUCCESS; #endif } #endif /* !NO_BIO */ #endif /* HAVE_ALPN */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) #ifndef NO_BIO #define WOLFSSL_BIO_INCLUDED #include "src/bio.c" #endif word32 nid2oid(int nid, int grp) { /* get OID type */ switch (grp) { /* oidHashType */ case oidHashType: switch (nid) { #ifdef WOLFSSL_MD2 case NID_md2: return MD2h; #endif #ifndef NO_MD5 case NID_md5: return MD5h; #endif #ifndef NO_SHA case NID_sha1: return SHAh; #endif case NID_sha224: return SHA224h; #ifndef NO_SHA256 case NID_sha256: return SHA256h; #endif #ifdef WOLFSSL_SHA384 case NID_sha384: return SHA384h; #endif #ifdef WOLFSSL_SHA512 case NID_sha512: return SHA512h; #endif #ifndef WOLFSSL_NOSHA3_224 case NID_sha3_224: return SHA3_224h; #endif #ifndef WOLFSSL_NOSHA3_256 case NID_sha3_256: return SHA3_256h; #endif #ifndef WOLFSSL_NOSHA3_384 case NID_sha3_384: return SHA3_384h; #endif #ifndef WOLFSSL_NOSHA3_512 case NID_sha3_512: return SHA3_512h; #endif } break; /* oidSigType */ case oidSigType: switch (nid) { #ifndef NO_DSA case NID_dsaWithSHA1: return CTC_SHAwDSA; case NID_dsa_with_SHA256: return CTC_SHA256wDSA; #endif /* NO_DSA */ #ifndef NO_RSA case NID_md2WithRSAEncryption: return CTC_MD2wRSA; case NID_md5WithRSAEncryption: return CTC_MD5wRSA; case NID_sha1WithRSAEncryption: return CTC_SHAwRSA; case NID_sha224WithRSAEncryption: return CTC_SHA224wRSA; case NID_sha256WithRSAEncryption: return CTC_SHA256wRSA; case NID_sha384WithRSAEncryption: return CTC_SHA384wRSA; case NID_sha512WithRSAEncryption: return CTC_SHA512wRSA; #ifdef WOLFSSL_SHA3 case NID_RSA_SHA3_224: return CTC_SHA3_224wRSA; case NID_RSA_SHA3_256: return CTC_SHA3_256wRSA; case NID_RSA_SHA3_384: return CTC_SHA3_384wRSA; case NID_RSA_SHA3_512: return CTC_SHA3_512wRSA; #endif #endif /* NO_RSA */ #ifdef HAVE_ECC case NID_ecdsa_with_SHA1: return CTC_SHAwECDSA; case NID_ecdsa_with_SHA224: return CTC_SHA224wECDSA; case NID_ecdsa_with_SHA256: return CTC_SHA256wECDSA; case NID_ecdsa_with_SHA384: return CTC_SHA384wECDSA; case NID_ecdsa_with_SHA512: return CTC_SHA512wECDSA; #ifdef WOLFSSL_SHA3 case NID_ecdsa_with_SHA3_224: return CTC_SHA3_224wECDSA; case NID_ecdsa_with_SHA3_256: return CTC_SHA3_256wECDSA; case NID_ecdsa_with_SHA3_384: return CTC_SHA3_384wECDSA; case NID_ecdsa_with_SHA3_512: return CTC_SHA3_512wECDSA; #endif #endif /* HAVE_ECC */ } break; /* oidKeyType */ case oidKeyType: switch (nid) { #ifndef NO_DSA case NID_dsa: return DSAk; #endif /* NO_DSA */ #ifndef NO_RSA case NID_rsaEncryption: return RSAk; #endif /* NO_RSA */ #ifdef HAVE_ECC case NID_X9_62_id_ecPublicKey: return ECDSAk; #endif /* HAVE_ECC */ } break; #ifdef HAVE_ECC case oidCurveType: switch (nid) { case NID_X9_62_prime192v1: return ECC_SECP192R1_OID; case NID_X9_62_prime192v2: return ECC_PRIME192V2_OID; case NID_X9_62_prime192v3: return ECC_PRIME192V3_OID; case NID_X9_62_prime239v1: return ECC_PRIME239V1_OID; case NID_X9_62_prime239v2: return ECC_PRIME239V2_OID; case NID_X9_62_prime239v3: return ECC_PRIME239V3_OID; case NID_X9_62_prime256v1: return ECC_SECP256R1_OID; case NID_secp112r1: return ECC_SECP112R1_OID; case NID_secp112r2: return ECC_SECP112R2_OID; case NID_secp128r1: return ECC_SECP128R1_OID; case NID_secp128r2: return ECC_SECP128R2_OID; case NID_secp160r1: return ECC_SECP160R1_OID; case NID_secp160r2: return ECC_SECP160R2_OID; case NID_secp224r1: return ECC_SECP224R1_OID; case NID_secp384r1: return ECC_SECP384R1_OID; case NID_secp521r1: return ECC_SECP521R1_OID; case NID_secp160k1: return ECC_SECP160K1_OID; case NID_secp192k1: return ECC_SECP192K1_OID; case NID_secp224k1: return ECC_SECP224K1_OID; case NID_secp256k1: return ECC_SECP256K1_OID; case NID_brainpoolP160r1: return ECC_BRAINPOOLP160R1_OID; case NID_brainpoolP192r1: return ECC_BRAINPOOLP192R1_OID; case NID_brainpoolP224r1: return ECC_BRAINPOOLP224R1_OID; case NID_brainpoolP256r1: return ECC_BRAINPOOLP256R1_OID; case NID_brainpoolP320r1: return ECC_BRAINPOOLP320R1_OID; case NID_brainpoolP384r1: return ECC_BRAINPOOLP384R1_OID; case NID_brainpoolP512r1: return ECC_BRAINPOOLP512R1_OID; } break; #endif /* HAVE_ECC */ /* oidBlkType */ case oidBlkType: switch (nid) { #ifdef WOLFSSL_AES_128 case AES128CBCb: return AES128CBCb; #endif #ifdef WOLFSSL_AES_192 case AES192CBCb: return AES192CBCb; #endif #ifdef WOLFSSL_AES_256 case AES256CBCb: return AES256CBCb; #endif #ifndef NO_DES3 case NID_des: return DESb; case NID_des3: return DES3b; #endif } break; #ifdef HAVE_OCSP case oidOcspType: switch (nid) { case NID_id_pkix_OCSP_basic: return OCSP_BASIC_OID; case OCSP_NONCE_OID: return OCSP_NONCE_OID; } break; #endif /* HAVE_OCSP */ /* oidCertExtType */ case oidCertExtType: switch (nid) { case NID_basic_constraints: return BASIC_CA_OID; case NID_subject_alt_name: return ALT_NAMES_OID; case NID_crl_distribution_points: return CRL_DIST_OID; case NID_info_access: return AUTH_INFO_OID; case NID_authority_key_identifier: return AUTH_KEY_OID; case NID_subject_key_identifier: return SUBJ_KEY_OID; case NID_inhibit_any_policy: return INHIBIT_ANY_OID; case NID_key_usage: return KEY_USAGE_OID; case NID_name_constraints: return NAME_CONS_OID; case NID_certificate_policies: return CERT_POLICY_OID; case NID_ext_key_usage: return EXT_KEY_USAGE_OID; } break; /* oidCertAuthInfoType */ case oidCertAuthInfoType: switch (nid) { case NID_ad_OCSP: return AIA_OCSP_OID; case NID_ad_ca_issuers: return AIA_CA_ISSUER_OID; } break; /* oidCertPolicyType */ case oidCertPolicyType: switch (nid) { case NID_any_policy: return CP_ANY_OID; } break; /* oidCertAltNameType */ case oidCertAltNameType: switch (nid) { case NID_hw_name_oid: return HW_NAME_OID; } break; /* oidCertKeyUseType */ case oidCertKeyUseType: switch (nid) { case NID_anyExtendedKeyUsage: return EKU_ANY_OID; case EKU_SERVER_AUTH_OID: return EKU_SERVER_AUTH_OID; case EKU_CLIENT_AUTH_OID: return EKU_CLIENT_AUTH_OID; case EKU_OCSP_SIGN_OID: return EKU_OCSP_SIGN_OID; } break; /* oidKdfType */ case oidKdfType: switch (nid) { case PBKDF2_OID: return PBKDF2_OID; } break; /* oidPBEType */ case oidPBEType: switch (nid) { case PBE_SHA1_RC4_128: return PBE_SHA1_RC4_128; case PBE_SHA1_DES: return PBE_SHA1_DES; case PBE_SHA1_DES3: return PBE_SHA1_DES3; } break; /* oidKeyWrapType */ case oidKeyWrapType: switch (nid) { #ifdef WOLFSSL_AES_128 case AES128_WRAP: return AES128_WRAP; #endif #ifdef WOLFSSL_AES_192 case AES192_WRAP: return AES192_WRAP; #endif #ifdef WOLFSSL_AES_256 case AES256_WRAP: return AES256_WRAP; #endif } break; /* oidCmsKeyAgreeType */ case oidCmsKeyAgreeType: switch (nid) { #ifndef NO_SHA case dhSinglePass_stdDH_sha1kdf_scheme: return dhSinglePass_stdDH_sha1kdf_scheme; #endif #ifdef WOLFSSL_SHA224 case dhSinglePass_stdDH_sha224kdf_scheme: return dhSinglePass_stdDH_sha224kdf_scheme; #endif #ifndef NO_SHA256 case dhSinglePass_stdDH_sha256kdf_scheme: return dhSinglePass_stdDH_sha256kdf_scheme; #endif #ifdef WOLFSSL_SHA384 case dhSinglePass_stdDH_sha384kdf_scheme: return dhSinglePass_stdDH_sha384kdf_scheme; #endif #ifdef WOLFSSL_SHA512 case dhSinglePass_stdDH_sha512kdf_scheme: return dhSinglePass_stdDH_sha512kdf_scheme; #endif } break; /* oidCmsKeyAgreeType */ #ifdef WOLFSSL_CERT_REQ case oidCsrAttrType: switch (nid) { case NID_pkcs9_contentType: return PKCS9_CONTENT_TYPE_OID; case NID_pkcs9_challengePassword: return CHALLENGE_PASSWORD_OID; case NID_serialNumber: return SERIAL_NUMBER_OID; case NID_userId: return USER_ID_OID; case NID_surname: return SURNAME_OID; } break; #endif default: WOLFSSL_MSG("NID not in table"); /* MSVC warns without the cast */ return (word32)-1; } /* MSVC warns without the cast */ return (word32)-1; } int oid2nid(word32 oid, int grp) { size_t i; /* get OID type */ switch (grp) { /* oidHashType */ case oidHashType: switch (oid) { #ifdef WOLFSSL_MD2 case MD2h: return NID_md2; #endif #ifndef NO_MD5 case MD5h: return NID_md5; #endif #ifndef NO_SHA case SHAh: return NID_sha1; #endif case SHA224h: return NID_sha224; #ifndef NO_SHA256 case SHA256h: return NID_sha256; #endif #ifdef WOLFSSL_SHA384 case SHA384h: return NID_sha384; #endif #ifdef WOLFSSL_SHA512 case SHA512h: return NID_sha512; #endif } break; /* oidSigType */ case oidSigType: switch (oid) { #ifndef NO_DSA case CTC_SHAwDSA: return NID_dsaWithSHA1; case CTC_SHA256wDSA: return NID_dsa_with_SHA256; #endif /* NO_DSA */ #ifndef NO_RSA case CTC_MD2wRSA: return NID_md2WithRSAEncryption; case CTC_MD5wRSA: return NID_md5WithRSAEncryption; case CTC_SHAwRSA: return NID_sha1WithRSAEncryption; case CTC_SHA224wRSA: return NID_sha224WithRSAEncryption; case CTC_SHA256wRSA: return NID_sha256WithRSAEncryption; case CTC_SHA384wRSA: return NID_sha384WithRSAEncryption; case CTC_SHA512wRSA: return NID_sha512WithRSAEncryption; #ifdef WOLFSSL_SHA3 case CTC_SHA3_224wRSA: return NID_RSA_SHA3_224; case CTC_SHA3_256wRSA: return NID_RSA_SHA3_256; case CTC_SHA3_384wRSA: return NID_RSA_SHA3_384; case CTC_SHA3_512wRSA: return NID_RSA_SHA3_512; #endif #ifdef WC_RSA_PSS case CTC_RSASSAPSS: return NID_rsassaPss; #endif #endif /* NO_RSA */ #ifdef HAVE_ECC case CTC_SHAwECDSA: return NID_ecdsa_with_SHA1; case CTC_SHA224wECDSA: return NID_ecdsa_with_SHA224; case CTC_SHA256wECDSA: return NID_ecdsa_with_SHA256; case CTC_SHA384wECDSA: return NID_ecdsa_with_SHA384; case CTC_SHA512wECDSA: return NID_ecdsa_with_SHA512; #ifdef WOLFSSL_SHA3 case CTC_SHA3_224wECDSA: return NID_ecdsa_with_SHA3_224; case CTC_SHA3_256wECDSA: return NID_ecdsa_with_SHA3_256; case CTC_SHA3_384wECDSA: return NID_ecdsa_with_SHA3_384; case CTC_SHA3_512wECDSA: return NID_ecdsa_with_SHA3_512; #endif #endif /* HAVE_ECC */ } break; /* oidKeyType */ case oidKeyType: switch (oid) { #ifndef NO_DSA case DSAk: return NID_dsa; #endif /* NO_DSA */ #ifndef NO_RSA case RSAk: return NID_rsaEncryption; #ifdef WC_RSA_PSS case RSAPSSk: return NID_rsassaPss; #endif #endif /* NO_RSA */ #ifdef HAVE_ECC case ECDSAk: return NID_X9_62_id_ecPublicKey; #endif /* HAVE_ECC */ } break; #ifdef HAVE_ECC case oidCurveType: switch (oid) { case ECC_SECP192R1_OID: return NID_X9_62_prime192v1; case ECC_PRIME192V2_OID: return NID_X9_62_prime192v2; case ECC_PRIME192V3_OID: return NID_X9_62_prime192v3; case ECC_PRIME239V1_OID: return NID_X9_62_prime239v1; case ECC_PRIME239V2_OID: return NID_X9_62_prime239v2; case ECC_PRIME239V3_OID: return NID_X9_62_prime239v3; case ECC_SECP256R1_OID: return NID_X9_62_prime256v1; case ECC_SECP112R1_OID: return NID_secp112r1; case ECC_SECP112R2_OID: return NID_secp112r2; case ECC_SECP128R1_OID: return NID_secp128r1; case ECC_SECP128R2_OID: return NID_secp128r2; case ECC_SECP160R1_OID: return NID_secp160r1; case ECC_SECP160R2_OID: return NID_secp160r2; case ECC_SECP224R1_OID: return NID_secp224r1; case ECC_SECP384R1_OID: return NID_secp384r1; case ECC_SECP521R1_OID: return NID_secp521r1; case ECC_SECP160K1_OID: return NID_secp160k1; case ECC_SECP192K1_OID: return NID_secp192k1; case ECC_SECP224K1_OID: return NID_secp224k1; case ECC_SECP256K1_OID: return NID_secp256k1; case ECC_BRAINPOOLP160R1_OID: return NID_brainpoolP160r1; case ECC_BRAINPOOLP192R1_OID: return NID_brainpoolP192r1; case ECC_BRAINPOOLP224R1_OID: return NID_brainpoolP224r1; case ECC_BRAINPOOLP256R1_OID: return NID_brainpoolP256r1; case ECC_BRAINPOOLP320R1_OID: return NID_brainpoolP320r1; case ECC_BRAINPOOLP384R1_OID: return NID_brainpoolP384r1; case ECC_BRAINPOOLP512R1_OID: return NID_brainpoolP512r1; } break; #endif /* HAVE_ECC */ /* oidBlkType */ case oidBlkType: switch (oid) { #ifdef WOLFSSL_AES_128 case AES128CBCb: return AES128CBCb; #endif #ifdef WOLFSSL_AES_192 case AES192CBCb: return AES192CBCb; #endif #ifdef WOLFSSL_AES_256 case AES256CBCb: return AES256CBCb; #endif #ifndef NO_DES3 case DESb: return NID_des; case DES3b: return NID_des3; #endif } break; #ifdef HAVE_OCSP case oidOcspType: switch (oid) { case OCSP_BASIC_OID: return NID_id_pkix_OCSP_basic; case OCSP_NONCE_OID: return OCSP_NONCE_OID; } break; #endif /* HAVE_OCSP */ /* oidCertExtType */ case oidCertExtType: switch (oid) { case BASIC_CA_OID: return NID_basic_constraints; case ALT_NAMES_OID: return NID_subject_alt_name; case CRL_DIST_OID: return NID_crl_distribution_points; case AUTH_INFO_OID: return NID_info_access; case AUTH_KEY_OID: return NID_authority_key_identifier; case SUBJ_KEY_OID: return NID_subject_key_identifier; case INHIBIT_ANY_OID: return NID_inhibit_any_policy; case KEY_USAGE_OID: return NID_key_usage; case NAME_CONS_OID: return NID_name_constraints; case CERT_POLICY_OID: return NID_certificate_policies; case EXT_KEY_USAGE_OID: return NID_ext_key_usage; } break; /* oidCertAuthInfoType */ case oidCertAuthInfoType: switch (oid) { case AIA_OCSP_OID: return NID_ad_OCSP; case AIA_CA_ISSUER_OID: return NID_ad_ca_issuers; } break; /* oidCertPolicyType */ case oidCertPolicyType: switch (oid) { case CP_ANY_OID: return NID_any_policy; } break; /* oidCertAltNameType */ case oidCertAltNameType: switch (oid) { case HW_NAME_OID: return NID_hw_name_oid; } break; /* oidCertKeyUseType */ case oidCertKeyUseType: switch (oid) { case EKU_ANY_OID: return NID_anyExtendedKeyUsage; case EKU_SERVER_AUTH_OID: return EKU_SERVER_AUTH_OID; case EKU_CLIENT_AUTH_OID: return EKU_CLIENT_AUTH_OID; case EKU_OCSP_SIGN_OID: return EKU_OCSP_SIGN_OID; } break; /* oidKdfType */ case oidKdfType: switch (oid) { case PBKDF2_OID: return PBKDF2_OID; } break; /* oidPBEType */ case oidPBEType: switch (oid) { case PBE_SHA1_RC4_128: return PBE_SHA1_RC4_128; case PBE_SHA1_DES: return PBE_SHA1_DES; case PBE_SHA1_DES3: return PBE_SHA1_DES3; } break; /* oidKeyWrapType */ case oidKeyWrapType: switch (oid) { #ifdef WOLFSSL_AES_128 case AES128_WRAP: return AES128_WRAP; #endif #ifdef WOLFSSL_AES_192 case AES192_WRAP: return AES192_WRAP; #endif #ifdef WOLFSSL_AES_256 case AES256_WRAP: return AES256_WRAP; #endif } break; /* oidCmsKeyAgreeType */ case oidCmsKeyAgreeType: switch (oid) { #ifndef NO_SHA case dhSinglePass_stdDH_sha1kdf_scheme: return dhSinglePass_stdDH_sha1kdf_scheme; #endif #ifdef WOLFSSL_SHA224 case dhSinglePass_stdDH_sha224kdf_scheme: return dhSinglePass_stdDH_sha224kdf_scheme; #endif #ifndef NO_SHA256 case dhSinglePass_stdDH_sha256kdf_scheme: return dhSinglePass_stdDH_sha256kdf_scheme; #endif #ifdef WOLFSSL_SHA384 case dhSinglePass_stdDH_sha384kdf_scheme: return dhSinglePass_stdDH_sha384kdf_scheme; #endif #ifdef WOLFSSL_SHA512 case dhSinglePass_stdDH_sha512kdf_scheme: return dhSinglePass_stdDH_sha512kdf_scheme; #endif } break; #ifdef WOLFSSL_CERT_REQ case oidCsrAttrType: switch (oid) { case PKCS9_CONTENT_TYPE_OID: return NID_pkcs9_contentType; case CHALLENGE_PASSWORD_OID: return NID_pkcs9_challengePassword; case SERIAL_NUMBER_OID: return NID_serialNumber; case USER_ID_OID: return NID_userId; } break; #endif default: WOLFSSL_MSG("OID not in table"); } /* If not found in above switch then try the table */ for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) { if (wolfssl_object_info[i].id == (int)oid) { return wolfssl_object_info[i].nid; } } return -1; } /* frees all nodes in the current threads error queue * * id thread id. ERR_remove_state is depreciated and id is ignored. The * current threads queue will be free'd. */ void wolfSSL_ERR_remove_state(unsigned long id) { WOLFSSL_ENTER("wolfSSL_ERR_remove_state"); (void)id; if (wc_ERR_remove_state() != 0) { WOLFSSL_MSG("Error with removing the state"); } } #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_ALL #if !defined(NO_BIO) && !defined(NO_PWDBASED) && defined(HAVE_PKCS8) static int bio_get_data(WOLFSSL_BIO* bio, byte** data) { int ret = 0; byte* mem = NULL; ret = wolfSSL_BIO_get_len(bio); if (ret > 0) { mem = (byte*)XMALLOC(ret, bio->heap, DYNAMIC_TYPE_OPENSSL); if (mem == NULL) { WOLFSSL_MSG("Memory error"); ret = MEMORY_E; } if (ret >= 0) { if ((ret = wolfSSL_BIO_read(bio, mem, ret)) <= 0) { XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); ret = MEMORY_E; mem = NULL; } } } *data = mem; return ret; } /* DER data is PKCS#8 encrypted. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PKCS8PrivateKey_bio(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** pkey, wc_pem_password_cb* cb, void* ctx) { int ret; byte* der; int len; byte* p; word32 algId; WOLFSSL_EVP_PKEY* key; if ((len = bio_get_data(bio, &der)) < 0) return NULL; if (cb != NULL) { char password[NAME_SZ]; int passwordSz = cb(password, sizeof(password), PEM_PASS_READ, ctx); if (passwordSz < 0) { XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL); return NULL; } #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("wolfSSL_d2i_PKCS8PrivateKey_bio password", password, passwordSz); #endif ret = ToTraditionalEnc(der, len, password, passwordSz, &algId); if (ret < 0) { XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL); return NULL; } ForceZero(password, passwordSz); #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Check(password, passwordSz); #endif } p = der; key = wolfSSL_d2i_PrivateKey_EVP(pkey, &p, len); XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL); return key; } #endif /* !NO_BIO && !NO_PWDBASED && HAVE_PKCS8 */ /* Detect which type of key it is before decoding. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_AutoPrivateKey(WOLFSSL_EVP_PKEY** pkey, const unsigned char** pp, long length) { int ret; WOLFSSL_EVP_PKEY* key = NULL; const byte* der = *pp; word32 idx = 0; int len = 0; int cnt = 0; word32 algId; word32 keyLen = (word32)length; /* Take off PKCS#8 wrapper if found. */ if ((len = ToTraditionalInline_ex(der, &idx, keyLen, &algId)) >= 0) { der += idx; keyLen = len; } idx = 0; len = 0; /* Use the number of elements in the outer sequence to determine key type. */ ret = GetSequence(der, &idx, &len, keyLen); if (ret >= 0) { word32 end = idx + len; while (ret >= 0 && idx < end) { /* Skip type */ idx++; /* Get length and skip over - keeping count */ len = 0; ret = GetLength(der, &idx, &len, keyLen); if (ret >= 0) { if (idx + len > end) ret = ASN_PARSE_E; else { idx += len; cnt++; } } } } if (ret >= 0) { int type; /* ECC includes version, private[, curve][, public key] */ if (cnt >= 2 && cnt <= 4) type = EVP_PKEY_EC; else type = EVP_PKEY_RSA; key = wolfSSL_d2i_PrivateKey(type, pkey, &der, keyLen); *pp = der; } return key; } #endif /* OPENSSL_ALL */ #ifdef WOLFSSL_STATIC_EPHEMERAL int wolfSSL_StaticEphemeralKeyLoad(WOLFSSL* ssl, int keyAlgo, void* keyPtr) { int ret; word32 idx = 0; DerBuffer* der = NULL; if (ssl == NULL || ssl->ctx == NULL || keyPtr == NULL) { return BAD_FUNC_ARG; } #ifndef SINGLE_THREADED if (!ssl->ctx->staticKELockInit) { return BUFFER_E; /* no keys set */ } ret = wc_LockMutex(&ssl->ctx->staticKELock); if (ret != 0) { return ret; } #endif ret = BUFFER_E; /* set default error */ switch (keyAlgo) { #ifndef NO_DH case WC_PK_TYPE_DH: if (ssl != NULL) der = ssl->staticKE.dhKey; if (der == NULL) der = ssl->ctx->staticKE.dhKey; if (der != NULL) { DhKey* key = (DhKey*)keyPtr; WOLFSSL_MSG("Using static DH key"); ret = wc_DhKeyDecode(der->buffer, &idx, key, der->length); } break; #endif #ifdef HAVE_ECC case WC_PK_TYPE_ECDH: if (ssl != NULL) der = ssl->staticKE.ecKey; if (der == NULL) der = ssl->ctx->staticKE.ecKey; if (der != NULL) { ecc_key* key = (ecc_key*)keyPtr; WOLFSSL_MSG("Using static ECDH key"); ret = wc_EccPrivateKeyDecode(der->buffer, &idx, key, der->length); } break; #endif #ifdef HAVE_CURVE25519 case WC_PK_TYPE_CURVE25519: if (ssl != NULL) der = ssl->staticKE.x25519Key; if (der == NULL) der = ssl->ctx->staticKE.x25519Key; if (der != NULL) { curve25519_key* key = (curve25519_key*)keyPtr; WOLFSSL_MSG("Using static X25519 key"); ret = wc_Curve25519PrivateKeyDecode(der->buffer, &idx, key, der->length); } break; #endif #ifdef HAVE_CURVE448 case WC_PK_TYPE_CURVE448: if (ssl != NULL) der = ssl->staticKE.x448Key; if (der == NULL) der = ssl->ctx->staticKE.x448Key; if (der != NULL) { curve448_key* key = (curve448_key*)keyPtr; WOLFSSL_MSG("Using static X448 key"); ret = wc_Curve448PrivateKeyDecode(der->buffer, &idx, key, der->length); } break; #endif default: /* not supported */ ret = NOT_COMPILED_IN; break; } #ifndef SINGLE_THREADED wc_UnLockMutex(&ssl->ctx->staticKELock); #endif return ret; } static int SetStaticEphemeralKey(WOLFSSL_CTX* ctx, StaticKeyExchangeInfo_t* staticKE, int keyAlgo, const char* key, unsigned int keySz, int format, void* heap) { int ret = 0; DerBuffer* der = NULL; byte* keyBuf = NULL; #ifndef NO_FILESYSTEM const char* keyFile = NULL; #endif /* allow empty key to free buffer */ if (staticKE == NULL || (key == NULL && keySz > 0)) { return BAD_FUNC_ARG; } WOLFSSL_ENTER("SetStaticEphemeralKey"); /* if just free'ing key then skip loading */ if (key != NULL) { #ifndef NO_FILESYSTEM /* load file from filesystem */ if (key != NULL && keySz == 0) { size_t keyBufSz = 0; keyFile = (const char*)key; ret = wc_FileLoad(keyFile, &keyBuf, &keyBufSz, heap); if (ret != 0) { return ret; } keySz = (unsigned int)keyBufSz; } else #endif { /* use as key buffer directly */ keyBuf = (byte*)key; } if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER int keyFormat = 0; ret = PemToDer(keyBuf, keySz, PRIVATEKEY_TYPE, &der, heap, NULL, &keyFormat); /* auto detect key type */ if (ret == 0 && keyAlgo == WC_PK_TYPE_NONE) { if (keyFormat == ECDSAk) keyAlgo = WC_PK_TYPE_ECDH; else if (keyFormat == X25519k) keyAlgo = WC_PK_TYPE_CURVE25519; else keyAlgo = WC_PK_TYPE_DH; } #else ret = NOT_COMPILED_IN; #endif } else { /* Detect PK type (if required) */ #ifdef HAVE_ECC if (keyAlgo == WC_PK_TYPE_NONE) { word32 idx = 0; ecc_key eccKey; ret = wc_ecc_init_ex(&eccKey, heap, INVALID_DEVID); if (ret == 0) { ret = wc_EccPrivateKeyDecode(keyBuf, &idx, &eccKey, keySz); if (ret == 0) keyAlgo = WC_PK_TYPE_ECDH; wc_ecc_free(&eccKey); } } #endif #if !defined(NO_DH) && defined(WOLFSSL_DH_EXTRA) if (keyAlgo == WC_PK_TYPE_NONE) { word32 idx = 0; DhKey dhKey; ret = wc_InitDhKey_ex(&dhKey, heap, INVALID_DEVID); if (ret == 0) { ret = wc_DhKeyDecode(keyBuf, &idx, &dhKey, keySz); if (ret == 0) keyAlgo = WC_PK_TYPE_DH; wc_FreeDhKey(&dhKey); } } #endif #ifdef HAVE_CURVE25519 if (keyAlgo == WC_PK_TYPE_NONE) { word32 idx = 0; curve25519_key x25519Key; ret = wc_curve25519_init_ex(&x25519Key, heap, INVALID_DEVID); if (ret == 0) { ret = wc_Curve25519PrivateKeyDecode(keyBuf, &idx, &x25519Key, keySz); if (ret == 0) keyAlgo = WC_PK_TYPE_CURVE25519; wc_curve25519_free(&x25519Key); } } #endif #ifdef HAVE_CURVE448 if (keyAlgo == WC_PK_TYPE_NONE) { word32 idx = 0; curve448_key x448Key; ret = wc_curve448_init(&x448Key); if (ret == 0) { ret = wc_Curve448PrivateKeyDecode(keyBuf, &idx, &x448Key, keySz); if (ret == 0) keyAlgo = WC_PK_TYPE_CURVE448; wc_curve448_free(&x448Key); } } #endif if (keyAlgo != WC_PK_TYPE_NONE) { ret = AllocDer(&der, keySz, PRIVATEKEY_TYPE, heap); if (ret == 0) { XMEMCPY(der->buffer, keyBuf, keySz); } } } } #ifndef NO_FILESYSTEM /* done with keyFile buffer */ if (keyFile && keyBuf) { XFREE(keyBuf, heap, DYNAMIC_TYPE_TMP_BUFFER); } #endif #ifndef SINGLE_THREADED if (ret == 0 && !ctx->staticKELockInit) { ret = wc_InitMutex(&ctx->staticKELock); if (ret == 0) { ctx->staticKELockInit = 1; } } #endif if (ret == 0 #ifndef SINGLE_THREADED && (ret = wc_LockMutex(&ctx->staticKELock)) == 0 #endif ) { switch (keyAlgo) { #ifndef NO_DH case WC_PK_TYPE_DH: FreeDer(&staticKE->dhKey); staticKE->dhKey = der; der = NULL; break; #endif #ifdef HAVE_ECC case WC_PK_TYPE_ECDH: FreeDer(&staticKE->ecKey); staticKE->ecKey = der; der = NULL; break; #endif #ifdef HAVE_CURVE25519 case WC_PK_TYPE_CURVE25519: FreeDer(&staticKE->x25519Key); staticKE->x25519Key = der; der = NULL; break; #endif #ifdef HAVE_CURVE448 case WC_PK_TYPE_CURVE448: FreeDer(&staticKE->x448Key); staticKE->x448Key = der; der = NULL; break; #endif default: /* not supported */ ret = NOT_COMPILED_IN; break; } #ifndef SINGLE_THREADED wc_UnLockMutex(&ctx->staticKELock); #endif } if (ret != 0) { FreeDer(&der); } (void)ctx; /* not used for single threaded */ WOLFSSL_LEAVE("SetStaticEphemeralKey", ret); return ret; } int wolfSSL_CTX_set_ephemeral_key(WOLFSSL_CTX* ctx, int keyAlgo, const char* key, unsigned int keySz, int format) { if (ctx == NULL) { return BAD_FUNC_ARG; } return SetStaticEphemeralKey(ctx, &ctx->staticKE, keyAlgo, key, keySz, format, ctx->heap); } int wolfSSL_set_ephemeral_key(WOLFSSL* ssl, int keyAlgo, const char* key, unsigned int keySz, int format) { if (ssl == NULL || ssl->ctx == NULL) { return BAD_FUNC_ARG; } return SetStaticEphemeralKey(ssl->ctx, &ssl->staticKE, keyAlgo, key, keySz, format, ssl->heap); } static int GetStaticEphemeralKey(WOLFSSL_CTX* ctx, WOLFSSL* ssl, int keyAlgo, const unsigned char** key, unsigned int* keySz) { int ret = 0; DerBuffer* der = NULL; if (key) *key = NULL; if (keySz) *keySz = 0; #ifndef SINGLE_THREADED if (ctx->staticKELockInit && (ret = wc_LockMutex(&ctx->staticKELock)) != 0) { return ret; } #endif switch (keyAlgo) { #ifndef NO_DH case WC_PK_TYPE_DH: if (ssl != NULL) der = ssl->staticKE.dhKey; if (der == NULL) der = ctx->staticKE.dhKey; break; #endif #ifdef HAVE_ECC case WC_PK_TYPE_ECDH: if (ssl != NULL) der = ssl->staticKE.ecKey; if (der == NULL) der = ctx->staticKE.ecKey; break; #endif #ifdef HAVE_CURVE25519 case WC_PK_TYPE_CURVE25519: if (ssl != NULL) der = ssl->staticKE.x25519Key; if (der == NULL) der = ctx->staticKE.x25519Key; break; #endif #ifdef HAVE_CURVE448 case WC_PK_TYPE_CURVE448: if (ssl != NULL) der = ssl->staticKE.x448Key; if (der == NULL) der = ctx->staticKE.x448Key; break; #endif default: /* not supported */ ret = NOT_COMPILED_IN; break; } if (der) { if (key) *key = der->buffer; if (keySz) *keySz = der->length; } #ifndef SINGLE_THREADED wc_UnLockMutex(&ctx->staticKELock); #endif return ret; } /* returns pointer to currently loaded static ephemeral as ASN.1 */ /* this can be converted to PEM using wc_DerToPem */ int wolfSSL_CTX_get_ephemeral_key(WOLFSSL_CTX* ctx, int keyAlgo, const unsigned char** key, unsigned int* keySz) { if (ctx == NULL) { return BAD_FUNC_ARG; } return GetStaticEphemeralKey(ctx, NULL, keyAlgo, key, keySz); } int wolfSSL_get_ephemeral_key(WOLFSSL* ssl, int keyAlgo, const unsigned char** key, unsigned int* keySz) { if (ssl == NULL || ssl->ctx == NULL) { return BAD_FUNC_ARG; } return GetStaticEphemeralKey(ssl->ctx, ssl, keyAlgo, key, keySz); } #endif /* WOLFSSL_STATIC_EPHEMERAL */ #if defined(OPENSSL_EXTRA) /* wolfSSL_THREADID_current is provided as a compat API with * CRYPTO_THREADID_current to register current thread id into given id object. * However, CRYPTO_THREADID_current API has been deprecated and no longer * exists in the OpenSSL 1.0.0 or later.This API only works as a stub * like as existing wolfSSL_THREADID_set_numeric. */ void wolfSSL_THREADID_current(WOLFSSL_CRYPTO_THREADID* id) { (void)id; return; } /* wolfSSL_THREADID_hash is provided as a compatible API with * CRYPTO_THREADID_hash which returns a hash value calculated from the * specified thread id. However, CRYPTO_THREADID_hash API has been * deprecated and no longer exists in the OpenSSL 1.0.0 or later. * This API only works as a stub to returns 0. This behavior is * equivalent to the latest OpenSSL CRYPTO_THREADID_hash. */ unsigned long wolfSSL_THREADID_hash(const WOLFSSL_CRYPTO_THREADID* id) { (void)id; return 0UL; } /* wolfSSL_CTX_set_ecdh_auto is provided as compatible API with * SSL_CTX_set_ecdh_auto to enable auto ecdh curve selection functionality. * Since this functionality is enabled by default in wolfSSL, * this API exists as a stub. */ int wolfSSL_CTX_set_ecdh_auto(WOLFSSL_CTX* ctx, int onoff) { (void)ctx; (void)onoff; return WOLFSSL_SUCCESS; } /** * set security level (wolfSSL doesn't support security level) * @param ctx a pointer to WOLFSSL_EVP_PKEY_CTX structure * @param level security level */ void wolfSSL_CTX_set_security_level(WOLFSSL_CTX* ctx, int level) { WOLFSSL_ENTER("wolfSSL_CTX_set_security_level"); (void)ctx; (void)level; } /** * get security level (wolfSSL doesn't support security level) * @param ctx a pointer to WOLFSSL_EVP_PKEY_CTX structure * @return always 0(level 0) */ int wolfSSL_CTX_get_security_level(const WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_security_level"); (void)ctx; return 0; } #if defined(OPENSSL_EXTRA) && defined(HAVE_SECRET_CALLBACK) /* * This API accepts a user callback which puts key-log records into * a KEY LOGFILE. The callback is stored into a CTX and propagated to * each SSL object on its creation timing. */ void wolfSSL_CTX_set_keylog_callback(WOLFSSL_CTX* ctx, wolfSSL_CTX_keylog_cb_func cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_keylog_callback"); /* stores the callback into WOLFSSL_CTX */ if (ctx != NULL) { ctx->keyLogCb = cb; } } wolfSSL_CTX_keylog_cb_func wolfSSL_CTX_get_keylog_callback( const WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_keylog_callback"); if (ctx != NULL) return ctx->keyLogCb; else return NULL; } #endif /* OPENSSL_EXTRA && HAVE_SECRET_CALLBACK */ #endif /* OPENSSL_EXTRA */ #ifndef NO_CERT #define WOLFSSL_X509_INCLUDED #include "src/x509.c" #endif /******************************************************************************* * START OF standard C library wrapping APIs ******************************************************************************/ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \ (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \ defined(WOLFSSL_OPENSSH))) #ifndef NO_WOLFSSL_STUB int wolfSSL_CRYPTO_set_mem_ex_functions(void *(*m) (size_t, const char *, int), void *(*r) (void *, size_t, const char *, int), void (*f) (void *)) { (void) m; (void) r; (void) f; WOLFSSL_ENTER("wolfSSL_CRYPTO_set_mem_ex_functions"); WOLFSSL_STUB("CRYPTO_set_mem_ex_functions"); return WOLFSSL_FAILURE; } #endif #endif #if defined(OPENSSL_EXTRA) /** * free allocated memory resource * @param str a pointer to resource to be freed * @param file dummy argument * @param line dummy argument */ void wolfSSL_CRYPTO_free(void *str, const char *file, int line) { (void)file; (void)line; XFREE(str, 0, DYNAMIC_TYPE_TMP_BUFFER); } /** * allocate memory with size of num * @param num size of memory allocation to be malloced * @param file dummy argument * @param line dummy argument * @return a pointer to allocated memory on succssesful, otherwise NULL */ void *wolfSSL_CRYPTO_malloc(size_t num, const char *file, int line) { (void)file; (void)line; return XMALLOC(num, 0, DYNAMIC_TYPE_TMP_BUFFER); } #endif /******************************************************************************* * END OF standard C library wrapping APIs ******************************************************************************/ /******************************************************************************* * START OF EX_DATA APIs ******************************************************************************/ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \ (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \ defined(WOLFSSL_OPENSSH))) void wolfSSL_CRYPTO_cleanup_all_ex_data(void){ WOLFSSL_ENTER("CRYPTO_cleanup_all_ex_data"); } #endif #ifdef HAVE_EX_DATA void* wolfSSL_CRYPTO_get_ex_data(const WOLFSSL_CRYPTO_EX_DATA* ex_data, int idx) { WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data"); #ifdef MAX_EX_DATA if(ex_data && idx < MAX_EX_DATA && idx >= 0) { return ex_data->ex_data[idx]; } #else (void)ex_data; (void)idx; #endif return NULL; } int wolfSSL_CRYPTO_set_ex_data(WOLFSSL_CRYPTO_EX_DATA* ex_data, int idx, void *data) { WOLFSSL_ENTER("wolfSSL_CRYPTO_set_ex_data"); #ifdef MAX_EX_DATA if (ex_data && idx < MAX_EX_DATA && idx >= 0) { #ifdef HAVE_EX_DATA_CLEANUP_HOOKS if (ex_data->ex_data_cleanup_routines[idx]) { if (ex_data->ex_data[idx]) ex_data->ex_data_cleanup_routines[idx](ex_data->ex_data[idx]); ex_data->ex_data_cleanup_routines[idx] = NULL; } #endif ex_data->ex_data[idx] = data; return WOLFSSL_SUCCESS; } #else (void)ex_data; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } #ifdef HAVE_EX_DATA_CLEANUP_HOOKS int wolfSSL_CRYPTO_set_ex_data_with_cleanup( WOLFSSL_CRYPTO_EX_DATA* ex_data, int idx, void *data, wolfSSL_ex_data_cleanup_routine_t cleanup_routine) { WOLFSSL_ENTER("wolfSSL_CRYPTO_set_ex_data_with_cleanup"); if (ex_data && idx < MAX_EX_DATA && idx >= 0) { if (ex_data->ex_data_cleanup_routines[idx] && ex_data->ex_data[idx]) ex_data->ex_data_cleanup_routines[idx](ex_data->ex_data[idx]); ex_data->ex_data[idx] = data; ex_data->ex_data_cleanup_routines[idx] = cleanup_routine; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #endif /* HAVE_EX_DATA_CLEANUP_HOOKS */ /** * Issues unique index for the class specified by class_index. * Other parameter except class_index are ignored. * Currently, following class_index are accepted: * - WOLF_CRYPTO_EX_INDEX_SSL * - WOLF_CRYPTO_EX_INDEX_SSL_CTX * - WOLF_CRYPTO_EX_INDEX_X509 * @param class_index index one of CRYPTO_EX_INDEX_xxx * @param argp parameters to be saved * @param argl parameters to be saved * @param new_func a pointer to WOLFSSL_CRYPTO_EX_new * @param dup_func a pointer to WOLFSSL_CRYPTO_EX_dup * @param free_func a pointer to WOLFSSL_CRYPTO_EX_free * @return index value grater or equal to zero on success, -1 on failure. */ int wolfSSL_CRYPTO_get_ex_new_index(int class_index, long argl, void *argp, WOLFSSL_CRYPTO_EX_new* new_func, WOLFSSL_CRYPTO_EX_dup* dup_func, WOLFSSL_CRYPTO_EX_free* free_func) { WOLFSSL_ENTER("wolfSSL_CRYPTO_get_ex_new_index"); return wolfssl_get_ex_new_index(class_index, argl, argp, new_func, dup_func, free_func); } #endif /* HAVE_EX_DATA */ /******************************************************************************* * END OF EX_DATA APIs ******************************************************************************/ /******************************************************************************* * START OF BUF_MEM API ******************************************************************************/ #if defined(OPENSSL_EXTRA) /* Begin functions for openssl/buffer.h */ WOLFSSL_BUF_MEM* wolfSSL_BUF_MEM_new(void) { WOLFSSL_BUF_MEM* buf; buf = (WOLFSSL_BUF_MEM*)XMALLOC(sizeof(WOLFSSL_BUF_MEM), NULL, DYNAMIC_TYPE_OPENSSL); if (buf) { XMEMSET(buf, 0, sizeof(WOLFSSL_BUF_MEM)); } return buf; } /* non-compat API returns length of buffer on success */ int wolfSSL_BUF_MEM_grow_ex(WOLFSSL_BUF_MEM* buf, size_t len, char zeroFill) { int len_int = (int)len; int mx; char* tmp; /* verify provided arguments */ if (buf == NULL || len_int < 0) { return 0; /* BAD_FUNC_ARG; */ } /* check to see if fits in existing length */ if (buf->length > len) { buf->length = len; return len_int; } /* check to see if fits in max buffer */ if (buf->max >= len) { if (buf->data != NULL && zeroFill) { XMEMSET(&buf->data[buf->length], 0, len - buf->length); } buf->length = len; return len_int; } /* expand size, to handle growth */ mx = (len_int + 3) / 3 * 4; /* use realloc */ tmp = (char*)XREALLOC(buf->data, mx, NULL, DYNAMIC_TYPE_OPENSSL); if (tmp == NULL) { return 0; /* ERR_R_MALLOC_FAILURE; */ } buf->data = tmp; buf->max = mx; if (zeroFill) XMEMSET(&buf->data[buf->length], 0, len - buf->length); buf->length = len; return len_int; } /* returns length of buffer on success */ int wolfSSL_BUF_MEM_grow(WOLFSSL_BUF_MEM* buf, size_t len) { return wolfSSL_BUF_MEM_grow_ex(buf, len, 1); } /* non-compat API returns length of buffer on success */ int wolfSSL_BUF_MEM_resize(WOLFSSL_BUF_MEM* buf, size_t len) { char* tmp; int mx; /* verify provided arguments */ if (buf == NULL || len == 0 || (int)len <= 0) { return 0; /* BAD_FUNC_ARG; */ } if (len == buf->length) return (int)len; if (len > buf->length) return wolfSSL_BUF_MEM_grow_ex(buf, len, 0); /* expand size, to handle growth */ mx = ((int)len + 3) / 3 * 4; /* We want to shrink the internal buffer */ tmp = (char*)XREALLOC(buf->data, mx, NULL, DYNAMIC_TYPE_OPENSSL); if (tmp == NULL) return 0; buf->data = tmp; buf->length = len; buf->max = mx; return (int)len; } void wolfSSL_BUF_MEM_free(WOLFSSL_BUF_MEM* buf) { if (buf) { if (buf->data) { XFREE(buf->data, NULL, DYNAMIC_TYPE_OPENSSL); buf->data = NULL; } buf->max = 0; buf->length = 0; XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL); } } /* End Functions for openssl/buffer.h */ #endif /* OPENSSL_EXTRA */ /******************************************************************************* * END OF BUF_MEM API ******************************************************************************/ #define WOLFSSL_CONF_INCLUDED #include /******************************************************************************* * START OF RAND API ******************************************************************************/ #if defined(OPENSSL_EXTRA) && !defined(WOLFSSL_NO_OPENSSL_RAND_CB) static int wolfSSL_RAND_InitMutex(void) { #ifndef WOLFSSL_MUTEX_INITIALIZER if (gRandMethodsInit == 0) { if (wc_InitMutex(&gRandMethodMutex) != 0) { WOLFSSL_MSG("Bad Init Mutex rand methods"); return BAD_MUTEX_E; } gRandMethodsInit = 1; } #endif return 0; } #endif #ifdef OPENSSL_EXTRA /* Checks if the global RNG has been created. If not then one is created. * * Returns WOLFSSL_SUCCESS when no error is encountered. */ int wolfSSL_RAND_Init(void) { int ret = WOLFSSL_FAILURE; #ifdef HAVE_GLOBAL_RNG if (wc_LockMutex(&globalRNGMutex) == 0) { if (initGlobalRNG == 0) { ret = wc_InitRng(&globalRNG); if (ret == 0) { initGlobalRNG = 1; ret = WOLFSSL_SUCCESS; } } else { /* GlobalRNG is already initialized */ ret = WOLFSSL_SUCCESS; } wc_UnLockMutex(&globalRNGMutex); } #endif return ret; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_RAND_seed(const void* seed, int len) { #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) { if (gRandMethods && gRandMethods->seed) { int ret = gRandMethods->seed(seed, len); wc_UnLockMutex(&gRandMethodMutex); return ret; } wc_UnLockMutex(&gRandMethodMutex); } #else (void)seed; (void)len; #endif /* Make sure global shared RNG (globalRNG) is initialized */ return wolfSSL_RAND_Init(); } /* Returns the path for reading seed data from. * Uses the env variable $RANDFILE first if set, if not then used $HOME/.rnd * * Note uses stdlib by default unless XGETENV macro is overwritten * * fname buffer to hold path * len length of fname buffer * * Returns a pointer to fname on success and NULL on failure */ const char* wolfSSL_RAND_file_name(char* fname, unsigned long len) { #if !defined(NO_FILESYSTEM) && defined(XGETENV) char* rt; WOLFSSL_ENTER("wolfSSL_RAND_file_name"); if (fname == NULL) { return NULL; } XMEMSET(fname, 0, len); if ((rt = XGETENV("RANDFILE")) != NULL) { if (len > XSTRLEN(rt)) { XMEMCPY(fname, rt, XSTRLEN(rt)); } else { WOLFSSL_MSG("RANDFILE too large for buffer"); rt = NULL; } } /* $RANDFILE was not set or is too large, check $HOME */ if (rt == NULL) { const char ap[] = "/.rnd"; WOLFSSL_MSG("Environment variable RANDFILE not set"); if ((rt = XGETENV("HOME")) == NULL) { WOLFSSL_MSG("Environment variable HOME not set"); return NULL; } if (len > XSTRLEN(rt) + XSTRLEN(ap)) { fname[0] = '\0'; XSTRNCAT(fname, rt, len); XSTRNCAT(fname, ap, len - XSTRLEN(rt)); return fname; } else { WOLFSSL_MSG("HOME too large for buffer"); return NULL; } } return fname; #else WOLFSSL_ENTER("wolfSSL_RAND_file_name"); WOLFSSL_MSG("RAND_file_name requires filesystem and getenv support, " "not compiled in"); (void)fname; (void)len; return NULL; #endif } /* Writes 1024 bytes from the RNG to the given file name. * * fname name of file to write to * * Returns the number of bytes written */ int wolfSSL_RAND_write_file(const char* fname) { int bytes = 0; WOLFSSL_ENTER("wolfSSL_RAND_write_file"); if (fname == NULL) { return WOLFSSL_FAILURE; } #ifndef NO_FILESYSTEM { #ifndef WOLFSSL_SMALL_STACK unsigned char buf[1024]; #else unsigned char* buf = (unsigned char *)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { WOLFSSL_MSG("malloc failed"); return WOLFSSL_FAILURE; } #endif bytes = 1024; /* default size of buf */ if (initGlobalRNG == 0 && wolfSSL_RAND_Init() != WOLFSSL_SUCCESS) { WOLFSSL_MSG("No RNG to use"); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return 0; } if (wc_RNG_GenerateBlock(&globalRNG, buf, bytes) != 0) { WOLFSSL_MSG("Error generating random buffer"); bytes = 0; } else { XFILE f; #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("wolfSSL_RAND_write_file buf", buf, bytes); #endif f = XFOPEN(fname, "wb"); if (f == XBADFILE) { WOLFSSL_MSG("Error opening the file"); bytes = 0; } else { size_t bytes_written = XFWRITE(buf, 1, bytes, f); bytes = (int)bytes_written; XFCLOSE(f); } } ForceZero(buf, bytes); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #elif defined(WOLFSSL_CHECK_MEM_ZERO) wc_MemZero_Check(buf, sizeof(buf)); #endif } #endif return bytes; } #ifndef FREERTOS_TCP /* These constant values are protocol values made by egd */ #if defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API) && \ !defined(HAVE_FIPS) && defined(HAVE_HASHDRBG) && !defined(NETOS) && \ defined(HAVE_SYS_UN_H) #define WOLFSSL_EGD_NBLOCK 0x01 #include #endif /* This collects entropy from the path nm and seeds the global PRNG with it. * * nm is the file path to the egd server * * Returns the number of bytes read. */ int wolfSSL_RAND_egd(const char* nm) { #ifdef WOLFSSL_EGD_NBLOCK struct sockaddr_un rem; int fd; int ret = WOLFSSL_SUCCESS; word32 bytes = 0; word32 idx = 0; #ifndef WOLFSSL_SMALL_STACK unsigned char buf[256]; #else unsigned char* buf; buf = (unsigned char*)XMALLOC(256, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { WOLFSSL_MSG("Not enough memory"); return WOLFSSL_FATAL_ERROR; } #endif XMEMSET(&rem, 0, sizeof(struct sockaddr_un)); if (nm == NULL) { #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return WOLFSSL_FATAL_ERROR; } fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) { WOLFSSL_MSG("Error creating socket"); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return WOLFSSL_FATAL_ERROR; } rem.sun_family = AF_UNIX; XSTRNCPY(rem.sun_path, nm, sizeof(rem.sun_path) - 1); rem.sun_path[sizeof(rem.sun_path)-1] = '\0'; /* connect to egd server */ if (connect(fd, (struct sockaddr*)&rem, sizeof(struct sockaddr_un)) == -1) { WOLFSSL_MSG("error connecting to egd server"); ret = WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_CHECK_MEM_ZERO if (ret == WOLFSSL_SUCCESS) { wc_MemZero_Add("wolfSSL_RAND_egd buf", buf, 256); } #endif while (ret == WOLFSSL_SUCCESS && bytes < 255 && idx + 2 < 256) { buf[idx] = WOLFSSL_EGD_NBLOCK; buf[idx + 1] = 255 - bytes; /* request 255 bytes from server */ ret = (int)write(fd, buf + idx, 2); if (ret != 2) { if (errno == EAGAIN) { ret = WOLFSSL_SUCCESS; continue; } WOLFSSL_MSG("error requesting entropy from egd server"); ret = WOLFSSL_FATAL_ERROR; break; } /* attempting to read */ buf[idx] = 0; ret = (int)read(fd, buf + idx, 256 - bytes); if (ret == 0) { WOLFSSL_MSG("error reading entropy from egd server"); ret = WOLFSSL_FATAL_ERROR; break; } if (ret > 0 && buf[idx] > 0) { bytes += buf[idx]; /* egd stores amount sent in first byte */ if (bytes + idx > 255 || buf[idx] > ret) { WOLFSSL_MSG("Buffer error"); ret = WOLFSSL_FATAL_ERROR; break; } XMEMMOVE(buf + idx, buf + idx + 1, buf[idx]); idx = bytes; ret = WOLFSSL_SUCCESS; if (bytes >= 255) { break; } } else { if (errno == EAGAIN || errno == EINTR) { WOLFSSL_MSG("EGD would read"); ret = WOLFSSL_SUCCESS; /* try again */ } else if (buf[idx] == 0) { /* if egd returned 0 then there is no more entropy to be had. Do not try more reads. */ ret = WOLFSSL_SUCCESS; break; } else { WOLFSSL_MSG("Error with read"); ret = WOLFSSL_FATAL_ERROR; } } } if (bytes > 0 && ret == WOLFSSL_SUCCESS) { /* call to check global RNG is created */ if (wolfSSL_RAND_Init() != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error with initializing global RNG structure"); ret = WOLFSSL_FATAL_ERROR; } else if (wc_RNG_DRBG_Reseed(&globalRNG, (const byte*) buf, bytes) != 0) { WOLFSSL_MSG("Error with reseeding DRBG structure"); ret = WOLFSSL_FATAL_ERROR; } #ifdef SHOW_SECRETS else { /* print out entropy found only when no error occurred */ word32 i; printf("EGD Entropy = "); for (i = 0; i < bytes; i++) { printf("%02X", buf[i]); } printf("\n"); } #endif } ForceZero(buf, bytes); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #elif defined(WOLFSSL_CHECK_MEM_ZERO) wc_MemZero_Check(buf, 256); #endif close(fd); if (ret == WOLFSSL_SUCCESS) { return bytes; } else { return ret; } #else WOLFSSL_MSG("Type of socket needed is not available"); WOLFSSL_MSG("\tor using mode where DRBG API is not available"); (void)nm; return WOLFSSL_FATAL_ERROR; #endif /* WOLFSSL_EGD_NBLOCK */ } #endif /* !FREERTOS_TCP */ void wolfSSL_RAND_Cleanup(void) { #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) { if (gRandMethods && gRandMethods->cleanup) gRandMethods->cleanup(); wc_UnLockMutex(&gRandMethodMutex); } #ifndef WOLFSSL_MUTEX_INITIALIZER if (wc_FreeMutex(&gRandMethodMutex) == 0) gRandMethodsInit = 0; #endif #endif #ifdef HAVE_GLOBAL_RNG if (wc_LockMutex(&globalRNGMutex) == 0) { if (initGlobalRNG) { wc_FreeRng(&globalRNG); initGlobalRNG = 0; } wc_UnLockMutex(&globalRNGMutex); } #endif } /* returns WOLFSSL_SUCCESS if the bytes generated are valid otherwise * WOLFSSL_FAILURE */ int wolfSSL_RAND_pseudo_bytes(unsigned char* buf, int num) { int ret; int hash; byte secret[DRBG_SEED_LEN]; /* secret length arbitrarily chosen */ #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) { if (gRandMethods && gRandMethods->pseudorand) { ret = gRandMethods->pseudorand(buf, num); wc_UnLockMutex(&gRandMethodMutex); return ret; } wc_UnLockMutex(&gRandMethodMutex); } #endif #ifdef WOLFSSL_HAVE_PRF #ifndef NO_SHA256 hash = WC_SHA256; #elif defined(WOLFSSL_SHA384) hash = WC_SHA384; #elif !defined(NO_SHA) hash = WC_SHA; #elif !defined(NO_MD5) hash = WC_MD5; #endif /* get secret value from source of entropy */ ret = wolfSSL_RAND_bytes(secret, DRBG_SEED_LEN); /* uses input buffer to seed for pseudo random number generation, each * thread will potentially have different results this way */ if (ret == WOLFSSL_SUCCESS) { PRIVATE_KEY_UNLOCK(); ret = wc_PRF(buf, num, secret, DRBG_SEED_LEN, (const byte*)buf, num, hash, NULL, INVALID_DEVID); PRIVATE_KEY_LOCK(); ret = (ret == 0) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE; } #else /* fall back to just doing wolfSSL_RAND_bytes if PRF not avialbale */ ret = wolfSSL_RAND_bytes(buf, num); (void)hash; (void)secret; #endif return ret; } /* returns WOLFSSL_SUCCESS if the bytes generated are valid otherwise * WOLFSSL_FAILURE */ int wolfSSL_RAND_bytes(unsigned char* buf, int num) { int ret = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif int initTmpRng = 0; #ifdef HAVE_GLOBAL_RNG int used_global = 0; #endif WOLFSSL_ENTER("wolfSSL_RAND_bytes"); /* sanity check */ if (buf == NULL || num < 0) /* return code compliant with OpenSSL */ return 0; /* if a RAND callback has been set try and use it */ #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) { if (gRandMethods && gRandMethods->bytes) { ret = gRandMethods->bytes(buf, num); wc_UnLockMutex(&gRandMethodMutex); return ret; } wc_UnLockMutex(&gRandMethodMutex); } #endif #ifdef HAVE_GLOBAL_RNG if (initGlobalRNG) { if (wc_LockMutex(&globalRNGMutex) != 0) { WOLFSSL_MSG("Bad Lock Mutex rng"); return ret; } /* the above access to initGlobalRNG is racey -- recheck it now that we * have the lock. */ if (initGlobalRNG) { rng = &globalRNG; used_global = 1; } else { wc_UnLockMutex(&globalRNGMutex); } } if (used_global == 0) #endif { #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return ret; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } } if (rng) { /* handles size greater than RNG_MAX_BLOCK_LEN */ int blockCount = num / RNG_MAX_BLOCK_LEN; while (blockCount--) { ret = wc_RNG_GenerateBlock(rng, buf, RNG_MAX_BLOCK_LEN); if (ret != 0) { WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); break; } num -= RNG_MAX_BLOCK_LEN; buf += RNG_MAX_BLOCK_LEN; } if (ret == 0 && num) ret = wc_RNG_GenerateBlock(rng, buf, num); if (ret != 0) WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); else ret = WOLFSSL_SUCCESS; } #ifdef HAVE_GLOBAL_RNG if (used_global == 1) wc_UnLockMutex(&globalRNGMutex); #endif if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK if (tmpRNG) XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; } int wolfSSL_RAND_poll(void) { byte entropy[16]; int ret = 0; word32 entropy_sz = 16; WOLFSSL_ENTER("wolfSSL_RAND_poll"); if (initGlobalRNG == 0){ WOLFSSL_MSG("Global RNG no Init"); return WOLFSSL_FAILURE; } ret = wc_GenerateSeed(&globalRNG.seed, entropy, entropy_sz); if (ret != 0){ WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); ret = WOLFSSL_FAILURE; }else ret = WOLFSSL_SUCCESS; return ret; } /* If a valid struct is provided with function pointers, will override RAND_seed, bytes, cleanup, add, pseudo_bytes and status. If a NULL pointer is passed in, it will cancel any previous function overrides. Returns WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE on failure. */ int wolfSSL_RAND_set_rand_method(const WOLFSSL_RAND_METHOD *methods) { #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) { gRandMethods = methods; wc_UnLockMutex(&gRandMethodMutex); return WOLFSSL_SUCCESS; } #else (void)methods; #endif return WOLFSSL_FAILURE; } /* Returns WOLFSSL_SUCCESS if the RNG has been seeded with enough data */ int wolfSSL_RAND_status(void) { int ret = WOLFSSL_SUCCESS; #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) { if (gRandMethods && gRandMethods->status) ret = gRandMethods->status(); wc_UnLockMutex(&gRandMethodMutex); } else { ret = WOLFSSL_FAILURE; } #else /* wolfCrypt provides enough seed internally, so return success */ #endif return ret; } void wolfSSL_RAND_add(const void* add, int len, double entropy) { #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if (wolfSSL_RAND_InitMutex() == 0 && wc_LockMutex(&gRandMethodMutex) == 0) { if (gRandMethods && gRandMethods->add) { /* callback has return code, but RAND_add does not */ (void)gRandMethods->add(add, len, entropy); } wc_UnLockMutex(&gRandMethodMutex); } #else /* wolfSSL seeds/adds internally, use explicit RNG if you want to take control */ (void)add; (void)len; (void)entropy; #endif } #ifndef NO_WOLFSSL_STUB void wolfSSL_RAND_screen(void) { WOLFSSL_STUB("RAND_screen"); } #endif int wolfSSL_RAND_load_file(const char* fname, long len) { (void)fname; /* wolfCrypt provides enough entropy internally or will report error */ if (len == -1) return 1024; else return (int)len; } #endif /* OPENSSL_EXTRA */ /******************************************************************************* * END OF RAND API ******************************************************************************/ /******************************************************************************* * START OF EVP_CIPHER API ******************************************************************************/ #ifdef OPENSSL_EXTRA /* store for external read of iv, WOLFSSL_SUCCESS on success */ int wolfSSL_StoreExternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_StoreExternalIV"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); return WOLFSSL_FATAL_ERROR; } switch (ctx->cipherType) { #ifndef NO_AES #if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT) case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : WOLFSSL_MSG("AES CBC"); XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, ctx->ivSz); break; #endif #ifdef HAVE_AESGCM case AES_128_GCM_TYPE : case AES_192_GCM_TYPE : case AES_256_GCM_TYPE : WOLFSSL_MSG("AES GCM"); XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, ctx->ivSz); break; #endif /* HAVE_AESGCM */ #ifdef HAVE_AESCCM case AES_128_CCM_TYPE : case AES_192_CCM_TYPE : case AES_256_CCM_TYPE : WOLFSSL_MSG("AES CCM"); XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, ctx->ivSz); break; #endif /* HAVE_AESCCM */ #ifdef HAVE_AES_ECB case AES_128_ECB_TYPE : case AES_192_ECB_TYPE : case AES_256_ECB_TYPE : WOLFSSL_MSG("AES ECB"); break; #endif #ifdef WOLFSSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : WOLFSSL_MSG("AES CTR"); XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); break; #endif /* WOLFSSL_AES_COUNTER */ #ifdef WOLFSSL_AES_CFB #if !defined(HAVE_SELFTEST) && !defined(HAVE_FIPS) case AES_128_CFB1_TYPE: case AES_192_CFB1_TYPE: case AES_256_CFB1_TYPE: WOLFSSL_MSG("AES CFB1"); break; case AES_128_CFB8_TYPE: case AES_192_CFB8_TYPE: case AES_256_CFB8_TYPE: WOLFSSL_MSG("AES CFB8"); break; #endif /* !HAVE_SELFTEST && !HAVE_FIPS */ case AES_128_CFB128_TYPE: case AES_192_CFB128_TYPE: case AES_256_CFB128_TYPE: WOLFSSL_MSG("AES CFB128"); break; #endif /* WOLFSSL_AES_CFB */ #if defined(WOLFSSL_AES_OFB) case AES_128_OFB_TYPE: case AES_192_OFB_TYPE: case AES_256_OFB_TYPE: WOLFSSL_MSG("AES OFB"); break; #endif /* WOLFSSL_AES_OFB */ #ifdef WOLFSSL_AES_XTS case AES_128_XTS_TYPE: case AES_256_XTS_TYPE: WOLFSSL_MSG("AES XTS"); break; #endif /* WOLFSSL_AES_XTS */ #endif /* NO_AES */ #ifdef HAVE_ARIA case ARIA_128_GCM_TYPE : case ARIA_192_GCM_TYPE : case ARIA_256_GCM_TYPE : WOLFSSL_MSG("ARIA GCM"); XMEMCPY(ctx->iv, &ctx->cipher.aria.nonce, ARIA_BLOCK_SIZE); break; #endif /* HAVE_ARIA */ #ifndef NO_DES3 case DES_CBC_TYPE : WOLFSSL_MSG("DES CBC"); XMEMCPY(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE); break; case DES_EDE3_CBC_TYPE : WOLFSSL_MSG("DES EDE3 CBC"); XMEMCPY(ctx->iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE); break; #endif #ifdef WOLFSSL_DES_ECB case DES_ECB_TYPE : WOLFSSL_MSG("DES ECB"); break; case DES_EDE3_ECB_TYPE : WOLFSSL_MSG("DES3 ECB"); break; #endif case ARC4_TYPE : WOLFSSL_MSG("ARC4"); break; #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) case CHACHA20_POLY1305_TYPE: break; #endif #ifdef HAVE_CHACHA case CHACHA20_TYPE: break; #endif #ifdef WOLFSSL_SM4_ECB case SM4_ECB_TYPE: break; #endif #ifdef WOLFSSL_SM4_CBC case SM4_CBC_TYPE: WOLFSSL_MSG("SM4 CBC"); XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE); break; #endif #ifdef WOLFSSL_SM4_CTR case SM4_CTR_TYPE: WOLFSSL_MSG("SM4 CTR"); XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE); break; #endif #ifdef WOLFSSL_SM4_GCM case SM4_GCM_TYPE: WOLFSSL_MSG("SM4 GCM"); XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE); break; #endif #ifdef WOLFSSL_SM4_CCM case SM4_CCM_TYPE: WOLFSSL_MSG("SM4 CCM"); XMEMCPY(&ctx->cipher.sm4.iv, ctx->iv, SM4_BLOCK_SIZE); break; #endif case NULL_CIPHER_TYPE : WOLFSSL_MSG("NULL"); break; default: { WOLFSSL_MSG("bad type"); return WOLFSSL_FATAL_ERROR; } } return WOLFSSL_SUCCESS; } /* set internal IV from external, WOLFSSL_SUCCESS on success */ int wolfSSL_SetInternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_SetInternalIV"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); return WOLFSSL_FATAL_ERROR; } switch (ctx->cipherType) { #ifndef NO_AES #if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT) case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : WOLFSSL_MSG("AES CBC"); XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE); break; #endif #ifdef HAVE_AESGCM case AES_128_GCM_TYPE : case AES_192_GCM_TYPE : case AES_256_GCM_TYPE : WOLFSSL_MSG("AES GCM"); XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE); break; #endif #ifdef HAVE_AES_ECB case AES_128_ECB_TYPE : case AES_192_ECB_TYPE : case AES_256_ECB_TYPE : WOLFSSL_MSG("AES ECB"); break; #endif #ifdef WOLFSSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : WOLFSSL_MSG("AES CTR"); XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE); break; #endif #endif /* NO_AES */ #ifdef HAVE_ARIA case ARIA_128_GCM_TYPE : case ARIA_192_GCM_TYPE : case ARIA_256_GCM_TYPE : WOLFSSL_MSG("ARIA GCM"); XMEMCPY(&ctx->cipher.aria.nonce, ctx->iv, ARIA_BLOCK_SIZE); break; #endif /* HAVE_ARIA */ #ifndef NO_DES3 case DES_CBC_TYPE : WOLFSSL_MSG("DES CBC"); XMEMCPY(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE); break; case DES_EDE3_CBC_TYPE : WOLFSSL_MSG("DES EDE3 CBC"); XMEMCPY(&ctx->cipher.des3.reg, ctx->iv, DES_BLOCK_SIZE); break; #endif #ifdef WOLFSSL_DES_ECB case DES_ECB_TYPE : WOLFSSL_MSG("DES ECB"); break; case DES_EDE3_ECB_TYPE : WOLFSSL_MSG("DES3 ECB"); break; #endif case ARC4_TYPE : WOLFSSL_MSG("ARC4"); break; #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) case CHACHA20_POLY1305_TYPE: break; #endif #ifdef HAVE_CHACHA case CHACHA20_TYPE: break; #endif #ifdef WOLFSSL_SM4_ECB case SM4_ECB_TYPE: break; #endif #ifdef WOLFSSL_SM4_CBC case SM4_CBC_TYPE: WOLFSSL_MSG("SM4 CBC"); XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz); break; #endif #ifdef WOLFSSL_SM4_CTR case SM4_CTR_TYPE: WOLFSSL_MSG("SM4 CTR"); XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz); break; #endif #ifdef WOLFSSL_SM4_GCM case SM4_GCM_TYPE: WOLFSSL_MSG("SM4 GCM"); XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz); break; #endif #ifdef WOLFSSL_SM4_CCM case SM4_CCM_TYPE: WOLFSSL_MSG("SM4 CCM"); XMEMCPY(ctx->iv, &ctx->cipher.sm4.iv, ctx->ivSz); break; #endif case NULL_CIPHER_TYPE : WOLFSSL_MSG("NULL"); break; default: { WOLFSSL_MSG("bad type"); return WOLFSSL_FATAL_ERROR; } } return WOLFSSL_SUCCESS; } #ifndef NO_DES3 void wolfSSL_3des_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset, unsigned char* iv, int len) { (void)len; WOLFSSL_MSG("wolfSSL_3des_iv"); if (ctx == NULL || iv == NULL) { WOLFSSL_MSG("Bad function argument"); return; } if (doset) wc_Des3_SetIV(&ctx->cipher.des3, iv); /* OpenSSL compat, no ret */ else XMEMCPY(iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE); } #endif /* NO_DES3 */ #ifndef NO_AES void wolfSSL_aes_ctr_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset, unsigned char* iv, int len) { (void)len; WOLFSSL_MSG("wolfSSL_aes_ctr_iv"); if (ctx == NULL || iv == NULL) { WOLFSSL_MSG("Bad function argument"); return; } if (doset) (void)wc_AesSetIV(&ctx->cipher.aes, iv); /* OpenSSL compat, no ret */ else XMEMCPY(iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); } #endif /* NO_AES */ #endif /* OPENSSL_EXTRA */ /******************************************************************************* * END OF EVP_CIPHER API ******************************************************************************/ #ifndef NO_CERTS #define WOLFSSL_X509_STORE_INCLUDED #include #define WOLFSSL_SSL_P7P12_INCLUDED #include #endif /* !NO_CERTS */ /******************************************************************************* * BEGIN OPENSSL FIPS DRBG APIs ******************************************************************************/ #if defined(OPENSSL_EXTRA) && !defined(WC_NO_RNG) && defined(HAVE_HASHDRBG) int wolfSSL_FIPS_drbg_init(WOLFSSL_DRBG_CTX *ctx, int type, unsigned int flags) { int ret = WOLFSSL_FAILURE; if (ctx != NULL) { XMEMSET(ctx, 0, sizeof(WOLFSSL_DRBG_CTX)); ctx->type = type; ctx->xflags = flags; ctx->status = DRBG_STATUS_UNINITIALISED; ret = WOLFSSL_SUCCESS; } return ret; } WOLFSSL_DRBG_CTX* wolfSSL_FIPS_drbg_new(int type, unsigned int flags) { int ret = WOLFSSL_FAILURE; WOLFSSL_DRBG_CTX* ctx = (WOLFSSL_DRBG_CTX*)XMALLOC(sizeof(WOLFSSL_DRBG_CTX), NULL, DYNAMIC_TYPE_OPENSSL); ret = wolfSSL_FIPS_drbg_init(ctx, type, flags); if (ret == WOLFSSL_SUCCESS && type != 0) { ret = wolfSSL_FIPS_drbg_instantiate(ctx, NULL, 0); } if (ret != WOLFSSL_SUCCESS) { WOLFSSL_ERROR(ret); wolfSSL_FIPS_drbg_free(ctx); ctx = NULL; } return ctx; } int wolfSSL_FIPS_drbg_instantiate(WOLFSSL_DRBG_CTX* ctx, const unsigned char* pers, size_t perslen) { int ret = WOLFSSL_FAILURE; if (ctx != NULL && ctx->rng == NULL) { #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS) && FIPS_VERSION_GE(5,0))) ctx->rng = wc_rng_new((byte*)pers, (word32)perslen, NULL); #else ctx->rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (ctx->rng != NULL) { #if defined(HAVE_FIPS) && FIPS_VERSION_GE(2,0) ret = wc_InitRngNonce(ctx->rng, (byte*)pers, (word32)perslen); #else ret = wc_InitRng(ctx->rng); (void)pers; (void)perslen; #endif if (ret != 0) { WOLFSSL_ERROR(ret); XFREE(ctx->rng, NULL, DYNAMIC_TYPE_RNG); ctx->rng = NULL; } } #endif } if (ctx != NULL && ctx->rng != NULL) { ctx->status = DRBG_STATUS_READY; ret = WOLFSSL_SUCCESS; } return ret; } int wolfSSL_FIPS_drbg_set_callbacks(WOLFSSL_DRBG_CTX* ctx, drbg_entropy_get entropy_get, drbg_entropy_clean entropy_clean, size_t entropy_blocklen, drbg_nonce_get none_get, drbg_nonce_clean nonce_clean) { int ret = WOLFSSL_FAILURE; if (ctx != NULL) { ctx->entropy_get = entropy_get; ctx->entropy_clean = entropy_clean; ctx->entropy_blocklen = entropy_blocklen; ctx->none_get = none_get; ctx->nonce_clean = nonce_clean; ret = WOLFSSL_SUCCESS; } return ret; } void wolfSSL_FIPS_rand_add(const void* buf, int num, double entropy) { /* not implemented */ (void)buf; (void)num; (void)entropy; } int wolfSSL_FIPS_drbg_reseed(WOLFSSL_DRBG_CTX* ctx, const unsigned char* adin, size_t adinlen) { int ret = WOLFSSL_FAILURE; if (ctx != NULL && ctx->rng != NULL) { #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS) && FIPS_VERSION_GE(2,0))) if (wc_RNG_DRBG_Reseed(ctx->rng, adin, (word32)adinlen) == 0) { ret = WOLFSSL_SUCCESS; } #else ret = WOLFSSL_SUCCESS; (void)adin; (void)adinlen; #endif } return ret; } int wolfSSL_FIPS_drbg_generate(WOLFSSL_DRBG_CTX* ctx, unsigned char* out, size_t outlen, int prediction_resistance, const unsigned char* adin, size_t adinlen) { int ret = WOLFSSL_FAILURE; if (ctx != NULL && ctx->rng != NULL) { ret = wc_RNG_GenerateBlock(ctx->rng, out, (word32)outlen); if (ret == 0) { ret = WOLFSSL_SUCCESS; } } (void)prediction_resistance; (void)adin; (void)adinlen; return ret; } int wolfSSL_FIPS_drbg_uninstantiate(WOLFSSL_DRBG_CTX *ctx) { if (ctx != NULL && ctx->rng != NULL) { #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS) && FIPS_VERSION_GE(5,0))) wc_rng_free(ctx->rng); #else wc_FreeRng(ctx->rng); XFREE(ctx->rng, NULL, DYNAMIC_TYPE_RNG); #endif ctx->rng = NULL; ctx->status = DRBG_STATUS_UNINITIALISED; } return WOLFSSL_SUCCESS; } void wolfSSL_FIPS_drbg_free(WOLFSSL_DRBG_CTX *ctx) { if (ctx != NULL) { /* As safety check if free'ing the default drbg, then mark global NULL. * Technically the user should not call free on the default drbg. */ if (ctx == gDrbgDefCtx) { gDrbgDefCtx = NULL; } wolfSSL_FIPS_drbg_uninstantiate(ctx); XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL); } } WOLFSSL_DRBG_CTX* wolfSSL_FIPS_get_default_drbg(void) { if (gDrbgDefCtx == NULL) { gDrbgDefCtx = wolfSSL_FIPS_drbg_new(0, 0); } return gDrbgDefCtx; } void wolfSSL_FIPS_get_timevec(unsigned char* buf, unsigned long* pctr) { /* not implemented */ (void)buf; (void)pctr; } void* wolfSSL_FIPS_drbg_get_app_data(WOLFSSL_DRBG_CTX *ctx) { if (ctx != NULL) { return ctx->app_data; } return NULL; } void wolfSSL_FIPS_drbg_set_app_data(WOLFSSL_DRBG_CTX *ctx, void *app_data) { if (ctx != NULL) { ctx->app_data = app_data; } } #endif /******************************************************************************* * END OF OPENSSL FIPS DRBG APIs ******************************************************************************/ #endif /* !WOLFCRYPT_ONLY */