/* ssl.c * * Copyright (C) 2006-2021 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include #endif #include #if defined(OPENSSL_EXTRA) && !defined(_WIN32) /* turn on GNU extensions for XISASCII */ #undef _GNU_SOURCE #define _GNU_SOURCE #endif #if !defined(WOLFCRYPT_ONLY) || defined(OPENSSL_EXTRA) || \ defined(OPENSSL_EXTRA_X509_SMALL) #include #include #include #include #ifdef NO_INLINE #include #else #define WOLFSSL_MISC_INCLUDED #include #endif #ifdef HAVE_ERRNO_H #include #endif #if !defined(WOLFSSL_ALLOW_NO_SUITES) && !defined(WOLFCRYPT_ONLY) #if defined(NO_DH) && !defined(HAVE_ECC) && !defined(WOLFSSL_STATIC_RSA) \ && !defined(WOLFSSL_STATIC_DH) && !defined(WOLFSSL_STATIC_PSK) \ && !defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448) #error "No cipher suites defined because DH disabled, ECC disabled, and no static suites defined. Please see top of README" #endif #ifdef WOLFSSL_CERT_GEN /* need access to Cert struct for creating certificate */ #include #endif #endif #if !defined(WOLFCRYPT_ONLY) && (defined(OPENSSL_EXTRA) \ || defined(OPENSSL_EXTRA_X509_SMALL) \ || defined(HAVE_WEBSERVER) || defined(WOLFSSL_KEY_GEN)) #include /* openssl headers end, wolfssl internal headers next */ #endif #include #ifndef NO_RSA #include #endif #ifdef OPENSSL_EXTRA /* openssl headers begin */ #include #include #ifndef WOLFCRYPT_ONLY #include #include #endif #include #include #include #include #include #include #include #ifndef WOLFCRYPT_ONLY #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include /* openssl headers end, wolfssl internal headers next */ #include #include #include #include #include #include #include #include #include #include #if defined(HAVE_PQC) #include #endif #if defined(OPENSSL_ALL) || defined(HAVE_STUNNEL) #ifdef HAVE_OCSP #include #endif #include #include #endif /* WITH_STUNNEL */ #if defined(WOLFSSL_SHA512) || defined(WOLFSSL_SHA384) #include #endif #if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \ && !defined(WC_NO_RNG) #include #endif #if defined(HAVE_FIPS) || defined(HAVE_SELFTEST) #include #endif #if defined(OPENSSL_ALL) && defined(HAVE_PKCS7) #include #endif /* OPENSSL_ALL && HAVE_PKCS7 */ #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) #include int SetIndividualInternal(WOLFSSL_BIGNUM* bn, mp_int* mpi); int SetIndividualExternal(WOLFSSL_BIGNUM** bn, mp_int* mpi); #endif #if defined(WOLFSSL_QT) #include #endif #ifdef NO_ASN #include #endif #endif /* !WOLFCRYPT_ONLY || OPENSSL_EXTRA */ /* * OPENSSL_COMPATIBLE_DEFAULTS: * Enable default behaviour that is compatible with OpenSSL. For example * SSL_CTX by default doesn't verify the loaded certs. Enabling this * should make porting to new projects easier. * WOLFSSL_CHECK_ALERT_ON_ERR: * Check for alerts during the handshake in the event of an error. * NO_SESSION_CACHE_REF: * wolfSSL_get_session on a client will return a reference to the internal * ClientCache by default for backwards compatibility. This define will * make wolfSSL_get_session return a reference to ssl->session. The returned * pointer will be freed with the related WOLFSSL object. */ #define WOLFSSL_EVP_INCLUDED #include "wolfcrypt/src/evp.c" #ifndef WOLFCRYPT_ONLY #define WOLFSSL_PK_INCLUDED #include "src/pk.c" #ifdef OPENSSL_EXTRA /* Global pointer to constant BN on */ static WOLFSSL_BIGNUM* bn_one = NULL; /* WOLFSSL_NO_OPENSSL_RAND_CB: Allows way to reduce code size for * OPENSSL_EXTRA where RAND callbacks are not used */ #ifndef WOLFSSL_NO_OPENSSL_RAND_CB static const WOLFSSL_RAND_METHOD* gRandMethods = NULL; static int gRandMethodsInit = 0; static wolfSSL_Mutex gRandMethodMutex; #endif /* !WOLFSSL_NO_OPENSSL_RAND_CB */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) && defined(HAVE_ECC) const WOLF_EC_NIST_NAME kNistCurves[] = { {XSTR_SIZEOF("P-192"), "P-192", NID_X9_62_prime192v1}, {XSTR_SIZEOF("P-256"), "P-256", NID_X9_62_prime256v1}, {XSTR_SIZEOF("P-112"), "P-112", NID_secp112r1}, {XSTR_SIZEOF("P-112-2"), "P-112-2", NID_secp112r2}, {XSTR_SIZEOF("P-128"), "P-128", NID_secp128r1}, {XSTR_SIZEOF("P-128-2"), "P-128-2", NID_secp128r2}, {XSTR_SIZEOF("P-160"), "P-160", NID_secp160r1}, {XSTR_SIZEOF("P-160-2"), "P-160-2", NID_secp160r2}, {XSTR_SIZEOF("P-224"), "P-224", NID_secp224r1}, {XSTR_SIZEOF("P-384"), "P-384", NID_secp384r1}, {XSTR_SIZEOF("P-521"), "P-521", NID_secp521r1}, {XSTR_SIZEOF("K-160"), "K-160", NID_secp160k1}, {XSTR_SIZEOF("K-192"), "K-192", NID_secp192k1}, {XSTR_SIZEOF("K-224"), "K-224", NID_secp224k1}, {XSTR_SIZEOF("K-256"), "K-256", NID_secp256k1}, {XSTR_SIZEOF("B-160"), "B-160", NID_brainpoolP160r1}, {XSTR_SIZEOF("B-192"), "B-192", NID_brainpoolP192r1}, {XSTR_SIZEOF("B-224"), "B-224", NID_brainpoolP224r1}, {XSTR_SIZEOF("B-256"), "B-256", NID_brainpoolP256r1}, {XSTR_SIZEOF("B-320"), "B-320", NID_brainpoolP320r1}, {XSTR_SIZEOF("B-384"), "B-384", NID_brainpoolP384r1}, {XSTR_SIZEOF("B-512"), "B-512", NID_brainpoolP512r1}, #ifdef HAVE_PQC {XSTR_SIZEOF("KYBER_LEVEL1"), "KYBER_LEVEL1", WOLFSSL_KYBER_LEVEL1}, {XSTR_SIZEOF("KYBER_LEVEL3"), "KYBER_LEVEL3", WOLFSSL_KYBER_LEVEL3}, {XSTR_SIZEOF("KYBER_LEVEL5"), "KYBER_LEVEL5", WOLFSSL_KYBER_LEVEL5}, {XSTR_SIZEOF("NTRU_HPS_LEVEL1"), "NTRU_HPS_LEVEL1", WOLFSSL_NTRU_HPS_LEVEL1}, {XSTR_SIZEOF("NTRU_HPS_LEVEL3"), "NTRU_HPS_LEVEL3", WOLFSSL_NTRU_HPS_LEVEL3}, {XSTR_SIZEOF("NTRU_HPS_LEVEL5"), "NTRU_HPS_LEVEL5", WOLFSSL_NTRU_HPS_LEVEL5}, {XSTR_SIZEOF("NTRU_HRSS_LEVEL3"), "NTRU_HRSS_LEVEL3", WOLFSSL_NTRU_HRSS_LEVEL3}, {XSTR_SIZEOF("SABER_LEVEL1"), "SABER_LEVEL1", WOLFSSL_SABER_LEVEL1}, {XSTR_SIZEOF("SABER_LEVEL3"), "SABER_LEVEL3", WOLFSSL_SABER_LEVEL3}, {XSTR_SIZEOF("SABER_LEVEL5"), "SABER_LEVEL5", WOLFSSL_SABER_LEVEL5}, {XSTR_SIZEOF("KYBER_90S_LEVEL1"), "KYBER_90S_LEVEL1", WOLFSSL_KYBER_90S_LEVEL1}, {XSTR_SIZEOF("KYBER_90S_LEVEL3"), "KYBER_90S_LEVEL3", WOLFSSL_KYBER_90S_LEVEL3}, {XSTR_SIZEOF("KYBER_90S_LEVEL5"), "KYBER_90S_LEVEL5", WOLFSSL_KYBER_90S_LEVEL5}, {XSTR_SIZEOF("P256_NTRU_HPS_LEVEL1"), "P256_NTRU_HPS_LEVEL1", WOLFSSL_P256_NTRU_HPS_LEVEL1}, {XSTR_SIZEOF("P384_NTRU_HPS_LEVEL3"), "P384_NTRU_HPS_LEVEL3", WOLFSSL_P384_NTRU_HPS_LEVEL3}, {XSTR_SIZEOF("P521_NTRU_HPS_LEVEL5"), "P521_NTRU_HPS_LEVEL5", WOLFSSL_P521_NTRU_HPS_LEVEL5}, {XSTR_SIZEOF("P384_NTRU_HRSS_LEVEL3"), "P384_NTRU_HRSS_LEVEL3", WOLFSSL_P384_NTRU_HRSS_LEVEL3}, {XSTR_SIZEOF("P256_SABER_LEVEL1"), "P256_SABER_LEVEL1", WOLFSSL_P256_SABER_LEVEL1}, {XSTR_SIZEOF("P384_SABER_LEVEL3"), "P384_SABER_LEVEL3", WOLFSSL_P384_SABER_LEVEL3}, {XSTR_SIZEOF("P521_SABER_LEVEL5"), "P521_SABER_LEVEL5", WOLFSSL_P521_SABER_LEVEL5}, {XSTR_SIZEOF("P256_KYBER_LEVEL1"), "P256_KYBER_LEVEL1", WOLFSSL_P256_KYBER_LEVEL1}, {XSTR_SIZEOF("P384_KYBER_LEVEL3"), "P384_KYBER_LEVEL3", WOLFSSL_P384_KYBER_LEVEL3}, {XSTR_SIZEOF("P521_KYBER_LEVEL5"), "P521_KYBER_LEVEL5", WOLFSSL_P521_KYBER_LEVEL5}, {XSTR_SIZEOF("P256_KYBER_90S_LEVEL1"), "P256_KYBER_90S_LEVEL1", WOLFSSL_P256_KYBER_90S_LEVEL1}, {XSTR_SIZEOF("P384_KYBER_90S_LEVEL3"), "P384_KYBER_90S_LEVEL3", WOLFSSL_P384_KYBER_90S_LEVEL3}, {XSTR_SIZEOF("P521_KYBER_90S_LEVEL5"), "P521_KYBER_90S_LEVEL5", WOLFSSL_P521_KYBER_90S_LEVEL5}, #endif {0, NULL, 0}, }; #endif #if defined(WOLFSSL_RENESAS_TSIP_TLS) || defined(WOLFSSL_RENESAS_SCEPROTECT) #include #endif #ifdef WOLFSSL_SESSION_EXPORT /* Used to import a serialized TLS session. * WARNING: buf contains sensitive information about the state and is best to be * encrypted before storing if stored. * * @param ssl WOLFSSL structure to import the session into * @param buf serialized session * @param sz size of buffer 'buf' * @return the number of bytes read from buffer 'buf' */ int wolfSSL_tls_import(WOLFSSL* ssl, const unsigned char* buf, unsigned int sz) { if (ssl == NULL || buf == NULL) { return BAD_FUNC_ARG; } return wolfSSL_session_import_internal(ssl, buf, sz, WOLFSSL_EXPORT_TLS); } /* Used to export a serialized TLS session. * WARNING: buf contains sensitive information about the state and is best to be * encrypted before storing if stored. * * @param ssl WOLFSSL structure to export the session from * @param buf output of serialized session * @param sz size in bytes set in 'buf' * @return the number of bytes written into buffer 'buf' */ int wolfSSL_tls_export(WOLFSSL* ssl, unsigned char* buf, unsigned int* sz) { if (ssl == NULL || sz == NULL) { return BAD_FUNC_ARG; } return wolfSSL_session_export_internal(ssl, buf, sz, WOLFSSL_EXPORT_TLS); } #ifdef WOLFSSL_DTLS int wolfSSL_dtls_import(WOLFSSL* ssl, const unsigned char* buf, unsigned int sz) { WOLFSSL_ENTER("wolfSSL_session_import"); if (ssl == NULL || buf == NULL) { return BAD_FUNC_ARG; } /* sanity checks on buffer and protocol are done in internal function */ return wolfSSL_session_import_internal(ssl, buf, sz, WOLFSSL_EXPORT_DTLS); } /* Sets the function to call for serializing the session. This function is * called right after the handshake is completed. */ int wolfSSL_CTX_dtls_set_export(WOLFSSL_CTX* ctx, wc_dtls_export func) { WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_export"); /* purposefully allow func to be NULL */ if (ctx == NULL) { return BAD_FUNC_ARG; } ctx->dtls_export = func; return WOLFSSL_SUCCESS; } /* Sets the function in WOLFSSL struct to call for serializing the session. This * function is called right after the handshake is completed. */ int wolfSSL_dtls_set_export(WOLFSSL* ssl, wc_dtls_export func) { WOLFSSL_ENTER("wolfSSL_dtls_set_export"); /* purposefully allow func to be NULL */ if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->dtls_export = func; return WOLFSSL_SUCCESS; } /* This function allows for directly serializing a session rather than using * callbacks. It has less overhead by removing a temporary buffer and gives * control over when the session gets serialized. When using callbacks the * session is always serialized immediately after the handshake is finished. * * buf is the argument to contain the serialized session * sz is the size of the buffer passed in * ssl is the WOLFSSL struct to serialize * returns the size of serialized session on success, 0 on no action, and * negative value on error */ int wolfSSL_dtls_export(WOLFSSL* ssl, unsigned char* buf, unsigned int* sz) { WOLFSSL_ENTER("wolfSSL_dtls_export"); if (ssl == NULL || sz == NULL) { return BAD_FUNC_ARG; } if (buf == NULL) { *sz = MAX_EXPORT_BUFFER; return 0; } /* if not DTLS do nothing */ if (!ssl->options.dtls) { WOLFSSL_MSG("Currently only DTLS export is supported"); return 0; } /* copy over keys, options, and dtls state struct */ return wolfSSL_session_export_internal(ssl, buf, sz, WOLFSSL_EXPORT_DTLS); } /* This function is similar to wolfSSL_dtls_export but only exports the portion * of the WOLFSSL structure related to the state of the connection, i.e. peer * sequence number, epoch, AEAD state etc. * * buf is the argument to contain the serialized state, if null then set "sz" to * buffer size required * sz is the size of the buffer passed in * ssl is the WOLFSSL struct to serialize * returns the size of serialized session on success, 0 on no action, and * negative value on error */ int wolfSSL_dtls_export_state_only(WOLFSSL* ssl, unsigned char* buf, unsigned int* sz) { WOLFSSL_ENTER("wolfSSL_dtls_export_state_only"); if (ssl == NULL || sz == NULL) { return BAD_FUNC_ARG; } if (buf == NULL) { *sz = MAX_EXPORT_STATE_BUFFER; return 0; } /* if not DTLS do nothing */ if (!ssl->options.dtls) { WOLFSSL_MSG("Currently only DTLS export state is supported"); return 0; } /* copy over keys, options, and dtls state struct */ return wolfSSL_dtls_export_state_internal(ssl, buf, *sz); } /* returns 0 on success */ int wolfSSL_send_session(WOLFSSL* ssl) { int ret; byte* buf; word32 bufSz = MAX_EXPORT_BUFFER; WOLFSSL_ENTER("wolfSSL_send_session"); if (ssl == NULL) { return BAD_FUNC_ARG; } buf = (byte*)XMALLOC(bufSz, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { return MEMORY_E; } /* if not DTLS do nothing */ if (!ssl->options.dtls) { XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); WOLFSSL_MSG("Currently only DTLS export is supported"); return 0; } /* copy over keys, options, and dtls state struct */ ret = wolfSSL_session_export_internal(ssl, buf, &bufSz, WOLFSSL_EXPORT_DTLS); if (ret < 0) { XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } /* if no error ret has size of buffer */ ret = ssl->dtls_export(ssl, buf, ret, NULL); if (ret != WOLFSSL_SUCCESS) { XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return 0; } #endif /* WOLFSSL_DTLS */ #endif /* WOLFSSL_SESSION_EXPORT */ /* prevent multiple mutex initializations */ static volatile WOLFSSL_GLOBAL int initRefCount = 0; static WOLFSSL_GLOBAL wolfSSL_Mutex count_mutex; /* init ref count mutex */ static WOLFSSL_GLOBAL int count_mutex_valid = 0; /* Create a new WOLFSSL_CTX struct and return the pointer to created struct. WOLFSSL_METHOD pointer passed in is given to ctx to manage. This function frees the passed in WOLFSSL_METHOD struct on failure and on success is freed when ctx is freed. */ WOLFSSL_CTX* wolfSSL_CTX_new_ex(WOLFSSL_METHOD* method, void* heap) { WOLFSSL_CTX* ctx = NULL; WOLFSSL_ENTER("wolfSSL_CTX_new_ex"); if (initRefCount == 0) { /* user no longer forced to call Init themselves */ int ret = wolfSSL_Init(); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_Init failed"); WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0); if (method != NULL) { XFREE(method, heap, DYNAMIC_TYPE_METHOD); } return NULL; } } if (method == NULL) return ctx; ctx = (WOLFSSL_CTX*)XMALLOC(sizeof(WOLFSSL_CTX), heap, DYNAMIC_TYPE_CTX); if (ctx) { int ret; ret = InitSSL_Ctx(ctx, method, heap); #ifdef WOLFSSL_STATIC_MEMORY if (heap != NULL) { ctx->onHeapHint = 1; /* free the memory back to heap when done */ } #endif if (ret < 0) { WOLFSSL_MSG("Init CTX failed"); wolfSSL_CTX_free(ctx); ctx = NULL; } #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) else { ctx->srp = (Srp*)XMALLOC(sizeof(Srp), heap, DYNAMIC_TYPE_SRP); if (ctx->srp == NULL){ WOLFSSL_MSG("Init CTX failed"); wolfSSL_CTX_free(ctx); return NULL; } XMEMSET(ctx->srp, 0, sizeof(Srp)); } #endif } else { WOLFSSL_MSG("Alloc CTX failed, method freed"); XFREE(method, heap, DYNAMIC_TYPE_METHOD); } #ifdef OPENSSL_COMPATIBLE_DEFAULTS if (ctx) { wolfSSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, NULL); wolfSSL_CTX_set_mode(ctx, SSL_MODE_AUTO_RETRY); if (wolfSSL_CTX_set_min_proto_version(ctx, SSL3_VERSION) != WOLFSSL_SUCCESS || #ifdef HAVE_ANON wolfSSL_CTX_allow_anon_cipher(ctx) != WOLFSSL_SUCCESS || #endif wolfSSL_CTX_set_group_messages(ctx) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Setting OpenSSL CTX defaults failed"); wolfSSL_CTX_free(ctx); ctx = NULL; } } #endif WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0); return ctx; } WOLFSSL_ABI WOLFSSL_CTX* wolfSSL_CTX_new(WOLFSSL_METHOD* method) { #ifdef WOLFSSL_HEAP_TEST /* if testing the heap hint then set top level CTX to have test value */ return wolfSSL_CTX_new_ex(method, (void*)WOLFSSL_HEAP_TEST); #else return wolfSSL_CTX_new_ex(method, NULL); #endif } /* increases CTX reference count to track proper time to "free" */ int wolfSSL_CTX_up_ref(WOLFSSL_CTX* ctx) { int refCount = SSL_CTX_RefCount(ctx, 1); return ((refCount > 1) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE); } WOLFSSL_ABI void wolfSSL_CTX_free(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("SSL_CTX_free"); if (ctx) { #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) if (ctx->srp != NULL) { if (ctx->srp_password != NULL){ XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } wc_SrpTerm(ctx->srp); XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp = NULL; } #endif FreeSSL_Ctx(ctx); } WOLFSSL_LEAVE("SSL_CTX_free", 0); } #ifdef HAVE_ENCRYPT_THEN_MAC /** * Sets whether Encrypt-Then-MAC extension can be negotiated against context. * The default value: enabled. * * ctx SSL/TLS context. * set Whether to allow or not: 1 is allow and 0 is disallow. * returns WOLFSSL_SUCCESS */ int wolfSSL_CTX_AllowEncryptThenMac(WOLFSSL_CTX *ctx, int set) { ctx->disallowEncThenMac = !set; return WOLFSSL_SUCCESS; } /** * Sets whether Encrypt-Then-MAC extension can be negotiated against context. * The default value comes from context. * * ctx SSL/TLS context. * set Whether to allow or not: 1 is allow and 0 is disallow. * returns WOLFSSL_SUCCESS */ int wolfSSL_AllowEncryptThenMac(WOLFSSL *ssl, int set) { ssl->options.disallowEncThenMac = !set; return WOLFSSL_SUCCESS; } #endif #ifdef SINGLE_THREADED /* no locking in single threaded mode, allow a CTX level rng to be shared with * WOLFSSL objects, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_new_rng(WOLFSSL_CTX* ctx) { WC_RNG* rng; int ret; if (ctx == NULL) { return BAD_FUNC_ARG; } rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG); if (rng == NULL) { return MEMORY_E; } #ifndef HAVE_FIPS ret = wc_InitRng_ex(rng, ctx->heap, ctx->devId); #else ret = wc_InitRng(rng); #endif if (ret != 0) { XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG); return ret; } ctx->rng = rng; return WOLFSSL_SUCCESS; } #endif WOLFSSL_ABI WOLFSSL* wolfSSL_new(WOLFSSL_CTX* ctx) { WOLFSSL* ssl = NULL; int ret = 0; WOLFSSL_ENTER("SSL_new"); if (ctx == NULL) return ssl; ssl = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ctx->heap, DYNAMIC_TYPE_SSL); if (ssl) if ( (ret = InitSSL(ssl, ctx, 0)) < 0) { FreeSSL(ssl, ctx->heap); ssl = 0; } WOLFSSL_LEAVE("SSL_new", ret); (void)ret; return ssl; } WOLFSSL_ABI void wolfSSL_free(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_free"); if (ssl) FreeSSL(ssl, ssl->ctx->heap); WOLFSSL_LEAVE("SSL_free", 0); } int wolfSSL_is_server(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->options.side == WOLFSSL_SERVER_END; } #ifdef HAVE_WRITE_DUP /* * Release resources around WriteDup object * * ssl WOLFSSL object * * no return, destruction so make best attempt */ void FreeWriteDup(WOLFSSL* ssl) { int doFree = 0; WOLFSSL_ENTER("FreeWriteDup"); if (ssl->dupWrite) { if (wc_LockMutex(&ssl->dupWrite->dupMutex) == 0) { ssl->dupWrite->dupCount--; if (ssl->dupWrite->dupCount == 0) { doFree = 1; } else { WOLFSSL_MSG("WriteDup count not zero, no full free"); } wc_UnLockMutex(&ssl->dupWrite->dupMutex); } } if (doFree) { WOLFSSL_MSG("Doing WriteDup full free, count to zero"); wc_FreeMutex(&ssl->dupWrite->dupMutex); XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP); } } /* * duplicate existing ssl members into dup needed for writing * * dup write only WOLFSSL * ssl existing WOLFSSL * * 0 on success */ static int DupSSL(WOLFSSL* dup, WOLFSSL* ssl) { /* shared dupWrite setup */ ssl->dupWrite = (WriteDup*)XMALLOC(sizeof(WriteDup), ssl->heap, DYNAMIC_TYPE_WRITEDUP); if (ssl->dupWrite == NULL) { return MEMORY_E; } XMEMSET(ssl->dupWrite, 0, sizeof(WriteDup)); if (wc_InitMutex(&ssl->dupWrite->dupMutex) != 0) { XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP); ssl->dupWrite = NULL; return BAD_MUTEX_E; } ssl->dupWrite->dupCount = 2; /* both sides have a count to start */ dup->dupWrite = ssl->dupWrite; /* each side uses */ /* copy write parts over to dup writer */ XMEMCPY(&dup->specs, &ssl->specs, sizeof(CipherSpecs)); XMEMCPY(&dup->options, &ssl->options, sizeof(Options)); XMEMCPY(&dup->keys, &ssl->keys, sizeof(Keys)); XMEMCPY(&dup->encrypt, &ssl->encrypt, sizeof(Ciphers)); /* dup side now owns encrypt/write ciphers */ XMEMSET(&ssl->encrypt, 0, sizeof(Ciphers)); dup->IOCB_WriteCtx = ssl->IOCB_WriteCtx; dup->CBIOSend = ssl->CBIOSend; #ifdef OPENSSL_EXTRA dup->cbioFlag = ssl->cbioFlag; #endif dup->wfd = ssl->wfd; dup->wflags = ssl->wflags; #ifndef WOLFSSL_AEAD_ONLY dup->hmac = ssl->hmac; #endif #ifdef HAVE_TRUNCATED_HMAC dup->truncated_hmac = ssl->truncated_hmac; #endif /* unique side dup setup */ dup->dupSide = WRITE_DUP_SIDE; ssl->dupSide = READ_DUP_SIDE; return 0; } /* * duplicate a WOLFSSL object post handshake for writing only * turn existing object into read only. Allows concurrent access from two * different threads. * * ssl existing WOLFSSL object * * return dup'd WOLFSSL object on success */ WOLFSSL* wolfSSL_write_dup(WOLFSSL* ssl) { WOLFSSL* dup = NULL; int ret = 0; (void)ret; WOLFSSL_ENTER("wolfSSL_write_dup"); if (ssl == NULL) { return ssl; } if (ssl->options.handShakeDone == 0) { WOLFSSL_MSG("wolfSSL_write_dup called before handshake complete"); return NULL; } if (ssl->dupWrite) { WOLFSSL_MSG("wolfSSL_write_dup already called once"); return NULL; } dup = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ssl->ctx->heap, DYNAMIC_TYPE_SSL); if (dup) { if ( (ret = InitSSL(dup, ssl->ctx, 1)) < 0) { FreeSSL(dup, ssl->ctx->heap); dup = NULL; } else if ( (ret = DupSSL(dup, ssl)) < 0) { FreeSSL(dup, ssl->ctx->heap); dup = NULL; } } WOLFSSL_LEAVE("wolfSSL_write_dup", ret); return dup; } /* * Notify write dup side of fatal error or close notify * * ssl WOLFSSL object * err Notify err * * 0 on success */ int NotifyWriteSide(WOLFSSL* ssl, int err) { int ret; WOLFSSL_ENTER("NotifyWriteSide"); ret = wc_LockMutex(&ssl->dupWrite->dupMutex); if (ret == 0) { ssl->dupWrite->dupErr = err; ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex); } return ret; } #endif /* HAVE_WRITE_DUP */ #ifdef HAVE_POLY1305 /* set if to use old poly 1 for yes 0 to use new poly */ int wolfSSL_use_old_poly(WOLFSSL* ssl, int value) { (void)ssl; (void)value; #ifndef WOLFSSL_NO_TLS12 WOLFSSL_ENTER("SSL_use_old_poly"); WOLFSSL_MSG("Warning SSL connection auto detects old/new and this function" "is depreciated"); ssl->options.oldPoly = (word16)value; WOLFSSL_LEAVE("SSL_use_old_poly", 0); #endif return 0; } #endif WOLFSSL_ABI int wolfSSL_set_fd(WOLFSSL* ssl, int fd) { int ret; WOLFSSL_ENTER("SSL_set_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfSSL_set_read_fd(ssl, fd); if (ret == WOLFSSL_SUCCESS) { ret = wolfSSL_set_write_fd(ssl, fd); } return ret; } #ifdef WOLFSSL_DTLS int wolfSSL_set_dtls_fd_connected(WOLFSSL* ssl, int fd) { int ret; WOLFSSL_ENTER("SSL_set_dtls_fd_connected"); if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfSSL_set_fd(ssl, fd); if (ret == WOLFSSL_SUCCESS) ssl->buffers.dtlsCtx.connected = 1; return ret; } #endif int wolfSSL_set_read_fd(WOLFSSL* ssl, int fd) { WOLFSSL_ENTER("SSL_set_read_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->rfd = fd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; #ifdef WOLFSSL_DTLS ssl->buffers.dtlsCtx.connected = 0; if (ssl->options.dtls) { ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.rfd = fd; } #endif WOLFSSL_LEAVE("SSL_set_read_fd", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } int wolfSSL_set_write_fd(WOLFSSL* ssl, int fd) { WOLFSSL_ENTER("SSL_set_write_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->wfd = fd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; #ifdef WOLFSSL_DTLS ssl->buffers.dtlsCtx.connected = 0; if (ssl->options.dtls) { ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.wfd = fd; } #endif WOLFSSL_LEAVE("SSL_set_write_fd", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } /** * Get the name of cipher at priority level passed in. */ char* wolfSSL_get_cipher_list(int priority) { const CipherSuiteInfo* ciphers = GetCipherNames(); if (priority >= GetCipherNamesSize() || priority < 0) { return 0; } return (char*)ciphers[priority].name; } /** * Get the name of cipher at priority level passed in. */ char* wolfSSL_get_cipher_list_ex(WOLFSSL* ssl, int priority) { if (ssl == NULL) { return NULL; } else { const char* cipher; if ((cipher = wolfSSL_get_cipher_name_internal(ssl)) != NULL) { if (priority == 0) { return (char*)cipher; } else { return NULL; } } else { return wolfSSL_get_cipher_list(priority); } } } int wolfSSL_get_ciphers(char* buf, int len) { const CipherSuiteInfo* ciphers = GetCipherNames(); int ciphersSz = GetCipherNamesSize(); int i; int cipherNameSz; if (buf == NULL || len <= 0) return BAD_FUNC_ARG; /* Add each member to the buffer delimited by a : */ for (i = 0; i < ciphersSz; i++) { cipherNameSz = (int)XSTRLEN(ciphers[i].name); if (cipherNameSz + 1 < len) { XSTRNCPY(buf, ciphers[i].name, len); buf += cipherNameSz; if (i < ciphersSz - 1) *buf++ = ':'; *buf = 0; len -= cipherNameSz + 1; } else return BUFFER_E; } return WOLFSSL_SUCCESS; } #ifndef NO_ERROR_STRINGS /* places a list of all supported cipher suites in TLS_* format into "buf" * return WOLFSSL_SUCCESS on success */ int wolfSSL_get_ciphers_iana(char* buf, int len) { const CipherSuiteInfo* ciphers = GetCipherNames(); int ciphersSz = GetCipherNamesSize(); int i; int cipherNameSz; if (buf == NULL || len <= 0) return BAD_FUNC_ARG; /* Add each member to the buffer delimited by a : */ for (i = 0; i < ciphersSz; i++) { #ifndef NO_CIPHER_SUITE_ALIASES if (ciphers[i].flags & WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS) continue; #endif cipherNameSz = (int)XSTRLEN(ciphers[i].name_iana); if (cipherNameSz + 1 < len) { XSTRNCPY(buf, ciphers[i].name_iana, len); buf += cipherNameSz; if (i < ciphersSz - 1) *buf++ = ':'; *buf = 0; len -= cipherNameSz + 1; } else return BUFFER_E; } return WOLFSSL_SUCCESS; } #endif /* NO_ERROR_STRINGS */ const char* wolfSSL_get_shared_ciphers(WOLFSSL* ssl, char* buf, int len) { const char* cipher; if (ssl == NULL) return NULL; cipher = wolfSSL_get_cipher_name_iana(ssl); len = min(len, (int)(XSTRLEN(cipher) + 1)); XMEMCPY(buf, cipher, len); return buf; } int wolfSSL_get_fd(const WOLFSSL* ssl) { int fd = -1; WOLFSSL_ENTER("SSL_get_fd"); if (ssl) { fd = ssl->rfd; } WOLFSSL_LEAVE("SSL_get_fd", fd); return fd; } int wolfSSL_dtls(WOLFSSL* ssl) { int dtlsOpt = 0; if (ssl) dtlsOpt = ssl->options.dtls; return dtlsOpt; } #if !defined(NO_CERTS) /* Set whether mutual authentication is required for connections. * Server side only. * * ctx The SSL/TLS CTX object. * req 1 to indicate required and 0 when not. * returns BAD_FUNC_ARG when ctx is NULL, SIDE_ERROR when not a server and * 0 on success. */ int wolfSSL_CTX_mutual_auth(WOLFSSL_CTX* ctx, int req) { if (ctx == NULL) return BAD_FUNC_ARG; if (ctx->method->side == WOLFSSL_CLIENT_END) return SIDE_ERROR; ctx->mutualAuth = (byte)req; return 0; } /* Set whether mutual authentication is required for the connection. * Server side only. * * ssl The SSL/TLS object. * req 1 to indicate required and 0 when not. * returns BAD_FUNC_ARG when ssl is NULL, or not using TLS v1.3, * SIDE_ERROR when not a client and 0 on success. */ int wolfSSL_mutual_auth(WOLFSSL* ssl, int req) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.side == WOLFSSL_SERVER_END) return SIDE_ERROR; ssl->options.mutualAuth = (word16)req; return 0; } #endif /* NO_CERTS */ #ifdef WOLFSSL_WOLFSENTRY_HOOKS int wolfSSL_CTX_set_AcceptFilter( WOLFSSL_CTX *ctx, NetworkFilterCallback_t AcceptFilter, void *AcceptFilter_arg) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->AcceptFilter = AcceptFilter; ctx->AcceptFilter_arg = AcceptFilter_arg; return 0; } int wolfSSL_set_AcceptFilter( WOLFSSL *ssl, NetworkFilterCallback_t AcceptFilter, void *AcceptFilter_arg) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->AcceptFilter = AcceptFilter; ssl->AcceptFilter_arg = AcceptFilter_arg; return 0; } int wolfSSL_CTX_set_ConnectFilter( WOLFSSL_CTX *ctx, NetworkFilterCallback_t ConnectFilter, void *ConnectFilter_arg) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ConnectFilter = ConnectFilter; ctx->ConnectFilter_arg = ConnectFilter_arg; return 0; } int wolfSSL_set_ConnectFilter( WOLFSSL *ssl, NetworkFilterCallback_t ConnectFilter, void *ConnectFilter_arg) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->ConnectFilter = ConnectFilter; ssl->ConnectFilter_arg = ConnectFilter_arg; return 0; } #endif /* WOLFSSL_WOLFSENTRY_HOOKS */ #ifndef WOLFSSL_LEANPSK int wolfSSL_dtls_set_peer(WOLFSSL* ssl, void* peer, unsigned int peerSz) { #ifdef WOLFSSL_DTLS void* sa; if (ssl == NULL) return WOLFSSL_FAILURE; if (peer == NULL || peerSz == 0) { if (ssl->buffers.dtlsCtx.peer.sa != NULL) XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR); ssl->buffers.dtlsCtx.peer.sa = NULL; ssl->buffers.dtlsCtx.peer.sz = 0; ssl->buffers.dtlsCtx.peer.bufSz = 0; ssl->buffers.dtlsCtx.userSet = 0; return WOLFSSL_SUCCESS; } sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR); if (sa != NULL) { if (ssl->buffers.dtlsCtx.peer.sa != NULL) { XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR); ssl->buffers.dtlsCtx.peer.sa = NULL; } XMEMCPY(sa, peer, peerSz); ssl->buffers.dtlsCtx.peer.sa = sa; ssl->buffers.dtlsCtx.peer.sz = peerSz; ssl->buffers.dtlsCtx.peer.bufSz = peerSz; ssl->buffers.dtlsCtx.userSet = 1; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return WOLFSSL_NOT_IMPLEMENTED; #endif } int wolfSSL_dtls_get_peer(WOLFSSL* ssl, void* peer, unsigned int* peerSz) { #ifdef WOLFSSL_DTLS if (ssl == NULL) { return WOLFSSL_FAILURE; } if (peer != NULL && peerSz != NULL && *peerSz >= ssl->buffers.dtlsCtx.peer.sz && ssl->buffers.dtlsCtx.peer.sa != NULL) { *peerSz = ssl->buffers.dtlsCtx.peer.sz; XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz); return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return WOLFSSL_NOT_IMPLEMENTED; #endif } #if defined(WOLFSSL_SCTP) && defined(WOLFSSL_DTLS) int wolfSSL_CTX_dtls_set_sctp(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_sctp()"); if (ctx == NULL) return BAD_FUNC_ARG; ctx->dtlsSctp = 1; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_set_sctp(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_dtls_set_sctp()"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.dtlsSctp = 1; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS && WOLFSSL_SCTP */ #if (defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU)) && \ defined(WOLFSSL_DTLS) int wolfSSL_CTX_dtls_set_mtu(WOLFSSL_CTX* ctx, word16 newMtu) { if (ctx == NULL || newMtu > MAX_RECORD_SIZE) return BAD_FUNC_ARG; ctx->dtlsMtuSz = newMtu; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_set_mtu(WOLFSSL* ssl, word16 newMtu) { if (ssl == NULL) return BAD_FUNC_ARG; if (newMtu > MAX_RECORD_SIZE) { ssl->error = BAD_FUNC_ARG; return WOLFSSL_FAILURE; } ssl->dtlsMtuSz = newMtu; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS && (WOLFSSL_SCTP || WOLFSSL_DTLS_MTU) */ #ifdef WOLFSSL_SRTP static const WOLFSSL_SRTP_PROTECTION_PROFILE gSrtpProfiles[] = { /* AES CCM 128, Salt:112-bits, Auth HMAC-SHA1 Tag: 80-bits * (master_key:128bits + master_salt:112bits) * 2 = 480 bits (60) */ {"SRTP_AES128_CM_SHA1_80", SRTP_AES128_CM_SHA1_80, (((128 + 112) * 2) / 8) }, /* AES CCM 128, Salt:112-bits, Auth HMAC-SHA1 Tag: 32-bits * (master_key:128bits + master_salt:112bits) * 2 = 480 bits (60) */ {"SRTP_AES128_CM_SHA1_32", SRTP_AES128_CM_SHA1_32, (((128 + 112) * 2) / 8) }, /* NULL Cipher, Salt:112-bits, Auth HMAC-SHA1 Tag 80-bits */ {"SRTP_NULL_SHA1_80", SRTP_NULL_SHA1_80, ((112 * 2) / 8)}, /* NULL Cipher, Salt:112-bits, Auth HMAC-SHA1 Tag 32-bits */ {"SRTP_NULL_SHA1_32", SRTP_NULL_SHA1_32, ((112 * 2) / 8)}, /* AES GCM 128, Salt: 96-bits, Auth GCM Tag 128-bits * (master_key:128bits + master_salt:96bits) * 2 = 448 bits (56) */ {"SRTP_AEAD_AES_128_GCM", SRTP_AEAD_AES_128_GCM, (((128 + 96) * 2) / 8) }, /* AES GCM 256, Salt: 96-bits, Auth GCM Tag 128-bits * (master_key:256bits + master_salt:96bits) * 2 = 704 bits (88) */ {"SRTP_AEAD_AES_256_GCM", SRTP_AEAD_AES_256_GCM, (((256 + 96) * 2) / 8) }, }; static const WOLFSSL_SRTP_PROTECTION_PROFILE* DtlsSrtpFindProfile( const char* profile_str, word32 profile_str_len, unsigned long id) { int i; const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL; for (i=0; i<(int)(sizeof(gSrtpProfiles)/sizeof(WOLFSSL_SRTP_PROTECTION_PROFILE)); i++) { if (profile_str != NULL) { word32 srtp_profile_len = (word32)XSTRLEN(gSrtpProfiles[i].name); if (srtp_profile_len == profile_str_len && XMEMCMP(gSrtpProfiles[i].name, profile_str, profile_str_len) == 0) { profile = &gSrtpProfiles[i]; break; } } else if (id != 0 && gSrtpProfiles[i].id == id) { profile = &gSrtpProfiles[i]; break; } } return profile; } /* profile_str: accepts ":" colon separated list of SRTP profiles */ static int DtlsSrtpSelProfiles(word16* id, const char* profile_str) { const WOLFSSL_SRTP_PROTECTION_PROFILE* profile; const char *current, *next = NULL; word32 length = 0, current_length; *id = 0; /* reset destination ID's */ if (profile_str == NULL) { return WOLFSSL_FAILURE; } /* loop on end of line or colon ":" */ next = profile_str; length = (word32)XSTRLEN(profile_str); do { current = next; next = XSTRSTR(current, ":"); current_length = (!next) ? (word32)XSTRLEN(current) : (word32)(next - current); if (current_length < length) length = current_length; profile = DtlsSrtpFindProfile(current, current_length, 0); if (profile != NULL) { *id |= (1 << profile->id); /* selected bit based on ID */ } } while (next != NULL && next++); /* ++ needed to skip ':' */ return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_tlsext_use_srtp(WOLFSSL_CTX* ctx, const char* profile_str) { int ret = WOLFSSL_FAILURE; if (ctx != NULL) { ret = DtlsSrtpSelProfiles(&ctx->dtlsSrtpProfiles, profile_str); } return ret; } int wolfSSL_set_tlsext_use_srtp(WOLFSSL* ssl, const char* profile_str) { int ret = WOLFSSL_FAILURE; if (ssl != NULL) { ret = DtlsSrtpSelProfiles(&ssl->dtlsSrtpProfiles, profile_str); } return ret; } const WOLFSSL_SRTP_PROTECTION_PROFILE* wolfSSL_get_selected_srtp_profile( WOLFSSL* ssl) { const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL; if (ssl) { profile = DtlsSrtpFindProfile(NULL, 0, ssl->dtlsSrtpId); } return profile; } #ifndef NO_WOLFSSL_STUB WOLF_STACK_OF(WOLFSSL_SRTP_PROTECTION_PROFILE)* wolfSSL_get_srtp_profiles( WOLFSSL* ssl) { /* Not yet implemented - should return list of available SRTP profiles * ssl->dtlsSrtpProfiles */ (void)ssl; return NULL; } #endif int wolfSSL_export_dtls_srtp_keying_material(WOLFSSL* ssl, unsigned char* out, size_t* olen) { int ret = WOLFSSL_FAILURE; const char* label = "EXTRACTOR-dtls_srtp"; const WOLFSSL_SRTP_PROTECTION_PROFILE* profile = NULL; byte seed[SEED_LEN]; if (ssl == NULL || olen == NULL) { return BAD_FUNC_ARG; } profile = DtlsSrtpFindProfile(NULL, 0, ssl->dtlsSrtpId); if (profile == NULL) { WOLFSSL_MSG("Not using DTLS SRTP"); return EXT_MISSING; } if (out == NULL) { *olen = profile->kdfBits; return LENGTH_ONLY_E; } if (*olen < (size_t)profile->kdfBits) { return BUFFER_E; } #ifdef WOLFSSL_HAVE_PRF XMEMCPY(seed, ssl->arrays->clientRandom, RAN_LEN); XMEMCPY(seed + RAN_LEN, ssl->arrays->serverRandom, RAN_LEN); PRIVATE_KEY_UNLOCK(); ret = wc_PRF_TLS(out, profile->kdfBits, /* out: generated keys / salt */ ssl->arrays->masterSecret, SECRET_LEN, /* existing master secret */ (const byte*)label, (int)XSTRLEN(label),/* label */ seed, SEED_LEN, /* seed: client/server random */ IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm, ssl->heap, INVALID_DEVID); if (ret == 0) { *olen = profile->kdfBits; ret = WOLFSSL_SUCCESS; } PRIVATE_KEY_LOCK(); #else /* Pseudo random function must be enabled in the configuration */ ret = PRF_MISSING; #endif return ret; } #endif /* WOLFSSL_SRTP */ #ifdef WOLFSSL_DTLS_DROP_STATS int wolfSSL_dtls_get_drop_stats(WOLFSSL* ssl, word32* macDropCount, word32* replayDropCount) { int ret; WOLFSSL_ENTER("wolfSSL_dtls_get_drop_stats()"); if (ssl == NULL) ret = BAD_FUNC_ARG; else { ret = WOLFSSL_SUCCESS; if (macDropCount != NULL) *macDropCount = ssl->macDropCount; if (replayDropCount != NULL) *replayDropCount = ssl->replayDropCount; } WOLFSSL_LEAVE("wolfSSL_dtls_get_drop_stats()", ret); return ret; } #endif /* WOLFSSL_DTLS_DROP_STATS */ #if defined(WOLFSSL_MULTICAST) int wolfSSL_CTX_mcast_set_member_id(WOLFSSL_CTX* ctx, word16 id) { int ret = 0; WOLFSSL_ENTER("wolfSSL_CTX_mcast_set_member_id()"); if (ctx == NULL || id > 255) ret = BAD_FUNC_ARG; if (ret == 0) { ctx->haveEMS = 0; ctx->haveMcast = 1; ctx->mcastID = (byte)id; #ifndef WOLFSSL_USER_IO ctx->CBIORecv = EmbedReceiveFromMcast; #endif /* WOLFSSL_USER_IO */ ret = WOLFSSL_SUCCESS; } WOLFSSL_LEAVE("wolfSSL_CTX_mcast_set_member_id()", ret); return ret; } int wolfSSL_mcast_get_max_peers(void) { return WOLFSSL_MULTICAST_PEERS; } #ifdef WOLFSSL_DTLS static WC_INLINE word32 UpdateHighwaterMark(word32 cur, word32 first, word32 second, word32 high) { word32 newCur = 0; if (cur < first) newCur = first; else if (cur < second) newCur = second; else if (cur < high) newCur = high; return newCur; } #endif /* WOLFSSL_DTLS */ int wolfSSL_set_secret(WOLFSSL* ssl, word16 epoch, const byte* preMasterSecret, word32 preMasterSz, const byte* clientRandom, const byte* serverRandom, const byte* suite) { int ret = 0; WOLFSSL_ENTER("wolfSSL_set_secret()"); if (ssl == NULL || preMasterSecret == NULL || preMasterSz == 0 || preMasterSz > ENCRYPT_LEN || clientRandom == NULL || serverRandom == NULL || suite == NULL) { ret = BAD_FUNC_ARG; } if (ret == 0 && ssl->arrays->preMasterSecret == NULL) { ssl->arrays->preMasterSz = ENCRYPT_LEN; ssl->arrays->preMasterSecret = (byte*)XMALLOC(ENCRYPT_LEN, ssl->heap, DYNAMIC_TYPE_SECRET); if (ssl->arrays->preMasterSecret == NULL) { ret = MEMORY_E; } } if (ret == 0) { XMEMCPY(ssl->arrays->preMasterSecret, preMasterSecret, preMasterSz); XMEMSET(ssl->arrays->preMasterSecret + preMasterSz, 0, ENCRYPT_LEN - preMasterSz); ssl->arrays->preMasterSz = preMasterSz; XMEMCPY(ssl->arrays->clientRandom, clientRandom, RAN_LEN); XMEMCPY(ssl->arrays->serverRandom, serverRandom, RAN_LEN); ssl->options.cipherSuite0 = suite[0]; ssl->options.cipherSuite = suite[1]; ret = SetCipherSpecs(ssl); } if (ret == 0) ret = MakeTlsMasterSecret(ssl); if (ret == 0) { ssl->keys.encryptionOn = 1; ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE); } if (ret == 0) { if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS WOLFSSL_DTLS_PEERSEQ* peerSeq; int i; ssl->keys.dtls_epoch = epoch; for (i = 0, peerSeq = ssl->keys.peerSeq; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++, peerSeq++) { peerSeq->nextEpoch = epoch; peerSeq->prevSeq_lo = peerSeq->nextSeq_lo; peerSeq->prevSeq_hi = peerSeq->nextSeq_hi; peerSeq->nextSeq_lo = 0; peerSeq->nextSeq_hi = 0; XMEMCPY(peerSeq->prevWindow, peerSeq->window, DTLS_SEQ_SZ); XMEMSET(peerSeq->window, 0, DTLS_SEQ_SZ); peerSeq->highwaterMark = UpdateHighwaterMark(0, ssl->ctx->mcastFirstSeq, ssl->ctx->mcastSecondSeq, ssl->ctx->mcastMaxSeq); } #else (void)epoch; #endif } FreeHandshakeResources(ssl); ret = WOLFSSL_SUCCESS; } else { if (ssl) ssl->error = ret; ret = WOLFSSL_FATAL_ERROR; } WOLFSSL_LEAVE("wolfSSL_set_secret()", ret); return ret; } #ifdef WOLFSSL_DTLS int wolfSSL_mcast_peer_add(WOLFSSL* ssl, word16 peerId, int sub) { WOLFSSL_DTLS_PEERSEQ* p = NULL; int ret = WOLFSSL_SUCCESS; int i; WOLFSSL_ENTER("wolfSSL_mcast_peer_add()"); if (ssl == NULL || peerId > 255) return BAD_FUNC_ARG; if (!sub) { /* Make sure it isn't already present, while keeping the first * open spot. */ for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == INVALID_PEER_ID) p = &ssl->keys.peerSeq[i]; if (ssl->keys.peerSeq[i].peerId == peerId) { WOLFSSL_MSG("Peer ID already in multicast peer list."); p = NULL; } } if (p != NULL) { XMEMSET(p, 0, sizeof(WOLFSSL_DTLS_PEERSEQ)); p->peerId = peerId; p->highwaterMark = UpdateHighwaterMark(0, ssl->ctx->mcastFirstSeq, ssl->ctx->mcastSecondSeq, ssl->ctx->mcastMaxSeq); } else { WOLFSSL_MSG("No room in peer list."); ret = -1; } } else { for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == peerId) p = &ssl->keys.peerSeq[i]; } if (p != NULL) { p->peerId = INVALID_PEER_ID; } else { WOLFSSL_MSG("Peer not found in list."); } } WOLFSSL_LEAVE("wolfSSL_mcast_peer_add()", ret); return ret; } /* If peerId is in the list of peers and its last sequence number is non-zero, * return 1, otherwise return 0. */ int wolfSSL_mcast_peer_known(WOLFSSL* ssl, unsigned short peerId) { int known = 0; int i; WOLFSSL_ENTER("wolfSSL_mcast_peer_known()"); if (ssl == NULL || peerId > 255) { return BAD_FUNC_ARG; } for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == peerId) { if (ssl->keys.peerSeq[i].nextSeq_hi || ssl->keys.peerSeq[i].nextSeq_lo) { known = 1; } break; } } WOLFSSL_LEAVE("wolfSSL_mcast_peer_known()", known); return known; } int wolfSSL_CTX_mcast_set_highwater_cb(WOLFSSL_CTX* ctx, word32 maxSeq, word32 first, word32 second, CallbackMcastHighwater cb) { if (ctx == NULL || (second && first > second) || first > maxSeq || second > maxSeq || cb == NULL) { return BAD_FUNC_ARG; } ctx->mcastHwCb = cb; ctx->mcastFirstSeq = first; ctx->mcastSecondSeq = second; ctx->mcastMaxSeq = maxSeq; return WOLFSSL_SUCCESS; } int wolfSSL_mcast_set_highwater_ctx(WOLFSSL* ssl, void* ctx) { if (ssl == NULL || ctx == NULL) return BAD_FUNC_ARG; ssl->mcastHwCbCtx = ctx; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS */ #endif /* WOLFSSL_MULTICAST */ #endif /* WOLFSSL_LEANPSK */ /* return underlying connect or accept, WOLFSSL_SUCCESS on ok */ int wolfSSL_negotiate(WOLFSSL* ssl) { int err = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_negotiate"); #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_SERVER_END) { #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) err = wolfSSL_accept_TLSv13(ssl); else #endif err = wolfSSL_accept(ssl); } #endif #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_CLIENT_END) { #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) err = wolfSSL_connect_TLSv13(ssl); else #endif err = wolfSSL_connect(ssl); } #endif (void)ssl; WOLFSSL_LEAVE("wolfSSL_negotiate", err); return err; } WOLFSSL_ABI WC_RNG* wolfSSL_GetRNG(WOLFSSL* ssl) { if (ssl) { return ssl->rng; } return NULL; } #ifndef WOLFSSL_LEANPSK /* object size based on build */ int wolfSSL_GetObjectSize(void) { #ifdef SHOW_SIZES printf("sizeof suites = %lu\n", (unsigned long)sizeof(Suites)); printf("sizeof ciphers(2) = %lu\n", (unsigned long)sizeof(Ciphers)); #ifndef NO_RC4 printf("\tsizeof arc4 = %lu\n", (unsigned long)sizeof(Arc4)); #endif printf("\tsizeof aes = %lu\n", (unsigned long)sizeof(Aes)); #ifndef NO_DES3 printf("\tsizeof des3 = %lu\n", (unsigned long)sizeof(Des3)); #endif #ifdef HAVE_CHACHA printf("\tsizeof chacha = %lu\n", (unsigned long)sizeof(ChaCha)); #endif printf("sizeof cipher specs = %lu\n", (unsigned long)sizeof(CipherSpecs)); printf("sizeof keys = %lu\n", (unsigned long)sizeof(Keys)); printf("sizeof Hashes(2) = %lu\n", (unsigned long)sizeof(Hashes)); #ifndef NO_MD5 printf("\tsizeof MD5 = %lu\n", (unsigned long)sizeof(wc_Md5)); #endif #ifndef NO_SHA printf("\tsizeof SHA = %lu\n", (unsigned long)sizeof(wc_Sha)); #endif #ifdef WOLFSSL_SHA224 printf("\tsizeof SHA224 = %lu\n", (unsigned long)sizeof(wc_Sha224)); #endif #ifndef NO_SHA256 printf("\tsizeof SHA256 = %lu\n", (unsigned long)sizeof(wc_Sha256)); #endif #ifdef WOLFSSL_SHA384 printf("\tsizeof SHA384 = %lu\n", (unsigned long)sizeof(wc_Sha384)); #endif #ifdef WOLFSSL_SHA384 printf("\tsizeof SHA512 = %lu\n", (unsigned long)sizeof(wc_Sha512)); #endif printf("sizeof Buffers = %lu\n", (unsigned long)sizeof(Buffers)); printf("sizeof Options = %lu\n", (unsigned long)sizeof(Options)); printf("sizeof Arrays = %lu\n", (unsigned long)sizeof(Arrays)); #ifndef NO_RSA printf("sizeof RsaKey = %lu\n", (unsigned long)sizeof(RsaKey)); #endif #ifdef HAVE_ECC printf("sizeof ecc_key = %lu\n", (unsigned long)sizeof(ecc_key)); #endif printf("sizeof WOLFSSL_CIPHER = %lu\n", (unsigned long)sizeof(WOLFSSL_CIPHER)); printf("sizeof WOLFSSL_SESSION = %lu\n", (unsigned long)sizeof(WOLFSSL_SESSION)); printf("sizeof WOLFSSL = %lu\n", (unsigned long)sizeof(WOLFSSL)); printf("sizeof WOLFSSL_CTX = %lu\n", (unsigned long)sizeof(WOLFSSL_CTX)); #endif return sizeof(WOLFSSL); } int wolfSSL_CTX_GetObjectSize(void) { return sizeof(WOLFSSL_CTX); } int wolfSSL_METHOD_GetObjectSize(void) { return sizeof(WOLFSSL_METHOD); } #endif #ifdef WOLFSSL_STATIC_MEMORY int wolfSSL_CTX_load_static_memory(WOLFSSL_CTX** ctx, wolfSSL_method_func method, unsigned char* buf, unsigned int sz, int flag, int maxSz) { WOLFSSL_HEAP* heap; WOLFSSL_HEAP_HINT* hint; word32 idx = 0; if (ctx == NULL || buf == NULL) { return BAD_FUNC_ARG; } if (*ctx == NULL && method == NULL) { return BAD_FUNC_ARG; } if (*ctx == NULL || (*ctx)->heap == NULL) { if (sizeof(WOLFSSL_HEAP) + sizeof(WOLFSSL_HEAP_HINT) > sz - idx) { return BUFFER_E; /* not enough memory for structures */ } heap = (WOLFSSL_HEAP*)buf; idx += sizeof(WOLFSSL_HEAP); if (wolfSSL_init_memory_heap(heap) != 0) { return WOLFSSL_FAILURE; } hint = (WOLFSSL_HEAP_HINT*)(buf + idx); idx += sizeof(WOLFSSL_HEAP_HINT); XMEMSET(hint, 0, sizeof(WOLFSSL_HEAP_HINT)); hint->memory = heap; if (*ctx && (*ctx)->heap == NULL) { (*ctx)->heap = (void*)hint; } } else { #ifdef WOLFSSL_HEAP_TEST /* do not load in memory if test has been set */ if ((*ctx)->heap == (void*)WOLFSSL_HEAP_TEST) { return WOLFSSL_SUCCESS; } #endif hint = (WOLFSSL_HEAP_HINT*)((*ctx)->heap); heap = hint->memory; } if (wolfSSL_load_static_memory(buf + idx, sz - idx, flag, heap) != 1) { WOLFSSL_MSG("Error partitioning memory"); return WOLFSSL_FAILURE; } /* create ctx if needed */ if (*ctx == NULL) { *ctx = wolfSSL_CTX_new_ex(method(hint), hint); if (*ctx == NULL) { WOLFSSL_MSG("Error creating ctx"); return WOLFSSL_FAILURE; } } /* determine what max applies too */ if (flag & WOLFMEM_IO_POOL || flag & WOLFMEM_IO_POOL_FIXED) { heap->maxIO = maxSz; } else { /* general memory used in handshakes */ heap->maxHa = maxSz; } heap->flag |= flag; (void)maxSz; (void)method; return WOLFSSL_SUCCESS; } int wolfSSL_is_static_memory(WOLFSSL* ssl, WOLFSSL_MEM_CONN_STATS* mem_stats) { if (ssl == NULL) { return BAD_FUNC_ARG; } WOLFSSL_ENTER("wolfSSL_is_static_memory"); /* fill out statistics if wanted and WOLFMEM_TRACK_STATS flag */ if (mem_stats != NULL && ssl->heap != NULL) { WOLFSSL_HEAP_HINT* hint = ((WOLFSSL_HEAP_HINT*)(ssl->heap)); WOLFSSL_HEAP* heap = hint->memory; if (heap->flag & WOLFMEM_TRACK_STATS && hint->stats != NULL) { XMEMCPY(mem_stats, hint->stats, sizeof(WOLFSSL_MEM_CONN_STATS)); } } return (ssl->heap) ? 1 : 0; } int wolfSSL_CTX_is_static_memory(WOLFSSL_CTX* ctx, WOLFSSL_MEM_STATS* mem_stats) { if (ctx == NULL) { return BAD_FUNC_ARG; } WOLFSSL_ENTER("wolfSSL_CTX_is_static_memory"); /* fill out statistics if wanted */ if (mem_stats != NULL && ctx->heap != NULL) { WOLFSSL_HEAP* heap = ((WOLFSSL_HEAP_HINT*)(ctx->heap))->memory; if (wolfSSL_GetMemStats(heap, mem_stats) != 1) { return MEMORY_E; } } return (ctx->heap) ? 1 : 0; } #endif /* WOLFSSL_STATIC_MEMORY */ /* return max record layer size plaintext input size */ int wolfSSL_GetMaxOutputSize(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_GetMaxOutputSize"); if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.handShakeState != HANDSHAKE_DONE) { WOLFSSL_MSG("Handshake not complete yet"); return BAD_FUNC_ARG; } return wolfSSL_GetMaxFragSize(ssl, OUTPUT_RECORD_SIZE); } /* return record layer size of plaintext input size */ int wolfSSL_GetOutputSize(WOLFSSL* ssl, int inSz) { int maxSize; WOLFSSL_ENTER("wolfSSL_GetOutputSize"); if (inSz < 0) return BAD_FUNC_ARG; maxSize = wolfSSL_GetMaxOutputSize(ssl); if (maxSize < 0) return maxSize; /* error */ if (inSz > maxSize) return INPUT_SIZE_E; return BuildMessage(ssl, NULL, 0, NULL, inSz, application_data, 0, 1, 0, CUR_ORDER); } #ifdef HAVE_ECC int wolfSSL_CTX_SetMinEccKey_Sz(WOLFSSL_CTX* ctx, short keySz) { if (ctx == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null"); return BAD_FUNC_ARG; } ctx->minEccKeySz = keySz / 8; #ifndef NO_CERTS ctx->cm->minEccKeySz = keySz / 8; #endif return WOLFSSL_SUCCESS; } int wolfSSL_SetMinEccKey_Sz(WOLFSSL* ssl, short keySz) { if (ssl == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null"); return BAD_FUNC_ARG; } ssl->options.minEccKeySz = keySz / 8; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC */ #ifndef NO_RSA int wolfSSL_CTX_SetMinRsaKey_Sz(WOLFSSL_CTX* ctx, short keySz) { if (ctx == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null"); return BAD_FUNC_ARG; } ctx->minRsaKeySz = keySz / 8; ctx->cm->minRsaKeySz = keySz / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMinRsaKey_Sz(WOLFSSL* ssl, short keySz) { if (ssl == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null"); return BAD_FUNC_ARG; } ssl->options.minRsaKeySz = keySz / 8; return WOLFSSL_SUCCESS; } #endif /* !NO_RSA */ #ifndef NO_DH /* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetTmpDH(WOLFSSL* ssl, const unsigned char* p, int pSz, const unsigned char* g, int gSz) { WOLFSSL_ENTER("wolfSSL_SetTmpDH"); if (ssl == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG; if ((word16)pSz < ssl->options.minDhKeySz) return DH_KEY_SIZE_E; if ((word16)pSz > ssl->options.maxDhKeySz) return DH_KEY_SIZE_E; /* this function is for server only */ if (ssl->options.side == WOLFSSL_CLIENT_END) return SIDE_ERROR; #if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \ !defined(HAVE_SELFTEST) ssl->options.dhKeyTested = 0; ssl->options.dhDoKeyTest = 1; #endif if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); ssl->buffers.serverDH_P.buffer = NULL; } if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); ssl->buffers.serverDH_G.buffer = NULL; } ssl->buffers.weOwnDH = 1; /* SSL owns now */ ssl->buffers.serverDH_P.buffer = (byte*)XMALLOC(pSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ssl->buffers.serverDH_P.buffer == NULL) return MEMORY_E; ssl->buffers.serverDH_G.buffer = (byte*)XMALLOC(gSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ssl->buffers.serverDH_G.buffer == NULL) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); ssl->buffers.serverDH_P.buffer = NULL; return MEMORY_E; } ssl->buffers.serverDH_P.length = pSz; ssl->buffers.serverDH_G.length = gSz; XMEMCPY(ssl->buffers.serverDH_P.buffer, p, pSz); XMEMCPY(ssl->buffers.serverDH_G.buffer, g, gSz); ssl->options.haveDH = 1; if (ssl->options.side != WOLFSSL_NEITHER_END) { word16 havePSK; word16 haveRSA; int keySz = 0; #ifndef NO_PSK havePSK = ssl->options.havePSK; #else havePSK = 0; #endif #ifdef NO_RSA haveRSA = 0; #else haveRSA = 1; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveAnon, ssl->options.side); } WOLFSSL_LEAVE("wolfSSL_SetTmpDH", 0); return WOLFSSL_SUCCESS; } #if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \ !defined(HAVE_SELFTEST) /* Enables or disables the session's DH key prime test. */ int wolfSSL_SetEnableDhKeyTest(WOLFSSL* ssl, int enable) { WOLFSSL_ENTER("wolfSSL_SetEnableDhKeyTest"); if (ssl == NULL) return BAD_FUNC_ARG; if (!enable) ssl->options.dhDoKeyTest = 0; else ssl->options.dhDoKeyTest = 1; WOLFSSL_LEAVE("wolfSSL_SetEnableDhKeyTest", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } #endif /* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_SetTmpDH(WOLFSSL_CTX* ctx, const unsigned char* p, int pSz, const unsigned char* g, int gSz) { WOLFSSL_ENTER("wolfSSL_CTX_SetTmpDH"); if (ctx == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG; if ((word16)pSz < ctx->minDhKeySz) return DH_KEY_SIZE_E; if ((word16)pSz > ctx->maxDhKeySz) return DH_KEY_SIZE_E; #if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \ !defined(HAVE_SELFTEST) { WC_RNG rng; int error, freeKey = 0; #ifdef WOLFSSL_SMALL_STACK DhKey *checkKey = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (checkKey == NULL) return MEMORY_E; #else DhKey checkKey[1]; #endif error = wc_InitRng(&rng); if (!error) error = wc_InitDhKey(checkKey); if (!error) { freeKey = 1; error = wc_DhSetCheckKey(checkKey, p, pSz, g, gSz, NULL, 0, 0, &rng); } if (freeKey) wc_FreeDhKey(checkKey); #ifdef WOLFSSL_SMALL_STACK XFREE(checkKey, NULL, DYNAMIC_TYPE_DH); #endif wc_FreeRng(&rng); if (error) return error; ctx->dhKeyTested = 1; } #endif XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); ctx->serverDH_P.buffer = NULL; XFREE(ctx->serverDH_G.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); ctx->serverDH_G.buffer = NULL; ctx->serverDH_P.buffer = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ctx->serverDH_P.buffer == NULL) return MEMORY_E; ctx->serverDH_G.buffer = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ctx->serverDH_G.buffer == NULL) { XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); ctx->serverDH_P.buffer = NULL; return MEMORY_E; } ctx->serverDH_P.length = pSz; ctx->serverDH_G.length = gSz; XMEMCPY(ctx->serverDH_P.buffer, p, pSz); XMEMCPY(ctx->serverDH_G.buffer, g, gSz); ctx->haveDH = 1; WOLFSSL_LEAVE("wolfSSL_CTX_SetTmpDH", 0); return WOLFSSL_SUCCESS; } int wolfSSL_CTX_SetMinDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz_bits) { if (ctx == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ctx->minDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMinDhKey_Sz(WOLFSSL* ssl, word16 keySz_bits) { if (ssl == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ssl->options.minDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_SetMaxDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz_bits) { if (ctx == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ctx->maxDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMaxDhKey_Sz(WOLFSSL* ssl, word16 keySz_bits) { if (ssl == NULL || keySz_bits > 16000 || keySz_bits % 8 != 0) return BAD_FUNC_ARG; ssl->options.maxDhKeySz = keySz_bits / 8; return WOLFSSL_SUCCESS; } int wolfSSL_GetDhKey_Sz(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return (ssl->options.dhKeySz * 8); } #endif /* !NO_DH */ WOLFSSL_ABI int wolfSSL_write(WOLFSSL* ssl, const void* data, int sz) { int ret; WOLFSSL_ENTER("SSL_write()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #ifdef WOLFSSL_EARLY_DATA if (ssl->earlyData != no_early_data && (ret = wolfSSL_negotiate(ssl)) < 0) { ssl->error = ret; return WOLFSSL_FATAL_ERROR; } ssl->earlyData = no_early_data; #endif #ifdef HAVE_WRITE_DUP { /* local variable scope */ int dupErr = 0; /* local copy */ ret = 0; if (ssl->dupWrite && ssl->dupSide == READ_DUP_SIDE) { WOLFSSL_MSG("Read dup side cannot write"); return WRITE_DUP_WRITE_E; } if (ssl->dupWrite) { if (wc_LockMutex(&ssl->dupWrite->dupMutex) != 0) { return BAD_MUTEX_E; } dupErr = ssl->dupWrite->dupErr; ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex); } if (ret != 0) { ssl->error = ret; /* high priority fatal error */ return WOLFSSL_FATAL_ERROR; } if (dupErr != 0) { WOLFSSL_MSG("Write dup error from other side"); ssl->error = dupErr; return WOLFSSL_FATAL_ERROR; } } #endif #ifdef HAVE_ERRNO_H errno = 0; #endif #ifdef OPENSSL_EXTRA if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_CB_WRITE, WOLFSSL_SUCCESS); ssl->cbmode = SSL_CB_WRITE; } #endif ret = SendData(ssl, data, sz); WOLFSSL_LEAVE("SSL_write()", ret); if (ret < 0) return WOLFSSL_FATAL_ERROR; else return ret; } static int wolfSSL_read_internal(WOLFSSL* ssl, void* data, int sz, int peek) { int ret; WOLFSSL_ENTER("wolfSSL_read_internal()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #if defined(WOLFSSL_ERROR_CODE_OPENSSL) && defined(OPENSSL_EXTRA) /* This additional logic is meant to simulate following openSSL behavior: * After bidirectional SSL_shutdown complete, SSL_read returns 0 and * SSL_get_error_code returns SSL_ERROR_ZERO_RETURN. * This behavior is used to know the disconnect of the underlying * transport layer. * * In this logic, CBIORecv is called with a read size of 0 to check the * transport layer status. It also returns WOLFSSL_FAILURE so that * SSL_read does not return a positive number on failure. */ /* make sure bidirectional TLS shutdown completes */ if (ssl->error == WOLFSSL_ERROR_SYSCALL) { /* ask the underlying transport the connection is closed */ if (ssl->CBIORecv(ssl, (char*)data, 0, ssl->IOCB_ReadCtx) == WOLFSSL_CBIO_ERR_CONN_CLOSE) { ssl->options.isClosed = 1; ssl->error = WOLFSSL_ERROR_ZERO_RETURN; } return WOLFSSL_FAILURE; } #endif #ifdef HAVE_WRITE_DUP if (ssl->dupWrite && ssl->dupSide == WRITE_DUP_SIDE) { WOLFSSL_MSG("Write dup side cannot read"); return WRITE_DUP_READ_E; } #endif #ifdef HAVE_ERRNO_H errno = 0; #endif #ifdef WOLFSSL_DTLS if (ssl->options.dtls) { ssl->dtls_expected_rx = max(sz + DTLS_MTU_ADDITIONAL_READ_BUFFER, MAX_MTU); #ifdef WOLFSSL_SCTP if (ssl->options.dtlsSctp) #endif #if defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU) /* Add some bytes so that we can operate with slight difference * in set MTU size on each peer */ ssl->dtls_expected_rx = max(ssl->dtls_expected_rx, ssl->dtlsMtuSz + (word32)DTLS_MTU_ADDITIONAL_READ_BUFFER); #endif } #endif ret = ReceiveData(ssl, (byte*)data, sz, peek); #ifdef HAVE_WRITE_DUP if (ssl->dupWrite) { if (ssl->error != 0 && ssl->error != WANT_READ #ifdef WOLFSSL_ASYNC_CRYPT && ssl->error != WC_PENDING_E #endif ) { int notifyErr; WOLFSSL_MSG("Notifying write side of fatal read error"); notifyErr = NotifyWriteSide(ssl, ssl->error); if (notifyErr < 0) { ret = ssl->error = notifyErr; } } } #endif WOLFSSL_LEAVE("wolfSSL_read_internal()", ret); if (ret < 0) return WOLFSSL_FATAL_ERROR; else return ret; } int wolfSSL_peek(WOLFSSL* ssl, void* data, int sz) { WOLFSSL_ENTER("wolfSSL_peek()"); return wolfSSL_read_internal(ssl, data, sz, TRUE); } WOLFSSL_ABI int wolfSSL_read(WOLFSSL* ssl, void* data, int sz) { WOLFSSL_ENTER("wolfSSL_read()"); #ifdef OPENSSL_EXTRA if (ssl == NULL) { return BAD_FUNC_ARG; } if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_CB_READ, WOLFSSL_SUCCESS); ssl->cbmode = SSL_CB_READ; } #endif return wolfSSL_read_internal(ssl, data, sz, FALSE); } #ifdef WOLFSSL_MULTICAST int wolfSSL_mcast_read(WOLFSSL* ssl, word16* id, void* data, int sz) { int ret = 0; WOLFSSL_ENTER("wolfSSL_mcast_read()"); if (ssl == NULL) return BAD_FUNC_ARG; ret = wolfSSL_read_internal(ssl, data, sz, FALSE); if (ssl->options.dtls && ssl->options.haveMcast && id != NULL) *id = ssl->keys.curPeerId; return ret; } #endif /* WOLFSSL_MULTICAST */ /* helpers to set the device id, WOLFSSL_SUCCESS on ok */ WOLFSSL_ABI int wolfSSL_SetDevId(WOLFSSL* ssl, int devId) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->devId = devId; return WOLFSSL_SUCCESS; } WOLFSSL_ABI int wolfSSL_CTX_SetDevId(WOLFSSL_CTX* ctx, int devId) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->devId = devId; return WOLFSSL_SUCCESS; } /* helpers to get device id and heap */ WOLFSSL_ABI int wolfSSL_CTX_GetDevId(WOLFSSL_CTX* ctx, WOLFSSL* ssl) { int devId = INVALID_DEVID; if (ssl != NULL) devId = ssl->devId; if (ctx != NULL && devId == INVALID_DEVID) devId = ctx->devId; return devId; } void* wolfSSL_CTX_GetHeap(WOLFSSL_CTX* ctx, WOLFSSL* ssl) { void* heap = NULL; if (ctx != NULL) heap = ctx->heap; else if (ssl != NULL) heap = ssl->heap; return heap; } #ifdef HAVE_SNI WOLFSSL_ABI int wolfSSL_UseSNI(WOLFSSL* ssl, byte type, const void* data, word16 size) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ssl->extensions, type, data, size, ssl->heap); } WOLFSSL_ABI int wolfSSL_CTX_UseSNI(WOLFSSL_CTX* ctx, byte type, const void* data, word16 size) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ctx->extensions, type, data, size, ctx->heap); } #ifndef NO_WOLFSSL_SERVER void wolfSSL_SNI_SetOptions(WOLFSSL* ssl, byte type, byte options) { if (ssl && ssl->extensions) TLSX_SNI_SetOptions(ssl->extensions, type, options); } void wolfSSL_CTX_SNI_SetOptions(WOLFSSL_CTX* ctx, byte type, byte options) { if (ctx && ctx->extensions) TLSX_SNI_SetOptions(ctx->extensions, type, options); } byte wolfSSL_SNI_Status(WOLFSSL* ssl, byte type) { return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type); } word16 wolfSSL_SNI_GetRequest(WOLFSSL* ssl, byte type, void** data) { if (data) *data = NULL; if (ssl && ssl->extensions) return TLSX_SNI_GetRequest(ssl->extensions, type, data); return 0; } int wolfSSL_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz, byte type, byte* sni, word32* inOutSz) { if (clientHello && helloSz > 0 && sni && inOutSz && *inOutSz > 0) return TLSX_SNI_GetFromBuffer(clientHello, helloSz, type, sni, inOutSz); return BAD_FUNC_ARG; } #endif /* NO_WOLFSSL_SERVER */ #endif /* HAVE_SNI */ #ifdef HAVE_TRUSTED_CA WOLFSSL_API int wolfSSL_UseTrustedCA(WOLFSSL* ssl, byte type, const byte* certId, word32 certIdSz) { if (ssl == NULL) return BAD_FUNC_ARG; if (type == WOLFSSL_TRUSTED_CA_PRE_AGREED) { if (certId != NULL || certIdSz != 0) return BAD_FUNC_ARG; } else if (type == WOLFSSL_TRUSTED_CA_X509_NAME) { if (certId == NULL || certIdSz == 0) return BAD_FUNC_ARG; } #ifndef NO_SHA else if (type == WOLFSSL_TRUSTED_CA_KEY_SHA1 || type == WOLFSSL_TRUSTED_CA_CERT_SHA1) { if (certId == NULL || certIdSz != WC_SHA_DIGEST_SIZE) return BAD_FUNC_ARG; } #endif else return BAD_FUNC_ARG; return TLSX_UseTrustedCA(&ssl->extensions, type, certId, certIdSz, ssl->heap); } #endif /* HAVE_TRUSTED_CA */ #ifdef HAVE_MAX_FRAGMENT #ifndef NO_WOLFSSL_CLIENT int wolfSSL_UseMaxFragment(WOLFSSL* ssl, byte mfl) { if (ssl == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_ALLOW_MAX_FRAGMENT_ADJUST /* The following is a non-standard way to reconfigure the max packet size post-handshake for wolfSSL_write/wolfSSL_read */ if (ssl->options.handShakeState == HANDSHAKE_DONE) { switch (mfl) { case WOLFSSL_MFL_2_8 : ssl->max_fragment = 256; break; case WOLFSSL_MFL_2_9 : ssl->max_fragment = 512; break; case WOLFSSL_MFL_2_10: ssl->max_fragment = 1024; break; case WOLFSSL_MFL_2_11: ssl->max_fragment = 2048; break; case WOLFSSL_MFL_2_12: ssl->max_fragment = 4096; break; case WOLFSSL_MFL_2_13: ssl->max_fragment = 8192; break; default: ssl->max_fragment = MAX_RECORD_SIZE; break; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_MAX_FRAGMENT_ADJUST */ /* This call sets the max fragment TLS extension, which gets sent to server. The server_hello response is what sets the `ssl->max_fragment` in TLSX_MFL_Parse */ return TLSX_UseMaxFragment(&ssl->extensions, mfl, ssl->heap); } int wolfSSL_CTX_UseMaxFragment(WOLFSSL_CTX* ctx, byte mfl) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseMaxFragment(&ctx->extensions, mfl, ctx->heap); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_MAX_FRAGMENT */ #ifdef HAVE_TRUNCATED_HMAC #ifndef NO_WOLFSSL_CLIENT int wolfSSL_UseTruncatedHMAC(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ssl->extensions, ssl->heap); } int wolfSSL_CTX_UseTruncatedHMAC(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ctx->extensions, ctx->heap); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_TRUNCATED_HMAC */ #ifdef HAVE_CERTIFICATE_STATUS_REQUEST int wolfSSL_UseOCSPStapling(WOLFSSL* ssl, byte status_type, byte options) { WOLFSSL_ENTER("wolfSSL_UseOCSPStapling"); if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequest(&ssl->extensions, status_type, options, NULL, ssl->heap, ssl->devId); } int wolfSSL_CTX_UseOCSPStapling(WOLFSSL_CTX* ctx, byte status_type, byte options) { WOLFSSL_ENTER("wolfSSL_CTX_UseOCSPStapling"); if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequest(&ctx->extensions, status_type, options, NULL, ctx->heap, ctx->devId); } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST */ #ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2 int wolfSSL_UseOCSPStaplingV2(WOLFSSL* ssl, byte status_type, byte options) { if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequestV2(&ssl->extensions, status_type, options, ssl->heap, ssl->devId); } int wolfSSL_CTX_UseOCSPStaplingV2(WOLFSSL_CTX* ctx, byte status_type, byte options) { if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequestV2(&ctx->extensions, status_type, options, ctx->heap, ctx->devId); } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */ /* Elliptic Curves */ #if defined(HAVE_SUPPORTED_CURVES) static int isValidCurveGroup(word16 name) { switch (name) { case WOLFSSL_ECC_SECP160K1: case WOLFSSL_ECC_SECP160R1: case WOLFSSL_ECC_SECP160R2: case WOLFSSL_ECC_SECP192K1: case WOLFSSL_ECC_SECP192R1: case WOLFSSL_ECC_SECP224K1: case WOLFSSL_ECC_SECP224R1: case WOLFSSL_ECC_SECP256K1: case WOLFSSL_ECC_SECP256R1: case WOLFSSL_ECC_SECP384R1: case WOLFSSL_ECC_SECP521R1: case WOLFSSL_ECC_BRAINPOOLP256R1: case WOLFSSL_ECC_BRAINPOOLP384R1: case WOLFSSL_ECC_BRAINPOOLP512R1: case WOLFSSL_ECC_X25519: case WOLFSSL_ECC_X448: case WOLFSSL_FFDHE_2048: case WOLFSSL_FFDHE_3072: case WOLFSSL_FFDHE_4096: case WOLFSSL_FFDHE_6144: case WOLFSSL_FFDHE_8192: #ifdef HAVE_PQC case WOLFSSL_KYBER_LEVEL1: case WOLFSSL_KYBER_LEVEL3: case WOLFSSL_KYBER_LEVEL5: case WOLFSSL_NTRU_HPS_LEVEL1: case WOLFSSL_NTRU_HPS_LEVEL3: case WOLFSSL_NTRU_HPS_LEVEL5: case WOLFSSL_NTRU_HRSS_LEVEL3: case WOLFSSL_SABER_LEVEL1: case WOLFSSL_SABER_LEVEL3: case WOLFSSL_SABER_LEVEL5: case WOLFSSL_KYBER_90S_LEVEL1: case WOLFSSL_KYBER_90S_LEVEL3: case WOLFSSL_KYBER_90S_LEVEL5: case WOLFSSL_P256_NTRU_HPS_LEVEL1: case WOLFSSL_P384_NTRU_HPS_LEVEL3: case WOLFSSL_P521_NTRU_HPS_LEVEL5: case WOLFSSL_P384_NTRU_HRSS_LEVEL3: case WOLFSSL_P256_SABER_LEVEL1: case WOLFSSL_P384_SABER_LEVEL3: case WOLFSSL_P521_SABER_LEVEL5: case WOLFSSL_P256_KYBER_LEVEL1: case WOLFSSL_P384_KYBER_LEVEL3: case WOLFSSL_P521_KYBER_LEVEL5: case WOLFSSL_P256_KYBER_90S_LEVEL1: case WOLFSSL_P384_KYBER_90S_LEVEL3: case WOLFSSL_P521_KYBER_90S_LEVEL5: #endif return 1; default: return 0; } } int wolfSSL_UseSupportedCurve(WOLFSSL* ssl, word16 name) { if (ssl == NULL || !isValidCurveGroup(name)) return BAD_FUNC_ARG; ssl->options.userCurves = 1; return TLSX_UseSupportedCurve(&ssl->extensions, name, ssl->heap); } int wolfSSL_CTX_UseSupportedCurve(WOLFSSL_CTX* ctx, word16 name) { if (ctx == NULL || !isValidCurveGroup(name)) return BAD_FUNC_ARG; ctx->userCurves = 1; return TLSX_UseSupportedCurve(&ctx->extensions, name, ctx->heap); } #if defined(OPENSSL_EXTRA) && defined(WOLFSSL_TLS13) int wolfSSL_CTX_set1_groups(WOLFSSL_CTX* ctx, int* groups, int count) { int i; int _groups[WOLFSSL_MAX_GROUP_COUNT]; WOLFSSL_ENTER("wolfSSL_CTX_set1_groups"); if (count == 0) { WOLFSSL_MSG("Group count is zero"); return WOLFSSL_FAILURE; } for (i = 0; i < count; i++) { if (isValidCurveGroup((word16)groups[i])) { _groups[i] = groups[i]; } #ifdef HAVE_ECC else { /* groups may be populated with curve NIDs */ int oid = nid2oid(groups[i], oidCurveType); int name = (int)GetCurveByOID(oid); if (name == 0) { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } _groups[i] = name; } #else else { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } #endif } return wolfSSL_CTX_set_groups(ctx, _groups, count) == WOLFSSL_SUCCESS ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_set1_groups(WOLFSSL* ssl, int* groups, int count) { int i; int _groups[WOLFSSL_MAX_GROUP_COUNT]; WOLFSSL_ENTER("wolfSSL_CTX_set1_groups"); if (count == 0) { WOLFSSL_MSG("Group count is zero"); return WOLFSSL_FAILURE; } for (i = 0; i < count; i++) { if (isValidCurveGroup((word16)groups[i])) { _groups[i] = groups[i]; } #ifdef HAVE_ECC else { /* groups may be populated with curve NIDs */ int oid = nid2oid(groups[i], oidCurveType); int name = (int)GetCurveByOID(oid); if (name == 0) { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } _groups[i] = name; } #else else { WOLFSSL_MSG("Invalid group name"); return WOLFSSL_FAILURE; } #endif } return wolfSSL_set_groups(ssl, _groups, count) == WOLFSSL_SUCCESS ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #endif /* OPENSSL_EXTRA && WOLFSSL_TLS13 */ #endif /* HAVE_SUPPORTED_CURVES */ /* Application-Layer Protocol Negotiation */ #ifdef HAVE_ALPN WOLFSSL_ABI int wolfSSL_UseALPN(WOLFSSL* ssl, char *protocol_name_list, word32 protocol_name_listSz, byte options) { char *list, *ptr, **token; word16 len; int idx = 0; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_UseALPN"); if (ssl == NULL || protocol_name_list == NULL) return BAD_FUNC_ARG; if (protocol_name_listSz > (WOLFSSL_MAX_ALPN_NUMBER * WOLFSSL_MAX_ALPN_PROTO_NAME_LEN + WOLFSSL_MAX_ALPN_NUMBER)) { WOLFSSL_MSG("Invalid arguments, protocol name list too long"); return BAD_FUNC_ARG; } if (!(options & WOLFSSL_ALPN_CONTINUE_ON_MISMATCH) && !(options & WOLFSSL_ALPN_FAILED_ON_MISMATCH)) { WOLFSSL_MSG("Invalid arguments, options not supported"); return BAD_FUNC_ARG; } list = (char *)XMALLOC(protocol_name_listSz+1, ssl->heap, DYNAMIC_TYPE_ALPN); if (list == NULL) { WOLFSSL_MSG("Memory failure"); return MEMORY_ERROR; } token = (char **)XMALLOC(sizeof(char *) * (WOLFSSL_MAX_ALPN_NUMBER+1), ssl->heap, DYNAMIC_TYPE_ALPN); if (token == NULL) { XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN); WOLFSSL_MSG("Memory failure"); return MEMORY_ERROR; } XMEMSET(token, 0, sizeof(char *) * (WOLFSSL_MAX_ALPN_NUMBER+1)); XSTRNCPY(list, protocol_name_list, protocol_name_listSz); list[protocol_name_listSz] = '\0'; /* read all protocol name from the list */ token[idx] = XSTRTOK(list, ",", &ptr); while (idx < WOLFSSL_MAX_ALPN_NUMBER && token[idx] != NULL) token[++idx] = XSTRTOK(NULL, ",", &ptr); /* add protocol name list in the TLS extension in reverse order */ while ((idx--) > 0) { len = (word16)XSTRLEN(token[idx]); ret = TLSX_UseALPN(&ssl->extensions, token[idx], len, options, ssl->heap); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("TLSX_UseALPN failure"); break; } } XFREE(token, ssl->heap, DYNAMIC_TYPE_ALPN); XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN); return ret; } int wolfSSL_ALPN_GetProtocol(WOLFSSL* ssl, char **protocol_name, word16 *size) { return TLSX_ALPN_GetRequest(ssl ? ssl->extensions : NULL, (void **)protocol_name, size); } int wolfSSL_ALPN_GetPeerProtocol(WOLFSSL* ssl, char **list, word16 *listSz) { if (list == NULL || listSz == NULL) return BAD_FUNC_ARG; if (ssl->alpn_client_list == NULL) return BUFFER_ERROR; *listSz = (word16)XSTRLEN(ssl->alpn_client_list); if (*listSz == 0) return BUFFER_ERROR; *list = (char *)XMALLOC((*listSz)+1, ssl->heap, DYNAMIC_TYPE_TLSX); if (*list == NULL) return MEMORY_ERROR; XSTRNCPY(*list, ssl->alpn_client_list, (*listSz)+1); (*list)[*listSz] = 0; return WOLFSSL_SUCCESS; } /* used to free memory allocated by wolfSSL_ALPN_GetPeerProtocol */ int wolfSSL_ALPN_FreePeerProtocol(WOLFSSL* ssl, char **list) { if (ssl == NULL) { return BAD_FUNC_ARG; } XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX); *list = NULL; return WOLFSSL_SUCCESS; } #endif /* HAVE_ALPN */ /* Secure Renegotiation */ #ifdef HAVE_SERVER_RENEGOTIATION_INFO /* user is forcing ability to use secure renegotiation, we discourage it */ int wolfSSL_UseSecureRenegotiation(WOLFSSL* ssl) { int ret = BAD_FUNC_ARG; if (ssl) ret = TLSX_UseSecureRenegotiation(&ssl->extensions, ssl->heap); if (ret == WOLFSSL_SUCCESS) { TLSX* extension = TLSX_Find(ssl->extensions, TLSX_RENEGOTIATION_INFO); if (extension) ssl->secure_renegotiation = (SecureRenegotiation*)extension->data; } return ret; } int wolfSSL_CTX_UseSecureRenegotiation(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->useSecureReneg = 1; return WOLFSSL_SUCCESS; } /* do a secure renegotiation handshake, user forced, we discourage */ static int _Rehandshake(WOLFSSL* ssl) { int ret; if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->secure_renegotiation == NULL) { WOLFSSL_MSG("Secure Renegotiation not forced on by user"); return SECURE_RENEGOTIATION_E; } if (ssl->secure_renegotiation->enabled == 0) { WOLFSSL_MSG("Secure Renegotiation not enabled at extension level"); return SECURE_RENEGOTIATION_E; } /* If the client started the renegotiation, the server will already * have processed the client's hello. */ if (ssl->options.side != WOLFSSL_SERVER_END || ssl->options.acceptState != ACCEPT_FIRST_REPLY_DONE) { if (ssl->options.handShakeState != HANDSHAKE_DONE) { if (!ssl->options.handShakeDone) { WOLFSSL_MSG("Can't renegotiate until initial " "handshake complete"); return SECURE_RENEGOTIATION_E; } else { WOLFSSL_MSG("Renegotiation already started. " "Moving it forward."); ret = wolfSSL_negotiate(ssl); if (ret == WOLFSSL_SUCCESS) ssl->secure_rene_count++; return ret; } } #ifndef NO_FORCE_SCR_SAME_SUITE /* force same suite */ if (ssl->suites) { ssl->suites->suiteSz = SUITE_LEN; ssl->suites->suites[0] = ssl->options.cipherSuite0; ssl->suites->suites[1] = ssl->options.cipherSuite; } #endif /* reset handshake states */ ssl->options.sendVerify = 0; ssl->options.serverState = NULL_STATE; ssl->options.clientState = NULL_STATE; ssl->options.connectState = CONNECT_BEGIN; ssl->options.acceptState = ACCEPT_BEGIN_RENEG; ssl->options.handShakeState = NULL_STATE; ssl->options.processReply = 0; /* TODO, move states in internal.h */ XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived)); ssl->secure_renegotiation->cache_status = SCR_CACHE_NEEDED; #if !defined(NO_WOLFSSL_SERVER) && defined(HAVE_SECURE_RENEGOTIATION) if (ssl->options.side == WOLFSSL_SERVER_END) { ret = SendHelloRequest(ssl); if (ret != 0) { ssl->error = ret; return WOLFSSL_FATAL_ERROR; } } #endif /* !NO_WOLFSSL_SERVER && HAVE_SECURE_RENEGOTIATION */ ret = InitHandshakeHashes(ssl); if (ret != 0) { ssl->error = ret; return WOLFSSL_FATAL_ERROR; } } ret = wolfSSL_negotiate(ssl); if (ret == WOLFSSL_SUCCESS) ssl->secure_rene_count++; return ret; } /* do a secure renegotiation handshake, user forced, we discourage */ int wolfSSL_Rehandshake(WOLFSSL* ssl) { int ret; WOLFSSL_ENTER("wolfSSL_Rehandshake"); if (ssl == NULL) return WOLFSSL_FAILURE; #ifdef HAVE_SESSION_TICKET ret = WOLFSSL_SUCCESS; #endif if (ssl->options.side == WOLFSSL_SERVER_END) { /* Reset option to send certificate verify. */ ssl->options.sendVerify = 0; } else { /* Reset resuming flag to do full secure handshake. */ ssl->options.resuming = 0; #ifdef HAVE_SESSION_TICKET /* Clearing the ticket. */ ret = wolfSSL_UseSessionTicket(ssl); #endif } /* CLIENT/SERVER: Reset peer authentication for full secure handshake. */ ssl->options.peerAuthGood = 0; #ifdef HAVE_SESSION_TICKET if (ret == WOLFSSL_SUCCESS) #endif ret = _Rehandshake(ssl); return ret; } #ifndef NO_WOLFSSL_CLIENT /* do a secure resumption handshake, user forced, we discourage */ int wolfSSL_SecureResume(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_SecureResume"); if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.side == WOLFSSL_SERVER_END) { ssl->error = SIDE_ERROR; return WOLFSSL_FATAL_ERROR; } return _Rehandshake(ssl); } #endif /* NO_WOLFSSL_CLIENT */ long wolfSSL_SSL_get_secure_renegotiation_support(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_SSL_get_secure_renegotiation_support"); if (!ssl || !ssl->secure_renegotiation) return WOLFSSL_FAILURE; return ssl->secure_renegotiation->enabled; } #endif /* HAVE_SECURE_RENEGOTIATION_INFO */ #if defined(HAVE_SESSION_TICKET) /* Session Ticket */ #if !defined(NO_WOLFSSL_SERVER) int wolfSSL_CTX_NoTicketTLSv12(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->noTicketTls12 = 1; return WOLFSSL_SUCCESS; } int wolfSSL_NoTicketTLSv12(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.noTicketTls12 = 1; return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketEncCb(WOLFSSL_CTX* ctx, SessionTicketEncCb cb) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketEncCb = cb; return WOLFSSL_SUCCESS; } /* set hint interval, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketHint = hint; return WOLFSSL_SUCCESS; } /* set user context, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketEncCtx(WOLFSSL_CTX* ctx, void* userCtx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketEncCtx = userCtx; return WOLFSSL_SUCCESS; } /* get user context - returns userCtx on success, NULL on failure */ void* wolfSSL_CTX_get_TicketEncCtx(WOLFSSL_CTX* ctx) { if (ctx == NULL) return NULL; return ctx->ticketEncCtx; } #ifdef WOLFSSL_TLS13 /* set the maximum number of tickets to send * return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on fail */ int wolfSSL_CTX_set_num_tickets(WOLFSSL_CTX* ctx, size_t mxTickets) { if (ctx == NULL) return WOLFSSL_FAILURE; ctx->maxTicketTls13 = (unsigned int)mxTickets; return WOLFSSL_SUCCESS; } /* get the maximum number of tickets to send * return number of tickets set to be sent */ size_t wolfSSL_CTX_get_num_tickets(WOLFSSL_CTX* ctx) { if (ctx == NULL) return 0; return (size_t)ctx->maxTicketTls13; } #endif /* WOLFSSL_TLS13 */ #endif /* !NO_WOLFSSL_SERVER */ #if !defined(NO_WOLFSSL_CLIENT) int wolfSSL_UseSessionTicket(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap); } int wolfSSL_CTX_UseSessionTicket(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseSessionTicket(&ctx->extensions, NULL, ctx->heap); } WOLFSSL_API int wolfSSL_get_SessionTicket(WOLFSSL* ssl, byte* buf, word32* bufSz) { if (ssl == NULL || buf == NULL || bufSz == NULL || *bufSz == 0) return BAD_FUNC_ARG; if (ssl->session->ticketLen <= *bufSz) { XMEMCPY(buf, ssl->session->ticket, ssl->session->ticketLen); *bufSz = ssl->session->ticketLen; } else *bufSz = 0; return WOLFSSL_SUCCESS; } WOLFSSL_API int wolfSSL_set_SessionTicket(WOLFSSL* ssl, const byte* buf, word32 bufSz) { if (ssl == NULL || (buf == NULL && bufSz > 0)) return BAD_FUNC_ARG; if (bufSz > 0) { /* Ticket will fit into static ticket */ if (bufSz <= SESSION_TICKET_LEN) { if (ssl->session->ticketLenAlloc > 0) { XFREE(ssl->session->ticket, ssl->session->heap, DYNAMIC_TYPE_SESSION_TICK); ssl->session->ticketLenAlloc = 0; ssl->session->ticket = ssl->session->_staticTicket; } } else { /* Ticket requires dynamic ticket storage */ if (ssl->session->ticketLen < bufSz) { /* is dyn buffer big enough */ if (ssl->session->ticketLenAlloc > 0) { XFREE(ssl->session->ticket, ssl->session->heap, DYNAMIC_TYPE_SESSION_TICK); } ssl->session->ticket = (byte*)XMALLOC(bufSz, ssl->session->heap, DYNAMIC_TYPE_SESSION_TICK); if(ssl->session->ticket == NULL) { ssl->session->ticket = ssl->session->_staticTicket; ssl->session->ticketLenAlloc = 0; return MEMORY_ERROR; } ssl->session->ticketLenAlloc = (word16)bufSz; } } XMEMCPY(ssl->session->ticket, buf, bufSz); } ssl->session->ticketLen = (word16)bufSz; return WOLFSSL_SUCCESS; } WOLFSSL_API int wolfSSL_set_SessionTicket_cb(WOLFSSL* ssl, CallbackSessionTicket cb, void* ctx) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->session_ticket_cb = cb; ssl->session_ticket_ctx = ctx; return WOLFSSL_SUCCESS; } #endif /* !NO_WOLFSSL_CLIENT */ #endif /* HAVE_SESSION_TICKET */ #ifdef HAVE_EXTENDED_MASTER #ifndef NO_WOLFSSL_CLIENT int wolfSSL_CTX_DisableExtendedMasterSecret(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->haveEMS = 0; return WOLFSSL_SUCCESS; } int wolfSSL_DisableExtendedMasterSecret(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.haveEMS = 0; return WOLFSSL_SUCCESS; } #endif #endif #ifndef WOLFSSL_LEANPSK int wolfSSL_send(WOLFSSL* ssl, const void* data, int sz, int flags) { int ret; int oldFlags; WOLFSSL_ENTER("wolfSSL_send()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->wflags; ssl->wflags = flags; ret = wolfSSL_write(ssl, data, sz); ssl->wflags = oldFlags; WOLFSSL_LEAVE("wolfSSL_send()", ret); return ret; } int wolfSSL_recv(WOLFSSL* ssl, void* data, int sz, int flags) { int ret; int oldFlags; WOLFSSL_ENTER("wolfSSL_recv()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->rflags; ssl->rflags = flags; ret = wolfSSL_read(ssl, data, sz); ssl->rflags = oldFlags; WOLFSSL_LEAVE("wolfSSL_recv()", ret); return ret; } #endif /* WOLFSSL_SUCCESS on ok */ WOLFSSL_ABI int wolfSSL_shutdown(WOLFSSL* ssl) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("SSL_shutdown()"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; if (ssl->options.quietShutdown) { WOLFSSL_MSG("quiet shutdown, no close notify sent"); ret = WOLFSSL_SUCCESS; } else { /* try to send close notify, not an error if can't */ if (!ssl->options.isClosed && !ssl->options.connReset && !ssl->options.sentNotify) { ssl->error = SendAlert(ssl, alert_warning, close_notify); if (ssl->error < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.sentNotify = 1; /* don't send close_notify twice */ if (ssl->options.closeNotify) ret = WOLFSSL_SUCCESS; else { ret = WOLFSSL_SHUTDOWN_NOT_DONE; WOLFSSL_LEAVE("SSL_shutdown()", ret); return ret; } } #ifdef WOLFSSL_SHUTDOWNONCE if (ssl->options.isClosed || ssl->options.connReset) { /* Shutdown has already occurred. * Caller is free to ignore this error. */ return SSL_SHUTDOWN_ALREADY_DONE_E; } #endif /* call wolfSSL_shutdown again for bidirectional shutdown */ if (ssl->options.sentNotify && !ssl->options.closeNotify) { ret = ProcessReply(ssl); if (ret == ZERO_RETURN) { /* simulate OpenSSL behavior */ ssl->error = WOLFSSL_ERROR_SYSCALL; ret = WOLFSSL_SUCCESS; } else if (ssl->error == WOLFSSL_ERROR_NONE) { ret = WOLFSSL_SHUTDOWN_NOT_DONE; } else { WOLFSSL_ERROR(ssl->error); ret = WOLFSSL_FATAL_ERROR; } } } #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* reset WOLFSSL structure state for possible re-use */ if (ret == WOLFSSL_SUCCESS) { if (wolfSSL_clear(ssl) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("could not clear WOLFSSL"); ret = WOLFSSL_FATAL_ERROR; } } #endif WOLFSSL_LEAVE("SSL_shutdown()", ret); return ret; } /* get current error state value */ int wolfSSL_state(WOLFSSL* ssl) { if (ssl == NULL) { return BAD_FUNC_ARG; } return ssl->error; } WOLFSSL_ABI int wolfSSL_get_error(WOLFSSL* ssl, int ret) { WOLFSSL_ENTER("SSL_get_error"); if (ret > 0) return WOLFSSL_ERROR_NONE; if (ssl == NULL) return BAD_FUNC_ARG; WOLFSSL_LEAVE("SSL_get_error", ssl->error); /* make sure converted types are handled in SetErrorString() too */ if (ssl->error == WANT_READ) return WOLFSSL_ERROR_WANT_READ; /* convert to OpenSSL type */ else if (ssl->error == WANT_WRITE) return WOLFSSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */ else if (ssl->error == ZERO_RETURN) return WOLFSSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */ return ssl->error; } /* retrieve alert history, WOLFSSL_SUCCESS on ok */ int wolfSSL_get_alert_history(WOLFSSL* ssl, WOLFSSL_ALERT_HISTORY *h) { if (ssl && h) { *h = ssl->alert_history; } return WOLFSSL_SUCCESS; } #ifdef OPENSSL_EXTRA /* returns SSL_WRITING, SSL_READING or SSL_NOTHING */ int wolfSSL_want(WOLFSSL* ssl) { int rw_state = SSL_NOTHING; if (ssl) { if (ssl->error == WANT_READ) rw_state = SSL_READING; else if (ssl->error == WANT_WRITE) rw_state = SSL_WRITING; } return rw_state; } #endif /* return TRUE if current error is want read */ int wolfSSL_want_read(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_want_read"); if (ssl->error == WANT_READ) return 1; return 0; } /* return TRUE if current error is want write */ int wolfSSL_want_write(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_want_write"); if (ssl->error == WANT_WRITE) return 1; return 0; } char* wolfSSL_ERR_error_string(unsigned long errNumber, char* data) { static char tmp[WOLFSSL_MAX_ERROR_SZ] = {0}; WOLFSSL_ENTER("ERR_error_string"); if (data) { SetErrorString((int)errNumber, data); return data; } else { SetErrorString((int)errNumber, tmp); return tmp; } } void wolfSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len) { WOLFSSL_ENTER("wolfSSL_ERR_error_string_n"); if (len >= WOLFSSL_MAX_ERROR_SZ) wolfSSL_ERR_error_string(e, buf); else { char tmp[WOLFSSL_MAX_ERROR_SZ]; WOLFSSL_MSG("Error buffer too short, truncating"); if (len) { wolfSSL_ERR_error_string(e, tmp); XMEMCPY(buf, tmp, len-1); buf[len-1] = '\0'; } } } /* don't free temporary arrays at end of handshake */ void wolfSSL_KeepArrays(WOLFSSL* ssl) { if (ssl) ssl->options.saveArrays = 1; } /* user doesn't need temporary arrays anymore, Free */ void wolfSSL_FreeArrays(WOLFSSL* ssl) { if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) { ssl->options.saveArrays = 0; FreeArrays(ssl, 1); } } /* Set option to indicate that the resources are not to be freed after * handshake. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_KeepHandshakeResources(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.keepResources = 1; return 0; } /* Free the handshake resources after handshake. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_FreeHandshakeResources(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; FreeHandshakeResources(ssl); return 0; } /* Use the client's order of preference when matching cipher suites. * * ssl The SSL/TLS context object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_CTX_UseClientSuites(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->useClientOrder = 1; return 0; } /* Use the client's order of preference when matching cipher suites. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_UseClientSuites(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.useClientOrder = 1; return 0; } #ifdef WOLFSSL_DTLS const byte* wolfSSL_GetDtlsMacSecret(WOLFSSL* ssl, int verify, int epochOrder) { #ifndef WOLFSSL_AEAD_ONLY Keys* keys = NULL; (void)epochOrder; if (ssl == NULL) return NULL; #ifdef HAVE_SECURE_RENEGOTIATION switch (epochOrder) { case PEER_ORDER: if (IsDtlsMsgSCRKeys(ssl)) keys = &ssl->secure_renegotiation->tmp_keys; else keys = &ssl->keys; break; case PREV_ORDER: keys = &ssl->keys; break; case CUR_ORDER: if (DtlsUseSCRKeys(ssl)) keys = &ssl->secure_renegotiation->tmp_keys; else keys = &ssl->keys; break; default: WOLFSSL_MSG("Unknown epoch order"); return NULL; } #else keys = &ssl->keys; #endif if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) || (ssl->options.side == WOLFSSL_SERVER_END && verify) ) return keys->client_write_MAC_secret; else return keys->server_write_MAC_secret; #else (void)ssl; (void)verify; (void)epochOrder; return NULL; #endif } #endif /* WOLFSSL_DTLS */ const byte* wolfSSL_GetMacSecret(WOLFSSL* ssl, int verify) { #ifndef WOLFSSL_AEAD_ONLY if (ssl == NULL) return NULL; if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) || (ssl->options.side == WOLFSSL_SERVER_END && verify) ) return ssl->keys.client_write_MAC_secret; else return ssl->keys.server_write_MAC_secret; #else (void)ssl; (void)verify; return NULL; #endif } #ifdef ATOMIC_USER void wolfSSL_CTX_SetMacEncryptCb(WOLFSSL_CTX* ctx, CallbackMacEncrypt cb) { if (ctx) ctx->MacEncryptCb = cb; } void wolfSSL_SetMacEncryptCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->MacEncryptCtx = ctx; } void* wolfSSL_GetMacEncryptCtx(WOLFSSL* ssl) { if (ssl) return ssl->MacEncryptCtx; return NULL; } void wolfSSL_CTX_SetDecryptVerifyCb(WOLFSSL_CTX* ctx, CallbackDecryptVerify cb) { if (ctx) ctx->DecryptVerifyCb = cb; } void wolfSSL_SetDecryptVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->DecryptVerifyCtx = ctx; } void* wolfSSL_GetDecryptVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->DecryptVerifyCtx; return NULL; } #if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY) /** * Set the callback, against the context, that encrypts then MACs. * * ctx SSL/TLS context. * cb Callback function to use with Encrypt-Then-MAC. */ void wolfSSL_CTX_SetEncryptMacCb(WOLFSSL_CTX* ctx, CallbackEncryptMac cb) { if (ctx) ctx->EncryptMacCb = cb; } /** * Set the context to use with callback that encrypts then MACs. * * ssl SSL/TLS object. * ctx Callback function's context. */ void wolfSSL_SetEncryptMacCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EncryptMacCtx = ctx; } /** * Get the context being used with callback that encrypts then MACs. * * ssl SSL/TLS object. * returns callback function's context or NULL if SSL/TLS object is NULL. */ void* wolfSSL_GetEncryptMacCtx(WOLFSSL* ssl) { if (ssl) return ssl->EncryptMacCtx; return NULL; } /** * Set the callback, against the context, that MAC verifies then decrypts. * * ctx SSL/TLS context. * cb Callback function to use with Encrypt-Then-MAC. */ void wolfSSL_CTX_SetVerifyDecryptCb(WOLFSSL_CTX* ctx, CallbackVerifyDecrypt cb) { if (ctx) ctx->VerifyDecryptCb = cb; } /** * Set the context to use with callback that MAC verifies then decrypts. * * ssl SSL/TLS object. * ctx Callback function's context. */ void wolfSSL_SetVerifyDecryptCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->VerifyDecryptCtx = ctx; } /** * Get the context being used with callback that MAC verifies then decrypts. * * ssl SSL/TLS object. * returns callback function's context or NULL if SSL/TLS object is NULL. */ void* wolfSSL_GetVerifyDecryptCtx(WOLFSSL* ssl) { if (ssl) return ssl->VerifyDecryptCtx; return NULL; } #endif /* HAVE_ENCRYPT_THEN_MAC !WOLFSSL_AEAD_ONLY */ const byte* wolfSSL_GetClientWriteKey(WOLFSSL* ssl) { if (ssl) return ssl->keys.client_write_key; return NULL; } const byte* wolfSSL_GetClientWriteIV(WOLFSSL* ssl) { if (ssl) return ssl->keys.client_write_IV; return NULL; } const byte* wolfSSL_GetServerWriteKey(WOLFSSL* ssl) { if (ssl) return ssl->keys.server_write_key; return NULL; } const byte* wolfSSL_GetServerWriteIV(WOLFSSL* ssl) { if (ssl) return ssl->keys.server_write_IV; return NULL; } int wolfSSL_GetKeySize(WOLFSSL* ssl) { if (ssl) return ssl->specs.key_size; return BAD_FUNC_ARG; } int wolfSSL_GetIVSize(WOLFSSL* ssl) { if (ssl) return ssl->specs.iv_size; return BAD_FUNC_ARG; } int wolfSSL_GetBulkCipher(WOLFSSL* ssl) { if (ssl) return ssl->specs.bulk_cipher_algorithm; return BAD_FUNC_ARG; } int wolfSSL_GetCipherType(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; #ifndef WOLFSSL_AEAD_ONLY if (ssl->specs.cipher_type == block) return WOLFSSL_BLOCK_TYPE; if (ssl->specs.cipher_type == stream) return WOLFSSL_STREAM_TYPE; #endif if (ssl->specs.cipher_type == aead) return WOLFSSL_AEAD_TYPE; return -1; } int wolfSSL_GetCipherBlockSize(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.block_size; } int wolfSSL_GetAeadMacSize(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.aead_mac_size; } int wolfSSL_IsTLSv1_1(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.tls1_1) return 1; return 0; } int wolfSSL_GetSide(WOLFSSL* ssl) { if (ssl) return ssl->options.side; return BAD_FUNC_ARG; } int wolfSSL_GetHmacSize(WOLFSSL* ssl) { /* AEAD ciphers don't have HMAC keys */ if (ssl) return (ssl->specs.cipher_type != aead) ? ssl->specs.hash_size : 0; return BAD_FUNC_ARG; } #ifdef WORD64_AVAILABLE int wolfSSL_GetPeerSequenceNumber(WOLFSSL* ssl, word64 *seq) { if ((ssl == NULL) || (seq == NULL)) return BAD_FUNC_ARG; *seq = ((word64)ssl->keys.peer_sequence_number_hi << 32) | ssl->keys.peer_sequence_number_lo; return !(*seq); } int wolfSSL_GetSequenceNumber(WOLFSSL* ssl, word64 *seq) { if ((ssl == NULL) || (seq == NULL)) return BAD_FUNC_ARG; *seq = ((word64)ssl->keys.sequence_number_hi << 32) | ssl->keys.sequence_number_lo; return !(*seq); } #endif #endif /* ATOMIC_USER */ #ifndef NO_CERTS WOLFSSL_CERT_MANAGER* wolfSSL_CTX_GetCertManager(WOLFSSL_CTX* ctx) { WOLFSSL_CERT_MANAGER* cm = NULL; if (ctx) cm = ctx->cm; return cm; } WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew_ex(void* heap) { WOLFSSL_CERT_MANAGER* cm; WOLFSSL_ENTER("wolfSSL_CertManagerNew"); cm = (WOLFSSL_CERT_MANAGER*) XMALLOC(sizeof(WOLFSSL_CERT_MANAGER), heap, DYNAMIC_TYPE_CERT_MANAGER); if (cm) { XMEMSET(cm, 0, sizeof(WOLFSSL_CERT_MANAGER)); cm->refCount = 1; if (wc_InitMutex(&cm->caLock) != 0) { WOLFSSL_MSG("Bad mutex init"); wolfSSL_CertManagerFree(cm); return NULL; } #ifndef SINGLE_THREADED if (wc_InitMutex(&cm->refMutex) != 0) { WOLFSSL_MSG("Bad mutex init"); wolfSSL_CertManagerFree(cm); return NULL; } #endif #ifdef WOLFSSL_TRUST_PEER_CERT if (wc_InitMutex(&cm->tpLock) != 0) { WOLFSSL_MSG("Bad mutex init"); wolfSSL_CertManagerFree(cm); return NULL; } #endif /* set default minimum key size allowed */ #ifndef NO_RSA cm->minRsaKeySz = MIN_RSAKEY_SZ; #endif #ifdef HAVE_ECC cm->minEccKeySz = MIN_ECCKEY_SZ; #endif #ifdef HAVE_PQC cm->minFalconKeySz = MIN_FALCONKEY_SZ; #endif cm->heap = heap; } return cm; } WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew(void) { return wolfSSL_CertManagerNew_ex(NULL); } void wolfSSL_CertManagerFree(WOLFSSL_CERT_MANAGER* cm) { int doFree = 0; WOLFSSL_ENTER("wolfSSL_CertManagerFree"); if (cm) { #ifndef SINGLE_THREADED if (wc_LockMutex(&cm->refMutex) != 0) { WOLFSSL_MSG("Couldn't lock cm mutex"); } #endif cm->refCount--; if (cm->refCount == 0) doFree = 1; #ifndef SINGLE_THREADED wc_UnLockMutex(&cm->refMutex); #endif if (doFree) { #ifdef HAVE_CRL if (cm->crl) FreeCRL(cm->crl, 1); #endif #ifdef HAVE_OCSP if (cm->ocsp) FreeOCSP(cm->ocsp, 1); XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL); #if !defined(NO_WOLFSSL_SERVER) && \ (defined(HAVE_CERTIFICATE_STATUS_REQUEST) || \ defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)) if (cm->ocsp_stapling) FreeOCSP(cm->ocsp_stapling, 1); #endif #endif FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap); wc_FreeMutex(&cm->caLock); #ifdef WOLFSSL_TRUST_PEER_CERT FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, cm->heap); wc_FreeMutex(&cm->tpLock); #endif #ifndef SINGLE_THREADED if (wc_FreeMutex(&cm->refMutex) != 0) { WOLFSSL_MSG("Couldn't free refMutex mutex"); } #endif XFREE(cm, cm->heap, DYNAMIC_TYPE_CERT_MANAGER); } } } int wolfSSL_CertManager_up_ref(WOLFSSL_CERT_MANAGER* cm) { if (cm) { #ifndef SINGLE_THREADED if (wc_LockMutex(&cm->refMutex) != 0) { WOLFSSL_MSG("Failed to lock cm mutex"); return WOLFSSL_FAILURE; } #endif cm->refCount++; #ifndef SINGLE_THREADED wc_UnLockMutex(&cm->refMutex); #endif return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #if defined(OPENSSL_EXTRA) && !defined(NO_FILESYSTEM) #if defined(WOLFSSL_SIGNER_DER_CERT) /****************************************************************************** * wolfSSL_CertManagerGetCerts - retrieve stack of X509 certificates in a * certificate manager (CM). * * RETURNS: * returns stack of X509 certs on success, otherwise returns a NULL. */ WOLFSSL_STACK* wolfSSL_CertManagerGetCerts(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_STACK* sk = NULL; int numCerts = 0; DerBuffer** certBuffers = NULL; const byte* derBuffer = NULL; Signer* signers = NULL; word32 row = 0; WOLFSSL_X509* x509 = NULL; int i = 0; int ret = 0; if (cm == NULL) return NULL; sk = wolfSSL_sk_X509_new(); if (sk == NULL) goto error; if (wc_LockMutex(&cm->caLock) != 0) goto error; /* Iterate once to get the number of certs, for memory allocation purposes. */ for (row = 0; row < CA_TABLE_SIZE; row++) { signers = cm->caTable[row]; while (signers && signers->derCert && signers->derCert->buffer) { ++numCerts; signers = signers->next; } } if (numCerts == 0) { wc_UnLockMutex(&cm->caLock); goto error; } certBuffers = (DerBuffer**)XMALLOC(sizeof(DerBuffer*) * numCerts, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (certBuffers == NULL) { wc_UnLockMutex(&cm->caLock); goto error; } XMEMSET(certBuffers, 0, sizeof(DerBuffer*) * numCerts); /* Copy the certs locally so that we can release the caLock. If the lock is held when wolfSSL_d2i_X509 is called, GetCA will also try to get the lock, leading to deadlock. */ for (row = 0; row < CA_TABLE_SIZE; row++) { signers = cm->caTable[row]; while (signers && signers->derCert && signers->derCert->buffer) { ret = AllocDer(&certBuffers[i], signers->derCert->length, CA_TYPE, cm->heap); if (ret < 0) { wc_UnLockMutex(&cm->caLock); goto error; } XMEMCPY(certBuffers[i]->buffer, signers->derCert->buffer, signers->derCert->length); certBuffers[i]->length = signers->derCert->length; ++i; signers = signers->next; } } wc_UnLockMutex(&cm->caLock); for (i = 0; i < numCerts; ++i) { derBuffer = certBuffers[i]->buffer; wolfSSL_d2i_X509(&x509, &derBuffer, certBuffers[i]->length); if (x509 == NULL) goto error; if (wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) goto error; } for (i = 0; i < numCerts && certBuffers[i] != NULL; ++i) { FreeDer(&certBuffers[i]); } XFREE(certBuffers, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); return sk; error: if (sk) wolfSSL_sk_X509_pop_free(sk, NULL); if (certBuffers != NULL) { for (i = 0; i < numCerts && certBuffers[i] != NULL; ++i) { FreeDer(&certBuffers[i]); } } if (certBuffers) XFREE(certBuffers, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } #endif /* WOLFSSL_SIGNER_DER_CERT */ #endif /* OPENSSL_EXTRA && !NO_FILESYSTEM */ /* Unload the CA signer list */ int wolfSSL_CertManagerUnloadCAs(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerUnloadCAs"); if (cm == NULL) return BAD_FUNC_ARG; if (wc_LockMutex(&cm->caLock) != 0) return BAD_MUTEX_E; FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap); wc_UnLockMutex(&cm->caLock); return WOLFSSL_SUCCESS; } #ifdef WOLFSSL_TRUST_PEER_CERT int wolfSSL_CertManagerUnload_trust_peers(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerUnload_trust_peers"); if (cm == NULL) return BAD_FUNC_ARG; if (wc_LockMutex(&cm->tpLock) != 0) return BAD_MUTEX_E; FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, cm->heap); wc_UnLockMutex(&cm->tpLock); return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ #endif /* NO_CERTS */ #if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM) void wolfSSL_ERR_print_errors_fp(XFILE fp, int err) { char data[WOLFSSL_MAX_ERROR_SZ + 1]; WOLFSSL_ENTER("wolfSSL_ERR_print_errors_fp"); SetErrorString(err, data); XFPRINTF(fp, "%s", data); } #if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE) void wolfSSL_ERR_dump_errors_fp(XFILE fp) { wc_ERR_print_errors_fp(fp); } void wolfSSL_ERR_print_errors_cb (int (*cb)(const char *str, size_t len, void *u), void *u) { wc_ERR_print_errors_cb(cb, u); } #endif #endif /* * TODO This ssl parameter needs to be changed to const once our ABI checker * stops flagging qualifier additions as ABI breaking. */ WOLFSSL_ABI int wolfSSL_pending(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_pending"); if (ssl == NULL) return WOLFSSL_FAILURE; return ssl->buffers.clearOutputBuffer.length; } int wolfSSL_has_pending(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_has_pending"); if (ssl == NULL) return WOLFSSL_FAILURE; return ssl->buffers.clearOutputBuffer.length > 0; } #ifndef WOLFSSL_LEANPSK /* turn on handshake group messages for context */ int wolfSSL_CTX_set_group_messages(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->groupMessages = 1; return WOLFSSL_SUCCESS; } #endif #ifndef NO_WOLFSSL_CLIENT /* connect enough to get peer cert chain */ int wolfSSL_connect_cert(WOLFSSL* ssl) { int ret; if (ssl == NULL) return WOLFSSL_FAILURE; ssl->options.certOnly = 1; ret = wolfSSL_connect(ssl); ssl->options.certOnly = 0; return ret; } #endif #ifndef WOLFSSL_LEANPSK /* turn on handshake group messages for ssl object */ int wolfSSL_set_group_messages(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.groupMessages = 1; return WOLFSSL_SUCCESS; } /* make minVersion the internal equivalent SSL version */ static int SetMinVersionHelper(byte* minVersion, int version) { #ifdef NO_TLS (void)minVersion; #endif switch (version) { #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) case WOLFSSL_SSLV3: *minVersion = SSLv3_MINOR; break; #endif #ifndef NO_TLS #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_TLSV10 case WOLFSSL_TLSV1: *minVersion = TLSv1_MINOR; break; #endif case WOLFSSL_TLSV1_1: *minVersion = TLSv1_1_MINOR; break; #endif #ifndef WOLFSSL_NO_TLS12 case WOLFSSL_TLSV1_2: *minVersion = TLSv1_2_MINOR; break; #endif #endif #ifdef WOLFSSL_TLS13 case WOLFSSL_TLSV1_3: *minVersion = TLSv1_3_MINOR; break; #endif #ifdef WOLFSSL_DTLS case WOLFSSL_DTLSV1: *minVersion = DTLS_MINOR; break; case WOLFSSL_DTLSV1_2: *minVersion = DTLSv1_2_MINOR; break; #ifdef WOLFSSL_DTLS13 case WOLFSSL_DTLSV1_3: *minVersion = DTLSv1_3_MINOR; break; #endif /* WOLFSSL_DTLS13 */ #endif /* WOLFSSL_DTLS */ default: WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return WOLFSSL_SUCCESS; } /* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */ WOLFSSL_ABI int wolfSSL_CTX_SetMinVersion(WOLFSSL_CTX* ctx, int version) { WOLFSSL_ENTER("wolfSSL_CTX_SetMinVersion"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return SetMinVersionHelper(&ctx->minDowngrade, version); } /* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetMinVersion(WOLFSSL* ssl, int version) { WOLFSSL_ENTER("wolfSSL_SetMinVersion"); if (ssl == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return SetMinVersionHelper(&ssl->options.minDowngrade, version); } /* Function to get version as WOLFSSL_ enum value for wolfSSL_SetVersion */ int wolfSSL_GetVersion(const WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { case SSLv3_MINOR : return WOLFSSL_SSLV3; case TLSv1_MINOR : return WOLFSSL_TLSV1; case TLSv1_1_MINOR : return WOLFSSL_TLSV1_1; case TLSv1_2_MINOR : return WOLFSSL_TLSV1_2; case TLSv1_3_MINOR : return WOLFSSL_TLSV1_3; default: break; } } return VERSION_ERROR; } int wolfSSL_SetVersion(WOLFSSL* ssl, int version) { word16 haveRSA = 1; word16 havePSK = 0; int keySz = 0; WOLFSSL_ENTER("wolfSSL_SetVersion"); if (ssl == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } switch (version) { #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) case WOLFSSL_SSLV3: ssl->version = MakeSSLv3(); break; #endif #ifndef NO_TLS #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_TLSV10 case WOLFSSL_TLSV1: ssl->version = MakeTLSv1(); break; #endif case WOLFSSL_TLSV1_1: ssl->version = MakeTLSv1_1(); break; #endif #ifndef WOLFSSL_NO_TLS12 case WOLFSSL_TLSV1_2: ssl->version = MakeTLSv1_2(); break; #endif #endif #ifdef WOLFSSL_TLS13 case WOLFSSL_TLSV1_3: ssl->version = MakeTLSv1_3(); break; #endif default: WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveAnon, ssl->options.side); return WOLFSSL_SUCCESS; } #endif /* !leanpsk */ #if !defined(NO_CERTS) || !defined(NO_SESSION_CACHE) /* Make a work from the front of random hash */ static WC_INLINE word32 MakeWordFromHash(const byte* hashID) { return ((word32)hashID[0] << 24) | ((word32)hashID[1] << 16) | ((word32)hashID[2] << 8) | (word32)hashID[3]; } #endif /* !NO_CERTS || !NO_SESSION_CACHE */ #ifndef NO_CERTS /* hash is the SHA digest of name, just use first 32 bits as hash */ static WC_INLINE word32 HashSigner(const byte* hash) { return MakeWordFromHash(hash) % CA_TABLE_SIZE; } /* does CA already exist on signer list */ int AlreadySigner(WOLFSSL_CERT_MANAGER* cm, byte* hash) { Signer* signers; int ret = 0; word32 row; if (cm == NULL || hash == NULL) { return ret; } row = HashSigner(hash); if (wc_LockMutex(&cm->caLock) != 0) { return ret; } signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = 1; /* success */ break; } signers = signers->next; } wc_UnLockMutex(&cm->caLock); return ret; } #ifdef WOLFSSL_TRUST_PEER_CERT /* hash is the SHA digest of name, just use first 32 bits as hash */ static WC_INLINE word32 TrustedPeerHashSigner(const byte* hash) { return MakeWordFromHash(hash) % TP_TABLE_SIZE; } /* does trusted peer already exist on signer list */ int AlreadyTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DecodedCert* cert) { TrustedPeerCert* tp; int ret = 0; word32 row = TrustedPeerHashSigner(cert->subjectHash); if (wc_LockMutex(&cm->tpLock) != 0) return ret; tp = cm->tpTable[row]; while (tp) { if (XMEMCMP(cert->subjectHash, tp->subjectNameHash, SIGNER_DIGEST_SIZE) == 0) ret = 1; #ifndef NO_SKID if (cert->extSubjKeyIdSet) { /* Compare SKID as well if available */ if (ret == 1 && XMEMCMP(cert->extSubjKeyId, tp->subjectKeyIdHash, SIGNER_DIGEST_SIZE) != 0) ret = 0; } #endif if (ret == 1) break; tp = tp->next; } wc_UnLockMutex(&cm->tpLock); return ret; } /* return Trusted Peer if found, otherwise NULL type is what to match on */ TrustedPeerCert* GetTrustedPeer(void* vp, DecodedCert* cert) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; TrustedPeerCert* ret = NULL; TrustedPeerCert* tp = NULL; word32 row; if (cm == NULL || cert == NULL) return NULL; row = TrustedPeerHashSigner(cert->subjectHash); if (wc_LockMutex(&cm->tpLock) != 0) return ret; tp = cm->tpTable[row]; while (tp) { if (XMEMCMP(cert->subjectHash, tp->subjectNameHash, SIGNER_DIGEST_SIZE) == 0) ret = tp; #ifndef NO_SKID if (cert->extSubjKeyIdSet) { /* Compare SKID as well if available */ if (ret != NULL && XMEMCMP(cert->extSubjKeyId, tp->subjectKeyIdHash, SIGNER_DIGEST_SIZE) != 0) ret = NULL; } #endif if (ret != NULL) break; tp = tp->next; } wc_UnLockMutex(&cm->tpLock); return ret; } int MatchTrustedPeer(TrustedPeerCert* tp, DecodedCert* cert) { if (tp == NULL || cert == NULL) return BAD_FUNC_ARG; /* subject key id or subject hash has been compared when searching tpTable for the cert from function GetTrustedPeer */ /* compare signatures */ if (tp->sigLen == cert->sigLength) { if (XMEMCMP(tp->sig, cert->signature, cert->sigLength)) { return WOLFSSL_FAILURE; } } else { return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* return CA if found, otherwise NULL */ Signer* GetCA(void* vp, byte* hash) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row = 0; if (cm == NULL || hash == NULL) return NULL; row = HashSigner(hash); if (wc_LockMutex(&cm->caLock) != 0) return ret; signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = signers; break; } signers = signers->next; } wc_UnLockMutex(&cm->caLock); return ret; } #ifndef NO_SKID /* return CA if found, otherwise NULL. Walk through hash table. */ Signer* GetCAByName(void* vp, byte* hash) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row; if (cm == NULL) return NULL; if (wc_LockMutex(&cm->caLock) != 0) return ret; for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) { signers = cm->caTable[row]; while (signers && ret == NULL) { if (XMEMCMP(hash, signers->subjectNameHash, SIGNER_DIGEST_SIZE) == 0) { ret = signers; } signers = signers->next; } } wc_UnLockMutex(&cm->caLock); return ret; } #endif #ifdef WOLFSSL_TRUST_PEER_CERT /* add a trusted peer cert to linked list */ int AddTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int verify) { int ret, row; TrustedPeerCert* peerCert; DecodedCert* cert; DerBuffer* der = *pDer; WOLFSSL_MSG("Adding a Trusted Peer Cert"); cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) { FreeDer(&der); return MEMORY_E; } InitDecodedCert(cert, der->buffer, der->length, cm->heap); if ((ret = ParseCert(cert, TRUSTED_PEER_TYPE, verify, cm)) != 0) { FreeDecodedCert(cert); XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); FreeDer(&der); return ret; } WOLFSSL_MSG("\tParsed new trusted peer cert"); peerCert = (TrustedPeerCert*)XMALLOC(sizeof(TrustedPeerCert), cm->heap, DYNAMIC_TYPE_CERT); if (peerCert == NULL) { FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeDer(&der); return MEMORY_E; } XMEMSET(peerCert, 0, sizeof(TrustedPeerCert)); #ifndef IGNORE_NAME_CONSTRAINTS if (peerCert->permittedNames) FreeNameSubtrees(peerCert->permittedNames, cm->heap); if (peerCert->excludedNames) FreeNameSubtrees(peerCert->excludedNames, cm->heap); #endif if (AlreadyTrustedPeer(cm, cert)) { WOLFSSL_MSG("\tAlready have this CA, not adding again"); FreeTrustedPeer(peerCert, cm->heap); (void)ret; } else { /* add trusted peer signature */ peerCert->sigLen = cert->sigLength; peerCert->sig = (byte *)XMALLOC(cert->sigLength, cm->heap, DYNAMIC_TYPE_SIGNATURE); if (peerCert->sig == NULL) { FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeTrustedPeer(peerCert, cm->heap); FreeDer(&der); return MEMORY_E; } XMEMCPY(peerCert->sig, cert->signature, cert->sigLength); /* add trusted peer name */ peerCert->nameLen = cert->subjectCNLen; peerCert->name = cert->subjectCN; #ifndef IGNORE_NAME_CONSTRAINTS peerCert->permittedNames = cert->permittedNames; peerCert->excludedNames = cert->excludedNames; #endif /* add SKID when available and hash of name */ #ifndef NO_SKID XMEMCPY(peerCert->subjectKeyIdHash, cert->extSubjKeyId, SIGNER_DIGEST_SIZE); #endif XMEMCPY(peerCert->subjectNameHash, cert->subjectHash, SIGNER_DIGEST_SIZE); peerCert->next = NULL; /* If Key Usage not set, all uses valid. */ cert->subjectCN = 0; #ifndef IGNORE_NAME_CONSTRAINTS cert->permittedNames = NULL; cert->excludedNames = NULL; #endif row = TrustedPeerHashSigner(peerCert->subjectNameHash); if (wc_LockMutex(&cm->tpLock) == 0) { peerCert->next = cm->tpTable[row]; cm->tpTable[row] = peerCert; /* takes ownership */ wc_UnLockMutex(&cm->tpLock); } else { WOLFSSL_MSG("\tTrusted Peer Cert Mutex Lock failed"); FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeTrustedPeer(peerCert, cm->heap); FreeDer(&der); return BAD_MUTEX_E; } } WOLFSSL_MSG("\tFreeing parsed trusted peer cert"); FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); WOLFSSL_MSG("\tFreeing der trusted peer cert"); FreeDer(&der); WOLFSSL_MSG("\t\tOK Freeing der trusted peer cert"); WOLFSSL_LEAVE("AddTrustedPeer", ret); return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* owns der, internal now uses too */ /* type flag ids from user or from chain received during verify don't allow chain ones to be added w/o isCA extension */ int AddCA(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int type, int verify) { int ret; Signer* signer = NULL; word32 row; byte* subjectHash; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif DerBuffer* der = *pDer; WOLFSSL_MSG("Adding a CA"); if (cm == NULL) { FreeDer(pDer); return BAD_FUNC_ARG; } #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) { FreeDer(pDer); return MEMORY_E; } #endif InitDecodedCert(cert, der->buffer, der->length, cm->heap); ret = ParseCert(cert, CA_TYPE, verify, cm); WOLFSSL_MSG("\tParsed new CA"); #ifndef NO_SKID subjectHash = cert->extSubjKeyId; #else subjectHash = cert->subjectHash; #endif /* check CA key size */ if (verify) { switch (cert->keyOID) { #ifndef NO_RSA case RSAk: if (cm->minRsaKeySz < 0 || cert->pubKeySize < (word16)cm->minRsaKeySz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("\tCA RSA key size error"); } break; #endif /* !NO_RSA */ #ifdef HAVE_ECC case ECDSAk: if (cm->minEccKeySz < 0 || cert->pubKeySize < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 case ED25519k: if (cm->minEccKeySz < 0 || ED25519_KEY_SIZE < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ED25519 */ #ifdef HAVE_ED448 case ED448k: if (cm->minEccKeySz < 0 || ED448_KEY_SIZE < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ED448 */ #if defined(HAVE_PQC) && defined(HAVE_FALCON) case FALCON_LEVEL1k: if (cm->minFalconKeySz < 0 || FALCON_LEVEL1_KEY_SIZE < (word16)cm->minFalconKeySz) { ret = FALCON_KEY_SIZE_E; WOLFSSL_MSG("\tCA Falcon level 1 key size error"); } break; case FALCON_LEVEL5k: if (cm->minFalconKeySz < 0 || FALCON_LEVEL5_KEY_SIZE < (word16)cm->minFalconKeySz) { ret = FALCON_KEY_SIZE_E; WOLFSSL_MSG("\tCA Falcon level 5 key size error"); } break; #endif /* HAVE_PQC && HAVE_FALCON */ default: WOLFSSL_MSG("\tNo key size check done on CA"); break; /* no size check if key type is not in switch */ } } if (ret == 0 && cert->isCA == 0 && type != WOLFSSL_USER_CA) { WOLFSSL_MSG("\tCan't add as CA if not actually one"); ret = NOT_CA_ERROR; } #ifndef ALLOW_INVALID_CERTSIGN else if (ret == 0 && cert->isCA == 1 && type != WOLFSSL_USER_CA && !cert->selfSigned && (cert->extKeyUsage & KEYUSE_KEY_CERT_SIGN) == 0) { /* Intermediate CA certs are required to have the keyCertSign * extension set. User loaded root certs are not. */ WOLFSSL_MSG("\tDoesn't have key usage certificate signing"); ret = NOT_CA_ERROR; } #endif else if (ret == 0 && AlreadySigner(cm, subjectHash)) { WOLFSSL_MSG("\tAlready have this CA, not adding again"); (void)ret; } else if (ret == 0) { /* take over signer parts */ signer = MakeSigner(cm->heap); if (!signer) ret = MEMORY_ERROR; } if (ret == 0 && signer != NULL) { #ifdef WOLFSSL_SIGNER_DER_CERT ret = AllocDer(&signer->derCert, der->length, der->type, NULL); } if (ret == 0 && signer != NULL) { XMEMCPY(signer->derCert->buffer, der->buffer, der->length); #endif signer->keyOID = cert->keyOID; if (cert->pubKeyStored) { signer->publicKey = cert->publicKey; signer->pubKeySize = cert->pubKeySize; } if (cert->subjectCNStored) { signer->nameLen = cert->subjectCNLen; signer->name = cert->subjectCN; } signer->pathLength = cert->pathLength; signer->maxPathLen = cert->maxPathLen; signer->pathLengthSet = cert->pathLengthSet; signer->selfSigned = cert->selfSigned; #ifndef IGNORE_NAME_CONSTRAINTS signer->permittedNames = cert->permittedNames; signer->excludedNames = cert->excludedNames; #endif #ifndef NO_SKID XMEMCPY(signer->subjectKeyIdHash, cert->extSubjKeyId, SIGNER_DIGEST_SIZE); #endif XMEMCPY(signer->subjectNameHash, cert->subjectHash, SIGNER_DIGEST_SIZE); #ifdef HAVE_OCSP XMEMCPY(signer->subjectKeyHash, cert->subjectKeyHash, KEYID_SIZE); #endif signer->keyUsage = cert->extKeyUsageSet ? cert->extKeyUsage : 0xFFFF; signer->next = NULL; /* If Key Usage not set, all uses valid. */ cert->publicKey = 0; /* in case lock fails don't free here. */ cert->subjectCN = 0; #ifndef IGNORE_NAME_CONSTRAINTS cert->permittedNames = NULL; cert->excludedNames = NULL; #endif #ifndef NO_SKID row = HashSigner(signer->subjectKeyIdHash); #else row = HashSigner(signer->subjectNameHash); #endif if (wc_LockMutex(&cm->caLock) == 0) { signer->next = cm->caTable[row]; cm->caTable[row] = signer; /* takes ownership */ wc_UnLockMutex(&cm->caLock); if (cm->caCacheCallback) cm->caCacheCallback(der->buffer, (int)der->length, type); } else { WOLFSSL_MSG("\tCA Mutex Lock failed"); ret = BAD_MUTEX_E; FreeSigner(signer, cm->heap); } } #if defined(WOLFSSL_RENESAS_TSIP_TLS) || defined(WOLFSSL_RENESAS_SCEPROTECT) /* Verify CA by TSIP so that generated tsip key is going to be able to */ /* be used for peer's cert verification */ /* TSIP is only able to handle USER CA, and only one CA. */ /* Therefore, it doesn't need to call TSIP again if there is already */ /* verified CA. */ if ( ret == 0 && signer != NULL ) { signer->cm_idx = row; if (type == WOLFSSL_USER_CA) { if ((ret = wc_Renesas_cmn_RootCertVerify(cert->source, cert->maxIdx, cert->sigCtx.CertAtt.pubkey_n_start, cert->sigCtx.CertAtt.pubkey_n_len - 1, cert->sigCtx.CertAtt.pubkey_e_start, cert->sigCtx.CertAtt.pubkey_e_len - 1, row/* cm index */)) < 0) WOLFSSL_MSG("Renesas_RootCertVerify() failed"); else WOLFSSL_MSG("Renesas_RootCertVerify() succeed or skipped"); } } #endif /* TSIP or SCE */ WOLFSSL_MSG("\tFreeing Parsed CA"); FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif WOLFSSL_MSG("\tFreeing der CA"); FreeDer(pDer); WOLFSSL_MSG("\t\tOK Freeing der CA"); WOLFSSL_LEAVE("AddCA", ret); return ret == 0 ? WOLFSSL_SUCCESS : ret; } #endif /* !NO_CERTS */ #ifndef NO_SESSION_CACHE /* basic config gives a cache with 33 sessions, adequate for clients and embedded servers TITAN_SESSION_CACHE allows just over 2 million sessions, for servers with titanic amounts of memory with long session ID timeouts and high levels of traffic. ENABLE_SESSION_CACHE_ROW_LOCK: Allows row level locking for increased performance with large session caches HUGE_SESSION_CACHE yields 65,791 sessions, for servers under heavy load, allows over 13,000 new sessions per minute or over 200 new sessions per second BIG_SESSION_CACHE yields 20,027 sessions MEDIUM_SESSION_CACHE allows 1055 sessions, adequate for servers that aren't under heavy load, basically allows 200 new sessions per minute SMALL_SESSION_CACHE only stores 6 sessions, good for embedded clients or systems where the default of nearly 3kB is too much RAM, this define uses less than 500 bytes RAM default SESSION_CACHE stores 33 sessions (no XXX_SESSION_CACHE defined) */ #if defined(TITAN_SESSION_CACHE) #define SESSIONS_PER_ROW 31 #define SESSION_ROWS 64937 #ifdef ENABLE_SESSION_CACHE_ROW_LOCK #define ENABLE_SESSION_CACHE_ROW_LOCK #endif #elif defined(HUGE_SESSION_CACHE) #define SESSIONS_PER_ROW 11 #define SESSION_ROWS 5981 #elif defined(BIG_SESSION_CACHE) #define SESSIONS_PER_ROW 7 #define SESSION_ROWS 2861 #elif defined(MEDIUM_SESSION_CACHE) #define SESSIONS_PER_ROW 5 #define SESSION_ROWS 211 #elif defined(SMALL_SESSION_CACHE) #define SESSIONS_PER_ROW 2 #define SESSION_ROWS 3 #else #define SESSIONS_PER_ROW 3 #define SESSION_ROWS 11 #endif #define INVALID_SESSION_ROW (-1) #ifdef NO_SESSION_CACHE_ROW_LOCK #undef ENABLE_SESSION_CACHE_ROW_LOCK #endif typedef struct SessionRow { int nextIdx; /* where to place next one */ int totalCount; /* sessions ever on this row */ WOLFSSL_SESSION Sessions[SESSIONS_PER_ROW]; #ifdef ENABLE_SESSION_CACHE_ROW_LOCK /* not included in import/export */ wolfSSL_Mutex row_mutex; int mutex_valid; #endif } SessionRow; #define SIZEOF_SESSION_ROW (sizeof(WOLFSSL_SESSION) + (sizeof(int) * 2)) static WOLFSSL_GLOBAL SessionRow SessionCache[SESSION_ROWS]; #if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS) static WOLFSSL_GLOBAL word32 PeakSessions; #endif #ifdef ENABLE_SESSION_CACHE_ROW_LOCK #define SESSION_ROW_LOCK(row) wc_LockMutex(&(row)->row_mutex) #define SESSION_ROW_UNLOCK(row) wc_UnLockMutex(&(row)->row_mutex); #else static WOLFSSL_GLOBAL wolfSSL_Mutex session_mutex; /* SessionCache mutex */ static WOLFSSL_GLOBAL int session_mutex_valid = 0; #define SESSION_ROW_LOCK(row) wc_LockMutex(&session_mutex) #define SESSION_ROW_UNLOCK(row) wc_UnLockMutex(&session_mutex); #endif #if !defined(NO_SESSION_CACHE_REF) && defined(NO_CLIENT_CACHE) #error ClientCache is required when not using NO_SESSION_CACHE_REF #endif #ifndef NO_CLIENT_CACHE #ifndef CLIENT_SESSIONS_MULTIPLIER #ifdef NO_SESSION_CACHE_REF #define CLIENT_SESSIONS_MULTIPLIER 1 #else /* ClientSession objects are lightweight (compared to * WOLFSSL_SESSION) so to decrease chance that user will reuse * thse wrong session, increase the ClientCache size. This will * make the entire ClientCache about the size of one * WOLFSSL_SESSION object. */ #define CLIENT_SESSIONS_MULTIPLIER 8 #endif #endif #define CLIENT_SESSIONS_PER_ROW \ (SESSIONS_PER_ROW * CLIENT_SESSIONS_MULTIPLIER) #define CLIENT_SESSION_ROWS (SESSION_ROWS * CLIENT_SESSIONS_MULTIPLIER) #if CLIENT_SESSIONS_PER_ROW > 65535 #error CLIENT_SESSIONS_PER_ROW too big #endif #if CLIENT_SESSION_ROWS > 65535 #error CLIENT_SESSION_ROWS too big #endif struct ClientSession { word16 serverRow; /* SessionCache Row id */ word16 serverIdx; /* SessionCache Idx (column) */ word32 sessionIDHash; }; #ifndef WOLFSSL_CLIENT_SESSION_DEFINED typedef struct ClientSession ClientSession; #define WOLFSSL_CLIENT_SESSION_DEFINED #endif typedef struct ClientRow { int nextIdx; /* where to place next one */ int totalCount; /* sessions ever on this row */ ClientSession Clients[CLIENT_SESSIONS_PER_ROW]; } ClientRow; static WOLFSSL_GLOBAL ClientRow ClientCache[CLIENT_SESSION_ROWS]; /* Client Cache */ /* uses session mutex */ static WOLFSSL_GLOBAL wolfSSL_Mutex clisession_mutex; /* ClientCache mutex */ static WOLFSSL_GLOBAL int clisession_mutex_valid = 0; #endif /* !NO_CLIENT_CACHE */ #endif /* !NO_SESSION_CACHE */ #if !defined(WC_NO_RNG) && (defined(OPENSSL_EXTRA) || \ (defined(OPENSSL_EXTRA_X509_SMALL) && !defined(NO_RSA))) #define HAVE_GLOBAL_RNG /* consolidate flags for using globalRNG */ static WC_RNG globalRNG; static int initGlobalRNG = 0; static wolfSSL_Mutex globalRNGMutex; static int globalRNGMutex_valid = 0; #if defined(OPENSSL_EXTRA) && defined(HAVE_HASHDRBG) static WOLFSSL_DRBG_CTX* gDrbgDefCtx = NULL; #endif WC_RNG* wolfssl_get_global_rng(void) { WC_RNG* ret = NULL; if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else ret = &globalRNG; return ret; } #endif #if defined(OPENSSL_EXTRA) && !defined(WOLFSSL_NO_OPENSSL_RAND_CB) static int wolfSSL_RAND_InitMutex(void); #endif #if defined(OPENSSL_EXTRA) && defined(HAVE_ATEXIT) static void AtExitCleanup(void) { if (initRefCount > 0) { initRefCount = 1; (void)wolfSSL_Cleanup(); } } #endif WOLFSSL_ABI int wolfSSL_Init(void) { int ret = WOLFSSL_SUCCESS; #if !defined(NO_SESSION_CACHE) && defined(ENABLE_SESSION_CACHE_ROW_LOCK) int i; #endif WOLFSSL_ENTER("wolfSSL_Init"); #if FIPS_VERSION_GE(5,1) ret = wolfCrypt_SetPrivateKeyReadEnable_fips(1, WC_KEYTYPE_ALL); if (ret != 0) return ret; else ret = WOLFSSL_SUCCESS; #endif if (initRefCount == 0) { /* Initialize crypto for use with TLS connection */ if (wolfCrypt_Init() != 0) { WOLFSSL_MSG("Bad wolfCrypt Init"); ret = WC_INIT_E; } #ifdef HAVE_GLOBAL_RNG if ((ret == WOLFSSL_SUCCESS) && (wc_InitMutex(&globalRNGMutex) != 0)) { WOLFSSL_MSG("Bad Init Mutex rng"); ret = BAD_MUTEX_E; } else { globalRNGMutex_valid = 1; } #endif #ifdef WC_RNG_SEED_CB wc_SetSeed_Cb(wc_GenerateSeed); #endif #ifdef OPENSSL_EXTRA #ifndef WOLFSSL_NO_OPENSSL_RAND_CB if ((ret == WOLFSSL_SUCCESS) && (wolfSSL_RAND_InitMutex() != 0)) { ret = BAD_MUTEX_E; } #endif if ((ret == WOLFSSL_SUCCESS) && (wolfSSL_RAND_seed(NULL, 0) != WOLFSSL_SUCCESS)) { WOLFSSL_MSG("wolfSSL_RAND_Seed failed"); ret = WC_INIT_E; } #endif #ifndef NO_SESSION_CACHE #ifdef ENABLE_SESSION_CACHE_ROW_LOCK for (i = 0; i < SESSION_ROWS; ++i) { SessionCache[i].mutex_valid = 0; } for (i = 0; (ret == WOLFSSL_SUCCESS) && (i < SESSION_ROWS); ++i) { if (wc_InitMutex(&SessionCache[i].row_mutex) != 0) { WOLFSSL_MSG("Bad Init Mutex session"); ret = BAD_MUTEX_E; } else { SessionCache[i].mutex_valid = 1; } } #else if ((ret == WOLFSSL_SUCCESS) && (wc_InitMutex(&session_mutex) != 0)) { WOLFSSL_MSG("Bad Init Mutex session"); ret = BAD_MUTEX_E; } else { session_mutex_valid = 1; } #endif #ifndef NO_CLIENT_CACHE if ((ret == WOLFSSL_SUCCESS) && (wc_InitMutex(&clisession_mutex) != 0)) { WOLFSSL_MSG("Bad Init Mutex session"); ret = BAD_MUTEX_E; } else { clisession_mutex_valid = 1; } #endif #endif if ((ret == WOLFSSL_SUCCESS) && (wc_InitMutex(&count_mutex) != 0)) { WOLFSSL_MSG("Bad Init Mutex count"); ret = BAD_MUTEX_E; } else { count_mutex_valid = 1; } #if defined(OPENSSL_EXTRA) && defined(HAVE_ATEXIT) /* OpenSSL registers cleanup using atexit */ if ((ret == WOLFSSL_SUCCESS) && (atexit(AtExitCleanup) != 0)) { WOLFSSL_MSG("Bad atexit registration"); ret = WC_INIT_E; } #endif } if ((ret == WOLFSSL_SUCCESS) && (wc_LockMutex(&count_mutex) != 0)) { WOLFSSL_MSG("Bad Lock Mutex count"); ret = BAD_MUTEX_E; } else { initRefCount++; wc_UnLockMutex(&count_mutex); } if (ret != WOLFSSL_SUCCESS) { initRefCount = 1; /* Force cleanup */ (void)wolfSSL_Cleanup(); /* Ignore any error from cleanup */ } return ret; } #ifndef NO_CERTS /* process user cert chain to pass during the handshake */ static int ProcessUserChain(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, WOLFSSL* ssl, long* used, EncryptedInfo* info, int verify) { int ret = 0; void* heap = wolfSSL_CTX_GetHeap(ctx, ssl); #ifdef WOLFSSL_TLS13 int cnt = 0; #endif if ((type == CA_TYPE) && (ctx == NULL)) { WOLFSSL_MSG("Need context for CA load"); return BAD_FUNC_ARG; } /* we may have a user cert chain, try to consume */ if ((type == CERT_TYPE || type == CA_TYPE) && (info->consumed < sz)) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; /* tmp chain buffer */ #endif byte* chainBuffer = staticBuffer; int dynamicBuffer = 0; word32 bufferSz; long consumed = info->consumed; word32 idx = 0; int gotOne = 0; /* Calculate max possible size, including max headers */ bufferSz = (word32)(sz - consumed) + (CERT_HEADER_SZ * MAX_CHAIN_DEPTH); if (bufferSz > sizeof(staticBuffer)) { WOLFSSL_MSG("Growing Tmp Chain Buffer"); /* will shrink to actual size */ chainBuffer = (byte*)XMALLOC(bufferSz, heap, DYNAMIC_TYPE_FILE); if (chainBuffer == NULL) { return MEMORY_E; } dynamicBuffer = 1; } WOLFSSL_MSG("Processing Cert Chain"); while (consumed < sz) { DerBuffer* part = NULL; word32 remain = (word32)(sz - consumed); info->consumed = 0; if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER ret = PemToDer(buff + consumed, remain, type, &part, heap, info, NULL); #else ret = NOT_COMPILED_IN; #endif } else { int length = remain; if (format == WOLFSSL_FILETYPE_ASN1) { /* get length of der (read sequence) */ word32 inOutIdx = 0; if (GetSequence(buff + consumed, &inOutIdx, &length, remain) < 0) { ret = ASN_NO_PEM_HEADER; } length += inOutIdx; /* include leading sequence */ } info->consumed = length; if (ret == 0) { ret = AllocDer(&part, length, type, heap); if (ret == 0) { XMEMCPY(part->buffer, buff + consumed, length); } } } if (ret == 0) { gotOne = 1; #ifdef WOLFSSL_TLS13 cnt++; #endif if ((idx + part->length + CERT_HEADER_SZ) > bufferSz) { WOLFSSL_MSG(" Cert Chain bigger than buffer. " "Consider increasing MAX_CHAIN_DEPTH"); ret = BUFFER_E; } else { c32to24(part->length, &chainBuffer[idx]); idx += CERT_HEADER_SZ; XMEMCPY(&chainBuffer[idx], part->buffer, part->length); idx += part->length; consumed += info->consumed; if (used) *used += info->consumed; } /* add CA's to certificate manager */ if (ret == 0 && type == CA_TYPE) { /* verify CA unless user set to no verify */ ret = AddCA(ctx->cm, &part, WOLFSSL_USER_CA, verify); if (ret == WOLFSSL_SUCCESS) { ret = 0; /* converted success case */ } gotOne = 0; /* don't exit loop for CA type */ } } FreeDer(&part); if (ret == ASN_NO_PEM_HEADER && gotOne) { WOLFSSL_MSG("We got one good cert, so stuff at end ok"); break; } if (ret < 0) { WOLFSSL_MSG(" Error in Cert in Chain"); if (dynamicBuffer) XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE); return ret; } WOLFSSL_MSG(" Consumed another Cert in Chain"); } WOLFSSL_MSG("Finished Processing Cert Chain"); /* only retain actual size used */ ret = 0; if (idx > 0) { if (ssl) { if (ssl->buffers.weOwnCertChain) { FreeDer(&ssl->buffers.certChain); } ret = AllocDer(&ssl->buffers.certChain, idx, type, heap); if (ret == 0) { XMEMCPY(ssl->buffers.certChain->buffer, chainBuffer, idx); ssl->buffers.weOwnCertChain = 1; } #ifdef WOLFSSL_TLS13 ssl->buffers.certChainCnt = cnt; #endif } else if (ctx) { FreeDer(&ctx->certChain); ret = AllocDer(&ctx->certChain, idx, type, heap); if (ret == 0) { XMEMCPY(ctx->certChain->buffer, chainBuffer, idx); } #ifdef WOLFSSL_TLS13 ctx->certChainCnt = cnt; #endif } } if (dynamicBuffer) XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE); } return ret; } static int ProcessBufferTryDecode(WOLFSSL_CTX* ctx, WOLFSSL* ssl, DerBuffer* der, int* keySz, word32* idx, int* resetSuites, int* keyFormat, void* heap, int devId) { int ret = 0; (void)heap; (void)devId; if (ctx == NULL && ssl == NULL) return BAD_FUNC_ARG; if (!der || !keySz || !idx || !resetSuites || !keyFormat) return BAD_FUNC_ARG; #ifndef NO_RSA if ((*keyFormat == 0 || *keyFormat == RSAk)) { /* make sure RSA key can be used */ #ifdef WOLFSSL_SMALL_STACK RsaKey* key; #else RsaKey key[1]; #endif #ifdef WOLFSSL_SMALL_STACK key = (RsaKey*)XMALLOC(sizeof(RsaKey), heap, DYNAMIC_TYPE_RSA); if (key == NULL) return MEMORY_E; #endif ret = wc_InitRsaKey_ex(key, heap, devId); if (ret == 0) { *idx = 0; ret = wc_RsaPrivateKeyDecode(der->buffer, idx, key, der->length); #ifdef WOLF_PRIVATE_KEY_ID if (ret != 0 && (devId != INVALID_DEVID #ifdef HAVE_PK_CALLBACKS || wolfSSL_CTX_IsPrivatePkSet(ctx) #endif )) { /* if using crypto or PK callbacks, try public key decode */ *idx = 0; ret = wc_RsaPublicKeyDecode(der->buffer, idx, key, der->length); } #endif if (ret != 0) { #if !defined(HAVE_ECC) && !defined(HAVE_ED25519) && \ !defined(HAVE_ED448) && !defined(HAVE_PQC) WOLFSSL_MSG("RSA decode failed and other algorithms " "not enabled to try"); ret = WOLFSSL_BAD_FILE; #else ret = 0; /* continue trying other algorithms */ #endif } else { /* check that the size of the RSA key is enough */ int minRsaSz = ssl ? ssl->options.minRsaKeySz : ctx->minRsaKeySz; *keySz = wc_RsaEncryptSize((RsaKey*)key); if (*keySz < minRsaSz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("Private Key size too small"); } if (ssl) { ssl->buffers.keyType = rsa_sa_algo; ssl->buffers.keySz = *keySz; } else { ctx->privateKeyType = rsa_sa_algo; ctx->privateKeySz = *keySz; } *keyFormat = RSAk; if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { ssl->options.haveStaticECC = 0; *resetSuites = 1; } } wc_FreeRsaKey(key); } #ifdef WOLFSSL_SMALL_STACK XFREE(key, heap, DYNAMIC_TYPE_RSA); #endif if (ret != 0) return ret; } #endif #ifdef HAVE_ECC if ((*keyFormat == 0 || *keyFormat == ECDSAk)) { /* make sure ECC key can be used */ #ifdef WOLFSSL_SMALL_STACK ecc_key* key; #else ecc_key key[1]; #endif #ifdef WOLFSSL_SMALL_STACK key = (ecc_key*)XMALLOC(sizeof(ecc_key), heap, DYNAMIC_TYPE_ECC); if (key == NULL) return MEMORY_E; #endif if (wc_ecc_init_ex(key, heap, devId) == 0) { *idx = 0; ret = wc_EccPrivateKeyDecode(der->buffer, idx, key, der->length); #ifdef WOLF_PRIVATE_KEY_ID if (ret != 0 && (devId != INVALID_DEVID #ifdef HAVE_PK_CALLBACKS || wolfSSL_CTX_IsPrivatePkSet(ctx) #endif )) { /* if using crypto or PK callbacks, try public key decode */ *idx = 0; ret = wc_EccPublicKeyDecode(der->buffer, idx, key, der->length); } #endif if (ret == 0) { /* check for minimum ECC key size and then free */ int minKeySz = ssl ? ssl->options.minEccKeySz : ctx->minEccKeySz; *keySz = wc_ecc_size(key); if (*keySz < minKeySz) { WOLFSSL_MSG("ECC private key too small"); ret = ECC_KEY_SIZE_E; } *keyFormat = ECDSAk; if (ssl) { ssl->options.haveStaticECC = 1; ssl->buffers.keyType = ecc_dsa_sa_algo; ssl->buffers.keySz = *keySz; } else { ctx->haveStaticECC = 1; ctx->privateKeyType = ecc_dsa_sa_algo; ctx->privateKeySz = *keySz; } if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { *resetSuites = 1; } } else { ret = 0; /* continue trying other algorithms */ } wc_ecc_free(key); } #ifdef WOLFSSL_SMALL_STACK XFREE(key, heap, DYNAMIC_TYPE_ECC); #endif if (ret != 0) return ret; } #endif /* HAVE_ECC */ #if defined(HAVE_ED25519) && defined(HAVE_ED25519_KEY_IMPORT) if ((*keyFormat == 0 || *keyFormat == ED25519k)) { /* make sure Ed25519 key can be used */ #ifdef WOLFSSL_SMALL_STACK ed25519_key* key; #else ed25519_key key[1]; #endif #ifdef WOLFSSL_SMALL_STACK key = (ed25519_key*)XMALLOC(sizeof(ed25519_key), heap, DYNAMIC_TYPE_ED25519); if (key == NULL) return MEMORY_E; #endif ret = wc_ed25519_init_ex(key, heap, devId); if (ret == 0) { *idx = 0; ret = wc_Ed25519PrivateKeyDecode(der->buffer, idx, key, der->length); #ifdef WOLF_PRIVATE_KEY_ID if (ret != 0 && (devId != INVALID_DEVID #ifdef HAVE_PK_CALLBACKS || wolfSSL_CTX_IsPrivatePkSet(ctx) #endif )) { /* if using crypto or PK callbacks, try public key decode */ *idx = 0; ret = wc_Ed25519PublicKeyDecode(der->buffer, idx, key, der->length); } #endif if (ret == 0) { /* check for minimum key size and then free */ int minKeySz = ssl ? ssl->options.minEccKeySz : ctx->minEccKeySz; *keySz = ED25519_KEY_SIZE; if (*keySz < minKeySz) { WOLFSSL_MSG("ED25519 private key too small"); ret = ECC_KEY_SIZE_E; } if (ret == 0) { if (ssl) { ssl->buffers.keyType = ed25519_sa_algo; ssl->buffers.keySz = *keySz; } else if (ctx) { ctx->privateKeyType = ed25519_sa_algo; ctx->privateKeySz = *keySz; } *keyFormat = ED25519k; if (ssl != NULL) { /* ED25519 requires caching enabled for tracking message * hash used in EdDSA_Update for signing */ ssl->options.cacheMessages = 1; if (ssl->options.side == WOLFSSL_SERVER_END) { *resetSuites = 1; } } } } else { ret = 0; /* continue trying other algorithms */ } wc_ed25519_free(key); } #ifdef WOLFSSL_SMALL_STACK XFREE(key, heap, DYNAMIC_TYPE_ED25519); #endif if (ret != 0) return ret; } #endif /* HAVE_ED25519 && HAVE_ED25519_KEY_IMPORT */ #if defined(HAVE_ED448) && defined(HAVE_ED448_KEY_IMPORT) if ((*keyFormat == 0 || *keyFormat == ED448k)) { /* make sure Ed448 key can be used */ #ifdef WOLFSSL_SMALL_STACK ed448_key* key = NULL; #else ed448_key key[1]; #endif #ifdef WOLFSSL_SMALL_STACK key = (ed448_key*)XMALLOC(sizeof(ed448_key), heap, DYNAMIC_TYPE_ED448); if (key == NULL) return MEMORY_E; #endif ret = wc_ed448_init(key); if (ret == 0) { *idx = 0; ret = wc_Ed448PrivateKeyDecode(der->buffer, idx, key, der->length); #ifdef WOLF_PRIVATE_KEY_ID if (ret != 0 && (devId != INVALID_DEVID #ifdef HAVE_PK_CALLBACKS || wolfSSL_CTX_IsPrivatePkSet(ctx) #endif )) { /* if using crypto or PK callbacks, try public key decode */ *idx = 0; ret = wc_Ed448PublicKeyDecode(der->buffer, idx, key, der->length); } #endif if (ret == 0) { /* check for minimum key size and then free */ int minKeySz = ssl ? ssl->options.minEccKeySz : ctx->minEccKeySz; *keySz = ED448_KEY_SIZE; if (*keySz < minKeySz) { WOLFSSL_MSG("ED448 private key too small"); ret = ECC_KEY_SIZE_E; } } if (ret == 0) { if (ssl) { ssl->buffers.keyType = ed448_sa_algo; ssl->buffers.keySz = *keySz; } else if (ctx) { ctx->privateKeyType = ed448_sa_algo; ctx->privateKeySz = *keySz; } *keyFormat = ED448k; if (ssl != NULL) { /* ED448 requires caching enabled for tracking message * hash used in EdDSA_Update for signing */ ssl->options.cacheMessages = 1; if (ssl->options.side == WOLFSSL_SERVER_END) { *resetSuites = 1; } } } wc_ed448_free(key); } #ifdef WOLFSSL_SMALL_STACK XFREE(key, heap, DYNAMIC_TYPE_ED448); #endif if (ret != 0) return ret; } #endif /* HAVE_ED448 && HAVE_ED448_KEY_IMPORT */ #if defined(HAVE_PQC) && defined(HAVE_FALCON) if (((*keyFormat == 0) || (*keyFormat == FALCON_LEVEL1k) || (*keyFormat == FALCON_LEVEL5k))) { /* make sure Falcon key can be used */ falcon_key* key = (falcon_key*)XMALLOC(sizeof(falcon_key), heap, DYNAMIC_TYPE_FALCON); if (key == NULL) { return MEMORY_E; } ret = wc_falcon_init(key); if (ret == 0) { if (*keyFormat == FALCON_LEVEL1k) { ret = wc_falcon_set_level(key, 1); } else if (*keyFormat == FALCON_LEVEL5k) { ret = wc_falcon_set_level(key, 5); } else { /* What if *keyformat is 0? We might want to do something more * graceful here. */ wc_falcon_free(key); ret = ALGO_ID_E; } } if (ret == 0) { *idx = 0; ret = wc_falcon_import_private_only(der->buffer, der->length, key); if (ret == 0) { /* check for minimum key size and then free */ int minKeySz = ssl ? ssl->options.minFalconKeySz : ctx->minFalconKeySz; *keySz = FALCON_MAX_KEY_SIZE; if (*keySz < minKeySz) { WOLFSSL_MSG("Falcon private key too small"); ret = FALCON_KEY_SIZE_E; } if (ssl) { if (*keyFormat == FALCON_LEVEL1k) { ssl->buffers.keyType = falcon_level1_sa_algo; } else { ssl->buffers.keyType = falcon_level5_sa_algo; } ssl->buffers.keySz = *keySz; } else { if (*keyFormat == FALCON_LEVEL1k) { ctx->privateKeyType = falcon_level1_sa_algo; } else { ctx->privateKeyType = falcon_level5_sa_algo; } ctx->privateKeySz = *keySz; } if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { *resetSuites = 1; } } wc_falcon_free(key); } XFREE(key, heap, DYNAMIC_TYPE_FALCON); if (ret != 0) return ret; } #endif /* HAVE_PQC && HAVE_FALCON */ return ret; } /* process the buffer buff, length sz, into ctx of format and type used tracks bytes consumed, userChain specifies a user cert chain to pass during the handshake */ int ProcessBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, WOLFSSL* ssl, long* used, int userChain, int verify) { DerBuffer* der = NULL; int ret = 0; int done = 0; int keyFormat = 0; int resetSuites = 0; void* heap = wolfSSL_CTX_GetHeap(ctx, ssl); int devId = wolfSSL_CTX_GetDevId(ctx, ssl); word32 idx = 0; int keySz = 0; #if (defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)) || \ defined(HAVE_PKCS8) word32 algId = 0; #endif #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif (void)devId; (void)idx; (void)keySz; if (used) *used = sz; /* used bytes default to sz, PEM chain may shorten*/ /* check args */ if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM) return WOLFSSL_BAD_FILETYPE; if (ctx == NULL && ssl == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_SMALL_STACK info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), heap, DYNAMIC_TYPE_ENCRYPTEDINFO); if (info == NULL) return MEMORY_E; #endif XMEMSET(info, 0, sizeof(EncryptedInfo)); #if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED) if (ctx) { info->passwd_cb = ctx->passwd_cb; info->passwd_userdata = ctx->passwd_userdata; } #endif if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER ret = PemToDer(buff, sz, type, &der, heap, info, &keyFormat); #else ret = NOT_COMPILED_IN; #endif } else { /* ASN1 (DER) */ int length = (int)sz; if (format == WOLFSSL_FILETYPE_ASN1) { /* get length of der (read sequence or octet string) */ word32 inOutIdx = 0; if (GetSequence(buff, &inOutIdx, &length, (word32)sz) >= 0) { length += inOutIdx; /* include leading sequence */ } /* get length using octect string (allowed for private key types) */ else if (type == PRIVATEKEY_TYPE && GetOctetString(buff, &inOutIdx, &length, (word32)sz) >= 0) { length += inOutIdx; /* include leading oct string */ } else { ret = ASN_PARSE_E; } } info->consumed = length; if (ret == 0) { ret = AllocDer(&der, (word32)length, type, heap); if (ret == 0) { XMEMCPY(der->buffer, buff, length); } #ifdef HAVE_PKCS8 /* if private key try and remove PKCS8 header */ if (type == PRIVATEKEY_TYPE) { if ((ret = ToTraditional_ex(der->buffer, der->length, &algId)) > 0) { /* Found PKCS8 header */ /* ToTraditional_ex moves buff and returns adjusted length */ der->length = ret; keyFormat = algId; } ret = 0; /* failures should be ignored */ } #endif } } if (used) { *used = info->consumed; } /* process user chain */ if (ret >= 0) { /* Chain should have server cert first, then intermediates, then root. * First certificate in chain is processed below after ProcessUserChain * and is loaded into ssl->buffers.certificate. * Remainder are processed using ProcessUserChain and are loaded into * ssl->buffers.certChain. */ if (userChain) { ret = ProcessUserChain(ctx, buff, sz, format, type, ssl, used, info, verify); if (ret == ASN_NO_PEM_HEADER) { /* Additional chain is optional */ unsigned long pemErr; CLEAR_ASN_NO_PEM_HEADER_ERROR(pemErr); ret = 0; } } } /* info is only used for private key with DER or PEM, so free now */ if (ret < 0 || type != PRIVATEKEY_TYPE) { #ifdef WOLFSSL_SMALL_STACK XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif } /* check for error */ if (ret < 0) { FreeDer(&der); done = 1; } if (done == 1) { /* No operation, just skip the next section */ } /* Handle DER owner */ else if (type == CA_TYPE) { if (ctx == NULL) { WOLFSSL_MSG("Need context for CA load"); FreeDer(&der); return BAD_FUNC_ARG; } /* verify CA unless user set to no verify */ ret = AddCA(ctx->cm, &der, WOLFSSL_USER_CA, verify); done = 1; } #ifdef WOLFSSL_TRUST_PEER_CERT else if (type == TRUSTED_PEER_TYPE) { /* add trusted peer cert. der is freed within */ if (ctx != NULL) ret = AddTrustedPeer(ctx->cm, &der, !ctx->verifyNone); else ret = AddTrustedPeer(SSL_CM(ssl), &der, !ssl->options.verifyNone); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error adding trusted peer"); } done = 1; } #endif /* WOLFSSL_TRUST_PEER_CERT */ else if (type == CERT_TYPE) { if (ssl != NULL) { /* Make sure previous is free'd */ if (ssl->buffers.weOwnCert) { FreeDer(&ssl->buffers.certificate); #ifdef KEEP_OUR_CERT wolfSSL_X509_free(ssl->ourCert); ssl->ourCert = NULL; #endif } ssl->buffers.certificate = der; #ifdef KEEP_OUR_CERT ssl->keepCert = 1; /* hold cert for ssl lifetime */ #endif ssl->buffers.weOwnCert = 1; } else if (ctx != NULL) { FreeDer(&ctx->certificate); /* Make sure previous is free'd */ #ifdef KEEP_OUR_CERT if (ctx->ourCert) { if (ctx->ownOurCert) wolfSSL_X509_free(ctx->ourCert); ctx->ourCert = NULL; } #endif ctx->certificate = der; } } else if (type == PRIVATEKEY_TYPE) { if (ssl != NULL) { /* Make sure previous is free'd */ if (ssl->buffers.weOwnKey) { ForceZero(ssl->buffers.key->buffer, ssl->buffers.key->length); FreeDer(&ssl->buffers.key); } ssl->buffers.key = der; #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("SSL Buffers key", der->buffer, der->length); #endif ssl->buffers.weOwnKey = 1; } else if (ctx != NULL) { if (ctx->privateKey != NULL && ctx->privateKey->buffer != NULL) { ForceZero(ctx->privateKey->buffer, ctx->privateKey->length); } FreeDer(&ctx->privateKey); ctx->privateKey = der; #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("CTX private key", der->buffer, der->length); #endif } } else { FreeDer(&der); return WOLFSSL_BAD_CERTTYPE; } if (done == 1) { /* No operation, just skip the next section */ } else if (type == PRIVATEKEY_TYPE) { ret = ProcessBufferTryDecode(ctx, ssl, der, &keySz, &idx, &resetSuites, &keyFormat, heap, devId); #if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED) /* for WOLFSSL_FILETYPE_PEM, PemToDer manages the decryption */ /* If private key type PKCS8 header wasn't already removed (algoId == 0) */ if ((ret != 0 || keyFormat == 0) && format != WOLFSSL_FILETYPE_PEM && info->passwd_cb && algId == 0) { int passwordSz = NAME_SZ; #ifndef WOLFSSL_SMALL_STACK char password[NAME_SZ]; #else char* password = (char*)XMALLOC(passwordSz, heap, DYNAMIC_TYPE_STRING); if (password == NULL) { XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO); FreeDer(&der); return MEMORY_E; } #endif /* get password */ ret = info->passwd_cb(password, passwordSz, PEM_PASS_READ, info->passwd_userdata); if (ret >= 0) { passwordSz = ret; #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("ProcessBuffer password", password, passwordSz); #endif /* PKCS8 decrypt */ ret = ToTraditionalEnc(der->buffer, der->length, password, passwordSz, &algId); if (ret >= 0) { ForceZero(der->buffer + ret, der->length - ret); der->length = ret; } /* ignore failures and try parsing as unencrypted */ ForceZero(password, passwordSz); } #ifdef WOLFSSL_SMALL_STACK XFREE(password, heap, DYNAMIC_TYPE_STRING); #elif defined(WOLFSSL_CHECK_MEM_ZERO) wc_MemZero_Check(password, NAME_SZ); #endif ret = ProcessBufferTryDecode(ctx, ssl, der, &keySz, &idx, &resetSuites, &keyFormat, heap, devId); } #endif /* WOLFSSL_ENCRYPTED_KEYS && !NO_PWDBASED */ #ifdef WOLFSSL_SMALL_STACK XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif if (ret != 0) return ret; if (keyFormat == 0) { #ifdef OPENSSL_EXTRA /* Reaching this point probably means that the * decryption password is wrong */ if (info->passwd_cb) EVPerr(0, EVP_R_BAD_DECRYPT); #endif WOLFSSL_ERROR(WOLFSSL_BAD_FILE); return WOLFSSL_BAD_FILE; } (void)devId; } else if (type == CERT_TYPE) { #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert; #else DecodedCert cert[1]; #endif #ifdef WOLF_PRIVATE_KEY_ID int keyType = 0; #endif #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif WOLFSSL_MSG("Checking cert signature type"); InitDecodedCert(cert, der->buffer, der->length, heap); if (DecodeToKey(cert, 0) < 0) { WOLFSSL_MSG("Decode to key failed"); FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, heap, DYNAMIC_TYPE_DCERT); #endif return WOLFSSL_BAD_FILE; } if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { resetSuites = 1; } if (ssl && ssl->ctx->haveECDSAsig) { WOLFSSL_MSG("SSL layer setting cert, CTX had ECDSA, turning off"); ssl->options.haveECDSAsig = 0; /* may turn back on next */ } switch (cert->signatureOID) { case CTC_SHAwECDSA: case CTC_SHA256wECDSA: case CTC_SHA384wECDSA: case CTC_SHA512wECDSA: case CTC_ED25519: case CTC_ED448: WOLFSSL_MSG("ECDSA/ED25519/ED448 cert signature"); if (ssl) ssl->options.haveECDSAsig = 1; else if (ctx) ctx->haveECDSAsig = 1; break; case CTC_FALCON_LEVEL1: case CTC_FALCON_LEVEL5: WOLFSSL_MSG("Falcon cert signature"); if (ssl) ssl->options.haveFalconSig = 1; else if (ctx) ctx->haveFalconSig = 1; break; default: WOLFSSL_MSG("Not ECDSA cert signature"); break; } #if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448) || \ defined(HAVE_PQC) || !defined(NO_RSA) if (ssl) { #if defined(HAVE_ECC) || defined(HAVE_ED25519) || \ (defined(HAVE_CURVE448) && defined(HAVE_ED448)) ssl->pkCurveOID = cert->pkCurveOID; #endif #ifndef WC_STRICT_SIG if (cert->keyOID == ECDSAk) { ssl->options.haveECC = 1; } #ifndef NO_RSA else if (cert->keyOID == RSAk) { ssl->options.haveRSA = 1; } #endif #ifdef HAVE_ED25519 else if (cert->keyOID == ED25519k) { ssl->options.haveECC = 1; } #endif #ifdef HAVE_ED448 else if (cert->keyOID == ED448k) { ssl->options.haveECC = 1; } #endif #ifdef HAVE_PQC else if (cert->keyOID == FALCON_LEVEL1k || cert->keyOID == FALCON_LEVEL5k) { ssl->options.haveFalconSig = 1; } #endif #else ssl->options.haveECC = ssl->options.haveECDSAsig; #endif } else if (ctx) { #if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448) ctx->pkCurveOID = cert->pkCurveOID; #endif #ifndef WC_STRICT_SIG if (cert->keyOID == ECDSAk) { ctx->haveECC = 1; } #ifndef NO_RSA else if (cert->keyOID == RSAk) { ctx->haveRSA = 1; } #endif #ifdef HAVE_ED25519 else if (cert->keyOID == ED25519k) { ctx->haveECC = 1; } #endif #ifdef HAVE_ED448 else if (cert->keyOID == ED448k) { ctx->haveECC = 1; } #endif #ifdef HAVE_PQC else if (cert->keyOID == FALCON_LEVEL1k || cert->keyOID == FALCON_LEVEL5k) { ctx->haveFalconSig = 1; } #endif #else ctx->haveECC = ctx->haveECDSAsig; #endif } #endif /* check key size of cert unless specified not to */ switch (cert->keyOID) { #ifndef NO_RSA case RSAk: #ifdef WOLF_PRIVATE_KEY_ID keyType = rsa_sa_algo; #endif /* Determine RSA key size by parsing public key */ idx = 0; ret = wc_RsaPublicKeyDecode_ex(cert->publicKey, &idx, cert->pubKeySize, NULL, (word32*)&keySz, NULL, NULL); if (ret < 0) break; if (ssl && !ssl->options.verifyNone) { if (ssl->options.minRsaKeySz < 0 || keySz < (int)ssl->options.minRsaKeySz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("Certificate RSA key size too small"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minRsaKeySz < 0 || keySz < (int)ctx->minRsaKeySz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("Certificate RSA key size too small"); } } break; #endif /* !NO_RSA */ #ifdef HAVE_ECC case ECDSAk: #ifdef WOLF_PRIVATE_KEY_ID keyType = ecc_dsa_sa_algo; #endif /* Determine ECC key size based on curve */ keySz = wc_ecc_get_curve_size_from_id( wc_ecc_get_oid(cert->pkCurveOID, NULL, NULL)); if (ssl && !ssl->options.verifyNone) { if (ssl->options.minEccKeySz < 0 || keySz < (int)ssl->options.minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate ECC key size error"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minEccKeySz < 0 || keySz < (int)ctx->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate ECC key size error"); } } break; #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 case ED25519k: #ifdef WOLF_PRIVATE_KEY_ID keyType = ed25519_sa_algo; #endif /* ED25519 is fixed key size */ keySz = ED25519_KEY_SIZE; if (ssl && !ssl->options.verifyNone) { if (ssl->options.minEccKeySz < 0 || keySz < (int)ssl->options.minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate Ed key size error"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minEccKeySz < 0 || keySz < (int)ctx->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate ECC key size error"); } } break; #endif /* HAVE_ED25519 */ #ifdef HAVE_ED448 case ED448k: #ifdef WOLF_PRIVATE_KEY_ID keyType = ed448_sa_algo; #endif /* ED448 is fixed key size */ keySz = ED448_KEY_SIZE; if (ssl && !ssl->options.verifyNone) { if (ssl->options.minEccKeySz < 0 || keySz < (int)ssl->options.minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate Ed key size error"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minEccKeySz < 0 || keySz < (int)ctx->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate ECC key size error"); } } break; #endif /* HAVE_ED448 */ #if defined(HAVE_PQC) && defined(HAVE_FALCON) case FALCON_LEVEL1k: case FALCON_LEVEL5k: /* Falcon is fixed key size */ keySz = FALCON_MAX_KEY_SIZE; if (ssl && !ssl->options.verifyNone) { if (ssl->options.minFalconKeySz < 0 || keySz < (int)ssl->options.minFalconKeySz) { ret = FALCON_KEY_SIZE_E; WOLFSSL_MSG("Certificate Falcon key size error"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minFalconKeySz < 0 || keySz < (int)ctx->minFalconKeySz) { ret = FALCON_KEY_SIZE_E; WOLFSSL_MSG("Certificate Falcon key size error"); } } break; #endif /* HAVE_PQC && HAVE_FALCON */ default: WOLFSSL_MSG("No key size check done on certificate"); break; /* do no check if not a case for the key */ } #ifdef WOLF_PRIVATE_KEY_ID if (ssl != NULL && ssl->buffers.keyType == 0) { ssl->buffers.keyType = keyType; ssl->buffers.keySz = keySz; } else if (ctx != NULL && ctx->privateKeyType == 0) { ctx->privateKeyType = keyType; ctx->privateKeySz = keySz; } #endif FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, heap, DYNAMIC_TYPE_DCERT); #endif if (ret != 0) { done = 1; } } if (done == 1) { #if !defined(NO_WOLFSSL_CM_VERIFY) && (!defined(NO_WOLFSSL_CLIENT) || \ !defined(WOLFSSL_NO_CLIENT_AUTH)) if ((type == CA_TYPE) || (type == CERT_TYPE)) { /* Call to over-ride status */ if ((ctx != NULL) && (ctx->cm != NULL) && (ctx->cm->verifyCallback != NULL)) { ret = CM_VerifyBuffer_ex(ctx->cm, buff, sz, format, (ret == WOLFSSL_SUCCESS ? 0 : ret)); } } #endif /* NO_WOLFSSL_CM_VERIFY */ return ret; } if (ssl && resetSuites) { word16 havePSK = 0; word16 haveRSA = 0; #ifndef NO_PSK if (ssl->options.havePSK) { havePSK = 1; } #endif #ifndef NO_RSA haveRSA = 1; #endif keySz = ssl->buffers.keySz; /* let's reset suites */ InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveAnon, ssl->options.side); } return WOLFSSL_SUCCESS; } /* CA PEM file for verification, may have multiple/chain certs to process */ static int ProcessChainBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, WOLFSSL* ssl, int verify) { long used = 0; int ret = 0; int gotOne = 0; WOLFSSL_MSG("Processing CA PEM file"); while (used < sz) { long consumed = 0; ret = ProcessBuffer(ctx, buff + used, sz - used, format, type, ssl, &consumed, 0, verify); if (ret < 0) { #if defined(WOLFSSL_WPAS) && defined(HAVE_CRL) DerBuffer* der = NULL; EncryptedInfo info; WOLFSSL_MSG("Trying a CRL"); if (PemToDer(buff + used, sz - used, CRL_TYPE, &der, NULL, &info, NULL) == 0) { WOLFSSL_MSG(" Processed a CRL"); wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, der->buffer, der->length, WOLFSSL_FILETYPE_ASN1); FreeDer(&der); used += info.consumed; continue; } #endif if (consumed > 0) { /* Made progress in file */ WOLFSSL_ERROR(ret); WOLFSSL_MSG("CA Parse failed, with progress in file."); WOLFSSL_MSG("Search for other certs in file"); } else { WOLFSSL_MSG("CA Parse failed, no progress in file."); WOLFSSL_MSG("Do not continue search for other certs in file"); break; } } else { WOLFSSL_MSG(" Processed a CA"); gotOne = 1; } used += consumed; } if (gotOne) { WOLFSSL_MSG("Processed at least one valid CA. Other stuff OK"); return WOLFSSL_SUCCESS; } return ret; } static WC_INLINE WOLFSSL_METHOD* cm_pick_method(void) { #ifndef NO_WOLFSSL_CLIENT #if !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_SSLV3) return wolfSSLv3_client_method(); #elif !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_TLSV10) return wolfTLSv1_client_method(); #elif !defined(NO_OLD_TLS) return wolfTLSv1_1_client_method(); #elif !defined(WOLFSSL_NO_TLS12) return wolfTLSv1_2_client_method(); #elif defined(WOLFSSL_TLS13) return wolfTLSv1_3_client_method(); #else return NULL; #endif #elif !defined(NO_WOLFSSL_SERVER) #if !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_SSLV3) return wolfSSLv3_server_method(); #elif !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_TLSV10) return wolfTLSv1_server_method(); #elif !defined(NO_OLD_TLS) return wolfTLSv1_1_server_method(); #elif !defined(WOLFSSL_NO_TLS12) return wolfTLSv1_2_server_method(); #elif defined(WOLFSSL_TLS13) return wolfTLSv1_3_server_method(); #else return NULL; #endif #else return NULL; #endif } /* like load verify locations, 1 for success, < 0 for error */ int wolfSSL_CertManagerLoadCABuffer(WOLFSSL_CERT_MANAGER* cm, const unsigned char* in, long sz, int format) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_CTX* tmp; WOLFSSL_ENTER("wolfSSL_CertManagerLoadCABuffer"); if (cm == NULL) { WOLFSSL_MSG("No CertManager error"); return ret; } tmp = wolfSSL_CTX_new(cm_pick_method()); if (tmp == NULL) { WOLFSSL_MSG("CTX new failed"); return ret; } /* for tmp use */ wolfSSL_CertManagerFree(tmp->cm); tmp->cm = cm; ret = wolfSSL_CTX_load_verify_buffer(tmp, in, sz, format); /* don't loose our good one */ tmp->cm = NULL; wolfSSL_CTX_free(tmp); return ret; } #ifdef HAVE_CRL int wolfSSL_CertManagerLoadCRLBuffer(WOLFSSL_CERT_MANAGER* cm, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRLBuffer"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crl == NULL) { if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Enable CRL failed"); return WOLFSSL_FATAL_ERROR; } } return BufferLoadCRL(cm->crl, buff, sz, type, VERIFY); } int wolfSSL_CertManagerFreeCRL(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerFreeCRL"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crl != NULL){ FreeCRL(cm->crl, 1); cm->crl = NULL; } return WOLFSSL_SUCCESS; } int wolfSSL_CTX_LoadCRLBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRLBuffer"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, buff, sz, type); } int wolfSSL_LoadCRLBuffer(WOLFSSL* ssl, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_LoadCRLBuffer"); if (ssl == NULL || ssl->ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerLoadCRLBuffer(SSL_CM(ssl), buff, sz, type); } #endif /* HAVE_CRL */ /* turn on CRL if off and compiled in, set options */ int wolfSSL_CertManagerEnableCRL(WOLFSSL_CERT_MANAGER* cm, int options) { int ret = WOLFSSL_SUCCESS; (void)options; WOLFSSL_ENTER("wolfSSL_CertManagerEnableCRL"); if (cm == NULL) return BAD_FUNC_ARG; #ifdef HAVE_CRL if (cm->crl == NULL) { cm->crl = (WOLFSSL_CRL*)XMALLOC(sizeof(WOLFSSL_CRL), cm->heap, DYNAMIC_TYPE_CRL); if (cm->crl == NULL) return MEMORY_E; if (InitCRL(cm->crl, cm) != 0) { WOLFSSL_MSG("Init CRL failed"); FreeCRL(cm->crl, 1); cm->crl = NULL; return WOLFSSL_FAILURE; } #if defined(HAVE_CRL_IO) && defined(USE_WOLFSSL_IO) cm->crl->crlIOCb = EmbedCrlLookup; #endif } cm->crlEnabled = 1; if (options & WOLFSSL_CRL_CHECKALL) cm->crlCheckAll = 1; #else ret = NOT_COMPILED_IN; #endif return ret; } int wolfSSL_CertManagerDisableCRL(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerDisableCRL"); if (cm == NULL) return BAD_FUNC_ARG; cm->crlEnabled = 0; return WOLFSSL_SUCCESS; } #ifndef NO_WOLFSSL_CM_VERIFY void wolfSSL_CertManagerSetVerify(WOLFSSL_CERT_MANAGER* cm, VerifyCallback vc) { WOLFSSL_ENTER("wolfSSL_CertManagerSetVerify"); if (cm == NULL) return; cm->verifyCallback = vc; } #endif /* NO_WOLFSSL_CM_VERIFY */ #if !defined(NO_WOLFSSL_CLIENT) || !defined(WOLFSSL_NO_CLIENT_AUTH) /* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */ int CM_VerifyBuffer_ex(WOLFSSL_CERT_MANAGER* cm, const byte* buff, long sz, int format, int err_val) { int ret = 0; DerBuffer* der = NULL; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_CertManagerVerifyBuffer"); #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER ret = PemToDer(buff, sz, CERT_TYPE, &der, cm->heap, NULL, NULL); if (ret != 0) { FreeDer(&der); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); #endif return ret; } InitDecodedCert(cert, der->buffer, der->length, cm->heap); #else ret = NOT_COMPILED_IN; #endif } else { InitDecodedCert(cert, buff, (word32)sz, cm->heap); } if (ret == 0) ret = ParseCertRelative(cert, CERT_TYPE, 1, cm); #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) /* ret needs to be self-singer error for Qt compat */ if (ret == ASN_NO_SIGNER_E && cert->selfSigned) ret = ASN_SELF_SIGNED_E; #endif #ifdef HAVE_CRL if (ret == 0 && cm->crlEnabled) ret = CheckCertCRL(cm->crl, cert); #endif #ifndef NO_WOLFSSL_CM_VERIFY /* if verify callback has been set */ if (cm->verifyCallback) { buffer certBuf; #ifdef WOLFSSL_SMALL_STACK ProcPeerCertArgs* args; args = (ProcPeerCertArgs*)XMALLOC( sizeof(ProcPeerCertArgs), cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (args == NULL) { XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); return MEMORY_E; } #else ProcPeerCertArgs args[1]; #endif certBuf.buffer = (byte*)buff; certBuf.length = (unsigned int)sz; XMEMSET(args, 0, sizeof(ProcPeerCertArgs)); args->totalCerts = 1; args->certs = &certBuf; args->dCert = cert; args->dCertInit = 1; if (err_val != 0) { ret = err_val; } ret = DoVerifyCallback(cm, NULL, ret, args); #ifdef WOLFSSL_SMALL_STACK XFREE(args, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); #endif } #else (void)err_val; #endif FreeDecodedCert(cert); FreeDer(&der); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); #endif return ret == 0 ? WOLFSSL_SUCCESS : ret; } /* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */ int wolfSSL_CertManagerVerifyBuffer(WOLFSSL_CERT_MANAGER* cm, const byte* buff, long sz, int format) { return CM_VerifyBuffer_ex(cm, buff, sz, format, 0); } #endif /* !NO_WOLFSSL_CLIENT || !WOLFSSL_NO_CLIENT_AUTH */ /* turn on OCSP if off and compiled in, set options */ int wolfSSL_CertManagerEnableOCSP(WOLFSSL_CERT_MANAGER* cm, int options) { int ret = WOLFSSL_SUCCESS; (void)options; WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSP"); if (cm == NULL) return BAD_FUNC_ARG; #ifdef HAVE_OCSP if (cm->ocsp == NULL) { cm->ocsp = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP), cm->heap, DYNAMIC_TYPE_OCSP); if (cm->ocsp == NULL) return MEMORY_E; if (InitOCSP(cm->ocsp, cm) != 0) { WOLFSSL_MSG("Init OCSP failed"); FreeOCSP(cm->ocsp, 1); cm->ocsp = NULL; return WOLFSSL_FAILURE; } } cm->ocspEnabled = 1; if (options & WOLFSSL_OCSP_URL_OVERRIDE) cm->ocspUseOverrideURL = 1; if (options & WOLFSSL_OCSP_NO_NONCE) cm->ocspSendNonce = 0; else cm->ocspSendNonce = 1; if (options & WOLFSSL_OCSP_CHECKALL) cm->ocspCheckAll = 1; #ifndef WOLFSSL_USER_IO cm->ocspIOCb = EmbedOcspLookup; cm->ocspRespFreeCb = EmbedOcspRespFree; cm->ocspIOCtx = cm->heap; #endif /* WOLFSSL_USER_IO */ #else ret = NOT_COMPILED_IN; #endif return ret; } int wolfSSL_CertManagerDisableOCSP(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSP"); if (cm == NULL) return BAD_FUNC_ARG; cm->ocspEnabled = 0; return WOLFSSL_SUCCESS; } /* turn on OCSP Stapling if off and compiled in, set options */ int wolfSSL_CertManagerEnableOCSPStapling(WOLFSSL_CERT_MANAGER* cm) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSPStapling"); if (cm == NULL) return BAD_FUNC_ARG; #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) #ifndef NO_WOLFSSL_SERVER if (cm->ocsp_stapling == NULL) { cm->ocsp_stapling = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP), cm->heap, DYNAMIC_TYPE_OCSP); if (cm->ocsp_stapling == NULL) return MEMORY_E; if (InitOCSP(cm->ocsp_stapling, cm) != 0) { WOLFSSL_MSG("Init OCSP failed"); FreeOCSP(cm->ocsp_stapling, 1); cm->ocsp_stapling = NULL; return WOLFSSL_FAILURE; } } #ifndef WOLFSSL_USER_IO cm->ocspIOCb = EmbedOcspLookup; cm->ocspRespFreeCb = EmbedOcspRespFree; cm->ocspIOCtx = cm->heap; #endif /* WOLFSSL_USER_IO */ #endif /* NO_WOLFSSL_SERVER */ cm->ocspStaplingEnabled = 1; #else ret = NOT_COMPILED_IN; #endif return ret; } int wolfSSL_CertManagerDisableOCSPStapling(WOLFSSL_CERT_MANAGER* cm) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSPStapling"); if (cm == NULL) return BAD_FUNC_ARG; #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) cm->ocspStaplingEnabled = 0; #else ret = NOT_COMPILED_IN; #endif return ret; } /* require OCSP stapling response */ int wolfSSL_CertManagerEnableOCSPMustStaple(WOLFSSL_CERT_MANAGER* cm) { int ret; WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSPMustStaple"); if (cm == NULL) return BAD_FUNC_ARG; #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) #ifndef NO_WOLFSSL_CLIENT cm->ocspMustStaple = 1; #endif ret = WOLFSSL_SUCCESS; #else ret = NOT_COMPILED_IN; #endif return ret; } int wolfSSL_CertManagerDisableOCSPMustStaple(WOLFSSL_CERT_MANAGER* cm) { int ret; WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSPMustStaple"); if (cm == NULL) return BAD_FUNC_ARG; #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) #ifndef NO_WOLFSSL_CLIENT cm->ocspMustStaple = 0; #endif ret = WOLFSSL_SUCCESS; #else ret = NOT_COMPILED_IN; #endif return ret; } #ifdef HAVE_OCSP /* check CRL if enabled, WOLFSSL_SUCCESS */ int wolfSSL_CertManagerCheckOCSP(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz) { int ret; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_CertManagerCheckOCSP"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->ocspEnabled == 0) return WOLFSSL_SUCCESS; #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif InitDecodedCert(cert, der, sz, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_OCSP, cm)) != 0) { WOLFSSL_MSG("ParseCert failed"); } else if ((ret = CheckCertOCSP(cm->ocsp, cert, NULL)) != 0) { WOLFSSL_MSG("CheckCertOCSP failed"); } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); #endif return ret == 0 ? WOLFSSL_SUCCESS : ret; } WOLFSSL_API int wolfSSL_CertManagerCheckOCSPResponse(WOLFSSL_CERT_MANAGER *cm, byte *response, int responseSz, buffer *responseBuffer, CertStatus *status, OcspEntry *entry, OcspRequest *ocspRequest) { int ret; WOLFSSL_ENTER("wolfSSL_CertManagerCheckOCSPResponse"); if (cm == NULL || response == NULL) return BAD_FUNC_ARG; if (cm->ocspEnabled == 0) return WOLFSSL_SUCCESS; ret = CheckOcspResponse(cm->ocsp, response, responseSz, responseBuffer, status, entry, ocspRequest); return ret == 0 ? WOLFSSL_SUCCESS : ret; } int wolfSSL_CertManagerSetOCSPOverrideURL(WOLFSSL_CERT_MANAGER* cm, const char* url) { WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSPOverrideURL"); if (cm == NULL) return BAD_FUNC_ARG; XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL); if (url != NULL) { int urlSz = (int)XSTRLEN(url) + 1; cm->ocspOverrideURL = (char*)XMALLOC(urlSz, cm->heap, DYNAMIC_TYPE_URL); if (cm->ocspOverrideURL != NULL) { XMEMCPY(cm->ocspOverrideURL, url, urlSz); } else return MEMORY_E; } else cm->ocspOverrideURL = NULL; return WOLFSSL_SUCCESS; } int wolfSSL_CertManagerSetOCSP_Cb(WOLFSSL_CERT_MANAGER* cm, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSP_Cb"); if (cm == NULL) return BAD_FUNC_ARG; cm->ocspIOCb = ioCb; cm->ocspRespFreeCb = respFreeCb; cm->ocspIOCtx = ioCbCtx; return WOLFSSL_SUCCESS; } int wolfSSL_EnableOCSP(WOLFSSL* ssl, int options) { WOLFSSL_ENTER("wolfSSL_EnableOCSP"); if (ssl) return wolfSSL_CertManagerEnableOCSP(SSL_CM(ssl), options); else return BAD_FUNC_ARG; } int wolfSSL_DisableOCSP(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableOCSP"); if (ssl) return wolfSSL_CertManagerDisableOCSP(SSL_CM(ssl)); else return BAD_FUNC_ARG; } int wolfSSL_EnableOCSPStapling(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_EnableOCSPStapling"); if (ssl) return wolfSSL_CertManagerEnableOCSPStapling(SSL_CM(ssl)); else return BAD_FUNC_ARG; } int wolfSSL_DisableOCSPStapling(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableOCSPStapling"); if (ssl) return wolfSSL_CertManagerDisableOCSPStapling(SSL_CM(ssl)); else return BAD_FUNC_ARG; } int wolfSSL_SetOCSP_OverrideURL(WOLFSSL* ssl, const char* url) { WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL"); if (ssl) return wolfSSL_CertManagerSetOCSPOverrideURL(SSL_CM(ssl), url); else return BAD_FUNC_ARG; } int wolfSSL_SetOCSP_Cb(WOLFSSL* ssl, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_SetOCSP_Cb"); if (ssl) { ssl->ocspIOCtx = ioCbCtx; /* use SSL specific ioCbCtx */ return wolfSSL_CertManagerSetOCSP_Cb(SSL_CM(ssl), ioCb, respFreeCb, NULL); } else return BAD_FUNC_ARG; } int wolfSSL_CTX_EnableOCSP(WOLFSSL_CTX* ctx, int options) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSP"); if (ctx) return wolfSSL_CertManagerEnableOCSP(ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSP(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSP"); if (ctx) return wolfSSL_CertManagerDisableOCSP(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_SetOCSP_OverrideURL(WOLFSSL_CTX* ctx, const char* url) { WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL"); if (ctx) return wolfSSL_CertManagerSetOCSPOverrideURL(ctx->cm, url); else return BAD_FUNC_ARG; } int wolfSSL_CTX_SetOCSP_Cb(WOLFSSL_CTX* ctx, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_CTX_SetOCSP_Cb"); if (ctx) return wolfSSL_CertManagerSetOCSP_Cb(ctx->cm, ioCb, respFreeCb, ioCbCtx); else return BAD_FUNC_ARG; } #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) int wolfSSL_CTX_EnableOCSPStapling(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPStapling"); if (ctx) return wolfSSL_CertManagerEnableOCSPStapling(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSPStapling(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPStapling"); if (ctx) return wolfSSL_CertManagerDisableOCSPStapling(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_EnableOCSPMustStaple(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPMustStaple"); if (ctx) return wolfSSL_CertManagerEnableOCSPMustStaple(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSPMustStaple(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPMustStaple"); if (ctx) return wolfSSL_CertManagerDisableOCSPMustStaple(ctx->cm); else return BAD_FUNC_ARG; } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST || HAVE_CERTIFICATE_STATUS_REQUEST_V2 */ #endif /* HAVE_OCSP */ /* macro to get verify settings for AddCA */ #define GET_VERIFY_SETTING_CTX(ctx) \ ((ctx) && (ctx)->verifyNone ? NO_VERIFY : VERIFY) #define GET_VERIFY_SETTING_SSL(ssl) \ ((ssl)->options.verifyNone ? NO_VERIFY : VERIFY) #ifndef NO_FILESYSTEM /* process a file with name fname into ctx of format and type userChain specifies a user certificate chain to pass during handshake */ int ProcessFile(WOLFSSL_CTX* ctx, const char* fname, int format, int type, WOLFSSL* ssl, int userChain, WOLFSSL_CRL* crl, int verify) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE file; void* heapHint = wolfSSL_CTX_GetHeap(ctx, ssl); #ifndef NO_CODING const char* header = NULL; const char* footer = NULL; #endif (void)crl; (void)heapHint; if (fname == NULL) return WOLFSSL_BAD_FILE; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; if (XFSEEK(file, 0, XSEEK_END) != 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } sz = XFTELL(file); XREWIND(file); if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) { WOLFSSL_MSG("ProcessFile file size error"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*)XMALLOC(sz, heapHint, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } dynamic = 1; } if ((size_t)XFREAD(myBuffer, 1, sz, file) != (size_t)sz) ret = WOLFSSL_BAD_FILE; else { /* Try to detect type by parsing cert header and footer */ if (type == DETECT_CERT_TYPE) { #ifndef NO_CODING if (wc_PemGetHeaderFooter(CA_TYPE, &header, &footer) == 0 && (XSTRNSTR((char*)myBuffer, header, (int)sz) != NULL)) { type = CA_TYPE; } #ifdef HAVE_CRL else if (wc_PemGetHeaderFooter(CRL_TYPE, &header, &footer) == 0 && (XSTRNSTR((char*)myBuffer, header, (int)sz) != NULL)) { type = CRL_TYPE; } #endif else if (wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer) == 0 && (XSTRNSTR((char*)myBuffer, header, (int)sz) != NULL)) { type = CERT_TYPE; } else #endif { WOLFSSL_MSG("Failed to detect certificate type"); if (dynamic) XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE); XFCLOSE(file); return WOLFSSL_BAD_CERTTYPE; } } if ((type == CA_TYPE || type == TRUSTED_PEER_TYPE) && format == WOLFSSL_FILETYPE_PEM) { ret = ProcessChainBuffer(ctx, myBuffer, sz, format, type, ssl, verify); } #ifdef HAVE_CRL else if (type == CRL_TYPE) ret = BufferLoadCRL(crl, myBuffer, sz, format, verify); #endif else ret = ProcessBuffer(ctx, myBuffer, sz, format, type, ssl, NULL, userChain, verify); } XFCLOSE(file); if (dynamic) XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE); return ret; } /* loads file then loads each file in path, no c_rehash */ int wolfSSL_CTX_load_verify_locations_ex(WOLFSSL_CTX* ctx, const char* file, const char* path, word32 flags) { int ret = WOLFSSL_SUCCESS; #ifndef NO_WOLFSSL_DIR int fileRet; int successCount = 0; int failCount = 0; #endif int verify; WOLFSSL_MSG("wolfSSL_CTX_load_verify_locations_ex"); if (ctx == NULL || (file == NULL && path == NULL)) { return WOLFSSL_FAILURE; } verify = GET_VERIFY_SETTING_CTX(ctx); if (flags & WOLFSSL_LOAD_FLAG_DATE_ERR_OKAY) verify = VERIFY_SKIP_DATE; if (file) { ret = ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM, CA_TYPE, NULL, 0, NULL, verify); #ifndef NO_WOLFSSL_DIR if (ret == WOLFSSL_SUCCESS) successCount++; #endif #if defined(WOLFSSL_TRUST_PEER_CERT) && defined(OPENSSL_COMPATIBLE_DEFAULTS) ret = wolfSSL_CTX_trust_peer_cert(ctx, file, WOLFSSL_FILETYPE_PEM); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_CTX_trust_peer_cert error"); } #endif } if (ret == WOLFSSL_SUCCESS && path) { #ifndef NO_WOLFSSL_DIR char* name = NULL; #ifdef WOLFSSL_SMALL_STACK ReadDirCtx* readCtx; readCtx = (ReadDirCtx*)XMALLOC(sizeof(ReadDirCtx), ctx->heap, DYNAMIC_TYPE_DIRCTX); if (readCtx == NULL) return MEMORY_E; #else ReadDirCtx readCtx[1]; #endif /* try to load each regular file in path */ fileRet = wc_ReadDirFirst(readCtx, path, &name); while (fileRet == 0 && name) { WOLFSSL_MSG(name); /* log file name */ ret = ProcessFile(ctx, name, WOLFSSL_FILETYPE_PEM, CA_TYPE, NULL, 0, NULL, verify); if (ret != WOLFSSL_SUCCESS) { /* handle flags for ignoring errors, skipping expired certs or by PEM certificate header error */ if ( (flags & WOLFSSL_LOAD_FLAG_IGNORE_ERR) || ((flags & WOLFSSL_LOAD_FLAG_PEM_CA_ONLY) && (ret == ASN_NO_PEM_HEADER))) { /* Do not fail here if a certificate fails to load, continue to next file */ unsigned long err; CLEAR_ASN_NO_PEM_HEADER_ERROR(err); #if defined(WOLFSSL_QT) ret = WOLFSSL_SUCCESS; #endif } else { WOLFSSL_ERROR(ret); WOLFSSL_MSG("Load CA file failed, continuing"); failCount++; } } else { #if defined(WOLFSSL_TRUST_PEER_CERT) && defined(OPENSSL_COMPATIBLE_DEFAULTS) ret = wolfSSL_CTX_trust_peer_cert(ctx, file, WOLFSSL_FILETYPE_PEM); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_CTX_trust_peer_cert error. Ignoring" "this error."); } #endif successCount++; } fileRet = wc_ReadDirNext(readCtx, path, &name); } wc_ReadDirClose(readCtx); /* pass directory read failure to response code */ if (fileRet != WC_READDIR_NOFILE) { ret = fileRet; #if defined(WOLFSSL_QT) if (ret == BAD_PATH_ERROR && flags & WOLFSSL_LOAD_FLAG_IGNORE_BAD_PATH_ERR) { /* QSslSocket always loads certs in system folder * when it is initialized. * Compliant with OpenSSL when flag sets. */ ret = WOLFSSL_SUCCESS; } else { /* qssl socket wants to know errors. */ WOLFSSL_ERROR(ret); } #endif } /* report failure if no files were loaded or there were failures */ else if (successCount == 0 || failCount > 0) { /* use existing error code if exists */ #if defined(WOLFSSL_QT) /* compliant with OpenSSL when flag sets*/ if (!(flags & WOLFSSL_LOAD_FLAG_IGNORE_ZEROFILE)) #endif { ret = WOLFSSL_FAILURE; } } else { ret = WOLFSSL_SUCCESS; } #ifdef WOLFSSL_SMALL_STACK XFREE(readCtx, ctx->heap, DYNAMIC_TYPE_DIRCTX); #endif #else ret = NOT_COMPILED_IN; (void)flags; #endif } return ret; } WOLFSSL_ABI int wolfSSL_CTX_load_verify_locations(WOLFSSL_CTX* ctx, const char* file, const char* path) { int ret = wolfSSL_CTX_load_verify_locations_ex(ctx, file, path, WOLFSSL_LOAD_VERIFY_DEFAULT_FLAGS); return WS_RETURN_CODE(ret,WOLFSSL_FAILURE); } #ifdef WOLFSSL_TRUST_PEER_CERT /* Used to specify a peer cert to match when connecting ctx : the ctx structure to load in peer cert file: the string name of cert file type: type of format such as PEM/DER */ int wolfSSL_CTX_trust_peer_cert(WOLFSSL_CTX* ctx, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_cert"); if (ctx == NULL || file == NULL) { return WOLFSSL_FAILURE; } return ProcessFile(ctx, file, type, TRUSTED_PEER_TYPE, NULL, 0, NULL, GET_VERIFY_SETTING_CTX(ctx)); } int wolfSSL_trust_peer_cert(WOLFSSL* ssl, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_trust_peer_cert"); if (ssl == NULL || file == NULL) { return WOLFSSL_FAILURE; } return ProcessFile(NULL, file, type, TRUSTED_PEER_TYPE, ssl, 0, NULL, GET_VERIFY_SETTING_SSL(ssl)); } #endif /* WOLFSSL_TRUST_PEER_CERT */ #if !defined(NO_WOLFSSL_CLIENT) || !defined(WOLFSSL_NO_CLIENT_AUTH) /* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */ int wolfSSL_CertManagerVerify(WOLFSSL_CERT_MANAGER* cm, const char* fname, int format) { int ret = WOLFSSL_FATAL_ERROR; #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; long sz = 0; XFILE file = XFOPEN(fname, "rb"); WOLFSSL_ENTER("wolfSSL_CertManagerVerify"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; if(XFSEEK(file, 0, XSEEK_END) != 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } sz = XFTELL(file); XREWIND(file); if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) { WOLFSSL_MSG("CertManagerVerify file size error"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*) XMALLOC(sz, cm->heap, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } dynamic = 1; } if ((size_t)XFREAD(myBuffer, 1, sz, file) != (size_t)sz) ret = WOLFSSL_BAD_FILE; else ret = wolfSSL_CertManagerVerifyBuffer(cm, myBuffer, sz, format); XFCLOSE(file); if (dynamic) XFREE(myBuffer, cm->heap, DYNAMIC_TYPE_FILE); return ret; } #endif /* like load verify locations, 1 for success, < 0 for error */ int wolfSSL_CertManagerLoadCA(WOLFSSL_CERT_MANAGER* cm, const char* file, const char* path) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_CTX* tmp; WOLFSSL_ENTER("wolfSSL_CertManagerLoadCA"); if (cm == NULL) { WOLFSSL_MSG("No CertManager error"); return ret; } tmp = wolfSSL_CTX_new(cm_pick_method()); if (tmp == NULL) { WOLFSSL_MSG("CTX new failed"); return ret; } /* for tmp use */ wolfSSL_CertManagerFree(tmp->cm); tmp->cm = cm; ret = wolfSSL_CTX_load_verify_locations(tmp, file, path); /* don't lose our good one */ tmp->cm = NULL; wolfSSL_CTX_free(tmp); return ret; } #endif /* NO_FILESYSTEM */ #ifdef HAVE_CRL /* check CRL if enabled, WOLFSSL_SUCCESS */ int wolfSSL_CertManagerCheckCRL(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz) { int ret = 0; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_CertManagerCheckCRL"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crlEnabled == 0) return WOLFSSL_SUCCESS; #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif InitDecodedCert(cert, der, sz, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_CRL, cm)) != 0) { WOLFSSL_MSG("ParseCert failed"); } else if ((ret = CheckCertCRL(cm->crl, cert)) != 0) { WOLFSSL_MSG("CheckCertCRL failed"); } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif return ret == 0 ? WOLFSSL_SUCCESS : ret; } int wolfSSL_CertManagerSetCRL_Cb(WOLFSSL_CERT_MANAGER* cm, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_CertManagerSetCRL_Cb"); if (cm == NULL) return BAD_FUNC_ARG; cm->cbMissingCRL = cb; return WOLFSSL_SUCCESS; } #ifdef HAVE_CRL_IO int wolfSSL_CertManagerSetCRL_IOCb(WOLFSSL_CERT_MANAGER* cm, CbCrlIO cb) { if (cm == NULL) return BAD_FUNC_ARG; cm->crl->crlIOCb = cb; return WOLFSSL_SUCCESS; } #endif #ifndef NO_FILESYSTEM int wolfSSL_CertManagerLoadCRL(WOLFSSL_CERT_MANAGER* cm, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRL"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crl == NULL) { if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Enable CRL failed"); return WOLFSSL_FATAL_ERROR; } } return LoadCRL(cm->crl, path, type, monitor); } int wolfSSL_CertManagerLoadCRLFile(WOLFSSL_CERT_MANAGER* cm, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRLFile"); if (cm == NULL || file == NULL) return BAD_FUNC_ARG; if (cm->crl == NULL) { if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Enable CRL failed"); return WOLFSSL_FATAL_ERROR; } } return ProcessFile(NULL, file, type, CRL_TYPE, NULL, 0, cm->crl, VERIFY); } #endif int wolfSSL_EnableCRL(WOLFSSL* ssl, int options) { WOLFSSL_ENTER("wolfSSL_EnableCRL"); if (ssl) return wolfSSL_CertManagerEnableCRL(SSL_CM(ssl), options); else return BAD_FUNC_ARG; } int wolfSSL_DisableCRL(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableCRL"); if (ssl) return wolfSSL_CertManagerDisableCRL(SSL_CM(ssl)); else return BAD_FUNC_ARG; } #ifndef NO_FILESYSTEM int wolfSSL_LoadCRL(WOLFSSL* ssl, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_LoadCRL"); if (ssl) return wolfSSL_CertManagerLoadCRL(SSL_CM(ssl), path, type, monitor); else return BAD_FUNC_ARG; } int wolfSSL_LoadCRLFile(WOLFSSL* ssl, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_LoadCRL"); if (ssl) return wolfSSL_CertManagerLoadCRLFile(SSL_CM(ssl), file, type); else return BAD_FUNC_ARG; } #endif int wolfSSL_SetCRL_Cb(WOLFSSL* ssl, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_SetCRL_Cb"); if (ssl) return wolfSSL_CertManagerSetCRL_Cb(SSL_CM(ssl), cb); else return BAD_FUNC_ARG; } #ifdef HAVE_CRL_IO int wolfSSL_SetCRL_IOCb(WOLFSSL* ssl, CbCrlIO cb) { WOLFSSL_ENTER("wolfSSL_SetCRL_Cb"); if (ssl) return wolfSSL_CertManagerSetCRL_IOCb(SSL_CM(ssl), cb); else return BAD_FUNC_ARG; } #endif int wolfSSL_CTX_EnableCRL(WOLFSSL_CTX* ctx, int options) { WOLFSSL_ENTER("wolfSSL_CTX_EnableCRL"); if (ctx) return wolfSSL_CertManagerEnableCRL(ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableCRL(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableCRL"); if (ctx) return wolfSSL_CertManagerDisableCRL(ctx->cm); else return BAD_FUNC_ARG; } #ifndef NO_FILESYSTEM int wolfSSL_CTX_LoadCRL(WOLFSSL_CTX* ctx, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL"); if (ctx) return wolfSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor); else return BAD_FUNC_ARG; } int wolfSSL_CTX_LoadCRLFile(WOLFSSL_CTX* ctx, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL"); if (ctx) return wolfSSL_CertManagerLoadCRLFile(ctx->cm, file, type); else return BAD_FUNC_ARG; } #endif int wolfSSL_CTX_SetCRL_Cb(WOLFSSL_CTX* ctx, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_Cb"); if (ctx) return wolfSSL_CertManagerSetCRL_Cb(ctx->cm, cb); else return BAD_FUNC_ARG; } #ifdef HAVE_CRL_IO int wolfSSL_CTX_SetCRL_IOCb(WOLFSSL_CTX* ctx, CbCrlIO cb) { WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_IOCb"); if (ctx) return wolfSSL_CertManagerSetCRL_IOCb(ctx->cm, cb); else return BAD_FUNC_ARG; } #endif #endif /* HAVE_CRL */ #ifndef NO_FILESYSTEM #ifdef WOLFSSL_DER_LOAD /* Add format parameter to allow DER load of CA files */ int wolfSSL_CTX_der_load_verify_locations(WOLFSSL_CTX* ctx, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_CTX_der_load_verify_locations"); if (ctx == NULL || file == NULL) return WOLFSSL_FAILURE; if (ProcessFile(ctx, file, format, CA_TYPE, NULL, 0, NULL, GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #endif /* WOLFSSL_DER_LOAD */ WOLFSSL_ABI int wolfSSL_CTX_use_certificate_file(WOLFSSL_CTX* ctx, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_file"); if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 0, NULL, GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } WOLFSSL_ABI int wolfSSL_CTX_use_PrivateKey_file(WOLFSSL_CTX* ctx, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_file"); if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE, NULL, 0, NULL, GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #endif /* NO_FILESYSTEM */ /* Sets the max chain depth when verifying a certificate chain. Default depth * is set to MAX_CHAIN_DEPTH. * * ctx WOLFSSL_CTX structure to set depth in * depth max depth */ void wolfSSL_CTX_set_verify_depth(WOLFSSL_CTX *ctx, int depth) { WOLFSSL_ENTER("wolfSSL_CTX_set_verify_depth"); if (ctx == NULL || depth < 0 || depth > MAX_CHAIN_DEPTH) { WOLFSSL_MSG("Bad depth argument, too large or less than 0"); return; } ctx->verifyDepth = (byte)depth; } /* get cert chaining depth using ssl struct */ long wolfSSL_get_verify_depth(WOLFSSL* ssl) { if(ssl == NULL) { return BAD_FUNC_ARG; } #ifndef OPENSSL_EXTRA return MAX_CHAIN_DEPTH; #else return ssl->options.verifyDepth; #endif } /* get cert chaining depth using ctx struct */ long wolfSSL_CTX_get_verify_depth(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return BAD_FUNC_ARG; } #ifndef OPENSSL_EXTRA return MAX_CHAIN_DEPTH; #else return ctx->verifyDepth; #endif } #ifndef NO_FILESYSTEM WOLFSSL_ABI int wolfSSL_CTX_use_certificate_chain_file(WOLFSSL_CTX* ctx, const char* file) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_file"); if (ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM, CERT_TYPE, NULL, 1, NULL, GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } int wolfSSL_CTX_use_certificate_chain_file_format(WOLFSSL_CTX* ctx, const char* file, int format) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_file_format"); if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 1, NULL, GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #ifndef NO_DH /* server Diffie-Hellman parameters */ static int wolfSSL_SetTmpDH_file_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl, const char* fname, int format) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE file; if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; if(XFSEEK(file, 0, XSEEK_END) != 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } sz = XFTELL(file); XREWIND(file); if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) { WOLFSSL_MSG("SetTmpDH file size error"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } dynamic = 1; } if ((size_t)XFREAD(myBuffer, 1, sz, file) != (size_t)sz) ret = WOLFSSL_BAD_FILE; else { if (ssl) ret = wolfSSL_SetTmpDH_buffer(ssl, myBuffer, sz, format); else ret = wolfSSL_CTX_SetTmpDH_buffer(ctx, myBuffer, sz, format); } XFCLOSE(file); if (dynamic) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE); return ret; } /* server Diffie-Hellman parameters */ int wolfSSL_SetTmpDH_file(WOLFSSL* ssl, const char* fname, int format) { if (ssl == NULL) return BAD_FUNC_ARG; return wolfSSL_SetTmpDH_file_wrapper(ssl->ctx, ssl, fname, format); } /* server Diffie-Hellman parameters */ int wolfSSL_CTX_SetTmpDH_file(WOLFSSL_CTX* ctx, const char* fname, int format) { return wolfSSL_SetTmpDH_file_wrapper(ctx, NULL, fname, format); } #endif /* NO_DH */ #endif /* NO_FILESYSTEM */ #ifndef NO_CHECK_PRIVATE_KEY /* Check private against public in certificate for match * * Returns WOLFSSL_SUCCESS on good private key * WOLFSSL_FAILURE if mismatched */ static int check_cert_key(DerBuffer* cert, DerBuffer* key, void* heap, int devId, int isKeyLabel, int isKeyId) { #ifdef WOLFSSL_SMALL_STACK DecodedCert* der = NULL; #else DecodedCert der[1]; #endif word32 size; byte* buff; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("check_cert_key"); if (cert == NULL || key == NULL) { return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK der = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (der == NULL) return MEMORY_E; #endif size = cert->length; buff = cert->buffer; InitDecodedCert(der, buff, size, heap); if (ParseCertRelative(der, CERT_TYPE, NO_VERIFY, NULL) != 0) { FreeDecodedCert(der); #ifdef WOLFSSL_SMALL_STACK XFREE(der, NULL, DYNAMIC_TYPE_DCERT); #endif return WOLFSSL_FAILURE; } size = key->length; buff = key->buffer; #ifdef WOLF_PRIVATE_KEY_ID if (devId != INVALID_DEVID) { int type = 0; void *pkey = NULL; #ifndef NO_RSA if (der->keyOID == RSAk) { type = DYNAMIC_TYPE_RSA; } #endif #ifdef HAVE_ECC if (der->keyOID == ECDSAk) { type = DYNAMIC_TYPE_ECC; } #endif ret = CreateDevPrivateKey(&pkey, buff, size, type, isKeyLabel, isKeyId, heap, devId); #ifdef WOLF_CRYPTO_CB if (ret == 0) { #ifndef NO_RSA if (der->keyOID == RSAk) { ret = wc_CryptoCb_RsaCheckPrivKey((RsaKey*)pkey, der->publicKey, der->pubKeySize); } #endif #ifdef HAVE_ECC if (der->keyOID == ECDSAk) { ret = wc_CryptoCb_EccCheckPrivKey((ecc_key*)pkey, der->publicKey, der->pubKeySize); } #endif } #else /* devId was set, don't check, for now */ /* TODO: Add callback for private key check? */ #endif if (pkey != NULL) { #ifndef NO_RSA if (der->keyOID == RSAk) { wc_FreeRsaKey((RsaKey*)pkey); } #endif #ifdef HAVE_ECC if (der->keyOID == ECDSAk) { wc_ecc_free((ecc_key*)pkey); } #endif XFREE(pkey, heap, type); } if (ret != CRYPTOCB_UNAVAILABLE) { ret = (ret == 0) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE; } } else { /* fall through if unavailable */ ret = CRYPTOCB_UNAVAILABLE; } if (ret == CRYPTOCB_UNAVAILABLE) #endif /* WOLF_PRIVATE_KEY_ID */ { ret = wc_CheckPrivateKeyCert(buff, size, der); ret = (ret == 1) ? WOLFSSL_SUCCESS: WOLFSSL_FAILURE; } FreeDecodedCert(der); #ifdef WOLFSSL_SMALL_STACK XFREE(der, NULL, DYNAMIC_TYPE_DCERT); #endif (void)devId; (void)isKeyLabel; (void)isKeyId; return ret; } /* Check private against public in certificate for match * * ctx WOLFSSL_CTX structure to check private key in * * Returns WOLFSSL_SUCCESS on good private key * WOLFSSL_FAILURE if mismatched. */ int wolfSSL_CTX_check_private_key(const WOLFSSL_CTX* ctx) { if (ctx == NULL) { return WOLFSSL_FAILURE; } return check_cert_key(ctx->certificate, ctx->privateKey, ctx->heap, ctx->privateKeyDevId, ctx->privateKeyLabel, ctx->privateKeyId); } #endif /* !NO_CHECK_PRIVATE_KEY */ #ifdef OPENSSL_ALL /** * Return the private key of the WOLFSSL_CTX struct * @return WOLFSSL_EVP_PKEY* The caller doesn *NOT*` free the returned object. */ WOLFSSL_EVP_PKEY* wolfSSL_CTX_get0_privatekey(const WOLFSSL_CTX* ctx) { const unsigned char *key; int type; WOLFSSL_ENTER("wolfSSL_CTX_get0_privatekey"); if (ctx == NULL || ctx->privateKey == NULL || ctx->privateKey->buffer == NULL) { WOLFSSL_MSG("Bad parameter or key not set"); return NULL; } switch (ctx->privateKeyType) { #ifndef NO_RSA case rsa_sa_algo: type = EVP_PKEY_RSA; break; #endif #ifdef HAVE_ECC case ecc_dsa_sa_algo: type = EVP_PKEY_EC; break; #endif default: /* Other key types not supported either as ssl private keys * or in the EVP layer */ WOLFSSL_MSG("Unsupported key type"); return NULL; } key = ctx->privateKey->buffer; if (ctx->privateKeyPKey != NULL) return ctx->privateKeyPKey; else return wolfSSL_d2i_PrivateKey(type, (WOLFSSL_EVP_PKEY**)&ctx->privateKeyPKey, &key, (long)ctx->privateKey->length); } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) static WOLFSSL_EVP_PKEY* d2iGenericKey(WOLFSSL_EVP_PKEY** out, const unsigned char** in, long inSz, int priv) { WOLFSSL_EVP_PKEY* pkey = NULL; const unsigned char* mem; long memSz = inSz; WOLFSSL_ENTER("d2iGenericKey"); if (in == NULL || *in == NULL || inSz < 0) { WOLFSSL_MSG("Bad argument"); return NULL; } mem = *in; #if !defined(NO_RSA) { word32 keyIdx = 0; int isRsaKey; #ifdef WOLFSSL_SMALL_STACK RsaKey *rsa = (RsaKey*)XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA); if (rsa == NULL) return NULL; #else RsaKey rsa[1]; #endif XMEMSET(rsa, 0, sizeof(RsaKey)); /* test if RSA key */ if (priv) isRsaKey = wc_InitRsaKey(rsa, NULL) == 0 && wc_RsaPrivateKeyDecode(mem, &keyIdx, rsa, (word32)memSz) == 0; else isRsaKey = wc_InitRsaKey(rsa, NULL) == 0 && wc_RsaPublicKeyDecode(mem, &keyIdx, rsa, (word32)memSz) == 0; wc_FreeRsaKey(rsa); #ifdef WOLFSSL_SMALL_STACK XFREE(rsa, NULL, DYNAMIC_TYPE_RSA); #endif if (isRsaKey) { pkey = wolfSSL_EVP_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_RSA; if (out != NULL) { *out = pkey; } pkey->ownRsa = 1; pkey->rsa = wolfSSL_RSA_new(); if (pkey->rsa == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } if (wolfSSL_RSA_LoadDer_ex(pkey->rsa, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC) != 1) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } return pkey; } else { WOLFSSL_MSG("RSA wolfSSL_EVP_PKEY_new error"); } } } #endif /* NO_RSA */ #if defined(HAVE_ECC) && defined(OPENSSL_EXTRA) { word32 keyIdx = 0; int isEccKey; #ifdef WOLFSSL_SMALL_STACK ecc_key *ecc = (ecc_key*)XMALLOC(sizeof(ecc_key), NULL, DYNAMIC_TYPE_ECC); if (ecc == NULL) return NULL; #else ecc_key ecc[1]; #endif XMEMSET(ecc, 0, sizeof(ecc_key)); if (priv) isEccKey = wc_ecc_init(ecc) == 0 && wc_EccPrivateKeyDecode(mem, &keyIdx, ecc, (word32)memSz) == 0; else isEccKey = wc_ecc_init(ecc) == 0 && wc_EccPublicKeyDecode(mem, &keyIdx, ecc, (word32)memSz) == 0; wc_ecc_free(ecc); #ifdef WOLFSSL_SMALL_STACK XFREE(ecc, NULL, DYNAMIC_TYPE_ECC); #endif if (isEccKey) { pkey = wolfSSL_EVP_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(keyIdx, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_EC; if (out != NULL) { *out = pkey; } pkey->ownEcc = 1; pkey->ecc = wolfSSL_EC_KEY_new(); if (pkey->ecc == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } if (wolfSSL_EC_KEY_LoadDer_ex(pkey->ecc, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC) != 1) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } return pkey; } else { WOLFSSL_MSG("ECC wolfSSL_EVP_PKEY_new error"); } } } #endif /* HAVE_ECC && OPENSSL_EXTRA */ #if !defined(NO_DSA) { word32 keyIdx = 0; int isDsaKey; #ifdef WOLFSSL_SMALL_STACK DsaKey *dsa = (DsaKey*)XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA); if (dsa == NULL) return NULL; #else DsaKey dsa[1]; #endif XMEMSET(dsa, 0, sizeof(DsaKey)); if (priv) isDsaKey = wc_InitDsaKey(dsa) == 0 && wc_DsaPrivateKeyDecode(mem, &keyIdx, dsa, (word32)memSz) == 0; else isDsaKey = wc_InitDsaKey(dsa) == 0 && wc_DsaPublicKeyDecode(mem, &keyIdx, dsa, (word32)memSz) == 0; wc_FreeDsaKey(dsa); #ifdef WOLFSSL_SMALL_STACK XFREE(dsa, NULL, DYNAMIC_TYPE_DSA); #endif /* test if DSA key */ if (isDsaKey) { pkey = wolfSSL_EVP_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_DSA; if (out != NULL) { *out = pkey; } pkey->ownDsa = 1; pkey->dsa = wolfSSL_DSA_new(); if (pkey->dsa == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } if (wolfSSL_DSA_LoadDer_ex(pkey->dsa, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC) != 1) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } return pkey; } else { WOLFSSL_MSG("DSA wolfSSL_EVP_PKEY_new error"); } } } #endif /* NO_DSA */ #if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL)) #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) { int isDhKey; word32 keyIdx = 0; #ifdef WOLFSSL_SMALL_STACK DhKey *dh = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (dh == NULL) return NULL; #else DhKey dh[1]; #endif XMEMSET(dh, 0, sizeof(DhKey)); isDhKey = wc_InitDhKey(dh) == 0 && wc_DhKeyDecode(mem, &keyIdx, dh, (word32)memSz) == 0; wc_FreeDhKey(dh); #ifdef WOLFSSL_SMALL_STACK XFREE(dh, NULL, DYNAMIC_TYPE_DH); #endif /* test if DH key */ if (isDhKey) { pkey = wolfSSL_EVP_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = (int)memSz; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, memSz); pkey->type = EVP_PKEY_DH; if (out != NULL) { *out = pkey; } pkey->ownDh = 1; pkey->dh = wolfSSL_DH_new(); if (pkey->dh == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } if (wolfSSL_DH_LoadDer(pkey->dh, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } return pkey; } else { WOLFSSL_MSG("DH wolfSSL_EVP_PKEY_new error"); } } } #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */ #if !defined(NO_DH) && defined(OPENSSL_EXTRA) && defined(WOLFSSL_DH_EXTRA) #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) { word32 keyIdx = 0; DhKey* key = NULL; int ret; int elements; #ifdef WOLFSSL_SMALL_STACK DhKey* dh = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (dh == NULL) return NULL; #else DhKey dh[1]; #endif XMEMSET(dh, 0, sizeof(DhKey)); /* test if DH-public key */ if (wc_InitDhKey(dh) != 0) return NULL; ret = wc_DhKeyDecode(mem, &keyIdx, dh, (word32)memSz); wc_FreeDhKey(dh); #ifdef WOLFSSL_SMALL_STACK XFREE(dh, NULL, DYNAMIC_TYPE_DH); #endif if (ret == 0) { pkey = wolfSSL_EVP_PKEY_new(); if (pkey != NULL) { pkey->type = EVP_PKEY_DH; pkey->pkey_sz = (int)memSz; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, priv ? DYNAMIC_TYPE_PRIVATE_KEY : DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, memSz); if (out != NULL) { *out = pkey; } pkey->ownDh = 1; pkey->dh = wolfSSL_DH_new(); if (pkey->dh == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } key = (DhKey*)pkey->dh->internal; keyIdx = 0; if (wc_DhKeyDecode(mem, &keyIdx, key, (word32)memSz) == 0) { elements = ELEMENT_P | ELEMENT_G | ELEMENT_Q | ELEMENT_PUB; if (priv) elements |= ELEMENT_PRV; if(SetDhExternal_ex(pkey->dh, elements) == WOLFSSL_SUCCESS ) { return pkey; } } else { wolfSSL_EVP_PKEY_free(pkey); return NULL; } } } } #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* !NO_DH && OPENSSL_EXTRA && WOLFSSL_DH_EXTRA */ #ifdef HAVE_PQC { int isFalcon = 0; #ifdef WOLFSSL_SMALL_STACK falcon_key *falcon = (falcon_key *)MALLOC(sizeof(falcon_key), NULL, DYNAMIC_TYPE_FALCON); if (falcon == NULL) { return NULL; } #else falcon_key falcon[1]; #endif if (wc_falcon_init(falcon) == 0) { /* test if Falcon key */ if (priv) { /* Try level 1 */ isFalcon = wc_falcon_set_level(falcon, 1) == 0 && wc_falcon_import_private_only(mem, (word32)memSz, falcon) == 0; if (!isFalcon) { /* Try level 5 */ isFalcon = wc_falcon_set_level(falcon, 5) == 0 && wc_falcon_import_private_only(mem, (word32)memSz, falcon) == 0; } } else { /* Try level 1 */ isFalcon = wc_falcon_set_level(falcon, 1) == 0 && wc_falcon_import_public(mem, (word32)memSz, falcon) == 0; if (!isFalcon) { /* Try level 5 */ isFalcon = wc_falcon_set_level(falcon, 5) == 0 && wc_falcon_import_public(mem, (word32)memSz, falcon) == 0; } } wc_falcon_free(falcon); } #ifdef WOLFSSL_SMALL_STACK XFREE(falcon, NULL, DYNAMIC_TYPE_FALCON); #endif if (isFalcon) { /* Create a fake Falcon EVP_PKEY. In the future, we might integrate * Falcon into the compatibility layer. */ pkey = wolfSSL_EVP_PKEY_new(); if (pkey == NULL) { WOLFSSL_MSG("Falcon wolfSSL_EVP_PKEY_new error"); return NULL; } pkey->type = EVP_PKEY_FALCON; pkey->pkey.ptr = NULL; pkey->pkey_sz = 0; return pkey; } } #endif /* HAVE_PQC */ if (pkey == NULL) { WOLFSSL_MSG("wolfSSL_d2i_PUBKEY couldn't determine key type"); } return pkey; } #endif /* OPENSSL_EXTRA || WPA_SMALL */ #ifdef OPENSSL_EXTRA WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY( WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey, const unsigned char** keyBuf, long keyLen) { WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL; #ifdef WOLFSSL_PEM_TO_DER int ret; DerBuffer* der = NULL; if (keyBuf == NULL || *keyBuf == NULL || keyLen <= 0) { WOLFSSL_MSG("Bad key PEM/DER args"); return NULL; } ret = PemToDer(*keyBuf, keyLen, PRIVATEKEY_TYPE, &der, NULL, NULL, NULL); if (ret < 0) { WOLFSSL_MSG("Not PEM format"); ret = AllocDer(&der, (word32)keyLen, PRIVATEKEY_TYPE, NULL); if (ret == 0) { XMEMCPY(der->buffer, *keyBuf, keyLen); } } if (ret == 0) { /* Verify this is PKCS8 Key */ word32 inOutIdx = 0; word32 algId; ret = ToTraditionalInline_ex(der->buffer, &inOutIdx, der->length, &algId); if (ret >= 0) { ret = 0; /* good DER */ } } if (ret == 0) { pkcs8 = wolfSSL_EVP_PKEY_new(); if (pkcs8 == NULL) ret = MEMORY_E; } if (ret == 0) { pkcs8->pkey.ptr = (char*)XMALLOC(der->length, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pkcs8->pkey.ptr == NULL) ret = MEMORY_E; } if (ret == 0) { XMEMCPY(pkcs8->pkey.ptr, der->buffer, der->length); pkcs8->pkey_sz = der->length; } FreeDer(&der); if (ret != 0) { wolfSSL_EVP_PKEY_free(pkcs8); pkcs8 = NULL; } if (pkey != NULL) { *pkey = pkcs8; } #else (void)bio; (void)pkey; #endif /* WOLFSSL_PEM_TO_DER */ return pkcs8; } #ifndef NO_BIO /* put SSL type in extra for now, not very common */ /* Converts a DER format key read from "bio" to a PKCS8 structure. * * bio input bio to read DER from * pkey If not NULL then this pointer will be overwritten with a new PKCS8 * structure. * * returns a WOLFSSL_PKCS8_PRIV_KEY_INFO pointer on success and NULL in fail * case. */ WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY_bio(WOLFSSL_BIO* bio, WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey) { WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL; #ifdef WOLFSSL_PEM_TO_DER unsigned char* mem = NULL; int memSz; WOLFSSL_ENTER("wolfSSL_d2i_PKCS8_PKEY_bio"); if (bio == NULL) { return NULL; } if ((memSz = wolfSSL_BIO_get_mem_data(bio, &mem)) < 0) { return NULL; } pkcs8 = wolfSSL_d2i_PKCS8_PKEY(pkey, (const unsigned char**)&mem, memSz); #else (void)bio; (void)pkey; #endif /* WOLFSSL_PEM_TO_DER */ return pkcs8; } /* expecting DER format public key * * bio input bio to read DER from * out If not NULL then this pointer will be overwritten with a new * WOLFSSL_EVP_PKEY pointer * * returns a WOLFSSL_EVP_PKEY pointer on success and NULL in fail case. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY_bio(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** out) { unsigned char* mem; long memSz; WOLFSSL_EVP_PKEY* pkey = NULL; WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY_bio()"); if (bio == NULL) { return NULL; } (void)out; memSz = wolfSSL_BIO_get_len(bio); if (memSz <= 0) { return NULL; } mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { return NULL; } if (wolfSSL_BIO_read(bio, mem, (int)memSz) == memSz) { pkey = wolfSSL_d2i_PUBKEY(NULL, (const unsigned char**)&mem, memSz); if (out != NULL && pkey != NULL) { *out = pkey; } } XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return pkey; } #endif /* !NO_BIO */ /* Converts a DER encoded public key to a WOLFSSL_EVP_PKEY structure. * * out pointer to new WOLFSSL_EVP_PKEY structure. Can be NULL * in DER buffer to convert * inSz size of in buffer * * returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL * on fail */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY(WOLFSSL_EVP_PKEY** out, const unsigned char** in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY"); return d2iGenericKey(out, in, inSz, 0); } /* helper function to get raw pointer to DER buffer from WOLFSSL_EVP_PKEY */ static int wolfSSL_EVP_PKEY_get_der(const WOLFSSL_EVP_PKEY* key, unsigned char** der) { unsigned char* pt; int sz; word16 pkcs8HeaderSz; if (!key || !key->pkey_sz) return WOLFSSL_FATAL_ERROR; /* return the key without PKCS8 for compatibility */ /* if pkcs8HeaderSz is invalid, use 0 and return all of pkey */ pkcs8HeaderSz = 0; if (key->pkey_sz > key->pkcs8HeaderSz) pkcs8HeaderSz = key->pkcs8HeaderSz; sz = key->pkey_sz - pkcs8HeaderSz; if (der) { pt = (unsigned char*)key->pkey.ptr; if (*der) { /* since this function signature has no size value passed in it is * assumed that the user has allocated a large enough buffer */ XMEMCPY(*der, pt + pkcs8HeaderSz, sz); *der += sz; } else { *der = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_OPENSSL); if (*der == NULL) { return WOLFSSL_FATAL_ERROR; } XMEMCPY(*der, pt + pkcs8HeaderSz, sz); } } return sz; } int wolfSSL_i2d_PUBKEY(const WOLFSSL_EVP_PKEY *key, unsigned char **der) { return wolfSSL_EVP_PKEY_get_der(key, der); } static WOLFSSL_EVP_PKEY* _d2i_PublicKey(int type, WOLFSSL_EVP_PKEY** out, const unsigned char **in, long inSz, int priv) { int ret = 0; word32 idx = 0, algId; word16 pkcs8HeaderSz = 0; WOLFSSL_EVP_PKEY* local; int opt; (void)opt; if (in == NULL || inSz < 0) { WOLFSSL_MSG("Bad argument"); return NULL; } if (priv == 1) { /* Check if input buffer has PKCS8 header. In the case that it does not * have a PKCS8 header then do not error out. */ if ((ret = ToTraditionalInline_ex((const byte*)(*in), &idx, (word32)inSz, &algId)) > 0) { WOLFSSL_MSG("Found PKCS8 header"); pkcs8HeaderSz = (word16)idx; if ((type == EVP_PKEY_RSA && algId != RSAk) || (type == EVP_PKEY_EC && algId != ECDSAk) || (type == EVP_PKEY_DSA && algId != DSAk) || (type == EVP_PKEY_DH && algId != DHk)) { WOLFSSL_MSG("PKCS8 does not match EVP key type"); return NULL; } (void)idx; /* not used */ } else { if (ret != ASN_PARSE_E) { WOLFSSL_MSG("Unexpected error with trying to remove PKCS8 " "header"); return NULL; } } } if (out != NULL && *out != NULL) { wolfSSL_EVP_PKEY_free(*out); *out = NULL; } local = wolfSSL_EVP_PKEY_new(); if (local == NULL) { return NULL; } local->type = type; local->pkey_sz = (int)inSz; local->pkcs8HeaderSz = pkcs8HeaderSz; local->pkey.ptr = (char*)XMALLOC(inSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (local->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(local); local = NULL; return NULL; } else { XMEMCPY(local->pkey.ptr, *in, inSz); } switch (type) { #ifndef NO_RSA case EVP_PKEY_RSA: local->ownRsa = 1; local->rsa = wolfSSL_RSA_new(); if (local->rsa == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } opt = priv ? WOLFSSL_RSA_LOAD_PRIVATE : WOLFSSL_RSA_LOAD_PUBLIC; if (wolfSSL_RSA_LoadDer_ex(local->rsa, (const unsigned char*)local->pkey.ptr, local->pkey_sz, opt) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* NO_RSA */ #ifdef HAVE_ECC case EVP_PKEY_EC: local->ownEcc = 1; local->ecc = wolfSSL_EC_KEY_new(); if (local->ecc == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } opt = priv ? WOLFSSL_EC_KEY_LOAD_PRIVATE : WOLFSSL_EC_KEY_LOAD_PUBLIC; if (wolfSSL_EC_KEY_LoadDer_ex(local->ecc, (const unsigned char*)local->pkey.ptr, local->pkey_sz, opt) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* HAVE_ECC */ #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH) #ifndef NO_DSA case EVP_PKEY_DSA: local->ownDsa = 1; local->dsa = wolfSSL_DSA_new(); if (local->dsa == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } opt = priv ? WOLFSSL_DSA_LOAD_PRIVATE : WOLFSSL_DSA_LOAD_PUBLIC; if (wolfSSL_DSA_LoadDer_ex(local->dsa, (const unsigned char*)local->pkey.ptr, local->pkey_sz, opt) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* NO_DSA */ #ifndef NO_DH #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2)) case EVP_PKEY_DH: local->ownDh = 1; local->dh = wolfSSL_DH_new(); if (local->dh == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } if (wolfSSL_DH_LoadDer(local->dh, (const unsigned char*)local->pkey.ptr, local->pkey_sz) != WOLFSSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */ #endif /* HAVE_DH */ #endif /* WOLFSSL_QT || OPENSSL_ALL || WOLFSSL_OPENSSH */ default: WOLFSSL_MSG("Unsupported key type"); wolfSSL_EVP_PKEY_free(local); return NULL; } /* advance pointer with success */ if (local != NULL) { if (local->pkey_sz <= (int)inSz) { *in += local->pkey_sz; } if (out != NULL) { *out = local; } } return local; } WOLFSSL_EVP_PKEY* wolfSSL_d2i_PublicKey(int type, WOLFSSL_EVP_PKEY** out, const unsigned char **in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PublicKey"); return _d2i_PublicKey(type, out, in, inSz, 0); } /* Reads in a DER format key. If PKCS8 headers are found they are stripped off. * * type type of key * out newly created WOLFSSL_EVP_PKEY structure * in pointer to input key DER * inSz size of in buffer * * On success a non null pointer is returned and the pointer in is advanced the * same number of bytes read. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey(int type, WOLFSSL_EVP_PKEY** out, const unsigned char **in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey"); return _d2i_PublicKey(type, out, in, inSz, 1); } #ifdef WOLF_PRIVATE_KEY_ID /* Create an EVP structure for use with crypto callbacks */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_id(int type, WOLFSSL_EVP_PKEY** out, void* heap, int devId) { WOLFSSL_EVP_PKEY* local; if (out != NULL && *out != NULL) { wolfSSL_EVP_PKEY_free(*out); *out = NULL; } local = wolfSSL_EVP_PKEY_new_ex(heap); if (local == NULL) { return NULL; } local->type = type; local->pkey_sz = 0; local->pkcs8HeaderSz = 0; switch (type) { #ifndef NO_RSA case EVP_PKEY_RSA: { RsaKey* key; local->ownRsa = 1; local->rsa = wolfSSL_RSA_new_ex(heap, devId); if (local->rsa == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } key = (RsaKey*)local->rsa->internal; #ifdef WOLF_CRYPTO_CB key->devId = devId; #endif (void)key; local->rsa->inSet = 1; break; } #endif /* !NO_RSA */ #ifdef HAVE_ECC case EVP_PKEY_EC: { ecc_key* key; local->ownEcc = 1; local->ecc = wolfSSL_EC_KEY_new_ex(heap, devId); if (local->ecc == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } key = (ecc_key*)local->ecc->internal; #ifdef WOLF_CRYPTO_CB key->devId = devId; #endif key->type = ECC_PRIVATEKEY; /* key is required to have a key size / curve set, although * actual one used is determined by devId callback function */ wc_ecc_set_curve(key, ECDHE_SIZE, ECC_CURVE_DEF); local->ecc->inSet = 1; break; } #endif /* HAVE_ECC */ default: WOLFSSL_MSG("Unsupported private key id type"); wolfSSL_EVP_PKEY_free(local); return NULL; } if (local != NULL && out != NULL) { *out = local; } return local; } #endif /* WOLF_PRIVATE_KEY_ID */ #ifndef NO_CERTS // NOLINT(readability-redundant-preprocessor) #ifndef NO_CHECK_PRIVATE_KEY /* Check private against public in certificate for match * * ssl WOLFSSL structure to check private key in * * Returns WOLFSSL_SUCCESS on good private key * WOLFSSL_FAILURE if mismatched. */ int wolfSSL_check_private_key(const WOLFSSL* ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return check_cert_key(ssl->buffers.certificate, ssl->buffers.key, ssl->heap, ssl->buffers.keyDevId, ssl->buffers.keyLabel, ssl->buffers.keyId); } #endif /* !NO_CHECK_PRIVATE_KEY */ #if defined(OPENSSL_ALL) int wolfSSL_ASN1_BIT_STRING_set_bit(WOLFSSL_ASN1_BIT_STRING* str, int pos, int val) { int bytes_cnt, bit; byte* temp; if (!str || (val != 0 && val != 1) || pos < 0) { return WOLFSSL_FAILURE; } bytes_cnt = pos/8; bit = 1<<(7-(pos%8)); if (bytes_cnt+1 > str->length) { if (!(temp = (byte*)XREALLOC(str->data, bytes_cnt+1, NULL, DYNAMIC_TYPE_OPENSSL))) { return WOLFSSL_FAILURE; } XMEMSET(temp+str->length, 0, bytes_cnt+1 - str->length); str->data = temp; str->length = bytes_cnt+1; } str->data[bytes_cnt] &= ~bit; str->data[bytes_cnt] |= val ? bit : 0; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_ALL */ #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) WOLFSSL_ASN1_BIT_STRING* wolfSSL_ASN1_BIT_STRING_new(void) { WOLFSSL_ASN1_BIT_STRING* str; str = (WOLFSSL_ASN1_BIT_STRING*)XMALLOC(sizeof(WOLFSSL_ASN1_BIT_STRING), NULL, DYNAMIC_TYPE_OPENSSL); if (str) { XMEMSET(str, 0, sizeof(WOLFSSL_ASN1_BIT_STRING)); } return str; } void wolfSSL_ASN1_BIT_STRING_free(WOLFSSL_ASN1_BIT_STRING* str) { if (str) { if (str->data) { XFREE(str->data, NULL, DYNAMIC_TYPE_OPENSSL); str->data = NULL; } XFREE(str, NULL, DYNAMIC_TYPE_OPENSSL); } } int wolfSSL_ASN1_BIT_STRING_get_bit(const WOLFSSL_ASN1_BIT_STRING* str, int i) { if (!str || !str->data || str->length <= (i/8) || i < 0) { return WOLFSSL_FAILURE; } return (str->data[i/8] & (1<<(7-(i%8)))) ? 1 : 0; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA int wolfSSL_use_PrivateKey(WOLFSSL* ssl, WOLFSSL_EVP_PKEY* pkey) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey"); if (ssl == NULL || pkey == NULL ) { return WOLFSSL_FAILURE; } return wolfSSL_use_PrivateKey_buffer(ssl, (unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, WOLFSSL_FILETYPE_ASN1); } int wolfSSL_use_PrivateKey_ASN1(int pri, WOLFSSL* ssl, const unsigned char* der, long derSz) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey_ASN1"); if (ssl == NULL || der == NULL ) { return WOLFSSL_FAILURE; } (void)pri; /* type of private key */ return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1); } /****************************************************************************** * wolfSSL_CTX_use_PrivateKey_ASN1 - loads a private key buffer into the SSL ctx * * RETURNS: * returns WOLFSSL_SUCCESS on success, otherwise returns WOLFSSL_FAILURE */ int wolfSSL_CTX_use_PrivateKey_ASN1(int pri, WOLFSSL_CTX* ctx, unsigned char* der, long derSz) { WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_ASN1"); if (ctx == NULL || der == NULL ) { return WOLFSSL_FAILURE; } (void)pri; /* type of private key */ return wolfSSL_CTX_use_PrivateKey_buffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1); } #ifndef NO_RSA int wolfSSL_use_RSAPrivateKey_ASN1(WOLFSSL* ssl, unsigned char* der, long derSz) { WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_ASN1"); if (ssl == NULL || der == NULL ) { return WOLFSSL_FAILURE; } return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1); } #endif int wolfSSL_use_certificate(WOLFSSL* ssl, WOLFSSL_X509* x509) { long idx; WOLFSSL_ENTER("wolfSSL_use_certificate"); if (x509 != NULL && ssl != NULL && x509->derCert != NULL) { if (ProcessBuffer(NULL, x509->derCert->buffer, x509->derCert->length, WOLFSSL_FILETYPE_ASN1, CERT_TYPE, ssl, &idx, 0, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } } (void)idx; return WOLFSSL_FAILURE; } #endif /* OPENSSL_EXTRA */ int wolfSSL_use_certificate_ASN1(WOLFSSL* ssl, const unsigned char* der, int derSz) { long idx; WOLFSSL_ENTER("wolfSSL_use_certificate_ASN1"); if (der != NULL && ssl != NULL) { if (ProcessBuffer(NULL, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE, ssl, &idx, 0, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } } (void)idx; return WOLFSSL_FAILURE; } #ifndef NO_FILESYSTEM WOLFSSL_ABI int wolfSSL_use_certificate_file(WOLFSSL* ssl, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_use_certificate_file"); if (ssl == NULL) { return BAD_FUNC_ARG; } if (ProcessFile(ssl->ctx, file, format, CERT_TYPE, ssl, 0, NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } WOLFSSL_ABI int wolfSSL_use_PrivateKey_file(WOLFSSL* ssl, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey_file"); if (ssl == NULL) { return BAD_FUNC_ARG; } if (ProcessFile(ssl->ctx, file, format, PRIVATEKEY_TYPE, ssl, 0, NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } WOLFSSL_ABI int wolfSSL_use_certificate_chain_file(WOLFSSL* ssl, const char* file) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_use_certificate_chain_file"); if (ssl == NULL) { return BAD_FUNC_ARG; } if (ProcessFile(ssl->ctx, file, WOLFSSL_FILETYPE_PEM, CERT_TYPE, ssl, 1, NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } int wolfSSL_use_certificate_chain_file_format(WOLFSSL* ssl, const char* file, int format) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_use_certificate_chain_file_format"); if (ssl == NULL) { return BAD_FUNC_ARG; } if (ProcessFile(ssl->ctx, file, format, CERT_TYPE, ssl, 1, NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #endif /* !NO_FILESYSTEM */ #ifdef HAVE_ECC /* Set Temp CTX EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */ int wolfSSL_CTX_SetTmpEC_DHE_Sz(WOLFSSL_CTX* ctx, word16 sz) { if (ctx == NULL) return BAD_FUNC_ARG; /* if 0 then get from loaded private key */ if (sz == 0) { /* applies only to ECDSA */ if (ctx->privateKeyType != ecc_dsa_sa_algo) return WOLFSSL_SUCCESS; if (ctx->privateKeySz == 0) { WOLFSSL_MSG("Must set private key/cert first"); return BAD_FUNC_ARG; } sz = (word16)ctx->privateKeySz; } /* check size */ if (sz < ECC_MINSIZE || sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ctx->eccTempKeySz = sz; return WOLFSSL_SUCCESS; } /* Set Temp SSL EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */ int wolfSSL_SetTmpEC_DHE_Sz(WOLFSSL* ssl, word16 sz) { if (ssl == NULL) return BAD_FUNC_ARG; /* check size */ if (sz < ECC_MINSIZE || sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ssl->eccTempKeySz = sz; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC */ #ifdef OPENSSL_EXTRA #ifndef NO_FILESYSTEM int wolfSSL_CTX_use_RSAPrivateKey_file(WOLFSSL_CTX* ctx,const char* file, int format) { WOLFSSL_ENTER("SSL_CTX_use_RSAPrivateKey_file"); return wolfSSL_CTX_use_PrivateKey_file(ctx, file, format); } int wolfSSL_use_RSAPrivateKey_file(WOLFSSL* ssl, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_file"); return wolfSSL_use_PrivateKey_file(ssl, file, format); } #endif /* NO_FILESYSTEM */ /* Copies the master secret over to out buffer. If outSz is 0 returns the size * of master secret. * * ses : a session from completed TLS/SSL handshake * out : buffer to hold copy of master secret * outSz : size of out buffer * returns : number of bytes copied into out buffer on success * less then or equal to 0 is considered a failure case */ int wolfSSL_SESSION_get_master_key(const WOLFSSL_SESSION* ses, unsigned char* out, int outSz) { int size; ses = ClientSessionToSession(ses); if (outSz == 0) { return SECRET_LEN; } if (ses == NULL || out == NULL || outSz < 0) { return 0; } if (outSz > SECRET_LEN) { size = SECRET_LEN; } else { size = outSz; } XMEMCPY(out, ses->masterSecret, size); return size; } int wolfSSL_SESSION_get_master_key_length(const WOLFSSL_SESSION* ses) { (void)ses; return SECRET_LEN; } #endif /* OPENSSL_EXTRA */ typedef struct { byte verifyPeer:1; byte verifyNone:1; byte failNoCert:1; byte failNoCertxPSK:1; byte verifyPostHandshake:1; } SetVerifyOptions; static SetVerifyOptions ModeToVerifyOptions(int mode) { SetVerifyOptions opts; XMEMSET(&opts, 0, sizeof(SetVerifyOptions)); if (mode != WOLFSSL_VERIFY_DEFAULT) { opts.verifyNone = (mode == WOLFSSL_VERIFY_NONE); if (!opts.verifyNone) { opts.verifyPeer = (mode & WOLFSSL_VERIFY_PEER) != 0; opts.failNoCertxPSK = (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) != 0; opts.failNoCert = (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT) != 0; #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) opts.verifyPostHandshake = (mode & WOLFSSL_VERIFY_POST_HANDSHAKE) != 0; #endif } } return opts; } WOLFSSL_ABI void wolfSSL_CTX_set_verify(WOLFSSL_CTX* ctx, int mode, VerifyCallback vc) { SetVerifyOptions opts; WOLFSSL_ENTER("wolfSSL_CTX_set_verify"); if (ctx == NULL) return; opts = ModeToVerifyOptions(mode); ctx->verifyNone = opts.verifyNone; ctx->verifyPeer = opts.verifyPeer; ctx->failNoCert = opts.failNoCert; ctx->failNoCertxPSK = opts.failNoCertxPSK; #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) ctx->verifyPostHandshake = opts.verifyPostHandshake; #endif ctx->verifyCallback = vc; } #ifdef OPENSSL_ALL void wolfSSL_CTX_set_cert_verify_callback(WOLFSSL_CTX* ctx, CertVerifyCallback cb, void* arg) { WOLFSSL_ENTER("SSL_CTX_set_cert_verify_callback"); if (ctx == NULL) return; ctx->verifyCertCb = cb; ctx->verifyCertCbArg = arg; } #endif void wolfSSL_set_verify(WOLFSSL* ssl, int mode, VerifyCallback vc) { SetVerifyOptions opts; WOLFSSL_ENTER("wolfSSL_set_verify"); if (ssl == NULL) return; opts = ModeToVerifyOptions(mode); ssl->options.verifyNone = opts.verifyNone; ssl->options.verifyPeer = opts.verifyPeer; ssl->options.failNoCert = opts.failNoCert; ssl->options.failNoCertxPSK = opts.failNoCertxPSK; #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) ssl->options.verifyPostHandshake = opts.verifyPostHandshake; #endif ssl->verifyCallback = vc; } void wolfSSL_set_verify_result(WOLFSSL *ssl, long v) { WOLFSSL_ENTER("wolfSSL_set_verify_result"); if (ssl == NULL) return; #ifdef OPENSSL_ALL ssl->verifyCallbackResult = v; #else (void)v; WOLFSSL_STUB("wolfSSL_set_verify_result"); #endif } #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) /* For TLS v1.3 send handshake messages after handshake completes. */ /* Returns 1=WOLFSSL_SUCCESS or 0=WOLFSSL_FAILURE */ int wolfSSL_verify_client_post_handshake(WOLFSSL* ssl) { int ret = wolfSSL_request_certificate(ssl); if (ret != WOLFSSL_SUCCESS) { if (!IsAtLeastTLSv1_3(ssl->version)) { /* specific error of wrong version expected */ WOLFSSL_ERROR(UNSUPPORTED_PROTO_VERSION); } else { WOLFSSL_ERROR(ret); /* log the error in the error queue */ } } return (ret == WOLFSSL_SUCCESS) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_CTX_set_post_handshake_auth(WOLFSSL_CTX* ctx, int val) { int ret = wolfSSL_CTX_allow_post_handshake_auth(ctx); if (ret == 0) { ctx->postHandshakeAuth = (val != 0); } return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_set_post_handshake_auth(WOLFSSL* ssl, int val) { int ret = wolfSSL_allow_post_handshake_auth(ssl); if (ret == 0) { ssl->options.postHandshakeAuth = (val != 0); } return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #endif /* OPENSSL_EXTRA && !NO_CERTS && WOLFSSL_TLS13 && WOLFSSL_POST_HANDSHAKE_AUTH */ /* store user ctx for verify callback */ void wolfSSL_SetCertCbCtx(WOLFSSL* ssl, void* ctx) { WOLFSSL_ENTER("wolfSSL_SetCertCbCtx"); if (ssl) ssl->verifyCbCtx = ctx; } /* store user ctx for verify callback */ void wolfSSL_CTX_SetCertCbCtx(WOLFSSL_CTX* ctx, void* userCtx) { WOLFSSL_ENTER("wolfSSL_CTX_SetCertCbCtx"); if (ctx) ctx->verifyCbCtx = userCtx; } /* store context CA Cache addition callback */ void wolfSSL_CTX_SetCACb(WOLFSSL_CTX* ctx, CallbackCACache cb) { if (ctx && ctx->cm) ctx->cm->caCacheCallback = cb; } #if defined(PERSIST_CERT_CACHE) #if !defined(NO_FILESYSTEM) /* Persist cert cache to file */ int wolfSSL_CTX_save_cert_cache(WOLFSSL_CTX* ctx, const char* fname) { WOLFSSL_ENTER("wolfSSL_CTX_save_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_SaveCertCache(ctx->cm, fname); } /* Persist cert cache from file */ int wolfSSL_CTX_restore_cert_cache(WOLFSSL_CTX* ctx, const char* fname) { WOLFSSL_ENTER("wolfSSL_CTX_restore_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_RestoreCertCache(ctx->cm, fname); } #endif /* NO_FILESYSTEM */ /* Persist cert cache to memory */ int wolfSSL_CTX_memsave_cert_cache(WOLFSSL_CTX* ctx, void* mem, int sz, int* used) { WOLFSSL_ENTER("wolfSSL_CTX_memsave_cert_cache"); if (ctx == NULL || mem == NULL || used == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemSaveCertCache(ctx->cm, mem, sz, used); } /* Restore cert cache from memory */ int wolfSSL_CTX_memrestore_cert_cache(WOLFSSL_CTX* ctx, const void* mem, int sz) { WOLFSSL_ENTER("wolfSSL_CTX_memrestore_cert_cache"); if (ctx == NULL || mem == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemRestoreCertCache(ctx->cm, mem, sz); } /* get how big the the cert cache save buffer needs to be */ int wolfSSL_CTX_get_cert_cache_memsize(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_cert_cache_memsize"); if (ctx == NULL) return BAD_FUNC_ARG; return CM_GetCertCacheMemSize(ctx->cm); } #endif /* PERSIST_CERT_CACHE */ #endif /* !NO_CERTS */ #ifndef NO_SESSION_CACHE WOLFSSL_ABI WOLFSSL_SESSION* wolfSSL_get_session(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_session"); if (ssl) { #ifdef NO_SESSION_CACHE_REF return ssl->session; #else if (ssl->options.side == WOLFSSL_CLIENT_END) { /* On the client side we want to return a persistant reference for * backwards compatibility. */ #ifndef NO_CLIENT_CACHE if (ssl->clientSession) return (WOLFSSL_SESSION*)ssl->clientSession; else { /* Try to add a ClientCache entry to associate with the current * session. Ignore any session cache options. */ int error; const byte* id = NULL; byte idSz = 0; id = ssl->session->sessionID; idSz = ssl->session->sessionIDSz; if (ssl->session->haveAltSessionID) { id = ssl->session->altSessionID; idSz = ID_LEN; } error = AddSessionToCache(ssl->ctx, ssl->session, id, idSz, NULL, ssl->session->side, #ifdef HAVE_SESSION_TICKET ssl->session->ticketLen > 0, #else 0, #endif &ssl->clientSession); if (error == 0) return (WOLFSSL_SESSION*)ssl->clientSession; } #endif } else return ssl->session; #endif } return NULL; } /* The get1 version requires caller to call SSL_SESSION_free */ WOLFSSL_SESSION* wolfSSL_get1_session(WOLFSSL* ssl) { WOLFSSL_SESSION* sess = NULL; WOLFSSL_ENTER("SSL_get1_session"); if (ssl != NULL) { sess = ssl->session; if (sess != NULL) { /* increase reference count if allocated session */ if (sess->type == WOLFSSL_SESSION_TYPE_HEAP) { if (wolfSSL_SESSION_up_ref(sess) != WOLFSSL_SUCCESS) sess = NULL; } } } return sess; } /* * Sets the session object to use when establishing a TLS/SSL session using * the ssl object. Therefore, this function must be called before * wolfSSL_connect. The session object to use can be obtained in a previous * TLS/SSL connection using wolfSSL_get_session. * * This function rejects the session if it has been expired when this function * is called. Note that this expiration check is wolfSSL specific and differs * from OpenSSL return code behavior. * * By default, wolfSSL_set_session returns WOLFSSL_SUCCESS on successfully * setting the session, WOLFSSL_FAILURE on failure due to the session cache * being disabled, or the session has expired. * * To match OpenSSL return code behavior when session is expired, define * OPENSSL_EXTRA and WOLFSSL_ERROR_CODE_OPENSSL. This behavior will return * WOLFSSL_SUCCESS even when the session is expired and rejected. */ WOLFSSL_ABI int wolfSSL_set_session(WOLFSSL* ssl, WOLFSSL_SESSION* session) { WOLFSSL_ENTER("SSL_set_session"); if (session) return wolfSSL_SetSession(ssl, session); return WOLFSSL_FAILURE; } #ifndef NO_CLIENT_CACHE /* Associate client session with serverID, find existing or store for saving if newSession flag on, don't reuse existing session WOLFSSL_SUCCESS on ok */ int wolfSSL_SetServerID(WOLFSSL* ssl, const byte* id, int len, int newSession) { WOLFSSL_SESSION* session = NULL; WOLFSSL_ENTER("wolfSSL_SetServerID"); if (ssl == NULL || id == NULL || len <= 0) return BAD_FUNC_ARG; if (newSession == 0) { session = wolfSSL_GetSessionClient(ssl, id, len); if (session) { if (wolfSSL_SetSession(ssl, session) != WOLFSSL_SUCCESS) { #ifdef HAVE_EXT_CACHE wolfSSL_FreeSession(ssl->ctx, session); #endif WOLFSSL_MSG("wolfSSL_SetSession failed"); session = NULL; } } } if (session == NULL) { WOLFSSL_MSG("Valid ServerID not cached already"); ssl->session->idLen = (word16)min(SERVER_ID_LEN, (word32)len); XMEMCPY(ssl->session->serverID, id, ssl->session->idLen); } #ifdef HAVE_EXT_CACHE else { wolfSSL_FreeSession(ssl->ctx, session); } #endif return WOLFSSL_SUCCESS; } #endif /* !NO_CLIENT_CACHE */ #if defined(PERSIST_SESSION_CACHE) /* for persistence, if changes to layout need to increment and modify save_session_cache() and restore_session_cache and memory versions too */ #define WOLFSSL_CACHE_VERSION 2 /* Session Cache Header information */ typedef struct { int version; /* cache layout version id */ int rows; /* session rows */ int columns; /* session columns */ int sessionSz; /* sizeof WOLFSSL_SESSION */ } cache_header_t; /* current persistence layout is: 1) cache_header_t 2) SessionCache 3) ClientCache update WOLFSSL_CACHE_VERSION if change layout for the following PERSISTENT_SESSION_CACHE functions */ /* get how big the the session cache save buffer needs to be */ int wolfSSL_get_session_cache_memsize(void) { int sz = (int)(sizeof(SessionCache) + sizeof(cache_header_t)); #ifndef NO_CLIENT_CACHE sz += (int)(sizeof(ClientCache)); #endif return sz; } /* Persist session cache to memory */ int wolfSSL_memsave_session_cache(void* mem, int sz) { int i; cache_header_t cache_header; SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header)); WOLFSSL_ENTER("wolfSSL_memsave_session_cache"); if (sz < wolfSSL_get_session_cache_memsize()) { WOLFSSL_MSG("Memory buffer too small"); return BUFFER_E; } cache_header.version = WOLFSSL_CACHE_VERSION; cache_header.rows = SESSION_ROWS; cache_header.columns = SESSIONS_PER_ROW; cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION); XMEMCPY(mem, &cache_header, sizeof(cache_header)); #ifndef ENABLE_SESSION_CACHE_ROW_LOCK if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); return BAD_MUTEX_E; } #endif for (i = 0; i < cache_header.rows; ++i) { #ifdef ENABLE_SESSION_CACHE_ROW_LOCK if (SESSION_ROW_LOCK(&SessionCache[i]) != 0) { WOLFSSL_MSG("Session row cache mutex lock failed"); return BAD_MUTEX_E; } #endif XMEMCPY(row++, &SessionCache[i], SIZEOF_SESSION_ROW); #ifdef ENABLE_SESSION_CACHE_ROW_LOCK SESSION_ROW_UNLOCK(&SessionCache[i]); #endif } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK wc_UnLockMutex(&session_mutex); #endif #ifndef NO_CLIENT_CACHE if (wc_LockMutex(&clisession_mutex) != 0) { WOLFSSL_MSG("Client cache mutex lock failed"); return BAD_MUTEX_E; } XMEMCPY(row, ClientCache, sizeof(ClientCache)); wc_UnLockMutex(&clisession_mutex); #endif WOLFSSL_LEAVE("wolfSSL_memsave_session_cache", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } /* Restore the persistent session cache from memory */ int wolfSSL_memrestore_session_cache(const void* mem, int sz) { int i; cache_header_t cache_header; SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header)); WOLFSSL_ENTER("wolfSSL_memrestore_session_cache"); if (sz < wolfSSL_get_session_cache_memsize()) { WOLFSSL_MSG("Memory buffer too small"); return BUFFER_E; } XMEMCPY(&cache_header, mem, sizeof(cache_header)); if (cache_header.version != WOLFSSL_CACHE_VERSION || cache_header.rows != SESSION_ROWS || cache_header.columns != SESSIONS_PER_ROW || cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) { WOLFSSL_MSG("Session cache header match failed"); return CACHE_MATCH_ERROR; } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); return BAD_MUTEX_E; } #endif for (i = 0; i < cache_header.rows; ++i) { #ifdef ENABLE_SESSION_CACHE_ROW_LOCK if (SESSION_ROW_LOCK(&SessionCache[i]) != 0) { WOLFSSL_MSG("Session row cache mutex lock failed"); return BAD_MUTEX_E; } #endif XMEMCPY(&SessionCache[i], row++, SIZEOF_SESSION_ROW); #ifdef ENABLE_SESSION_CACHE_ROW_LOCK SESSION_ROW_UNLOCK(&SessionCache[i]); #endif } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK wc_UnLockMutex(&session_mutex); #endif #ifndef NO_CLIENT_CACHE if (wc_LockMutex(&clisession_mutex) != 0) { WOLFSSL_MSG("Client cache mutex lock failed"); return BAD_MUTEX_E; } XMEMCPY(ClientCache, row, sizeof(ClientCache)); wc_UnLockMutex(&clisession_mutex); #endif WOLFSSL_LEAVE("wolfSSL_memrestore_session_cache", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } #if !defined(NO_FILESYSTEM) /* Persist session cache to file */ /* doesn't use memsave because of additional memory use */ int wolfSSL_save_session_cache(const char *fname) { XFILE file; int ret; int rc = WOLFSSL_SUCCESS; int i; cache_header_t cache_header; WOLFSSL_ENTER("wolfSSL_save_session_cache"); file = XFOPEN(fname, "w+b"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open session cache save file"); return WOLFSSL_BAD_FILE; } cache_header.version = WOLFSSL_CACHE_VERSION; cache_header.rows = SESSION_ROWS; cache_header.columns = SESSIONS_PER_ROW; cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION); /* cache header */ ret = (int)XFWRITE(&cache_header, sizeof cache_header, 1, file); if (ret != 1) { WOLFSSL_MSG("Session cache header file write failed"); XFCLOSE(file); return FWRITE_ERROR; } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } #endif /* session cache */ for (i = 0; i < cache_header.rows; ++i) { #ifdef ENABLE_SESSION_CACHE_ROW_LOCK if (SESSION_ROW_LOCK(&SessionCache[i]) != 0) { WOLFSSL_MSG("Session row cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } #endif ret = (int)XFWRITE(&SessionCache[i], SIZEOF_SESSION_ROW, 1, file); #ifdef ENABLE_SESSION_CACHE_ROW_LOCK SESSION_ROW_UNLOCK(&SessionCache[i]); #endif if (ret != 1) { WOLFSSL_MSG("Session cache member file write failed"); rc = FWRITE_ERROR; break; } } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK wc_UnLockMutex(&session_mutex); #endif #ifndef NO_CLIENT_CACHE /* client cache */ if (wc_LockMutex(&clisession_mutex) != 0) { WOLFSSL_MSG("Client cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } ret = (int)XFWRITE(ClientCache, sizeof(ClientCache), 1, file); if (ret != 1) { WOLFSSL_MSG("Client cache member file write failed"); rc = FWRITE_ERROR; } wc_UnLockMutex(&clisession_mutex); #endif /* !NO_CLIENT_CACHE */ XFCLOSE(file); WOLFSSL_LEAVE("wolfSSL_save_session_cache", rc); return rc; } /* Restore the persistent session cache from file */ /* doesn't use memstore because of additional memory use */ int wolfSSL_restore_session_cache(const char *fname) { XFILE file; int rc = WOLFSSL_SUCCESS; int ret; int i; cache_header_t cache_header; WOLFSSL_ENTER("wolfSSL_restore_session_cache"); file = XFOPEN(fname, "rb"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open session cache save file"); return WOLFSSL_BAD_FILE; } /* cache header */ ret = (int)XFREAD(&cache_header, sizeof(cache_header), 1, file); if (ret != 1) { WOLFSSL_MSG("Session cache header file read failed"); XFCLOSE(file); return FREAD_ERROR; } if (cache_header.version != WOLFSSL_CACHE_VERSION || cache_header.rows != SESSION_ROWS || cache_header.columns != SESSIONS_PER_ROW || cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) { WOLFSSL_MSG("Session cache header match failed"); XFCLOSE(file); return CACHE_MATCH_ERROR; } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } #endif /* session cache */ for (i = 0; i < cache_header.rows; ++i) { #ifdef ENABLE_SESSION_CACHE_ROW_LOCK if (SESSION_ROW_LOCK(&SessionCache[i]) != 0) { WOLFSSL_MSG("Session row cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } #endif ret = (int)XFREAD(&SessionCache[i], SIZEOF_SESSION_ROW, 1, file); #ifdef ENABLE_SESSION_CACHE_ROW_LOCK SESSION_ROW_UNLOCK(&SessionCache[i]); #endif if (ret != 1) { WOLFSSL_MSG("Session cache member file read failed"); XMEMSET(SessionCache, 0, sizeof SessionCache); rc = FREAD_ERROR; break; } } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK wc_UnLockMutex(&session_mutex); #endif #ifndef NO_CLIENT_CACHE /* client cache */ if (wc_LockMutex(&clisession_mutex) != 0) { WOLFSSL_MSG("Client cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } ret = (int)XFREAD(ClientCache, sizeof(ClientCache), 1, file); if (ret != 1) { WOLFSSL_MSG("Client cache member file read failed"); XMEMSET(ClientCache, 0, sizeof ClientCache); rc = FREAD_ERROR; } wc_UnLockMutex(&clisession_mutex); #endif /* !NO_CLIENT_CACHE */ XFCLOSE(file); WOLFSSL_LEAVE("wolfSSL_restore_session_cache", rc); return rc; } #endif /* !NO_FILESYSTEM */ #endif /* PERSIST_SESSION_CACHE */ #endif /* NO_SESSION_CACHE */ void wolfSSL_load_error_strings(void) { /* compatibility only */ } int wolfSSL_library_init(void) { WOLFSSL_ENTER("SSL_library_init"); if (wolfSSL_Init() == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; else return WOLFSSL_FATAL_ERROR; } #ifdef HAVE_SECRET_CALLBACK int wolfSSL_set_session_secret_cb(WOLFSSL* ssl, SessionSecretCb cb, void* ctx) { WOLFSSL_ENTER("wolfSSL_set_session_secret_cb"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; ssl->sessionSecretCb = cb; ssl->sessionSecretCtx = ctx; if (cb != NULL) { /* If using a pre-set key, assume session resumption. */ ssl->session->sessionIDSz = 0; ssl->options.resuming = 1; } return WOLFSSL_SUCCESS; } #endif #ifndef NO_SESSION_CACHE /* on by default if built in but allow user to turn off */ WOLFSSL_ABI long wolfSSL_CTX_set_session_cache_mode(WOLFSSL_CTX* ctx, long mode) { WOLFSSL_ENTER("SSL_CTX_set_session_cache_mode"); if (ctx == NULL) return WOLFSSL_FAILURE; if (mode == WOLFSSL_SESS_CACHE_OFF) ctx->sessionCacheOff = 1; if ((mode & WOLFSSL_SESS_CACHE_NO_AUTO_CLEAR) != 0) ctx->sessionCacheFlushOff = 1; #ifdef HAVE_EXT_CACHE if ((mode & WOLFSSL_SESS_CACHE_NO_INTERNAL_STORE) != 0) ctx->internalCacheOff = 1; if ((mode & WOLFSSL_SESS_CACHE_NO_INTERNAL_LOOKUP) != 0) ctx->internalCacheLookupOff = 1; #endif return WOLFSSL_SUCCESS; } #endif /* NO_SESSION_CACHE */ #if !defined(NO_CERTS) #if defined(PERSIST_CERT_CACHE) #define WOLFSSL_CACHE_CERT_VERSION 1 typedef struct { int version; /* cache cert layout version id */ int rows; /* hash table rows, CA_TABLE_SIZE */ int columns[CA_TABLE_SIZE]; /* columns per row on list */ int signerSz; /* sizeof Signer object */ } CertCacheHeader; /* current cert persistence layout is: 1) CertCacheHeader 2) caTable update WOLFSSL_CERT_CACHE_VERSION if change layout for the following PERSIST_CERT_CACHE functions */ /* Return memory needed to persist this signer, have lock */ static WC_INLINE int GetSignerMemory(Signer* signer) { int sz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) + sizeof(signer->nameLen) + sizeof(signer->subjectNameHash); #if !defined(NO_SKID) sz += (int)sizeof(signer->subjectKeyIdHash); #endif /* add dynamic bytes needed */ sz += signer->pubKeySize; sz += signer->nameLen; return sz; } /* Return memory needed to persist this row, have lock */ static WC_INLINE int GetCertCacheRowMemory(Signer* row) { int sz = 0; while (row) { sz += GetSignerMemory(row); row = row->next; } return sz; } /* get the size of persist cert cache, have lock */ static WC_INLINE int GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm) { int sz; int i; sz = sizeof(CertCacheHeader); for (i = 0; i < CA_TABLE_SIZE; i++) sz += GetCertCacheRowMemory(cm->caTable[i]); return sz; } /* Store cert cache header columns with number of items per list, have lock */ static WC_INLINE void SetCertHeaderColumns(WOLFSSL_CERT_MANAGER* cm, int* columns) { int i; Signer* row; for (i = 0; i < CA_TABLE_SIZE; i++) { int count = 0; row = cm->caTable[i]; while (row) { ++count; row = row->next; } columns[i] = count; } } /* Restore whole cert row from memory, have lock, return bytes consumed, < 0 on error, have lock */ static WC_INLINE int RestoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current, int row, int listSz, const byte* end) { int idx = 0; if (listSz < 0) { WOLFSSL_MSG("Row header corrupted, negative value"); return PARSE_ERROR; } while (listSz) { Signer* signer; byte* publicKey; byte* start = current + idx; /* for end checks on this signer */ int minSz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) + sizeof(signer->nameLen) + sizeof(signer->subjectNameHash); #ifndef NO_SKID minSz += (int)sizeof(signer->subjectKeyIdHash); #endif if (start + minSz > end) { WOLFSSL_MSG("Would overread restore buffer"); return BUFFER_E; } signer = MakeSigner(cm->heap); if (signer == NULL) return MEMORY_E; /* pubKeySize */ XMEMCPY(&signer->pubKeySize, current + idx, sizeof(signer->pubKeySize)); idx += (int)sizeof(signer->pubKeySize); /* keyOID */ XMEMCPY(&signer->keyOID, current + idx, sizeof(signer->keyOID)); idx += (int)sizeof(signer->keyOID); /* publicKey */ if (start + minSz + signer->pubKeySize > end) { WOLFSSL_MSG("Would overread restore buffer"); FreeSigner(signer, cm->heap); return BUFFER_E; } publicKey = (byte*)XMALLOC(signer->pubKeySize, cm->heap, DYNAMIC_TYPE_KEY); if (publicKey == NULL) { FreeSigner(signer, cm->heap); return MEMORY_E; } XMEMCPY(publicKey, current + idx, signer->pubKeySize); signer->publicKey = publicKey; idx += signer->pubKeySize; /* nameLen */ XMEMCPY(&signer->nameLen, current + idx, sizeof(signer->nameLen)); idx += (int)sizeof(signer->nameLen); /* name */ if (start + minSz + signer->pubKeySize + signer->nameLen > end) { WOLFSSL_MSG("Would overread restore buffer"); FreeSigner(signer, cm->heap); return BUFFER_E; } signer->name = (char*)XMALLOC(signer->nameLen, cm->heap, DYNAMIC_TYPE_SUBJECT_CN); if (signer->name == NULL) { FreeSigner(signer, cm->heap); return MEMORY_E; } XMEMCPY(signer->name, current + idx, signer->nameLen); idx += signer->nameLen; /* subjectNameHash */ XMEMCPY(signer->subjectNameHash, current + idx, SIGNER_DIGEST_SIZE); idx += SIGNER_DIGEST_SIZE; #ifndef NO_SKID /* subjectKeyIdHash */ XMEMCPY(signer->subjectKeyIdHash, current + idx,SIGNER_DIGEST_SIZE); idx += SIGNER_DIGEST_SIZE; #endif signer->next = cm->caTable[row]; cm->caTable[row] = signer; --listSz; } return idx; } /* Store whole cert row into memory, have lock, return bytes added */ static WC_INLINE int StoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current, int row) { int added = 0; Signer* list = cm->caTable[row]; while (list) { XMEMCPY(current + added, &list->pubKeySize, sizeof(list->pubKeySize)); added += (int)sizeof(list->pubKeySize); XMEMCPY(current + added, &list->keyOID, sizeof(list->keyOID)); added += (int)sizeof(list->keyOID); XMEMCPY(current + added, list->publicKey, list->pubKeySize); added += list->pubKeySize; XMEMCPY(current + added, &list->nameLen, sizeof(list->nameLen)); added += (int)sizeof(list->nameLen); XMEMCPY(current + added, list->name, list->nameLen); added += list->nameLen; XMEMCPY(current + added, list->subjectNameHash, SIGNER_DIGEST_SIZE); added += SIGNER_DIGEST_SIZE; #ifndef NO_SKID XMEMCPY(current + added, list->subjectKeyIdHash,SIGNER_DIGEST_SIZE); added += SIGNER_DIGEST_SIZE; #endif list = list->next; } return added; } /* Persist cert cache to memory, have lock */ static WC_INLINE int DoMemSaveCertCache(WOLFSSL_CERT_MANAGER* cm, void* mem, int sz) { int realSz; int ret = WOLFSSL_SUCCESS; int i; WOLFSSL_ENTER("DoMemSaveCertCache"); realSz = GetCertCacheMemSize(cm); if (realSz > sz) { WOLFSSL_MSG("Mem output buffer too small"); ret = BUFFER_E; } else { byte* current; CertCacheHeader hdr; hdr.version = WOLFSSL_CACHE_CERT_VERSION; hdr.rows = CA_TABLE_SIZE; SetCertHeaderColumns(cm, hdr.columns); hdr.signerSz = (int)sizeof(Signer); XMEMCPY(mem, &hdr, sizeof(CertCacheHeader)); current = (byte*)mem + sizeof(CertCacheHeader); for (i = 0; i < CA_TABLE_SIZE; ++i) current += StoreCertRow(cm, current, i); } return ret; } #if !defined(NO_FILESYSTEM) /* Persist cert cache to file */ int CM_SaveCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname) { XFILE file; int rc = WOLFSSL_SUCCESS; int memSz; byte* mem; WOLFSSL_ENTER("CM_SaveCertCache"); file = XFOPEN(fname, "w+b"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open cert cache save file"); return WOLFSSL_BAD_FILE; } if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); XFCLOSE(file); return BAD_MUTEX_E; } memSz = GetCertCacheMemSize(cm); mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { WOLFSSL_MSG("Alloc for tmp buffer failed"); rc = MEMORY_E; } else { rc = DoMemSaveCertCache(cm, mem, memSz); if (rc == WOLFSSL_SUCCESS) { int ret = (int)XFWRITE(mem, memSz, 1, file); if (ret != 1) { WOLFSSL_MSG("Cert cache file write failed"); rc = FWRITE_ERROR; } } XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); } wc_UnLockMutex(&cm->caLock); XFCLOSE(file); return rc; } /* Restore cert cache from file */ int CM_RestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname) { XFILE file; int rc = WOLFSSL_SUCCESS; int ret; int memSz; byte* mem; WOLFSSL_ENTER("CM_RestoreCertCache"); file = XFOPEN(fname, "rb"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open cert cache save file"); return WOLFSSL_BAD_FILE; } if(XFSEEK(file, 0, XSEEK_END) != 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } memSz = (int)XFTELL(file); XREWIND(file); if (memSz > MAX_WOLFSSL_FILE_SIZE || memSz <= 0) { WOLFSSL_MSG("CM_RestoreCertCache file size error"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { WOLFSSL_MSG("Alloc for tmp buffer failed"); XFCLOSE(file); return MEMORY_E; } ret = (int)XFREAD(mem, memSz, 1, file); if (ret != 1) { WOLFSSL_MSG("Cert file read error"); rc = FREAD_ERROR; } else { rc = CM_MemRestoreCertCache(cm, mem, memSz); if (rc != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Mem restore cert cache failed"); } } XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); XFCLOSE(file); return rc; } #endif /* NO_FILESYSTEM */ /* Persist cert cache to memory */ int CM_MemSaveCertCache(WOLFSSL_CERT_MANAGER* cm, void* mem, int sz, int* used) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("CM_MemSaveCertCache"); if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); return BAD_MUTEX_E; } ret = DoMemSaveCertCache(cm, mem, sz); if (ret == WOLFSSL_SUCCESS) *used = GetCertCacheMemSize(cm); wc_UnLockMutex(&cm->caLock); return ret; } /* Restore cert cache from memory */ int CM_MemRestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const void* mem, int sz) { int ret = WOLFSSL_SUCCESS; int i; CertCacheHeader* hdr = (CertCacheHeader*)mem; byte* current = (byte*)mem + sizeof(CertCacheHeader); byte* end = (byte*)mem + sz; /* don't go over */ WOLFSSL_ENTER("CM_MemRestoreCertCache"); if (current > end) { WOLFSSL_MSG("Cert Cache Memory buffer too small"); return BUFFER_E; } if (hdr->version != WOLFSSL_CACHE_CERT_VERSION || hdr->rows != CA_TABLE_SIZE || hdr->signerSz != (int)sizeof(Signer)) { WOLFSSL_MSG("Cert Cache Memory header mismatch"); return CACHE_MATCH_ERROR; } if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); return BAD_MUTEX_E; } FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap); for (i = 0; i < CA_TABLE_SIZE; ++i) { int added = RestoreCertRow(cm, current, i, hdr->columns[i], end); if (added < 0) { WOLFSSL_MSG("RestoreCertRow error"); ret = added; break; } current += added; } wc_UnLockMutex(&cm->caLock); return ret; } /* get how big the the cert cache save buffer needs to be */ int CM_GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm) { int sz; WOLFSSL_ENTER("CM_GetCertCacheMemSize"); if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); return BAD_MUTEX_E; } sz = GetCertCacheMemSize(cm); wc_UnLockMutex(&cm->caLock); return sz; } #endif /* PERSIST_CERT_CACHE */ #endif /* NO_CERTS */ #ifdef OPENSSL_EXTRA /* removes all cipher suites from the list that contain "toRemove" * returns the new list size on success */ static int wolfSSL_remove_ciphers(char* list, int sz, const char* toRemove) { int idx = 0; char* next = (char*)list; int totalSz = sz; if (list == NULL) { return 0; } do { char* current = next; char name[MAX_SUITE_NAME + 1]; word32 length; next = XSTRSTR(next, ":"); length = min(sizeof(name), !next ? (word32)XSTRLEN(current) /* last */ : (word32)(next - current)); XSTRNCPY(name, current, length); name[(length == sizeof(name)) ? length - 1 : length] = 0; if (XSTRSTR(name, toRemove)) { XMEMMOVE(list + idx, list + idx + length, totalSz - (idx + length)); totalSz -= length; list[totalSz] = '\0'; next = current; } else { idx += length; } } while (next++); /* ++ needed to skip ':' */ return totalSz; } /* * build enabled cipher list w/ TLS13 or w/o TLS13 suites * @param ctx a pointer to WOLFSSL_CTX structure * @param suites currently enabled suites * @param onlytlsv13suites flag whether correcting w/ TLS13 suites * or w/o TLS13 suties * @param list suites list that user wants to update * @return suites list on success, otherwise NULL */ static char* buildEnabledCipherList(WOLFSSL_CTX* ctx, Suites* suites, int tls13Only, const char* list) { word32 idx = 0; word32 listsz = 0; word32 len = 0; word32 ianasz = 0; const char* enabledcs = NULL; char* locallist = NULL; char* head = NULL; byte cipherSuite0; byte cipherSuite; /* sanity check */ if (ctx == NULL || suites == NULL || list == NULL) return NULL; if (!suites->setSuites) return NULL; listsz = (word32)XSTRLEN(list); /* calculate necessary buffer length */ for(idx = 0; idx < suites->suiteSz; idx++) { cipherSuite0 = suites->suites[idx]; cipherSuite = suites->suites[++idx]; if (tls13Only && cipherSuite0 == TLS13_BYTE) { enabledcs = GetCipherNameInternal(cipherSuite0, cipherSuite); } else if (!tls13Only && cipherSuite0 != TLS13_BYTE) { enabledcs = GetCipherNameInternal(cipherSuite0, cipherSuite); } else continue; if (XSTRCMP(enabledcs, "None") != 0) { len += (word32)XSTRLEN(enabledcs) + 2; } } len += listsz + 2; /* build string */ if (len > (listsz + 2)) { locallist = (char*)XMALLOC(len, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); /* sanity check */ if (!locallist) return NULL; XMEMSET(locallist, 0, len); head = locallist; if (!tls13Only) { /* always tls13 suites in the head position */ XSTRNCPY(locallist, list, len); locallist += listsz; *locallist++ = ':'; *locallist = 0; len -= listsz + 1; } for(idx = 0; idx < suites->suiteSz; idx++) { cipherSuite0 = suites->suites[idx]; cipherSuite = suites->suites[++idx]; if (tls13Only && cipherSuite0 == TLS13_BYTE) { enabledcs = GetCipherNameInternal(cipherSuite0, cipherSuite); } else if (!tls13Only && cipherSuite0 != TLS13_BYTE) { enabledcs = GetCipherNameInternal(cipherSuite0, cipherSuite); } else continue; ianasz = (int)XSTRLEN(enabledcs); if (ianasz + 1 < len) { XSTRNCPY(locallist, enabledcs, len); locallist += ianasz; *locallist++ = ':'; *locallist = 0; len -= ianasz + 1; } else{ XFREE(locallist, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } } if (tls13Only) { XSTRNCPY(locallist, list, len); locallist += listsz; *locallist = 0; } return head; } else return NULL; } /* * check if the list has TLS13 and pre-TLS13 suites * @param list cipher suite list that user want to set * @return mixed: 0, only pre-TLS13: 1, only TLS13: 2 */ static int CheckcipherList(const char* list) { int ret; int findTLSv13Suites = 0; int findbeforeSuites = 0; byte cipherSuite0; byte cipherSuite1; int flags; char* next = (char*)list; do { char* current = next; char name[MAX_SUITE_NAME + 1]; word32 length = MAX_SUITE_NAME; word32 current_length; next = XSTRSTR(next, ":"); current_length = (!next) ? (word32)XSTRLEN(current) : (word32)(next - current); if (current_length < length) { length = current_length; } XMEMCPY(name, current, length); name[length] = 0; ret = wolfSSL_get_cipher_suite_from_name(name, &cipherSuite0, &cipherSuite1, &flags); if (ret == 0) { if (cipherSuite0 == TLS13_BYTE) { /* TLSv13 suite */ findTLSv13Suites = 1; break; } else { findbeforeSuites = 1; break; } } if (findTLSv13Suites == 1 && findbeforeSuites == 1) { /* list has mixed suites */ return 0; } } while (next++); /* ++ needed to skip ':' */ if (findTLSv13Suites == 0 && findbeforeSuites == 1) { return 1;/* only before TLSv13 suites */ } else if (findTLSv13Suites == 1 && findbeforeSuites == 0) { return 2;/* only TLSv13 suties */ } else { return 0;/* handle as mixed */ } } /* parse some bulk lists like !eNULL / !aNULL * * returns WOLFSSL_SUCCESS on success and sets the cipher suite list */ static int wolfSSL_parse_cipher_list(WOLFSSL_CTX* ctx, Suites* suites, const char* list) { int ret = 0; const int suiteSz = GetCipherNamesSize(); char* next = (char*)list; const CipherSuiteInfo* names = GetCipherNames(); char* localList = NULL; int sz = 0; int listattribute = 0; char* buildcipherList = NULL; int tls13Only = 0; if (suites == NULL || list == NULL) { WOLFSSL_MSG("NULL argument"); return WOLFSSL_FAILURE; } /* does list contain eNULL or aNULL? */ if (XSTRSTR(list, "aNULL") || XSTRSTR(list, "eNULL")) { do { char* current = next; char name[MAX_SUITE_NAME + 1]; int i; word32 length = MAX_SUITE_NAME; word32 current_length; next = XSTRSTR(next, ":"); current_length = (!next) ? (word32)XSTRLEN(current) : (word32)(next - current); if (current_length < length) { length = current_length; } XMEMCPY(name, current, length); name[length] = 0; /* check for "not" case */ if (name[0] == '!' && suiteSz > 0) { /* populate list with all suites if not already created */ if (localList == NULL) { for (i = 0; i < suiteSz; i++) { sz += (int)XSTRLEN(names[i].name) + 2; } localList = (char*)XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); if (localList == NULL) { return WOLFSSL_FAILURE; } wolfSSL_get_ciphers(localList, sz); sz = (int)XSTRLEN(localList); } if (XSTRSTR(name, "eNULL")) { wolfSSL_remove_ciphers(localList, sz, "-NULL"); } } } while (next++); /* ++ needed to skip ':' */ ret = SetCipherList(ctx, suites, localList); XFREE(localList, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); return (ret)? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } else { listattribute = CheckcipherList(list); if (listattribute == 0) { /* list has mixed(pre-TLSv13 and TLSv13) suites * update cipher suites the same as before */ return (SetCipherList(ctx, suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } else if (listattribute == 1) { /* list has only pre-TLSv13 suites. * Only update before TLSv13 suites. */ tls13Only = 1; } else if (listattribute == 2) { /* list has only TLSv13 suites. Only update TLv13 suites * simulate set_ciphersuites() compatibility layer API */ tls13Only = 0; } buildcipherList = buildEnabledCipherList(ctx, ctx->suites, tls13Only, list); if (buildcipherList) { ret = SetCipherList(ctx, suites, buildcipherList); XFREE(buildcipherList, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); } else { ret = SetCipherList(ctx, suites, list); } return ret; } } #endif int wolfSSL_CTX_set_cipher_list(WOLFSSL_CTX* ctx, const char* list) { WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list"); if (ctx == NULL) return WOLFSSL_FAILURE; /* alloc/init on demand only */ if (ctx->suites == NULL) { ctx->suites = (Suites*)XMALLOC(sizeof(Suites), ctx->heap, DYNAMIC_TYPE_SUITES); if (ctx->suites == NULL) { WOLFSSL_MSG("Memory alloc for Suites failed"); return WOLFSSL_FAILURE; } XMEMSET(ctx->suites, 0, sizeof(Suites)); } #ifdef OPENSSL_EXTRA return wolfSSL_parse_cipher_list(ctx, ctx->suites, list); #else return (SetCipherList(ctx, ctx->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; #endif } int wolfSSL_set_cipher_list(WOLFSSL* ssl, const char* list) { WOLFSSL_ENTER("wolfSSL_set_cipher_list"); #ifdef SINGLE_THREADED if (ssl->ctx->suites == ssl->suites) { ssl->suites = (Suites*)XMALLOC(sizeof(Suites), ssl->heap, DYNAMIC_TYPE_SUITES); if (ssl->suites == NULL) { WOLFSSL_MSG("Suites Memory error"); return MEMORY_E; } *ssl->suites = *ssl->ctx->suites; ssl->options.ownSuites = 1; } #endif #ifdef OPENSSL_EXTRA return wolfSSL_parse_cipher_list(ssl->ctx, ssl->suites, list); #else return (SetCipherList(ssl->ctx, ssl->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; #endif } #ifdef HAVE_KEYING_MATERIAL #define TLS_PRF_LABEL_CLIENT_FINISHED "client finished" #define TLS_PRF_LABEL_SERVER_FINISHED "server finished" #define TLS_PRF_LABEL_MASTER_SECRET "master secret" #define TLS_PRF_LABEL_EXT_MASTER_SECRET "extended master secret" #define TLS_PRF_LABEL_KEY_EXPANSION "key expansion" static const struct ForbiddenLabels { const char* label; size_t labelLen; } forbiddenLabels[] = { {TLS_PRF_LABEL_CLIENT_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_CLIENT_FINISHED)}, {TLS_PRF_LABEL_SERVER_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_SERVER_FINISHED)}, {TLS_PRF_LABEL_MASTER_SECRET, XSTR_SIZEOF(TLS_PRF_LABEL_MASTER_SECRET)}, {TLS_PRF_LABEL_EXT_MASTER_SECRET, XSTR_SIZEOF(TLS_PRF_LABEL_EXT_MASTER_SECRET)}, {TLS_PRF_LABEL_KEY_EXPANSION, XSTR_SIZEOF(TLS_PRF_LABEL_KEY_EXPANSION)}, {NULL, 0}, }; /** * Implement RFC 5705 * TLS 1.3 uses a different exporter definition (section 7.5 of RFC 8446) * @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error */ int wolfSSL_export_keying_material(WOLFSSL *ssl, unsigned char *out, size_t outLen, const char *label, size_t labelLen, const unsigned char *context, size_t contextLen, int use_context) { byte* seed = NULL; word32 seedLen; const struct ForbiddenLabels* fl; WOLFSSL_ENTER("wolfSSL_export_keying_material"); if (ssl == NULL || out == NULL || label == NULL || (use_context && contextLen && context == NULL)) { WOLFSSL_MSG("Bad argument"); return WOLFSSL_FAILURE; } /* clientRandom + serverRandom * OR * clientRandom + serverRandom + ctx len encoding + ctx */ seedLen = !use_context ? (word32)SEED_LEN : (word32)SEED_LEN + 2 + (word32)contextLen; if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) { WOLFSSL_MSG("To export keying material wolfSSL needs to keep handshake " "data. Call wolfSSL_KeepArrays before attempting to " "export keyid material."); return WOLFSSL_FAILURE; } /* check forbidden labels */ for (fl = &forbiddenLabels[0]; fl->label != NULL; fl++) { if (labelLen >= fl->labelLen && XMEMCMP(label, fl->label, fl->labelLen) == 0) { WOLFSSL_MSG("Forbidden label"); return WOLFSSL_FAILURE; } } #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) { /* Path for TLS 1.3 */ if (!use_context) { contextLen = 0; context = (byte*)""; /* Give valid pointer for 0 length memcpy */ } if (Tls13_Exporter(ssl, out, (word32)outLen, label, labelLen, context, contextLen) != 0) { WOLFSSL_MSG("Tls13_Exporter error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* Path for <=TLS 1.2 */ seed = (byte*)XMALLOC(seedLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (seed == NULL) { WOLFSSL_MSG("malloc error"); return WOLFSSL_FAILURE; } XMEMCPY(seed, ssl->arrays->clientRandom, RAN_LEN); XMEMCPY(seed + RAN_LEN, ssl->arrays->serverRandom, RAN_LEN); if (use_context) { /* Encode len in big endian */ seed[SEED_LEN ] = (contextLen >> 8) & 0xFF; seed[SEED_LEN + 1] = (contextLen) & 0xFF; if (contextLen) { /* 0 length context is allowed */ XMEMCPY(seed + SEED_LEN + 2, context, contextLen); } } PRIVATE_KEY_UNLOCK(); if (wc_PRF_TLS(out, (word32)outLen, ssl->arrays->masterSecret, SECRET_LEN, (byte*)label, (word32)labelLen, seed, seedLen, IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm, ssl->heap, ssl->devId) != 0) { WOLFSSL_MSG("wc_PRF_TLS error"); PRIVATE_KEY_LOCK(); XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } PRIVATE_KEY_LOCK(); XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_SUCCESS; } #endif /* HAVE_KEYING_MATERIAL */ int wolfSSL_dtls_get_using_nonblock(WOLFSSL* ssl) { int useNb = 0; if (ssl == NULL) return WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_dtls_get_using_nonblock"); if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS useNb = ssl->options.dtlsUseNonblock; #endif } else { WOLFSSL_MSG("wolfSSL_dtls_get_using_nonblock() is " "DEPRECATED for non-DTLS use."); } return useNb; } #ifndef WOLFSSL_LEANPSK void wolfSSL_dtls_set_using_nonblock(WOLFSSL* ssl, int nonblock) { (void)nonblock; WOLFSSL_ENTER("wolfSSL_dtls_set_using_nonblock"); if (ssl == NULL) return; if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS ssl->options.dtlsUseNonblock = (nonblock != 0); #endif } else { WOLFSSL_MSG("wolfSSL_dtls_set_using_nonblock() is " "DEPRECATED for non-DTLS use."); } } #ifdef WOLFSSL_DTLS int wolfSSL_dtls_get_current_timeout(WOLFSSL* ssl) { int timeout = 0; if (ssl) timeout = ssl->dtls_timeout; WOLFSSL_LEAVE("wolfSSL_dtls_get_current_timeout()", timeout); return timeout; } #ifdef WOLFSSL_DTLS13 /* * This API returns 1 when the user should set a short timeout for receiving * data. It is recommended that it is at most 1/4 the value returned by * wolfSSL_dtls_get_current_timeout(). */ int wolfSSL_dtls13_use_quick_timeout(WOLFSSL* ssl) { return ssl->dtls13FastTimeout; } /* * When this is set, a DTLS 1.3 connection will send acks immediately when a * disruption is detected to shortcut timeouts. This results in potentially * more traffic but may make the handshake quicker. */ void wolfSSL_dtls13_set_send_more_acks(WOLFSSL* ssl, int value) { if (ssl != NULL) ssl->options.dtls13SendMoreAcks = !!value; } #endif /* WOLFSSL_DTLS13 */ int wolfSSL_DTLSv1_get_timeout(WOLFSSL* ssl, WOLFSSL_TIMEVAL* timeleft) { if (ssl && timeleft) { XMEMSET(timeleft, 0, sizeof(WOLFSSL_TIMEVAL)); timeleft->tv_sec = ssl->dtls_timeout; } return 0; } #ifndef NO_WOLFSSL_STUB int wolfSSL_DTLSv1_handle_timeout(WOLFSSL* ssl) { WOLFSSL_STUB("SSL_DTLSv1_handle_timeout"); (void)ssl; return 0; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_DTLSv1_set_initial_timeout_duration(WOLFSSL* ssl, word32 duration_ms) { WOLFSSL_STUB("SSL_DTLSv1_set_initial_timeout_duration"); (void)ssl; (void)duration_ms; } #endif /* user may need to alter init dtls recv timeout, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_set_timeout_init(WOLFSSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout > ssl->dtls_timeout_max) { WOLFSSL_MSG("Can't set dtls timeout init greater than dtls timeout max"); return BAD_FUNC_ARG; } ssl->dtls_timeout_init = timeout; ssl->dtls_timeout = timeout; return WOLFSSL_SUCCESS; } /* user may need to alter max dtls recv timeout, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_set_timeout_max(WOLFSSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout < ssl->dtls_timeout_init) { WOLFSSL_MSG("Can't set dtls timeout max less than dtls timeout init"); return BAD_FUNC_ARG; } ssl->dtls_timeout_max = timeout; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_got_timeout(WOLFSSL* ssl) { int result = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_dtls_got_timeout()"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) { result = Dtls13RtxTimeout(ssl); if (result < 0) { if (result == WANT_WRITE) ssl->dtls13SendingAckOrRtx = 1; ssl->error = result; WOLFSSL_ERROR(result); return WOLFSSL_FATAL_ERROR; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS13 */ if ((IsSCR(ssl) || !ssl->options.handShakeDone)) { if (DtlsMsgPoolTimeout(ssl) < 0){ ssl->error = SOCKET_ERROR_E; WOLFSSL_ERROR(ssl->error); result = WOLFSSL_FATAL_ERROR; } else if ((result = DtlsMsgPoolSend(ssl, 0)) < 0) { ssl->error = result; WOLFSSL_ERROR(result); result = WOLFSSL_FATAL_ERROR; } else { /* Reset return value to success */ result = WOLFSSL_SUCCESS; } } WOLFSSL_LEAVE("wolfSSL_dtls_got_timeout()", result); return result; } /* retransmit all the saves messages, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_retransmit(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_dtls_retransmit()"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; if (!ssl->options.handShakeDone) { int result = DtlsMsgPoolSend(ssl, 0); if (result < 0) { ssl->error = result; WOLFSSL_ERROR(result); return WOLFSSL_FATAL_ERROR; } } return 0; } #endif /* DTLS */ #endif /* LEANPSK */ #if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER) /* Not an SSL function, return 0 for success, error code otherwise */ /* Prereq: ssl's RNG needs to be initialized. */ int wolfSSL_DTLS_SetCookieSecret(WOLFSSL* ssl, const byte* secret, word32 secretSz) { int ret = 0; WOLFSSL_ENTER("wolfSSL_DTLS_SetCookieSecret"); if (ssl == NULL) { WOLFSSL_MSG("need a SSL object"); return BAD_FUNC_ARG; } if (secret != NULL && secretSz == 0) { WOLFSSL_MSG("can't have a new secret without a size"); return BAD_FUNC_ARG; } /* If secretSz is 0, use the default size. */ if (secretSz == 0) secretSz = COOKIE_SECRET_SZ; if (secretSz != ssl->buffers.dtlsCookieSecret.length) { byte* newSecret; if (ssl->buffers.dtlsCookieSecret.buffer != NULL) { ForceZero(ssl->buffers.dtlsCookieSecret.buffer, ssl->buffers.dtlsCookieSecret.length); XFREE(ssl->buffers.dtlsCookieSecret.buffer, ssl->heap, DYNAMIC_TYPE_NONE); } newSecret = (byte*)XMALLOC(secretSz, ssl->heap,DYNAMIC_TYPE_COOKIE_PWD); if (newSecret == NULL) { ssl->buffers.dtlsCookieSecret.buffer = NULL; ssl->buffers.dtlsCookieSecret.length = 0; WOLFSSL_MSG("couldn't allocate new cookie secret"); return MEMORY_ERROR; } ssl->buffers.dtlsCookieSecret.buffer = newSecret; ssl->buffers.dtlsCookieSecret.length = secretSz; #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("wolfSSL_DTLS_SetCookieSecret secret", ssl->buffers.dtlsCookieSecret.buffer, ssl->buffers.dtlsCookieSecret.length); #endif } /* If the supplied secret is NULL, randomly generate a new secret. */ if (secret == NULL) { ret = wc_RNG_GenerateBlock(ssl->rng, ssl->buffers.dtlsCookieSecret.buffer, secretSz); } else XMEMCPY(ssl->buffers.dtlsCookieSecret.buffer, secret, secretSz); WOLFSSL_LEAVE("wolfSSL_DTLS_SetCookieSecret", 0); return ret; } #endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */ /* EITHER SIDE METHODS */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE) WOLFSSL_METHOD* wolfSSLv23_method(void) { return wolfSSLv23_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv23_method_ex(void* heap) { WOLFSSL_METHOD* m = NULL; WOLFSSL_ENTER("SSLv23_method"); #if !defined(NO_WOLFSSL_CLIENT) m = wolfSSLv23_client_method_ex(heap); #elif !defined(NO_WOLFSSL_SERVER) m = wolfSSLv23_server_method_ex(heap); #else (void)heap; #endif if (m != NULL) { m->side = WOLFSSL_NEITHER_END; } return m; } #ifdef WOLFSSL_ALLOW_SSLV3 WOLFSSL_METHOD* wolfSSLv3_method(void) { return wolfSSLv3_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv3_method_ex(void* heap) { WOLFSSL_METHOD* m = NULL; WOLFSSL_ENTER("SSLv3_method"); #if !defined(NO_WOLFSSL_CLIENT) m = wolfSSLv3_client_method_ex(heap); #elif !defined(NO_WOLFSSL_SERVER) m = wolfSSLv3_server_method_ex(heap); #endif if (m != NULL) { m->side = WOLFSSL_NEITHER_END; } return m; } #endif #endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */ /* client only parts */ #ifndef NO_WOLFSSL_CLIENT #ifdef OPENSSL_EXTRA WOLFSSL_METHOD* wolfSSLv2_client_method(void) { WOLFSSL_STUB("wolfSSLv2_client_method"); return NULL; } #endif #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_client_method(void) { return wolfSSLv3_client_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv3_client_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("SSLv3_client_method_ex"); if (method) InitSSL_Method(method, MakeSSLv3()); return method; } #endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */ WOLFSSL_METHOD* wolfSSLv23_client_method(void) { return wolfSSLv23_client_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv23_client_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("SSLv23_client_method_ex"); if (method) { #if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || defined(WOLFSSL_SHA512) #if defined(WOLFSSL_TLS13) InitSSL_Method(method, MakeTLSv1_3()); #elif !defined(WOLFSSL_NO_TLS12) InitSSL_Method(method, MakeTLSv1_2()); #elif !defined(NO_OLD_TLS) InitSSL_Method(method, MakeTLSv1_1()); #endif #else #ifndef NO_OLD_TLS InitSSL_Method(method, MakeTLSv1_1()); #endif #endif #if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13) method->downgrade = 1; #endif } return method; } /* please see note at top of README if you get an error from connect */ WOLFSSL_ABI int wolfSSL_connect(WOLFSSL* ssl) { #if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13)) int neededState; byte advanceState; #endif int ret = 0; (void)ret; WOLFSSL_ENTER("SSL_connect()"); #ifdef HAVE_ERRNO_H errno = 0; #endif if (ssl == NULL) return BAD_FUNC_ARG; #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE) if (ssl->options.side == WOLFSSL_NEITHER_END) { ssl->error = InitSSL_Side(ssl, WOLFSSL_CLIENT_END); if (ssl->error != WOLFSSL_SUCCESS) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->error = 0; /* expected to be zero here */ } #ifdef OPENSSL_EXTRA if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_ST_CONNECT, WOLFSSL_SUCCESS); ssl->cbmode = SSL_CB_WRITE; } #endif #endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */ #if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13) return wolfSSL_connect_TLSv13(ssl); #else #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif #ifdef WOLFSSL_WOLFSENTRY_HOOKS if (ssl->ConnectFilter) { wolfSSL_netfilter_decision_t res; if ((ssl->ConnectFilter(ssl, ssl->ConnectFilter_arg, &res) == WOLFSSL_SUCCESS) && (res == WOLFSSL_NETFILTER_REJECT)) { ssl->error = SOCKET_FILTERED_E; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_WOLFSENTRY_HOOKS */ if (ssl->options.side != WOLFSSL_CLIENT_END) { ssl->error = SIDE_ERROR; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; } #endif /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ advanceState = ssl->fragOffset == 0 && (ssl->options.connectState == CONNECT_BEGIN || ssl->options.connectState == HELLO_AGAIN || (ssl->options.connectState >= FIRST_REPLY_DONE && ssl->options.connectState <= FIRST_REPLY_FOURTH)); ; #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) advanceState = advanceState && !ssl->dtls13SendingAckOrRtx; #endif /* WOLFSSL_DTLS13 */ if (ssl->buffers.outputBuffer.length > 0 #ifdef WOLFSSL_ASYNC_CRYPT /* do not send buffered or advance state if last error was an async pending operation */ && ssl->error != WC_PENDING_E #endif ) { ret = SendBuffered(ssl); if (ret == 0) { if (ssl->fragOffset == 0 && !ssl->options.buildingMsg) { if (advanceState) { ssl->options.connectState++; WOLFSSL_MSG("connect state: " "Advanced from last buffered fragment send"); } #ifdef WOLFSSL_ASYNC_IO /* Cleanup async */ FreeAsyncCtx(ssl, 0); #endif } else { WOLFSSL_MSG("connect state: " "Not advanced, more fragments to send"); } } else { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } ret = RetrySendAlert(ssl); if (ret != 0) { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } switch (ssl->options.connectState) { case CONNECT_BEGIN : /* always send client hello first */ if ( (ssl->error = SendClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.connectState = CLIENT_HELLO_SENT; WOLFSSL_MSG("connect state: CLIENT_HELLO_SENT"); FALL_THROUGH; case CLIENT_HELLO_SENT : neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; #ifdef WOLFSSL_DTLS /* In DTLS, when resuming, we can go straight to FINISHED, * or do a cookie exchange and then skip to FINISHED, assume * we need the cookie exchange first. */ if (IsDtlsNotSctpMode(ssl)) neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; #endif /* get response */ while (ssl->options.serverState < neededState) { #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) if (!ssl->options.resuming) { #ifdef WOLFSSL_DTLS if (IsDtlsNotSctpMode(ssl)) neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; else #endif neededState = SERVER_HELLODONE_COMPLETE; } #ifdef WOLFSSL_DTLS13 if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version) && ssl->dtls13Rtx.sendAcks == 1) { ssl->dtls13Rtx.sendAcks = 0; /* we aren't negotiated the version yet, so we aren't sure * the other end can speak v1.3. On the other side we have * received a unified records, assuming that the * ServerHello got lost, we will send an empty ACK. In case * the server is a DTLS with version less than 1.3, it * should just ignore the message */ if ((ssl->error = SendDtls13Ack(ssl)) < 0) { if (ssl->error == WANT_WRITE) ssl->dtls13SendingAckOrRtx = 1; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_DTLS13 */ } ssl->options.connectState = HELLO_AGAIN; WOLFSSL_MSG("connect state: HELLO_AGAIN"); FALL_THROUGH; case HELLO_AGAIN : if (ssl->options.certOnly) return WOLFSSL_SUCCESS; #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif #ifdef WOLFSSL_DTLS if (ssl->options.serverState == SERVER_HELLOVERIFYREQUEST_COMPLETE) { if (IsDtlsNotSctpMode(ssl)) { /* re-init hashes, exclude first hello and verify request */ if ((ssl->error = InitHandshakeHashes(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } if ( (ssl->error = SendClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } } #endif ssl->options.connectState = HELLO_AGAIN_REPLY; WOLFSSL_MSG("connect state: HELLO_AGAIN_REPLY"); FALL_THROUGH; case HELLO_AGAIN_REPLY : #ifdef WOLFSSL_DTLS if (IsDtlsNotSctpMode(ssl)) { neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; /* get response */ while (ssl->options.serverState < neededState) { if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ if (neededState == SERVER_FINISHED_COMPLETE) { if (!ssl->options.resuming) neededState = SERVER_HELLODONE_COMPLETE; } } } #endif ssl->options.connectState = FIRST_REPLY_DONE; WOLFSSL_MSG("connect state: FIRST_REPLY_DONE"); FALL_THROUGH; case FIRST_REPLY_DONE : #if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH) #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificate(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate"); } #endif ssl->options.connectState = FIRST_REPLY_FIRST; WOLFSSL_MSG("connect state: FIRST_REPLY_FIRST"); FALL_THROUGH; case FIRST_REPLY_FIRST : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if (!ssl->options.resuming) { if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: client key exchange"); } ssl->options.connectState = FIRST_REPLY_SECOND; WOLFSSL_MSG("connect state: FIRST_REPLY_SECOND"); FALL_THROUGH; #if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS) case FIRST_REPLY_SECOND : /* CLIENT: Fail-safe for Server Authentication. */ if (!ssl->options.peerAuthGood) { WOLFSSL_MSG("Server authentication did not happen"); ssl->error = NO_PEER_VERIFY; return WOLFSSL_FATAL_ERROR; } #if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH) if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificateVerify(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate verify"); } #endif /* !NO_CERTS && !WOLFSSL_NO_CLIENT_AUTH */ ssl->options.connectState = FIRST_REPLY_THIRD; WOLFSSL_MSG("connect state: FIRST_REPLY_THIRD"); FALL_THROUGH; case FIRST_REPLY_THIRD : if ( (ssl->error = SendChangeCipher(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: change cipher spec"); ssl->options.connectState = FIRST_REPLY_FOURTH; WOLFSSL_MSG("connect state: FIRST_REPLY_FOURTH"); FALL_THROUGH; case FIRST_REPLY_FOURTH : if ( (ssl->error = SendFinished(ssl)) != 0) { #ifdef WOLFSSL_CHECK_ALERT_ON_ERR ProcessReplyEx(ssl, 1); /* See if an alert was sent. */ #endif WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: finished"); ssl->options.connectState = FINISHED_DONE; WOLFSSL_MSG("connect state: FINISHED_DONE"); FALL_THROUGH; #ifdef WOLFSSL_DTLS13 case WAIT_FINISHED_ACK: ssl->options.connectState = FINISHED_DONE; FALL_THROUGH; #endif /* WOLFSSL_DTLS13 */ case FINISHED_DONE : /* get response */ while (ssl->options.serverState < SERVER_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.connectState = SECOND_REPLY_DONE; WOLFSSL_MSG("connect state: SECOND_REPLY_DONE"); FALL_THROUGH; case SECOND_REPLY_DONE: #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return WOLFSSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ if (!ssl->options.dtls) { if (!ssl->options.keepResources) { FreeHandshakeResources(ssl); } } #ifdef WOLFSSL_DTLS else { ssl->options.dtlsHsRetain = 1; } #endif /* WOLFSSL_DTLS */ #if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION) /* This may be necessary in async so that we don't try to * renegotiate again */ if (ssl->secure_renegotiation && ssl->secure_renegotiation->startScr) { ssl->secure_renegotiation->startScr = 0; } #endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */ #if defined(WOLFSSL_ASYNC_IO) && !defined(WOLFSSL_ASYNC_CRYPT) /* Free the remaining async context if not using it for crypto */ FreeAsyncCtx(ssl, 1); #endif ssl->error = 0; /* clear the error */ WOLFSSL_LEAVE("SSL_connect()", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; #endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS */ default: WOLFSSL_MSG("Unknown connect state ERROR"); return WOLFSSL_FATAL_ERROR; /* unknown connect state */ } #endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS || !WOLFSSL_TLS13 */ } #endif /* NO_WOLFSSL_CLIENT */ /* server only parts */ #ifndef NO_WOLFSSL_SERVER #ifdef OPENSSL_EXTRA WOLFSSL_METHOD* wolfSSLv2_server_method(void) { WOLFSSL_STUB("wolfSSLv2_server_method"); return 0; } #endif #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_server_method(void) { return wolfSSLv3_server_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv3_server_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("SSLv3_server_method_ex"); if (method) { InitSSL_Method(method, MakeSSLv3()); method->side = WOLFSSL_SERVER_END; } return method; } #endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */ WOLFSSL_METHOD* wolfSSLv23_server_method(void) { return wolfSSLv23_server_method_ex(NULL); } WOLFSSL_METHOD* wolfSSLv23_server_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); (void)heap; WOLFSSL_ENTER("SSLv23_server_method_ex"); if (method) { #if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || defined(WOLFSSL_SHA512) #ifdef WOLFSSL_TLS13 InitSSL_Method(method, MakeTLSv1_3()); #elif !defined(WOLFSSL_NO_TLS12) InitSSL_Method(method, MakeTLSv1_2()); #elif !defined(NO_OLD_TLS) InitSSL_Method(method, MakeTLSv1_1()); #endif #else #ifndef NO_OLD_TLS InitSSL_Method(method, MakeTLSv1_1()); #else #error Must have SHA256, SHA384 or SHA512 enabled for TLS 1.2 #endif #endif #if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13) method->downgrade = 1; #endif method->side = WOLFSSL_SERVER_END; } return method; } WOLFSSL_ABI int wolfSSL_accept(WOLFSSL* ssl) { #if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13)) word16 havePSK = 0; word16 haveAnon = 0; word16 haveMcast = 0; #endif int ret = 0; (void)ret; if (ssl == NULL) return WOLFSSL_FATAL_ERROR; #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE) if (ssl->options.side == WOLFSSL_NEITHER_END) { WOLFSSL_MSG("Setting WOLFSSL_SSL to be server side"); ssl->error = InitSSL_Side(ssl, WOLFSSL_SERVER_END); if (ssl->error != WOLFSSL_SUCCESS) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->error = 0; /* expected to be zero here */ } #endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */ #if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13) return wolfSSL_accept_TLSv13(ssl); #else #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_accept_TLSv13(ssl); #endif WOLFSSL_ENTER("SSL_accept()"); #ifdef WOLFSSL_WOLFSENTRY_HOOKS if (ssl->AcceptFilter) { wolfSSL_netfilter_decision_t res; if ((ssl->AcceptFilter(ssl, ssl->AcceptFilter_arg, &res) == WOLFSSL_SUCCESS) && (res == WOLFSSL_NETFILTER_REJECT)) { ssl->error = SOCKET_FILTERED_E; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_WOLFSENTRY_HOOKS */ #ifdef HAVE_ERRNO_H errno = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif (void)havePSK; #ifdef HAVE_ANON haveAnon = ssl->options.haveAnon; #endif (void)haveAnon; #ifdef WOLFSSL_MULTICAST haveMcast = ssl->options.haveMcast; #endif (void)haveMcast; if (ssl->options.side != WOLFSSL_SERVER_END) { ssl->error = SIDE_ERROR; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifndef NO_CERTS /* in case used set_accept_state after init */ if (!havePSK && !haveAnon && !haveMcast) { #ifdef OPENSSL_EXTRA if (ssl->ctx->certSetupCb != NULL) { WOLFSSL_MSG("CertSetupCb set. server cert and " "key not checked"); } else #endif { if (!ssl->buffers.certificate || !ssl->buffers.certificate->buffer) { WOLFSSL_MSG("accept error: server cert required"); ssl->error = NO_PRIVATE_KEY; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } if (!ssl->buffers.key || !ssl->buffers.key->buffer) { /* allow no private key if using existing key */ #ifdef WOLF_PRIVATE_KEY_ID if (ssl->devId != INVALID_DEVID #ifdef HAVE_PK_CALLBACKS || wolfSSL_CTX_IsPrivatePkSet(ssl->ctx) #endif ) { WOLFSSL_MSG("Allowing no server private key " "(external)"); } else #endif { WOLFSSL_MSG("accept error: server key required"); ssl->error = NO_PRIVATE_KEY; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } } } #endif #ifdef WOLFSSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; } #endif if (ssl->buffers.outputBuffer.length > 0 #ifdef WOLFSSL_ASYNC_CRYPT /* do not send buffered or advance state if last error was an async pending operation */ && ssl->error != WC_PENDING_E #endif ) { ret = SendBuffered(ssl); if (ret == 0) { /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ if (ssl->fragOffset == 0 && !ssl->options.buildingMsg) { if (ssl->options.acceptState == ACCEPT_FIRST_REPLY_DONE || ssl->options.acceptState == SERVER_HELLO_SENT || ssl->options.acceptState == CERT_SENT || ssl->options.acceptState == CERT_STATUS_SENT || ssl->options.acceptState == KEY_EXCHANGE_SENT || ssl->options.acceptState == CERT_REQ_SENT || ssl->options.acceptState == ACCEPT_SECOND_REPLY_DONE || ssl->options.acceptState == TICKET_SENT || ssl->options.acceptState == CHANGE_CIPHER_SENT) { ssl->options.acceptState++; WOLFSSL_MSG("accept state: " "Advanced from last buffered fragment send"); } #ifdef WOLFSSL_ASYNC_IO /* Cleanup async */ FreeAsyncCtx(ssl, 0); #endif } else { WOLFSSL_MSG("accept state: " "Not advanced, more fragments to send"); } } else { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } ret = RetrySendAlert(ssl); if (ret != 0) { ssl->error = ret; WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } switch (ssl->options.acceptState) { case ACCEPT_BEGIN : #ifdef HAVE_SECURE_RENEGOTIATION case ACCEPT_BEGIN_RENEG: #endif /* get response */ while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_TLS13 ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE; WOLFSSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE"); FALL_THROUGH; case ACCEPT_CLIENT_HELLO_DONE : if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif #ifdef WOLFSSL_DTLS if (ssl->chGoodCb != NULL && !IsSCR(ssl)) { int cbret = ssl->chGoodCb(ssl, ssl->chGoodCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("ClientHello Good Cb don't continue error"); return WOLFSSL_FATAL_ERROR; } } #endif ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE"); FALL_THROUGH; case ACCEPT_FIRST_REPLY_DONE : if ( (ssl->error = SendServerHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_SENT; WOLFSSL_MSG("accept state SERVER_HELLO_SENT"); FALL_THROUGH; case SERVER_HELLO_SENT : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif #ifndef NO_CERTS if (!ssl->options.resuming) if ( (ssl->error = SendCertificate(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_SENT; WOLFSSL_MSG("accept state CERT_SENT"); FALL_THROUGH; case CERT_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) if ( (ssl->error = SendCertificateStatus(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_STATUS_SENT; WOLFSSL_MSG("accept state CERT_STATUS_SENT"); FALL_THROUGH; case CERT_STATUS_SENT : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif if (!ssl->options.resuming) if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = KEY_EXCHANGE_SENT; WOLFSSL_MSG("accept state KEY_EXCHANGE_SENT"); FALL_THROUGH; case KEY_EXCHANGE_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) { if (ssl->options.verifyPeer) { if ( (ssl->error = SendCertificateRequest(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } else { /* SERVER: Peer auth good if not verifying client. */ ssl->options.peerAuthGood = 1; } } #endif ssl->options.acceptState = CERT_REQ_SENT; WOLFSSL_MSG("accept state CERT_REQ_SENT"); FALL_THROUGH; case CERT_REQ_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendServerHelloDone(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_DONE; WOLFSSL_MSG("accept state SERVER_HELLO_DONE"); FALL_THROUGH; case SERVER_HELLO_DONE : if (!ssl->options.resuming) { while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE"); FALL_THROUGH; case ACCEPT_SECOND_REPLY_DONE : #ifndef NO_CERTS /* SERVER: When not resuming and verifying peer but no certificate * received and not failing when not received then peer auth good. */ if (!ssl->options.resuming && ssl->options.verifyPeer && !ssl->options.havePeerCert && !ssl->options.failNoCert) { ssl->options.peerAuthGood = 1; } #endif /* !NO_CERTS */ #ifdef WOLFSSL_NO_CLIENT_AUTH if (!ssl->options.resuming) { ssl->options.peerAuthGood = 1; } #endif #ifdef HAVE_SESSION_TICKET if (ssl->options.createTicket && !ssl->options.noTicketTls12) { if ( (ssl->error = SendTicket(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* HAVE_SESSION_TICKET */ ssl->options.acceptState = TICKET_SENT; WOLFSSL_MSG("accept state TICKET_SENT"); FALL_THROUGH; case TICKET_SENT: /* SERVER: Fail-safe for CLient Authentication. */ if (!ssl->options.peerAuthGood) { WOLFSSL_MSG("Client authentication did not happen"); return WOLFSSL_FATAL_ERROR; } if ( (ssl->error = SendChangeCipher(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = CHANGE_CIPHER_SENT; WOLFSSL_MSG("accept state CHANGE_CIPHER_SENT"); FALL_THROUGH; case CHANGE_CIPHER_SENT : if ( (ssl->error = SendFinished(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_FINISHED_DONE; WOLFSSL_MSG("accept state ACCEPT_FINISHED_DONE"); FALL_THROUGH; case ACCEPT_FINISHED_DONE : if (ssl->options.resuming) while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE"); FALL_THROUGH; case ACCEPT_THIRD_REPLY_DONE : #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return WOLFSSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ if (!ssl->options.dtls) { if (!ssl->options.keepResources) { FreeHandshakeResources(ssl); } } #ifdef WOLFSSL_DTLS else { ssl->options.dtlsHsRetain = 1; } #endif /* WOLFSSL_DTLS */ #if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION) /* This may be necessary in async so that we don't try to * renegotiate again */ if (ssl->secure_renegotiation && ssl->secure_renegotiation->startScr) { ssl->secure_renegotiation->startScr = 0; } #endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */ #if defined(WOLFSSL_ASYNC_IO) && !defined(WOLFSSL_ASYNC_CRYPT) /* Free the remaining async context if not using it for crypto */ FreeAsyncCtx(ssl, 1); #endif #if defined(WOLFSSL_SESSION_EXPORT) && defined(WOLFSSL_DTLS) if (ssl->dtls_export) { if ((ssl->error = wolfSSL_send_session(ssl)) != 0) { WOLFSSL_MSG("Export DTLS session error"); WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif ssl->error = 0; /* clear the error */ WOLFSSL_LEAVE("SSL_accept()", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; default : WOLFSSL_MSG("Unknown accept state ERROR"); return WOLFSSL_FATAL_ERROR; } #endif /* !WOLFSSL_NO_TLS12 */ } #endif /* NO_WOLFSSL_SERVER */ #if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER) int wolfDTLS_SetChGoodCb(WOLFSSL* ssl, ClientHelloGoodCb cb, void* user_ctx) { WOLFSSL_ENTER("wolfDTLS_SetChGoodCb"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->chGoodCb = cb; ssl->chGoodCtx = user_ctx; return WOLFSSL_SUCCESS; } #endif #ifndef NO_HANDSHAKE_DONE_CB int wolfSSL_SetHsDoneCb(WOLFSSL* ssl, HandShakeDoneCb cb, void* user_ctx) { WOLFSSL_ENTER("wolfSSL_SetHsDoneCb"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->hsDoneCb = cb; ssl->hsDoneCtx = user_ctx; return WOLFSSL_SUCCESS; } #endif /* NO_HANDSHAKE_DONE_CB */ WOLFSSL_ABI int wolfSSL_Cleanup(void) { int ret = WOLFSSL_SUCCESS; /* Only the first error will be returned */ int release = 0; #if !defined(NO_SESSION_CACHE) && defined(ENABLE_SESSION_CACHE_ROW_LOCK) int i; #endif WOLFSSL_ENTER("wolfSSL_Cleanup"); if (initRefCount == 0) return ret; /* possibly no init yet, but not failure either way */ if ((count_mutex_valid == 1) && (wc_LockMutex(&count_mutex) != 0)) { WOLFSSL_MSG("Bad Lock Mutex count"); ret = BAD_MUTEX_E; } release = initRefCount-- == 1; if (initRefCount < 0) initRefCount = 0; if (count_mutex_valid == 1) { wc_UnLockMutex(&count_mutex); } if (!release) return ret; #ifdef OPENSSL_EXTRA if (bn_one) { wolfSSL_BN_free(bn_one); bn_one = NULL; } #endif #ifndef NO_SESSION_CACHE #ifdef ENABLE_SESSION_CACHE_ROW_LOCK for (i = 0; i < SESSION_ROWS; ++i) { if ((SessionCache[i].mutex_valid == 1) && (wc_FreeMutex(&SessionCache[i].row_mutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } SessionCache[i].mutex_valid = 0; } #else if ((session_mutex_valid == 1) && (wc_FreeMutex(&session_mutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } session_mutex_valid = 0; #endif #ifndef NO_CLIENT_CACHE if ((clisession_mutex_valid == 1) && (wc_FreeMutex(&clisession_mutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } clisession_mutex_valid = 0; #endif #endif /* !NO_SESSION_CACHE */ if ((count_mutex_valid == 1) && (wc_FreeMutex(&count_mutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } count_mutex_valid = 0; #ifdef OPENSSL_EXTRA wolfSSL_RAND_Cleanup(); #endif if (wolfCrypt_Cleanup() != 0) { WOLFSSL_MSG("Error with wolfCrypt_Cleanup call"); if (ret == WOLFSSL_SUCCESS) ret = WC_CLEANUP_E; } #if FIPS_VERSION_GE(5,1) if (wolfCrypt_SetPrivateKeyReadEnable_fips(0, WC_KEYTYPE_ALL) < 0) { if (ret == WOLFSSL_SUCCESS) ret = WC_CLEANUP_E; } #endif #ifdef HAVE_GLOBAL_RNG if ((globalRNGMutex_valid == 1) && (wc_FreeMutex(&globalRNGMutex) != 0)) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } globalRNGMutex_valid = 0; #if defined(OPENSSL_EXTRA) && defined(HAVE_HASHDRBG) wolfSSL_FIPS_drbg_free(gDrbgDefCtx); gDrbgDefCtx = NULL; #endif #endif return ret; } #ifndef NO_SESSION_CACHE /* some session IDs aren't random after all, let's make them random */ static WC_INLINE word32 HashSession(const byte* sessionID, word32 len, int* error) { byte digest[WC_MAX_DIGEST_SIZE]; #ifndef NO_MD5 *error = wc_Md5Hash(sessionID, len, digest); #elif !defined(NO_SHA) *error = wc_ShaHash(sessionID, len, digest); #elif !defined(NO_SHA256) *error = wc_Sha256Hash(sessionID, len, digest); #else #error "We need a digest to hash the session IDs" #endif return *error == 0 ? MakeWordFromHash(digest) : 0; /* 0 on failure */ } WOLFSSL_ABI void wolfSSL_flush_sessions(WOLFSSL_CTX* ctx, long tm) { /* static table now, no flushing needed */ (void)ctx; (void)tm; } /* set ssl session timeout in seconds */ WOLFSSL_ABI int wolfSSL_set_timeout(WOLFSSL* ssl, unsigned int to) { if (ssl == NULL) return BAD_FUNC_ARG; if (to == 0) to = WOLFSSL_SESSION_TIMEOUT; ssl->timeout = to; return WOLFSSL_SUCCESS; } /** * Sets ctx session timeout in seconds. * The timeout value set here should be reflected in the * "session ticket lifetime hint" if this API works in the openssl compat-layer. * Therefore wolfSSL_CTX_set_TicketHint is called internally. * Arguments: * - ctx WOLFSSL_CTX object which the timeout is set to * - to timeout value in second * Returns: * WOLFSSL_SUCCESS on success, BAD_FUNC_ARG on failure. * When WOLFSSL_ERROR_CODE_OPENSSL is defined, returns previous timeout value * on success, BAD_FUNC_ARG on failure. */ WOLFSSL_ABI int wolfSSL_CTX_set_timeout(WOLFSSL_CTX* ctx, unsigned int to) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) word32 prev_timeout = 0; #endif int ret = WOLFSSL_SUCCESS; (void)ret; if (ctx == NULL) ret = BAD_FUNC_ARG; if (ret == WOLFSSL_SUCCESS) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) prev_timeout = ctx->timeout; #endif if (to == 0) { ctx->timeout = WOLFSSL_SESSION_TIMEOUT; } else { ctx->timeout = to; } } #if defined(OPENSSL_EXTRA) && defined(HAVE_SESSION_TICKET) && \ !defined(NO_WOLFSSL_SERVER) if (ret == WOLFSSL_SUCCESS) { if (to == 0) { ret = wolfSSL_CTX_set_TicketHint(ctx, SESSION_TICKET_HINT_DEFAULT); } else { ret = wolfSSL_CTX_set_TicketHint(ctx, to); } } #endif /* OPENSSL_EXTRA && HAVE_SESSION_TICKET && !NO_WOLFSSL_SERVER */ #if defined(WOLFSSL_ERROR_CODE_OPENSSL) if (ret == WOLFSSL_SUCCESS) { return prev_timeout; } else { return ret; } #else return ret; #endif /* WOLFSSL_ERROR_CODE_OPENSSL */ } #ifndef NO_CLIENT_CACHE /* Get Session from Client cache based on id/len, return NULL on failure */ WOLFSSL_SESSION* wolfSSL_GetSessionClient(WOLFSSL* ssl, const byte* id, int len) { WOLFSSL_SESSION* ret = NULL; word32 row; int idx; int count; int error = 0; ClientSession* clSess; WOLFSSL_ENTER("GetSessionClient"); if (ssl->ctx->sessionCacheOff) { WOLFSSL_MSG("Session Cache off"); return NULL; } if (ssl->options.side == WOLFSSL_SERVER_END) return NULL; len = min(SERVER_ID_LEN, (word32)len); #ifdef HAVE_EXT_CACHE if (ssl->ctx->get_sess_cb != NULL) { int copy = 0; WOLFSSL_MSG("Calling external session cache"); ret = ssl->ctx->get_sess_cb(ssl, (byte*)id, len, ©); if (ret != NULL) { WOLFSSL_MSG("Session found in external cache"); return ret; } WOLFSSL_MSG("Session not found in external cache"); } if (ssl->ctx->internalCacheLookupOff) { WOLFSSL_MSG("Internal cache turned off"); return NULL; } #endif row = HashSession(id, len, &error) % CLIENT_SESSION_ROWS; if (error != 0) { WOLFSSL_MSG("Hash session failed"); return NULL; } if (wc_LockMutex(&clisession_mutex) != 0) { WOLFSSL_MSG("Client cache mutex lock failed"); return NULL; } /* start from most recently used */ count = min((word32)ClientCache[row].totalCount, CLIENT_SESSIONS_PER_ROW); idx = ClientCache[row].nextIdx - 1; if (idx < 0 || idx >= CLIENT_SESSIONS_PER_ROW) { idx = CLIENT_SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */ } clSess = ClientCache[row].Clients; for (; count > 0; --count) { WOLFSSL_SESSION* current; SessionRow* sessRow; if (clSess[idx].serverRow >= SESSION_ROWS) { WOLFSSL_MSG("Client cache serverRow invalid"); break; } /* lock row */ sessRow = &SessionCache[clSess[idx].serverRow]; if (SESSION_ROW_LOCK(sessRow) != 0) { WOLFSSL_MSG("Session cache row lock failure"); break; } current = &sessRow->Sessions[clSess[idx].serverIdx]; if (XMEMCMP(current->serverID, id, len) == 0) { WOLFSSL_MSG("Found a serverid match for client"); if (LowResTimer() < (current->bornOn + current->timeout)) { WOLFSSL_MSG("Session valid"); ret = current; SESSION_ROW_UNLOCK(sessRow); break; } else { WOLFSSL_MSG("Session timed out"); /* could have more for id */ } } else { WOLFSSL_MSG("ServerID not a match from client table"); } SESSION_ROW_UNLOCK(sessRow); idx = idx > 0 ? idx - 1 : CLIENT_SESSIONS_PER_ROW - 1; } wc_UnLockMutex(&clisession_mutex); return ret; } #endif /* !NO_CLIENT_CACHE */ static int SslSessionCacheOff(const WOLFSSL* ssl, const WOLFSSL_SESSION* session) { (void)session; return ssl->options.sessionCacheOff #if defined(HAVE_SESSION_TICKET) && defined(WOLFSSL_FORCE_CACHE_ON_TICKET) && session->ticketLen == 0 #endif #ifdef OPENSSL_EXTRA && ssl->options.side != WOLFSSL_CLIENT_END #endif ; } int wolfSSL_GetSessionFromCache(WOLFSSL* ssl, WOLFSSL_SESSION* output) { WOLFSSL_SESSION* sess = NULL; const byte* id = NULL; word32 row; int idx; int count; int error = 0; SessionRow* sessRow; #ifdef HAVE_SESSION_TICKET #ifndef WOLFSSL_SMALL_STACK byte tmpTicket[PREALLOC_SESSION_TICKET_LEN]; #else byte* tmpTicket = NULL; #endif byte tmpBufSet = 0; #endif #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) WOLFSSL_X509* peer = NULL; #endif byte bogusID[ID_LEN]; byte bogusIDSz = 0; WOLFSSL_ENTER("wolfSSL_GetSessionFromCache"); if (output == NULL) { WOLFSSL_MSG("NULL output"); return WOLFSSL_FAILURE; } if (SslSessionCacheOff(ssl, ssl->session)) return WOLFSSL_FAILURE; if (ssl->options.haveSessionId == 0) return WOLFSSL_FAILURE; #ifdef HAVE_SESSION_TICKET if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1) return WOLFSSL_FAILURE; #endif XMEMSET(bogusID, 0, sizeof(bogusID)); if (!IsAtLeastTLSv1_3(ssl->version) && ssl->arrays != NULL) id = ssl->arrays->sessionID; else if (ssl->session->haveAltSessionID) { id = ssl->session->altSessionID; /* We want to restore the bogus ID for TLS compatibility */ if (output == ssl->session) { XMEMCPY(bogusID, ssl->session->sessionID, ID_LEN); bogusIDSz = ssl->session->sessionIDSz; } } else id = ssl->session->sessionID; #ifdef HAVE_EXT_CACHE if (ssl->ctx->get_sess_cb != NULL) { int copy = 0; /* Attempt to retrieve the session from the external cache. */ WOLFSSL_MSG("Calling external session cache"); sess = ssl->ctx->get_sess_cb(ssl, (byte*)id, ID_LEN, ©); if (sess != NULL) { WOLFSSL_MSG("Session found in external cache"); error = wolfSSL_DupSession(sess, output, 0); #ifdef HAVE_EX_DATA output->ownExData = 0; /* Session cache owns external data */ #endif /* If copy not set then free immediately */ if (!copy) wolfSSL_FreeSession(ssl->ctx, sess); /* We want to restore the bogus ID for TLS compatibility */ if (ssl->session->haveAltSessionID && output == ssl->session) { XMEMCPY(ssl->session->sessionID, bogusID, ID_LEN); ssl->session->sessionIDSz = bogusIDSz; } return error; } WOLFSSL_MSG("Session not found in external cache"); } if (ssl->ctx->internalCacheLookupOff) { WOLFSSL_MSG("Internal cache lookup turned off"); return WOLFSSL_FAILURE; } #endif row = HashSession(id, ID_LEN, &error) % SESSION_ROWS; if (error != 0) { WOLFSSL_MSG("Hash session failed"); return WOLFSSL_FAILURE; } #ifdef HAVE_SESSION_TICKET if (output->ticket == NULL || output->ticketLenAlloc < PREALLOC_SESSION_TICKET_LEN) { #ifdef WOLFSSL_SMALL_STACK tmpTicket = (byte*)XMALLOC(PREALLOC_SESSION_TICKET_LEN, output->heap, DYNAMIC_TYPE_TMP_BUFFER); if (tmpTicket == NULL) { WOLFSSL_MSG("tmpTicket malloc failed"); return WOLFSSL_FAILURE; } #endif if (output->ticketLenAlloc) XFREE(output->ticket, output->heap, DYNAMIC_TYPE_SESSION_TICK); output->ticket = tmpTicket; output->ticketLenAlloc = PREALLOC_SESSION_TICKET_LEN; output->ticketLen = 0; tmpBufSet = 1; } #endif #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) if (output->peer != NULL) { wolfSSL_X509_free(output->peer); output->peer = NULL; } #endif /* lock row */ sessRow = &SessionCache[row]; if (SESSION_ROW_LOCK(sessRow) != 0) { WOLFSSL_MSG("Session cache row lock failure"); #ifdef HAVE_SESSION_TICKET if (tmpBufSet) { output->ticket = output->_staticTicket; output->ticketLenAlloc = 0; } #ifdef WOLFSSL_SMALL_STACK if (tmpTicket != NULL) XFREE(tmpTicket, output->heap, DYNAMIC_TYPE_TMP_BUFFER); #endif #endif return WOLFSSL_FAILURE; } /* start from most recently used */ count = min((word32)sessRow->totalCount, SESSIONS_PER_ROW); idx = sessRow->nextIdx - 1; if (idx < 0 || idx >= SESSIONS_PER_ROW) { idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */ } for (; count > 0; --count) { WOLFSSL_SESSION* current; current = &sessRow->Sessions[idx]; if (XMEMCMP(current->sessionID, id, ID_LEN) == 0 && current->side == ssl->options.side) { WOLFSSL_MSG("Found a session match"); if (LowResTimer() < (current->bornOn + current->timeout)) { WOLFSSL_MSG("Session valid"); sess = current; } else { WOLFSSL_MSG("Session timed out"); } break; /* no more sessionIDs whether valid or not that match */ } else { WOLFSSL_MSG("SessionID not a match at this idx"); } idx = idx > 0 ? idx - 1 : SESSIONS_PER_ROW - 1; } if (sess != NULL) { #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) /* We don't want the peer member. We will free it at the end. */ if (sess->peer != NULL) { peer = sess->peer; sess->peer = NULL; } #endif error = wolfSSL_DupSession(sess, output, 1); #ifdef HAVE_EX_DATA output->ownExData = 0; /* Session cache owns external data */ #endif } else { error = WOLFSSL_FAILURE; } SESSION_ROW_UNLOCK(sessRow); /* We want to restore the bogus ID for TLS compatibility */ if (ssl->session->haveAltSessionID && output == ssl->session) { XMEMCPY(ssl->session->sessionID, bogusID, ID_LEN); ssl->session->sessionIDSz = bogusIDSz; } #ifdef HAVE_SESSION_TICKET if (tmpBufSet) { if (error == WOLFSSL_SUCCESS) { if (output->ticketLen > SESSION_TICKET_LEN) { output->ticket = (byte*)XMALLOC(output->ticketLen, output->heap, DYNAMIC_TYPE_SESSION_TICK); if (output->ticket == NULL) { error = WOLFSSL_FAILURE; output->ticket = output->_staticTicket; output->ticketLenAlloc = 0; output->ticketLen = 0; } } else { output->ticket = output->_staticTicket; output->ticketLenAlloc = 0; } } else { output->ticket = output->_staticTicket; output->ticketLenAlloc = 0; output->ticketLen = 0; } if (error == WOLFSSL_SUCCESS) { XMEMCPY(output->ticket, tmpTicket, output->ticketLen); } } #ifdef WOLFSSL_SMALL_STACK if (tmpTicket != NULL) XFREE(tmpTicket, output->heap, DYNAMIC_TYPE_TMP_BUFFER); #endif #endif #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) if (peer != NULL) { wolfSSL_X509_free(peer); } #endif return error; } WOLFSSL_SESSION* wolfSSL_GetSession(WOLFSSL* ssl, byte* masterSecret, byte restoreSessionCerts) { WOLFSSL_SESSION* ret = NULL; (void)restoreSessionCerts; /* Kept for compatibility */ if (wolfSSL_GetSessionFromCache(ssl, ssl->session) == WOLFSSL_SUCCESS) { ret = ssl->session; } else { WOLFSSL_MSG("wolfSSL_GetSessionFromCache did not return a session"); } if (ret != NULL && masterSecret != NULL) XMEMCPY(masterSecret, ret->masterSecret, SECRET_LEN); return ret; } int wolfSSL_SetSession(WOLFSSL* ssl, WOLFSSL_SESSION* session) { SessionRow* sessRow = NULL; int ret = WOLFSSL_SUCCESS; session = ClientSessionToSession(session); if (ssl == NULL || session == NULL) { return WOLFSSL_FAILURE; } if (session->type == WOLFSSL_SESSION_TYPE_CACHE) { if (session->cacheRow < SESSION_ROWS) { sessRow = &SessionCache[session->cacheRow]; if (SESSION_ROW_LOCK(sessRow) != 0) { WOLFSSL_MSG("Session row lock failed"); return WOLFSSL_FAILURE; } } } if (ret == WOLFSSL_SUCCESS && SslSessionCacheOff(ssl, session)) { WOLFSSL_MSG("Session cache off"); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS && ssl->options.side != WOLFSSL_NEITHER_END && (byte)ssl->options.side != session->side) { WOLFSSL_MSG("Setting session for wrong role"); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS && wolfSSL_DupSession(session, ssl->session, 0) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Session duplicate failed"); ret = WOLFSSL_FAILURE; } /* Let's copy over the altSessionID for local cache purposes */ if (ret == WOLFSSL_SUCCESS && session->haveAltSessionID) { ssl->session->haveAltSessionID = 1; XMEMCPY(ssl->session->altSessionID, session->altSessionID, ID_LEN); } if (sessRow != NULL) { SESSION_ROW_UNLOCK(sessRow); sessRow = NULL; } /* Note: the `session` variable cannot be used below, since the row is * un-locked */ if (ret != WOLFSSL_SUCCESS) return ret; #ifdef OPENSSL_EXTRA /* check for application context id */ if (ssl->sessionCtxSz > 0) { if (XMEMCMP(ssl->sessionCtx, ssl->session->sessionCtx, ssl->sessionCtxSz)) { /* context id did not match! */ WOLFSSL_MSG("Session context did not match"); return WOLFSSL_FAILURE; } } #endif /* OPENSSL_EXTRA */ if (LowResTimer() < (ssl->session->bornOn + ssl->session->timeout)) { ssl->options.resuming = 1; ssl->options.haveEMS = ssl->session->haveEMS; #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) ssl->version = ssl->session->version; if (IsAtLeastTLSv1_3(ssl->version)) ssl->options.tls1_3 = 1; #endif #if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \ (defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)) ssl->options.cipherSuite0 = ssl->session->cipherSuite0; ssl->options.cipherSuite = ssl->session->cipherSuite; #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) ssl->peerVerifyRet = (unsigned long)ssl->session->peerVerifyRet; #endif ret = WOLFSSL_SUCCESS; } else { #if defined(OPENSSL_EXTRA) && defined(WOLFSSL_ERROR_CODE_OPENSSL) WOLFSSL_MSG("Session is expired but return success for \ OpenSSL compatibility"); ret = WOLFSSL_SUCCESS; #else ret = WOLFSSL_FAILURE; /* session timed out */ #endif /* OPENSSL_EXTRA && WOLFSSL_ERROR_CODE_OPENSSL */ } return ret; } #ifdef WOLFSSL_SESSION_STATS static int get_locked_session_stats(word32* active, word32* total, word32* peak); #endif #ifndef NO_CLIENT_CACHE ClientSession* AddSessionToClientCache(int side, int row, int idx, byte* serverID, word16 idLen, const byte* sessionID, word16 useTicket) { int error = -1; word32 clientRow = 0, clientIdx = 0, sessionIDHash = 0; (void)useTicket; if (side == WOLFSSL_CLIENT_END && row != INVALID_SESSION_ROW && (idLen #ifdef HAVE_SESSION_TICKET || useTicket == 1 #endif || serverID != NULL )) { WOLFSSL_MSG("Trying to add client cache entry"); if (idLen) { clientRow = HashSession(serverID, idLen, &error) % CLIENT_SESSION_ROWS; } else if (serverID != NULL) { clientRow = HashSession(sessionID, ID_LEN, &error) % CLIENT_SESSION_ROWS; } else { error = -1; } if (error == 0 && wc_LockMutex(&clisession_mutex) == 0) { clientIdx = ClientCache[clientRow].nextIdx; if (clientIdx < CLIENT_SESSIONS_PER_ROW) { ClientCache[clientRow].Clients[clientIdx].serverRow = (word16)row; ClientCache[clientRow].Clients[clientIdx].serverIdx = (word16)idx; if (sessionID != NULL) { sessionIDHash = HashSession(sessionID, ID_LEN, &error); if (error == 0) { ClientCache[clientRow].Clients[clientIdx].sessionIDHash = sessionIDHash; } } } else { error = -1; ClientCache[clientRow].nextIdx = 0; /* reset index as saftey */ WOLFSSL_MSG("Invalid client cache index! " "Possible corrupted memory"); } if (error == 0) { WOLFSSL_MSG("Adding client cache entry"); if (ClientCache[clientRow].totalCount < CLIENT_SESSIONS_PER_ROW) ClientCache[clientRow].totalCount++; ClientCache[clientRow].nextIdx++; ClientCache[clientRow].nextIdx %= CLIENT_SESSIONS_PER_ROW; } wc_UnLockMutex(&clisession_mutex); } else { WOLFSSL_MSG("Hash session or lock failed"); error = -1; } } else { WOLFSSL_MSG("Skipping client cache"); } if (error == 0) return &ClientCache[clientRow].Clients[clientIdx]; else return NULL; } #endif /** * For backwards compatibility, this API needs to be used in *ALL* functions * that access the WOLFSSL_SESSION members directly. * * This API checks if the passed in session is actually a ClientSession object * and returns the matching session cache object. Otherwise just return the * input. ClientSession objects only occur in the ClientCache. They are not * allocated anywhere else. */ WOLFSSL_SESSION* ClientSessionToSession(const WOLFSSL_SESSION* session) { WOLFSSL_ENTER("ClientSessionToSession"); #ifdef NO_SESSION_CACHE_REF return (WOLFSSL_SESSION*)session; #else #ifndef NO_CLIENT_CACHE if (session == NULL) return NULL; /* Check if session points into ClientCache */ if ((byte*)session >= (byte*)ClientCache && /* Cast to byte* to make pointer arithmetic work per byte */ (byte*)session < ((byte*)ClientCache) + sizeof(ClientCache)) { ClientSession* clientSession = (ClientSession*)session; SessionRow* sessRow = NULL; WOLFSSL_SESSION* cacheSession = NULL; word32 sessionIDHash = 0; int error = 0; session = NULL; /* Default to NULL for failure case */ if (wc_LockMutex(&clisession_mutex) != 0) { WOLFSSL_MSG("Client cache mutex lock failed"); return NULL; } if (clientSession->serverRow >= SESSION_ROWS || clientSession->serverIdx >= SESSIONS_PER_ROW) { WOLFSSL_MSG("Client cache serverRow or serverIdx invalid"); error = -1; } if (error == 0) { /* Lock row */ sessRow = &SessionCache[clientSession->serverRow]; error = SESSION_ROW_LOCK(sessRow); if (error != 0) { WOLFSSL_MSG("Session cache row lock failure"); sessRow = NULL; } } if (error == 0) { cacheSession = &sessRow->Sessions[clientSession->serverIdx]; if (cacheSession->sessionIDSz == 0) { cacheSession = NULL; WOLFSSL_MSG("Session cache entry not set"); error = -1; } } if (error == 0) { /* Calculate the hash of the session ID */ sessionIDHash = HashSession(cacheSession->sessionID, ID_LEN, &error); } if (error == 0) { /* Check the session ID hash matches */ error = clientSession->sessionIDHash != sessionIDHash; } if (error == 0) { /* Hashes match */ session = cacheSession; WOLFSSL_MSG("Found session cache matching client session object"); } if (sessRow != NULL) { SESSION_ROW_UNLOCK(sessRow); } wc_UnLockMutex(&clisession_mutex); return (WOLFSSL_SESSION*)session; } else { /* Plain WOLFSSL_SESSION object */ return (WOLFSSL_SESSION*)session; } #else return (WOLFSSL_SESSION*)session; #endif #endif } int AddSessionToCache(WOLFSSL_CTX* ctx, WOLFSSL_SESSION* addSession, const byte* id, byte idSz, int* sessionIndex, int side, word16 useTicket, ClientSession** clientCacheEntry) { WOLFSSL_SESSION* cacheSession = NULL; SessionRow* sessRow = NULL; word32 idx = 0; #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) WOLFSSL_X509* peer = NULL; #endif #ifdef HAVE_SESSION_TICKET byte* cacheTicBuff = NULL; byte ticBuffUsed = 0; byte* ticBuff = NULL; int ticLen = 0; #endif int ret = 0; int row; int i; int overwrite = 0; (void)ctx; (void)sessionIndex; (void)useTicket; (void)clientCacheEntry; addSession = ClientSessionToSession(addSession); if (addSession == NULL || idSz == 0) { WOLFSSL_MSG("addSession NULL or idSz == 0"); return BAD_FUNC_ARG; } /* Find a position for the new session in cache and use that */ #ifdef HAVE_SESSION_TICKET ticLen = addSession->ticketLen; /* Alloc Memory here to avoid syscalls during lock */ if (ticLen > SESSION_TICKET_LEN) { ticBuff = (byte*)XMALLOC(ticLen, NULL, DYNAMIC_TYPE_SESSION_TICK); if (ticBuff == NULL) { return MEMORY_E; } } #endif /* Use the session object in the cache for external cache if required */ row = (int)(HashSession(id, ID_LEN, &ret) % SESSION_ROWS); if (ret != 0) { WOLFSSL_MSG("Hash session failed"); #ifdef HAVE_SESSION_TICKET XFREE(ticBuff, NULL, DYNAMIC_TYPE_SESSION_TICK); #endif return ret; } sessRow = &SessionCache[row]; if (SESSION_ROW_LOCK(sessRow) != 0) { #ifdef HAVE_SESSION_TICKET XFREE(ticBuff, NULL, DYNAMIC_TYPE_SESSION_TICK); #endif WOLFSSL_MSG("Session row lock failed"); return BAD_MUTEX_E; } for (i = 0; i < SESSIONS_PER_ROW && i < sessRow->totalCount; i++) { if (XMEMCMP(id, sessRow->Sessions[i].sessionID, ID_LEN) == 0 && sessRow->Sessions[i].side == side) { WOLFSSL_MSG("Session already exists. Overwriting."); overwrite = 1; idx = i; break; } } if (!overwrite) idx = sessRow->nextIdx; #ifdef SESSION_INDEX if (sessionIndex != NULL) *sessionIndex = (row << SESSIDX_ROW_SHIFT) | idx; #endif cacheSession = &sessRow->Sessions[idx]; #ifdef HAVE_EX_DATA if (cacheSession->rem_sess_cb && cacheSession->ownExData) { cacheSession->rem_sess_cb(NULL, cacheSession); /* Make sure not to call remove functions again */ cacheSession->ownExData = 0; cacheSession->rem_sess_cb = NULL; } #endif cacheSession->type = WOLFSSL_SESSION_TYPE_CACHE; cacheSession->cacheRow = row; #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) /* Save the peer field to free after unlocking the row */ if (cacheSession->peer != NULL) peer = cacheSession->peer; cacheSession->peer = NULL; #endif #ifdef HAVE_SESSION_TICKET /* If we can re-use the existing buffer in cacheSession then we won't touch * ticBuff at all making it a very cheap malloc/free. The page on a modern * OS will most likely not even be allocated to the process. */ if (ticBuff != NULL && cacheSession->ticketLenAlloc < ticLen) { cacheTicBuff = cacheSession->ticket; ticBuffUsed = 1; cacheSession->ticket = ticBuff; cacheSession->ticketLenAlloc = (word16) ticLen; } #endif #ifdef SESSION_CERTS if (overwrite && addSession->chain.count == 0 && cacheSession->chain.count > 0) { /* Copy in the certs from the session */ addSession->chain.count = cacheSession->chain.count; XMEMCPY(addSession->chain.certs, cacheSession->chain.certs, sizeof(x509_buffer) * cacheSession->chain.count); } #endif /* SESSION_CERTS */ cacheSession->heap = NULL; /* Copy data into the cache object */ ret = wolfSSL_DupSession(addSession, cacheSession, 1) == WOLFSSL_FAILURE; if (ret == 0) { /* Increment the totalCount and the nextIdx */ if (sessRow->totalCount < SESSIONS_PER_ROW) sessRow->totalCount++; sessRow->nextIdx = (sessRow->nextIdx + 1) % SESSIONS_PER_ROW; if (id != addSession->sessionID) { /* ssl->session->sessionID may contain the bogus ID or we want the * ID from the arrays object */ XMEMCPY(cacheSession->sessionID, id, ID_LEN); cacheSession->sessionIDSz = ID_LEN; } #ifdef HAVE_EX_DATA if (ctx->rem_sess_cb != NULL) { addSession->ownExData = 0; cacheSession->ownExData = 1; cacheSession->rem_sess_cb = ctx->rem_sess_cb; } #endif } #ifdef HAVE_SESSION_TICKET else if (ticBuffUsed) { /* Error occured. Need to clean up the ticket buffer. */ cacheSession->ticket = cacheSession->_staticTicket; cacheSession->ticketLenAlloc = 0; cacheSession->ticketLen = 0; } #endif SESSION_ROW_UNLOCK(sessRow); cacheSession = NULL; /* Can't access after unlocked */ #ifndef NO_CLIENT_CACHE if (ret == 0 && clientCacheEntry != NULL) { ClientSession* clientCache = AddSessionToClientCache(side, row, idx, addSession->serverID, addSession->idLen, id, useTicket); if (clientCache != NULL) *clientCacheEntry = clientCache; } #endif #ifdef HAVE_SESSION_TICKET if (ticBuff != NULL && !ticBuffUsed) XFREE(ticBuff, NULL, DYNAMIC_TYPE_SESSION_TICK); if (cacheTicBuff != NULL) XFREE(cacheTicBuff, NULL, DYNAMIC_TYPE_SESSION_TICK); #endif #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) if (peer != NULL) { wolfSSL_X509_free(peer); peer = NULL; /* Make sure not use after this point */ } #endif return ret; } #ifndef NO_CLIENT_CACHE #endif void AddSession(WOLFSSL* ssl) { int error = 0; const byte* id = NULL; byte idSz = 0; WOLFSSL_SESSION* session = ssl->session; #ifdef HAVE_EXT_CACHE int cbRet = 0; #endif (void)error; WOLFSSL_ENTER("AddSession"); if (SslSessionCacheOff(ssl, session)) { WOLFSSL_MSG("Cache off"); return; } if (ssl->options.haveSessionId == 0) { WOLFSSL_MSG("Don't have session id"); return; } #if defined(HAVE_SESSION_TICKET) && !defined(OPENSSL_EXTRA) /* For the compat layer generate a session object to use */ if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1) { WOLFSSL_MSG("Using tickets instead of cache"); return; } #endif if (session->haveAltSessionID) { id = session->altSessionID; idSz = ID_LEN; } else { if (!IsAtLeastTLSv1_3(ssl->version) && ssl->arrays != NULL) { /* Make sure the session ID is available when the user calls any * get_session API */ XMEMCPY(session->sessionID, ssl->arrays->sessionID, ID_LEN); session->sessionIDSz = ssl->arrays->sessionIDSz; } id = session->sessionID; idSz = session->sessionIDSz; } session->timeout = ssl->timeout; session->side = (byte)ssl->options.side; if (!IsAtLeastTLSv1_3(ssl->version) && ssl->arrays != NULL) XMEMCPY(session->masterSecret, ssl->arrays->masterSecret, SECRET_LEN); session->haveEMS = ssl->options.haveEMS; #ifdef OPENSSL_EXTRA /* If using compatibility layer then check for and copy over session context * id. */ if (ssl->sessionCtxSz > 0 && ssl->sessionCtxSz < ID_LEN) { XMEMCPY(ssl->session->sessionCtx, ssl->sessionCtx, ssl->sessionCtxSz); session->sessionCtxSz = ssl->sessionCtxSz; } #endif session->timeout = ssl->timeout; session->bornOn = LowResTimer(); #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) session->version = ssl->version; #endif #if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \ (defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)) session->cipherSuite0 = ssl->options.cipherSuite0; session->cipherSuite = ssl->options.cipherSuite; #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) session->peerVerifyRet = (byte)ssl->peerVerifyRet; #endif /* Do this last so that if it fails, the rest of the session is setup. Do * this only for the client because if the server doesn't have an ID at * this point, it won't on resumption. */ if (idSz == 0 && ssl->options.side == WOLFSSL_CLIENT_END) { WC_RNG* rng = NULL; if (ssl->rng != NULL) rng = ssl->rng; #if defined(HAVE_GLOBAL_RNG) && defined(OPENSSL_EXTRA) else if (initGlobalRNG == 1 || wolfSSL_RAND_Init() == WOLFSSL_SUCCESS) { rng = &globalRNG; } #endif if (wc_RNG_GenerateBlock(rng, ssl->session->altSessionID, ID_LEN) != 0) return; ssl->session->haveAltSessionID = 1; id = ssl->session->altSessionID; idSz = ID_LEN; } /* Setup done */ if (ssl->options.side == WOLFSSL_SERVER_END /* No point in adding a * client session */ #ifdef HAVE_EXT_CACHE && !ssl->options.internalCacheOff #endif ) { /* Try to add the session to cache. Its ok if we don't succeed. */ (void)AddSessionToCache(ssl->ctx, session, id, idSz, #ifdef SESSION_INDEX &ssl->sessionIndex, #else NULL, #endif ssl->options.side, #ifdef HAVE_SESSION_TICKET ssl->options.useTicket, #else 0, #endif NULL ); } #ifdef HAVE_EXT_CACHE if (error == 0 && ssl->ctx->new_sess_cb != NULL) { wolfSSL_SESSION_up_ref(session); cbRet = ssl->ctx->new_sess_cb(ssl, session); if (cbRet == 0) wolfSSL_FreeSession(ssl->ctx, session); } #endif #if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS) if (error == 0) { word32 active = 0; error = get_locked_session_stats(&active, NULL, NULL); if (error == WOLFSSL_SUCCESS) { error = 0; /* back to this function ok */ if (PeakSessions < active) { PeakSessions = active; } } } #endif /* WOLFSSL_SESSION_STATS && WOLFSSL_PEAK_SESSIONS */ (void)error; } #ifdef SESSION_INDEX int wolfSSL_GetSessionIndex(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_GetSessionIndex"); WOLFSSL_LEAVE("wolfSSL_GetSessionIndex", ssl->sessionIndex); return ssl->sessionIndex; } int wolfSSL_GetSessionAtIndex(int idx, WOLFSSL_SESSION* session) { int row, col, result = WOLFSSL_FAILURE; SessionRow* sessRow; WOLFSSL_ENTER("wolfSSL_GetSessionAtIndex"); session = ClientSessionToSession(session); row = idx >> SESSIDX_ROW_SHIFT; col = idx & SESSIDX_IDX_MASK; if (session == NULL || row < 0 || row >= SESSION_ROWS || col >= SESSIONS_PER_ROW) { return WOLFSSL_FAILURE; } sessRow = &SessionCache[row]; if (SESSION_ROW_LOCK(sessRow) != 0) { return BAD_MUTEX_E; } XMEMCPY(session, &sessRow->Sessions[col], sizeof(WOLFSSL_SESSION)); result = WOLFSSL_SUCCESS; SESSION_ROW_UNLOCK(sessRow); WOLFSSL_LEAVE("wolfSSL_GetSessionAtIndex", result); return result; } #endif /* SESSION_INDEX */ #if defined(SESSION_CERTS) WOLFSSL_X509_CHAIN* wolfSSL_SESSION_get_peer_chain(WOLFSSL_SESSION* session) { WOLFSSL_X509_CHAIN* chain = NULL; WOLFSSL_ENTER("wolfSSL_SESSION_get_peer_chain"); session = ClientSessionToSession(session); if (session) chain = &session->chain; WOLFSSL_LEAVE("wolfSSL_SESSION_get_peer_chain", chain ? 1 : 0); return chain; } #ifdef OPENSSL_EXTRA /* gets the peer certificate associated with the session passed in * returns null on failure, the caller should not free the returned pointer */ WOLFSSL_X509* wolfSSL_SESSION_get0_peer(WOLFSSL_SESSION* session) { WOLFSSL_ENTER("wolfSSL_SESSION_get_peer_chain"); session = ClientSessionToSession(session); if (session) { int count; count = wolfSSL_get_chain_count(&session->chain); if (count < 1 || count >= MAX_CHAIN_DEPTH) { WOLFSSL_MSG("bad count found"); return NULL; } if (session->peer == NULL) { session->peer = wolfSSL_get_chain_X509(&session->chain, 0); } return session->peer; } WOLFSSL_MSG("No session passed in"); return NULL; } #endif /* OPENSSL_EXTRA */ #endif /* SESSION_INDEX && SESSION_CERTS */ #ifdef WOLFSSL_SESSION_STATS static int get_locked_session_stats(word32* active, word32* total, word32* peak) { int result = WOLFSSL_SUCCESS; int i; int count; int idx; word32 now = 0; word32 seen = 0; word32 ticks = LowResTimer(); WOLFSSL_ENTER("get_locked_session_stats"); #ifndef ENABLE_SESSION_CACHE_ROW_LOCK wc_LockMutex(&session_mutex); #endif for (i = 0; i < SESSION_ROWS; i++) { SessionRow* row = &SessionCache[i]; #ifdef ENABLE_SESSION_CACHE_ROW_LOCK if (SESSION_ROW_LOCK(row) != 0) { WOLFSSL_MSG("Session row cache mutex lock failed"); return BAD_MUTEX_E; } #endif seen += row->totalCount; if (active == NULL) { SESSION_ROW_UNLOCK(row); continue; } count = min((word32)row->totalCount, SESSIONS_PER_ROW); idx = row->nextIdx - 1; if (idx < 0 || idx >= SESSIONS_PER_ROW) { idx = SESSIONS_PER_ROW - 1; /* if back to front previous was end */ } for (; count > 0; --count) { /* if not expired then good */ if (ticks < (row->Sessions[idx].bornOn + row->Sessions[idx].timeout) ) { now++; } idx = idx > 0 ? idx - 1 : SESSIONS_PER_ROW - 1; } #ifdef ENABLE_SESSION_CACHE_ROW_LOCK SESSION_ROW_UNLOCK(row); #endif } #ifndef ENABLE_SESSION_CACHE_ROW_LOCK wc_UnLockMutex(&session_mutex); #endif if (active) { *active = now; } if (total) { *total = seen; } #ifdef WOLFSSL_PEAK_SESSIONS if (peak) { *peak = PeakSessions; } #else (void)peak; #endif WOLFSSL_LEAVE("get_locked_session_stats", result); return result; } /* return WOLFSSL_SUCCESS on ok */ int wolfSSL_get_session_stats(word32* active, word32* total, word32* peak, word32* maxSessions) { int result = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_get_session_stats"); if (maxSessions) { *maxSessions = SESSIONS_PER_ROW * SESSION_ROWS; if (active == NULL && total == NULL && peak == NULL) return result; /* we're done */ } /* user must provide at least one query value */ if (active == NULL && total == NULL && peak == NULL) { return BAD_FUNC_ARG; } result = get_locked_session_stats(active, total, peak); WOLFSSL_LEAVE("wolfSSL_get_session_stats", result); return result; } #endif /* WOLFSSL_SESSION_STATS */ #ifdef PRINT_SESSION_STATS /* WOLFSSL_SUCCESS on ok */ int wolfSSL_PrintSessionStats(void) { word32 totalSessionsSeen = 0; word32 totalSessionsNow = 0; word32 peak = 0; word32 maxSessions = 0; int i; int ret; double E; /* expected freq */ double chiSquare = 0; ret = wolfSSL_get_session_stats(&totalSessionsNow, &totalSessionsSeen, &peak, &maxSessions); if (ret != WOLFSSL_SUCCESS) return ret; printf("Total Sessions Seen = %u\n", totalSessionsSeen); printf("Total Sessions Now = %u\n", totalSessionsNow); #ifdef WOLFSSL_PEAK_SESSIONS printf("Peak Sessions = %u\n", peak); #endif printf("Max Sessions = %u\n", maxSessions); E = (double)totalSessionsSeen / SESSION_ROWS; for (i = 0; i < SESSION_ROWS; i++) { double diff = SessionCache[i].totalCount - E; diff *= diff; /* square */ diff /= E; /* normalize */ chiSquare += diff; } printf(" chi-square = %5.1f, d.f. = %d\n", chiSquare, SESSION_ROWS - 1); #if (SESSION_ROWS == 11) printf(" .05 p value = 18.3, chi-square should be less\n"); #elif (SESSION_ROWS == 211) printf(".05 p value = 244.8, chi-square should be less\n"); #elif (SESSION_ROWS == 5981) printf(".05 p value = 6161.0, chi-square should be less\n"); #elif (SESSION_ROWS == 3) printf(".05 p value = 6.0, chi-square should be less\n"); #elif (SESSION_ROWS == 2861) printf(".05 p value = 2985.5, chi-square should be less\n"); #endif printf("\n"); return ret; } #endif /* SESSION_STATS */ #else /* NO_SESSION_CACHE */ WOLFSSL_SESSION* ClientSessionToSession(const WOLFSSL_SESSION* session) { return (WOLFSSL_SESSION*)session; } /* No session cache version */ WOLFSSL_SESSION* wolfSSL_GetSession(WOLFSSL* ssl, byte* masterSecret, byte restoreSessionCerts) { (void)ssl; (void)masterSecret; (void)restoreSessionCerts; return NULL; } #endif /* NO_SESSION_CACHE */ /* call before SSL_connect, if verifying will add name check to date check and signature check */ WOLFSSL_ABI int wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn) { WOLFSSL_ENTER("wolfSSL_check_domain_name"); if (ssl == NULL || dn == NULL) { WOLFSSL_MSG("Bad function argument: NULL"); return WOLFSSL_FAILURE; } if (ssl->buffers.domainName.buffer) XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN); ssl->buffers.domainName.length = (word32)XSTRLEN(dn); ssl->buffers.domainName.buffer = (byte*)XMALLOC( ssl->buffers.domainName.length + 1, ssl->heap, DYNAMIC_TYPE_DOMAIN); if (ssl->buffers.domainName.buffer) { unsigned char* domainName = ssl->buffers.domainName.buffer; XMEMCPY(domainName, dn, ssl->buffers.domainName.length); domainName[ssl->buffers.domainName.length] = '\0'; return WOLFSSL_SUCCESS; } else { ssl->error = MEMORY_ERROR; return WOLFSSL_FAILURE; } } /* turn on wolfSSL zlib compression returns WOLFSSL_SUCCESS for success, else error (not built in) */ int wolfSSL_set_compression(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_set_compression"); (void)ssl; #ifdef HAVE_LIBZ ssl->options.usingCompression = 1; return WOLFSSL_SUCCESS; #else return NOT_COMPILED_IN; #endif } #ifndef USE_WINDOWS_API #ifndef NO_WRITEV /* simulate writev semantics, doesn't actually do block at a time though because of SSL_write behavior and because front adds may be small */ int wolfSSL_writev(WOLFSSL* ssl, const struct iovec* iov, int iovcnt) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; int sending = 0; int idx = 0; int i; int ret; WOLFSSL_ENTER("wolfSSL_writev"); for (i = 0; i < iovcnt; i++) sending += (int)iov[i].iov_len; if (sending > (int)sizeof(staticBuffer)) { myBuffer = (byte*)XMALLOC(sending, ssl->heap, DYNAMIC_TYPE_WRITEV); if (!myBuffer) return MEMORY_ERROR; dynamic = 1; } for (i = 0; i < iovcnt; i++) { XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len); idx += (int)iov[i].iov_len; } /* myBuffer may not be initialized fully, but the span up to the * sending length will be. */ PRAGMA_GCC_DIAG_PUSH; PRAGMA_GCC("GCC diagnostic ignored \"-Wmaybe-uninitialized\""); ret = wolfSSL_write(ssl, myBuffer, sending); PRAGMA_GCC_DIAG_POP; if (dynamic) XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV); return ret; } #endif #endif #ifdef WOLFSSL_CALLBACKS typedef struct itimerval Itimerval; /* don't keep calling simple functions while setting up timer and signals if no inlining these are the next best */ #define AddTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec + b.tv_sec; \ c.tv_usec = a.tv_usec + b.tv_usec; \ if (c.tv_usec >= 1000000) { \ c.tv_sec++; \ c.tv_usec -= 1000000; \ } \ } while (0) #define SubtractTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec - b.tv_sec; \ c.tv_usec = a.tv_usec - b.tv_usec; \ if (c.tv_usec < 0) { \ c.tv_sec--; \ c.tv_usec += 1000000; \ } \ } while (0) #define CmpTimes(a, b, cmp) \ ((a.tv_sec == b.tv_sec) ? \ (a.tv_usec cmp b.tv_usec) : \ (a.tv_sec cmp b.tv_sec)) \ /* do nothing handler */ static void myHandler(int signo) { (void)signo; return; } static int wolfSSL_ex_wrapper(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout) { int ret = WOLFSSL_FATAL_ERROR; int oldTimerOn = 0; /* was timer already on */ WOLFSSL_TIMEVAL startTime; WOLFSSL_TIMEVAL endTime; WOLFSSL_TIMEVAL totalTime; Itimerval myTimeout; Itimerval oldTimeout; /* if old timer adjust from total time to reset */ struct sigaction act, oact; #define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; } if (hsCb) { ssl->hsInfoOn = 1; InitHandShakeInfo(&ssl->handShakeInfo, ssl); } if (toCb) { ssl->toInfoOn = 1; InitTimeoutInfo(&ssl->timeoutInfo); if (gettimeofday(&startTime, 0) < 0) ERR_OUT(GETTIME_ERROR); /* use setitimer to simulate getitimer, init 0 myTimeout */ myTimeout.it_interval.tv_sec = 0; myTimeout.it_interval.tv_usec = 0; myTimeout.it_value.tv_sec = 0; myTimeout.it_value.tv_usec = 0; if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0) ERR_OUT(SETITIMER_ERROR); if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) { oldTimerOn = 1; /* is old timer going to expire before ours */ if (CmpTimes(oldTimeout.it_value, timeout, <)) { timeout.tv_sec = oldTimeout.it_value.tv_sec; timeout.tv_usec = oldTimeout.it_value.tv_usec; } } myTimeout.it_value.tv_sec = timeout.tv_sec; myTimeout.it_value.tv_usec = timeout.tv_usec; /* set up signal handler, don't restart socket send/recv */ act.sa_handler = myHandler; sigemptyset(&act.sa_mask); act.sa_flags = 0; #ifdef SA_INTERRUPT act.sa_flags |= SA_INTERRUPT; #endif if (sigaction(SIGALRM, &act, &oact) < 0) ERR_OUT(SIGACT_ERROR); if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0) ERR_OUT(SETITIMER_ERROR); } /* do main work */ #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_CLIENT_END) ret = wolfSSL_connect(ssl); #endif #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_SERVER_END) ret = wolfSSL_accept(ssl); #endif /* do callbacks */ if (toCb) { if (oldTimerOn) { gettimeofday(&endTime, 0); SubtractTimes(endTime, startTime, totalTime); /* adjust old timer for elapsed time */ if (CmpTimes(totalTime, oldTimeout.it_value, <)) SubtractTimes(oldTimeout.it_value, totalTime, oldTimeout.it_value); else { /* reset value to interval, may be off */ oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec; oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec; } /* keep iter the same whether there or not */ } /* restore old handler */ if (sigaction(SIGALRM, &oact, 0) < 0) ret = SIGACT_ERROR; /* more pressing error, stomp */ else /* use old settings which may turn off (expired or not there) */ if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0) ret = SETITIMER_ERROR; /* if we had a timeout call callback */ if (ssl->timeoutInfo.timeoutName[0]) { ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec; ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec; (toCb)(&ssl->timeoutInfo); } /* clean up */ FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap); ssl->toInfoOn = 0; } if (hsCb) { FinishHandShakeInfo(&ssl->handShakeInfo); (hsCb)(&ssl->handShakeInfo); ssl->hsInfoOn = 0; } return ret; } #ifndef NO_WOLFSSL_CLIENT int wolfSSL_connect_ex(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout) { WOLFSSL_ENTER("wolfSSL_connect_ex"); return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #ifndef NO_WOLFSSL_SERVER int wolfSSL_accept_ex(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout) { WOLFSSL_ENTER("wolfSSL_accept_ex"); return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #endif /* WOLFSSL_CALLBACKS */ #ifndef NO_PSK void wolfSSL_CTX_set_psk_client_callback(WOLFSSL_CTX* ctx, wc_psk_client_callback cb) { WOLFSSL_ENTER("SSL_CTX_set_psk_client_callback"); if (ctx == NULL) return; ctx->havePSK = 1; ctx->client_psk_cb = cb; } void wolfSSL_set_psk_client_callback(WOLFSSL* ssl,wc_psk_client_callback cb) { byte haveRSA = 1; int keySz = 0; WOLFSSL_ENTER("SSL_set_psk_client_callback"); if (ssl == NULL) return; ssl->options.havePSK = 1; ssl->options.client_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveAnon, ssl->options.side); } #ifdef OPENSSL_EXTRA /** * set call back function for psk session use * @param ssl a pointer to WOLFSSL structure * @param cb a function pointer to wc_psk_use_session_cb * @return none */ void wolfSSL_set_psk_use_session_callback(WOLFSSL* ssl, wc_psk_use_session_cb_func cb) { WOLFSSL_ENTER("wolfSSL_set_psk_use_session_callback"); ssl->options.havePSK = 1; ssl->options.session_psk_cb = cb; WOLFSSL_LEAVE("wolfSSL_set_psk_use_session_callback", WOLFSSL_SUCCESS); } #endif void wolfSSL_CTX_set_psk_server_callback(WOLFSSL_CTX* ctx, wc_psk_server_callback cb) { WOLFSSL_ENTER("SSL_CTX_set_psk_server_callback"); if (ctx == NULL) return; ctx->havePSK = 1; ctx->server_psk_cb = cb; } void wolfSSL_set_psk_server_callback(WOLFSSL* ssl,wc_psk_server_callback cb) { byte haveRSA = 1; int keySz = 0; WOLFSSL_ENTER("SSL_set_psk_server_callback"); if (ssl == NULL) return; ssl->options.havePSK = 1; ssl->options.server_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveAnon, ssl->options.side); } const char* wolfSSL_get_psk_identity_hint(const WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->server_hint; } const char* wolfSSL_get_psk_identity(const WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_psk_identity"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->client_identity; } int wolfSSL_CTX_use_psk_identity_hint(WOLFSSL_CTX* ctx, const char* hint) { WOLFSSL_ENTER("SSL_CTX_use_psk_identity_hint"); if (hint == 0) ctx->server_hint[0] = '\0'; else { /* Qt does not call CTX_set_*_psk_callbacks where havePSK is set */ #ifdef WOLFSSL_QT ctx->havePSK=1; #endif XSTRNCPY(ctx->server_hint, hint, MAX_PSK_ID_LEN); ctx->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */ } return WOLFSSL_SUCCESS; } int wolfSSL_use_psk_identity_hint(WOLFSSL* ssl, const char* hint) { WOLFSSL_ENTER("SSL_use_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return WOLFSSL_FAILURE; if (hint == 0) ssl->arrays->server_hint[0] = 0; else { XSTRNCPY(ssl->arrays->server_hint, hint, sizeof(ssl->arrays->server_hint)-1); ssl->arrays->server_hint[sizeof(ssl->arrays->server_hint)-1] = '\0'; } return WOLFSSL_SUCCESS; } void* wolfSSL_get_psk_callback_ctx(WOLFSSL* ssl) { return ssl ? ssl->options.psk_ctx : NULL; } void* wolfSSL_CTX_get_psk_callback_ctx(WOLFSSL_CTX* ctx) { return ctx ? ctx->psk_ctx : NULL; } int wolfSSL_set_psk_callback_ctx(WOLFSSL* ssl, void* psk_ctx) { if (ssl == NULL) return WOLFSSL_FAILURE; ssl->options.psk_ctx = psk_ctx; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_psk_callback_ctx(WOLFSSL_CTX* ctx, void* psk_ctx) { if (ctx == NULL) return WOLFSSL_FAILURE; ctx->psk_ctx = psk_ctx; return WOLFSSL_SUCCESS; } #endif /* NO_PSK */ #ifdef HAVE_ANON int wolfSSL_CTX_allow_anon_cipher(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_allow_anon_cipher"); if (ctx == NULL) return WOLFSSL_FAILURE; ctx->haveAnon = 1; return WOLFSSL_SUCCESS; } #endif /* HAVE_ANON */ #ifndef NO_CERTS /* used to be defined on NO_FILESYSTEM only, but are generally useful */ int wolfSSL_CTX_load_verify_buffer_ex(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format, int userChain, word32 flags) { int verify; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_CTX_load_verify_buffer_ex"); verify = GET_VERIFY_SETTING_CTX(ctx); if (flags & WOLFSSL_LOAD_FLAG_DATE_ERR_OKAY) verify = VERIFY_SKIP_DATE; if (format == WOLFSSL_FILETYPE_PEM) ret = ProcessChainBuffer(ctx, in, sz, format, CA_TYPE, NULL, verify); else ret = ProcessBuffer(ctx, in, sz, format, CA_TYPE, NULL, NULL, userChain, verify); #if defined(WOLFSSL_TRUST_PEER_CERT) && defined(OPENSSL_COMPATIBLE_DEFAULTS) if (ret == WOLFSSL_SUCCESS) ret = wolfSSL_CTX_trust_peer_buffer(ctx, in, sz, format); #endif WOLFSSL_LEAVE("wolfSSL_CTX_load_verify_buffer_ex", ret); return ret; } /* wolfSSL extension allows DER files to be loaded from buffers as well */ int wolfSSL_CTX_load_verify_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { return wolfSSL_CTX_load_verify_buffer_ex(ctx, in, sz, format, 0, WOLFSSL_LOAD_VERIFY_DEFAULT_FLAGS); } int wolfSSL_CTX_load_verify_chain_buffer_format(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { return wolfSSL_CTX_load_verify_buffer_ex(ctx, in, sz, format, 1, WOLFSSL_LOAD_VERIFY_DEFAULT_FLAGS); } #ifdef WOLFSSL_TRUST_PEER_CERT int wolfSSL_CTX_trust_peer_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_buffer"); /* sanity check on arguments */ if (sz < 0 || in == NULL || ctx == NULL) { return BAD_FUNC_ARG; } if (format == WOLFSSL_FILETYPE_PEM) return ProcessChainBuffer(ctx, in, sz, format, TRUSTED_PEER_TYPE, NULL, GET_VERIFY_SETTING_CTX(ctx)); else return ProcessBuffer(ctx, in, sz, format, TRUSTED_PEER_TYPE, NULL, NULL, 0, GET_VERIFY_SETTING_CTX(ctx)); } #endif /* WOLFSSL_TRUST_PEER_CERT */ int wolfSSL_CTX_use_certificate_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_buffer"); ret = ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 0, GET_VERIFY_SETTING_CTX(ctx)); WOLFSSL_LEAVE("wolfSSL_CTX_use_certificate_buffer", ret); return ret; } int wolfSSL_CTX_use_PrivateKey_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_buffer"); ret = ProcessBuffer(ctx, in, sz, format, PRIVATEKEY_TYPE, NULL, NULL, 0, GET_VERIFY_SETTING_CTX(ctx)); WOLFSSL_LEAVE("wolfSSL_CTX_use_PrivateKey_buffer", ret); return ret; } #ifdef WOLF_PRIVATE_KEY_ID int wolfSSL_CTX_use_PrivateKey_id(WOLFSSL_CTX* ctx, const unsigned char* id, long sz, int devId, long keySz) { int ret = wolfSSL_CTX_use_PrivateKey_Id(ctx, id, sz, devId); if (ret == WOLFSSL_SUCCESS) ctx->privateKeySz = (word32)keySz; return ret; } int wolfSSL_CTX_use_PrivateKey_Id(WOLFSSL_CTX* ctx, const unsigned char* id, long sz, int devId) { int ret = WOLFSSL_FAILURE; FreeDer(&ctx->privateKey); if (AllocDer(&ctx->privateKey, (word32)sz, PRIVATEKEY_TYPE, ctx->heap) == 0) { XMEMCPY(ctx->privateKey->buffer, id, sz); ctx->privateKeyId = 1; if (devId != INVALID_DEVID) ctx->privateKeyDevId = devId; else ctx->privateKeyDevId = ctx->devId; ret = WOLFSSL_SUCCESS; } return ret; } int wolfSSL_CTX_use_PrivateKey_Label(WOLFSSL_CTX* ctx, const char* label, int devId) { int ret = WOLFSSL_FAILURE; word32 sz = (word32)XSTRLEN(label) + 1; FreeDer(&ctx->privateKey); if (AllocDer(&ctx->privateKey, (word32)sz, PRIVATEKEY_TYPE, ctx->heap) == 0) { XMEMCPY(ctx->privateKey->buffer, label, sz); ctx->privateKeyLabel = 1; if (devId != INVALID_DEVID) ctx->privateKeyDevId = devId; else ctx->privateKeyDevId = ctx->devId; ret = WOLFSSL_SUCCESS; } return ret; } #endif /* WOLF_PRIVATE_KEY_ID */ int wolfSSL_CTX_use_certificate_chain_buffer_format(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_buffer_format"); return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 1, GET_VERIFY_SETTING_CTX(ctx)); } int wolfSSL_CTX_use_certificate_chain_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz) { return wolfSSL_CTX_use_certificate_chain_buffer_format(ctx, in, sz, WOLFSSL_FILETYPE_PEM); } #ifndef NO_DH /* server wrapper for ctx or ssl Diffie-Hellman parameters */ static int wolfSSL_SetTmpDH_buffer_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl, const unsigned char* buf, long sz, int format) { DerBuffer* der = NULL; int ret = 0; word32 pSz = MAX_DH_SIZE; word32 gSz = MAX_DH_SIZE; #ifdef WOLFSSL_SMALL_STACK byte* p = NULL; byte* g = NULL; #else byte p[MAX_DH_SIZE]; byte g[MAX_DH_SIZE]; #endif if (ctx == NULL || buf == NULL) return BAD_FUNC_ARG; ret = AllocDer(&der, 0, DH_PARAM_TYPE, ctx->heap); if (ret != 0) { return ret; } der->buffer = (byte*)buf; der->length = (word32)sz; #ifdef WOLFSSL_SMALL_STACK p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (p == NULL || g == NULL) { XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); return MEMORY_E; } #endif if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM) ret = WOLFSSL_BAD_FILETYPE; else { if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER FreeDer(&der); ret = PemToDer(buf, sz, DH_PARAM_TYPE, &der, ctx->heap, NULL, NULL); if (ret < 0) { /* Also try X9.42 format */ ret = PemToDer(buf, sz, X942_PARAM_TYPE, &der, ctx->heap, NULL, NULL); } #ifdef WOLFSSL_WPAS #ifndef NO_DSA if (ret < 0) { ret = PemToDer(buf, sz, DSA_PARAM_TYPE, &der, ctx->heap, NULL, NULL); } #endif #endif /* WOLFSSL_WPAS */ #else ret = NOT_COMPILED_IN; #endif /* WOLFSSL_PEM_TO_DER */ } if (ret == 0) { if (wc_DhParamsLoad(der->buffer, der->length, p, &pSz, g, &gSz) < 0) ret = WOLFSSL_BAD_FILETYPE; else if (ssl) ret = wolfSSL_SetTmpDH(ssl, p, pSz, g, gSz); else ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz); } } FreeDer(&der); #ifdef WOLFSSL_SMALL_STACK XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); #endif return ret; } /* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetTmpDH_buffer(WOLFSSL* ssl, const unsigned char* buf, long sz, int format) { if (ssl == NULL) return BAD_FUNC_ARG; return wolfSSL_SetTmpDH_buffer_wrapper(ssl->ctx, ssl, buf, sz, format); } /* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_SetTmpDH_buffer(WOLFSSL_CTX* ctx, const unsigned char* buf, long sz, int format) { return wolfSSL_SetTmpDH_buffer_wrapper(ctx, NULL, buf, sz, format); } #endif /* NO_DH */ int wolfSSL_use_certificate_buffer(WOLFSSL* ssl, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_use_certificate_buffer"); if (ssl == NULL) return BAD_FUNC_ARG; return ProcessBuffer(ssl->ctx, in, sz, format, CERT_TYPE, ssl, NULL, 0, GET_VERIFY_SETTING_SSL(ssl)); } int wolfSSL_use_PrivateKey_buffer(WOLFSSL* ssl, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey_buffer"); if (ssl == NULL) return BAD_FUNC_ARG; return ProcessBuffer(ssl->ctx, in, sz, format, PRIVATEKEY_TYPE, ssl, NULL, 0, GET_VERIFY_SETTING_SSL(ssl)); } #ifdef WOLF_PRIVATE_KEY_ID int wolfSSL_use_PrivateKey_id(WOLFSSL* ssl, const unsigned char* id, long sz, int devId, long keySz) { int ret = wolfSSL_use_PrivateKey_Id(ssl, id, sz, devId); if (ret == WOLFSSL_SUCCESS) ssl->buffers.keySz = (word32)keySz; return ret; } int wolfSSL_use_PrivateKey_Id(WOLFSSL* ssl, const unsigned char* id, long sz, int devId) { int ret = WOLFSSL_FAILURE; if (ssl->buffers.weOwnKey) FreeDer(&ssl->buffers.key); if (AllocDer(&ssl->buffers.key, (word32)sz, PRIVATEKEY_TYPE, ssl->heap) == 0) { XMEMCPY(ssl->buffers.key->buffer, id, sz); ssl->buffers.weOwnKey = 1; ssl->buffers.keyId = 1; if (devId != INVALID_DEVID) ssl->buffers.keyDevId = devId; else ssl->buffers.keyDevId = ssl->devId; ret = WOLFSSL_SUCCESS; } return ret; } int wolfSSL_use_PrivateKey_Label(WOLFSSL* ssl, const char* label, int devId) { int ret = WOLFSSL_FAILURE; word32 sz = (word32)XSTRLEN(label) + 1; if (ssl->buffers.weOwnKey) FreeDer(&ssl->buffers.key); if (AllocDer(&ssl->buffers.key, (word32)sz, PRIVATEKEY_TYPE, ssl->heap) == 0) { XMEMCPY(ssl->buffers.key->buffer, label, sz); ssl->buffers.weOwnKey = 1; ssl->buffers.keyLabel = 1; if (devId != INVALID_DEVID) ssl->buffers.keyDevId = devId; else ssl->buffers.keyDevId = ssl->devId; ret = WOLFSSL_SUCCESS; } return ret; } #endif /* WOLF_PRIVATE_KEY_ID */ int wolfSSL_use_certificate_chain_buffer_format(WOLFSSL* ssl, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_use_certificate_chain_buffer_format"); if (ssl == NULL) return BAD_FUNC_ARG; return ProcessBuffer(ssl->ctx, in, sz, format, CERT_TYPE, ssl, NULL, 1, GET_VERIFY_SETTING_SSL(ssl)); } int wolfSSL_use_certificate_chain_buffer(WOLFSSL* ssl, const unsigned char* in, long sz) { return wolfSSL_use_certificate_chain_buffer_format(ssl, in, sz, WOLFSSL_FILETYPE_PEM); } /* unload any certs or keys that SSL owns, leave CTX as is WOLFSSL_SUCCESS on ok */ int wolfSSL_UnloadCertsKeys(WOLFSSL* ssl) { if (ssl == NULL) { WOLFSSL_MSG("Null function arg"); return BAD_FUNC_ARG; } if (ssl->buffers.weOwnCert && !ssl->keepCert) { WOLFSSL_MSG("Unloading cert"); FreeDer(&ssl->buffers.certificate); #ifdef KEEP_OUR_CERT wolfSSL_X509_free(ssl->ourCert); ssl->ourCert = NULL; #endif ssl->buffers.weOwnCert = 0; } if (ssl->buffers.weOwnCertChain) { WOLFSSL_MSG("Unloading cert chain"); FreeDer(&ssl->buffers.certChain); ssl->buffers.weOwnCertChain = 0; } if (ssl->buffers.weOwnKey) { WOLFSSL_MSG("Unloading key"); ForceZero(ssl->buffers.key->buffer, ssl->buffers.key->length); FreeDer(&ssl->buffers.key); ssl->buffers.weOwnKey = 0; } return WOLFSSL_SUCCESS; } int wolfSSL_CTX_UnloadCAs(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_UnloadCAs"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerUnloadCAs(ctx->cm); } #ifdef WOLFSSL_TRUST_PEER_CERT int wolfSSL_CTX_Unload_trust_peers(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerUnload_trust_peers(ctx->cm); } #ifdef WOLFSSL_LOCAL_X509_STORE int wolfSSL_Unload_trust_peers(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers"); if (ssl == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerUnload_trust_peers(SSL_CM(ssl)); } #endif /* WOLFSSL_LOCAL_X509_STORE */ #endif /* WOLFSSL_TRUST_PEER_CERT */ /* old NO_FILESYSTEM end */ #endif /* !NO_CERTS */ #ifdef OPENSSL_EXTRA int wolfSSL_add_all_algorithms(void) { WOLFSSL_ENTER("wolfSSL_add_all_algorithms"); if (initRefCount != 0 || wolfSSL_Init() == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; else return WOLFSSL_FATAL_ERROR; } int wolfSSL_OpenSSL_add_all_algorithms_noconf(void) { WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_noconf"); if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR) return WOLFSSL_FATAL_ERROR; return WOLFSSL_SUCCESS; } int wolfSSL_OpenSSL_add_all_algorithms_conf(void) { WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_conf"); /* This function is currently the same as wolfSSL_OpenSSL_add_all_algorithms_noconf since we do not employ the use of a wolfssl.cnf type configuration file and is only used for OpenSSL compatability. */ if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR) { return WOLFSSL_FATAL_ERROR; } return WOLFSSL_SUCCESS; } /* returns previous set cache size which stays constant */ long wolfSSL_CTX_sess_set_cache_size(WOLFSSL_CTX* ctx, long sz) { /* cache size fixed at compile time in wolfSSL */ (void)ctx; (void)sz; WOLFSSL_MSG("session cache is set at compile time"); #ifndef NO_SESSION_CACHE return (long)(SESSIONS_PER_ROW * SESSION_ROWS); #else return 0; #endif } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) void wolfSSL_CTX_set_quiet_shutdown(WOLFSSL_CTX* ctx, int mode) { WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown"); if (mode) ctx->quietShutdown = 1; } void wolfSSL_set_quiet_shutdown(WOLFSSL* ssl, int mode) { WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown"); if (mode) ssl->options.quietShutdown = 1; } #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA #ifndef NO_BIO void wolfSSL_set_bio(WOLFSSL* ssl, WOLFSSL_BIO* rd, WOLFSSL_BIO* wr) { WOLFSSL_ENTER("wolfSSL_set_bio"); if (ssl == NULL) { WOLFSSL_MSG("Bad argument, ssl was NULL"); return; } /* free any existing WOLFSSL_BIOs in use but don't free those in * a chain */ if (ssl->biord != NULL) { if (ssl->biord != ssl->biowr) { if (ssl->biowr != NULL && ssl->biowr->prev != NULL) wolfSSL_BIO_free(ssl->biowr); ssl->biowr = NULL; } if (ssl->biord->prev != NULL) wolfSSL_BIO_free(ssl->biord); ssl->biord = NULL; } /* set flag obviously */ if (rd && !(rd->flags & WOLFSSL_BIO_FLAG_READ)) rd->flags |= WOLFSSL_BIO_FLAG_READ; if (wr && !(wr->flags & WOLFSSL_BIO_FLAG_WRITE)) wr->flags |= WOLFSSL_BIO_FLAG_WRITE; ssl->biord = rd; ssl->biowr = wr; /* set SSL to use BIO callbacks instead */ if (((ssl->cbioFlag & WOLFSSL_CBIO_RECV) == 0)) { ssl->CBIORecv = BioReceive; } if (((ssl->cbioFlag & WOLFSSL_CBIO_SEND) == 0)) { ssl->CBIOSend = BioSend; } /* User programs should always retry reading from these BIOs */ if (rd) { /* User writes to rd */ BIO_set_retry_write(rd); } if (wr) { /* User reads from wr */ BIO_set_retry_read(wr); } } #endif /* !NO_BIO */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) void wolfSSL_CTX_set_client_CA_list(WOLFSSL_CTX* ctx, WOLF_STACK_OF(WOLFSSL_X509_NAME)* names) { WOLFSSL_ENTER("wolfSSL_CTX_set_client_CA_list"); if (ctx != NULL) { wolfSSL_sk_X509_NAME_pop_free(ctx->ca_names, NULL); ctx->ca_names = names; } } void wolfSSL_set_client_CA_list(WOLFSSL* ssl, WOLF_STACK_OF(WOLFSSL_X509_NAME)* names) { WOLFSSL_ENTER("wolfSSL_set_client_CA_list"); if (ssl != NULL) { if (ssl->ca_names != ssl->ctx->ca_names) wolfSSL_sk_X509_NAME_pop_free(ssl->ca_names, NULL); ssl->ca_names = names; } } #ifdef OPENSSL_EXTRA /* registers client cert callback, called during handshake if server requests client auth but user has not loaded client cert/key */ void wolfSSL_CTX_set_client_cert_cb(WOLFSSL_CTX *ctx, client_cert_cb cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_client_cert_cb"); if (ctx != NULL) { ctx->CBClientCert = cb; } } void wolfSSL_CTX_set_cert_cb(WOLFSSL_CTX* ctx, CertSetupCallback cb, void *arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_cert_cb"); if (ctx == NULL) return; ctx->certSetupCb = cb; ctx->certSetupCbArg = arg; } /** * Internal wrapper for calling certSetupCb * @param ssl The SSL/TLS Object * @return 0 on success */ int CertSetupCbWrapper(WOLFSSL* ssl) { int ret = 0; if (ssl->ctx->certSetupCb != NULL) { WOLFSSL_MSG("Calling user cert setup callback"); ret = ssl->ctx->certSetupCb(ssl, ssl->ctx->certSetupCbArg); if (ret == 1) { WOLFSSL_MSG("User cert callback returned success"); ret = 0; } else if (ret == 0) { SendAlert(ssl, alert_fatal, internal_error); ret = CLIENT_CERT_CB_ERROR; } else if (ret < 0) { ret = WOLFSSL_ERROR_WANT_X509_LOOKUP; } else { WOLFSSL_MSG("Unexpected user callback return"); ret = CLIENT_CERT_CB_ERROR; } } return ret; } #endif /* OPENSSL_EXTRA */ #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || HAVE_WEBSERVER */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_CTX_get_client_CA_list( const WOLFSSL_CTX *ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_client_CA_list"); if (ctx == NULL) { WOLFSSL_MSG("Bad argument passed to wolfSSL_CTX_get_client_CA_list"); return NULL; } return ctx->ca_names; } /* returns the CA's set on server side or the CA's sent from server when * on client side */ WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_get_client_CA_list( const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_client_CA_list"); if (ssl == NULL) { WOLFSSL_MSG("Bad argument passed to wolfSSL_get_client_CA_list"); return NULL; } return SSL_CA_NAMES(ssl); } #if !defined(NO_CERTS) int wolfSSL_CTX_add_client_CA(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509) { WOLFSSL_X509_NAME *nameCopy = NULL; WOLFSSL_ENTER("wolfSSL_CTX_add_client_CA"); if (ctx == NULL || x509 == NULL){ WOLFSSL_MSG("Bad argument"); return WOLFSSL_FAILURE; } if (ctx->ca_names == NULL) { ctx->ca_names = wolfSSL_sk_X509_NAME_new(NULL); if (ctx->ca_names == NULL) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_new error"); return WOLFSSL_FAILURE; } } nameCopy = wolfSSL_X509_NAME_dup(wolfSSL_X509_get_subject_name(x509)); if (nameCopy == NULL) { WOLFSSL_MSG("wolfSSL_X509_NAME_dup error"); return WOLFSSL_FAILURE; } if (wolfSSL_sk_X509_NAME_push(ctx->ca_names, nameCopy) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_push error"); wolfSSL_X509_NAME_free(nameCopy); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif #ifndef NO_BIO #if !defined(NO_RSA) && !defined(NO_CERTS) WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_load_client_CA_file(const char* fname) { /* The webserver build is using this to load a CA into the server * for client authentication as an option. Have this return NULL in * that case. If OPENSSL_EXTRA is enabled, go ahead and include * the function. */ #ifdef OPENSSL_EXTRA WOLFSSL_STACK *list = NULL; WOLFSSL_BIO* bio = NULL; WOLFSSL_X509 *cert = NULL; WOLFSSL_X509_NAME *nameCopy = NULL; unsigned long err = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_load_client_CA_file"); bio = wolfSSL_BIO_new_file(fname, "rb"); if (bio == NULL) { WOLFSSL_MSG("wolfSSL_BIO_new_file error"); goto cleanup; } list = wolfSSL_sk_X509_NAME_new(NULL); if (list == NULL) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_new error"); goto cleanup; } /* Read each certificate in the chain out of the file. */ while (wolfSSL_PEM_read_bio_X509(bio, &cert, NULL, NULL) != NULL) { /* Need a persistent copy of the subject name. */ nameCopy = wolfSSL_X509_NAME_dup( wolfSSL_X509_get_subject_name(cert)); if (nameCopy == NULL) { WOLFSSL_MSG("wolfSSL_X509_NAME_dup error"); goto cleanup; } /* * Original cert will be freed so make sure not to try to access * it in the future. */ nameCopy->x509 = NULL; if (wolfSSL_sk_X509_NAME_push(list, nameCopy) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_sk_X509_NAME_push error"); /* Do free in loop because nameCopy is now responsibility * of list to free and adding jumps to cleanup after this * might result in a double free. */ wolfSSL_X509_NAME_free(nameCopy); goto cleanup; } wolfSSL_X509_free(cert); cert = NULL; } CLEAR_ASN_NO_PEM_HEADER_ERROR(err); err = WOLFSSL_SUCCESS; cleanup: wolfSSL_X509_free(cert); wolfSSL_BIO_free(bio); if (err != WOLFSSL_SUCCESS) { /* We failed so return NULL */ wolfSSL_sk_X509_NAME_pop_free(list, NULL); list = NULL; } return list; #else (void)fname; return NULL; #endif } #endif #endif /* !NO_BIO */ #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA */ #ifdef OPENSSL_EXTRA #ifndef NO_WOLFSSL_STUB int wolfSSL_CTX_set_default_verify_paths(WOLFSSL_CTX* ctx) { /* TODO:, not needed in goahead */ (void)ctx; WOLFSSL_STUB("SSL_CTX_set_default_verify_paths"); return SSL_NOT_IMPLEMENTED; } #endif #if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \ && !defined(WC_NO_RNG) static const byte srp_N[] = { 0xEE, 0xAF, 0x0A, 0xB9, 0xAD, 0xB3, 0x8D, 0xD6, 0x9C, 0x33, 0xF8, 0x0A, 0xFA, 0x8F, 0xC5, 0xE8, 0x60, 0x72, 0x61, 0x87, 0x75, 0xFF, 0x3C, 0x0B, 0x9E, 0xA2, 0x31, 0x4C, 0x9C, 0x25, 0x65, 0x76, 0xD6, 0x74, 0xDF, 0x74, 0x96, 0xEA, 0x81, 0xD3, 0x38, 0x3B, 0x48, 0x13, 0xD6, 0x92, 0xC6, 0xE0, 0xE0, 0xD5, 0xD8, 0xE2, 0x50, 0xB9, 0x8B, 0xE4, 0x8E, 0x49, 0x5C, 0x1D, 0x60, 0x89, 0xDA, 0xD1, 0x5D, 0xC7, 0xD7, 0xB4, 0x61, 0x54, 0xD6, 0xB6, 0xCE, 0x8E, 0xF4, 0xAD, 0x69, 0xB1, 0x5D, 0x49, 0x82, 0x55, 0x9B, 0x29, 0x7B, 0xCF, 0x18, 0x85, 0xC5, 0x29, 0xF5, 0x66, 0x66, 0x0E, 0x57, 0xEC, 0x68, 0xED, 0xBC, 0x3C, 0x05, 0x72, 0x6C, 0xC0, 0x2F, 0xD4, 0xCB, 0xF4, 0x97, 0x6E, 0xAA, 0x9A, 0xFD, 0x51, 0x38, 0xFE, 0x83, 0x76, 0x43, 0x5B, 0x9F, 0xC6, 0x1D, 0x2F, 0xC0, 0xEB, 0x06, 0xE3 }; static const byte srp_g[] = { 0x02 }; int wolfSSL_CTX_set_srp_username(WOLFSSL_CTX* ctx, char* username) { int r = 0; SrpSide srp_side = SRP_CLIENT_SIDE; byte salt[SRP_SALT_SIZE]; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_username"); if (ctx == NULL || ctx->srp == NULL || username==NULL) return SSL_FAILURE; if (ctx->method->side == WOLFSSL_SERVER_END){ srp_side = SRP_SERVER_SIDE; } else if (ctx->method->side == WOLFSSL_CLIENT_END){ srp_side = SRP_CLIENT_SIDE; } else { WOLFSSL_MSG("Init CTX failed"); return SSL_FAILURE; } if (wc_SrpInit(ctx->srp, SRP_TYPE_SHA256, srp_side) < 0) { WOLFSSL_MSG("Init SRP CTX failed"); XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp = NULL; return SSL_FAILURE; } r = wc_SrpSetUsername(ctx->srp, (const byte*)username, (word32)XSTRLEN(username)); if (r < 0) { WOLFSSL_MSG("fail to set srp username."); return SSL_FAILURE; } /* if wolfSSL_CTX_set_srp_password has already been called, */ /* execute wc_SrpSetPassword here */ if (ctx->srp_password != NULL) { WC_RNG rng; if (wc_InitRng(&rng) < 0){ WOLFSSL_MSG("wc_InitRng failed"); return SSL_FAILURE; } XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0])); r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0])); wc_FreeRng(&rng); if (r < 0) { WOLFSSL_MSG("wc_RNG_GenerateBlock failed"); return SSL_FAILURE; } if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]), srp_g, sizeof(srp_g)/sizeof(srp_g[0]), salt, sizeof(salt)/sizeof(salt[0])) < 0) { WOLFSSL_MSG("wc_SrpSetParam failed"); return SSL_FAILURE; } r = wc_SrpSetPassword(ctx->srp, (const byte*)ctx->srp_password, (word32)XSTRLEN((char *)ctx->srp_password)); if (r < 0) { WOLFSSL_MSG("fail to set srp password."); return SSL_FAILURE; } XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_srp_password(WOLFSSL_CTX* ctx, char* password) { int r; byte salt[SRP_SALT_SIZE]; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_password"); if (ctx == NULL || ctx->srp == NULL || password == NULL) return SSL_FAILURE; if (ctx->srp->user != NULL) { WC_RNG rng; if (wc_InitRng(&rng) < 0) { WOLFSSL_MSG("wc_InitRng failed"); return SSL_FAILURE; } XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0])); r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0])); wc_FreeRng(&rng); if (r < 0) { WOLFSSL_MSG("wc_RNG_GenerateBlock failed"); return SSL_FAILURE; } if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]), srp_g, sizeof(srp_g)/sizeof(srp_g[0]), salt, sizeof(salt)/sizeof(salt[0])) < 0){ WOLFSSL_MSG("wc_SrpSetParam failed"); wc_FreeRng(&rng); return SSL_FAILURE; } r = wc_SrpSetPassword(ctx->srp, (const byte*)password, (word32)XSTRLEN(password)); if (r < 0) { WOLFSSL_MSG("wc_SrpSetPassword failed."); wc_FreeRng(&rng); return SSL_FAILURE; } if (ctx->srp_password != NULL){ XFREE(ctx->srp_password,NULL, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } wc_FreeRng(&rng); } else { /* save password for wolfSSL_set_srp_username */ if (ctx->srp_password != NULL) XFREE(ctx->srp_password,ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = (byte*)XMALLOC(XSTRLEN(password) + 1, ctx->heap, DYNAMIC_TYPE_SRP); if (ctx->srp_password == NULL){ WOLFSSL_MSG("memory allocation error"); return SSL_FAILURE; } XMEMCPY(ctx->srp_password, password, XSTRLEN(password) + 1); } return WOLFSSL_SUCCESS; } /** * The modulus passed to wc_SrpSetParams in ssl.c is constant so check * that the requested strength is less than or equal to the size of the * static modulus size. * @param ctx Not used * @param strength Minimum number of bits for the modulus * @return 1 if strength is less than or equal to static modulus * 0 if strength is greater than static modulus */ int wolfSSL_CTX_set_srp_strength(WOLFSSL_CTX *ctx, int strength) { (void)ctx; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_strength"); if (strength > (int)(sizeof(srp_N)*8)) { WOLFSSL_MSG("Bad Parameter"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } char* wolfSSL_get_srp_username(WOLFSSL *ssl) { if (ssl && ssl->ctx && ssl->ctx->srp) { return (char*) ssl->ctx->srp->user; } return NULL; } #endif /* WOLFCRYPT_HAVE_SRP && !NO_SHA256 && !WC_NO_RNG */ /* keyblock size in bytes or -1 */ int wolfSSL_get_keyblock_size(WOLFSSL* ssl) { if (ssl == NULL) return WOLFSSL_FATAL_ERROR; return 2 * (ssl->specs.key_size + ssl->specs.iv_size + ssl->specs.hash_size); } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* store keys returns WOLFSSL_SUCCESS or -1 on error */ int wolfSSL_get_keys(WOLFSSL* ssl, unsigned char** ms, unsigned int* msLen, unsigned char** sr, unsigned int* srLen, unsigned char** cr, unsigned int* crLen) { if (ssl == NULL || ssl->arrays == NULL) return WOLFSSL_FATAL_ERROR; *ms = ssl->arrays->masterSecret; *sr = ssl->arrays->serverRandom; *cr = ssl->arrays->clientRandom; *msLen = SECRET_LEN; *srLen = RAN_LEN; *crLen = RAN_LEN; return WOLFSSL_SUCCESS; } void wolfSSL_set_accept_state(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_set_accept_state"); if (ssl == NULL) return; if (ssl->options.side == WOLFSSL_CLIENT_END) { #ifdef HAVE_ECC #ifdef WOLFSSL_SMALL_STACK ecc_key* key = NULL; #else ecc_key key[1]; #endif word32 idx = 0; #ifdef WOLFSSL_SMALL_STACK key = (ecc_key*)XMALLOC(sizeof(ecc_key), ssl->heap, DYNAMIC_TYPE_ECC); if (key == NULL) { WOLFSSL_MSG("Error allocating memory for ecc_key"); } #endif if (ssl->options.haveStaticECC && ssl->buffers.key != NULL) { if (wc_ecc_init(key) >= 0) { if (wc_EccPrivateKeyDecode(ssl->buffers.key->buffer, &idx, key, ssl->buffers.key->length) != 0) { ssl->options.haveECDSAsig = 0; ssl->options.haveECC = 0; ssl->options.haveStaticECC = 0; } wc_ecc_free(key); } } #ifdef WOLFSSL_SMALL_STACK XFREE(key, ssl->heap, DYNAMIC_TYPE_ECC); #endif #endif #ifndef NO_DH if (!ssl->options.haveDH && ssl->ctx->haveDH) { ssl->buffers.serverDH_P = ssl->ctx->serverDH_P; ssl->buffers.serverDH_G = ssl->ctx->serverDH_G; ssl->options.haveDH = 1; } #endif } if (InitSSL_Side(ssl, WOLFSSL_SERVER_END) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error initializing server side"); } } #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */ /* return true if connection established */ int wolfSSL_is_init_finished(WOLFSSL* ssl) { if (ssl == NULL) return 0; if (ssl->options.handShakeState == HANDSHAKE_DONE) return 1; return 0; } #ifdef OPENSSL_EXTRA void wolfSSL_CTX_set_tmp_rsa_callback(WOLFSSL_CTX* ctx, WOLFSSL_RSA*(*f)(WOLFSSL*, int, int)) { /* wolfSSL verifies all these internally */ (void)ctx; (void)f; } void wolfSSL_set_shutdown(WOLFSSL* ssl, int opt) { WOLFSSL_ENTER("wolfSSL_set_shutdown"); if(ssl==NULL) { WOLFSSL_MSG("Shutdown not set. ssl is null"); return; } ssl->options.sentNotify = (opt&WOLFSSL_SENT_SHUTDOWN) > 0; ssl->options.closeNotify = (opt&WOLFSSL_RECEIVED_SHUTDOWN) > 0; } long wolfSSL_CTX_get_options(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_options"); WOLFSSL_MSG("wolfSSL options are set through API calls and macros"); if(ctx == NULL) return BAD_FUNC_ARG; return ctx->mask; } #endif static long wolf_set_options(long old_op, long op); long wolfSSL_CTX_set_options(WOLFSSL_CTX* ctx, long opt) { WOLFSSL_ENTER("SSL_CTX_set_options"); if (ctx == NULL) return BAD_FUNC_ARG; ctx->mask = wolf_set_options(ctx->mask, opt); return ctx->mask; } #ifdef OPENSSL_EXTRA long wolfSSL_CTX_clear_options(WOLFSSL_CTX* ctx, long opt) { WOLFSSL_ENTER("SSL_CTX_clear_options"); if(ctx == NULL) return BAD_FUNC_ARG; ctx->mask &= ~opt; return ctx->mask; } int wolfSSL_set_rfd(WOLFSSL* ssl, int rfd) { WOLFSSL_ENTER("SSL_set_rfd"); ssl->rfd = rfd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; #ifdef WOLFSSL_DTLS if (ssl->options.dtls) { ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.rfd = rfd; } #endif return WOLFSSL_SUCCESS; } int wolfSSL_set_wfd(WOLFSSL* ssl, int wfd) { WOLFSSL_ENTER("SSL_set_wfd"); ssl->wfd = wfd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA */ #if !defined(NO_CERTS) && (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)) #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) /** * Implemented in a similar way that ngx_ssl_ocsp_validate does it when * SSL_get0_verified_chain is not available. * @param ssl WOLFSSL object to extract certs from * @return Stack of verified certs */ WOLF_STACK_OF(WOLFSSL_X509) *wolfSSL_get0_verified_chain(const WOLFSSL *ssl) { WOLF_STACK_OF(WOLFSSL_X509)* chain = NULL; WOLFSSL_X509_STORE_CTX* storeCtx = NULL; WOLFSSL_X509* peerCert = NULL; WOLFSSL_ENTER("wolfSSL_get0_verified_chain"); if (ssl == NULL || ssl->ctx == NULL) { WOLFSSL_MSG("Bad parameter"); return NULL; } peerCert = wolfSSL_get_peer_certificate((WOLFSSL*)ssl); if (peerCert == NULL) { WOLFSSL_MSG("wolfSSL_get_peer_certificate error"); return NULL; } /* wolfSSL_get_peer_certificate returns a copy. We want the internal * member so that we don't have to worry about free'ing it. We call * wolfSSL_get_peer_certificate so that we don't have to worry about * setting up the internal pointer. */ wolfSSL_X509_free(peerCert); peerCert = (WOLFSSL_X509*)&ssl->peerCert; chain = wolfSSL_get_peer_cert_chain(ssl); if (chain == NULL) { WOLFSSL_MSG("wolfSSL_get_peer_cert_chain error"); return NULL; } storeCtx = wolfSSL_X509_STORE_CTX_new(); if (storeCtx == NULL) { WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_new error"); return NULL; } if (wolfSSL_X509_STORE_CTX_init(storeCtx, SSL_STORE(ssl), peerCert, chain) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_init error"); wolfSSL_X509_STORE_CTX_free(storeCtx); return NULL; } if (wolfSSL_X509_verify_cert(storeCtx) <= 0) { WOLFSSL_MSG("wolfSSL_X509_verify_cert error"); wolfSSL_X509_STORE_CTX_free(storeCtx); return NULL; } wolfSSL_X509_STORE_CTX_free(storeCtx); return chain; } #endif /* SESSION_CERTS && OPENSSL_EXTRA */ WOLFSSL_X509_STORE* wolfSSL_CTX_get_cert_store(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return NULL; } if (ctx->x509_store_pt != NULL) return ctx->x509_store_pt; return &ctx->x509_store; } void wolfSSL_CTX_set_cert_store(WOLFSSL_CTX* ctx, WOLFSSL_X509_STORE* str) { WOLFSSL_ENTER("wolfSSL_CTX_set_cert_store"); if (ctx == NULL || str == NULL || ctx->cm == str->cm) { return; } if (wolfSSL_CertManager_up_ref(str->cm) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_CertManager_up_ref error"); return; } /* free cert manager if have one */ if (ctx->cm != NULL) { wolfSSL_CertManagerFree(ctx->cm); } ctx->cm = str->cm; ctx->x509_store.cm = str->cm; /* free existing store if it exists */ wolfSSL_X509_STORE_free(ctx->x509_store_pt); ctx->x509_store.cache = str->cache; ctx->x509_store_pt = str; /* take ownership of store and free it with CTX free */ ctx->cm->x509_store_p = ctx->x509_store_pt;/* CTX has onwership and free it with CTX free*/ } int wolfSSL_set0_verify_cert_store(WOLFSSL *ssl, WOLFSSL_X509_STORE* str) { WOLFSSL_ENTER("wolfSSL_set0_verify_cert_store"); if (ssl == NULL || str == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } /* NO-OP when setting existing store */ if (str == SSL_STORE(ssl)) return WOLFSSL_SUCCESS; /* free existing store if it exists */ wolfSSL_X509_STORE_free(ssl->x509_store_pt); if (str == ssl->ctx->x509_store_pt) ssl->x509_store_pt = NULL; /* if setting ctx store then just revert to using that instead */ else ssl->x509_store_pt = str; /* take ownership of store and free it with SSL free */ return WOLFSSL_SUCCESS; } int wolfSSL_set1_verify_cert_store(WOLFSSL *ssl, WOLFSSL_X509_STORE* str) { WOLFSSL_ENTER("wolfSSL_set1_verify_cert_store"); if (ssl == NULL || str == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } /* NO-OP when setting existing store */ if (str == SSL_STORE(ssl)) return WOLFSSL_SUCCESS; if (wolfSSL_X509_STORE_up_ref(str) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_X509_STORE_up_ref error"); return WOLFSSL_FAILURE; } /* free existing store if it exists */ wolfSSL_X509_STORE_free(ssl->x509_store_pt); if (str == ssl->ctx->x509_store_pt) ssl->x509_store_pt = NULL; /* if setting ctx store then just revert to using that instead */ else ssl->x509_store_pt = str; /* take ownership of store and free it with SSL free */ return WOLFSSL_SUCCESS; } #endif /* !NO_CERTS && (OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL) */ #ifdef WOLFSSL_ENCRYPTED_KEYS void wolfSSL_CTX_set_default_passwd_cb_userdata(WOLFSSL_CTX* ctx, void* userdata) { WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb_userdata"); if (ctx) ctx->passwd_userdata = userdata; } void wolfSSL_CTX_set_default_passwd_cb(WOLFSSL_CTX* ctx, wc_pem_password_cb* cb) { WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb"); if (ctx) ctx->passwd_cb = cb; } wc_pem_password_cb* wolfSSL_CTX_get_default_passwd_cb(WOLFSSL_CTX *ctx) { if (ctx == NULL || ctx->passwd_cb == NULL) { return NULL; } return ctx->passwd_cb; } void* wolfSSL_CTX_get_default_passwd_cb_userdata(WOLFSSL_CTX *ctx) { if (ctx == NULL) { return NULL; } return ctx->passwd_userdata; } #endif /* WOLFSSL_ENCRYPTED_KEYS */ #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) int wolfSSL_num_locks(void) { return 0; } void wolfSSL_set_locking_callback(void (*f)(int, int, const char*, int)) { WOLFSSL_ENTER("wolfSSL_set_locking_callback"); if (wc_SetMutexCb(f) != 0) { WOLFSSL_MSG("Error when setting mutex call back"); } } typedef unsigned long (idCb)(void); static idCb* inner_idCb = NULL; unsigned long wolfSSL_thread_id(void) { if (inner_idCb != NULL) { return inner_idCb(); } else { return 0; } } void wolfSSL_set_id_callback(unsigned long (*f)(void)) { inner_idCb = f; } unsigned long wolfSSL_ERR_get_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_get_error"); #ifdef WOLFSSL_HAVE_ERROR_QUEUE #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) { unsigned long ret = wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL); wc_RemoveErrorNode(-1); return ret; } #else { int ret = wc_PullErrorNode(NULL, NULL, NULL); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Error with pulling error node!"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; } #endif #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #ifdef WOLFSSL_HAVE_ERROR_QUEUE #ifndef NO_BIO /* print out and clear all errors */ void wolfSSL_ERR_print_errors(WOLFSSL_BIO* bio) { const char* file = NULL; const char* reason = NULL; int ret; int line = 0; char buf[WOLFSSL_MAX_ERROR_SZ * 2]; WOLFSSL_ENTER("wolfSSL_ERR_print_errors"); if (bio == NULL) { WOLFSSL_MSG("BIO passed in was null"); return; } do { ret = wc_PeekErrorNode(0, &file, &reason, &line); if (ret >= 0) { const char* r = wolfSSL_ERR_reason_error_string(0 - ret); XSNPRINTF(buf, sizeof(buf), "error:%d:wolfSSL library:%s:%s:%d\n", ret, r, file, line); wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf)); wc_RemoveErrorNode(0); } } while (ret >= 0); if (wolfSSL_BIO_write(bio, "", 1) != 1) { WOLFSSL_MSG("Issue writing final string terminator"); } } #endif /* !NO_BIO */ #endif /* WOLFSSL_HAVE_ERROR_QUEUE */ #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \ defined(HAVE_SECRET_CALLBACK) #if !defined(NO_WOLFSSL_SERVER) /* Return the amount of random bytes copied over or error case. * ssl : ssl struct after handshake * out : buffer to hold random bytes * outSz : either 0 (return max buffer sz) or size of out buffer */ size_t wolfSSL_get_server_random(const WOLFSSL *ssl, unsigned char *out, size_t outSz) { size_t size; /* return max size of buffer */ if (outSz == 0) { return RAN_LEN; } if (ssl == NULL || out == NULL) { return 0; } if (ssl->arrays == NULL) { WOLFSSL_MSG("Arrays struct not saved after handshake"); return 0; } if (outSz > RAN_LEN) { size = RAN_LEN; } else { size = outSz; } XMEMCPY(out, ssl->arrays->serverRandom, size); return size; } #endif /* !NO_WOLFSSL_SERVER */ #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || HAVE_SECRET_CALLBACK */ #ifdef OPENSSL_EXTRA #if !defined(NO_WOLFSSL_SERVER) /* Used to get the peer ephemeral public key sent during the connection * NOTE: currently wolfSSL_KeepHandshakeResources(WOLFSSL* ssl) must be called * before the ephemeral key is stored. * return WOLFSSL_SUCCESS on success */ int wolfSSL_get_server_tmp_key(const WOLFSSL* ssl, WOLFSSL_EVP_PKEY** pkey) { WOLFSSL_EVP_PKEY* ret = NULL; WOLFSSL_ENTER("wolfSSL_get_server_tmp_key"); if (ssl == NULL || pkey == NULL) { WOLFSSL_MSG("Bad argument passed in"); return WOLFSSL_FAILURE; } #ifdef HAVE_ECC if (ssl->peerEccKey != NULL) { unsigned char* der; const unsigned char* pt; unsigned int derSz = 0; int sz; PRIVATE_KEY_UNLOCK(); if (wc_ecc_export_x963(ssl->peerEccKey, NULL, &derSz) != LENGTH_ONLY_E) { WOLFSSL_MSG("get ecc der size failed"); PRIVATE_KEY_LOCK(); return WOLFSSL_FAILURE; } PRIVATE_KEY_LOCK(); derSz += MAX_SEQ_SZ + (2 * MAX_ALGO_SZ) + MAX_SEQ_SZ + TRAILING_ZERO; der = (unsigned char*)XMALLOC(derSz, ssl->heap, DYNAMIC_TYPE_KEY); if (der == NULL) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } if ((sz = wc_EccPublicKeyToDer(ssl->peerEccKey, der, derSz, 1)) <= 0) { WOLFSSL_MSG("get ecc der failed"); XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY); return WOLFSSL_FAILURE; } pt = der; /* in case pointer gets advanced */ ret = wolfSSL_d2i_PUBKEY(NULL, &pt, sz); XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY); } #endif *pkey = ret; #ifdef HAVE_ECC if (ret != NULL) return WOLFSSL_SUCCESS; else #endif return WOLFSSL_FAILURE; } #endif /* !NO_WOLFSSL_SERVER */ /** * This function checks if any compiled in protocol versions are * left enabled after calls to set_min or set_max API. * @param major The SSL/TLS major version * @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no * protocol versions are left enabled. */ static int CheckSslMethodVersion(byte major, unsigned long options) { int sanityConfirmed = 0; (void)options; switch (major) { #ifndef NO_TLS case SSLv3_MAJOR: #ifdef WOLFSSL_ALLOW_SSLV3 if (!(options & WOLFSSL_OP_NO_SSLv3)) { sanityConfirmed = 1; } #endif #ifndef NO_OLD_TLS if (!(options & WOLFSSL_OP_NO_TLSv1)) sanityConfirmed = 1; if (!(options & WOLFSSL_OP_NO_TLSv1_1)) sanityConfirmed = 1; #endif #ifndef WOLFSSL_NO_TLS12 if (!(options & WOLFSSL_OP_NO_TLSv1_2)) sanityConfirmed = 1; #endif #ifdef WOLFSSL_TLS13 if (!(options & WOLFSSL_OP_NO_TLSv1_3)) sanityConfirmed = 1; #endif break; #endif #ifdef WOLFSSL_DTLS case DTLS_MAJOR: sanityConfirmed = 1; break; #endif default: WOLFSSL_MSG("Invalid major version"); return WOLFSSL_FAILURE; } if (!sanityConfirmed) { WOLFSSL_MSG("All compiled in TLS versions disabled"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /** * protoVerTbl holds (D)TLS version numbers in ascending order. * Except DTLS versions, the newer version is located in the latter part of * the table. This table is referred by wolfSSL_CTX_set_min_proto_version and * wolfSSL_CTX_set_max_proto_version. */ static const int protoVerTbl[] = { SSL3_VERSION, TLS1_VERSION, TLS1_1_VERSION, TLS1_2_VERSION, TLS1_3_VERSION, DTLS1_VERSION, DTLS1_2_VERSION }; /* number of protocol versions listed in protoVerTbl */ #define NUMBER_OF_PROTOCOLS (sizeof(protoVerTbl)/sizeof(int)) /** * wolfSSL_CTX_set_min_proto_version attempts to set the minimum protocol * version to use by SSL objects created from this WOLFSSL_CTX. * This API guarantees that a version of SSL/TLS lower than specified * here will not be allowed. If the version specified is not compiled in * then this API sets the lowest compiled in protocol version. * This API also accept 0 as version, to set the minimum version automatically. * CheckSslMethodVersion() is called to check if any remaining protocol versions * are enabled. * @param ctx The wolfSSL CONTEXT factory for spawning SSL/TLS objects * @param version Any of the following * * 0 * * SSL3_VERSION * * TLS1_VERSION * * TLS1_1_VERSION * * TLS1_2_VERSION * * TLS1_3_VERSION * * DTLS1_VERSION * * DTLS1_2_VERSION * @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no * protocol versions are left enabled. */ static int Set_CTX_min_proto_version(WOLFSSL_CTX* ctx, int version) { WOLFSSL_ENTER("wolfSSL_CTX_set_min_proto_version_ex"); if (ctx == NULL) { return WOLFSSL_FAILURE; } switch (version) { #ifndef NO_TLS case SSL3_VERSION: #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) ctx->minDowngrade = SSLv3_MINOR; break; #endif case TLS1_VERSION: #ifdef WOLFSSL_ALLOW_TLSV10 ctx->minDowngrade = TLSv1_MINOR; break; #endif case TLS1_1_VERSION: #ifndef NO_OLD_TLS ctx->minDowngrade = TLSv1_1_MINOR; break; #endif case TLS1_2_VERSION: #ifndef WOLFSSL_NO_TLS12 ctx->minDowngrade = TLSv1_2_MINOR; break; #endif case TLS1_3_VERSION: #ifdef WOLFSSL_TLS13 ctx->minDowngrade = TLSv1_3_MINOR; break; #endif #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: #ifndef NO_OLD_TLS ctx->minDowngrade = DTLS_MINOR; break; #endif case DTLS1_2_VERSION: ctx->minDowngrade = DTLSv1_2_MINOR; break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } switch (version) { #ifndef NO_TLS case TLS1_3_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2); FALL_THROUGH; case TLS1_2_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1); FALL_THROUGH; case TLS1_1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1); FALL_THROUGH; case TLS1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_SSLv3); break; case SSL3_VERSION: case SSL2_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } return CheckSslMethodVersion(ctx->method->version.major, ctx->mask); } /* Sets the min protocol version allowed with WOLFSSL_CTX * returns WOLFSSL_SUCCESS on success */ int wolfSSL_CTX_set_min_proto_version(WOLFSSL_CTX* ctx, int version) { int ret; int proto = 0; int maxProto = 0; int i; int idx = 0; WOLFSSL_ENTER("wolfSSL_CTX_set_min_proto_version"); if (ctx == NULL) { return WOLFSSL_FAILURE; } if (version != 0) { proto = version; ctx->minProto = 0; /* turn min proto flag off */ for (i = 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) { if (protoVerTbl[i] == version) { break; } } } else { /* when 0 is specified as version, try to find out the min version */ for (i = 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) { ret = Set_CTX_min_proto_version(ctx, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) { proto = protoVerTbl[i]; ctx->minProto = 1; /* turn min proto flag on */ break; } } } /* check case where max > min , if so then clear the NO_* options * i is the index into the table for proto version used, see if the max * proto version index found is smaller */ maxProto = wolfSSL_CTX_get_max_proto_version(ctx); for (idx = 0; (unsigned)idx < NUMBER_OF_PROTOCOLS; idx++) { if (protoVerTbl[idx] == maxProto) { break; } } if (idx < i) { wolfSSL_CTX_clear_options(ctx, WOLFSSL_OP_NO_TLSv1 | WOLFSSL_OP_NO_TLSv1_1 | WOLFSSL_OP_NO_TLSv1_2 | WOLFSSL_OP_NO_TLSv1_3); } ret = Set_CTX_min_proto_version(ctx, proto); return ret; } /** * wolfSSL_CTX_set_max_proto_version attempts to set the maximum protocol * version to use by SSL objects created from this WOLFSSL_CTX. * This API guarantees that a version of SSL/TLS higher than specified * here will not be allowed. If the version specified is not compiled in * then this API sets the highest compiled in protocol version. * This API also accept 0 as version, to set the maximum version automatically. * CheckSslMethodVersion() is called to check if any remaining protocol versions * are enabled. * @param ctx The wolfSSL CONTEXT factory for spawning SSL/TLS objects * @param ver Any of the following * * 0 * * SSL3_VERSION * * TLS1_VERSION * * TLS1_1_VERSION * * TLS1_2_VERSION * * TLS1_3_VERSION * * DTLS1_VERSION * * DTLS1_2_VERSION * @return WOLFSSL_SUCCESS on valid settings and WOLFSSL_FAILURE when no * protocol versions are left enabled. */ static int Set_CTX_max_proto_version(WOLFSSL_CTX* ctx, int ver) { WOLFSSL_ENTER("Set_CTX_max_proto_version"); if (!ctx || !ctx->method) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } switch (ver) { case SSL2_VERSION: WOLFSSL_MSG("wolfSSL does not support SSLv2"); return WOLFSSL_FAILURE; #ifndef NO_TLS case SSL3_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1); FALL_THROUGH; case TLS1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1); FALL_THROUGH; case TLS1_1_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2); FALL_THROUGH; case TLS1_2_VERSION: wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_3); FALL_THROUGH; case TLS1_3_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } return CheckSslMethodVersion(ctx->method->version.major, ctx->mask); } /* Sets the max protocol version allowed with WOLFSSL_CTX * returns WOLFSSL_SUCCESS on success */ int wolfSSL_CTX_set_max_proto_version(WOLFSSL_CTX* ctx, int version) { int i; int ret = WOLFSSL_FAILURE; int minProto; WOLFSSL_ENTER("wolfSSL_CTX_set_max_proto_version"); if (ctx == NULL) { return ret; } /* clear out flags and reset min protocol version */ minProto = wolfSSL_CTX_get_min_proto_version(ctx); wolfSSL_CTX_clear_options(ctx, WOLFSSL_OP_NO_TLSv1 | WOLFSSL_OP_NO_TLSv1_1 | WOLFSSL_OP_NO_TLSv1_2 | WOLFSSL_OP_NO_TLSv1_3); wolfSSL_CTX_set_min_proto_version(ctx, minProto); if (version != 0) { ctx->maxProto = 0; /* turn max proto flag off */ return Set_CTX_max_proto_version(ctx, version); } /* when 0 is specified as version, try to find out the min version from * the bottom to top of the protoverTbl. */ for (i = NUMBER_OF_PROTOCOLS -1; i >= 0; i--) { ret = Set_CTX_max_proto_version(ctx, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) { ctx->maxProto = 1; /* turn max proto flag on */ break; } } return ret; } static int Set_SSL_min_proto_version(WOLFSSL* ssl, int ver) { WOLFSSL_ENTER("Set_SSL_min_proto_version"); if (ssl == NULL) { return WOLFSSL_FAILURE; } switch (ver) { #ifndef NO_TLS case SSL3_VERSION: #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) ssl->options.minDowngrade = SSLv3_MINOR; break; #endif case TLS1_VERSION: #ifdef WOLFSSL_ALLOW_TLSV10 ssl->options.minDowngrade = TLSv1_MINOR; break; #endif case TLS1_1_VERSION: #ifndef NO_OLD_TLS ssl->options.minDowngrade = TLSv1_1_MINOR; break; #endif case TLS1_2_VERSION: #ifndef WOLFSSL_NO_TLS12 ssl->options.minDowngrade = TLSv1_2_MINOR; break; #endif case TLS1_3_VERSION: #ifdef WOLFSSL_TLS13 ssl->options.minDowngrade = TLSv1_3_MINOR; break; #endif #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: #ifndef NO_OLD_TLS ssl->options.minDowngrade = DTLS_MINOR; break; #endif case DTLS1_2_VERSION: ssl->options.minDowngrade = DTLSv1_2_MINOR; break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } switch (ver) { #ifndef NO_TLS case TLS1_3_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_2; FALL_THROUGH; case TLS1_2_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_1; FALL_THROUGH; case TLS1_1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1; FALL_THROUGH; case TLS1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_SSLv3; break; case SSL3_VERSION: case SSL2_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } return CheckSslMethodVersion(ssl->version.major, ssl->options.mask); } int wolfSSL_set_min_proto_version(WOLFSSL* ssl, int version) { int i; int ret = WOLFSSL_FAILURE;; WOLFSSL_ENTER("wolfSSL_set_min_proto_version"); if (ssl == NULL) { return WOLFSSL_FAILURE; } if (version != 0) { return Set_SSL_min_proto_version(ssl, version); } /* when 0 is specified as version, try to find out the min version */ for (i= 0; (unsigned)i < NUMBER_OF_PROTOCOLS; i++) { ret = Set_SSL_min_proto_version(ssl, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) break; } return ret; } static int Set_SSL_max_proto_version(WOLFSSL* ssl, int ver) { WOLFSSL_ENTER("Set_SSL_max_proto_version"); if (!ssl) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } switch (ver) { case SSL2_VERSION: WOLFSSL_MSG("wolfSSL does not support SSLv2"); return WOLFSSL_FAILURE; #ifndef NO_TLS case SSL3_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1; FALL_THROUGH; case TLS1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_1; FALL_THROUGH; case TLS1_1_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_2; FALL_THROUGH; case TLS1_2_VERSION: ssl->options.mask |= WOLFSSL_OP_NO_TLSv1_3; FALL_THROUGH; case TLS1_3_VERSION: /* Nothing to do here */ break; #endif #ifdef WOLFSSL_DTLS case DTLS1_VERSION: case DTLS1_2_VERSION: break; #endif default: WOLFSSL_MSG("Unrecognized protocol version or not compiled in"); return WOLFSSL_FAILURE; } return CheckSslMethodVersion(ssl->version.major, ssl->options.mask); } int wolfSSL_set_max_proto_version(WOLFSSL* ssl, int version) { int i; int ret = WOLFSSL_FAILURE;; WOLFSSL_ENTER("wolfSSL_set_max_proto_version"); if (ssl == NULL) { return WOLFSSL_FAILURE; } if (version != 0) { return Set_SSL_max_proto_version(ssl, version); } /* when 0 is specified as version, try to find out the min version from * the bottom to top of the protoverTbl. */ for (i = NUMBER_OF_PROTOCOLS -1; i >= 0; i--) { ret = Set_SSL_max_proto_version(ssl, protoVerTbl[i]); if (ret == WOLFSSL_SUCCESS) break; } return ret; } static int GetMinProtoVersion(int minDowngrade) { int ret; switch (minDowngrade) { #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_SSLV3 case SSLv3_MINOR: ret = SSL3_VERSION; break; #endif #ifdef WOLFSSL_ALLOW_TLSV10 case TLSv1_MINOR: ret = TLS1_VERSION; break; #endif case TLSv1_1_MINOR: ret = TLS1_1_VERSION; break; #endif #ifndef WOLFSSL_NO_TLS12 case TLSv1_2_MINOR: ret = TLS1_2_VERSION; break; #endif #ifdef WOLFSSL_TLS13 case TLSv1_3_MINOR: ret = TLS1_3_VERSION; break; #endif default: ret = 0; break; } return ret; } WOLFSSL_API int wolfSSL_CTX_get_min_proto_version(WOLFSSL_CTX* ctx) { int ret = 0; WOLFSSL_ENTER("wolfSSL_CTX_get_min_proto_version"); if (ctx != NULL) { if (ctx->minProto) { ret = 0; } else { ret = GetMinProtoVersion(ctx->minDowngrade); } } else { ret = GetMinProtoVersion(WOLFSSL_MIN_DOWNGRADE); } WOLFSSL_LEAVE("wolfSSL_CTX_get_min_proto_version", ret); return ret; } /* returns the maximum allowed protocol version given the 'options' used * returns WOLFSSL_FATAL_ERROR on no match */ static int GetMaxProtoVersion(long options) { #ifdef WOLFSSL_TLS13 if (!(options & WOLFSSL_OP_NO_TLSv1_3)) return TLS1_3_VERSION; #endif #ifndef WOLFSSL_NO_TLS12 if (!(options & WOLFSSL_OP_NO_TLSv1_2)) return TLS1_2_VERSION; #endif #ifndef NO_OLD_TLS if (!(options & WOLFSSL_OP_NO_TLSv1_1)) return TLS1_1_VERSION; #ifdef WOLFSSL_ALLOW_TLSV10 if (!(options & WOLFSSL_OP_NO_TLSv1)) return TLS1_VERSION; #endif #ifdef WOLFSSL_ALLOW_SSLV3 if (!(options & WOLFSSL_OP_NO_SSLv3)) return SSL3_VERSION; #endif #endif return WOLFSSL_FATAL_ERROR; } /* returns the maximum protocol version for 'ctx' */ int wolfSSL_CTX_get_max_proto_version(WOLFSSL_CTX* ctx) { int ret = 0; long options = 0; /* default to nothing set */ WOLFSSL_ENTER("wolfSSL_CTX_get_max_proto_version"); if (ctx != NULL) { options = wolfSSL_CTX_get_options(ctx); } if ((ctx != NULL) && ctx->maxProto) { ret = 0; } else { ret = GetMaxProtoVersion(options); } WOLFSSL_LEAVE("wolfSSL_CTX_get_max_proto_version", ret); if (ret == WOLFSSL_FATAL_ERROR) { WOLFSSL_MSG("Error getting max proto version"); ret = 0; /* setting ret to 0 to match compat return */ } return ret; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \ defined(HAVE_SECRET_CALLBACK) #if !defined(NO_WOLFSSL_CLIENT) /* Return the amount of random bytes copied over or error case. * ssl : ssl struct after handshake * out : buffer to hold random bytes * outSz : either 0 (return max buffer sz) or size of out buffer */ size_t wolfSSL_get_client_random(const WOLFSSL* ssl, unsigned char* out, size_t outSz) { size_t size; /* return max size of buffer */ if (outSz == 0) { return RAN_LEN; } if (ssl == NULL || out == NULL) { return 0; } if (ssl->arrays == NULL) { WOLFSSL_MSG("Arrays struct not saved after handshake"); return 0; } if (outSz > RAN_LEN) { size = RAN_LEN; } else { size = outSz; } XMEMCPY(out, ssl->arrays->clientRandom, size); return size; } #endif /* !NO_WOLFSSL_CLIENT */ #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || HAVE_SECRET_CALLBACK */ #ifdef OPENSSL_EXTRA unsigned long wolfSSLeay(void) { return SSLEAY_VERSION_NUMBER; } unsigned long wolfSSL_OpenSSL_version_num(void) { return OPENSSL_VERSION_NUMBER; } const char* wolfSSLeay_version(int type) { (void)type; #if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L return wolfSSL_OpenSSL_version(type); #else return wolfSSL_OpenSSL_version(); #endif } #ifndef NO_MD5 int wolfSSL_MD5_Init(WOLFSSL_MD5_CTX* md5) { int ret; typedef char md5_test[sizeof(MD5_CTX) >= sizeof(wc_Md5) ? 1 : -1]; (void)sizeof(md5_test); WOLFSSL_ENTER("MD5_Init"); ret = wc_InitMd5((wc_Md5*)md5); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_MD5_Update(WOLFSSL_MD5_CTX* md5, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("wolfSSL_MD5_Update"); ret = wc_Md5Update((wc_Md5*)md5, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_MD5_Final(byte* output, WOLFSSL_MD5_CTX* md5) { int ret; WOLFSSL_ENTER("MD5_Final"); ret = wc_Md5Final((wc_Md5*)md5, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Md5Free((wc_Md5*)md5); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } /* Apply MD5 transformation to the data */ int wolfSSL_MD5_Transform(WOLFSSL_MD5_CTX* md5, const unsigned char* data) { int ret; WOLFSSL_ENTER("MD5_Transform"); /* sanity check */ if (md5 == NULL || data == NULL) { return 0; } #if defined(BIG_ENDIAN_ORDER) { ByteReverseWords((word32*)data, (word32*)data, WC_MD5_BLOCK_SIZE); } #endif ret = wc_Md5Transform((wc_Md5*)md5, data); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; else return 0; } unsigned char *wolfSSL_MD5(const unsigned char* data, size_t len, unsigned char* hash) { static unsigned char out[WC_MD5_DIGEST_SIZE]; WOLFSSL_ENTER("wolfSSL_MD5"); if (hash == NULL) hash = out; if (wc_Md5Hash(data, (word32)len, hash) != 0) { WOLFSSL_MSG("wc_Md5Hash error"); return NULL; } return hash; } #endif /* !NO_MD5 */ #ifndef NO_SHA int wolfSSL_SHA_Init(WOLFSSL_SHA_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA_CTX) >= sizeof(wc_Sha) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA_Init"); ret = wc_InitSha((wc_Sha*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA_Update(WOLFSSL_SHA_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA_Update"); ret = wc_ShaUpdate((wc_Sha*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA_Final(byte* output, WOLFSSL_SHA_CTX* sha) { int ret; WOLFSSL_ENTER("SHA_Final"); ret = wc_ShaFinal((wc_Sha*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_ShaFree((wc_Sha*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #if defined(OPENSSL_EXTRA) #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION > 2))) /* Apply SHA1 transformation to the data */ int wolfSSL_SHA_Transform(WOLFSSL_SHA_CTX* sha, const unsigned char* data) { int ret; WOLFSSL_ENTER("SHA_Transform"); /* sanity check */ if (sha == NULL || data == NULL) { return 0; } #if defined(LITTLE_ENDIAN_ORDER) { ByteReverseWords((word32*)data, (word32*)data, WC_SHA_BLOCK_SIZE); } #endif ret = wc_ShaTransform((wc_Sha*)sha, data); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; else return 0; } #endif #endif int wolfSSL_SHA1_Init(WOLFSSL_SHA_CTX* sha) { WOLFSSL_ENTER("SHA1_Init"); return SHA_Init(sha); } int wolfSSL_SHA1_Update(WOLFSSL_SHA_CTX* sha, const void* input, unsigned long sz) { WOLFSSL_ENTER("SHA1_Update"); return SHA_Update(sha, input, sz); } int wolfSSL_SHA1_Final(byte* output, WOLFSSL_SHA_CTX* sha) { WOLFSSL_ENTER("SHA1_Final"); return SHA_Final(output, sha); } #if defined(OPENSSL_EXTRA) #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION > 2))) /* Apply SHA1 transformation to the data */ int wolfSSL_SHA1_Transform(WOLFSSL_SHA_CTX* sha, const unsigned char* data) { WOLFSSL_ENTER("SHA1_Transform"); return (wolfSSL_SHA_Transform(sha, data)); } #endif #endif #endif /* !NO_SHA */ #ifdef WOLFSSL_SHA224 int wolfSSL_SHA224_Init(WOLFSSL_SHA224_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA224_CTX) >= sizeof(wc_Sha224) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA224_Init"); ret = wc_InitSha224((wc_Sha224*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA224_Update(WOLFSSL_SHA224_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA224_Update"); ret = wc_Sha224Update((wc_Sha224*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA224_Final(byte* output, WOLFSSL_SHA224_CTX* sha) { int ret; WOLFSSL_ENTER("SHA224_Final"); ret = wc_Sha224Final((wc_Sha224*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha224Free((wc_Sha224*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_SHA224 */ int wolfSSL_SHA256_Init(WOLFSSL_SHA256_CTX* sha256) { int ret; typedef char sha_test[sizeof(SHA256_CTX) >= sizeof(wc_Sha256) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA256_Init"); ret = wc_InitSha256((wc_Sha256*)sha256); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA256_Update(WOLFSSL_SHA256_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA256_Update"); ret = wc_Sha256Update((wc_Sha256*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA256_Final(byte* output, WOLFSSL_SHA256_CTX* sha) { int ret; WOLFSSL_ENTER("SHA256_Final"); ret = wc_Sha256Final((wc_Sha256*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha256Free((wc_Sha256*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #if defined(OPENSSL_EXTRA) #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION > 2))) && \ !defined(WOLFSSL_DEVCRYPTO_HASH) && !defined(WOLFSSL_AFALG_HASH) /* Apply SHA256 transformation to the data */ int wolfSSL_SHA256_Transform(WOLFSSL_SHA256_CTX* sha256, const unsigned char* data) { int ret; WOLFSSL_ENTER("SHA256_Transform"); /* sanity check */ if (sha256 == NULL || data == NULL) { return 0; } #if defined(LITTLE_ENDIAN_ORDER) { ByteReverseWords((word32*)data, (word32*)data, WC_SHA256_BLOCK_SIZE); } #endif ret = wc_Sha256Transform((wc_Sha256*)sha256, data); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; else return 0; } #endif #endif #ifdef WOLFSSL_SHA384 int wolfSSL_SHA384_Init(WOLFSSL_SHA384_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA384_CTX) >= sizeof(wc_Sha384) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA384_Init"); ret = wc_InitSha384((wc_Sha384*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA384_Update(WOLFSSL_SHA384_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA384_Update"); ret = wc_Sha384Update((wc_Sha384*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA384_Final(byte* output, WOLFSSL_SHA384_CTX* sha) { int ret; WOLFSSL_ENTER("SHA384_Final"); ret = wc_Sha384Final((wc_Sha384*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha384Free((wc_Sha384*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 int wolfSSL_SHA512_Init(WOLFSSL_SHA512_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA512_CTX) >= sizeof(wc_Sha512) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA512_Init"); ret = wc_InitSha512((wc_Sha512*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA512_Update(WOLFSSL_SHA512_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA512_Update"); ret = wc_Sha512Update((wc_Sha512*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA512_Final(byte* output, WOLFSSL_SHA512_CTX* sha) { int ret; WOLFSSL_ENTER("SHA512_Final"); ret = wc_Sha512Final((wc_Sha512*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha512Free((wc_Sha512*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION > 2))) /* Apply SHA512 transformation to the data */ int wolfSSL_SHA512_Transform(WOLFSSL_SHA512_CTX* sha512, const unsigned char* data) { int ret; WOLFSSL_ENTER("SHA512_Transform"); /* sanity check */ if (sha512 == NULL || data == NULL) { return WOLFSSL_FAILURE; } ret = wc_Sha512Transform((wc_Sha512*)sha512, data); /* return 1 on success, 0 otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; else return WOLFSSL_FAILURE; } #endif /* !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) */ #if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) #if !defined(WOLFSSL_NOSHA512_224) int wolfSSL_SHA512_224_Init(WOLFSSL_SHA512_224_CTX* sha) { int ret; WOLFSSL_ENTER("wolfSSL_SHA512_224_Init"); ret = wc_InitSha512_224((wc_Sha512*)sha); /* return WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_SHA512_224_Update(WOLFSSL_SHA512_224_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("wolfSSL_SHA512_224_Update"); ret = wc_Sha512_224Update((wc_Sha512*)sha, (const byte*)input, (word32)sz); /* return WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_SHA512_224_Final(byte* output, WOLFSSL_SHA512_224_CTX* sha) { int ret; WOLFSSL_ENTER("wolfSSL_SHA512_224_Final"); ret = wc_Sha512_224Final((wc_Sha512*)sha, output); /* return WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION > 2))) /* Apply SHA512 transformation to the data */ int wolfSSL_SHA512_224_Transform(WOLFSSL_SHA512_CTX* sha512, const unsigned char* data) { int ret; WOLFSSL_ENTER("SHA512_224_Transform"); /* sanity check */ if (sha512 == NULL || data == NULL) { return WOLFSSL_FAILURE; } ret = wc_Sha512_224Transform((wc_Sha512*)sha512, data); /* return 1 on success, 0 otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; else return WOLFSSL_FAILURE; } #endif /* !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) */ #endif /* !WOLFSSL_NOSHA512_224 */ #if !defined(WOLFSSL_NOSHA512_256) int wolfSSL_SHA512_256_Init(WOLFSSL_SHA512_256_CTX* sha) { int ret; WOLFSSL_ENTER("wolfSSL_SHA512_256_Init"); ret = wc_InitSha512_256((wc_Sha512*)sha); /* return WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_SHA512_256_Update(WOLFSSL_SHA512_256_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("wolfSSL_SHA512_256_Update"); ret = wc_Sha512_256Update((wc_Sha512*)sha, (const byte*)input, (word32)sz); /* return WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_SHA512_256_Final(byte* output, WOLFSSL_SHA512_256_CTX* sha) { int ret; WOLFSSL_ENTER("wolfSSL_SHA512_256_Final"); ret = wc_Sha512_256Final((wc_Sha512*)sha, output); /* return WOLFSSL_SUCCESS on success, 0 otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \ (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION > 2))) /* Apply SHA512 transformation to the data */ int wolfSSL_SHA512_256_Transform(WOLFSSL_SHA512_CTX* sha512, const unsigned char* data) { int ret; WOLFSSL_ENTER("SHA512_256_Transform"); /* sanity check */ if (sha512 == NULL || data == NULL) { return WOLFSSL_FAILURE; } ret = wc_Sha512_256Transform((wc_Sha512*)sha512, data); /* return 1 on success, 0 otherwise */ if (ret == 0) return WOLFSSL_SUCCESS; else return WOLFSSL_FAILURE; } #endif /* !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \ (HAVE_FIPS_VERSION > 2)) */ #endif /* !WOLFSSL_NOSHA512_256 */ #endif /* !HAVE_FIPS && !HAVE_SELFTEST */ #endif /* WOLFSSL_SHA512 */ #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 int wolfSSL_SHA3_224_Init(WOLFSSL_SHA3_224_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA3_224_CTX) >= sizeof(wc_Sha3) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA3_224_Init"); ret = wc_InitSha3_224((wc_Sha3*)sha, NULL, INVALID_DEVID); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_224_Update(WOLFSSL_SHA3_224_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA3_224_Update"); ret = wc_Sha3_224_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_224_Final(byte* output, WOLFSSL_SHA3_224_CTX* sha) { int ret; WOLFSSL_ENTER("SHA3_224_Final"); ret = wc_Sha3_224_Final((wc_Sha3*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha3_224_Free((wc_Sha3*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_NOSHA3_224 */ #ifndef WOLFSSL_NOSHA3_256 int wolfSSL_SHA3_256_Init(WOLFSSL_SHA3_256_CTX* sha3_256) { int ret; typedef char sha_test[sizeof(SHA3_256_CTX) >= sizeof(wc_Sha3) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA3_256_Init"); ret = wc_InitSha3_256((wc_Sha3*)sha3_256, NULL, INVALID_DEVID); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_256_Update(WOLFSSL_SHA3_256_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA3_256_Update"); ret = wc_Sha3_256_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_256_Final(byte* output, WOLFSSL_SHA3_256_CTX* sha) { int ret; WOLFSSL_ENTER("SHA3_256_Final"); ret = wc_Sha3_256_Final((wc_Sha3*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha3_256_Free((wc_Sha3*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_NOSHA3_256 */ int wolfSSL_SHA3_384_Init(WOLFSSL_SHA3_384_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA3_384_CTX) >= sizeof(wc_Sha3) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA3_384_Init"); ret = wc_InitSha3_384((wc_Sha3*)sha, NULL, INVALID_DEVID); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_384_Update(WOLFSSL_SHA3_384_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA3_384_Update"); ret = wc_Sha3_384_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_384_Final(byte* output, WOLFSSL_SHA3_384_CTX* sha) { int ret; WOLFSSL_ENTER("SHA3_384_Final"); ret = wc_Sha3_384_Final((wc_Sha3*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha3_384_Free((wc_Sha3*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #ifndef WOLFSSL_NOSHA3_512 int wolfSSL_SHA3_512_Init(WOLFSSL_SHA3_512_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA3_512_CTX) >= sizeof(wc_Sha3) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA3_512_Init"); ret = wc_InitSha3_512((wc_Sha3*)sha, NULL, INVALID_DEVID); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_512_Update(WOLFSSL_SHA3_512_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA3_512_Update"); ret = wc_Sha3_512_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA3_512_Final(byte* output, WOLFSSL_SHA3_512_CTX* sha) { int ret; WOLFSSL_ENTER("SHA3_512_Final"); ret = wc_Sha3_512_Final((wc_Sha3*)sha, output); /* have to actually free the resources (if any) here, because the * OpenSSL API doesn't include SHA*_Free(). */ wc_Sha3_512_Free((wc_Sha3*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_NOSHA3_512 */ #endif /* WOLFSSL_SHA3 */ unsigned char* wolfSSL_HMAC(const WOLFSSL_EVP_MD* evp_md, const void* key, int key_len, const unsigned char* d, int n, unsigned char* md, unsigned int* md_len) { int type; int mdlen; unsigned char* ret = NULL; #ifdef WOLFSSL_SMALL_STACK Hmac* hmac = NULL; #else Hmac hmac[1]; #endif void* heap = NULL; WOLFSSL_ENTER("wolfSSL_HMAC"); if (!md) { WOLFSSL_MSG("Static buffer not supported, pass in md buffer"); return NULL; /* no static buffer support */ } #ifndef NO_MD5 if (XSTRCMP(evp_md, "MD5") == 0) { type = WC_MD5; mdlen = WC_MD5_DIGEST_SIZE; } else #endif #ifdef WOLFSSL_SHA224 if (XSTRCMP(evp_md, "SHA224") == 0) { type = WC_SHA224; mdlen = WC_SHA224_DIGEST_SIZE; } else #endif #ifndef NO_SHA256 if (XSTRCMP(evp_md, "SHA256") == 0) { type = WC_SHA256; mdlen = WC_SHA256_DIGEST_SIZE; } else #endif #ifdef WOLFSSL_SHA384 if (XSTRCMP(evp_md, "SHA384") == 0) { type = WC_SHA384; mdlen = WC_SHA384_DIGEST_SIZE; } else #endif #ifdef WOLFSSL_SHA512 if (XSTRCMP(evp_md, "SHA512") == 0) { type = WC_SHA512; mdlen = WC_SHA512_DIGEST_SIZE; } else #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 if (XSTRCMP(evp_md, "SHA3_224") == 0) { type = WC_SHA3_224; mdlen = WC_SHA3_224_DIGEST_SIZE; } else #endif #ifndef WOLFSSL_NOSHA3_256 if (XSTRCMP(evp_md, "SHA3_256") == 0) { type = WC_SHA3_256; mdlen = WC_SHA3_256_DIGEST_SIZE; } else #endif if (XSTRCMP(evp_md, "SHA3_384") == 0) { type = WC_SHA3_384; mdlen = WC_SHA3_384_DIGEST_SIZE; } else #ifndef WOLFSSL_NOSHA3_512 if (XSTRCMP(evp_md, "SHA3_512") == 0) { type = WC_SHA3_512; mdlen = WC_SHA3_512_DIGEST_SIZE; } else #endif #endif #ifndef NO_SHA if (XSTRCMP(evp_md, "SHA") == 0) { type = WC_SHA; mdlen = WC_SHA_DIGEST_SIZE; } else #endif { return NULL; } #ifdef WOLFSSL_SMALL_STACK hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC); if (hmac == NULL) return NULL; #endif if (wc_HmacInit(hmac, heap, INVALID_DEVID) == 0) { if (wc_HmacSetKey(hmac, type, (const byte*)key, key_len) == 0) { if (wc_HmacUpdate(hmac, d, n) == 0) { if (wc_HmacFinal(hmac, md) == 0) { if (md_len) *md_len = mdlen; ret = md; } } } wc_HmacFree(hmac); } #ifdef WOLFSSL_SMALL_STACK XFREE(hmac, heap, DYNAMIC_TYPE_HMAC); #endif (void)evp_md; return ret; } #ifndef NO_DES3 /* 0 on ok */ int wolfSSL_DES_key_sched(WOLFSSL_const_DES_cblock* key, WOLFSSL_DES_key_schedule* schedule) { WOLFSSL_ENTER("wolfSSL_DES_key_sched"); if (key == NULL || schedule == NULL) { WOLFSSL_MSG("Null argument passed in"); } else { XMEMCPY(schedule, key, sizeof(WOLFSSL_const_DES_cblock)); } return 0; } /* intended to behave similar to Kerberos mit_des_cbc_cksum * return the last 4 bytes of cipher text */ WOLFSSL_DES_LONG wolfSSL_DES_cbc_cksum(const unsigned char* in, WOLFSSL_DES_cblock* out, long length, WOLFSSL_DES_key_schedule* sc, WOLFSSL_const_DES_cblock* iv) { WOLFSSL_DES_LONG ret; unsigned char* tmp; unsigned char* data = (unsigned char*)in; long dataSz = length; byte dynamicFlag = 0; /* when padding the buffer created needs free'd */ WOLFSSL_ENTER("wolfSSL_DES_cbc_cksum"); if (in == NULL || out == NULL || sc == NULL || iv == NULL) { WOLFSSL_MSG("Bad argument passed in"); return 0; } /* if input length is not a multiple of DES_BLOCK_SIZE pad with 0s */ if (dataSz % DES_BLOCK_SIZE) { dataSz += DES_BLOCK_SIZE - (dataSz % DES_BLOCK_SIZE); data = (unsigned char*)XMALLOC(dataSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (data == NULL) { WOLFSSL_MSG("Issue creating temporary buffer"); return 0; } dynamicFlag = 1; /* set to free buffer at end */ XMEMCPY(data, in, length); XMEMSET(data + length, 0, dataSz - length); /* padding */ } tmp = (unsigned char*)XMALLOC(dataSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) { WOLFSSL_MSG("Issue creating temporary buffer"); if (dynamicFlag == 1) { XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return 0; } wolfSSL_DES_cbc_encrypt(data, tmp, dataSz, sc, (WOLFSSL_DES_cblock*)iv, 1); XMEMCPY((unsigned char*)out, tmp + (dataSz - DES_BLOCK_SIZE), DES_BLOCK_SIZE); ret = (((*((unsigned char*)out + 4) & 0xFF) << 24)| ((*((unsigned char*)out + 5) & 0xFF) << 16)| ((*((unsigned char*)out + 6) & 0xFF) << 8) | (*((unsigned char*)out + 7) & 0xFF)); XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (dynamicFlag == 1) { XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return ret; } void wolfSSL_DES_cbc_encrypt(const unsigned char* input, unsigned char* output, long length, WOLFSSL_DES_key_schedule* schedule, WOLFSSL_DES_cblock* ivec, int enc) { Des myDes; byte lastblock[DES_BLOCK_SIZE]; int lb_sz; long blk; WOLFSSL_ENTER("DES_cbc_encrypt"); /* OpenSSL compat, no ret */ if (wc_Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc) != 0) { WOLFSSL_MSG("wc_Des_SetKey return error."); return; } lb_sz = length%DES_BLOCK_SIZE; blk = length/DES_BLOCK_SIZE; if (enc == DES_ENCRYPT){ wc_Des_CbcEncrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ XMEMSET(lastblock, 0, DES_BLOCK_SIZE); XMEMCPY(lastblock, input+length-lb_sz, lb_sz); wc_Des_CbcEncrypt(&myDes, output+blk*DES_BLOCK_SIZE, lastblock, (word32)DES_BLOCK_SIZE); } } else { wc_Des_CbcDecrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ wc_Des_CbcDecrypt(&myDes, lastblock, input+length-lb_sz, (word32)DES_BLOCK_SIZE); XMEMCPY(output+length-lb_sz, lastblock, lb_sz); } } } /* WOLFSSL_DES_key_schedule is a unsigned char array of size 8 */ void wolfSSL_DES_ede3_cbc_encrypt(const unsigned char* input, unsigned char* output, long sz, WOLFSSL_DES_key_schedule* ks1, WOLFSSL_DES_key_schedule* ks2, WOLFSSL_DES_key_schedule* ks3, WOLFSSL_DES_cblock* ivec, int enc) { int ret; Des3 des; byte key[24];/* EDE uses 24 size key */ byte lastblock[DES_BLOCK_SIZE]; int lb_sz; long blk; WOLFSSL_ENTER("wolfSSL_DES_ede3_cbc_encrypt"); XMEMSET(key, 0, sizeof(key)); XMEMCPY(key, *ks1, DES_BLOCK_SIZE); XMEMCPY(&key[DES_BLOCK_SIZE], *ks2, DES_BLOCK_SIZE); XMEMCPY(&key[DES_BLOCK_SIZE * 2], *ks3, DES_BLOCK_SIZE); lb_sz = sz%DES_BLOCK_SIZE; blk = sz/DES_BLOCK_SIZE; /* OpenSSL compat, no ret */ (void)wc_Des3Init(&des, NULL, INVALID_DEVID); if (enc == DES_ENCRYPT) { if (wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_ENCRYPTION) == 0) { ret = wc_Des3_CbcEncrypt(&des, output, input, (word32)blk*DES_BLOCK_SIZE); #if defined(WOLFSSL_ASYNC_CRYPT) ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE); #endif (void)ret; /* ignore return codes for processing */ if(lb_sz){ XMEMSET(lastblock, 0, DES_BLOCK_SIZE); XMEMCPY(lastblock, input+sz-lb_sz, lb_sz); ret = wc_Des3_CbcEncrypt(&des, output+blk*DES_BLOCK_SIZE, lastblock, (word32)DES_BLOCK_SIZE); #if defined(WOLFSSL_ASYNC_CRYPT) ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE); #endif (void)ret; /* ignore return codes for processing */ } } } else { if (wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_DECRYPTION) == 0) { ret = wc_Des3_CbcDecrypt(&des, output, input, (word32)blk*DES_BLOCK_SIZE); #if defined(WOLFSSL_ASYNC_CRYPT) ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE); #endif (void)ret; /* ignore return codes for processing */ if(lb_sz){ ret = wc_Des3_CbcDecrypt(&des, lastblock, input+sz-lb_sz, (word32)DES_BLOCK_SIZE); #if defined(WOLFSSL_ASYNC_CRYPT) ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE); #endif (void)ret; /* ignore return codes for processing */ XMEMCPY(output+sz-lb_sz, lastblock, lb_sz); } } } wc_Des3Free(&des); } /* correctly sets ivec for next call */ void wolfSSL_DES_ncbc_encrypt(const unsigned char* input, unsigned char* output, long length, WOLFSSL_DES_key_schedule* schedule, WOLFSSL_DES_cblock* ivec, int enc) { Des myDes; byte lastblock[DES_BLOCK_SIZE]; int lb_sz; long idx = length; long blk; WOLFSSL_ENTER("DES_ncbc_encrypt"); /* OpenSSL compat, no ret */ if (wc_Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc) != 0) { WOLFSSL_MSG("wc_Des_SetKey return error."); return; } lb_sz = length%DES_BLOCK_SIZE; blk = length/DES_BLOCK_SIZE; idx -= sizeof(DES_cblock); if (lb_sz) { idx += DES_BLOCK_SIZE - lb_sz; } if (enc == DES_ENCRYPT){ wc_Des_CbcEncrypt(&myDes, output, input, (word32)blk * DES_BLOCK_SIZE); if (lb_sz){ XMEMSET(lastblock, 0, DES_BLOCK_SIZE); XMEMCPY(lastblock, input+length-lb_sz, lb_sz); wc_Des_CbcEncrypt(&myDes, output + blk * DES_BLOCK_SIZE, lastblock, (word32)DES_BLOCK_SIZE); } XMEMCPY(ivec, output + idx, sizeof(DES_cblock)); } else { WOLFSSL_DES_cblock tmp; XMEMCPY(tmp, input + idx, sizeof(DES_cblock)); wc_Des_CbcDecrypt(&myDes, output, input, (word32)blk * DES_BLOCK_SIZE); if (lb_sz){ wc_Des_CbcDecrypt(&myDes, lastblock, input + length - lb_sz, (word32)DES_BLOCK_SIZE); XMEMCPY(output+length-lb_sz, lastblock, lb_sz); } XMEMCPY(ivec, tmp, sizeof(WOLFSSL_DES_cblock)); } } #endif /* NO_DES3 */ void wolfSSL_ERR_free_strings(void) { /* handled internally */ } void wolfSSL_cleanup_all_ex_data(void) { /* nothing to do here */ } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE) void wolfSSL_ERR_clear_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_clear_error"); wc_ClearErrorNodes(); } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) int wolfSSL_clear(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_clear"); if (ssl == NULL) { return WOLFSSL_FAILURE; } if (!ssl->options.handShakeDone) { /* Only reset the session if we didn't complete a handshake */ wolfSSL_SESSION_free(ssl->session); ssl->session = wolfSSL_NewSession(ssl->heap); if (ssl->session == NULL) { return WOLFSSL_FAILURE; } } ssl->options.isClosed = 0; ssl->options.connReset = 0; ssl->options.sentNotify = 0; ssl->options.closeNotify = 0; ssl->options.sendVerify = 0; ssl->options.serverState = NULL_STATE; ssl->options.clientState = NULL_STATE; ssl->options.connectState = CONNECT_BEGIN; ssl->options.acceptState = ACCEPT_BEGIN; ssl->options.handShakeState = NULL_STATE; ssl->options.handShakeDone = 0; ssl->options.processReply = 0; /* doProcessInit */ ssl->keys.encryptionOn = 0; XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived)); if (ssl->hsHashes) (void)InitHandshakeHashes(ssl); #ifdef KEEP_PEER_CERT FreeX509(&ssl->peerCert); InitX509(&ssl->peerCert, 0, ssl->heap); #endif return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) long wolfSSL_CTX_set_mode(WOLFSSL_CTX* ctx, long mode) { /* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */ WOLFSSL_ENTER("SSL_CTX_set_mode"); switch(mode) { case SSL_MODE_ENABLE_PARTIAL_WRITE: ctx->partialWrite = 1; break; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) case SSL_MODE_RELEASE_BUFFERS: WOLFSSL_MSG("SSL_MODE_RELEASE_BUFFERS not implemented."); break; #endif case SSL_MODE_AUTO_RETRY: ctx->autoRetry = 1; break; default: WOLFSSL_MSG("Mode Not Implemented"); } /* SSL_MODE_AUTO_RETRY * Should not return -1 with renegotiation on read/write */ return mode; } long wolfSSL_CTX_clear_mode(WOLFSSL_CTX* ctx, long mode) { /* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */ WOLFSSL_ENTER("SSL_CTX_set_mode"); switch(mode) { case SSL_MODE_ENABLE_PARTIAL_WRITE: ctx->partialWrite = 0; break; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) case SSL_MODE_RELEASE_BUFFERS: WOLFSSL_MSG("SSL_MODE_RELEASE_BUFFERS not implemented."); break; #endif case SSL_MODE_AUTO_RETRY: ctx->autoRetry = 0; break; default: WOLFSSL_MSG("Mode Not Implemented"); } /* SSL_MODE_AUTO_RETRY * Should not return -1 with renegotiation on read/write */ return 0; } #endif #ifdef OPENSSL_EXTRA #ifndef NO_WOLFSSL_STUB long wolfSSL_SSL_get_mode(WOLFSSL* ssl) { /* TODO: */ (void)ssl; WOLFSSL_STUB("SSL_get_mode"); return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_get_mode(WOLFSSL_CTX* ctx) { /* TODO: */ (void)ctx; WOLFSSL_STUB("SSL_CTX_get_mode"); return 0; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_CTX_set_default_read_ahead(WOLFSSL_CTX* ctx, int m) { /* TODO: maybe? */ (void)ctx; (void)m; WOLFSSL_STUB("SSL_CTX_set_default_read_ahead"); } #endif /* Storing app session context id, this value is inherited by WOLFSSL * objects created from WOLFSSL_CTX. Any session that is imported with a * different session context id will be rejected. * * ctx structure to set context in * sid_ctx value of context to set * sid_ctx_len length of sid_ctx buffer * * Returns WOLFSSL_SUCCESS in success case and SSL_FAILURE when failing */ int wolfSSL_CTX_set_session_id_context(WOLFSSL_CTX* ctx, const unsigned char* sid_ctx, unsigned int sid_ctx_len) { WOLFSSL_ENTER("SSL_CTX_set_session_id_context"); /* No application specific context needed for wolfSSL */ if (sid_ctx_len > ID_LEN || ctx == NULL || sid_ctx == NULL) { return SSL_FAILURE; } XMEMCPY(ctx->sessionCtx, sid_ctx, sid_ctx_len); ctx->sessionCtxSz = (byte)sid_ctx_len; return WOLFSSL_SUCCESS; } /* Storing app session context id. Any session that is imported with a * different session context id will be rejected. * * ssl structure to set context in * id value of context to set * len length of sid_ctx buffer * * Returns WOLFSSL_SUCCESS in success case and SSL_FAILURE when failing */ int wolfSSL_set_session_id_context(WOLFSSL* ssl, const unsigned char* id, unsigned int len) { WOLFSSL_ENTER("wolfSSL_set_session_id_context"); if (len > ID_LEN || ssl == NULL || id == NULL) { return SSL_FAILURE; } XMEMCPY(ssl->sessionCtx, id, len); ssl->sessionCtxSz = (byte)len; return WOLFSSL_SUCCESS; } long wolfSSL_CTX_sess_get_cache_size(WOLFSSL_CTX* ctx) { (void)ctx; #ifndef NO_SESSION_CACHE return (long)(SESSIONS_PER_ROW * SESSION_ROWS); #else return 0; #endif } /* returns the unsigned error value and increments the pointer into the * error queue. * * file pointer to file name * line gets set to line number of error when not NULL */ unsigned long wolfSSL_ERR_get_error_line(const char** file, int* line) { #ifdef WOLFSSL_HAVE_ERROR_QUEUE int ret = wc_PullErrorNode(file, NULL, line); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Issue getting error node"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; #else (void)file; (void)line; return 0; #endif } #if (defined(DEBUG_WOLFSSL) || defined(OPENSSL_EXTRA)) && \ (!defined(_WIN32) && !defined(NO_ERROR_QUEUE)) static const char WOLFSSL_SYS_ACCEPT_T[] = "accept"; static const char WOLFSSL_SYS_BIND_T[] = "bind"; static const char WOLFSSL_SYS_CONNECT_T[] = "connect"; static const char WOLFSSL_SYS_FOPEN_T[] = "fopen"; static const char WOLFSSL_SYS_FREAD_T[] = "fread"; static const char WOLFSSL_SYS_GETADDRINFO_T[] = "getaddrinfo"; static const char WOLFSSL_SYS_GETSOCKOPT_T[] = "getsockopt"; static const char WOLFSSL_SYS_GETSOCKNAME_T[] = "getsockname"; static const char WOLFSSL_SYS_GETHOSTBYNAME_T[] = "gethostbyname"; static const char WOLFSSL_SYS_GETNAMEINFO_T[] = "getnameinfo"; static const char WOLFSSL_SYS_GETSERVBYNAME_T[] = "getservbyname"; static const char WOLFSSL_SYS_IOCTLSOCKET_T[] = "ioctlsocket"; static const char WOLFSSL_SYS_LISTEN_T[] = "listen"; static const char WOLFSSL_SYS_OPENDIR_T[] = "opendir"; static const char WOLFSSL_SYS_SETSOCKOPT_T[] = "setsockopt"; static const char WOLFSSL_SYS_SOCKET_T[] = "socket"; /* switch with int mapped to function name for compatibility */ static const char* wolfSSL_ERR_sys_func(int fun) { switch (fun) { case WOLFSSL_SYS_ACCEPT: return WOLFSSL_SYS_ACCEPT_T; case WOLFSSL_SYS_BIND: return WOLFSSL_SYS_BIND_T; case WOLFSSL_SYS_CONNECT: return WOLFSSL_SYS_CONNECT_T; case WOLFSSL_SYS_FOPEN: return WOLFSSL_SYS_FOPEN_T; case WOLFSSL_SYS_FREAD: return WOLFSSL_SYS_FREAD_T; case WOLFSSL_SYS_GETADDRINFO: return WOLFSSL_SYS_GETADDRINFO_T; case WOLFSSL_SYS_GETSOCKOPT: return WOLFSSL_SYS_GETSOCKOPT_T; case WOLFSSL_SYS_GETSOCKNAME: return WOLFSSL_SYS_GETSOCKNAME_T; case WOLFSSL_SYS_GETHOSTBYNAME: return WOLFSSL_SYS_GETHOSTBYNAME_T; case WOLFSSL_SYS_GETNAMEINFO: return WOLFSSL_SYS_GETNAMEINFO_T; case WOLFSSL_SYS_GETSERVBYNAME: return WOLFSSL_SYS_GETSERVBYNAME_T; case WOLFSSL_SYS_IOCTLSOCKET: return WOLFSSL_SYS_IOCTLSOCKET_T; case WOLFSSL_SYS_LISTEN: return WOLFSSL_SYS_LISTEN_T; case WOLFSSL_SYS_OPENDIR: return WOLFSSL_SYS_OPENDIR_T; case WOLFSSL_SYS_SETSOCKOPT: return WOLFSSL_SYS_SETSOCKOPT_T; case WOLFSSL_SYS_SOCKET: return WOLFSSL_SYS_SOCKET_T; default: return "NULL"; } } #endif /* DEBUG_WOLFSSL */ /* @TODO when having an error queue this needs to push to the queue */ void wolfSSL_ERR_put_error(int lib, int fun, int err, const char* file, int line) { WOLFSSL_ENTER("wolfSSL_ERR_put_error"); #if !defined(DEBUG_WOLFSSL) && !defined(OPENSSL_EXTRA) (void)fun; (void)err; (void)file; (void)line; WOLFSSL_MSG("Not compiled in debug mode"); #elif defined(OPENSSL_EXTRA) && \ (defined(_WIN32) || defined(NO_ERROR_QUEUE)) (void)fun; (void)file; (void)line; WOLFSSL_ERROR(err); #else WOLFSSL_ERROR_LINE(err, wolfSSL_ERR_sys_func(fun), (unsigned int)line, file, NULL); #endif (void)lib; } /* Similar to wolfSSL_ERR_get_error_line but takes in a flags argument for * more flexibility. * * file output pointer to file where error happened * line output to line number of error * data output data. Is a string if ERR_TXT_STRING flag is used * flags output format of output * * Returns the error value or 0 if no errors are in the queue */ unsigned long wolfSSL_ERR_get_error_line_data(const char** file, int* line, const char** data, int *flags) { #ifdef WOLFSSL_HAVE_ERROR_QUEUE int ret; WOLFSSL_ENTER("wolfSSL_ERR_get_error_line_data"); if (flags != NULL) *flags = ERR_TXT_STRING; /* Clear the flags */ ret = wc_PullErrorNode(file, data, line); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Error with pulling error node!"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line_data", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; #else WOLFSSL_ENTER("wolfSSL_ERR_get_error_line_data"); WOLFSSL_MSG("Error queue turned off, can not get error line"); (void)file; (void)line; (void)data; (void)flags; return 0; #endif } #endif /* OPENSSL_EXTRA */ #if (defined(KEEP_PEER_CERT) && defined(SESSION_CERTS)) || \ (defined(OPENSSL_EXTRA) && defined(SESSION_CERTS)) /* Decode the X509 DER encoded certificate into a WOLFSSL_X509 object. * * x509 WOLFSSL_X509 object to decode into. * in X509 DER data. * len Length of the X509 DER data. * returns the new certificate on success, otherwise NULL. */ static int DecodeToX509(WOLFSSL_X509* x509, const byte* in, int len) { int ret; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert; #else DecodedCert cert[1]; #endif if (x509 == NULL || in == NULL || len <= 0) return BAD_FUNC_ARG; #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif /* Create a DecodedCert object and copy fields into WOLFSSL_X509 object. */ InitDecodedCert(cert, (byte*)in, len, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) == 0) { /* Check if x509 was not previously initialized by wolfSSL_X509_new() */ if (x509->dynamicMemory != TRUE) InitX509(x509, 0, NULL); ret = CopyDecodedToX509(x509, cert); FreeDecodedCert(cert); } #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif return ret; } #endif /* (KEEP_PEER_CERT & SESSION_CERTS) || (OPENSSL_EXTRA & SESSION_CERTS) */ #ifdef KEEP_PEER_CERT WOLFSSL_ABI WOLFSSL_X509* wolfSSL_get_peer_certificate(WOLFSSL* ssl) { WOLFSSL_X509* ret = NULL; WOLFSSL_ENTER("SSL_get_peer_certificate"); if (ssl != NULL) { if (ssl->peerCert.issuer.sz) ret = wolfSSL_X509_dup(&ssl->peerCert); #ifdef SESSION_CERTS else if (ssl->session->chain.count > 0) { if (DecodeToX509(&ssl->peerCert, ssl->session->chain.certs[0].buffer, ssl->session->chain.certs[0].length) == 0) { ret = wolfSSL_X509_dup(&ssl->peerCert); } } #endif } WOLFSSL_LEAVE("SSL_get_peer_certificate", ret != NULL); return ret; } #endif /* KEEP_PEER_CERT */ #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) /* Return stack of peer certs. * Caller does not need to free return. The stack is Free'd when WOLFSSL* ssl is. */ WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_get_peer_cert_chain(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_cert_chain"); if (ssl == NULL) return NULL; /* Try to populate if NULL or empty */ if (ssl->peerCertChain == NULL || wolfSSL_sk_X509_num(ssl->peerCertChain) == 0) wolfSSL_set_peer_cert_chain((WOLFSSL*) ssl); return ssl->peerCertChain; } #ifndef WOLFSSL_QT static int x509GetIssuerFromCM(WOLFSSL_X509 **issuer, WOLFSSL_CERT_MANAGER* cm, WOLFSSL_X509 *x); /** * Recursively push the issuer CA chain onto the stack * @param cm The cert manager that is queried for the issuer * @param x This cert's issuer will be queried in cm * @param sk The issuer is pushed onto this stack * @return WOLFSSL_SUCCESS on success * WOLFSSL_FAILURE on no issuer found * WOLFSSL_FATAL_ERROR on a fatal error */ static int PushCAx509Chain(WOLFSSL_CERT_MANAGER* cm, WOLFSSL_X509 *x, WOLFSSL_STACK* sk) { WOLFSSL_X509* issuer[MAX_CHAIN_DEPTH]; int i; int push = 1; int ret = WOLFSSL_SUCCESS; for (i = 0; i < MAX_CHAIN_DEPTH; i++) { if (x509GetIssuerFromCM(&issuer[i], cm, x) != WOLFSSL_SUCCESS) break; x = issuer[i]; } if (i == 0) /* No further chain found */ return WOLFSSL_FAILURE; i--; for (; i >= 0; i--) { if (push) { if (wolfSSL_sk_X509_push(sk, issuer[i]) != WOLFSSL_SUCCESS) { wolfSSL_X509_free(issuer[i]); ret = WOLFSSL_FATAL_ERROR; push = 0; /* Free the rest of the unpushed certs */ } } else { wolfSSL_X509_free(issuer[i]); } } return ret; } #endif /* !WOLFSSL_QT */ /* Builds up and creates a stack of peer certificates for ssl->peerCertChain based off of the ssl session chain. Attempts to place CA certificates at the bottom of the stack. Returns stack of WOLFSSL_X509 certs or NULL on failure */ WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_set_peer_cert_chain(WOLFSSL* ssl) { WOLFSSL_STACK* sk; WOLFSSL_X509* x509; int i = 0; int ret; WOLFSSL_ENTER("wolfSSL_set_peer_cert_chain"); if ((ssl == NULL) || (ssl->session->chain.count == 0)) return NULL; sk = wolfSSL_sk_X509_new(); i = ssl->session->chain.count-1; for (; i >= 0; i--) { x509 = wolfSSL_X509_new(); if (x509 == NULL) { WOLFSSL_MSG("Error Creating X509"); wolfSSL_sk_X509_pop_free(sk, NULL); return NULL; } ret = DecodeToX509(x509, ssl->session->chain.certs[i].buffer, ssl->session->chain.certs[i].length); #if !defined(WOLFSSL_QT) if (ret == 0 && i == ssl->session->chain.count-1) { /* On the last element in the chain try to add the CA chain * first if we have one for this cert */ if (PushCAx509Chain(SSL_CM(ssl), x509, sk) == WOLFSSL_FATAL_ERROR) { ret = WOLFSSL_FATAL_ERROR; } } #endif if (ret != 0 || wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error decoding cert"); wolfSSL_X509_free(x509); wolfSSL_sk_X509_pop_free(sk, NULL); return NULL; } } if (sk == NULL) { WOLFSSL_MSG("Null session chain"); } #if defined(OPENSSL_ALL) else if (ssl->options.side == WOLFSSL_SERVER_END) { /* to be compliant with openssl first element is kept as peer cert on server side.*/ wolfSSL_sk_X509_shift(sk); } #endif if (ssl->peerCertChain != NULL) wolfSSL_sk_X509_pop_free(ssl->peerCertChain, NULL); /* This is Free'd when ssl is Free'd */ ssl->peerCertChain = sk; return sk; } #endif /* SESSION_CERTS && OPENSSL_EXTRA */ #ifndef NO_CERTS #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* create a generic wolfSSL stack node * returns a new WOLFSSL_STACK structure on success */ WOLFSSL_STACK* wolfSSL_sk_new_node(void* heap) { WOLFSSL_STACK* sk; WOLFSSL_ENTER("wolfSSL_sk_new_node"); sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), heap, DYNAMIC_TYPE_OPENSSL); if (sk != NULL) { XMEMSET(sk, 0, sizeof(*sk)); sk->heap = heap; } return sk; } /* free's node but does not free internal data such as in->data.x509 */ void wolfSSL_sk_free_node(WOLFSSL_STACK* in) { if (in != NULL) { XFREE(in, in->heap, DYNAMIC_TYPE_OPENSSL); } } /* pushes node "in" onto "stack" and returns pointer to the new stack on success * also handles internal "num" for number of nodes on stack * return WOLFSSL_SUCCESS on success */ int wolfSSL_sk_push_node(WOLFSSL_STACK** stack, WOLFSSL_STACK* in) { if (stack == NULL || in == NULL) { return WOLFSSL_FAILURE; } if (*stack == NULL) { in->num = 1; *stack = in; return WOLFSSL_SUCCESS; } in->num = (*stack)->num + 1; in->next = *stack; *stack = in; return WOLFSSL_SUCCESS; } #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) static WC_INLINE int compare_WOLFSSL_CIPHER( WOLFSSL_CIPHER *a, WOLFSSL_CIPHER *b) { if ((a->cipherSuite0 == b->cipherSuite0) && (a->cipherSuite == b->cipherSuite) && (a->ssl == b->ssl) && (XMEMCMP(a->description, b->description, sizeof a->description) == 0) && (a->offset == b->offset) && (a->in_stack == b->in_stack) && (a->bits == b->bits)) return 0; else return -1; } #endif /* OPENSSL_ALL || WOLFSSL_QT */ /* return 1 on success 0 on fail */ int wolfSSL_sk_push(WOLFSSL_STACK* sk, const void *data) { WOLFSSL_STACK* node; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) WOLFSSL_CIPHER ciph; #endif WOLFSSL_ENTER("wolfSSL_sk_push"); if (!sk) { return WOLFSSL_FAILURE; } /* Check if empty data */ switch (sk->type) { case STACK_TYPE_CIPHER: #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) /* check if entire struct is zero */ XMEMSET(&ciph, 0, sizeof(WOLFSSL_CIPHER)); if (compare_WOLFSSL_CIPHER(&sk->data.cipher, &ciph) == 0) { sk->data.cipher = *(WOLFSSL_CIPHER*)data; sk->num = 1; if (sk->hash_fn) { sk->hash = sk->hash_fn(&sk->data.cipher); } return WOLFSSL_SUCCESS; } break; #endif case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: /* All other types are pointers */ if (!sk->data.generic) { sk->data.generic = (void*)data; sk->num = 1; #ifdef OPENSSL_ALL if (sk->hash_fn) { sk->hash = sk->hash_fn(sk->data.generic); } #endif return WOLFSSL_SUCCESS; } break; } /* stack already has value(s) create a new node and add more */ node = wolfSSL_sk_new_node(sk->heap); if (!node) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } /* push new x509 onto head of stack */ node->next = sk->next; node->type = sk->type; sk->next = node; sk->num += 1; #ifdef OPENSSL_ALL node->comp = sk->comp; node->hash_fn = sk->hash_fn; node->hash = sk->hash; sk->hash = 0; #endif switch (sk->type) { case STACK_TYPE_CIPHER: #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) node->data.cipher = sk->data.cipher; sk->data.cipher = *(WOLFSSL_CIPHER*)data; if (sk->hash_fn) { sk->hash = sk->hash_fn(&sk->data.cipher); } break; #endif case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: /* All other types are pointers */ node->data.generic = sk->data.generic; sk->data.generic = (void*)data; #ifdef OPENSSL_ALL if (sk->hash_fn) { sk->hash = sk->hash_fn(sk->data.generic); } #endif break; } return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA /* returns the node at index "idx", NULL if not found */ WOLFSSL_STACK* wolfSSL_sk_get_node(WOLFSSL_STACK* sk, int idx) { int i; WOLFSSL_STACK* ret = NULL; WOLFSSL_STACK* current; current = sk; for (i = 0; i <= idx && current != NULL; i++) { if (i == idx) { ret = current; break; } current = current->next; } return ret; } #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA #if defined(OPENSSL_ALL) void *wolfSSL_lh_retrieve(WOLFSSL_STACK *sk, void *data) { unsigned long hash; WOLFSSL_ENTER("wolfSSL_lh_retrieve"); if (!sk || !data) { WOLFSSL_MSG("Bad parameters"); return NULL; } if (!sk->hash_fn) { WOLFSSL_MSG("No hash function defined"); return NULL; } hash = sk->hash_fn(data); while (sk) { /* Calc hash if not done so yet */ if (!sk->hash) { switch (sk->type) { case STACK_TYPE_CIPHER: sk->hash = sk->hash_fn(&sk->data.cipher); break; case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: sk->hash = sk->hash_fn(sk->data.generic); break; } } if (sk->hash == hash) { switch (sk->type) { case STACK_TYPE_CIPHER: return &sk->data.cipher; case STACK_TYPE_X509: case STACK_TYPE_GEN_NAME: case STACK_TYPE_BIO: case STACK_TYPE_OBJ: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: return sk->data.generic; } } sk = sk->next; } return NULL; } #endif /* OPENSSL_ALL */ #endif /* OPENSSL_EXTRA */ /* OPENSSL_EXTRA is needed for wolfSSL_X509_d21 function KEEP_OUR_CERT is to insure ability for returning ssl certificate */ #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ defined(KEEP_OUR_CERT) WOLFSSL_X509* wolfSSL_get_certificate(WOLFSSL* ssl) { if (ssl == NULL) { return NULL; } if (ssl->buffers.weOwnCert) { if (ssl->ourCert == NULL) { if (ssl->buffers.certificate == NULL) { WOLFSSL_MSG("Certificate buffer not set!"); return NULL; } #ifndef WOLFSSL_X509_STORE_CERTS ssl->ourCert = wolfSSL_X509_d2i(NULL, ssl->buffers.certificate->buffer, ssl->buffers.certificate->length); #endif } return ssl->ourCert; } else { /* if cert not owned get parent ctx cert or return null */ if (ssl->ctx) { if (ssl->ctx->ourCert == NULL) { if (ssl->ctx->certificate == NULL) { WOLFSSL_MSG("Ctx Certificate buffer not set!"); return NULL; } #ifndef WOLFSSL_X509_STORE_CERTS ssl->ctx->ourCert = wolfSSL_X509_d2i(NULL, ssl->ctx->certificate->buffer, ssl->ctx->certificate->length); #endif ssl->ctx->ownOurCert = 1; } return ssl->ctx->ourCert; } } return NULL; } WOLFSSL_X509* wolfSSL_CTX_get0_certificate(WOLFSSL_CTX* ctx) { if (ctx) { if (ctx->ourCert == NULL) { if (ctx->certificate == NULL) { WOLFSSL_MSG("Ctx Certificate buffer not set!"); return NULL; } #ifndef WOLFSSL_X509_STORE_CERTS ctx->ourCert = wolfSSL_X509_d2i(NULL, ctx->certificate->buffer, ctx->certificate->length); #endif ctx->ownOurCert = 1; } return ctx->ourCert; } return NULL; } #endif /* OPENSSL_EXTRA && KEEP_OUR_CERT */ #endif /* NO_CERTS */ #if !defined(NO_ASN) && (defined(OPENSSL_EXTRA) || \ defined(OPENSSL_EXTRA_X509_SMALL)) void wolfSSL_ASN1_OBJECT_free(WOLFSSL_ASN1_OBJECT* obj) { if (obj == NULL) { return; } if ((obj->obj != NULL) && ((obj->dynamic & WOLFSSL_ASN1_DYNAMIC_DATA) != 0)) { #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_MSG("Freeing ASN1 data"); #endif XFREE((void*)obj->obj, obj->heap, DYNAMIC_TYPE_ASN1); obj->obj = NULL; } #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) if (obj->pathlen != NULL) { wolfSSL_ASN1_INTEGER_free(obj->pathlen); obj->pathlen = NULL; } #endif if ((obj->dynamic & WOLFSSL_ASN1_DYNAMIC) != 0) { #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_MSG("Freeing ASN1 OBJECT"); #endif XFREE(obj, NULL, DYNAMIC_TYPE_ASN1); } } WOLFSSL_ASN1_OBJECT* wolfSSL_ASN1_OBJECT_new(void) { WOLFSSL_ASN1_OBJECT* obj; obj = (WOLFSSL_ASN1_OBJECT*)XMALLOC(sizeof(WOLFSSL_ASN1_OBJECT), NULL, DYNAMIC_TYPE_ASN1); if (obj == NULL) { return NULL; } XMEMSET(obj, 0, sizeof(WOLFSSL_ASN1_OBJECT)); obj->d.ia5 = &(obj->d.ia5_internal); #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) obj->d.iPAddress = &(obj->d.iPAddress_internal); #endif obj->dynamic |= WOLFSSL_ASN1_DYNAMIC; return obj; } WOLFSSL_ASN1_OBJECT* wolfSSL_ASN1_OBJECT_dup(WOLFSSL_ASN1_OBJECT* obj) { WOLFSSL_ASN1_OBJECT* dupl = NULL; WOLFSSL_ENTER("wolfSSL_ASN1_OBJECT_dup"); if (!obj) { WOLFSSL_MSG("Bad parameter"); return NULL; } dupl = wolfSSL_ASN1_OBJECT_new(); if (!dupl) { WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_new error"); return NULL; } /* Copy data */ XMEMCPY(dupl->sName, obj->sName, WOLFSSL_MAX_SNAME); dupl->type = obj->type; dupl->grp = obj->grp; dupl->nid = obj->nid; dupl->objSz = obj->objSz; if (obj->obj) { dupl->obj = (const unsigned char*)XMALLOC( obj->objSz, NULL, DYNAMIC_TYPE_ASN1); if (!dupl->obj) { WOLFSSL_MSG("ASN1 obj malloc error"); wolfSSL_ASN1_OBJECT_free(dupl); return NULL; } XMEMCPY((byte*)dupl->obj, obj->obj, obj->objSz); dupl->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA; } return dupl; } #endif /* !NO_ASN && (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */ #ifndef NO_ASN #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* Creates and returns a new WOLFSSL_CIPHER stack. */ WOLFSSL_STACK* wolfSSL_sk_new_asn1_obj(void) { WOLFSSL_STACK* sk; WOLFSSL_ENTER("wolfSSL_sk_new_asn1_obj"); sk = wolfSSL_sk_new_null(); if (sk == NULL) return NULL; sk->type = STACK_TYPE_OBJ; return sk; } /* return 1 on success 0 on fail */ int wolfSSL_sk_ASN1_OBJECT_push(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk, WOLFSSL_ASN1_OBJECT* obj) { WOLFSSL_ENTER("wolfSSL_sk_ASN1_OBJECT_push"); if (sk == NULL || obj == NULL) { return WOLFSSL_FAILURE; } return wolfSSL_sk_push(sk, obj); } WOLFSSL_ASN1_OBJECT* wolfSSL_sk_ASN1_OBJECT_pop( WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk) { WOLFSSL_STACK* node; WOLFSSL_ASN1_OBJECT* obj; if (sk == NULL) { return NULL; } node = sk->next; obj = sk->data.obj; if (node != NULL) { /* update sk and remove node from stack */ sk->data.obj = node->data.obj; sk->next = node->next; XFREE(node, NULL, DYNAMIC_TYPE_ASN1); } else { /* last obj in stack */ sk->data.obj = NULL; } if (sk->num > 0) { sk->num -= 1; } return obj; } /* Free the structure for ASN1_OBJECT stack * * sk stack to free nodes in */ void wolfSSL_sk_ASN1_OBJECT_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk) { wolfSSL_sk_free(sk); } /* Free's all nodes in ASN1_OBJECT stack. * This is different then wolfSSL_ASN1_OBJECT_free in that it allows for * choosing the function to use when freeing an ASN1_OBJECT stack. * * sk stack to free nodes in * f X509 free function */ void wolfSSL_sk_ASN1_OBJECT_pop_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk, void (*f) (WOLFSSL_ASN1_OBJECT*)) { WOLFSSL_ENTER("wolfSSL_sk_ASN1_OBJECT_pop_free"); wolfSSL_sk_pop_free(sk, (wolfSSL_sk_freefunc)f); } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #endif /* !NO_ASN */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) #ifndef NO_ASN int wolfSSL_ASN1_STRING_to_UTF8(unsigned char **out, WOLFSSL_ASN1_STRING *in) { /* ASN1_STRING_to_UTF8() converts the string in to UTF8 format, the converted data is allocated in a buffer in *out. The length of out is returned or a negative error code. The buffer *out should be free using OPENSSL_free(). */ unsigned char* buf; unsigned char* inPtr; int inLen; if (!out || !in) { return -1; } inPtr = wolfSSL_ASN1_STRING_data(in); inLen = wolfSSL_ASN1_STRING_length(in); if (!inPtr || inLen < 0) { return -1; } buf = (unsigned char*)XMALLOC(inLen + 1, NULL, DYNAMIC_TYPE_OPENSSL); if (!buf) { return -1; } XMEMCPY(buf, inPtr, inLen + 1); *out = buf; return inLen; } #endif /* !NO_ASN */ #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(OPENSSL_EXTRA) #ifndef NO_ASN int wolfSSL_ASN1_UNIVERSALSTRING_to_string(WOLFSSL_ASN1_STRING *s) { char *idx; char *copy; WOLFSSL_ENTER("wolfSSL_ASN1_UNIVERSALSTRING_to_string"); if (!s) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } if (s->type != V_ASN1_UNIVERSALSTRING) { WOLFSSL_MSG("Input is not a universal string"); return WOLFSSL_FAILURE; } if ((s->length % 4) != 0) { WOLFSSL_MSG("Input string must be divisible by 4"); return WOLFSSL_FAILURE; } for (idx = s->data; idx < s->data + s->length; idx += 4) if ((idx[0] != '\0') || (idx[1] != '\0') || (idx[2] != '\0')) break; if (idx != s->data + s->length) { WOLFSSL_MSG("Wrong string format"); return WOLFSSL_FAILURE; } for (copy = idx = s->data; idx < s->data + s->length; idx += 4) *copy++ = idx[3]; *copy = '\0'; s->length /= 4; s->type = V_ASN1_PRINTABLESTRING; return WOLFSSL_SUCCESS; } /* Returns string representation of ASN1_STRING */ char* wolfSSL_i2s_ASN1_STRING(WOLFSSL_v3_ext_method *method, const WOLFSSL_ASN1_STRING *s) { int i; int tmpSz = 100; int valSz = 5; char* tmp; char val[5]; unsigned char* str; WOLFSSL_ENTER("wolfSSL_i2s_ASN1_STRING"); (void)method; if(s == NULL || s->data == NULL) { WOLFSSL_MSG("Bad Function Argument"); return NULL; } str = (unsigned char*)XMALLOC(s->length, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (str == NULL) { WOLFSSL_MSG("Memory Error"); return NULL; } XMEMCPY(str, (unsigned char*)s->data, s->length); tmp = (char*)XMALLOC(tmpSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) { WOLFSSL_MSG("Memory Error"); XFREE(str, NULL, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } XMEMSET(tmp, 0, tmpSz); for (i = 0; i < tmpSz && i < (s->length - 1); i++) { XSNPRINTF(val, valSz - 1, "%02X:", str[i]); XSTRNCAT(tmp, val, valSz); } XSNPRINTF(val, valSz - 1, "%02X", str[i]); XSTRNCAT(tmp, val, valSz); XFREE(str, NULL, DYNAMIC_TYPE_TMP_BUFFER); return tmp; } #endif /* NO_ASN */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) void wolfSSL_set_connect_state(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_set_connect_state"); if (ssl == NULL) { WOLFSSL_MSG("WOLFSSL struct pointer passed in was null"); return; } #ifndef NO_DH /* client creates its own DH parameters on handshake */ if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); } ssl->buffers.serverDH_P.buffer = NULL; if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); } ssl->buffers.serverDH_G.buffer = NULL; #endif if (InitSSL_Side(ssl, WOLFSSL_CLIENT_END) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error initializing client side"); } } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ int wolfSSL_get_shutdown(const WOLFSSL* ssl) { int isShutdown = 0; WOLFSSL_ENTER("wolfSSL_get_shutdown"); if (ssl) { #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) if (ssl->options.handShakeState == NULL_STATE) { /* The SSL object was possibly cleared with wolfSSL_clear after * a successful shutdown. Simulate a response for a full * bidirectional shutdown. */ isShutdown = WOLFSSL_SENT_SHUTDOWN | WOLFSSL_RECEIVED_SHUTDOWN; } else #endif { /* in OpenSSL, WOLFSSL_SENT_SHUTDOWN = 1, when closeNotifySent * * WOLFSSL_RECEIVED_SHUTDOWN = 2, from close notify or fatal err */ if (ssl->options.sentNotify) isShutdown |= WOLFSSL_SENT_SHUTDOWN; if (ssl->options.closeNotify||ssl->options.connReset) isShutdown |= WOLFSSL_RECEIVED_SHUTDOWN; } } return isShutdown; } int wolfSSL_session_reused(WOLFSSL* ssl) { int resuming = 0; WOLFSSL_ENTER("wolfSSL_session_reused"); if (ssl) resuming = ssl->options.resuming; WOLFSSL_LEAVE("wolfSSL_session_reused", resuming); return resuming; } /* return a new malloc'd session with default settings on success */ WOLFSSL_SESSION* wolfSSL_NewSession(void* heap) { WOLFSSL_SESSION* ret = NULL; ret = (WOLFSSL_SESSION*)XMALLOC(sizeof(WOLFSSL_SESSION), heap, DYNAMIC_TYPE_SESSION); if (ret != NULL) { XMEMSET(ret, 0, sizeof(WOLFSSL_SESSION)); #ifndef SINGLE_THREADED if (wc_InitMutex(&ret->refMutex) != 0) { WOLFSSL_MSG("Error setting up session reference mutex"); XFREE(ret, ret->heap, DYNAMIC_TYPE_SESSION); return NULL; } #endif ret->refCount = 1; #ifndef NO_SESSION_CACHE ret->cacheRow = INVALID_SESSION_ROW; /* not in cache */ #endif ret->type = WOLFSSL_SESSION_TYPE_HEAP; ret->heap = heap; ret->masterSecret = ret->_masterSecret; #ifdef WOLFSSL_CHECK_MEM_ZERO wc_MemZero_Add("SESSION master secret", ret->masterSecret, SECRET_LEN); wc_MemZero_Add("SESSION id", ret->sessionID, ID_LEN); #endif #ifndef NO_CLIENT_CACHE ret->serverID = ret->_serverID; #endif #ifdef OPENSSL_EXTRA ret->sessionCtx = ret->_sessionCtx; #endif #ifdef HAVE_SESSION_TICKET ret->ticket = ret->_staticTicket; #endif #ifdef HAVE_STUNNEL /* stunnel has this funny mechanism of storing the "is_authenticated" * session info in the session ex data. This is basically their * default so let's just hard code it. */ if (wolfSSL_SESSION_set_ex_data(ret, 0, (void *)(-1)) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error setting up ex data for stunnel"); XFREE(ret, NULL, DYNAMIC_TYPE_SESSION); return NULL; } #endif #ifdef HAVE_EX_DATA ret->ownExData = 1; #endif } return ret; } WOLFSSL_SESSION* wolfSSL_SESSION_new_ex(void* heap) { return wolfSSL_NewSession(heap); } WOLFSSL_SESSION* wolfSSL_SESSION_new(void) { return wolfSSL_SESSION_new_ex(NULL); } /* add one to session reference count * return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error */ int wolfSSL_SESSION_up_ref(WOLFSSL_SESSION* session) { session = ClientSessionToSession(session); if (session == NULL || session->type != WOLFSSL_SESSION_TYPE_HEAP) return WOLFSSL_FAILURE; #ifndef SINGLE_THREADED if (wc_LockMutex(&session->refMutex) != 0) { WOLFSSL_MSG("Failed to lock session mutex"); return WOLFSSL_FAILURE; } #endif session->refCount++; #ifndef SINGLE_THREADED wc_UnLockMutex(&session->refMutex); #endif return WOLFSSL_SUCCESS; } /** * Deep copy the contents from input to output. * @param input The source of the copy. * @param output The destination of the copy. * @param avoidSysCalls If true, then system calls will be avoided or an error * will be returned if it is not possible to proceed * without a system call. This is useful for fetching * sessions from cache. When a cache row is locked, we * don't want to block other threads with long running * system calls. * @return WOLFSSL_SUCCESS on success * WOLFSSL_FAILURE on failure */ int wolfSSL_DupSession(const WOLFSSL_SESSION* input, WOLFSSL_SESSION* output, int avoidSysCalls) { #ifdef HAVE_SESSION_TICKET int ticLenAlloc = 0; byte *ticBuff = NULL; #endif const size_t copyOffset = OFFSETOF(WOLFSSL_SESSION, heap) + sizeof(input->heap); int ret = WOLFSSL_SUCCESS; (void)avoidSysCalls; input = ClientSessionToSession(input); output = ClientSessionToSession(output); if (input == NULL || output == NULL || input == output) { WOLFSSL_MSG("input or output are null or same"); return WOLFSSL_FAILURE; } #ifdef HAVE_SESSION_TICKET if (output->ticket != output->_staticTicket) { ticBuff = output->ticket; ticLenAlloc = output->ticketLenAlloc; } #endif #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) if (output->peer != NULL) { if (avoidSysCalls) { WOLFSSL_MSG("Can't free cert when avoiding syscalls"); return WOLFSSL_FAILURE; } wolfSSL_X509_free(output->peer); output->peer = NULL; } #endif XMEMCPY((byte*)output + copyOffset, (byte*)input + copyOffset, sizeof(WOLFSSL_SESSION) - copyOffset); /* Set sane values for copy */ if (output->type != WOLFSSL_SESSION_TYPE_CACHE) #ifndef NO_SESSION_CACHE output->cacheRow = INVALID_SESSION_ROW; #endif #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) if (input->peer != NULL && input->peer->dynamicMemory) { if (wolfSSL_X509_up_ref(input->peer) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Can't increase peer cert ref count"); output->peer = NULL; } } else if (!avoidSysCalls) output->peer = wolfSSL_X509_dup(input->peer); else /* output->peer is not that important to copy */ output->peer = NULL; #endif output->masterSecret = output->_masterSecret; #ifndef NO_CLIENT_CACHE output->serverID = output->_serverID; #endif #ifdef OPENSSL_EXTRA output->sessionCtx = output->_sessionCtx; #endif #ifdef HAVE_SESSION_TICKET if (input->ticketLen > SESSION_TICKET_LEN) { /* Need dynamic buffer */ if (ticBuff == NULL || ticLenAlloc < input->ticketLen) { /* allocate new one */ byte* tmp; if (!avoidSysCalls) { WOLFSSL_MSG("Failed to allocate memory for ticket when avoiding" " syscalls"); output->ticket = ticBuff; output->ticketLenAlloc = (word16) ticLenAlloc; output->ticketLen = 0; ret = WOLFSSL_FAILURE; } else { tmp = (byte*)XREALLOC(ticBuff, input->ticketLen, output->heap, DYNAMIC_TYPE_SESSION_TICK); if (tmp == NULL) { WOLFSSL_MSG("Failed to allocate memory for ticket"); XFREE(ticBuff, output->heap, DYNAMIC_TYPE_SESSION_TICK); output->ticket = NULL; output->ticketLen = 0; output->ticketLenAlloc = 0; ret = WOLFSSL_FAILURE; } else { ticBuff = tmp; ticLenAlloc = input->ticketLen; } } } if (ticBuff != NULL && ret == WOLFSSL_SUCCESS) { XMEMCPY(ticBuff, input->ticket, input->ticketLen); output->ticket = ticBuff; output->ticketLenAlloc = (word16) ticLenAlloc; } } else { /* Default ticket to non dynamic */ if (avoidSysCalls) { /* Try to use ticBuf if available. Caller can later move it to * the static buffer. */ if (ticBuff != NULL) { if (ticLenAlloc >= input->ticketLen) { output->ticket = output->_staticTicket; output->ticketLenAlloc = 0; } else { WOLFSSL_MSG("ticket dynamic buffer too small but we are " "avoiding system calls"); ret = WOLFSSL_FAILURE; output->ticket = ticBuff; output->ticketLenAlloc = (word16) ticLenAlloc; output->ticketLen = 0; } } else { output->ticket = output->_staticTicket; output->ticketLenAlloc = 0; } } else { if (ticBuff != NULL) XFREE(ticBuff, output->heap, DYNAMIC_TYPE_SESSION_TICK); output->ticket = output->_staticTicket; output->ticketLenAlloc = 0; } if (input->ticketLenAlloc > 0 && ret == WOLFSSL_SUCCESS) { /* Shouldn't happen as session should have placed this in * the static buffer */ XMEMCPY(output->ticket, input->ticket, input->ticketLen); } } ticBuff = NULL; #endif /* HAVE_SESSION_TICKET */ return ret; } WOLFSSL_SESSION* wolfSSL_SESSION_dup(WOLFSSL_SESSION* session) { #ifdef HAVE_EXT_CACHE WOLFSSL_SESSION* copy; WOLFSSL_ENTER("wolfSSL_SESSION_dup"); session = ClientSessionToSession(session); if (session == NULL) return NULL; #ifdef HAVE_SESSION_TICKET if (session->ticketLenAlloc > 0 && !session->ticket) { WOLFSSL_MSG("Session dynamic flag is set but ticket pointer is null"); return NULL; } #endif copy = wolfSSL_NewSession(session->heap); if (copy != NULL && wolfSSL_DupSession(session, copy, 0) != WOLFSSL_SUCCESS) { wolfSSL_FreeSession(NULL, copy); copy = NULL; } return copy; #else WOLFSSL_MSG("wolfSSL_SESSION_dup feature not compiled in"); (void)session; return NULL; #endif /* HAVE_EXT_CACHE */ } void wolfSSL_FreeSession(WOLFSSL_CTX* ctx, WOLFSSL_SESSION* session) { session = ClientSessionToSession(session); if (session == NULL) return; (void)ctx; /* refCount will always be 1 or more if created externally. * Internal cache sessions don't initialize a refMutex. */ if (session->refCount > 0) { #ifndef SINGLE_THREADED if (wc_LockMutex(&session->refMutex) != 0) { WOLFSSL_MSG("Failed to lock session mutex"); return; } #endif if (session->refCount > 1) { session->refCount--; #ifndef SINGLE_THREADED wc_UnLockMutex(&session->refMutex); #endif return; } #ifndef SINGLE_THREADED wc_UnLockMutex(&session->refMutex); wc_FreeMutex(&session->refMutex); #endif } #if defined(HAVE_EXT_CACHE) || defined(HAVE_EX_DATA) if (ctx != NULL && ctx->rem_sess_cb #ifdef HAVE_EX_DATA && session->ownExData /* This will be true if we are not using the * internal cache so it will get called for * externally cached sessions as well. */ #endif ) { ctx->rem_sess_cb(ctx, session); } #endif #ifdef HAVE_EX_DATA_CLEANUP_HOOKS wolfSSL_CRYPTO_cleanup_ex_data(&session->ex_data); #endif #if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA) if (session->peer) { wolfSSL_X509_free(session->peer); session->peer = NULL; } #endif #ifdef HAVE_SESSION_TICKET if (session->ticketLenAlloc > 0) { XFREE(session->ticket, session->heap, DYNAMIC_TYPE_SESSION_TICK); } #endif #ifdef HAVE_EX_DATA_CLEANUP_HOOKS wolfSSL_CRYPTO_cleanup_ex_data(&session->ex_data); #endif /* Make sure masterSecret is zeroed. */ ForceZero(session->masterSecret, SECRET_LEN); /* Session ID is sensitive information too. */ ForceZero(session->sessionID, ID_LEN); if (session->type == WOLFSSL_SESSION_TYPE_HEAP) { XFREE(session, session->heap, DYNAMIC_TYPE_SESSION); } } void wolfSSL_SESSION_free(WOLFSSL_SESSION* session) { session = ClientSessionToSession(session); wolfSSL_FreeSession(NULL, session); } #ifndef NO_SESSION_CACHE int wolfSSL_CTX_add_session(WOLFSSL_CTX* ctx, WOLFSSL_SESSION* session) { int error = 0; const byte* id = NULL; byte idSz = 0; WOLFSSL_ENTER("wolfSSL_CTX_add_session"); session = ClientSessionToSession(session); if (session == NULL) return WOLFSSL_FAILURE; /* Session cache is global */ (void)ctx; id = session->sessionID; idSz = session->sessionIDSz; if (session->haveAltSessionID) { id = session->altSessionID; idSz = ID_LEN; } error = AddSessionToCache(ctx, session, id, idSz, NULL, session->side, #ifdef HAVE_SESSION_TICKET session->ticketLen > 0, #else 0, #endif NULL); return error == 0 ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #endif #if defined(OPENSSL_EXTRA) || defined(HAVE_EXT_CACHE) /** * set cipher to WOLFSSL_SESSION from WOLFSSL_CIPHER * @param session a pointer to WOLFSSL_SESSION structure * @param cipher a function pointer to WOLFSSL_CIPHER * @return WOLFSSL_SUCCESS on success, otherwise WOLFSSL_FAILURE */ int wolfSSL_SESSION_set_cipher(WOLFSSL_SESSION* session, const WOLFSSL_CIPHER* cipher) { WOLFSSL_ENTER("wolfSSL_SESSION_set_cipher"); session = ClientSessionToSession(session); /* sanity check */ if (session == NULL || cipher == NULL) { WOLFSSL_MSG("bad argument"); return WOLFSSL_FAILURE; } session->cipherSuite0 = cipher->cipherSuite0; session->cipherSuite = cipher->cipherSuite; WOLFSSL_LEAVE("wolfSSL_SESSION_set_cipher", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA || HAVE_EXT_CACHE */ /* helper function that takes in a protocol version struct and returns string */ static const char* wolfSSL_internal_get_version(const ProtocolVersion* version) { WOLFSSL_ENTER("wolfSSL_get_version"); if (version == NULL) { return "Bad arg"; } if (version->major == SSLv3_MAJOR) { switch (version->minor) { case SSLv3_MINOR : return "SSLv3"; case TLSv1_MINOR : return "TLSv1"; case TLSv1_1_MINOR : return "TLSv1.1"; case TLSv1_2_MINOR : return "TLSv1.2"; case TLSv1_3_MINOR : return "TLSv1.3"; default: return "unknown"; } } #ifdef WOLFSSL_DTLS else if (version->major == DTLS_MAJOR) { switch (version->minor) { case DTLS_MINOR : return "DTLS"; case DTLSv1_2_MINOR : return "DTLSv1.2"; case DTLSv1_3_MINOR : return "DTLSv1.3"; default: return "unknown"; } } #endif /* WOLFSSL_DTLS */ return "unknown"; } const char* wolfSSL_get_version(const WOLFSSL* ssl) { if (ssl == NULL) { WOLFSSL_MSG("Bad argument"); return "unknown"; } return wolfSSL_internal_get_version(&ssl->version); } /* current library version */ const char* wolfSSL_lib_version(void) { return LIBWOLFSSL_VERSION_STRING; } #ifdef OPENSSL_EXTRA #if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L const char* wolfSSL_OpenSSL_version(int a) { (void)a; return "wolfSSL " LIBWOLFSSL_VERSION_STRING; } #else const char* wolfSSL_OpenSSL_version(void) { return "wolfSSL " LIBWOLFSSL_VERSION_STRING; } #endif /* WOLFSSL_QT */ #endif /* current library version in hex */ word32 wolfSSL_lib_version_hex(void) { return LIBWOLFSSL_VERSION_HEX; } int wolfSSL_get_current_cipher_suite(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_current_cipher_suite"); if (ssl) return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite; return 0; } WOLFSSL_CIPHER* wolfSSL_get_current_cipher(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_current_cipher"); if (ssl) { ssl->cipher.cipherSuite0 = ssl->options.cipherSuite0; ssl->cipher.cipherSuite = ssl->options.cipherSuite; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) ssl->cipher.bits = ssl->specs.key_size * 8; #endif return &ssl->cipher; } else return NULL; } const char* wolfSSL_CIPHER_get_name(const WOLFSSL_CIPHER* cipher) { WOLFSSL_ENTER("wolfSSL_CIPHER_get_name"); if (cipher == NULL) { return NULL; } #if !defined(WOLFSSL_CIPHER_INTERNALNAME) && !defined(NO_ERROR_STRINGS) && \ !defined(WOLFSSL_QT) return GetCipherNameIana(cipher->cipherSuite0, cipher->cipherSuite); #else return wolfSSL_get_cipher_name_from_suite(cipher->cipherSuite0, cipher->cipherSuite); #endif } const char* wolfSSL_CIPHER_get_version(const WOLFSSL_CIPHER* cipher) { WOLFSSL_ENTER("SSL_CIPHER_get_version"); if (cipher == NULL || cipher->ssl == NULL) { return NULL; } return wolfSSL_get_version(cipher->ssl); } const char* wolfSSL_SESSION_CIPHER_get_name(const WOLFSSL_SESSION* session) { session = ClientSessionToSession(session); if (session == NULL) { return NULL; } #if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \ (defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)) #if !defined(WOLFSSL_CIPHER_INTERNALNAME) && !defined(NO_ERROR_STRINGS) return GetCipherNameIana(session->cipherSuite0, session->cipherSuite); #else return GetCipherNameInternal(session->cipherSuite0, session->cipherSuite); #endif #else return NULL; #endif } const char* wolfSSL_get_cipher(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_cipher"); return wolfSSL_CIPHER_get_name(wolfSSL_get_current_cipher(ssl)); } /* gets cipher name in the format DHE-RSA-... rather then TLS_DHE... */ const char* wolfSSL_get_cipher_name(WOLFSSL* ssl) { /* get access to cipher_name_idx in internal.c */ return wolfSSL_get_cipher_name_internal(ssl); } const char* wolfSSL_get_cipher_name_from_suite(const byte cipherSuite0, const byte cipherSuite) { return GetCipherNameInternal(cipherSuite0, cipherSuite); } const char* wolfSSL_get_cipher_name_iana_from_suite(const byte cipherSuite0, const byte cipherSuite) { return GetCipherNameIana(cipherSuite0, cipherSuite); } int wolfSSL_get_cipher_suite_from_name(const char* name, byte* cipherSuite0, byte* cipherSuite, int *flags) { if ((name == NULL) || (cipherSuite0 == NULL) || (cipherSuite == NULL) || (flags == NULL)) return BAD_FUNC_ARG; return GetCipherSuiteFromName(name, cipherSuite0, cipherSuite, flags); } #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) /* Creates and returns a new WOLFSSL_CIPHER stack. */ WOLFSSL_STACK* wolfSSL_sk_new_cipher(void) { WOLFSSL_STACK* sk; WOLFSSL_ENTER("wolfSSL_sk_new_cipher"); sk = wolfSSL_sk_new_null(); if (sk == NULL) return NULL; sk->type = STACK_TYPE_CIPHER; return sk; } /* return 1 on success 0 on fail */ int wolfSSL_sk_CIPHER_push(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk, WOLFSSL_CIPHER* cipher) { return wolfSSL_sk_push(sk, cipher); } #ifndef NO_WOLFSSL_STUB WOLFSSL_CIPHER* wolfSSL_sk_CIPHER_pop(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk) { WOLFSSL_STUB("wolfSSL_sk_CIPHER_pop"); (void)sk; return NULL; } #endif /* NO_WOLFSSL_STUB */ #endif /* WOLFSSL_QT || OPENSSL_ALL */ word32 wolfSSL_CIPHER_get_id(const WOLFSSL_CIPHER* cipher) { word16 cipher_id = 0; WOLFSSL_ENTER("SSL_CIPHER_get_id"); if (cipher && cipher->ssl) { cipher_id = (cipher->ssl->options.cipherSuite0 << 8) | cipher->ssl->options.cipherSuite; } return cipher_id; } const WOLFSSL_CIPHER* wolfSSL_get_cipher_by_value(word16 value) { const WOLFSSL_CIPHER* cipher = NULL; byte cipherSuite0, cipherSuite; WOLFSSL_ENTER("SSL_get_cipher_by_value"); /* extract cipher id information */ cipherSuite = (value & 0xFF); cipherSuite0 = ((value >> 8) & 0xFF); /* TODO: lookup by cipherSuite0 / cipherSuite */ (void)cipherSuite0; (void)cipherSuite; return cipher; } #if defined(OPENSSL_EXTRA) /* Free the structure for WOLFSSL_CIPHER stack * * sk stack to free nodes in */ void wolfSSL_sk_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk) { WOLFSSL_ENTER("wolfSSL_sk_CIPHER_free"); wolfSSL_sk_free(sk); } #endif /* OPENSSL_ALL */ #if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448) || \ !defined(NO_DH) #ifdef HAVE_FFDHE static const char* wolfssl_ffdhe_name(word16 group) { const char* str = NULL; switch (group) { case WOLFSSL_FFDHE_2048: str = "FFDHE_2048"; break; case WOLFSSL_FFDHE_3072: str = "FFDHE_3072"; break; case WOLFSSL_FFDHE_4096: str = "FFDHE_4096"; break; case WOLFSSL_FFDHE_6144: str = "FFDHE_6144"; break; case WOLFSSL_FFDHE_8192: str = "FFDHE_8192"; break; default: break; } return str; } #endif /* Return the name of the curve used for key exchange as a printable string. * * ssl The SSL/TLS object. * returns NULL if ECDH was not used, otherwise the name as a string. */ const char* wolfSSL_get_curve_name(WOLFSSL* ssl) { const char* cName = NULL; if (ssl == NULL) return NULL; #ifdef HAVE_FFDHE if (ssl->namedGroup != 0) { cName = wolfssl_ffdhe_name(ssl->namedGroup); } #endif #ifdef HAVE_CURVE25519 if (ssl->ecdhCurveOID == ECC_X25519_OID && cName == NULL) { cName = "X25519"; } #endif #ifdef HAVE_CURVE448 if (ssl->ecdhCurveOID == ECC_X448_OID && cName == NULL) { cName = "X448"; } #endif #ifdef HAVE_ECC if (ssl->ecdhCurveOID != 0 && cName == NULL) { cName = wc_ecc_get_name(wc_ecc_get_oid(ssl->ecdhCurveOID, NULL, NULL)); } #endif return cName; } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \ defined(OPENSSL_EXTRA_X509_SMALL) /* Creates a new WOLFSSL_ASN1_STRING structure. * * returns a pointer to the new structure created on success or NULL if fail */ WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_new(void) { WOLFSSL_ASN1_STRING* asn1; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_ASN1_STRING_new"); #endif asn1 = (WOLFSSL_ASN1_STRING*)XMALLOC(sizeof(WOLFSSL_ASN1_STRING), NULL, DYNAMIC_TYPE_OPENSSL); if (asn1 != NULL) { XMEMSET(asn1, 0, sizeof(WOLFSSL_ASN1_STRING)); } return asn1; /* no check for null because error case is returning null*/ } /** * Used to duplicate a passed in WOLFSSL_ASN1_STRING* * @param asn1 WOLFSSL_ASN1_STRING* to be duplicated * @return WOLFSSL_ASN1_STRING* the duplicate struct or NULL on error */ WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_dup(WOLFSSL_ASN1_STRING* asn1) { WOLFSSL_ASN1_STRING* dupl = NULL; WOLFSSL_ENTER("wolfSSL_ASN1_STRING_dup"); if (!asn1) { WOLFSSL_MSG("Bad parameter"); return NULL; } dupl = wolfSSL_ASN1_STRING_new(); if (!dupl) { WOLFSSL_MSG("wolfSSL_ASN1_STRING_new error"); return NULL; } dupl->type = asn1->type; dupl->flags = asn1->flags; if (wolfSSL_ASN1_STRING_set(dupl, asn1->data, asn1->length) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_ASN1_STRING_set error"); wolfSSL_ASN1_STRING_free(dupl); return NULL; } return dupl; } /* used to free a WOLFSSL_ASN1_STRING structure */ void wolfSSL_ASN1_STRING_free(WOLFSSL_ASN1_STRING* asn1) { #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_ASN1_STRING_free"); #endif if (asn1 != NULL) { if (asn1->length > 0 && asn1->data != NULL && asn1->isDynamic) { XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL); } XFREE(asn1, NULL, DYNAMIC_TYPE_OPENSSL); } } int wolfSSL_ASN1_STRING_cmp(const WOLFSSL_ASN1_STRING *a, const WOLFSSL_ASN1_STRING *b) { int i; WOLFSSL_ENTER("wolfSSL_ASN1_STRING_cmp"); if (!a || !b) { return WOLFSSL_FATAL_ERROR; } if (a->length != b->length) { return a->length - b->length; } if ((i = XMEMCMP(a->data, b->data, a->length)) != 0) { return i; } return a->type - b->type; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if !defined(NO_CERTS) && (defined(OPENSSL_EXTRA) || \ defined(OPENSSL_EXTRA_X509_SMALL)) int wolfSSL_ASN1_STRING_copy(WOLFSSL_ASN1_STRING* dest, const WOLFSSL_ASN1_STRING* src) { if (src == NULL || dest == NULL) { return WOLFSSL_FAILURE; } dest->type = src->type; if(wolfSSL_ASN1_STRING_set(dest, src->data, src->length) != WOLFSSL_SUCCESS) { return WOLFSSL_FAILURE; } dest->flags = src->flags; return WOLFSSL_SUCCESS; } /* Creates a new WOLFSSL_ASN1_STRING structure given the input type. * * type is the type of set when WOLFSSL_ASN1_STRING is created * * returns a pointer to the new structure created on success or NULL if fail */ WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_type_new(int type) { WOLFSSL_ASN1_STRING* asn1; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_ASN1_STRING_type_new"); #endif asn1 = wolfSSL_ASN1_STRING_new(); if (asn1 == NULL) { return NULL; } asn1->type = type; return asn1; } /****************************************************************************** * wolfSSL_ASN1_STRING_type - returns the type of * * RETURNS: * returns the type set for . Otherwise, returns WOLFSSL_FAILURE. */ int wolfSSL_ASN1_STRING_type(const WOLFSSL_ASN1_STRING* asn1) { #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_ASN1_STRING_type"); #endif if (asn1 == NULL) { return WOLFSSL_FAILURE; } return asn1->type; } #endif /* !NO_CERTS && OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \ defined(OPENSSL_EXTRA_X509_SMALL) /* if dataSz is negative then use XSTRLEN to find length of data * return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure */ /* `data` can be NULL and only buffer will be allocated */ int wolfSSL_ASN1_STRING_set(WOLFSSL_ASN1_STRING* asn1, const void* data, int dataSz) { int sz; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_ASN1_STRING_set"); #endif if (asn1 == NULL || (data == NULL && dataSz < 0)) { return WOLFSSL_FAILURE; } if (dataSz < 0) { sz = (int)XSTRLEN((const char*)data); } else { sz = dataSz; } if (sz < 0) { return WOLFSSL_FAILURE; } /* free any existing data before copying */ if (asn1->data != NULL && asn1->isDynamic) { XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL); asn1->data = NULL; } if (sz + 1 > CTC_NAME_SIZE) { /* account for null char */ /* create new data buffer and copy over */ asn1->data = (char*)XMALLOC(sz + 1, NULL, DYNAMIC_TYPE_OPENSSL); if (asn1->data == NULL) { return WOLFSSL_FAILURE; } asn1->isDynamic = 1; } else { XMEMSET(asn1->strData, 0, CTC_NAME_SIZE); asn1->data = asn1->strData; asn1->isDynamic = 0; } if (data != NULL) { XMEMCPY(asn1->data, data, sz); asn1->data[sz] = '\0'; } asn1->length = sz; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifndef NO_CERTS #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) const unsigned char* wolfSSL_ASN1_STRING_get0_data( const WOLFSSL_ASN1_STRING* asn) { WOLFSSL_ENTER("wolfSSL_ASN1_STRING_get0_data"); if (asn) { return (const unsigned char*)asn->data; } else { return NULL; } } unsigned char* wolfSSL_ASN1_STRING_data(WOLFSSL_ASN1_STRING* asn) { #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_ASN1_STRING_data"); #endif if (asn) { return (unsigned char*)asn->data; } else { return NULL; } } int wolfSSL_ASN1_STRING_length(WOLFSSL_ASN1_STRING* asn) { #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_ASN1_STRING_length"); #endif if (asn) { return asn->length; } else { return 0; } } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA #ifndef NO_WOLFSSL_STUB WOLFSSL_ASN1_STRING* wolfSSL_d2i_DISPLAYTEXT(WOLFSSL_ASN1_STRING **asn, const unsigned char **in, long len) { WOLFSSL_STUB("d2i_DISPLAYTEXT"); (void)asn; (void)in; (void)len; return NULL; } #endif #endif /* OPENSSL_EXTRA */ #endif /* !NO_CERTS */ #ifdef OPENSSL_EXTRA #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) /* return authentication NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_auth_nid(const WOLFSSL_CIPHER* cipher) { static const struct authnid { const char* alg_name; const int nid; } authnid_tbl[] = { {"RSA", NID_auth_rsa}, {"PSK", NID_auth_psk}, {"SRP", NID_auth_srp}, {"ECDSA", NID_auth_ecdsa}, {"None", NID_auth_null}, {NULL, NID_undef} }; const struct authnid* sa; const char* authStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } authStr = GetCipherAuthStr(n); if (authStr != NULL) { for(sa = authnid_tbl; sa->alg_name != NULL; sa++) { if (XSTRCMP(sa->alg_name, authStr) == 0) { return sa->nid; } } } return NID_undef; } /* return cipher NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_cipher_nid(const WOLFSSL_CIPHER* cipher) { static const struct ciphernid { const char* alg_name; const int nid; } ciphernid_tbl[] = { {"AESGCM(256)", NID_aes_256_gcm}, {"AESGCM(128)", NID_aes_128_gcm}, {"AESCCM(128)", NID_aes_128_ccm}, {"AES(128)", NID_aes_128_cbc}, {"AES(256)", NID_aes_256_cbc}, {"CAMELLIA(256)", NID_camellia_256_cbc}, {"CAMELLIA(128)", NID_camellia_128_cbc}, {"RC4", NID_rc4}, {"3DES", NID_des_ede3_cbc}, {"CHACHA20/POLY1305(256)", NID_chacha20_poly1305}, {"None", NID_undef}, {NULL, NID_undef} }; const struct ciphernid* c; const char* encStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; WOLFSSL_ENTER("wolfSSL_CIPHER_get_cipher_nid"); if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } encStr = GetCipherEncStr(n); if (encStr != NULL) { for(c = ciphernid_tbl; c->alg_name != NULL; c++) { if (XSTRCMP(c->alg_name, encStr) == 0) { return c->nid; } } } return NID_undef; } /* return digest NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_digest_nid(const WOLFSSL_CIPHER* cipher) { static const struct macnid { const char* alg_name; const int nid; } macnid_tbl[] = { {"SHA1", NID_sha1}, {"SHA256", NID_sha256}, {"SHA384", NID_sha384}, {NULL, NID_undef} }; const struct macnid* mc; const char* name; const char* macStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; (void)name; WOLFSSL_ENTER("wolfSSL_CIPHER_get_digest_nid"); if ((name = GetCipherSegment(cipher, n)) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } /* in MD5 case, NID will be NID_md5 */ if (XSTRSTR(name, "MD5") != NULL) { return NID_md5; } macStr = GetCipherMacStr(n); if (macStr != NULL) { for(mc = macnid_tbl; mc->alg_name != NULL; mc++) { if (XSTRCMP(mc->alg_name, macStr) == 0) { return mc->nid; } } } return NID_undef; } /* return key exchange NID corresponding to cipher suite * @param cipher a pointer to WOLFSSL_CIPHER * return NID if found, NID_undef if not found */ int wolfSSL_CIPHER_get_kx_nid(const WOLFSSL_CIPHER* cipher) { static const struct kxnid { const char* name; const int nid; } kxnid_table[] = { {"ECDHEPSK", NID_kx_ecdhe_psk}, {"ECDH", NID_kx_ecdhe}, {"DHEPSK", NID_kx_dhe_psk}, {"DH", NID_kx_dhe}, {"RSAPSK", NID_kx_rsa_psk}, {"SRP", NID_kx_srp}, {"EDH", NID_kx_dhe}, {"RSA", NID_kx_rsa}, {NULL, NID_undef} }; const struct kxnid* k; const char* keaStr; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; WOLFSSL_ENTER("wolfSSL_CIPHER_get_kx_nid"); if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } /* in TLS 1.3 case, NID will be NID_kx_any */ if (XSTRCMP(n[0], "TLS13") == 0) { return NID_kx_any; } keaStr = GetCipherKeaStr(n); if (keaStr != NULL) { for(k = kxnid_table; k->name != NULL; k++) { if (XSTRCMP(k->name, keaStr) == 0) { return k->nid; } } } return NID_undef; } /* check if cipher suite is AEAD * @param cipher a pointer to WOLFSSL_CIPHER * return 1 if cipher is AEAD, 0 otherwise */ int wolfSSL_CIPHER_is_aead(const WOLFSSL_CIPHER* cipher) { char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; WOLFSSL_ENTER("wolfSSL_CIPHER_is_aead"); if (GetCipherSegment(cipher, n) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return NID_undef; } return IsCipherAEAD(n); } /* Creates cipher->description based on cipher->offset * cipher->offset is set in wolfSSL_get_ciphers_compat when it is added * to a stack of ciphers. * @param [in] cipher: A cipher from a stack of ciphers. * return WOLFSSL_SUCCESS if cipher->description is set, else WOLFSSL_FAILURE */ int wolfSSL_sk_CIPHER_description(WOLFSSL_CIPHER* cipher) { int strLen; unsigned long offset; char* dp; const char* name; const char *keaStr, *authStr, *encStr, *macStr, *protocol; char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}}; int len = MAX_DESCRIPTION_SZ-1; const CipherSuiteInfo* cipher_names; ProtocolVersion pv; WOLFSSL_ENTER("wolfSSL_sk_CIPHER_description"); if (cipher == NULL) return WOLFSSL_FAILURE; dp = cipher->description; if (dp == NULL) return WOLFSSL_FAILURE; cipher_names = GetCipherNames(); offset = cipher->offset; if (offset >= (unsigned long)GetCipherNamesSize()) return WOLFSSL_FAILURE; pv.major = cipher_names[offset].major; pv.minor = cipher_names[offset].minor; protocol = wolfSSL_internal_get_version(&pv); if ((name = GetCipherSegment(cipher, n)) == NULL) { WOLFSSL_MSG("no suitable cipher name found"); return WOLFSSL_FAILURE; } /* keaStr */ keaStr = GetCipherKeaStr(n); /* authStr */ authStr = GetCipherAuthStr(n); /* encStr */ encStr = GetCipherEncStr(n); if ((cipher->bits = SetCipherBits(encStr)) == WOLFSSL_FAILURE) { WOLFSSL_MSG("Cipher Bits Not Set."); } /* macStr */ macStr = GetCipherMacStr(n); /* Build up the string by copying onto the end. */ XSTRNCPY(dp, name, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " ", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, protocol, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Kx=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, keaStr, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Au=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, authStr, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Enc=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, encStr, len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, " Mac=", len); dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp); len -= strLen; dp += strLen; XSTRNCPY(dp, macStr, len); dp[len-1] = '\0'; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_ALL || WOLFSSL_QT */ static WC_INLINE const char* wolfssl_kea_to_string(int kea) { const char* keaStr; switch (kea) { case no_kea: keaStr = "None"; break; #ifndef NO_RSA case rsa_kea: keaStr = "RSA"; break; #endif #ifndef NO_DH case diffie_hellman_kea: keaStr = "DHE"; break; #endif case fortezza_kea: keaStr = "FZ"; break; #ifndef NO_PSK case psk_kea: keaStr = "PSK"; break; #ifndef NO_DH case dhe_psk_kea: keaStr = "DHEPSK"; break; #endif #ifdef HAVE_ECC case ecdhe_psk_kea: keaStr = "ECDHEPSK"; break; #endif #endif #ifdef HAVE_ECC case ecc_diffie_hellman_kea: keaStr = "ECDHE"; break; case ecc_static_diffie_hellman_kea: keaStr = "ECDH"; break; #endif default: keaStr = "unknown"; break; } return keaStr; } static WC_INLINE const char* wolfssl_sigalg_to_string(int sig_algo) { const char* authStr; switch (sig_algo) { case anonymous_sa_algo: authStr = "None"; break; #ifndef NO_RSA case rsa_sa_algo: authStr = "RSA"; break; #ifdef WC_RSA_PSS case rsa_pss_sa_algo: authStr = "RSA-PSS"; break; #endif #endif #ifndef NO_DSA case dsa_sa_algo: authStr = "DSA"; break; #endif #ifdef HAVE_ECC case ecc_dsa_sa_algo: authStr = "ECDSA"; break; #endif #ifdef HAVE_ED25519 case ed25519_sa_algo: authStr = "Ed25519"; break; #endif #ifdef HAVE_ED448 case ed448_sa_algo: authStr = "Ed448"; break; #endif default: authStr = "unknown"; break; } return authStr; } static WC_INLINE const char* wolfssl_cipher_to_string(int cipher, int key_size) { const char* encStr; (void)key_size; switch (cipher) { case wolfssl_cipher_null: encStr = "None"; break; #ifndef NO_RC4 case wolfssl_rc4: encStr = "RC4(128)"; break; #endif #ifndef NO_DES3 case wolfssl_triple_des: encStr = "3DES(168)"; break; #endif #ifndef NO_AES case wolfssl_aes: if (key_size == 128) encStr = "AES(128)"; else if (key_size == 256) encStr = "AES(256)"; else encStr = "AES(?)"; break; #ifdef HAVE_AESGCM case wolfssl_aes_gcm: if (key_size == 128) encStr = "AESGCM(128)"; else if (key_size == 256) encStr = "AESGCM(256)"; else encStr = "AESGCM(?)"; break; #endif #ifdef HAVE_AESCCM case wolfssl_aes_ccm: if (key_size == 128) encStr = "AESCCM(128)"; else if (key_size == 256) encStr = "AESCCM(256)"; else encStr = "AESCCM(?)"; break; #endif #endif #ifdef HAVE_CHACHA case wolfssl_chacha: encStr = "CHACHA20/POLY1305(256)"; break; #endif #ifdef HAVE_CAMELLIA case wolfssl_camellia: if (key_size == 128) encStr = "Camellia(128)"; else if (key_size == 256) encStr = "Camellia(256)"; else encStr = "Camellia(?)"; break; #endif default: encStr = "unknown"; break; } return encStr; } static WC_INLINE const char* wolfssl_mac_to_string(int mac) { const char* macStr; switch (mac) { case no_mac: macStr = "None"; break; #ifndef NO_MD5 case md5_mac: macStr = "MD5"; break; #endif #ifndef NO_SHA case sha_mac: macStr = "SHA1"; break; #endif #ifdef HAVE_SHA224 case sha224_mac: macStr = "SHA224"; break; #endif #ifndef NO_SHA256 case sha256_mac: macStr = "SHA256"; break; #endif #ifdef HAVE_SHA384 case sha384_mac: macStr = "SHA384"; break; #endif #ifdef HAVE_SHA512 case sha512_mac: macStr = "SHA512"; break; #endif default: macStr = "unknown"; break; } return macStr; } char* wolfSSL_CIPHER_description(const WOLFSSL_CIPHER* cipher, char* in, int len) { char *ret = in; const char *keaStr, *authStr, *encStr, *macStr; size_t strLen; WOLFSSL_ENTER("wolfSSL_CIPHER_description"); if (cipher == NULL || in == NULL) return NULL; #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) /* if cipher is in the stack from wolfSSL_get_ciphers_compat then * Return the description based on cipher_names[cipher->offset] */ if (cipher->in_stack == TRUE) { wolfSSL_sk_CIPHER_description((WOLFSSL_CIPHER*)cipher); XSTRNCPY(in,cipher->description,len); return ret; } #endif /* Get the cipher description based on the SSL session cipher */ keaStr = wolfssl_kea_to_string(cipher->ssl->specs.kea); authStr = wolfssl_sigalg_to_string(cipher->ssl->specs.sig_algo); encStr = wolfssl_cipher_to_string(cipher->ssl->specs.bulk_cipher_algorithm, cipher->ssl->specs.key_size); macStr = wolfssl_mac_to_string(cipher->ssl->specs.mac_algorithm); /* Build up the string by copying onto the end. */ XSTRNCPY(in, wolfSSL_CIPHER_get_name(cipher), len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " ", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, wolfSSL_get_version(cipher->ssl), len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Kx=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, keaStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Au=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, authStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Enc=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, encStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Mac=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, macStr, len); in[len-1] = '\0'; return ret; } #ifndef NO_WOLFSSL_STUB int wolfSSL_OCSP_parse_url(char* url, char** host, char** port, char** path, int* ssl) { (void)url; (void)host; (void)port; (void)path; (void)ssl; WOLFSSL_STUB("OCSP_parse_url"); return 0; } #endif #ifndef NO_MD4 void wolfSSL_MD4_Init(WOLFSSL_MD4_CTX* md4) { /* make sure we have a big enough buffer */ typedef char ok[sizeof(md4->buffer) >= sizeof(Md4) ? 1 : -1]; (void) sizeof(ok); WOLFSSL_ENTER("MD4_Init"); wc_InitMd4((Md4*)md4); } void wolfSSL_MD4_Update(WOLFSSL_MD4_CTX* md4, const void* data, unsigned long len) { WOLFSSL_ENTER("MD4_Update"); wc_Md4Update((Md4*)md4, (const byte*)data, (word32)len); } void wolfSSL_MD4_Final(unsigned char* digest, WOLFSSL_MD4_CTX* md4) { WOLFSSL_ENTER("MD4_Final"); wc_Md4Final((Md4*)md4, digest); } #endif /* NO_MD4 */ #ifndef NO_WOLFSSL_STUB void wolfSSL_RAND_screen(void) { WOLFSSL_STUB("RAND_screen"); } #endif int wolfSSL_RAND_load_file(const char* fname, long len) { (void)fname; /* wolfCrypt provides enough entropy internally or will report error */ if (len == -1) return 1024; else return (int)len; } #ifndef NO_WOLFSSL_STUB WOLFSSL_COMP_METHOD* wolfSSL_COMP_zlib(void) { WOLFSSL_STUB("COMP_zlib"); return 0; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_COMP_METHOD* wolfSSL_COMP_rle(void) { WOLFSSL_STUB("COMP_rle"); return 0; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_COMP_add_compression_method(int method, void* data) { (void)method; (void)data; WOLFSSL_STUB("COMP_add_compression_method"); return 0; } #endif /* wolfSSL_set_dynlock_create_callback * CRYPTO_set_dynlock_create_callback has been deprecated since openSSL 1.0.1. * This function exists for compatibility purposes because wolfSSL satisfies * thread safety without relying on the callback. */ void wolfSSL_set_dynlock_create_callback(WOLFSSL_dynlock_value* (*f)( const char*, int)) { WOLFSSL_STUB("CRYPTO_set_dynlock_create_callback"); (void)f; } /* wolfSSL_set_dynlock_lock_callback * CRYPTO_set_dynlock_lock_callback has been deprecated since openSSL 1.0.1. * This function exists for compatibility purposes because wolfSSL satisfies * thread safety without relying on the callback. */ void wolfSSL_set_dynlock_lock_callback( void (*f)(int, WOLFSSL_dynlock_value*, const char*, int)) { WOLFSSL_STUB("CRYPTO_set_set_dynlock_lock_callback"); (void)f; } /* wolfSSL_set_dynlock_destroy_callback * CRYPTO_set_dynlock_destroy_callback has been deprecated since openSSL 1.0.1. * This function exists for compatibility purposes because wolfSSL satisfies * thread safety without relying on the callback. */ void wolfSSL_set_dynlock_destroy_callback( void (*f)(WOLFSSL_dynlock_value*, const char*, int)) { WOLFSSL_STUB("CRYPTO_set_set_dynlock_destroy_callback"); (void)f; } #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA #ifndef NO_CERTS #if !defined(NO_ASN) && !defined(NO_PWDBASED) /* Copies unencrypted DER key buffer into "der". If "der" is null then the size * of buffer needed is returned. If *der == NULL then it allocates a buffer. * NOTE: This also advances the "der" pointer to be at the end of buffer. * * Returns size of key buffer on success */ int wolfSSL_i2d_PrivateKey(const WOLFSSL_EVP_PKEY* key, unsigned char** der) { return wolfSSL_EVP_PKEY_get_der(key, der); } int wolfSSL_i2d_PublicKey(const WOLFSSL_EVP_PKEY *key, unsigned char **der) { return wolfSSL_EVP_PKEY_get_der(key, der); } #endif /* !NO_ASN && !NO_PWDBASED */ #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA /****************************************************************************** * wolfSSL_CTX_set1_param - set a pointer to the SSL verification parameters * * RETURNS: * WOLFSSL_SUCCESS on success, otherwise returns WOLFSSL_FAILURE * Note: Returns WOLFSSL_SUCCESS, in case either parameter is NULL, * same as openssl. */ int wolfSSL_CTX_set1_param(WOLFSSL_CTX* ctx, WOLFSSL_X509_VERIFY_PARAM *vpm) { if (ctx == NULL || vpm == NULL) return WOLFSSL_SUCCESS; return wolfSSL_X509_VERIFY_PARAM_set1(ctx->param, vpm); } /****************************************************************************** * wolfSSL_CTX/_get0_param - return a pointer to the SSL verification parameters * * RETURNS: * returns pointer to the SSL verification parameters on success, * otherwise returns NULL */ WOLFSSL_X509_VERIFY_PARAM* wolfSSL_CTX_get0_param(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return NULL; } return ctx->param; } WOLFSSL_X509_VERIFY_PARAM* wolfSSL_get0_param(WOLFSSL* ssl) { if (ssl == NULL) { return NULL; } return ssl->param; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) int wolfSSL_i2d_ASN1_INTEGER(WOLFSSL_ASN1_INTEGER* a, unsigned char** out) { int ret = 0; word32 idx = 0; int len; int preAlloc = 1; WOLFSSL_ENTER("wolfSSL_i2d_ASN1_INTEGER"); if (a == NULL || a->data == NULL || a->length <= 0 || out == NULL) { WOLFSSL_MSG("Bad parameter."); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0 && *out == NULL) { preAlloc = 0; *out = (unsigned char*)XMALLOC(a->length, NULL, DYNAMIC_TYPE_ASN1); if (*out == NULL) { WOLFSSL_MSG("Failed to allocate output buffer."); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* * A WOLFSSL_ASN1_INTEGER stores the DER buffer of the integer in its * "data" field, but it's only the magnitude of the number (i.e. the * sign isn't encoded). The "negative" field is 1 if the value should * be interpreted as negative and 0 otherwise. If the value is negative, * we need to output the 2's complement of the value in the DER output. */ XMEMCPY(*out, a->data, a->length); if (a->negative) { if (GetLength(a->data, &idx, &len, a->length) < 0) { ret = WOLFSSL_FATAL_ERROR; } else { ++idx; for (; (int)idx < a->length; ++idx) { (*out)[idx] = ~(*out)[idx]; } do { --idx; ++(*out)[idx]; } while ((*out)[idx] == 0); } } } if (ret == 0) { ret = a->length; if (preAlloc) { *out += a->length; } } WOLFSSL_LEAVE("wolfSSL_i2d_ASN1_INTEGER", ret); return ret; } WOLFSSL_ASN1_INTEGER* wolfSSL_d2i_ASN1_INTEGER(WOLFSSL_ASN1_INTEGER** a, const unsigned char** in, long inSz) { WOLFSSL_ASN1_INTEGER* ret = NULL; int err = 0; word32 idx = 0; int len; WOLFSSL_ENTER("wolfSSL_d2i_ASN1_INTEGER"); if (in == NULL || *in == NULL || inSz <= 0) { WOLFSSL_MSG("Bad parameter"); err = 1; } if (err == 0 && (*in)[0] != ASN_INTEGER) { WOLFSSL_MSG("Tag doesn't indicate integer type."); err = 1; } if (err == 0) { ret = wolfSSL_ASN1_INTEGER_new(); if (ret == NULL) { err = 1; } else { ret->type = V_ASN1_INTEGER; } } if (err == 0 && inSz > (long)sizeof(ret->intData)) { ret->data = (unsigned char*)XMALLOC(inSz, NULL, DYNAMIC_TYPE_ASN1); if (ret->data == NULL) { err = 1; } else { ret->isDynamic = 1; ret->dataMax = (word32)inSz; } } if (err == 0) { XMEMCPY(ret->data, *in, inSz); ret->length = (word32)inSz; /* Advance to the end of the length field.*/ if (GetLength(*in, &idx, &len, (word32)inSz) < 0) { err = 1; } else { /* See 2's complement comment in wolfSSL_d2i_ASN1_INTEGER. */ ret->negative = (*in)[idx+1] & 0x80; if (ret->negative) { ++idx; for (; (int)idx < inSz; ++idx) { ret->data[idx] = ~ret->data[idx]; } do { --idx; ++ret->data[idx]; } while (ret->data[idx] == 0); ret->type |= V_ASN1_NEG_INTEGER; } if (a != NULL) { *a = ret; } } } if (err != 0) { wolfSSL_ASN1_INTEGER_free(ret); ret = NULL; } return ret; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* Used to create a new WOLFSSL_ASN1_INTEGER structure. * returns a pointer to new structure on success and NULL on failure */ WOLFSSL_ASN1_INTEGER* wolfSSL_ASN1_INTEGER_new(void) { WOLFSSL_ASN1_INTEGER* a; a = (WOLFSSL_ASN1_INTEGER*)XMALLOC(sizeof(WOLFSSL_ASN1_INTEGER), NULL, DYNAMIC_TYPE_OPENSSL); if (a == NULL) { return NULL; } XMEMSET(a, 0, sizeof(WOLFSSL_ASN1_INTEGER)); a->data = a->intData; a->isDynamic = 0; a->dataMax = WOLFSSL_ASN1_INTEGER_MAX; a->length = 0; return a; } /* free's internal elements of WOLFSSL_ASN1_INTEGER and free's "in" itself */ void wolfSSL_ASN1_INTEGER_free(WOLFSSL_ASN1_INTEGER* in) { if (in != NULL) { if (in->isDynamic) { XFREE(in->data, NULL, DYNAMIC_TYPE_OPENSSL); } XFREE(in, NULL, DYNAMIC_TYPE_OPENSSL); } } /* Duplicate all WOLFSSL_ASN1_INTEGER members from src to dup * src : WOLFSSL_ASN1_INTEGER to duplicate * Returns pointer to duplicate WOLFSSL_ASN1_INTEGER */ WOLFSSL_ASN1_INTEGER* wolfSSL_ASN1_INTEGER_dup(const WOLFSSL_ASN1_INTEGER* src) { WOLFSSL_ASN1_INTEGER* copy; WOLFSSL_ENTER("wolfSSL_ASN1_INTEGER_dup"); if (!src) return NULL; copy = wolfSSL_ASN1_INTEGER_new(); if (copy == NULL) return NULL; copy->negative = src->negative; copy->dataMax = src->dataMax; copy->isDynamic = src->isDynamic; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) copy->length = src->length; #endif XSTRNCPY((char*)copy->intData,(const char*)src->intData,WOLFSSL_ASN1_INTEGER_MAX); if (copy->isDynamic && src->data && copy->dataMax) { copy->data = (unsigned char*) XMALLOC(src->dataMax,NULL,DYNAMIC_TYPE_OPENSSL); if (copy->data == NULL) { wolfSSL_ASN1_INTEGER_free(copy); return NULL; } XMEMCPY(copy->data, src->data, copy->dataMax); } return copy; } /* sets the value of WOLFSSL_ASN1_INTEGER a to the long value v. */ int wolfSSL_ASN1_INTEGER_set(WOLFSSL_ASN1_INTEGER *a, long v) { int ret = WOLFSSL_SUCCESS; /* return 1 for success and 0 for failure */ int j; unsigned int i = 0; unsigned char tmp[sizeof(long)+1] = {0}; int pad = 0; if (a != NULL) { /* dynamically create data buffer, +2 for type and length */ a->data = (unsigned char*)XMALLOC((sizeof(long)+1) + 2, NULL, DYNAMIC_TYPE_OPENSSL); if (a->data == NULL) { wolfSSL_ASN1_INTEGER_free(a); ret = WOLFSSL_FAILURE; } else { a->dataMax = (int)(sizeof(long)+1) + 2; a->isDynamic = 1; } } else { /* Invalid parameter */ ret = WOLFSSL_FAILURE; } if (ret != WOLFSSL_FAILURE) { /* Set type */ a->data[i++] = ASN_INTEGER; /* Check for negative */ if (v < 0) { a->negative = 1; v *= -1; } /* Create char buffer */ for (j = 0; j < (int)sizeof(long); j++) { if (v == 0) { break; } tmp[j] = (unsigned char)(v & 0xff); v >>= 8; } /* 0 pad to indicate positive number when top bit set. */ if ((!a->negative) && (j > 0) && (tmp[j-1] & 0x80)) { pad = 1; } /* Set length */ a->data[i++] = (unsigned char)(((j == 0) ? ++j : j) + pad); /* +2 for type and length */ a->length = j + pad + 2; /* Add padding if required. */ if (pad) { a->data[i++] = 0; } /* Copy to data */ for (; j > 0; j--) { a->data[i++] = tmp[j-1]; } } return ret; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) #ifndef NO_ASN_TIME #ifndef NO_BIO int wolfSSL_ASN1_TIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_TIME* asnTime) { char buf[MAX_TIME_STRING_SZ]; int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_print"); if (bio == NULL || asnTime == NULL) { WOLFSSL_MSG("NULL function argument"); return WOLFSSL_FAILURE; } if (wolfSSL_ASN1_TIME_to_string((WOLFSSL_ASN1_TIME*)asnTime, buf, sizeof(buf)) == NULL) { XMEMSET(buf, 0, MAX_TIME_STRING_SZ); XSTRNCPY(buf, "Bad time value", sizeof(buf)-1); ret = WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf)) <= 0) { WOLFSSL_MSG("Unable to write to bio"); return WOLFSSL_FAILURE; } return ret; } #endif /* !NO_BIO */ char* wolfSSL_ASN1_TIME_to_string(WOLFSSL_ASN1_TIME* t, char* buf, int len) { WOLFSSL_ENTER("wolfSSL_ASN1_TIME_to_string"); if (t == NULL || buf == NULL || len < 5) { WOLFSSL_MSG("Bad argument"); return NULL; } if (t->length > len) { WOLFSSL_MSG("Length of date is longer then buffer"); return NULL; } if (!GetTimeString(t->data, t->type, buf, len)) { return NULL; } return buf; } /* Converts a WOLFSSL_ASN1_TIME to a struct tm. Returns WOLFSSL_SUCCESS on * success and WOLFSSL_FAILURE on failure. */ static int Asn1TimeToTm(WOLFSSL_ASN1_TIME* asnTime, struct tm* tm) { unsigned char* asn1TimeBuf; int asn1TimeBufLen; int i = 0; int bytesNeeded = 11; if (asnTime == NULL) { WOLFSSL_MSG("asnTime is NULL"); return WOLFSSL_FAILURE; } if (tm == NULL) { WOLFSSL_MSG("tm is NULL"); return WOLFSSL_FAILURE; } asn1TimeBuf = wolfSSL_ASN1_TIME_get_data(asnTime); if (asn1TimeBuf == NULL) { WOLFSSL_MSG("Failed to get WOLFSSL_ASN1_TIME buffer."); return WOLFSSL_FAILURE; } asn1TimeBufLen = wolfSSL_ASN1_TIME_get_length(asnTime); if (asn1TimeBufLen <= 0) { WOLFSSL_MSG("Failed to get WOLFSSL_ASN1_TIME buffer length."); return WOLFSSL_FAILURE; } XMEMSET(tm, 0, sizeof(struct tm)); /* Convert ASN1_time to struct tm */ /* Check type */ if (asnTime->type == ASN_UTC_TIME) { /* 2-digit year */ bytesNeeded += 2; if (bytesNeeded > asn1TimeBufLen) { WOLFSSL_MSG("WOLFSSL_ASN1_TIME buffer length is invalid."); return WOLFSSL_FAILURE; } if (asn1TimeBuf[bytesNeeded-1] != 'Z') { WOLFSSL_MSG("Expecting UTC time."); return WOLFSSL_FAILURE; } tm->tm_year = (asn1TimeBuf[i] - '0') * 10; i++; tm->tm_year += asn1TimeBuf[i] - '0'; i++; if (tm->tm_year < 70) { tm->tm_year += 100; } } else if (asnTime->type == ASN_GENERALIZED_TIME) { /* 4-digit year */ bytesNeeded += 4; if (bytesNeeded > asn1TimeBufLen) { WOLFSSL_MSG("WOLFSSL_ASN1_TIME buffer length is invalid."); return WOLFSSL_FAILURE; } if (asn1TimeBuf[bytesNeeded-1] != 'Z') { WOLFSSL_MSG("Expecting UTC time."); return WOLFSSL_FAILURE; } tm->tm_year = (asn1TimeBuf[i] - '0') * 1000; i++; tm->tm_year += (asn1TimeBuf[i] - '0') * 100; i++; tm->tm_year += (asn1TimeBuf[i] - '0') * 10; i++; tm->tm_year += asn1TimeBuf[i] - '0'; i++; tm->tm_year -= 1900; } else { WOLFSSL_MSG("asnTime->type is invalid."); return WOLFSSL_FAILURE; } tm->tm_mon = (asn1TimeBuf[i] - '0') * 10; i++; tm->tm_mon += (asn1TimeBuf[i] - '0') - 1; i++; /* January is 0 not 1 */ tm->tm_mday = (asn1TimeBuf[i] - '0') * 10; i++; tm->tm_mday += (asn1TimeBuf[i] - '0'); i++; tm->tm_hour = (asn1TimeBuf[i] - '0') * 10; i++; tm->tm_hour += (asn1TimeBuf[i] - '0'); i++; tm->tm_min = (asn1TimeBuf[i] - '0') * 10; i++; tm->tm_min += (asn1TimeBuf[i] - '0'); i++; tm->tm_sec = (asn1TimeBuf[i] - '0') * 10; i++; tm->tm_sec += (asn1TimeBuf[i] - '0'); #ifdef XMKTIME /* Call XMKTIME on tm to get the tm_wday and tm_yday fields populated. */ XMKTIME(tm); #endif return WOLFSSL_SUCCESS; } int wolfSSL_ASN1_TIME_to_tm(const WOLFSSL_ASN1_TIME* asnTime, struct tm* tm) { time_t currentTime; struct tm *tmpTs; #if defined(NEED_TMP_TIME) /* for use with gmtime_r */ struct tm tmpTimeStorage; tmpTs = &tmpTimeStorage; #else tmpTs = NULL; #endif (void)tmpTs; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_to_tm"); /* If asnTime is NULL, then the current time is converted. */ if (asnTime == NULL) { if (tm == NULL) { WOLFSSL_MSG("asnTime and tm are both NULL"); return WOLFSSL_FAILURE; } currentTime = wc_Time(0); if (currentTime <= 0) { WOLFSSL_MSG("Failed to get current time."); return WOLFSSL_FAILURE; } tm = XGMTIME(¤tTime, tmpTs); if (tm == NULL) { WOLFSSL_MSG("Failed to convert current time to UTC."); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* If tm is NULL this function performs a format check on asnTime only. */ if (tm == NULL) { return wolfSSL_ASN1_TIME_check(asnTime); } return Asn1TimeToTm((WOLFSSL_ASN1_TIME*)asnTime, tm); } #endif /* !NO_ASN_TIME */ #endif /* WOLFSSL_MYSQL_COMPATIBLE || WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA*/ #ifdef OPENSSL_EXTRA int wolfSSL_ASN1_INTEGER_cmp(const WOLFSSL_ASN1_INTEGER* a, const WOLFSSL_ASN1_INTEGER* b) { int ret = 0; WOLFSSL_ENTER("wolfSSL_ASN1_INTEGER_cmp"); if (a == NULL || b == NULL) { WOLFSSL_MSG("Bad parameter."); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0 && ((a->length != b->length) || ((a->negative == 0) != (b->negative == 0)))) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = XMEMCMP(a->data, b->data, a->length); } WOLFSSL_LEAVE("wolfSSL_ASN1_INTEGER_cmp", ret); return ret; } long wolfSSL_ASN1_INTEGER_get(const WOLFSSL_ASN1_INTEGER* a) { long ret = 1; WOLFSSL_BIGNUM* bn = NULL; WOLFSSL_ENTER("ASN1_INTEGER_get"); if (a == NULL) { /* OpenSSL returns 0 when a is NULL and -1 if there is an error. Quoting * the documentation: * * "ASN1_INTEGER_get() also returns the value of a but it returns 0 if a * is NULL and -1 on error (which is ambiguous because -1 is a * legitimate value for an ASN1_INTEGER). New applications should use * ASN1_INTEGER_get_int64() instead." * */ ret = 0; } if (ret > 0) { bn = wolfSSL_ASN1_INTEGER_to_BN(a, NULL); if (bn == NULL) { ret = -1; } } if (ret > 0) { ret = wolfSSL_BN_get_word(bn); if (a->negative == 1) { ret = -ret; } } if (bn != NULL) { wolfSSL_BN_free(bn); } WOLFSSL_LEAVE("ASN1_INTEGER_get", (int)ret); return ret; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* Gets an index to store SSL structure at. * * Returns positive index on success and negative values on failure */ int wolfSSL_get_ex_data_X509_STORE_CTX_idx(void) { WOLFSSL_ENTER("wolfSSL_get_ex_data_X509_STORE_CTX_idx"); /* store SSL at index 0 */ return 0; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #ifdef OPENSSL_EXTRA /* Sets a function callback that will send information about the state of all * WOLFSSL objects that have been created by the WOLFSSL_CTX structure passed * in. * * ctx WOLFSSL_CTX structure to set callback function in * f callback function to use */ void wolfSSL_CTX_set_info_callback(WOLFSSL_CTX* ctx, void (*f)(const WOLFSSL* ssl, int type, int val)) { WOLFSSL_ENTER("wolfSSL_CTX_set_info_callback"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); } else { ctx->CBIS = f; } } unsigned long wolfSSL_ERR_peek_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_peek_error"); return wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL); } int wolfSSL_ERR_GET_LIB(unsigned long err) { unsigned long value; value = (err & 0xFFFFFFL); switch (value) { case -SSL_R_HTTP_REQUEST: return ERR_LIB_SSL; case PEM_R_NO_START_LINE: case PEM_R_PROBLEMS_GETTING_PASSWORD: case PEM_R_BAD_PASSWORD_READ: case PEM_R_BAD_DECRYPT: return ERR_LIB_PEM; case EVP_R_BAD_DECRYPT: case EVP_R_BN_DECODE_ERROR: case EVP_R_DECODE_ERROR: case EVP_R_PRIVATE_KEY_DECODE_ERROR: return ERR_LIB_EVP; case ASN1_R_HEADER_TOO_LONG: return ERR_LIB_ASN1; default: return 0; } } /* This function is to find global error values that are the same through out * all library version. With wolfSSL having only one set of error codes the * return value is pretty straight forward. The only thing needed is all wolfSSL * error values are typically negative. * * Returns the error reason */ int wolfSSL_ERR_GET_REASON(unsigned long err) { int ret = (int)err; WOLFSSL_ENTER("wolfSSL_ERR_GET_REASON"); #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) /* Nginx looks for this error to know to stop parsing certificates. */ if (err == ((ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE)) return PEM_R_NO_START_LINE; if (err == ((ERR_LIB_SSL << 24) | -SSL_R_HTTP_REQUEST)) return SSL_R_HTTP_REQUEST; #endif #if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON) if (err == ((ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG)) return ASN1_R_HEADER_TOO_LONG; #endif /* check if error value is in range of wolfSSL errors */ ret = 0 - ret; /* setting as negative value */ /* wolfCrypt range is less than MAX (-100) wolfSSL range is MIN (-300) and lower */ if (ret < MAX_CODE_E && ret > MIN_CODE_E) { return ret; } else { WOLFSSL_MSG("Not in range of typical error values"); ret = (int)err; } return ret; } /* returns a string that describes the alert * * alertID the alert value to look up */ const char* wolfSSL_alert_type_string_long(int alertID) { WOLFSSL_ENTER("wolfSSL_alert_type_string_long"); return AlertTypeToString(alertID); } const char* wolfSSL_alert_desc_string_long(int alertID) { WOLFSSL_ENTER("wolfSSL_alert_desc_string_long"); return AlertTypeToString(alertID); } /* Gets the current state of the WOLFSSL structure * * ssl WOLFSSL structure to get state of * * Returns a human readable string of the WOLFSSL structure state */ const char* wolfSSL_state_string_long(const WOLFSSL* ssl) { static const char* OUTPUT_STR[14][6][3] = { { {"SSLv3 Initialization","SSLv3 Initialization","SSLv3 Initialization"}, {"TLSv1 Initialization","TLSv2 Initialization","TLSv2 Initialization"}, {"TLSv1_1 Initialization","TLSv1_1 Initialization","TLSv1_1 Initialization"}, {"TLSv1_2 Initialization","TLSv1_2 Initialization","TLSv1_2 Initialization"}, {"DTLSv1 Initialization","DTLSv1 Initialization","DTLSv1 Initialization"}, {"DTLSv1_2 Initialization","DTLSv1_2 Initialization","DTLSv1_2 Initialization"}, }, { {"SSLv3 read Server Hello Verify Request", "SSLv3 write Server Hello Verify Request", "SSLv3 Server Hello Verify Request"}, {"TLSv1 read Server Hello Verify Request", "TLSv1 write Server Hello Verify Request", "TLSv1 Server Hello Verify Request"}, {"TLSv1_1 read Server Hello Verify Request", "TLSv1_1 write Server Hello Verify Request", "TLSv1_1 Server Hello Verify Request"}, {"TLSv1_2 read Server Hello Verify Request", "TLSv1_2 write Server Hello Verify Request", "TLSv1_2 Server Hello Verify Request"}, {"DTLSv1 read Server Hello Verify Request", "DTLSv1 write Server Hello Verify Request", "DTLSv1 Server Hello Verify Request"}, {"DTLSv1_2 read Server Hello Verify Request", "DTLSv1_2 write Server Hello Verify Request", "DTLSv1_2 Server Hello Verify Request"}, }, { {"SSLv3 read Server Hello", "SSLv3 write Server Hello", "SSLv3 Server Hello"}, {"TLSv1 read Server Hello", "TLSv1 write Server Hello", "TLSv1 Server Hello"}, {"TLSv1_1 read Server Hello", "TLSv1_1 write Server Hello", "TLSv1_1 Server Hello"}, {"TLSv1_2 read Server Hello", "TLSv1_2 write Server Hello", "TLSv1_2 Server Hello"}, {"DTLSv1 read Server Hello", "DTLSv1 write Server Hello", "DTLSv1 Server Hello"}, {"DTLSv1_2 read Server Hello" "DTLSv1_2 write Server Hello", "DTLSv1_2 Server Hello", }, }, { {"SSLv3 read Server Session Ticket", "SSLv3 write Server Session Ticket", "SSLv3 Server Session Ticket"}, {"TLSv1 read Server Session Ticket", "TLSv1 write Server Session Ticket", "TLSv1 Server Session Ticket"}, {"TLSv1_1 read Server Session Ticket", "TLSv1_1 write Server Session Ticket", "TLSv1_1 Server Session Ticket"}, {"TLSv1_2 read Server Session Ticket", "TLSv1_2 write Server Session Ticket", "TLSv1_2 Server Session Ticket"}, {"DTLSv1 read Server Session Ticket", "DTLSv1 write Server Session Ticket", "DTLSv1 Server Session Ticket"}, {"DTLSv1_2 read Server Session Ticket", "DTLSv1_2 write Server Session Ticket", "DTLSv1_2 Server Session Ticket"}, }, { {"SSLv3 read Server Cert", "SSLv3 write Server Cert", "SSLv3 Server Cert"}, {"TLSv1 read Server Cert", "TLSv1 write Server Cert", "TLSv1 Server Cert"}, {"TLSv1_1 read Server Cert", "TLSv1_1 write Server Cert", "TLSv1_1 Server Cert"}, {"TLSv1_2 read Server Cert", "TLSv1_2 write Server Cert", "TLSv1_2 Server Cert"}, {"DTLSv1 read Server Cert", "DTLSv1 write Server Cert", "DTLSv1 Server Cert"}, {"DTLSv1_2 read Server Cert", "DTLSv1_2 write Server Cert", "DTLSv1_2 Server Cert"}, }, { {"SSLv3 read Server Key Exchange", "SSLv3 write Server Key Exchange", "SSLv3 Server Key Exchange"}, {"TLSv1 read Server Key Exchange", "TLSv1 write Server Key Exchange", "TLSv1 Server Key Exchange"}, {"TLSv1_1 read Server Key Exchange", "TLSv1_1 write Server Key Exchange", "TLSv1_1 Server Key Exchange"}, {"TLSv1_2 read Server Key Exchange", "TLSv1_2 write Server Key Exchange", "TLSv1_2 Server Key Exchange"}, {"DTLSv1 read Server Key Exchange", "DTLSv1 write Server Key Exchange", "DTLSv1 Server Key Exchange"}, {"DTLSv1_2 read Server Key Exchange", "DTLSv1_2 write Server Key Exchange", "DTLSv1_2 Server Key Exchange"}, }, { {"SSLv3 read Server Hello Done", "SSLv3 write Server Hello Done", "SSLv3 Server Hello Done"}, {"TLSv1 read Server Hello Done", "TLSv1 write Server Hello Done", "TLSv1 Server Hello Done"}, {"TLSv1_1 read Server Hello Done", "TLSv1_1 write Server Hello Done", "TLSv1_1 Server Hello Done"}, {"TLSv1_2 read Server Hello Done", "TLSv1_2 write Server Hello Done", "TLSv1_2 Server Hello Done"}, {"DTLSv1 read Server Hello Done", "DTLSv1 write Server Hello Done", "DTLSv1 Server Hello Done"}, {"DTLSv1_2 read Server Hello Done", "DTLSv1_2 write Server Hello Done", "DTLSv1_2 Server Hello Done"}, }, { {"SSLv3 read Server Change CipherSpec", "SSLv3 write Server Change CipherSpec", "SSLv3 Server Change CipherSpec"}, {"TLSv1 read Server Change CipherSpec", "TLSv1 write Server Change CipherSpec", "TLSv1 Server Change CipherSpec"}, {"TLSv1_1 read Server Change CipherSpec", "TLSv1_1 write Server Change CipherSpec", "TLSv1_1 Server Change CipherSpec"}, {"TLSv1_2 read Server Change CipherSpec", "TLSv1_2 write Server Change CipherSpec", "TLSv1_2 Server Change CipherSpec"}, {"DTLSv1 read Server Change CipherSpec", "DTLSv1 write Server Change CipherSpec", "DTLSv1 Server Change CipherSpec"}, {"DTLSv1_2 read Server Change CipherSpec", "DTLSv1_2 write Server Change CipherSpec", "DTLSv1_2 Server Change CipherSpec"}, }, { {"SSLv3 read Server Finished", "SSLv3 write Server Finished", "SSLv3 Server Finished"}, {"TLSv1 read Server Finished", "TLSv1 write Server Finished", "TLSv1 Server Finished"}, {"TLSv1_1 read Server Finished", "TLSv1_1 write Server Finished", "TLSv1_1 Server Finished"}, {"TLSv1_2 read Server Finished", "TLSv1_2 write Server Finished", "TLSv1_2 Server Finished"}, {"DTLSv1 read Server Finished", "DTLSv1 write Server Finished", "DTLSv1 Server Finished"}, {"DTLSv1_2 read Server Finished", "DTLSv1_2 write Server Finished", "DTLSv1_2 Server Finished"}, }, { {"SSLv3 read Client Hello", "SSLv3 write Client Hello", "SSLv3 Client Hello"}, {"TLSv1 read Client Hello", "TLSv1 write Client Hello", "TLSv1 Client Hello"}, {"TLSv1_1 read Client Hello", "TLSv1_1 write Client Hello", "TLSv1_1 Client Hello"}, {"TLSv1_2 read Client Hello", "TLSv1_2 write Client Hello", "TLSv1_2 Client Hello"}, {"DTLSv1 read Client Hello", "DTLSv1 write Client Hello", "DTLSv1 Client Hello"}, {"DTLSv1_2 read Client Hello", "DTLSv1_2 write Client Hello", "DTLSv1_2 Client Hello"}, }, { {"SSLv3 read Client Key Exchange", "SSLv3 write Client Key Exchange", "SSLv3 Client Key Exchange"}, {"TLSv1 read Client Key Exchange", "TLSv1 write Client Key Exchange", "TLSv1 Client Key Exchange"}, {"TLSv1_1 read Client Key Exchange", "TLSv1_1 write Client Key Exchange", "TLSv1_1 Client Key Exchange"}, {"TLSv1_2 read Client Key Exchange", "TLSv1_2 write Client Key Exchange", "TLSv1_2 Client Key Exchange"}, {"DTLSv1 read Client Key Exchange", "DTLSv1 write Client Key Exchange", "DTLSv1 Client Key Exchange"}, {"DTLSv1_2 read Client Key Exchange", "DTLSv1_2 write Client Key Exchange", "DTLSv1_2 Client Key Exchange"}, }, { {"SSLv3 read Client Change CipherSpec", "SSLv3 write Client Change CipherSpec", "SSLv3 Client Change CipherSpec"}, {"TLSv1 read Client Change CipherSpec", "TLSv1 write Client Change CipherSpec", "TLSv1 Client Change CipherSpec"}, {"TLSv1_1 read Client Change CipherSpec", "TLSv1_1 write Client Change CipherSpec", "TLSv1_1 Client Change CipherSpec"}, {"TLSv1_2 read Client Change CipherSpec", "TLSv1_2 write Client Change CipherSpec", "TLSv1_2 Client Change CipherSpec"}, {"DTLSv1 read Client Change CipherSpec", "DTLSv1 write Client Change CipherSpec", "DTLSv1 Client Change CipherSpec"}, {"DTLSv1_2 read Client Change CipherSpec", "DTLSv1_2 write Client Change CipherSpec", "DTLSv1_2 Client Change CipherSpec"}, }, { {"SSLv3 read Client Finished", "SSLv3 write Client Finished", "SSLv3 Client Finished"}, {"TLSv1 read Client Finished", "TLSv1 write Client Finished", "TLSv1 Client Finished"}, {"TLSv1_1 read Client Finished", "TLSv1_1 write Client Finished", "TLSv1_1 Client Finished"}, {"TLSv1_2 read Client Finished", "TLSv1_2 write Client Finished", "TLSv1_2 Client Finished"}, {"DTLSv1 read Client Finished", "DTLSv1 write Client Finished", "DTLSv1 Client Finished"}, {"DTLSv1_2 read Client Finished", "DTLSv1_2 write Client Finished", "DTLSv1_2 Client Finished"}, }, { {"SSLv3 Handshake Done", "SSLv3 Handshake Done", "SSLv3 Handshake Done"}, {"TLSv1 Handshake Done", "TLSv1 Handshake Done", "TLSv1 Handshake Done"}, {"TLSv1_1 Handshake Done", "TLSv1_1 Handshake Done", "TLSv1_1 Handshake Done"}, {"TLSv1_2 Handshake Done", "TLSv1_2 Handshake Done", "TLSv1_2 Handshake Done"}, {"DTLSv1 Handshake Done", "DTLSv1 Handshake Done", "DTLSv1 Handshake Done"}, {"DTLSv1_2 Handshake Done" "DTLSv1_2 Handshake Done" "DTLSv1_2 Handshake Done"} } }; enum ProtocolVer { SSL_V3 = 0, TLS_V1, TLS_V1_1, TLS_V1_2, DTLS_V1, DTLS_V1_2, UNKNOWN = 100 }; enum IOMode { SS_READ = 0, SS_WRITE, SS_NEITHER }; enum SslState { ss_null_state = 0, ss_server_helloverify, ss_server_hello, ss_sessionticket, ss_server_cert, ss_server_keyexchange, ss_server_hellodone, ss_server_changecipherspec, ss_server_finished, ss_client_hello, ss_client_keyexchange, ss_client_changecipherspec, ss_client_finished, ss_handshake_done }; int protocol = 0; int cbmode = 0; int state = 0; WOLFSSL_ENTER("wolfSSL_state_string_long"); if (ssl == NULL) { WOLFSSL_MSG("Null argument passed in"); return NULL; } /* Get state of callback */ if (ssl->cbmode == SSL_CB_MODE_WRITE){ cbmode = SS_WRITE; } else if (ssl->cbmode == SSL_CB_MODE_READ){ cbmode = SS_READ; } else { cbmode = SS_NEITHER; } /* Get protocol version */ switch (ssl->version.major){ case SSLv3_MAJOR: switch (ssl->version.minor){ case TLSv1_MINOR: protocol = TLS_V1; break; case TLSv1_1_MINOR: protocol = TLS_V1_1; break; case TLSv1_2_MINOR: protocol = TLS_V1_2; break; case SSLv3_MINOR: protocol = SSL_V3; break; default: protocol = UNKNOWN; } break; case DTLS_MAJOR: switch (ssl->version.minor){ case DTLS_MINOR: protocol = DTLS_V1; break; case DTLSv1_2_MINOR: protocol = DTLS_V1_2; break; default: protocol = UNKNOWN; } break; default: protocol = UNKNOWN; } /* accept process */ if (ssl->cbmode == SSL_CB_MODE_READ){ state = ssl->cbtype; switch (state) { case hello_verify_request: state = ss_server_helloverify; break; case session_ticket: state = ss_sessionticket; break; case server_hello: state = ss_server_hello; break; case server_hello_done: state = ss_server_hellodone; break; case certificate: state = ss_server_cert; break; case server_key_exchange: state = ss_server_keyexchange; break; case client_hello: state = ss_client_hello; break; case client_key_exchange: state = ss_client_keyexchange; break; case finished: if (ssl->options.side == WOLFSSL_SERVER_END) state = ss_client_finished; else if (ssl->options.side == WOLFSSL_CLIENT_END) state = ss_server_finished; else { WOLFSSL_MSG("Unknown State"); state = ss_null_state; } break; default: WOLFSSL_MSG("Unknown State"); state = ss_null_state; } } else { /* Send process */ if (ssl->options.side == WOLFSSL_SERVER_END) state = ssl->options.serverState; else state = ssl->options.clientState; switch(state){ case SERVER_HELLOVERIFYREQUEST_COMPLETE: state = ss_server_helloverify; break; case SERVER_HELLO_COMPLETE: state = ss_server_hello; break; case SERVER_CERT_COMPLETE: state = ss_server_cert; break; case SERVER_KEYEXCHANGE_COMPLETE: state = ss_server_keyexchange; break; case SERVER_HELLODONE_COMPLETE: state = ss_server_hellodone; break; case SERVER_CHANGECIPHERSPEC_COMPLETE: state = ss_server_changecipherspec; break; case SERVER_FINISHED_COMPLETE: state = ss_server_finished; break; case CLIENT_HELLO_COMPLETE: state = ss_client_hello; break; case CLIENT_KEYEXCHANGE_COMPLETE: state = ss_client_keyexchange; break; case CLIENT_CHANGECIPHERSPEC_COMPLETE: state = ss_client_changecipherspec; break; case CLIENT_FINISHED_COMPLETE: state = ss_client_finished; break; case HANDSHAKE_DONE: state = ss_handshake_done; break; default: WOLFSSL_MSG("Unknown State"); state = ss_null_state; } } if (protocol == UNKNOWN) { WOLFSSL_MSG("Unknown protocol"); return ""; } else { return OUTPUT_STR[state][protocol][cbmode]; } } /* * Sets default PEM callback password if null is passed into * the callback parameter of a PEM_read_bio_* function. * * Returns callback phrase size on success or WOLFSSL_FAILURE otherwise. */ int wolfSSL_PEM_def_callback(char* name, int num, int w, void* key) { int sz; (void)w; WOLFSSL_ENTER("wolfSSL_PEM_def_callback"); /* We assume that the user passes a default password as userdata */ if (key) { sz = (int)XSTRLEN((const char*)key); sz = (sz > num) ? num : sz; XMEMCPY(name, key, sz); return sz; } else { WOLFSSL_MSG("Error, default password cannot be created."); return WOLFSSL_FAILURE; } } #endif /* OPENSSL_EXTRA */ static long wolf_set_options(long old_op, long op) { /* if SSL_OP_ALL then turn all bug workarounds on */ if ((op & WOLFSSL_OP_ALL) == WOLFSSL_OP_ALL) { WOLFSSL_MSG("\tSSL_OP_ALL"); } /* by default cookie exchange is on with DTLS */ if ((op & WOLFSSL_OP_COOKIE_EXCHANGE) == WOLFSSL_OP_COOKIE_EXCHANGE) { WOLFSSL_MSG("\tSSL_OP_COOKIE_EXCHANGE : on by default"); } if ((op & WOLFSSL_OP_NO_SSLv2) == WOLFSSL_OP_NO_SSLv2) { WOLFSSL_MSG("\tWOLFSSL_OP_NO_SSLv2 : wolfSSL does not support SSLv2"); } #ifdef SSL_OP_NO_TLSv1_3 if ((op & WOLFSSL_OP_NO_TLSv1_3) == WOLFSSL_OP_NO_TLSv1_3) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_3"); } #endif if ((op & WOLFSSL_OP_NO_TLSv1_2) == WOLFSSL_OP_NO_TLSv1_2) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_2"); } if ((op & WOLFSSL_OP_NO_TLSv1_1) == WOLFSSL_OP_NO_TLSv1_1) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_1"); } if ((op & WOLFSSL_OP_NO_TLSv1) == WOLFSSL_OP_NO_TLSv1) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1"); } if ((op & WOLFSSL_OP_NO_SSLv3) == WOLFSSL_OP_NO_SSLv3) { WOLFSSL_MSG("\tSSL_OP_NO_SSLv3"); } if ((op & WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) == WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) { WOLFSSL_MSG("\tWOLFSSL_OP_CIPHER_SERVER_PREFERENCE"); } if ((op & WOLFSSL_OP_NO_COMPRESSION) == WOLFSSL_OP_NO_COMPRESSION) { #ifdef HAVE_LIBZ WOLFSSL_MSG("SSL_OP_NO_COMPRESSION"); #else WOLFSSL_MSG("SSL_OP_NO_COMPRESSION: compression not compiled in"); #endif } return old_op | op; } #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) long wolfSSL_set_options(WOLFSSL* ssl, long op) { word16 haveRSA = 1; word16 havePSK = 0; int keySz = 0; WOLFSSL_ENTER("wolfSSL_set_options"); if (ssl == NULL) { return 0; } ssl->options.mask = wolf_set_options(ssl->options.mask, op); #ifdef SSL_OP_NO_TLSv1_3 if ((ssl->options.mask & SSL_OP_NO_TLSv1_3) == SSL_OP_NO_TLSv1_3) { if (ssl->version.minor == TLSv1_3_MINOR) ssl->version.minor = TLSv1_2_MINOR; } #endif if ((ssl->options.mask & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2) { if (ssl->version.minor == TLSv1_2_MINOR) ssl->version.minor = TLSv1_1_MINOR; } if ((ssl->options.mask & SSL_OP_NO_TLSv1_1) == SSL_OP_NO_TLSv1_1) { if (ssl->version.minor == TLSv1_1_MINOR) ssl->version.minor = TLSv1_MINOR; } if ((ssl->options.mask & SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1) { if (ssl->version.minor == TLSv1_MINOR) ssl->version.minor = SSLv3_MINOR; } if ((ssl->options.mask & WOLFSSL_OP_NO_COMPRESSION) == WOLFSSL_OP_NO_COMPRESSION) { #ifdef HAVE_LIBZ ssl->options.usingCompression = 0; #endif } /* in the case of a version change the cipher suites should be reset */ #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif if (ssl->suites != NULL && ssl->options.side != WOLFSSL_NEITHER_END) InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.haveFalconSig, ssl->options.haveAnon, ssl->options.side); return ssl->options.mask; } long wolfSSL_get_options(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_options"); if(ssl == NULL) return WOLFSSL_FAILURE; return ssl->options.mask; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if defined(HAVE_SECURE_RENEGOTIATION) \ || defined(HAVE_SERVER_RENEGOTIATION_INFO) /* clears the counter for number of renegotiations done * returns the current count before it is cleared */ long wolfSSL_clear_num_renegotiations(WOLFSSL *s) { long total; WOLFSSL_ENTER("wolfSSL_clear_num_renegotiations"); if (s == NULL) return 0; total = s->secure_rene_count; s->secure_rene_count = 0; return total; } /* return the number of renegotiations since wolfSSL_new */ long wolfSSL_total_renegotiations(WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_total_renegotiations"); return wolfSSL_num_renegotiations(s); } /* return the number of renegotiations since wolfSSL_new */ long wolfSSL_num_renegotiations(WOLFSSL* s) { if (s == NULL) { return 0; } return s->secure_rene_count; } /* Is there a renegotiation currently in progress? */ int wolfSSL_SSL_renegotiate_pending(WOLFSSL *s) { return s && s->options.handShakeDone && s->options.handShakeState != HANDSHAKE_DONE ? 1 : 0; } #endif /* HAVE_SECURE_RENEGOTIATION || HAVE_SERVER_RENEGOTIATION_INFO */ #ifdef OPENSSL_EXTRA long wolfSSL_clear_options(WOLFSSL* ssl, long opt) { WOLFSSL_ENTER("SSL_clear_options"); if(ssl == NULL) return WOLFSSL_FAILURE; ssl->options.mask &= ~opt; return ssl->options.mask; } #ifdef HAVE_PK_CALLBACKS long wolfSSL_set_tlsext_debug_arg(WOLFSSL* ssl, void *arg) { if (ssl == NULL) { return WOLFSSL_FAILURE; } ssl->loggingCtx = arg; return WOLFSSL_SUCCESS; } #endif /* HAVE_PK_CALLBACKS */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_HAPROXY) const unsigned char *SSL_SESSION_get0_id_context(const WOLFSSL_SESSION *sess, unsigned int *sid_ctx_length) { sess = ClientSessionToSession(sess); return wolfSSL_SESSION_get_id((WOLFSSL_SESSION *)sess, sid_ctx_length); } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API int wolfSSL_sk_SSL_COMP_zero(WOLFSSL_STACK* st) { (void)st; WOLFSSL_STUB("wolfSSL_sk_SSL_COMP_zero"); /* wolfSSL_set_options(ssl, SSL_OP_NO_COMPRESSION); */ return WOLFSSL_FAILURE; } #endif #ifdef HAVE_CERTIFICATE_STATUS_REQUEST long wolfSSL_set_tlsext_status_type(WOLFSSL *s, int type) { WOLFSSL_ENTER("wolfSSL_set_tlsext_status_type"); if (s == NULL){ return BAD_FUNC_ARG; } if (type == TLSEXT_STATUSTYPE_ocsp){ int r = TLSX_UseCertificateStatusRequest(&s->extensions, (byte)type, 0, s, s->heap, s->devId); return (long)r; } else { WOLFSSL_MSG( "SSL_set_tlsext_status_type only supports TLSEXT_STATUSTYPE_ocsp type."); return SSL_FAILURE; } } long wolfSSL_get_tlsext_status_type(WOLFSSL *s) { TLSX* extension; if (s == NULL) return WOLFSSL_FATAL_ERROR; extension = TLSX_Find(s->extensions, TLSX_STATUS_REQUEST); return extension != NULL ? TLSEXT_STATUSTYPE_ocsp : WOLFSSL_FATAL_ERROR; } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST */ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_get_tlsext_status_exts(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_get_tlsext_status_exts"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_set_tlsext_status_exts(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_set_tlsext_status_exts"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_get_tlsext_status_ids(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_get_tlsext_status_ids"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_set_tlsext_status_ids(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_set_tlsext_status_ids"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API int SSL_SESSION_set1_id(WOLFSSL_SESSION *s, const unsigned char *sid, unsigned int sid_len) { (void)s; (void)sid; (void)sid_len; WOLFSSL_STUB("SSL_SESSION_set1_id"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API int SSL_SESSION_set1_id_context(WOLFSSL_SESSION *s, const unsigned char *sid_ctx, unsigned int sid_ctx_len) { (void)s; (void)sid_ctx; (void)sid_ctx_len; WOLFSSL_STUB("SSL_SESSION_set1_id_context"); return WOLFSSL_FAILURE; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_APACHE_HTTPD) \ || defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_WPAS) /** * Set `a` in a smart way. * * @param a Object to set * @param type The type of object in value * @param value Object to set */ void wolfSSL_ASN1_TYPE_set(WOLFSSL_ASN1_TYPE *a, int type, void *value) { if (!a) { return; } switch (type) { case V_ASN1_NULL: a->value.ptr = (char *)value; break; case V_ASN1_SEQUENCE: a->value.asn1_string = (WOLFSSL_ASN1_STRING*)value; break; case V_ASN1_OBJECT: a->value.object = (WOLFSSL_ASN1_OBJECT*)value; break; case V_ASN1_UTCTIME: a->value.utctime = (WOLFSSL_ASN1_TIME*)value; break; case V_ASN1_GENERALIZEDTIME: a->value.generalizedtime = (WOLFSSL_ASN1_TIME*)value; break; default: WOLFSSL_MSG("Unknown or unsupported ASN1_TYPE"); return; } a->type = type; } #endif /* OPENSSL_ALL || WOLFSSL_APACHE_HTTPD || WOLFSSL_HAPROXY || WOLFSSL_WPAS */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_APACHE_HTTPD) \ || defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_WPAS) \ || defined(OPENSSL_EXTRA) /** * Allocate a new WOLFSSL_ASN1_TYPE object. * * @return New zero'ed WOLFSSL_ASN1_TYPE object */ WOLFSSL_ASN1_TYPE* wolfSSL_ASN1_TYPE_new(void) { WOLFSSL_ASN1_TYPE* ret = (WOLFSSL_ASN1_TYPE*)XMALLOC(sizeof(WOLFSSL_ASN1_TYPE), NULL, DYNAMIC_TYPE_OPENSSL); if (!ret) return NULL; XMEMSET(ret, 0, sizeof(WOLFSSL_ASN1_TYPE)); return ret; } /** * Free WOLFSSL_ASN1_TYPE and all its members. * * @param at Object to free */ void wolfSSL_ASN1_TYPE_free(WOLFSSL_ASN1_TYPE* at) { if (at) { switch (at->type) { case V_ASN1_OBJECT: wolfSSL_ASN1_OBJECT_free(at->value.object); break; case V_ASN1_UTCTIME: #ifndef NO_ASN_TIME wolfSSL_ASN1_TIME_free(at->value.utctime); #endif break; case V_ASN1_GENERALIZEDTIME: #ifndef NO_ASN_TIME wolfSSL_ASN1_TIME_free(at->value.generalizedtime); #endif break; case V_ASN1_UTF8STRING: case V_ASN1_PRINTABLESTRING: case V_ASN1_T61STRING: case V_ASN1_IA5STRING: case V_ASN1_UNIVERSALSTRING: case V_ASN1_SEQUENCE: wolfSSL_ASN1_STRING_free(at->value.asn1_string); break; default: WOLFSSL_MSG("Unknown or unsupported ASN1_TYPE"); break; } XFREE(at, NULL, DYNAMIC_TYPE_OPENSSL); } } #endif /* OPENSSL_ALL || WOLFSSL_APACHE_HTTPD || WOLFSSL_HAPROXY || WOLFSSL_WPAS || OPENSSL_EXTRA */ #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API WOLFSSL_EVP_PKEY *wolfSSL_get_privatekey(const WOLFSSL *ssl) { (void)ssl; WOLFSSL_STUB("SSL_get_privatekey"); return NULL; } #endif /** * Get a textual representation of given WOLFSSL_ASN1_OBJECT then write it to * buf at most buf_len bytes. * * params * - buf: buffer where the textual representation is to be written to * - buf_len: buffer size in bytes * - a: WOLFSSL_ASN1_OBJECT * * return the string length written on success, WOLFSSL_FAILURE on failure. */ WOLFSSL_API int wolfSSL_i2t_ASN1_OBJECT(char *buf, int buf_len, WOLFSSL_ASN1_OBJECT *a) { WOLFSSL_ENTER("wolfSSL_i2t_ASN1_OBJECT"); return wolfSSL_OBJ_obj2txt(buf, buf_len, a, 0); } WOLFSSL_ASN1_OBJECT *wolfSSL_d2i_ASN1_OBJECT(WOLFSSL_ASN1_OBJECT **a, const unsigned char **der, long length) { const unsigned char *d; long len; int tag, cls; WOLFSSL_ASN1_OBJECT* ret = NULL; WOLFSSL_ENTER("wolfSSL_d2i_ASN1_OBJECT"); if (!der || !*der || length <= 0) { WOLFSSL_MSG("Bad parameter"); return NULL; } d = *der; if (wolfSSL_ASN1_get_object(&d, &len, &tag, &cls, length) & 0x80) { WOLFSSL_MSG("wolfSSL_ASN1_get_object error"); return NULL; } /* d now points to value */ if (tag != ASN_OBJECT_ID) { WOLFSSL_MSG("Not an ASN object"); return NULL; } ret = wolfSSL_c2i_ASN1_OBJECT(a, &d, len); if (ret) *der = d; return ret; } /** * Parse an ASN1 encoded input and output information about the parsed object * @param in ASN1 encoded data. *in is moved to the value of the ASN1 object * @param len Length of parsed ASN1 object * @param tag Tag value of parsed ASN1 object * @param cls Class of parsed ASN1 object * @param inLen Length of *in buffer * @return int Depends on which bits are set in the returned int: * 0x80 an error occurred during parsing * 0x20 parsed object is constructed * 0x01 the parsed object length is infinite */ int wolfSSL_ASN1_get_object(const unsigned char **in, long *len, int *tag, int *cls, long inLen) { word32 inOutIdx = 0; int l; byte t; int ret = 0x80; WOLFSSL_ENTER("wolfSSL_ASN1_get_object"); if (!in || !*in || !len || !tag || !cls || inLen == 0) { WOLFSSL_MSG("Bad parameter"); return ret; } if (GetASNTag(*in, &inOutIdx, &t, (word32)inLen) != 0) { WOLFSSL_MSG("GetASNTag error"); return ret; } if (GetLength(*in, &inOutIdx, &l, (word32)inLen) < 0) { WOLFSSL_MSG("GetLength error"); return ret; } *tag = t & 0x1F; /* Tag number is 5 lsb */ *cls = t & 0xC0; /* Class is 2 msb */ *len = l; ret = t & ASN_CONSTRUCTED; if (l > (int)(inLen - inOutIdx)) { /* Still return other values but indicate error in msb */ ret |= 0x80; } *in += inOutIdx; return ret; } WOLFSSL_ASN1_OBJECT *wolfSSL_c2i_ASN1_OBJECT(WOLFSSL_ASN1_OBJECT **a, const unsigned char **pp, long len) { WOLFSSL_ASN1_OBJECT* ret = NULL; WOLFSSL_ENTER("wolfSSL_c2i_ASN1_OBJECT"); if (!pp || !*pp || len <= 0) { WOLFSSL_MSG("Bad parameter"); return NULL; } if (!(ret = wolfSSL_ASN1_OBJECT_new())) { WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_new error"); return NULL; } ret->obj = (const unsigned char*)XMALLOC(len, NULL, DYNAMIC_TYPE_ASN1); if (!ret->obj) { WOLFSSL_MSG("error allocating asn data memory"); wolfSSL_ASN1_OBJECT_free(ret); return NULL; } XMEMCPY((byte*)ret->obj, *pp, len); ret->objSz = (unsigned int)len; ret->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA; *pp += len; if (a) *a = ret; return ret; } #ifndef NO_BIO /* Return number of bytes written to BIO on success. 0 on failure. */ WOLFSSL_API int wolfSSL_i2a_ASN1_OBJECT(WOLFSSL_BIO *bp, WOLFSSL_ASN1_OBJECT *a) { int length = 0; word32 idx = 0; const char null_str[] = "NULL"; WOLFSSL_ENTER("wolfSSL_i2a_ASN1_OBJECT"); if (bp == NULL) return WOLFSSL_FAILURE; if (a == NULL) { /* Write "NULL" */ if (wolfSSL_BIO_write(bp, null_str, (int)XSTRLEN(null_str)) == (int)XSTRLEN(null_str)) { return (int)XSTRLEN(null_str); } else { return WOLFSSL_FAILURE; } } if ((a->obj == NULL) || (a->obj[idx++] != ASN_OBJECT_ID)) { WOLFSSL_MSG("Bad ASN1 Object"); return WOLFSSL_FAILURE; } if (GetLength((const byte*)a->obj, &idx, &length, a->objSz) < 0 || length < 0) { return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bp, a->obj + idx, length) == (int)length) { return length; } return WOLFSSL_FAILURE; } #endif /* !NO_BIO */ /* Returns object data for an ASN1_OBJECT */ /* If pp is NULL then only the size is returned */ /* If pp has pointer to pointer then its used directly */ /* If pp has pointer to pointer that is NULL then new variable is allocated */ /* Failure returns WOLFSSL_FAILURE (0) */ int wolfSSL_i2d_ASN1_OBJECT(WOLFSSL_ASN1_OBJECT *a, unsigned char **pp) { byte *p; WOLFSSL_ENTER("wolfSSL_i2d_ASN1_OBJECT"); if (!a || !a->obj) { WOLFSSL_MSG("Bad parameters"); return WOLFSSL_FAILURE; } if (!pp) return a->objSz; if (*pp) p = *pp; else { p = (byte*)XMALLOC(a->objSz, NULL, DYNAMIC_TYPE_OPENSSL); if (!p) { WOLFSSL_MSG("Bad malloc"); return WOLFSSL_FAILURE; } } XMEMCPY(p, a->obj, a->objSz); *pp = p + a->objSz; return a->objSz; } #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API void SSL_CTX_set_tmp_dh_callback(WOLFSSL_CTX *ctx, WOLFSSL_DH *(*dh) (WOLFSSL *ssl, int is_export, int keylength)) { (void)ctx; (void)dh; WOLFSSL_STUB("SSL_CTX_set_tmp_dh_callback"); } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API WOLF_STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { WOLFSSL_STUB("SSL_COMP_get_compression_methods"); return NULL; } #endif int wolfSSL_sk_SSL_CIPHER_num(const WOLF_STACK_OF(WOLFSSL_CIPHER)* p) { WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_num"); if (p == NULL) { return WOLFSSL_FATAL_ERROR; } return (int)p->num; } WOLFSSL_API WOLFSSL_CIPHER* wolfSSL_sk_SSL_CIPHER_value(WOLFSSL_STACK* sk, int i) { WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_value"); return (WOLFSSL_CIPHER*)wolfSSL_sk_value(sk, i); } #if !defined(NETOS) WOLFSSL_API void ERR_load_SSL_strings(void) { } #endif #ifdef HAVE_OCSP WOLFSSL_API long wolfSSL_get_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char **resp) { if (s == NULL || resp == NULL) return 0; *resp = s->ocspResp; return s->ocspRespSz; } WOLFSSL_API long wolfSSL_set_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char *resp, int len) { if (s == NULL) return WOLFSSL_FAILURE; s->ocspResp = resp; s->ocspRespSz = len; return WOLFSSL_SUCCESS; } #endif /* HAVE_OCSP */ #ifdef HAVE_MAX_FRAGMENT #ifndef NO_WOLFSSL_CLIENT /** * Set max fragment tls extension * @param c a pointer to WOLFSSL_CTX object * @param mode maximum fragment length mode * @return 1 on success, otherwise 0 or negative error code */ WOLFSSL_API int wolfSSL_CTX_set_tlsext_max_fragment_length(WOLFSSL_CTX *c, unsigned char mode) { if (c == NULL || (mode < WOLFSSL_MFL_2_9 || mode > WOLFSSL_MFL_2_12 )) return BAD_FUNC_ARG; return wolfSSL_CTX_UseMaxFragment(c, mode); } /** * Set max fragment tls extension * @param c a pointer to WOLFSSL object * @param mode maximum fragment length mode * @return 1 on success, otherwise 0 or negative error code */ WOLFSSL_API int wolfSSL_set_tlsext_max_fragment_length(WOLFSSL *s, unsigned char mode) { if (s == NULL || (mode < WOLFSSL_MFL_2_9 || mode > WOLFSSL_MFL_2_12 )) return BAD_FUNC_ARG; return wolfSSL_UseMaxFragment(s, mode); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_MAX_FRAGMENT */ #endif /* OPENSSL_EXTRA */ #ifdef WOLFSSL_HAVE_TLS_UNIQUE WOLFSSL_API size_t wolfSSL_get_finished(const WOLFSSL *ssl, void *buf, size_t count) { byte len = 0; WOLFSSL_ENTER("SSL_get_finished"); if (!ssl || !buf || count < TLS_FINISHED_SZ) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } if (ssl->options.side == WOLFSSL_SERVER_END) { len = ssl->serverFinished_len; XMEMCPY(buf, ssl->serverFinished, len); } else { len = ssl->clientFinished_len; XMEMCPY(buf, ssl->clientFinished, len); } return len; } WOLFSSL_API size_t wolfSSL_get_peer_finished(const WOLFSSL *ssl, void *buf, size_t count) { byte len = 0; WOLFSSL_ENTER("SSL_get_peer_finished"); if (!ssl || !buf || count < TLS_FINISHED_SZ) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } if (ssl->options.side == WOLFSSL_CLIENT_END) { len = ssl->serverFinished_len; XMEMCPY(buf, ssl->serverFinished, len); } else { len = ssl->clientFinished_len; XMEMCPY(buf, ssl->clientFinished, len); } return len; } #endif /* WOLFSSL_HAVE_TLS_UNIQUE */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) long wolfSSL_get_verify_result(const WOLFSSL *ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return ssl->peerVerifyRet; } #endif #ifdef OPENSSL_EXTRA #ifndef NO_WOLFSSL_STUB /* shows the number of accepts attempted by CTX in it's lifetime */ long wolfSSL_CTX_sess_accept(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of connects attempted CTX in it's lifetime */ long wolfSSL_CTX_sess_connect(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of accepts completed by CTX in it's lifetime */ long wolfSSL_CTX_sess_accept_good(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept_good"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of connects completed by CTX in it's lifetime */ long wolfSSL_CTX_sess_connect_good(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect_good"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of renegotiation accepts attempted by CTX */ long wolfSSL_CTX_sess_accept_renegotiate(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept_renegotiate"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of renegotiation accepts attempted by CTX */ long wolfSSL_CTX_sess_connect_renegotiate(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect_renegotiate"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_hits(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_hits"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_cb_hits(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_cb_hits"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_cache_full(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_cache_full"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_misses(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_misses"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_timeouts(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_timeouts"); (void)ctx; return 0; } #endif /* Return the total number of sessions */ long wolfSSL_CTX_sess_number(WOLFSSL_CTX* ctx) { word32 total = 0; WOLFSSL_ENTER("wolfSSL_CTX_sess_number"); (void)ctx; #if defined(WOLFSSL_SESSION_STATS) && !defined(NO_SESSION_CACHE) if (wolfSSL_get_session_stats(NULL, &total, NULL, NULL) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error getting session stats"); } #else WOLFSSL_MSG("Please use macro WOLFSSL_SESSION_STATS for session stats"); #endif return (long)total; } #ifndef NO_CERTS long wolfSSL_CTX_add_extra_chain_cert(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509) { byte* chain = NULL; long chainSz = 0; int derSz; const byte* der; int ret; int idx = 0; DerBuffer *derBuffer = NULL; WOLFSSL_ENTER("wolfSSL_CTX_add_extra_chain_cert"); if (ctx == NULL || x509 == NULL) { WOLFSSL_MSG("Bad Argument"); return WOLFSSL_FAILURE; } der = wolfSSL_X509_get_der(x509, &derSz); if (der == NULL || derSz <= 0) { WOLFSSL_MSG("Error getting X509 DER"); return WOLFSSL_FAILURE; } if (ctx->certificate == NULL) { WOLFSSL_ENTER("wolfSSL_use_certificate_chain_buffer_format"); /* Process buffer makes first certificate the leaf. */ ret = ProcessBuffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE, NULL, NULL, 1, GET_VERIFY_SETTING_CTX(ctx)); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret); return WOLFSSL_FAILURE; } } else { /* TODO: Do this elsewhere. */ ret = AllocDer(&derBuffer, derSz, CERT_TYPE, ctx->heap); if (ret != 0) { WOLFSSL_MSG("Memory Error"); return WOLFSSL_FAILURE; } XMEMCPY(derBuffer->buffer, der, derSz); ret = AddCA(ctx->cm, &derBuffer, WOLFSSL_USER_CA, GET_VERIFY_SETTING_CTX(ctx)); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret); return WOLFSSL_FAILURE; } /* adding cert to existing chain */ if (ctx->certChain != NULL && ctx->certChain->length > 0) { chainSz += ctx->certChain->length; } chainSz += OPAQUE24_LEN + derSz; chain = (byte*)XMALLOC(chainSz, ctx->heap, DYNAMIC_TYPE_DER); if (chain == NULL) { WOLFSSL_MSG("Memory Error"); return WOLFSSL_FAILURE; } if (ctx->certChain != NULL && ctx->certChain->length > 0) { XMEMCPY(chain, ctx->certChain->buffer, ctx->certChain->length); idx = ctx->certChain->length; } c32to24(derSz, chain + idx); idx += OPAQUE24_LEN; XMEMCPY(chain + idx, der, derSz); idx += derSz; #ifdef WOLFSSL_TLS13 ctx->certChainCnt++; #endif FreeDer(&ctx->certChain); ret = AllocDer(&ctx->certChain, idx, CERT_TYPE, ctx->heap); if (ret == 0) { XMEMCPY(ctx->certChain->buffer, chain, idx); } } /* on success WOLFSSL_X509 memory is responsibility of ctx */ wolfSSL_X509_free(x509); if (chain != NULL) XFREE(chain, ctx->heap, DYNAMIC_TYPE_DER); return WOLFSSL_SUCCESS; } long wolfSSL_CTX_set_tlsext_status_arg(WOLFSSL_CTX* ctx, void* arg) { if (ctx == NULL || ctx->cm == NULL) { return WOLFSSL_FAILURE; } ctx->cm->ocspIOCtx = arg; return WOLFSSL_SUCCESS; } #endif /* NO_CERTS */ /* Get the session cache mode for CTX * * ctx WOLFSSL_CTX struct to get cache mode from * * Returns a bit mask that has the session cache mode */ WOLFSSL_API long wolfSSL_CTX_get_session_cache_mode(WOLFSSL_CTX* ctx) { long m = 0; WOLFSSL_ENTER("SSL_CTX_set_session_cache_mode"); if (ctx == NULL) { return m; } if (ctx->sessionCacheOff != 1) { m |= SSL_SESS_CACHE_SERVER; } if (ctx->sessionCacheFlushOff == 1) { m |= SSL_SESS_CACHE_NO_AUTO_CLEAR; } #ifdef HAVE_EXT_CACHE if (ctx->internalCacheOff == 1) { m |= SSL_SESS_CACHE_NO_INTERNAL_STORE; } if (ctx->internalCacheLookupOff == 1) { m |= SSL_SESS_CACHE_NO_INTERNAL_LOOKUP; } #endif return m; } int wolfSSL_get_read_ahead(const WOLFSSL* ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return ssl->readAhead; } int wolfSSL_set_read_ahead(WOLFSSL* ssl, int v) { if (ssl == NULL) { return WOLFSSL_FAILURE; } ssl->readAhead = (byte)v; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_get_read_ahead(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return WOLFSSL_FAILURE; } return ctx->readAhead; } int wolfSSL_CTX_set_read_ahead(WOLFSSL_CTX* ctx, int v) { if (ctx == NULL) { return WOLFSSL_FAILURE; } ctx->readAhead = (byte)v; return WOLFSSL_SUCCESS; } long wolfSSL_CTX_set_tlsext_opaque_prf_input_callback_arg(WOLFSSL_CTX* ctx, void* arg) { if (ctx == NULL) { return WOLFSSL_FAILURE; } ctx->userPRFArg = arg; return WOLFSSL_SUCCESS; } #ifndef NO_DES3 /* 0 on success */ int wolfSSL_DES_set_key(WOLFSSL_const_DES_cblock* myDes, WOLFSSL_DES_key_schedule* key) { #ifdef WOLFSSL_CHECK_DESKEY return wolfSSL_DES_set_key_checked(myDes, key); #else wolfSSL_DES_set_key_unchecked(myDes, key); return 0; #endif } /* return true in fail case (1) */ static int DES_check(word32 mask, word32 mask2, unsigned char* key) { word32 value[2]; /* sanity check on length made in wolfSSL_DES_set_key_checked */ value[0] = mask; value[1] = mask2; return (XMEMCMP(value, key, sizeof(value)) == 0)? 1: 0; } /* check that the key is odd parity and is not a weak key * returns -1 if parity is wrong, -2 if weak/null key and 0 on success */ int wolfSSL_DES_set_key_checked(WOLFSSL_const_DES_cblock* myDes, WOLFSSL_DES_key_schedule* key) { if (myDes == NULL || key == NULL) { WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_set_key_checked"); return -2; } else { word32 sz = sizeof(WOLFSSL_DES_key_schedule); /* sanity check before call to DES_check */ if (sz != (sizeof(word32) * 2)) { WOLFSSL_MSG("Unexpected WOLFSSL_DES_key_schedule size"); return -2; } /* check odd parity */ if (wolfSSL_DES_check_key_parity(myDes) != 1) { WOLFSSL_MSG("Odd parity test fail"); return -1; } if (wolfSSL_DES_is_weak_key(myDes) == 1) { WOLFSSL_MSG("Weak key found"); return -2; } /* passed tests, now copy over key */ XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock)); return 0; } } /* check is not weak. Weak key list from Nist "Recommendation for the Triple * Data Encryption Algorithm (TDEA) Block Cipher" * * returns 1 if is weak 0 if not */ int wolfSSL_DES_is_weak_key(WOLFSSL_const_DES_cblock* key) { word32 mask, mask2; WOLFSSL_ENTER("wolfSSL_DES_is_weak_key"); if (key == NULL) { WOLFSSL_MSG("NULL key passed in"); return 1; } mask = 0x01010101; mask2 = 0x01010101; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0xFEFEFEFE; mask2 = 0xFEFEFEFE; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0xE0E0E0E0; mask2 = 0xF1F1F1F1; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x1F1F1F1F; mask2 = 0x0E0E0E0E; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } /* semi-weak *key check (list from same Nist paper) */ mask = 0x011F011F; mask2 = 0x010E010E; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x01E001E0; mask2 = 0x01F101F1; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x01FE01FE; mask2 = 0x01FE01FE; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x1FE01FE0; mask2 = 0x0EF10EF1; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x1FFE1FFE; mask2 = 0x0EFE0EFE; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } return 0; } void wolfSSL_DES_set_key_unchecked(WOLFSSL_const_DES_cblock* myDes, WOLFSSL_DES_key_schedule* key) { if (myDes != NULL && key != NULL) { XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock)); } } /* Sets the parity of the DES key for use */ void wolfSSL_DES_set_odd_parity(WOLFSSL_DES_cblock* myDes) { word32 i; word32 sz = sizeof(WOLFSSL_DES_cblock); WOLFSSL_ENTER("wolfSSL_DES_set_odd_parity"); for (i = 0; i < sz; i++) { unsigned char c = (*myDes)[i]; if (( ((c >> 1) & 0x01) ^ ((c >> 2) & 0x01) ^ ((c >> 3) & 0x01) ^ ((c >> 4) & 0x01) ^ ((c >> 5) & 0x01) ^ ((c >> 6) & 0x01) ^ ((c >> 7) & 0x01)) == (c & 0x01)) { WOLFSSL_MSG("Flipping parity bit"); (*myDes)[i] = c ^ 0x01; } } } int wolfSSL_DES_check_key_parity(WOLFSSL_DES_cblock *myDes) { word32 i; word32 sz = sizeof(WOLFSSL_DES_cblock); WOLFSSL_ENTER("wolfSSL_DES_check_key_parity"); for (i = 0; i < sz; i++) { unsigned char c = (*myDes)[i]; if (( ((c >> 1) & 0x01) ^ ((c >> 2) & 0x01) ^ ((c >> 3) & 0x01) ^ ((c >> 4) & 0x01) ^ ((c >> 5) & 0x01) ^ ((c >> 6) & 0x01) ^ ((c >> 7) & 0x01)) == (c & 0x01)) { return 0; } } return 1; } #ifdef WOLFSSL_DES_ECB /* Encrypt or decrypt input message desa with key and get output in desb. * if enc is DES_ENCRYPT,input message is encrypted or * if enc is DES_DECRYPT,input message is decrypted. * */ void wolfSSL_DES_ecb_encrypt(WOLFSSL_DES_cblock* desa, WOLFSSL_DES_cblock* desb, WOLFSSL_DES_key_schedule* key, int enc) { Des myDes; WOLFSSL_ENTER("wolfSSL_DES_ecb_encrypt"); if (desa == NULL || key == NULL || desb == NULL || (enc != DES_ENCRYPT && enc != DES_DECRYPT)) { WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_ecb_encrypt"); } else { if (wc_Des_SetKey(&myDes, (const byte*) key, (const byte*) NULL, !enc) != 0) { WOLFSSL_MSG("wc_Des_SetKey return error."); return; } if (enc == DES_ENCRYPT){ if (wc_Des_EcbEncrypt(&myDes, (byte*) desb, (const byte*) desa, sizeof(WOLFSSL_DES_cblock)) != 0){ WOLFSSL_MSG("wc_Des_EcbEncrypt return error."); } } else { if (wc_Des_EcbDecrypt(&myDes, (byte*) desb, (const byte*) desa, sizeof(WOLFSSL_DES_cblock)) != 0){ WOLFSSL_MSG("wc_Des_EcbDecrpyt return error."); } } } } #endif #endif /* NO_DES3 */ #ifndef NO_RC4 /* Set the key state for Arc4 structure. * * key Arc4 structure to use * len length of data buffer * data initial state to set Arc4 structure */ void wolfSSL_RC4_set_key(WOLFSSL_RC4_KEY* key, int len, const unsigned char* data) { typedef char rc4_test[sizeof(WOLFSSL_RC4_KEY) >= sizeof(Arc4) ? 1 : -1]; (void)sizeof(rc4_test); WOLFSSL_ENTER("wolfSSL_RC4_set_key"); if (key == NULL || len < 0) { WOLFSSL_MSG("bad argument passed in"); return; } XMEMSET(key, 0, sizeof(WOLFSSL_RC4_KEY)); wc_Arc4SetKey((Arc4*)key, data, (word32)len); } /* Encrypt/decrypt with Arc4 structure. * * len length of buffer to encrypt/decrypt (in/out) * in buffer to encrypt/decrypt * out results of encryption/decryption */ void wolfSSL_RC4(WOLFSSL_RC4_KEY* key, size_t len, const unsigned char* in, unsigned char* out) { WOLFSSL_ENTER("wolfSSL_RC4"); if (key == NULL || in == NULL || out == NULL) { WOLFSSL_MSG("Bad argument passed in"); return; } wc_Arc4Process((Arc4*)key, out, in, (word32)len); } #endif /* NO_RC4 */ #ifndef NO_AES #ifdef WOLFSSL_AES_DIRECT /* AES encrypt direct, it is expected to be blocks of AES_BLOCK_SIZE for input. * * input Data to encrypt * output Encrypted data after done * key AES key to use for encryption */ void wolfSSL_AES_encrypt(const unsigned char* input, unsigned char* output, AES_KEY *key) { WOLFSSL_ENTER("wolfSSL_AES_encrypt"); if (input == NULL || output == NULL || key == NULL) { WOLFSSL_MSG("Null argument passed in"); return; } #if !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || (defined(FIPS_VERSION_GE) && FIPS_VERSION_GE(5,3))) if (wc_AesEncryptDirect((Aes*)key, output, input) != 0) { WOLFSSL_MSG("wc_AesEncryptDirect failed"); return; } #else wc_AesEncryptDirect((Aes*)key, output, input); #endif } /* AES decrypt direct, it is expected to be blocks of AES_BLOCK_SIZE for input. * * input Data to decrypt * output Decrypted data after done * key AES key to use for encryption */ void wolfSSL_AES_decrypt(const unsigned char* input, unsigned char* output, AES_KEY *key) { WOLFSSL_ENTER("wolfSSL_AES_decrypt"); if (input == NULL || output == NULL || key == NULL) { WOLFSSL_MSG("Null argument passed in"); return; } #if !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || (defined(FIPS_VERSION_GE) && FIPS_VERSION_GE(5,3))) if (wc_AesDecryptDirect((Aes*)key, output, input) != 0) { WOLFSSL_MSG("wc_AesDecryptDirect failed"); return; } #else wc_AesDecryptDirect((Aes*)key, output, input); #endif } #endif /* WOLFSSL_AES_DIRECT */ /* Setup of an AES key to use for encryption. * * key key in bytes to use for encryption * bits size of key in bits * aes AES structure to initialize */ int wolfSSL_AES_set_encrypt_key(const unsigned char *key, const int bits, AES_KEY *aes) { typedef char aes_test[sizeof(AES_KEY) >= sizeof(Aes) ? 1 : -1]; (void)sizeof(aes_test); WOLFSSL_ENTER("wolfSSL_AES_set_encrypt_key"); if (key == NULL || aes == NULL) { WOLFSSL_MSG("Null argument passed in"); return -1; } XMEMSET(aes, 0, sizeof(AES_KEY)); if (wc_AesSetKey((Aes*)aes, key, ((bits)/8), NULL, AES_ENCRYPT) != 0) { WOLFSSL_MSG("Error in setting AES key"); return -1; } return 0; } /* Setup of an AES key to use for decryption. * * key key in bytes to use for decryption * bits size of key in bits * aes AES structure to initialize */ int wolfSSL_AES_set_decrypt_key(const unsigned char *key, const int bits, AES_KEY *aes) { typedef char aes_test[sizeof(AES_KEY) >= sizeof(Aes) ? 1 : -1]; (void)sizeof(aes_test); WOLFSSL_ENTER("wolfSSL_AES_set_decrypt_key"); if (key == NULL || aes == NULL) { WOLFSSL_MSG("Null argument passed in"); return -1; } XMEMSET(aes, 0, sizeof(AES_KEY)); if (wc_AesSetKey((Aes*)aes, key, ((bits)/8), NULL, AES_DECRYPT) != 0) { WOLFSSL_MSG("Error in setting AES key"); return -1; } return 0; } #ifdef HAVE_AES_ECB /* Encrypt/decrypt a 16 byte block of data using the key passed in. * * in buffer to encrypt/decrypt * out buffer to hold result of encryption/decryption * key AES structure to use with encryption/decryption * enc AES_ENCRPT for encryption and AES_DECRYPT for decryption */ void wolfSSL_AES_ecb_encrypt(const unsigned char *in, unsigned char* out, AES_KEY *key, const int enc) { Aes* aes; WOLFSSL_ENTER("wolfSSL_AES_ecb_encrypt"); if (key == NULL || in == NULL || out == NULL) { WOLFSSL_MSG("Error, Null argument passed in"); return; } aes = (Aes*)key; if (enc == AES_ENCRYPT) { if (wc_AesEcbEncrypt(aes, out, in, AES_BLOCK_SIZE) != 0) { WOLFSSL_MSG("Error with AES CBC encrypt"); } } else { #ifdef HAVE_AES_DECRYPT if (wc_AesEcbDecrypt(aes, out, in, AES_BLOCK_SIZE) != 0) { WOLFSSL_MSG("Error with AES CBC decrypt"); } #else WOLFSSL_MSG("AES decryption not compiled in"); #endif } } #endif /* HAVE_AES_ECB */ #ifdef HAVE_AES_CBC /* Encrypt data using key and iv passed in. iv gets updated to most recent iv * state after encryption/decryption. * * in buffer to encrypt/decrypt * out buffer to hold result of encryption/decryption * len length of input buffer * key AES structure to use with encryption/decryption * iv iv to use with operation * enc 1 for encryption and 0 for decryption */ void wolfSSL_AES_cbc_encrypt(const unsigned char *in, unsigned char* out, size_t len, AES_KEY *key, unsigned char* iv, const int enc) { Aes* aes; WOLFSSL_ENTER("wolfSSL_AES_cbc_encrypt"); if (key == NULL || in == NULL || out == NULL || iv == NULL || len == 0) { WOLFSSL_MSG("Error, Null argument passed in"); return; } aes = (Aes*)key; if (wc_AesSetIV(aes, (const byte*)iv) != 0) { WOLFSSL_MSG("Error with setting iv"); return; } if (enc == AES_ENCRYPT) { if (wc_AesCbcEncrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC encrypt"); return; } } else { if (wc_AesCbcDecrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC decrypt"); return; } } /* to be compatible copy iv to iv buffer after completing operation */ XMEMCPY(iv, (byte*)(aes->reg), AES_BLOCK_SIZE); } #endif /* HAVE_AES_CBC */ /* Encrypt data using CFB mode with key and iv passed in. iv gets updated to * most recent iv state after encryption/decryption. * * in buffer to encrypt/decrypt * out buffer to hold result of encryption/decryption * len length of input buffer * key AES structure to use with encryption/decryption * iv iv to use with operation * num contains the amount of block used * enc AES_ENCRYPT for encryption and AES_DECRYPT for decryption */ void wolfSSL_AES_cfb128_encrypt(const unsigned char *in, unsigned char* out, size_t len, AES_KEY *key, unsigned char* iv, int* num, const int enc) { #ifndef WOLFSSL_AES_CFB WOLFSSL_MSG("CFB mode not enabled please use macro WOLFSSL_AES_CFB"); (void)in; (void)out; (void)len; (void)key; (void)iv; (void)num; (void)enc; return; #else Aes* aes; WOLFSSL_ENTER("wolfSSL_AES_cbc_encrypt"); if (key == NULL || in == NULL || out == NULL || iv == NULL) { WOLFSSL_MSG("Error, Null argument passed in"); return; } aes = (Aes*)key; /* * We copy the IV directly into reg here because using wc_AesSetIV will * clear the leftover bytes field "left", and this function relies on the * leftover bytes being preserved between calls. */ XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE); if (enc == AES_ENCRYPT) { if (wc_AesCfbEncrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC encrypt"); return; } } else { if (wc_AesCfbDecrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC decrypt"); return; } } /* to be compatible copy iv to iv buffer after completing operation */ XMEMCPY(iv, (byte*)(aes->reg), AES_BLOCK_SIZE); /* store number of left over bytes to num */ *num = (aes->left)? AES_BLOCK_SIZE - aes->left : 0; #endif /* WOLFSSL_AES_CFB */ } /* wc_AesKey*Wrap_ex API not available in FIPS and SELFTEST */ #if defined(HAVE_AES_KEYWRAP) && !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) int wolfSSL_AES_wrap_key(AES_KEY *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, unsigned int inlen) { int ret; WOLFSSL_ENTER("wolfSSL_AES_wrap_key"); if (out == NULL || in == NULL) { WOLFSSL_MSG("Error, Null argument passed in"); return WOLFSSL_FAILURE; } ret = wc_AesKeyWrap_ex((Aes*)key, in, inlen, out, inlen + KEYWRAP_BLOCK_SIZE, iv); return ret < 0 ? WOLFSSL_FAILURE : ret; } int wolfSSL_AES_unwrap_key(AES_KEY *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, unsigned int inlen) { int ret; WOLFSSL_ENTER("wolfSSL_AES_wrap_key"); if (out == NULL || in == NULL) { WOLFSSL_MSG("Error, Null argument passed in"); return WOLFSSL_FAILURE; } ret = wc_AesKeyUnWrap_ex((Aes*)key, in, inlen, out, inlen + KEYWRAP_BLOCK_SIZE, iv); return ret < 0 ? WOLFSSL_FAILURE : ret; } #endif /* HAVE_AES_KEYWRAP && !HAVE_FIPS && !HAVE_SELFTEST */ #ifdef HAVE_CTS /* * Ciphertext stealing interface compatible with RFC2040 and RFC3962. */ size_t wolfSSL_CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char *iv, WOLFSSL_CBC128_CB cbc) { byte lastBlk[WOLFSSL_CTS128_BLOCK_SZ]; int lastBlkLen = len % WOLFSSL_CTS128_BLOCK_SZ; WOLFSSL_ENTER("wolfSSL_CRYPTO_cts128_encrypt"); if (in == NULL || out == NULL || len < WOLFSSL_CTS128_BLOCK_SZ || cbc == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } if (lastBlkLen == 0) lastBlkLen = WOLFSSL_CTS128_BLOCK_SZ; /* Encrypt data up to last block */ (*cbc)(in, out, len - lastBlkLen, key, iv, AES_ENCRYPT); /* Move to last block */ in += len - lastBlkLen; out += len - lastBlkLen; /* RFC2040: Pad Pn with zeros at the end to create P of length BB. */ XMEMCPY(lastBlk, in, lastBlkLen); XMEMSET(lastBlk + lastBlkLen, 0, WOLFSSL_CTS128_BLOCK_SZ - lastBlkLen); /* RFC2040: Select the first Ln bytes of En-1 to create Cn */ XMEMCPY(out, out - WOLFSSL_CTS128_BLOCK_SZ, lastBlkLen); (*cbc)(lastBlk, out - WOLFSSL_CTS128_BLOCK_SZ, WOLFSSL_CTS128_BLOCK_SZ, key, iv, AES_ENCRYPT); return len; } size_t wolfSSL_CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char *iv, WOLFSSL_CBC128_CB cbc) { byte lastBlk[WOLFSSL_CTS128_BLOCK_SZ]; byte prevBlk[WOLFSSL_CTS128_BLOCK_SZ]; int lastBlkLen = len % WOLFSSL_CTS128_BLOCK_SZ; WOLFSSL_ENTER("wolfSSL_CRYPTO_cts128_decrypt"); if (in == NULL || out == NULL || len <= WOLFSSL_CTS128_BLOCK_SZ || cbc == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } if (lastBlkLen == 0) lastBlkLen = WOLFSSL_CTS128_BLOCK_SZ; /* Decrypt up to last two blocks */ (*cbc)(in, out, len - lastBlkLen - WOLFSSL_CTS128_BLOCK_SZ, key, iv, AES_DECRYPTION); /* Move to last two blocks */ in += len - lastBlkLen - WOLFSSL_CTS128_BLOCK_SZ; out += len - lastBlkLen - WOLFSSL_CTS128_BLOCK_SZ; /* RFC2040: Decrypt Cn-1 to create Dn. * Use 0 buffer as IV to do straight decryption. * This places the Cn-1 block at lastBlk */ XMEMSET(lastBlk, 0, WOLFSSL_CTS128_BLOCK_SZ); (*cbc)(in, prevBlk, WOLFSSL_CTS128_BLOCK_SZ, key, lastBlk, AES_DECRYPT); /* RFC2040: Append the tail (BB minus Ln) bytes of Xn to Cn * to create En. */ XMEMCPY(prevBlk, in + WOLFSSL_CTS128_BLOCK_SZ, lastBlkLen); /* Cn and Cn-1 can now be decrypted */ (*cbc)(prevBlk, out, WOLFSSL_CTS128_BLOCK_SZ, key, iv, AES_DECRYPT); (*cbc)(lastBlk, lastBlk, WOLFSSL_CTS128_BLOCK_SZ, key, iv, AES_DECRYPT); XMEMCPY(out + WOLFSSL_CTS128_BLOCK_SZ, lastBlk, lastBlkLen); return len; } #endif /* HAVE_CTS */ #endif /* NO_AES */ #ifndef NO_ASN_TIME #ifndef NO_BIO int wolfSSL_ASN1_UTCTIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_UTCTIME* a) { WOLFSSL_ENTER("ASN1_UTCTIME_print"); if (bio == NULL || a == NULL) { return WOLFSSL_FAILURE; } if (a->type != ASN_UTC_TIME) { WOLFSSL_MSG("Error, not UTC_TIME"); return WOLFSSL_FAILURE; } return wolfSSL_ASN1_TIME_print(bio, a); } #endif /* !NO_BIO */ /* Checks the ASN1 syntax of "a" * returns WOLFSSL_SUCCESS (1) if correct otherwise WOLFSSL_FAILURE (0) */ int wolfSSL_ASN1_TIME_check(const WOLFSSL_ASN1_TIME* a) { char buf[MAX_TIME_STRING_SZ]; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_check"); /* if can parse the WOLFSSL_ASN1_TIME passed in then consider syntax good */ if (wolfSSL_ASN1_TIME_to_string((WOLFSSL_ASN1_TIME*)a, buf, MAX_TIME_STRING_SZ) == NULL) { return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* * Convert time to Unix time (GMT). */ static long long TimeToUnixTime(int sec, int min, int hour, int mday, int mon, int year) { /* Number of cumulative days from the previous months, starting from * beginning of January. */ static const int monthDaysCumulative [12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; int leapDays = year; if (mon <= 1) { --leapDays; } leapDays = leapDays / 4 - leapDays / 100 + leapDays / 400 - 1969 / 4 + 1969 / 100 - 1969 / 400; return ((((long long) (year - 1970) * 365 + leapDays + monthDaysCumulative[mon] + mday - 1) * 24 + hour) * 60 + min) * 60 + sec; } int wolfSSL_ASN1_TIME_diff(int *days, int *secs, const WOLFSSL_ASN1_TIME *from, const WOLFSSL_ASN1_TIME *to) { const int SECS_PER_DAY = 24 * 60 * 60; struct tm fromTm_s, *fromTmGmt = &fromTm_s; struct tm toTm_s, *toTmGmt = &toTm_s; time_t currTime; long long fromSecs; long long toSecs; double diffSecs; struct tm *tmpTs; #if defined(NEED_TMP_TIME) /* for use with gmtime_r */ struct tm tmpTimeStorage; tmpTs = &tmpTimeStorage; #else tmpTs = NULL; #endif (void)tmpTs; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_diff"); if (days == NULL) { WOLFSSL_MSG("days is NULL"); return WOLFSSL_FAILURE; } if (secs == NULL) { WOLFSSL_MSG("secs is NULL"); return WOLFSSL_FAILURE; } if (from == NULL && to == NULL) { *days = 0; *secs = 0; return WOLFSSL_SUCCESS; } if (from == NULL) { currTime = wc_Time(0); fromTmGmt = XGMTIME(&currTime, tmpTs); if (fromTmGmt == NULL) { WOLFSSL_MSG("XGMTIME for from time failed."); return WOLFSSL_FAILURE; } } else if (wolfSSL_ASN1_TIME_to_tm(from, fromTmGmt) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Failed to convert from time to struct tm."); return WOLFSSL_FAILURE; } /* We use TimeToUnixTime here instead of XMKTIME to avoid the Year 2038 * Problem on platforms where time_t is 32 bits. struct tm stores the year * as years since 1900, so we add 1900 to the year. */ fromSecs = TimeToUnixTime(fromTmGmt->tm_sec, fromTmGmt->tm_min, fromTmGmt->tm_hour, fromTmGmt->tm_mday, fromTmGmt->tm_mon, fromTmGmt->tm_year + 1900); if (to == NULL) { currTime = wc_Time(0); toTmGmt = XGMTIME(&currTime, tmpTs); if (toTmGmt == NULL) { WOLFSSL_MSG("XGMTIME for to time failed."); return WOLFSSL_FAILURE; } } else if (wolfSSL_ASN1_TIME_to_tm(to, toTmGmt) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Failed to convert to time to struct tm."); return WOLFSSL_FAILURE; } toSecs = TimeToUnixTime(toTmGmt->tm_sec, toTmGmt->tm_min, toTmGmt->tm_hour, toTmGmt->tm_mday, toTmGmt->tm_mon, toTmGmt->tm_year + 1900); diffSecs = (double)(toSecs - fromSecs); *days = (int) (diffSecs / SECS_PER_DAY); *secs = (int) (diffSecs - (((double)*days) * SECS_PER_DAY)); return WOLFSSL_SUCCESS; } int wolfSSL_ASN1_TIME_compare(const WOLFSSL_ASN1_TIME *a, const WOLFSSL_ASN1_TIME *b) { int ret; int days; int secs; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_compare"); if (wolfSSL_ASN1_TIME_diff(&days, &secs, a, b) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Failed to get time difference."); ret = -2; } else { if (days == 0 && secs == 0) { /* a and b are the same time. */ ret = 0; } else if (days >= 0 && secs >= 0) { /* a is before b. */ ret = -1; } else if (days <= 0 && secs <= 0) { /* a is after b. */ ret = 1; } else { WOLFSSL_MSG("Incoherent time difference."); ret = -2; } } WOLFSSL_LEAVE("wolfSSL_ASN1_TIME_compare", ret); return ret; } #endif /* !NO_ASN_TIME */ #ifndef NO_WOLFSSL_STUB WOLFSSL_ASN1_TIME *wolfSSL_ASN1_TIME_set(WOLFSSL_ASN1_TIME *s, time_t t) { WOLFSSL_STUB("wolfSSL_ASN1_TIME_set"); (void)s; (void)t; return s; } #endif /* !NO_WOLFSSL_STUB */ int wolfSSL_ASN1_TIME_set_string(WOLFSSL_ASN1_TIME *s, const char *str) { int slen; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_set_string"); if (!str) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } slen = (int)XSTRLEN(str)+1; if (slen > CTC_DATE_SIZE) { WOLFSSL_MSG("Date string too long"); return WOLFSSL_FAILURE; } if (s) { XMEMCPY(s->data, str, slen); s->length = slen - 1; /* do not include null terminator in length */ s->type = slen == ASN_UTC_TIME_SIZE ? V_ASN1_UTCTIME : V_ASN1_GENERALIZEDTIME; } return WOLFSSL_SUCCESS; } #ifndef NO_BIO /* Return the month as a string. * * n The number of the month as a two characters (1 based). * returns the month as a string. */ static WC_INLINE const char* MonthStr(const char* n) { static const char monthStr[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; return monthStr[(n[0] - '0') * 10 + (n[1] - '0') - 1]; } int wolfSSL_ASN1_GENERALIZEDTIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_GENERALIZEDTIME* asnTime) { const char* p; WOLFSSL_ENTER("wolfSSL_ASN1_GENERALIZEDTIME_print"); if (bio == NULL || asnTime == NULL) return BAD_FUNC_ARG; if (asnTime->type != ASN_GENERALIZED_TIME) { WOLFSSL_MSG("Error, not GENERALIZED_TIME"); return WOLFSSL_FAILURE; } p = (const char *)(asnTime->data); /* GetTimeString not always available. */ if (wolfSSL_BIO_write(bio, MonthStr(p + 4), 3) <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_write(bio, " ", 1) <= 0) return WOLFSSL_FAILURE; /* Day */ if (wolfSSL_BIO_write(bio, p + 6, 2) <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_write(bio, " ", 1) <= 0) return WOLFSSL_FAILURE; /* Hour */ if (wolfSSL_BIO_write(bio, p + 8, 2) <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_write(bio, ":", 1) <= 0) return WOLFSSL_FAILURE; /* Min */ if (wolfSSL_BIO_write(bio, p + 10, 2) <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_write(bio, ":", 1) <= 0) return WOLFSSL_FAILURE; /* Secs */ if (wolfSSL_BIO_write(bio, p + 12, 2) <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_write(bio, " ", 1) <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_write(bio, p, 4) <= 0) return WOLFSSL_FAILURE; return 0; } #endif /* !NO_BIO */ void wolfSSL_ASN1_GENERALIZEDTIME_free(WOLFSSL_ASN1_TIME* asn1Time) { WOLFSSL_ENTER("wolfSSL_ASN1_GENERALIZEDTIME_free"); if (asn1Time == NULL) return; XMEMSET(asn1Time->data, 0, sizeof(asn1Time->data)); } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) int wolfSSL_sk_num(const WOLFSSL_STACK* sk) { WOLFSSL_ENTER("wolfSSL_sk_num"); if (sk == NULL) return 0; return (int)sk->num; } void* wolfSSL_sk_value(const WOLFSSL_STACK* sk, int i) { WOLFSSL_ENTER("wolfSSL_sk_value"); for (; sk != NULL && i > 0; i--) sk = sk->next; if (sk == NULL) return NULL; switch (sk->type) { case STACK_TYPE_X509: return (void*)sk->data.x509; case STACK_TYPE_GEN_NAME: return (void*)sk->data.gn; case STACK_TYPE_BIO: return (void*)sk->data.bio; case STACK_TYPE_OBJ: return (void*)sk->data.obj; case STACK_TYPE_STRING: return (void*)sk->data.string; case STACK_TYPE_CIPHER: return (void*)&sk->data.cipher; case STACK_TYPE_ACCESS_DESCRIPTION: return (void*)sk->data.access; case STACK_TYPE_X509_EXT: return (void*)sk->data.ext; case STACK_TYPE_X509_REQ_ATTR: return (void*)sk->data.generic; case STACK_TYPE_NULL: return (void*)sk->data.generic; case STACK_TYPE_X509_NAME: return (void*)sk->data.name; case STACK_TYPE_X509_NAME_ENTRY: return (void*)sk->data.name_entry; case STACK_TYPE_CONF_VALUE: #ifdef OPENSSL_EXTRA return (void*)sk->data.conf; #else return NULL; #endif case STACK_TYPE_X509_INFO: return (void*)sk->data.info; case STACK_TYPE_BY_DIR_entry: return (void*)sk->data.dir_entry; case STACK_TYPE_BY_DIR_hash: return (void*)sk->data.dir_hash; case STACK_TYPE_X509_OBJ: return (void*)sk->data.x509_obj; case STACK_TYPE_DIST_POINT: return (void*)sk->data.dp; case STACK_TYPE_X509_CRL: return (void*)sk->data.crl; default: return (void*)sk->data.generic; } } /* copies over data of "in" to "out" */ static void wolfSSL_CIPHER_copy(WOLFSSL_CIPHER* in, WOLFSSL_CIPHER* out) { if (in == NULL || out == NULL) return; *out = *in; } WOLFSSL_STACK* wolfSSL_sk_dup(WOLFSSL_STACK* sk) { WOLFSSL_STACK* ret = NULL; WOLFSSL_STACK* last = NULL; WOLFSSL_ENTER("wolfSSL_sk_dup"); while (sk) { WOLFSSL_STACK* cur = wolfSSL_sk_new_node(sk->heap); if (!cur) { WOLFSSL_MSG("wolfSSL_sk_new_node error"); goto error; } if (!ret) { /* Set first node */ ret = cur; } if (last) { last->next = cur; } XMEMCPY(cur, sk, sizeof(WOLFSSL_STACK)); /* We will allocate new memory for this */ XMEMSET(&cur->data, 0, sizeof(cur->data)); cur->next = NULL; switch (sk->type) { case STACK_TYPE_X509: if (!sk->data.x509) break; cur->data.x509 = wolfSSL_X509_dup(sk->data.x509); if (!cur->data.x509) { WOLFSSL_MSG("wolfSSL_X509_dup error"); goto error; } break; case STACK_TYPE_CIPHER: wolfSSL_CIPHER_copy(&sk->data.cipher, &cur->data.cipher); break; case STACK_TYPE_GEN_NAME: if (!sk->data.gn) break; cur->data.gn = wolfSSL_GENERAL_NAME_dup(sk->data.gn); if (!cur->data.gn) { WOLFSSL_MSG("wolfSSL_GENERAL_NAME_new error"); goto error; } break; case STACK_TYPE_OBJ: if (!sk->data.obj) break; cur->data.obj = wolfSSL_ASN1_OBJECT_dup(sk->data.obj); if (!cur->data.obj) { WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_dup error"); goto error; } break; case STACK_TYPE_BIO: case STACK_TYPE_STRING: case STACK_TYPE_ACCESS_DESCRIPTION: case STACK_TYPE_X509_EXT: case STACK_TYPE_X509_REQ_ATTR: case STACK_TYPE_NULL: case STACK_TYPE_X509_NAME: case STACK_TYPE_X509_NAME_ENTRY: case STACK_TYPE_CONF_VALUE: case STACK_TYPE_X509_INFO: case STACK_TYPE_BY_DIR_entry: case STACK_TYPE_BY_DIR_hash: case STACK_TYPE_X509_OBJ: case STACK_TYPE_DIST_POINT: case STACK_TYPE_X509_CRL: default: WOLFSSL_MSG("Unsupported stack type"); goto error; } sk = sk->next; last = cur; } return ret; error: if (ret) { wolfSSL_sk_GENERAL_NAME_free(ret); } return NULL; } /* Free the just the stack structure */ void wolfSSL_sk_free(WOLFSSL_STACK* sk) { WOLFSSL_ENTER("wolfSSL_sk_free"); while (sk != NULL) { WOLFSSL_STACK* next = sk->next; XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL); sk = next; } } /* Frees each node in the stack and frees the stack. */ void wolfSSL_sk_GENERIC_pop_free(WOLFSSL_STACK* sk, void (*f) (void*)) { WOLFSSL_ENTER("wolfSSL_sk_GENERIC_pop_free"); wolfSSL_sk_pop_free(sk, (wolfSSL_sk_freefunc)f); } /* return 1 on success 0 on fail */ int wolfSSL_sk_GENERIC_push(WOLFSSL_STACK* sk, void* generic) { WOLFSSL_ENTER("wolfSSL_sk_GENERIC_push"); return wolfSSL_sk_push(sk, generic); } void wolfSSL_sk_GENERIC_free(WOLFSSL_STACK* sk) { wolfSSL_sk_free(sk); } /* Free all nodes in a stack including the pushed objects */ void wolfSSL_sk_pop_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk, wolfSSL_sk_freefunc func) { WOLFSSL_ENTER("wolfSSL_sk_pop_free"); if (sk == NULL) { /* pop_free can be called with NULL, do not print bad argument */ return; } #if defined(WOLFSSL_QT) /* In Qt v15.5, it calls OPENSSL_sk_free(xxx, OPENSSL_sk_free). * By using OPENSSL_sk_free for free causes access violation. * Therefore, switching free func to wolfSSL_ACCESS_DESCRIPTION_free * is needed even the func isn't NULL. */ if (sk->type == STACK_TYPE_ACCESS_DESCRIPTION) { func = (wolfSSL_sk_freefunc)wolfSSL_ACCESS_DESCRIPTION_free; } #endif if (func == NULL) { switch(sk->type) { case STACK_TYPE_ACCESS_DESCRIPTION: #if defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_ACCESS_DESCRIPTION_free; #endif break; case STACK_TYPE_X509: func = (wolfSSL_sk_freefunc)wolfSSL_X509_free; break; case STACK_TYPE_X509_OBJ: #ifdef OPENSSL_ALL func = (wolfSSL_sk_freefunc)wolfSSL_X509_OBJECT_free; #endif break; case STACK_TYPE_OBJ: func = (wolfSSL_sk_freefunc)wolfSSL_ASN1_OBJECT_free; break; case STACK_TYPE_DIST_POINT: #ifdef OPENSSL_EXTRA func = (wolfSSL_sk_freefunc)wolfSSL_DIST_POINT_free; #endif break; case STACK_TYPE_GEN_NAME: func = (wolfSSL_sk_freefunc)wolfSSL_GENERAL_NAME_free; break; case STACK_TYPE_STRING: #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \ defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_WOLFSSL_STRING_free; #endif break; case STACK_TYPE_X509_NAME: #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) \ && !defined(WOLFCRYPT_ONLY) func = (wolfSSL_sk_freefunc)wolfSSL_X509_NAME_free; #endif break; case STACK_TYPE_X509_NAME_ENTRY: #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) \ && !defined(WOLFCRYPT_ONLY) func = (wolfSSL_sk_freefunc)wolfSSL_X509_NAME_ENTRY_free; #endif break; case STACK_TYPE_X509_EXT: #ifdef OPENSSL_ALL func = (wolfSSL_sk_freefunc)wolfSSL_X509_EXTENSION_free; #endif break; case STACK_TYPE_X509_REQ_ATTR: #if defined(OPENSSL_ALL) && \ (defined(WOLFSSL_CERT_GEN) || defined(WOLFSSL_CERT_REQ)) func = (wolfSSL_sk_freefunc)wolfSSL_X509_ATTRIBUTE_free; #endif break; case STACK_TYPE_CONF_VALUE: #if defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_X509V3_conf_free; #endif break; case STACK_TYPE_X509_INFO: #if defined(OPENSSL_ALL) func = (wolfSSL_sk_freefunc)wolfSSL_X509_INFO_free; #endif break; case STACK_TYPE_BIO: #if !defined(NO_BIO) && defined(OPENSSL_EXTRA) func = (wolfSSL_sk_freefunc)wolfSSL_BIO_vfree; #endif break; case STACK_TYPE_BY_DIR_entry: #if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR) func = (wolfSSL_sk_freefunc)wolfSSL_BY_DIR_entry_free; #endif break; case STACK_TYPE_BY_DIR_hash: #if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR) func = (wolfSSL_sk_freefunc)wolfSSL_BY_DIR_HASH_free; #endif break; case STACK_TYPE_X509_CRL: #if defined(HAVE_CRL) && (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)) func = (wolfSSL_sk_freefunc)wolfSSL_X509_CRL_free; #endif break; case STACK_TYPE_CIPHER: case STACK_TYPE_NULL: default: break; } } while (sk != NULL) { WOLFSSL_STACK* next = sk->next; if (func != NULL) { if (sk->type != STACK_TYPE_CIPHER) func(sk->data.generic); } XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL); sk = next; } } /* Creates and returns a new null stack. */ WOLFSSL_STACK* wolfSSL_sk_new_null(void) { WOLFSSL_STACK* sk; WOLFSSL_ENTER("wolfSSL_sk_new_null"); sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_OPENSSL); if (sk == NULL) { WOLFSSL_MSG("WOLFSSL_STACK memory error"); return NULL; } XMEMSET(sk, 0, sizeof(WOLFSSL_STACK)); sk->type = STACK_TYPE_NULL; return sk; } int wolfSSL_sk_SSL_COMP_num(WOLF_STACK_OF(WOLFSSL_COMP)* sk) { if (sk == NULL) return 0; return (int)sk->num; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if !defined(NO_SESSION_CACHE) && (defined(OPENSSL_EXTRA) || \ defined(HAVE_EXT_CACHE)) /* stunnel 4.28 needs * * Callback that is called if a session tries to resume but could not find * the session to resume it. */ void wolfSSL_CTX_sess_set_get_cb(WOLFSSL_CTX* ctx, WOLFSSL_SESSION*(*f)(WOLFSSL*, const unsigned char*, int, int*)) { if (ctx == NULL) return; #ifdef HAVE_EXT_CACHE ctx->get_sess_cb = f; #else (void)f; #endif } void wolfSSL_CTX_sess_set_new_cb(WOLFSSL_CTX* ctx, int (*f)(WOLFSSL*, WOLFSSL_SESSION*)) { if (ctx == NULL) return; #ifdef HAVE_EXT_CACHE ctx->new_sess_cb = f; #else (void)f; #endif } void wolfSSL_CTX_sess_set_remove_cb(WOLFSSL_CTX* ctx, void (*f)(WOLFSSL_CTX*, WOLFSSL_SESSION*)) { if (ctx == NULL) return; #if defined(HAVE_EXT_CACHE) || defined(HAVE_EX_DATA) ctx->rem_sess_cb = f; #else (void)f; #endif } /* * * Note: It is expected that the importing and exporting function have been * built with the same settings. For example if session tickets was * enabled with the wolfSSL library exporting a session then it is * expected to be turned on with the wolfSSL library importing the session. */ int wolfSSL_i2d_SSL_SESSION(WOLFSSL_SESSION* sess, unsigned char** p) { int size = 0; #ifdef HAVE_EXT_CACHE int idx = 0; #ifdef SESSION_CERTS int i; #endif unsigned char *data; WOLFSSL_ENTER("wolfSSL_i2d_SSL_SESSION"); sess = ClientSessionToSession(sess); if (sess == NULL) { return BAD_FUNC_ARG; } /* side | bornOn | timeout | sessionID len | sessionID | masterSecret | * haveEMS */ size += OPAQUE8_LEN + OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN + sess->sessionIDSz + SECRET_LEN + OPAQUE8_LEN; /* altSessionID */ size += OPAQUE8_LEN + (sess->haveAltSessionID ? ID_LEN : 0); #ifdef SESSION_CERTS /* Peer chain */ size += OPAQUE8_LEN; for (i = 0; i < sess->chain.count; i++) size += OPAQUE16_LEN + sess->chain.certs[i].length; #endif #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) /* Protocol version */ size += OPAQUE16_LEN; #endif #if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \ (defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)) /* cipher suite */ size += OPAQUE16_LEN; #endif #ifndef NO_CLIENT_CACHE /* ServerID len | ServerID */ size += OPAQUE16_LEN + sess->idLen; #endif #ifdef OPENSSL_EXTRA /* session context ID len | session context ID */ size += OPAQUE8_LEN + sess->sessionCtxSz; #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* peerVerifyRet */ size += OPAQUE8_LEN; #endif #ifdef WOLFSSL_TLS13 /* namedGroup */ size += OPAQUE16_LEN; #endif #if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK) #ifdef WOLFSSL_TLS13 /* ticketSeen | ticketAdd */ size += OPAQUE32_LEN + OPAQUE32_LEN; /* ticketNonce */ size += OPAQUE8_LEN + sess->ticketNonce.len; #endif #ifdef WOLFSSL_EARLY_DATA size += OPAQUE32_LEN; #endif #endif #ifdef HAVE_SESSION_TICKET /* ticket len | ticket */ size += OPAQUE16_LEN + sess->ticketLen; #endif if (p != NULL) { if (*p == NULL) *p = (unsigned char*)XMALLOC(size, NULL, DYNAMIC_TYPE_OPENSSL); if (*p == NULL) return 0; data = *p; data[idx++] = sess->side; c32toa(sess->bornOn, data + idx); idx += OPAQUE32_LEN; c32toa(sess->timeout, data + idx); idx += OPAQUE32_LEN; data[idx++] = sess->sessionIDSz; XMEMCPY(data + idx, sess->sessionID, sess->sessionIDSz); idx += sess->sessionIDSz; XMEMCPY(data + idx, sess->masterSecret, SECRET_LEN); idx += SECRET_LEN; data[idx++] = (byte)sess->haveEMS; data[idx++] = sess->haveAltSessionID ? ID_LEN : 0; if (sess->haveAltSessionID) { XMEMCPY(data + idx, sess->altSessionID, ID_LEN); idx += ID_LEN; } #ifdef SESSION_CERTS data[idx++] = (byte)sess->chain.count; for (i = 0; i < sess->chain.count; i++) { c16toa((word16)sess->chain.certs[i].length, data + idx); idx += OPAQUE16_LEN; XMEMCPY(data + idx, sess->chain.certs[i].buffer, sess->chain.certs[i].length); idx += sess->chain.certs[i].length; } #endif #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) data[idx++] = sess->version.major; data[idx++] = sess->version.minor; #endif #if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \ (defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)) data[idx++] = sess->cipherSuite0; data[idx++] = sess->cipherSuite; #endif #ifndef NO_CLIENT_CACHE c16toa(sess->idLen, data + idx); idx += OPAQUE16_LEN; XMEMCPY(data + idx, sess->serverID, sess->idLen); idx += sess->idLen; #endif #ifdef OPENSSL_EXTRA data[idx++] = sess->sessionCtxSz; XMEMCPY(data + idx, sess->sessionCtx, sess->sessionCtxSz); idx += sess->sessionCtxSz; #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) data[idx++] = sess->peerVerifyRet; #endif #ifdef WOLFSSL_TLS13 c16toa(sess->namedGroup, data + idx); idx += OPAQUE16_LEN; #endif #if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK) #ifdef WOLFSSL_TLS13 c32toa(sess->ticketSeen, data + idx); idx += OPAQUE32_LEN; c32toa(sess->ticketAdd, data + idx); idx += OPAQUE32_LEN; data[idx++] = sess->ticketNonce.len; XMEMCPY(data + idx, sess->ticketNonce.data, sess->ticketNonce.len); idx += sess->ticketNonce.len; #endif #ifdef WOLFSSL_EARLY_DATA c32toa(sess->maxEarlyDataSz, data + idx); idx += OPAQUE32_LEN; #endif #endif #ifdef HAVE_SESSION_TICKET c16toa(sess->ticketLen, data + idx); idx += OPAQUE16_LEN; XMEMCPY(data + idx, sess->ticket, sess->ticketLen); idx += sess->ticketLen; #endif } #endif (void)sess; (void)p; #ifdef HAVE_EXT_CACHE (void)idx; #endif return size; } /* TODO: no function to free new session. * * Note: It is expected that the importing and exporting function have been * built with the same settings. For example if session tickets was * enabled with the wolfSSL library exporting a session then it is * expected to be turned on with the wolfSSL library importing the session. */ WOLFSSL_SESSION* wolfSSL_d2i_SSL_SESSION(WOLFSSL_SESSION** sess, const unsigned char** p, long i) { WOLFSSL_SESSION* s = NULL; int ret = 0; #if defined(HAVE_EXT_CACHE) int idx; byte* data; #ifdef SESSION_CERTS int j; word16 length; #endif #endif /* HAVE_EXT_CACHE */ (void)p; (void)i; (void)ret; (void)sess; #ifdef HAVE_EXT_CACHE if (p == NULL || *p == NULL) return NULL; s = wolfSSL_SESSION_new(); if (s == NULL) return NULL; idx = 0; data = (byte*)*p; /* side | bornOn | timeout | sessionID len */ if (i < OPAQUE8_LEN + OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } s->side = data[idx++]; ato32(data + idx, &s->bornOn); idx += OPAQUE32_LEN; ato32(data + idx, &s->timeout); idx += OPAQUE32_LEN; s->sessionIDSz = data[idx++]; /* sessionID | secret | haveEMS | haveAltSessionID */ if (i - idx < s->sessionIDSz + SECRET_LEN + OPAQUE8_LEN + OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->sessionID, data + idx, s->sessionIDSz); idx += s->sessionIDSz; XMEMCPY(s->masterSecret, data + idx, SECRET_LEN); idx += SECRET_LEN; s->haveEMS = data[idx++]; if (data[idx] != ID_LEN && data[idx] != 0) { ret = BUFFER_ERROR; goto end; } s->haveAltSessionID = data[idx++] == ID_LEN; /* altSessionID */ if (s->haveAltSessionID) { if (i - idx < ID_LEN) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->altSessionID, data + idx, ID_LEN); idx += ID_LEN; } #ifdef SESSION_CERTS /* Certificate chain */ if (i - idx == 0) { ret = BUFFER_ERROR; goto end; } s->chain.count = data[idx++]; for (j = 0; j < s->chain.count; j++) { if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } ato16(data + idx, &length); idx += OPAQUE16_LEN; s->chain.certs[j].length = length; if (i - idx < length) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->chain.certs[j].buffer, data + idx, length); idx += length; } #endif #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) /* Protocol Version */ if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } s->version.major = data[idx++]; s->version.minor = data[idx++]; #endif #if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \ (defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)) /* Cipher suite */ if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } s->cipherSuite0 = data[idx++]; s->cipherSuite = data[idx++]; #endif #ifndef NO_CLIENT_CACHE /* ServerID len */ if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } ato16(data + idx, &s->idLen); idx += OPAQUE16_LEN; /* ServerID */ if (i - idx < s->idLen) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->serverID, data + idx, s->idLen); idx += s->idLen; #endif #ifdef OPENSSL_EXTRA /* byte for length of session context ID */ if (i - idx < OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } s->sessionCtxSz = data[idx++]; /* app session context ID */ if (i - idx < s->sessionCtxSz) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->sessionCtx, data + idx, s->sessionCtxSz); idx += s->sessionCtxSz; #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* byte for peerVerifyRet */ if (i - idx < OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } s->peerVerifyRet = data[idx++]; #endif #ifdef WOLFSSL_TLS13 if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } ato16(data + idx, &s->namedGroup); idx += OPAQUE16_LEN; #endif #if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK) #ifdef WOLFSSL_TLS13 if (i - idx < (OPAQUE32_LEN * 2)) { ret = BUFFER_ERROR; goto end; } ato32(data + idx, &s->ticketSeen); idx += OPAQUE32_LEN; ato32(data + idx, &s->ticketAdd); idx += OPAQUE32_LEN; if (i - idx < OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } s->ticketNonce.len = data[idx++]; if (i - idx < s->ticketNonce.len) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->ticketNonce.data, data + idx, s->ticketNonce.len); idx += s->ticketNonce.len; #endif #ifdef WOLFSSL_EARLY_DATA if (i - idx < OPAQUE32_LEN) { ret = BUFFER_ERROR; goto end; } ato32(data + idx, &s->maxEarlyDataSz); idx += OPAQUE32_LEN; #endif #endif #ifdef HAVE_SESSION_TICKET /* ticket len */ if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } ato16(data + idx, &s->ticketLen); idx += OPAQUE16_LEN; /* Dispose of ol dynamic ticket and ensure space for new ticket. */ if (s->ticketLenAlloc > 0) { XFREE(s->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK); } if (s->ticketLen <= SESSION_TICKET_LEN) s->ticket = s->_staticTicket; else { s->ticket = (byte*)XMALLOC(s->ticketLen, NULL, DYNAMIC_TYPE_SESSION_TICK); if (s->ticket == NULL) { ret = MEMORY_ERROR; goto end; } s->ticketLenAlloc = (word16)s->ticketLen; } /* ticket */ if (i - idx < s->ticketLen) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->ticket, data + idx, s->ticketLen); idx += s->ticketLen; #endif (void)idx; if (sess != NULL) { *sess = s; } *p += idx; end: if (ret != 0 && (sess == NULL || *sess != s)) { wolfSSL_SESSION_free(s); s = NULL; } #endif /* HAVE_EXT_CACHE */ return s; } /* Check if there is a session ticket associated with this WOLFSSL_SESSION. * * sess - pointer to WOLFSSL_SESSION struct * * Returns 1 if has session ticket, otherwise 0 */ int wolfSSL_SESSION_has_ticket(const WOLFSSL_SESSION* sess) { WOLFSSL_ENTER("wolfSSL_SESSION_has_ticket"); #ifdef HAVE_SESSION_TICKET sess = ClientSessionToSession(sess); if (sess) { if ((sess->ticketLen > 0) && (sess->ticket != NULL)) { return WOLFSSL_SUCCESS; } } #else (void)sess; #endif return WOLFSSL_FAILURE; } unsigned long wolfSSL_SESSION_get_ticket_lifetime_hint( const WOLFSSL_SESSION* sess) { WOLFSSL_ENTER("wolfSSL_SESSION_get_ticket_lifetime_hint"); sess = ClientSessionToSession(sess); if (sess) { return sess->timeout; } return 0; } long wolfSSL_SESSION_get_timeout(const WOLFSSL_SESSION* sess) { long timeout = 0; WOLFSSL_ENTER("wolfSSL_SESSION_get_timeout"); sess = ClientSessionToSession(sess); if (sess) timeout = sess->timeout; return timeout; } long wolfSSL_SESSION_get_time(const WOLFSSL_SESSION* sess) { long bornOn = 0; WOLFSSL_ENTER("wolfSSL_SESSION_get_time"); sess = ClientSessionToSession(sess); if (sess) bornOn = sess->bornOn; return bornOn; } long wolfSSL_SSL_SESSION_set_timeout(WOLFSSL_SESSION* ses, long t) { word32 tmptime; ses = ClientSessionToSession(ses); if (ses == NULL || t < 0) { return BAD_FUNC_ARG; } tmptime = t & 0xFFFFFFFF; ses->timeout = tmptime; return WOLFSSL_SUCCESS; } #endif /* !NO_SESSION_CACHE && OPENSSL_EXTRA || HAVE_EXT_CACHE */ #ifdef OPENSSL_EXTRA #if defined(HAVE_EX_DATA) && !defined(NO_FILESYSTEM) int wolfSSL_cmp_peer_cert_to_file(WOLFSSL* ssl, const char *fname) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_cmp_peer_cert_to_file"); if (ssl != NULL && fname != NULL) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; XFILE file; long sz = 0; WOLFSSL_CTX* ctx = ssl->ctx; WOLFSSL_X509* peer_cert = &ssl->peerCert; DerBuffer* fileDer = NULL; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; if (XFSEEK(file, 0, XSEEK_END) != 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } sz = XFTELL(file); XREWIND(file); if (sz > MAX_WOLFSSL_FILE_SIZE || sz < 0) { WOLFSSL_MSG("cmp_peer_cert_to_file size error"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*)XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); dynamic = 1; } if ((myBuffer != NULL) && (sz > 0) && (XFREAD(myBuffer, 1, sz, file) == (size_t)sz) && (PemToDer(myBuffer, (long)sz, CERT_TYPE, &fileDer, ctx->heap, NULL, NULL) == 0) && (fileDer->length != 0) && (fileDer->length == peer_cert->derCert->length) && (XMEMCMP(peer_cert->derCert->buffer, fileDer->buffer, fileDer->length) == 0)) { ret = 0; } FreeDer(&fileDer); if (dynamic) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE); XFCLOSE(file); } return ret; } #endif #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) const WOLFSSL_ObjectInfo wolfssl_object_info[] = { #ifndef NO_CERTS /* oidCertExtType */ { NID_basic_constraints, BASIC_CA_OID, oidCertExtType, "basicConstraints", "X509v3 Basic Constraints"}, { NID_subject_alt_name, ALT_NAMES_OID, oidCertExtType, "subjectAltName", "X509v3 Subject Alternative Name"}, { NID_crl_distribution_points, CRL_DIST_OID, oidCertExtType, "crlDistributionPoints", "X509v3 CRL Distribution Points"}, { NID_info_access, AUTH_INFO_OID, oidCertExtType, "authorityInfoAccess", "Authority Information Access"}, { NID_authority_key_identifier, AUTH_KEY_OID, oidCertExtType, "authorityKeyIdentifier", "X509v3 Authority Key Identifier"}, { NID_subject_key_identifier, SUBJ_KEY_OID, oidCertExtType, "subjectKeyIdentifier", "X509v3 Subject Key Identifier"}, { NID_key_usage, KEY_USAGE_OID, oidCertExtType, "keyUsage", "X509v3 Key Usage"}, { NID_inhibit_any_policy, INHIBIT_ANY_OID, oidCertExtType, "inhibitAnyPolicy", "X509v3 Inhibit Any Policy"}, { NID_ext_key_usage, EXT_KEY_USAGE_OID, oidCertExtType, "extendedKeyUsage", "X509v3 Extended Key Usage"}, { NID_name_constraints, NAME_CONS_OID, oidCertExtType, "nameConstraints", "X509v3 Name Constraints"}, { NID_certificate_policies, CERT_POLICY_OID, oidCertExtType, "certificatePolicies", "X509v3 Certificate Policies"}, /* oidCertAuthInfoType */ { NID_ad_OCSP, AIA_OCSP_OID, oidCertAuthInfoType, "OCSP", "OCSP"}, { NID_ad_ca_issuers, AIA_CA_ISSUER_OID, oidCertAuthInfoType, "caIssuers", "CA Issuers"}, /* oidCertPolicyType */ { NID_any_policy, CP_ANY_OID, oidCertPolicyType, "anyPolicy", "X509v3 Any Policy"}, /* oidCertAltNameType */ { NID_hw_name_oid, HW_NAME_OID, oidCertAltNameType, "Hardware name",""}, /* oidCertKeyUseType */ { NID_anyExtendedKeyUsage, EKU_ANY_OID, oidCertKeyUseType, "anyExtendedKeyUsage", "Any Extended Key Usage"}, { EKU_SERVER_AUTH_OID, EKU_SERVER_AUTH_OID, oidCertKeyUseType, "serverAuth", "TLS Web Server Authentication"}, { EKU_CLIENT_AUTH_OID, EKU_CLIENT_AUTH_OID, oidCertKeyUseType, "clientAuth", "TLS Web Client Authentication"}, { EKU_OCSP_SIGN_OID, EKU_OCSP_SIGN_OID, oidCertKeyUseType, "OCSPSigning", "OCSP Signing"}, /* oidCertNameType */ { NID_commonName, NID_commonName, oidCertNameType, "CN", "commonName"}, { NID_surname, NID_surname, oidCertNameType, "SN", "surname"}, { NID_serialNumber, NID_serialNumber, oidCertNameType, "serialNumber", "serialNumber"}, { NID_userId, NID_userId, oidCertNameType, "UID", "userid"}, { NID_countryName, NID_countryName, oidCertNameType, "C", "countryName"}, { NID_localityName, NID_localityName, oidCertNameType, "L", "localityName"}, { NID_stateOrProvinceName, NID_stateOrProvinceName, oidCertNameType, "ST", "stateOrProvinceName"}, { NID_streetAddress, NID_streetAddress, oidCertNameType, "street", "streetAddress"}, { NID_organizationName, NID_organizationName, oidCertNameType, "O", "organizationName"}, { NID_organizationalUnitName, NID_organizationalUnitName, oidCertNameType, "OU", "organizationalUnitName"}, { NID_emailAddress, NID_emailAddress, oidCertNameType, "emailAddress", "emailAddress"}, { NID_domainComponent, NID_domainComponent, oidCertNameType, "DC", "domainComponent"}, { NID_favouriteDrink, NID_favouriteDrink, oidCertNameType, "favouriteDrink", "favouriteDrink"}, { NID_businessCategory, NID_businessCategory, oidCertNameType, "businessCategory", "businessCategory"}, { NID_jurisdictionCountryName, NID_jurisdictionCountryName, oidCertNameType, "jurisdictionC", "jurisdictionCountryName"}, { NID_jurisdictionStateOrProvinceName, NID_jurisdictionStateOrProvinceName, oidCertNameType, "jurisdictionST", "jurisdictionStateOrProvinceName"}, { NID_postalCode, NID_postalCode, oidCertNameType, "postalCode", "postalCode"}, { NID_userId, NID_userId, oidCertNameType, "UID", "userId"}, #ifdef WOLFSSL_CERT_REQ { NID_pkcs9_challengePassword, CHALLENGE_PASSWORD_OID, oidCsrAttrType, "challengePassword", "challengePassword"}, { NID_pkcs9_contentType, PKCS9_CONTENT_TYPE_OID, oidCsrAttrType, "contentType", "contentType" }, { NID_pkcs9_unstructuredName, UNSTRUCTURED_NAME_OID, oidCsrAttrType, "unstructuredName", "unstructuredName" }, { NID_surname, SURNAME_OID, oidCsrAttrType, "surname", "surname" }, { NID_givenName, GIVEN_NAME_OID, oidCsrAttrType, "givenName", "givenName" }, { NID_initials, INITIALS_OID, oidCsrAttrType, "initials", "initials" }, { NID_dnQualifier, DNQUALIFIER_OID, oidCsrAttrType, "dnQualifer", "dnQualifier" }, #endif #endif #ifdef OPENSSL_EXTRA /* OPENSSL_EXTRA_X509_SMALL only needs the above */ /* oidHashType */ #ifdef WOLFSSL_MD2 { NID_md2, MD2h, oidHashType, "MD2", "md2"}, #endif #ifdef WOLFSSL_MD5 { NID_md5, MD5h, oidHashType, "MD5", "md5"}, #endif #ifndef NO_SHA { NID_sha1, SHAh, oidHashType, "SHA1", "sha1"}, #endif #ifdef WOLFSSL_SHA224 { NID_sha224, SHA224h, oidHashType, "SHA224", "sha224"}, #endif #ifndef NO_SHA256 { NID_sha256, SHA256h, oidHashType, "SHA256", "sha256"}, #endif #ifdef WOLFSSL_SHA384 { NID_sha384, SHA384h, oidHashType, "SHA384", "sha384"}, #endif #ifdef WOLFSSL_SHA512 { NID_sha512, SHA512h, oidHashType, "SHA512", "sha512"}, #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 { NID_sha3_224, SHA3_224h, oidHashType, "SHA3-224", "sha3-224"}, #endif #ifndef WOLFSSL_NOSHA3_256 { NID_sha3_256, SHA3_256h, oidHashType, "SHA3-256", "sha3-256"}, #endif #ifndef WOLFSSL_NOSHA3_384 { NID_sha3_384, SHA3_384h, oidHashType, "SHA3-384", "sha3-384"}, #endif #ifndef WOLFSSL_NOSHA3_512 { NID_sha3_512, SHA3_512h, oidHashType, "SHA3-512", "sha3-512"}, #endif #endif /* WOLFSSL_SHA3 */ /* oidSigType */ #ifndef NO_DSA #ifndef NO_SHA { NID_dsaWithSHA1, CTC_SHAwDSA, oidSigType, "DSA-SHA1", "dsaWithSHA1"}, { NID_dsa_with_SHA256, CTC_SHA256wDSA, oidSigType, "dsa_with_SHA256", "dsa_with_SHA256"}, #endif #endif /* NO_DSA */ #ifndef NO_RSA #ifdef WOLFSSL_MD2 { NID_md2WithRSAEncryption, CTC_MD2wRSA, oidSigType, "RSA-MD2", "md2WithRSAEncryption"}, #endif #ifndef NO_MD5 { NID_md5WithRSAEncryption, CTC_MD5wRSA, oidSigType, "RSA-MD5", "md5WithRSAEncryption"}, #endif #ifndef NO_SHA { NID_sha1WithRSAEncryption, CTC_SHAwRSA, oidSigType, "RSA-SHA1", "sha1WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA224 { NID_sha224WithRSAEncryption, CTC_SHA224wRSA, oidSigType, "RSA-SHA224", "sha224WithRSAEncryption"}, #endif #ifndef NO_SHA256 { NID_sha256WithRSAEncryption, CTC_SHA256wRSA, oidSigType, "RSA-SHA256", "sha256WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA384 { NID_sha384WithRSAEncryption, CTC_SHA384wRSA, oidSigType, "RSA-SHA384", "sha384WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA512 { NID_sha512WithRSAEncryption, CTC_SHA512wRSA, oidSigType, "RSA-SHA512", "sha512WithRSAEncryption"}, #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 { NID_RSA_SHA3_224, CTC_SHA3_224wRSA, oidSigType, "RSA-SHA3-224", "sha3-224WithRSAEncryption"}, #endif #ifndef WOLFSSL_NOSHA3_256 { NID_RSA_SHA3_256, CTC_SHA3_256wRSA, oidSigType, "RSA-SHA3-256", "sha3-256WithRSAEncryption"}, #endif #ifndef WOLFSSL_NOSHA3_384 { NID_RSA_SHA3_384, CTC_SHA3_384wRSA, oidSigType, "RSA-SHA3-384", "sha3-384WithRSAEncryption"}, #endif #ifndef WOLFSSL_NOSHA3_512 { NID_RSA_SHA3_512, CTC_SHA3_512wRSA, oidSigType, "RSA-SHA3-512", "sha3-512WithRSAEncryption"}, #endif #endif #endif /* NO_RSA */ #ifdef HAVE_ECC #ifndef NO_SHA { NID_ecdsa_with_SHA1, CTC_SHAwECDSA, oidSigType, "ecdsa-with-SHA1", "shaWithECDSA"}, #endif #ifdef WOLFSSL_SHA224 { NID_ecdsa_with_SHA224, CTC_SHA224wECDSA, oidSigType, "ecdsa-with-SHA224","sha224WithECDSA"}, #endif #ifndef NO_SHA256 { NID_ecdsa_with_SHA256, CTC_SHA256wECDSA, oidSigType, "ecdsa-with-SHA256","sha256WithECDSA"}, #endif #ifdef WOLFSSL_SHA384 { NID_ecdsa_with_SHA384, CTC_SHA384wECDSA, oidSigType, "ecdsa-with-SHA384","sha384WithECDSA"}, #endif #ifdef WOLFSSL_SHA512 { NID_ecdsa_with_SHA512, CTC_SHA512wECDSA, oidSigType, "ecdsa-with-SHA512","sha512WithECDSA"}, #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 { NID_ecdsa_with_SHA3_224, CTC_SHA3_224wECDSA, oidSigType, "id-ecdsa-with-SHA3-224", "ecdsa_with_SHA3-224"}, #endif #ifndef WOLFSSL_NOSHA3_256 { NID_ecdsa_with_SHA3_256, CTC_SHA3_256wECDSA, oidSigType, "id-ecdsa-with-SHA3-256", "ecdsa_with_SHA3-256"}, #endif #ifndef WOLFSSL_NOSHA3_384 { NID_ecdsa_with_SHA3_384, CTC_SHA3_384wECDSA, oidSigType, "id-ecdsa-with-SHA3-384", "ecdsa_with_SHA3-384"}, #endif #ifndef WOLFSSL_NOSHA3_512 { NID_ecdsa_with_SHA3_512, CTC_SHA3_512wECDSA, oidSigType, "id-ecdsa-with-SHA3-512", "ecdsa_with_SHA3-512"}, #endif #endif #endif /* HAVE_ECC */ /* oidKeyType */ #ifndef NO_DSA { NID_dsa, DSAk, oidKeyType, "DSA", "dsaEncryption"}, #endif /* NO_DSA */ #ifndef NO_RSA { NID_rsaEncryption, RSAk, oidKeyType, "rsaEncryption", "rsaEncryption"}, #endif /* NO_RSA */ #ifdef HAVE_ECC { NID_X9_62_id_ecPublicKey, ECDSAk, oidKeyType, "id-ecPublicKey", "id-ecPublicKey"}, #endif /* HAVE_ECC */ #ifndef NO_DH { NID_dhKeyAgreement, DHk, oidKeyType, "dhKeyAgreement", "dhKeyAgreement"}, #endif #ifdef HAVE_ED448 { NID_ED448, ED448k, oidKeyType, "ED448", "ED448"}, #endif #ifdef HAVE_ED25519 { NID_ED25519, ED25519k, oidKeyType, "ED25519", "ED25519"}, #endif #ifdef HAVE_PQC { CTC_FALCON_LEVEL1, FALCON_LEVEL1k, oidKeyType, "Falcon Level 1", "Falcon Level 1"}, { CTC_FALCON_LEVEL5, FALCON_LEVEL5k, oidKeyType, "Falcon Level 5", "Falcon Level 5"}, #endif /* oidCurveType */ #ifdef HAVE_ECC { NID_X9_62_prime192v1, ECC_SECP192R1_OID, oidCurveType, "prime192v1", "prime192v1"}, { NID_X9_62_prime192v2, ECC_PRIME192V2_OID, oidCurveType, "prime192v2", "prime192v2"}, { NID_X9_62_prime192v3, ECC_PRIME192V3_OID, oidCurveType, "prime192v3", "prime192v3"}, { NID_X9_62_prime239v1, ECC_PRIME239V1_OID, oidCurveType, "prime239v1", "prime239v1"}, { NID_X9_62_prime239v2, ECC_PRIME239V2_OID, oidCurveType, "prime239v2", "prime239v2"}, { NID_X9_62_prime239v3, ECC_PRIME239V3_OID, oidCurveType, "prime239v3", "prime239v3"}, { NID_X9_62_prime256v1, ECC_SECP256R1_OID, oidCurveType, "prime256v1", "prime256v1"}, { NID_secp112r1, ECC_SECP112R1_OID, oidCurveType, "secp112r1", "secp112r1"}, { NID_secp112r2, ECC_SECP112R2_OID, oidCurveType, "secp112r2", "secp112r2"}, { NID_secp128r1, ECC_SECP128R1_OID, oidCurveType, "secp128r1", "secp128r1"}, { NID_secp128r2, ECC_SECP128R2_OID, oidCurveType, "secp128r2", "secp128r2"}, { NID_secp160r1, ECC_SECP160R1_OID, oidCurveType, "secp160r1", "secp160r1"}, { NID_secp160r2, ECC_SECP160R2_OID, oidCurveType, "secp160r2", "secp160r2"}, { NID_secp224r1, ECC_SECP224R1_OID, oidCurveType, "secp224r1", "secp224r1"}, { NID_secp384r1, ECC_SECP384R1_OID, oidCurveType, "secp384r1", "secp384r1"}, { NID_secp521r1, ECC_SECP521R1_OID, oidCurveType, "secp521r1", "secp521r1"}, { NID_secp160k1, ECC_SECP160K1_OID, oidCurveType, "secp160k1", "secp160k1"}, { NID_secp192k1, ECC_SECP192K1_OID, oidCurveType, "secp192k1", "secp192k1"}, { NID_secp224k1, ECC_SECP224K1_OID, oidCurveType, "secp224k1", "secp224k1"}, { NID_secp256k1, ECC_SECP256K1_OID, oidCurveType, "secp256k1", "secp256k1"}, { NID_brainpoolP160r1, ECC_BRAINPOOLP160R1_OID, oidCurveType, "brainpoolP160r1", "brainpoolP160r1"}, { NID_brainpoolP192r1, ECC_BRAINPOOLP192R1_OID, oidCurveType, "brainpoolP192r1", "brainpoolP192r1"}, { NID_brainpoolP224r1, ECC_BRAINPOOLP224R1_OID, oidCurveType, "brainpoolP224r1", "brainpoolP224r1"}, { NID_brainpoolP256r1, ECC_BRAINPOOLP256R1_OID, oidCurveType, "brainpoolP256r1", "brainpoolP256r1"}, { NID_brainpoolP320r1, ECC_BRAINPOOLP320R1_OID, oidCurveType, "brainpoolP320r1", "brainpoolP320r1"}, { NID_brainpoolP384r1, ECC_BRAINPOOLP384R1_OID, oidCurveType, "brainpoolP384r1", "brainpoolP384r1"}, { NID_brainpoolP512r1, ECC_BRAINPOOLP512R1_OID, oidCurveType, "brainpoolP512r1", "brainpoolP512r1"}, #endif /* HAVE_ECC */ /* oidBlkType */ #ifdef WOLFSSL_AES_128 { AES128CBCb, AES128CBCb, oidBlkType, "AES-128-CBC", "aes-128-cbc"}, #endif #ifdef WOLFSSL_AES_192 { AES192CBCb, AES192CBCb, oidBlkType, "AES-192-CBC", "aes-192-cbc"}, #endif #ifdef WOLFSSL_AES_256 { AES256CBCb, AES256CBCb, oidBlkType, "AES-256-CBC", "aes-256-cbc"}, #endif #ifndef NO_DES3 { NID_des, DESb, oidBlkType, "DES-CBC", "des-cbc"}, { NID_des3, DES3b, oidBlkType, "DES-EDE3-CBC", "des-ede3-cbc"}, #endif /* !NO_DES3 */ /* oidOcspType */ #ifdef HAVE_OCSP { NID_id_pkix_OCSP_basic, OCSP_BASIC_OID, oidOcspType, "basicOCSPResponse", "Basic OCSP Response"}, { OCSP_NONCE_OID, OCSP_NONCE_OID, oidOcspType, "Nonce", "OCSP Nonce"}, #endif /* HAVE_OCSP */ #ifndef NO_PWDBASED /* oidKdfType */ { PBKDF2_OID, PBKDF2_OID, oidKdfType, "PBKDFv2", "PBKDF2"}, /* oidPBEType */ { PBE_SHA1_RC4_128, PBE_SHA1_RC4_128, oidPBEType, "PBE-SHA1-RC4-128", "pbeWithSHA1And128BitRC4"}, { PBE_SHA1_DES, PBE_SHA1_DES, oidPBEType, "PBE-SHA1-DES", "pbeWithSHA1AndDES-CBC"}, { PBE_SHA1_DES3, PBE_SHA1_DES3, oidPBEType, "PBE-SHA1-3DES", "pbeWithSHA1And3-KeyTripleDES-CBC"}, #endif /* oidKeyWrapType */ #ifdef WOLFSSL_AES_128 { AES128_WRAP, AES128_WRAP, oidKeyWrapType, "AES-128 wrap", "aes128-wrap"}, #endif #ifdef WOLFSSL_AES_192 { AES192_WRAP, AES192_WRAP, oidKeyWrapType, "AES-192 wrap", "aes192-wrap"}, #endif #ifdef WOLFSSL_AES_256 { AES256_WRAP, AES256_WRAP, oidKeyWrapType, "AES-256 wrap", "aes256-wrap"}, #endif #ifndef NO_PKCS7 #ifndef NO_DH /* oidCmsKeyAgreeType */ #ifndef NO_SHA { dhSinglePass_stdDH_sha1kdf_scheme, dhSinglePass_stdDH_sha1kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha1kdf-scheme", "dhSinglePass-stdDH-sha1kdf-scheme"}, #endif #ifdef WOLFSSL_SHA224 { dhSinglePass_stdDH_sha224kdf_scheme, dhSinglePass_stdDH_sha224kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha224kdf-scheme", "dhSinglePass-stdDH-sha224kdf-scheme"}, #endif #ifndef NO_SHA256 { dhSinglePass_stdDH_sha256kdf_scheme, dhSinglePass_stdDH_sha256kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha256kdf-scheme", "dhSinglePass-stdDH-sha256kdf-scheme"}, #endif #ifdef WOLFSSL_SHA384 { dhSinglePass_stdDH_sha384kdf_scheme, dhSinglePass_stdDH_sha384kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha384kdf-scheme", "dhSinglePass-stdDH-sha384kdf-scheme"}, #endif #ifdef WOLFSSL_SHA512 { dhSinglePass_stdDH_sha512kdf_scheme, dhSinglePass_stdDH_sha512kdf_scheme, oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha512kdf-scheme", "dhSinglePass-stdDH-sha512kdf-scheme"}, #endif #endif #endif #if defined(WOLFSSL_APACHE_HTTPD) /* "1.3.6.1.5.5.7.8.7" */ { NID_id_on_dnsSRV, NID_id_on_dnsSRV, oidCertNameType, WOLFSSL_SN_DNS_SRV, WOLFSSL_LN_DNS_SRV }, /* "1.3.6.1.4.1.311.20.2.3" */ { NID_ms_upn, WOLFSSL_MS_UPN_SUM, oidCertExtType, WOLFSSL_SN_MS_UPN, WOLFSSL_LN_MS_UPN }, /* "1.3.6.1.5.5.7.1.24" */ { NID_tlsfeature, WOLFSSL_TLS_FEATURE_SUM, oidTlsExtType, WOLFSSL_SN_TLS_FEATURE, WOLFSSL_LN_TLS_FEATURE }, #endif #endif /* OPENSSL_EXTRA */ }; #define WOLFSSL_OBJECT_INFO_SZ \ (sizeof(wolfssl_object_info) / sizeof(*wolfssl_object_info)) const size_t wolfssl_object_info_sz = WOLFSSL_OBJECT_INFO_SZ; #endif #ifdef OPENSSL_EXTRA WOLFSSL_ASN1_INTEGER* wolfSSL_BN_to_ASN1_INTEGER(const WOLFSSL_BIGNUM *bn, WOLFSSL_ASN1_INTEGER *ai) { WOLFSSL_ASN1_INTEGER* a; int len; const int extraTagSz = MAX_LENGTH_SZ + 1; byte intTag[MAX_LENGTH_SZ + 1]; int idx = 0; WOLFSSL_ENTER("wolfSSL_BN_to_ASN1_INTEGER"); if (ai == NULL) { a = wolfSSL_ASN1_INTEGER_new(); if (a == NULL) return NULL; a->type = V_ASN1_INTEGER; } else { a = ai; } if (a) { if (wolfSSL_BN_is_negative(bn) && !wolfSSL_BN_is_zero(bn)) { a->type |= V_ASN1_NEG_INTEGER; a->negative = 1; } len = wolfSSL_BN_num_bytes(bn); if (len == 0) len = 1; /* allocate buffer */ if (len + extraTagSz > (int)sizeof(a->intData)) { /* create new data buffer and copy over */ a->data = (byte*)XMALLOC(len + extraTagSz, NULL, DYNAMIC_TYPE_OPENSSL); if (a->data == NULL) { if (a != ai) wolfSSL_ASN1_INTEGER_free(a); return NULL; } a->isDynamic = 1; } else { XMEMSET(a->intData, 0, sizeof(a->intData)); a->data = a->intData; a->isDynamic = 0; } /* populate data */ if (wolfSSL_BN_is_zero(bn)) { a->data[0] = 0; } else { len = wolfSSL_BN_bn2bin(bn, a->data); if (len < 0) { wolfSSL_ASN1_INTEGER_free(a); return NULL; } } a->length = len; /* Write ASN tag */ idx = SetASNInt(a->length, a->data[0], intTag); XMEMMOVE(a->data + idx, a->data, a->length); XMEMCPY(a->data, intTag, idx); a->dataMax = a->length += idx; } return a; } #ifdef OPENSSL_ALL void *wolfSSL_ASN1_item_new(const WOLFSSL_ASN1_ITEM *tpl) { void *ret = NULL; const WOLFSSL_ASN1_TEMPLATE *member = NULL; size_t i; WOLFSSL_ENTER("wolfSSL_ASN1_item_new"); if (!tpl) { return NULL; } if (!(ret = (void *)XMALLOC(tpl->size, NULL, DYNAMIC_TYPE_OPENSSL))) { return NULL; } XMEMSET(ret, 0, tpl->size); for (member = tpl->members, i = 0; i < tpl->mcount; member++, i++) { switch (member->type) { case WOLFSSL_X509_ALGOR_ASN1: { WOLFSSL_X509_ALGOR* algor = wolfSSL_X509_ALGOR_new(); if (!algor) { goto error; } *(WOLFSSL_X509_ALGOR**)(((byte*)ret) + member->offset) = algor; break; } case WOLFSSL_ASN1_BIT_STRING_ASN1: { WOLFSSL_ASN1_BIT_STRING* bit_str = wolfSSL_ASN1_BIT_STRING_new(); if (!bit_str) { goto error; } *(WOLFSSL_ASN1_BIT_STRING**)(((byte*)ret) + member->offset) = bit_str; break; } default: WOLFSSL_MSG("Type not supported in wolfSSL_ASN1_item_new"); goto error; } } return ret; error: wolfSSL_ASN1_item_free(ret, tpl); return NULL; } void wolfSSL_ASN1_item_free(void *val, const WOLFSSL_ASN1_ITEM *tpl) { const WOLFSSL_ASN1_TEMPLATE *member = NULL; size_t i; WOLFSSL_ENTER("wolfSSL_ASN1_item_free"); if (val) { for (member = tpl->members, i = 0; i < tpl->mcount; member++, i++) { switch (member->type) { case WOLFSSL_X509_ALGOR_ASN1: { WOLFSSL_X509_ALGOR* algor = *(WOLFSSL_X509_ALGOR**) (((byte*)val) + member->offset); if (algor) { wolfSSL_X509_ALGOR_free(algor); } break; } case WOLFSSL_ASN1_BIT_STRING_ASN1: { WOLFSSL_ASN1_BIT_STRING* bit_str = *(WOLFSSL_ASN1_BIT_STRING**) (((byte*)val) + member->offset); if (bit_str) { wolfSSL_ASN1_BIT_STRING_free(bit_str); } break; } default: WOLFSSL_MSG("Type not supported in wolfSSL_ASN1_item_free"); } } XFREE(val, NULL, DYNAMIC_TYPE_OPENSSL); } } #define bufLenOrNull(buf, len) ((buf) ? (buf) + (len) : NULL) static int i2dProcessMembers(const void *src, byte *buf, const WOLFSSL_ASN1_TEMPLATE *members, size_t mcount) { const WOLFSSL_ASN1_TEMPLATE *member = NULL; int len = 0, ret; size_t i; WOLFSSL_ENTER("processMembers"); for (member = members, i = 0; i < mcount; member++, i++) { switch (member->type) { case WOLFSSL_X509_ALGOR_ASN1: { word32 oid = 0; word32 idx = 0; const WOLFSSL_X509_ALGOR* algor = *(const WOLFSSL_X509_ALGOR**) (((byte*)src) + member->offset); if (!algor->algorithm) { WOLFSSL_LEAVE("processMembers", WOLFSSL_FAILURE); return WOLFSSL_FAILURE; } if (GetObjectId(algor->algorithm->obj, &idx, &oid, algor->algorithm->grp, algor->algorithm->objSz) < 0) { WOLFSSL_MSG("Issue getting OID of object"); return -1; } ret = SetAlgoID(oid, bufLenOrNull(buf, len), algor->algorithm->grp, 0); if (!ret) { return WOLFSSL_FAILURE; } len += ret; break; } case WOLFSSL_ASN1_BIT_STRING_ASN1: { const WOLFSSL_ASN1_BIT_STRING* bit_str; bit_str = *(const WOLFSSL_ASN1_BIT_STRING**) (((byte*)src) + member->offset); len += SetBitString(bit_str->length, 0, bufLenOrNull(buf, len)); if (buf && bit_str->data) { XMEMCPY(buf + len, bit_str->data, bit_str->length); } len += bit_str->length; break; } default: WOLFSSL_MSG("Type not support in processMembers"); WOLFSSL_LEAVE("processMembers", WOLFSSL_FAILURE); return WOLFSSL_FAILURE; } } WOLFSSL_LEAVE("processMembers", len); return len; } static int wolfSSL_ASN1_item_i2d_1(const void *src, byte *buf, const WOLFSSL_ASN1_ITEM *tpl, int *len) { *len = 0; switch (tpl->type) { case ASN_SEQUENCE: { int seq_len = i2dProcessMembers(src, NULL, tpl->members, tpl->mcount); if (seq_len == WOLFSSL_FAILURE) return WOLFSSL_FAILURE; *len += SetSequence(seq_len, bufLenOrNull(buf, *len)); if (buf) { if (i2dProcessMembers(src, bufLenOrNull(buf, *len), tpl->members, tpl->mcount) != seq_len) { WOLFSSL_MSG("Inconsistent sequence length"); return WOLFSSL_FAILURE; } } *len += seq_len; break; } default: WOLFSSL_MSG("Type not supported in wolfSSL_ASN1_item_i2d"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } int wolfSSL_ASN1_item_i2d(const void *src, byte **dest, const WOLFSSL_ASN1_ITEM *tpl) { int len; byte *buf = NULL; WOLFSSL_ENTER("wolfSSL_ASN1_item_i2d"); if ((src == NULL) || (tpl == NULL)) goto error; if (wolfSSL_ASN1_item_i2d_1(src, NULL, tpl, &len) != WOLFSSL_SUCCESS) goto error; if (dest == NULL) { WOLFSSL_LEAVE("wolfSSL_ASN1_item_i2d", WOLFSSL_SUCCESS); return len; } if (*dest == NULL) { buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_ASN1); if (buf == NULL) goto error; } else buf = *dest; if (wolfSSL_ASN1_item_i2d_1(src, buf, tpl, &len) != WOLFSSL_SUCCESS) goto error; if (*dest == NULL) *dest = buf; else { /* XXX *dest length is not checked because the user is responsible * for providing a long enough buffer */ XMEMCPY(*dest, buf, len); } WOLFSSL_LEAVE("wolfSSL_ASN1_item_i2d", len); return len; error: if (buf) { XFREE(buf, NULL, DYNAMIC_TYPE_ASN1); } WOLFSSL_LEAVE("wolfSSL_ASN1_item_i2d", WOLFSSL_FAILURE); return WOLFSSL_FAILURE; } #endif /* OPENSSL_ALL */ #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA WOLFSSL_HMAC_CTX* wolfSSL_HMAC_CTX_new(void) { WOLFSSL_HMAC_CTX* hmac_ctx = (WOLFSSL_HMAC_CTX*)XMALLOC( sizeof(WOLFSSL_HMAC_CTX), NULL, DYNAMIC_TYPE_OPENSSL); if (hmac_ctx != NULL) { XMEMSET(hmac_ctx, 0, sizeof(WOLFSSL_HMAC_CTX)); } return hmac_ctx; } int wolfSSL_HMAC_CTX_Init(WOLFSSL_HMAC_CTX* ctx) { WOLFSSL_MSG("wolfSSL_HMAC_CTX_Init"); if (ctx != NULL) { /* wc_HmacSetKey sets up ctx->hmac */ XMEMSET(ctx, 0, sizeof(WOLFSSL_HMAC_CTX)); } return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_Init_ex(WOLFSSL_HMAC_CTX* ctx, const void* key, int keylen, const EVP_MD* type, WOLFSSL_ENGINE* e) { WOLFSSL_ENTER("wolfSSL_HMAC_Init_ex"); /* WOLFSSL_ENGINE not used, call wolfSSL_HMAC_Init */ (void)e; return wolfSSL_HMAC_Init(ctx, key, keylen, type); } /* helper function for Deep copy of internal wolfSSL hmac structure * returns WOLFSSL_SUCCESS on success */ int wolfSSL_HmacCopy(Hmac* des, Hmac* src) { void* heap; int ret; #ifndef HAVE_FIPS heap = src->heap; #else heap = NULL; #endif if (wc_HmacInit(des, heap, 0) != 0) { return WOLFSSL_FAILURE; } /* requires that hash structures have no dynamic parts to them */ switch (src->macType) { #ifndef NO_MD5 case WC_MD5: ret = wc_Md5Copy(&src->hash.md5, &des->hash.md5); break; #endif /* !NO_MD5 */ #ifndef NO_SHA case WC_SHA: ret = wc_ShaCopy(&src->hash.sha, &des->hash.sha); break; #endif /* !NO_SHA */ #ifdef WOLFSSL_SHA224 case WC_SHA224: ret = wc_Sha224Copy(&src->hash.sha224, &des->hash.sha224); break; #endif /* WOLFSSL_SHA224 */ #ifndef NO_SHA256 case WC_SHA256: ret = wc_Sha256Copy(&src->hash.sha256, &des->hash.sha256); break; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case WC_SHA384: ret = wc_Sha384Copy(&src->hash.sha384, &des->hash.sha384); break; #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 case WC_SHA512: ret = wc_Sha512Copy(&src->hash.sha512, &des->hash.sha512); break; #endif /* WOLFSSL_SHA512 */ #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 case WC_SHA3_224: ret = wc_Sha3_224_Copy(&src->hash.sha3, &des->hash.sha3); break; #endif /* WOLFSSL_NO_SHA3_224 */ #ifndef WOLFSSL_NOSHA3_256 case WC_SHA3_256: ret = wc_Sha3_256_Copy(&src->hash.sha3, &des->hash.sha3); break; #endif /* WOLFSSL_NO_SHA3_256 */ #ifndef WOLFSSL_NOSHA3_384 case WC_SHA3_384: ret = wc_Sha3_384_Copy(&src->hash.sha3, &des->hash.sha3); break; #endif /* WOLFSSL_NO_SHA3_384 */ #ifndef WOLFSSL_NOSHA3_512 case WC_SHA3_512: ret = wc_Sha3_512_Copy(&src->hash.sha3, &des->hash.sha3); break; #endif /* WOLFSSL_NO_SHA3_512 */ #endif /* WOLFSSL_SHA3 */ default: return WOLFSSL_FAILURE; } if (ret != 0) return WOLFSSL_FAILURE; XMEMCPY((byte*)des->ipad, (byte*)src->ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte*)des->opad, (byte*)src->opad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte*)des->innerHash, (byte*)src->innerHash, WC_MAX_DIGEST_SIZE); #ifndef HAVE_FIPS des->heap = heap; #endif des->macType = src->macType; des->innerHashKeyed = src->innerHashKeyed; #ifdef WOLFSSL_ASYNC_CRYPT XMEMCPY(&des->asyncDev, &src->asyncDev, sizeof(WC_ASYNC_DEV)); des->keyLen = src->keyLen; #ifdef HAVE_CAVIUM des->data = (byte*)XMALLOC(src->dataLen, des->heap, DYNAMIC_TYPE_HMAC); if (des->data == NULL) { return BUFFER_E; } XMEMCPY(des->data, src->data, src->dataLen); des->dataLen = src->dataLen; #endif /* HAVE_CAVIUM */ #endif /* WOLFSSL_ASYNC_CRYPT */ return WOLFSSL_SUCCESS; } /* Deep copy of information from src to des structure * * des destination to copy information to * src structure to get information from * * Returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error */ int wolfSSL_HMAC_CTX_copy(WOLFSSL_HMAC_CTX* des, WOLFSSL_HMAC_CTX* src) { WOLFSSL_ENTER("wolfSSL_HMAC_CTX_copy"); if (des == NULL || src == NULL) { return WOLFSSL_FAILURE; } des->type = src->type; XMEMCPY((byte *)&des->save_ipad, (byte *)&src->hmac.ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte *)&des->save_opad, (byte *)&src->hmac.opad, WC_HMAC_BLOCK_SIZE); return wolfSSL_HmacCopy(&des->hmac, &src->hmac); } #if defined(HAVE_FIPS) && \ (!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2)) static int _HMAC_Init(Hmac* hmac, int type, void* heap) { int ret = 0; switch (type) { #ifndef NO_MD5 case WC_MD5: ret = wc_InitMd5(&hmac->hash.md5); break; #endif /* !NO_MD5 */ #ifndef NO_SHA case WC_SHA: ret = wc_InitSha(&hmac->hash.sha); break; #endif /* !NO_SHA */ #ifdef WOLFSSL_SHA224 case WC_SHA224: ret = wc_InitSha224(&hmac->hash.sha224); break; #endif /* WOLFSSL_SHA224 */ #ifndef NO_SHA256 case WC_SHA256: ret = wc_InitSha256(&hmac->hash.sha256); break; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case WC_SHA384: ret = wc_InitSha384(&hmac->hash.sha384); break; #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 case WC_SHA512: ret = wc_InitSha512(&hmac->hash.sha512); break; #endif /* WOLFSSL_SHA512 */ #ifdef WOLFSSL_SHA3 case WC_SHA3_224: ret = wc_InitSha3_224(&hmac->hash.sha3, heap, INVALID_DEVID); break; case WC_SHA3_256: ret = wc_InitSha3_256(&hmac->hash.sha3, heap, INVALID_DEVID); break; case WC_SHA3_384: ret = wc_InitSha3_384(&hmac->hash.sha3, heap, INVALID_DEVID); break; case WC_SHA3_512: ret = wc_InitSha3_512(&hmac->hash.sha3, heap, INVALID_DEVID); break; #endif default: ret = BAD_FUNC_ARG; break; } (void)heap; return ret; } #else #define _HMAC_Init _InitHmac #endif int wolfSSL_HMAC_Init(WOLFSSL_HMAC_CTX* ctx, const void* key, int keylen, const EVP_MD* type) { int hmac_error = 0; void* heap = NULL; int inited; WOLFSSL_MSG("wolfSSL_HMAC_Init"); if (ctx == NULL) { WOLFSSL_MSG("no ctx on init"); return WOLFSSL_FAILURE; } #ifndef HAVE_FIPS heap = ctx->hmac.heap; #endif if (type) { WOLFSSL_MSG("init has type"); #ifndef NO_MD5 if (XSTRNCMP(type, "MD5", 3) == 0) { WOLFSSL_MSG("md5 hmac"); ctx->type = WC_MD5; } else #endif #ifdef WOLFSSL_SHA224 if (XSTRNCMP(type, "SHA224", 6) == 0) { WOLFSSL_MSG("sha224 hmac"); ctx->type = WC_SHA224; } else #endif #ifndef NO_SHA256 if (XSTRNCMP(type, "SHA256", 6) == 0) { WOLFSSL_MSG("sha256 hmac"); ctx->type = WC_SHA256; } else #endif #ifdef WOLFSSL_SHA384 if (XSTRNCMP(type, "SHA384", 6) == 0) { WOLFSSL_MSG("sha384 hmac"); ctx->type = WC_SHA384; } else #endif #ifdef WOLFSSL_SHA512 if (XSTRNCMP(type, "SHA512", 6) == 0) { WOLFSSL_MSG("sha512 hmac"); ctx->type = WC_SHA512; } else #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 if (XSTRNCMP(type, "SHA3_224", 8) == 0) { WOLFSSL_MSG("sha3_224 hmac"); ctx->type = WC_SHA3_224; } else #endif #ifndef WOLFSSL_NOSHA3_256 if (XSTRNCMP(type, "SHA3_256", 8) == 0) { WOLFSSL_MSG("sha3_256 hmac"); ctx->type = WC_SHA3_256; } else #endif if (XSTRNCMP(type, "SHA3_384", 8) == 0) { WOLFSSL_MSG("sha3_384 hmac"); ctx->type = WC_SHA3_384; } else #ifndef WOLFSSL_NOSHA3_512 if (XSTRNCMP(type, "SHA3_512", 8) == 0) { WOLFSSL_MSG("sha3_512 hmac"); ctx->type = WC_SHA3_512; } else #endif #endif #ifndef NO_SHA /* has to be last since would pick or 256, 384, or 512 too */ if (XSTRNCMP(type, "SHA", 3) == 0) { WOLFSSL_MSG("sha hmac"); ctx->type = WC_SHA; } else #endif { WOLFSSL_MSG("bad init type"); return WOLFSSL_FAILURE; } } /* Check if init has been called before */ inited = (ctx->hmac.macType != WC_HASH_TYPE_NONE); /* Free if needed */ if (inited) { wc_HmacFree(&ctx->hmac); } if (key != NULL) { WOLFSSL_MSG("keying hmac"); if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) { hmac_error = wc_HmacSetKey(&ctx->hmac, ctx->type, (const byte*)key, (word32)keylen); if (hmac_error < 0){ /* in FIPS mode a key < 14 characters will fail here */ WOLFSSL_MSG("hmac set key error"); WOLFSSL_ERROR(hmac_error); wc_HmacFree(&ctx->hmac); return WOLFSSL_FAILURE; } XMEMCPY((byte *)&ctx->save_ipad, (byte *)&ctx->hmac.ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte *)&ctx->save_opad, (byte *)&ctx->hmac.opad, WC_HMAC_BLOCK_SIZE); } /* OpenSSL compat, no error */ } else if (!inited) { return WOLFSSL_FAILURE; } else if (ctx->type >= 0) { /* MD5 == 0 */ WOLFSSL_MSG("recover hmac"); if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) { ctx->hmac.macType = (byte)ctx->type; ctx->hmac.innerHashKeyed = 0; XMEMCPY((byte *)&ctx->hmac.ipad, (byte *)&ctx->save_ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte *)&ctx->hmac.opad, (byte *)&ctx->save_opad, WC_HMAC_BLOCK_SIZE); if ((hmac_error = _HMAC_Init(&ctx->hmac, ctx->hmac.macType, heap)) !=0) { WOLFSSL_MSG("hmac init error"); WOLFSSL_ERROR(hmac_error); return WOLFSSL_FAILURE; } } } (void)hmac_error; return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_Update(WOLFSSL_HMAC_CTX* ctx, const unsigned char* data, int len) { int hmac_error = 0; WOLFSSL_MSG("wolfSSL_HMAC_Update"); if (ctx == NULL) { WOLFSSL_MSG("no ctx"); return WOLFSSL_FAILURE; } if (data) { WOLFSSL_MSG("updating hmac"); hmac_error = wc_HmacUpdate(&ctx->hmac, data, (word32)len); if (hmac_error < 0){ WOLFSSL_MSG("hmac update error"); return WOLFSSL_FAILURE; } } return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_Final(WOLFSSL_HMAC_CTX* ctx, unsigned char* hash, unsigned int* len) { int hmac_error; WOLFSSL_MSG("wolfSSL_HMAC_Final"); /* "len" parameter is optional. */ if (ctx == NULL || hash == NULL) { WOLFSSL_MSG("invalid parameter"); return WOLFSSL_FAILURE; } WOLFSSL_MSG("final hmac"); hmac_error = wc_HmacFinal(&ctx->hmac, hash); if (hmac_error < 0){ WOLFSSL_MSG("final hmac error"); return WOLFSSL_FAILURE; } if (len) { WOLFSSL_MSG("setting output len"); switch (ctx->type) { #ifndef NO_MD5 case WC_MD5: *len = WC_MD5_DIGEST_SIZE; break; #endif #ifndef NO_SHA case WC_SHA: *len = WC_SHA_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA224 case WC_SHA224: *len = WC_SHA224_DIGEST_SIZE; break; #endif #ifndef NO_SHA256 case WC_SHA256: *len = WC_SHA256_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA384 case WC_SHA384: *len = WC_SHA384_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA512 case WC_SHA512: *len = WC_SHA512_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 case WC_SHA3_224: *len = WC_SHA3_224_DIGEST_SIZE; break; #endif #ifndef WOLFSSL_NOSHA3_256 case WC_SHA3_256: *len = WC_SHA3_256_DIGEST_SIZE; break; #endif #ifndef WOLFSSL_NOSHA3_384 case WC_SHA3_384: *len = WC_SHA3_384_DIGEST_SIZE; break; #endif #ifndef WOLFSSL_NOSHA3_512 case WC_SHA3_512: *len = WC_SHA3_512_DIGEST_SIZE; break; #endif #endif default: WOLFSSL_MSG("bad hmac type"); return WOLFSSL_FAILURE; } } return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_cleanup(WOLFSSL_HMAC_CTX* ctx) { WOLFSSL_MSG("wolfSSL_HMAC_cleanup"); if (ctx) { wc_HmacFree(&ctx->hmac); } return WOLFSSL_SUCCESS; } void wolfSSL_HMAC_CTX_cleanup(WOLFSSL_HMAC_CTX* ctx) { if (ctx) { wolfSSL_HMAC_cleanup(ctx); } } void wolfSSL_HMAC_CTX_free(WOLFSSL_HMAC_CTX* ctx) { if (ctx) { wolfSSL_HMAC_CTX_cleanup(ctx); XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL); } } size_t wolfSSL_HMAC_size(const WOLFSSL_HMAC_CTX *ctx) { if (!ctx) { return 0; } return (size_t)wc_HashGetDigestSize((enum wc_HashType)ctx->hmac.macType); } const WOLFSSL_EVP_MD *wolfSSL_HMAC_CTX_get_md(const WOLFSSL_HMAC_CTX *ctx) { if (!ctx) { return NULL; } return wolfSSL_macType2EVP_md((enum wc_HashType)ctx->type); } #if defined(WOLFSSL_CMAC) && defined(OPENSSL_EXTRA) && \ defined(WOLFSSL_AES_DIRECT) WOLFSSL_CMAC_CTX* wolfSSL_CMAC_CTX_new(void) { WOLFSSL_CMAC_CTX* ctx = NULL; ctx = (WOLFSSL_CMAC_CTX*)XMALLOC(sizeof(WOLFSSL_CMAC_CTX), NULL, DYNAMIC_TYPE_OPENSSL); if (ctx != NULL) { ctx->internal = (Cmac*)XMALLOC(sizeof(Cmac), NULL, DYNAMIC_TYPE_CMAC); if (ctx->internal == NULL) { XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL); ctx = NULL; } } if (ctx != NULL) { ctx->cctx = wolfSSL_EVP_CIPHER_CTX_new(); if (ctx->cctx == NULL) { XFREE(ctx->internal, NULL, DYNAMIC_TYPE_CMAC); XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL); ctx = NULL; } } return ctx; } void wolfSSL_CMAC_CTX_free(WOLFSSL_CMAC_CTX *ctx) { if (ctx != NULL) { if (ctx->internal != NULL) { XFREE(ctx->internal, NULL, DYNAMIC_TYPE_CMAC); } if (ctx->cctx != NULL) { wolfSSL_EVP_CIPHER_CTX_free(ctx->cctx); } XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL); } } WOLFSSL_EVP_CIPHER_CTX* wolfSSL_CMAC_CTX_get0_cipher_ctx(WOLFSSL_CMAC_CTX* ctx) { WOLFSSL_EVP_CIPHER_CTX* cctx = NULL; if (ctx != NULL) { cctx = ctx->cctx; } return cctx; } int wolfSSL_CMAC_Init(WOLFSSL_CMAC_CTX* ctx, const void *key, size_t keyLen, const WOLFSSL_EVP_CIPHER* cipher, WOLFSSL_ENGINE* engine) { int ret = WOLFSSL_SUCCESS; (void)engine; WOLFSSL_ENTER("wolfSSL_CMAC_Init"); if (ctx == NULL || cipher == NULL || ( cipher != EVP_AES_128_CBC && cipher != EVP_AES_192_CBC && cipher != EVP_AES_256_CBC)) { ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { ret = wc_InitCmac((Cmac*)ctx->internal, (const byte*)key, (word32)keyLen, WC_CMAC_AES, NULL); if (ret != 0) { ret = WOLFSSL_FAILURE; } else { ret = WOLFSSL_SUCCESS; } } if (ret == WOLFSSL_SUCCESS) { ret = wolfSSL_EVP_CipherInit(ctx->cctx, cipher, (const byte*)key, NULL, 1); } WOLFSSL_LEAVE("wolfSSL_CMAC_Init", ret); return ret; } int wolfSSL_CMAC_Update(WOLFSSL_CMAC_CTX* ctx, const void* data, size_t len) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_CMAC_Update"); if (ctx == NULL || ctx->internal == NULL) { ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { if (data) { ret = wc_CmacUpdate((Cmac*)ctx->internal, (const byte*)data, (word32)len); if (ret != 0){ ret = WOLFSSL_FAILURE; } else { ret = WOLFSSL_SUCCESS; } } } WOLFSSL_LEAVE("wolfSSL_CMAC_Update", ret); return ret; } int wolfSSL_CMAC_Final(WOLFSSL_CMAC_CTX* ctx, unsigned char* out, size_t* len) { int ret = WOLFSSL_SUCCESS; int blockSize; WOLFSSL_ENTER("wolfSSL_CMAC_Final"); if (ctx == NULL || ctx->cctx == NULL || ctx->internal == NULL || len == NULL) { ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { blockSize = EVP_CIPHER_CTX_block_size(ctx->cctx); if (blockSize <= 0) { ret = WOLFSSL_FAILURE; } else { *len = blockSize; } } if (ret == WOLFSSL_SUCCESS) { word32 len32 = (word32)*len; ret = wc_CmacFinal((Cmac*)ctx->internal, out, &len32); *len = (size_t)len32; if (ret != 0) { ret = WOLFSSL_FAILURE; } else { ret = WOLFSSL_SUCCESS; } } WOLFSSL_LEAVE("wolfSSL_CMAC_Final", ret); return ret; } #endif /* WOLFSSL_CMAC && OPENSSL_EXTRA && WOLFSSL_AES_DIRECT */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Free the dynamically allocated data. * * p Pointer to dynamically allocated memory. */ void wolfSSL_OPENSSL_free(void* p) { WOLFSSL_MSG("wolfSSL_OPENSSL_free"); XFREE(p, NULL, DYNAMIC_TYPE_OPENSSL); } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA void *wolfSSL_OPENSSL_malloc(size_t a) { return (void *)XMALLOC(a, NULL, DYNAMIC_TYPE_OPENSSL); } int wolfSSL_OPENSSL_hexchar2int(unsigned char c) { /* 'char' is unsigned on some platforms. */ return (int)(signed char)HexCharToByte((char)c); } unsigned char *wolfSSL_OPENSSL_hexstr2buf(const char *str, long *len) { unsigned char* targetBuf; int srcDigitHigh = 0; int srcDigitLow = 0; size_t srcLen; size_t srcIdx = 0; long targetIdx = 0; srcLen = XSTRLEN(str); targetBuf = (unsigned char*)XMALLOC(srcLen / 2, NULL, DYNAMIC_TYPE_OPENSSL); if (targetBuf == NULL) { return NULL; } while (srcIdx < srcLen) { if (str[srcIdx] == ':') { srcIdx++; continue; } srcDigitHigh = wolfSSL_OPENSSL_hexchar2int(str[srcIdx++]); srcDigitLow = wolfSSL_OPENSSL_hexchar2int(str[srcIdx++]); if (srcDigitHigh < 0 || srcDigitLow < 0) { WOLFSSL_MSG("Invalid hex character."); XFREE(targetBuf, NULL, DYNAMIC_TYPE_OPENSSL); return NULL; } targetBuf[targetIdx++] = (unsigned char)((srcDigitHigh << 4) | srcDigitLow); } if (len != NULL) *len = targetIdx; return targetBuf; } int wolfSSL_OPENSSL_init_ssl(word64 opts, const OPENSSL_INIT_SETTINGS *settings) { (void)opts; (void)settings; return wolfSSL_library_init(); } int wolfSSL_OPENSSL_init_crypto(word64 opts, const OPENSSL_INIT_SETTINGS* settings) { (void)opts; (void)settings; return wolfSSL_library_init(); } #if defined(WOLFSSL_KEY_GEN) && defined(WOLFSSL_PEM_TO_DER) int EncryptDerKey(byte *der, int *derSz, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, byte **cipherInfo, int maxDerSz) { int ret, paddingSz; word32 idx, cipherInfoSz; #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif WOLFSSL_ENTER("EncryptDerKey"); if (der == NULL || derSz == NULL || cipher == NULL || passwd == NULL || cipherInfo == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_SMALL_STACK info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); if (info == NULL) { WOLFSSL_MSG("malloc failed"); return WOLFSSL_FAILURE; } #endif XMEMSET(info, 0, sizeof(EncryptedInfo)); /* set the cipher name on info */ XSTRNCPY(info->name, cipher, NAME_SZ-1); info->name[NAME_SZ-1] = '\0'; /* null term */ ret = wc_EncryptedInfoGet(info, info->name); if (ret != 0) { WOLFSSL_MSG("unsupported cipher"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } /* Generate a random salt */ if (wolfSSL_RAND_bytes(info->iv, info->ivSz) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("generate iv failed"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } /* add the padding before encryption */ paddingSz = ((*derSz)/info->ivSz + 1) * info->ivSz - (*derSz); if (paddingSz == 0) paddingSz = info->ivSz; if (maxDerSz < *derSz + paddingSz) { WOLFSSL_MSG("not enough DER buffer allocated"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } XMEMSET(der+(*derSz), (byte)paddingSz, paddingSz); (*derSz) += paddingSz; /* encrypt buffer */ if (wc_BufferKeyEncrypt(info, der, *derSz, passwd, passwdSz, WC_MD5) != 0) { WOLFSSL_MSG("encrypt key failed"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } /* create cipher info : 'cipher_name,Salt(hex)' */ cipherInfoSz = (word32)(2*info->ivSz + XSTRLEN(info->name) + 2); *cipherInfo = (byte*)XMALLOC(cipherInfoSz, NULL, DYNAMIC_TYPE_STRING); if (*cipherInfo == NULL) { WOLFSSL_MSG("malloc failed"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } XSTRLCPY((char*)*cipherInfo, info->name, cipherInfoSz); XSTRLCAT((char*)*cipherInfo, ",", cipherInfoSz); idx = (word32)XSTRLEN((char*)*cipherInfo); cipherInfoSz -= idx; ret = Base16_Encode(info->iv, info->ivSz, *cipherInfo+idx, &cipherInfoSz); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif if (ret != 0) { WOLFSSL_MSG("Base16_Encode failed"); XFREE(*cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_KEY_GEN || WOLFSSL_PEM_TO_DER */ #ifndef NO_BIO static int pem_write_bio_pubkey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key) { int ret; int pemSz; byte* pemBuf; int derSz = 0; byte* derBuf = NULL; if (bio == NULL || key == NULL) { WOLFSSL_MSG("Bad parameters"); return WOLFSSL_FAILURE; } switch (key->type) { #if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA) case EVP_PKEY_RSA: if ((derSz = wolfSSL_RSA_To_Der(key->rsa, &derBuf, 1, bio->heap)) < 0) { WOLFSSL_MSG("wolfSSL_RSA_To_Der failed"); break; } break; #endif /* WOLFSSL_KEY_GEN && !NO_RSA && !HAVE_USER_RSA */ #if !defined(NO_DSA) && !defined(HAVE_SELFTEST) && (defined(WOLFSSL_KEY_GEN) || \ defined(WOLFSSL_CERT_GEN)) case EVP_PKEY_DSA: if (key->dsa == NULL) { WOLFSSL_MSG("key->dsa is null"); break; } derSz = MAX_DSA_PUBKEY_SZ; derBuf = (byte*)XMALLOC(derSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); break; } /* Key to DER */ derSz = wc_DsaKeyToPublicDer((DsaKey*)key->dsa->internal, derBuf, derSz); if (derSz < 0) { WOLFSSL_MSG("wc_DsaKeyToDer failed"); break; } break; #endif /* !NO_DSA && !HAVE_SELFTEST && (WOLFSSL_KEY_GEN || WOLFSSL_CERT_GEN) */ #if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_EXPORT) case EVP_PKEY_EC: { if (key->ecc == NULL) { WOLFSSL_MSG("key->ecc is null"); break; } derSz = wc_EccPublicKeyDerSize((ecc_key*)key->ecc->internal, 1); if (derSz <= 0) { WOLFSSL_MSG("wc_EccPublicKeyDerSize failed"); break; } derBuf = (byte*)XMALLOC(derSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); break; } derSz = wc_EccPublicKeyToDer((ecc_key*)key->ecc->internal, derBuf, derSz, 1); if (derSz < 0) { WOLFSSL_MSG("wc_EccPublicKeyToDer failed"); break; } break; } #endif /* HAVE_ECC && HAVE_ECC_KEY_EXPORT */ #if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL)) case EVP_PKEY_DH: WOLFSSL_MSG("Writing DH PUBKEY not supported!"); break; #endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */ default: WOLFSSL_MSG("Unknown Key type!"); break; } if (derBuf == NULL || derSz <= 0) { if (derBuf != NULL) XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER); return WOLFSSL_FAILURE; } pemSz = wc_DerToPem(derBuf, derSz, NULL, 0, PUBLICKEY_TYPE); if (pemSz < 0) { WOLFSSL_LEAVE("pem_write_bio_pubkey", pemSz); XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER); return WOLFSSL_FAILURE; } pemBuf = (byte*)XMALLOC(pemSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (pemBuf == NULL) { WOLFSSL_LEAVE("pem_write_bio_pubkey", pemSz); XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER); return WOLFSSL_FAILURE; } ret = wc_DerToPem(derBuf, derSz, pemBuf, pemSz, PUBLICKEY_TYPE); XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER); if (ret < 0) { WOLFSSL_LEAVE("pem_write_bio_pubkey", ret); XFREE(pemBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } ret = wolfSSL_BIO_write(bio, pemBuf, pemSz); XFREE(pemBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (ret != pemSz) { WOLFSSL_MSG("Unable to write full PEM to BIO"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* Takes a public key and writes it out to a WOLFSSL_BIO * Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE */ int wolfSSL_PEM_write_bio_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key) { WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PUBKEY"); return pem_write_bio_pubkey(bio, key); } /* Takes a private key and writes it out to a WOLFSSL_BIO * Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE */ int wolfSSL_PEM_write_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key, const WOLFSSL_EVP_CIPHER* cipher, unsigned char* passwd, int len, wc_pem_password_cb* cb, void* arg) { byte* keyDer; int pemSz; int type; int ret; byte* tmp; (void)cipher; (void)passwd; (void)len; (void)cb; (void)arg; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PrivateKey"); if (bio == NULL || key == NULL) { WOLFSSL_MSG("Bad Function Arguments"); return WOLFSSL_FAILURE; } keyDer = (byte*)key->pkey.ptr; switch (key->type) { #ifndef NO_RSA case EVP_PKEY_RSA: type = PRIVATEKEY_TYPE; break; #endif #ifndef NO_DSA case EVP_PKEY_DSA: type = DSA_PRIVATEKEY_TYPE; break; #endif #ifdef HAVE_ECC case EVP_PKEY_EC: type = ECC_PRIVATEKEY_TYPE; break; #endif #if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL)) case EVP_PKEY_DH: type = DH_PRIVATEKEY_TYPE; break; #endif default: WOLFSSL_MSG("Unknown Key type!"); type = PRIVATEKEY_TYPE; } pemSz = wc_DerToPem(keyDer, key->pkey_sz, NULL, 0, type); if (pemSz < 0) { WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", pemSz); return WOLFSSL_FAILURE; } tmp = (byte*)XMALLOC(pemSz, bio->heap, DYNAMIC_TYPE_OPENSSL); if (tmp == NULL) { return MEMORY_E; } ret = wc_DerToPem(keyDer, key->pkey_sz, tmp, pemSz, type); if (ret < 0) { WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", ret); XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL); return WOLFSSL_FAILURE; } ret = wolfSSL_BIO_write(bio, tmp, pemSz); XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL); if (ret != pemSz) { WOLFSSL_MSG("Unable to write full PEM to BIO"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* !NO_BIO */ /* Colon separated list of + algorithms. * Replaces list in context. */ int wolfSSL_CTX_set1_sigalgs_list(WOLFSSL_CTX* ctx, const char* list) { WOLFSSL_MSG("wolfSSL_CTX_set1_sigalg_list"); if (ctx == NULL || list == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } /* alloc/init on demand only */ if (ctx->suites == NULL) { ctx->suites = (Suites*)XMALLOC(sizeof(Suites), ctx->heap, DYNAMIC_TYPE_SUITES); if (ctx->suites == NULL) { WOLFSSL_MSG("Memory alloc for Suites failed"); return WOLFSSL_FAILURE; } XMEMSET(ctx->suites, 0, sizeof(Suites)); } return SetSuitesHashSigAlgo(ctx->suites, list); } /* Colon separated list of + algorithms. * Replaces list in SSL. */ int wolfSSL_set1_sigalgs_list(WOLFSSL* ssl, const char* list) { WOLFSSL_MSG("wolfSSL_set1_sigalg_list"); if (ssl == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } #ifdef SINGLE_THREADED if (ssl->ctx->suites == ssl->suites) { ssl->suites = (Suites*)XMALLOC(sizeof(Suites), ssl->heap, DYNAMIC_TYPE_SUITES); if (ssl->suites == NULL) { WOLFSSL_MSG("Suites Memory error"); return MEMORY_E; } *ssl->suites = *ssl->ctx->suites; ssl->options.ownSuites = 1; } #endif if (ssl == NULL || list == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } return SetSuitesHashSigAlgo(ssl->suites, list); } struct WOLFSSL_HashSigInfo { int hashAlgo; int sigAlgo; int nid; } wolfssl_hash_sig_info[] = { #ifndef NO_RSA #ifndef NO_SHA256 { sha256_mac, rsa_sa_algo, CTC_SHA256wRSA }, #endif #ifdef WOLFSSL_SHA384 { sha384_mac, rsa_sa_algo, CTC_SHA384wRSA }, #endif #ifdef WOLFSSL_SHA512 { sha512_mac, rsa_sa_algo, CTC_SHA512wRSA }, #endif #ifdef WOLFSSL_SHA224 { sha224_mac, rsa_sa_algo, CTC_SHA224wRSA }, #endif #ifndef NO_SHA { sha_mac, rsa_sa_algo, CTC_SHAwRSA }, #endif #ifdef WC_RSA_PSS #ifndef NO_SHA256 { sha256_mac, rsa_pss_sa_algo, CTC_SHA256wRSA }, #endif #ifdef WOLFSSL_SHA384 { sha384_mac, rsa_pss_sa_algo, CTC_SHA384wRSA }, #endif #ifdef WOLFSSL_SHA512 { sha512_mac, rsa_pss_sa_algo, CTC_SHA512wRSA }, #endif #ifdef WOLFSSL_SHA224 { sha224_mac, rsa_pss_sa_algo, CTC_SHA224wRSA }, #endif #endif #endif #ifdef HAVE_ECC #ifndef NO_SHA256 { sha256_mac, ecc_dsa_sa_algo, CTC_SHA256wECDSA }, #endif #ifdef WOLFSSL_SHA384 { sha384_mac, ecc_dsa_sa_algo, CTC_SHA384wECDSA }, #endif #ifdef WOLFSSL_SHA512 { sha512_mac, ecc_dsa_sa_algo, CTC_SHA512wECDSA }, #endif #ifdef WOLFSSL_SHA224 { sha224_mac, ecc_dsa_sa_algo, CTC_SHA224wECDSA }, #endif #ifndef NO_SHA { sha_mac, ecc_dsa_sa_algo, CTC_SHAwECDSA }, #endif #endif #ifdef HAVE_ED25519 { no_mac, ed25519_sa_algo, CTC_ED25519 }, #endif #ifdef HAVE_ED448 { no_mac, ed448_sa_algo, CTC_ED448 }, #endif #ifdef HAVE_PQC { no_mac, falcon_level1_sa_algo, CTC_FALCON_LEVEL1 }, { no_mac, falcon_level5_sa_algo, CTC_FALCON_LEVEL5 }, #endif #ifndef NO_DSA #ifndef NO_SHA { sha_mac, dsa_sa_algo, CTC_SHAwDSA }, #endif #endif }; #define WOLFSSL_HASH_SIG_INFO_SZ \ (int)(sizeof(wolfssl_hash_sig_info)/sizeof(*wolfssl_hash_sig_info)) int wolfSSL_get_signature_nid(WOLFSSL *ssl, int* nid) { int i; int ret = WOLFSSL_FAILURE; WOLFSSL_MSG("wolfSSL_get_signature_nid"); if (ssl == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } for (i = 0; i < WOLFSSL_HASH_SIG_INFO_SZ; i++) { if (ssl->suites->hashAlgo == wolfssl_hash_sig_info[i].hashAlgo && ssl->suites->sigAlgo == wolfssl_hash_sig_info[i].sigAlgo) { *nid = wolfssl_hash_sig_info[i].nid; ret = WOLFSSL_SUCCESS; break; } } return ret; } #ifdef HAVE_ECC #if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES) static int populate_groups(int* groups, int max_count, char *list) { char *end; int len; int count = 0; const WOLF_EC_NIST_NAME* nist_name; if (!groups || !list) { return -1; } for (end = list; ; list = ++end) { if (count > max_count) { WOLFSSL_MSG("Too many curves in list"); return -1; } while (*end != ':' && *end != '\0') end++; len = (int)(end - list); /* end points to char after end * of curve name so no need for -1 */ if ((len < kNistCurves_MIN_NAME_LEN) || (len > kNistCurves_MAX_NAME_LEN)) { WOLFSSL_MSG("Unrecognized curve name in list"); return -1; } for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) { if (len == nist_name->name_len && XSTRNCMP(list, nist_name->name, nist_name->name_len) == 0) { break; } } if (!nist_name->name) { WOLFSSL_MSG("Unrecognized curve name in list"); return -1; } groups[count++] = nist_name->nid; if (*end == '\0') break; } return count; } int wolfSSL_CTX_set1_groups_list(WOLFSSL_CTX *ctx, char *list) { int groups[WOLFSSL_MAX_GROUP_COUNT]; int count; if (!ctx || !list) { return WOLFSSL_FAILURE; } if ((count = populate_groups(groups, WOLFSSL_MAX_GROUP_COUNT, list)) == -1) { return WOLFSSL_FAILURE; } return wolfSSL_CTX_set1_groups(ctx, groups, count); } int wolfSSL_set1_groups_list(WOLFSSL *ssl, char *list) { int groups[WOLFSSL_MAX_GROUP_COUNT]; int count; if (!ssl || !list) { return WOLFSSL_FAILURE; } if ((count = populate_groups(groups, WOLFSSL_MAX_GROUP_COUNT, list)) == -1) { return WOLFSSL_FAILURE; } return wolfSSL_set1_groups(ssl, groups, count); } #endif /* WOLFSSL_TLS13 */ #endif /* HAVE_ECC */ #ifndef NO_BIO /* Number of bytes to read from a file at a time. */ #define PEM_READ_FILE_CHUNK_SZ 100 static int pem_read_bio_file(WOLFSSL_BIO* bio, char** pem) { int ret = 0; int idx = 0; int sz = PEM_READ_FILE_CHUNK_SZ; /* read from file by chunks */ int memSz = 0; char* mem = NULL; char* tmp; /* Allocate a chunk to read into. */ tmp = (char*)XMALLOC(sz, bio->heap, DYNAMIC_TYPE_OPENSSL); if (tmp == NULL) { WOLFSSL_MSG("Memory error"); ret = MEMORY_E; } while (ret == 0 && (sz = wolfSSL_BIO_read(bio, tmp, sz)) > 0) { char* newMem; /* sanity check for signed overflow */ if (memSz + sz < 0) { break; } /* Reallocate to make space for read data. */ newMem = (char*)XREALLOC(mem, memSz + sz, bio->heap, DYNAMIC_TYPE_OPENSSL); if (newMem == NULL) { WOLFSSL_MSG("Memory error"); ret = MEMORY_E; break; } mem = newMem; /* Copy in new data. */ XMEMCPY(mem + idx, tmp, sz); memSz += sz; idx += sz; sz = PEM_READ_FILE_CHUNK_SZ; /* read another chunk from file */ } XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL); tmp = NULL; if (ret == 0) { /* Check data was read. */ if (memSz <= 0) { WOLFSSL_MSG("No data to read from bio"); ret = BUFFER_E; } else { /* Return size of data read. */ ret = memSz; } } /* Dispose of any allocated memory on error. */ if (ret < 0) { XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); mem = NULL; } *pem = mem; return ret; } static int pem_read_bio_pending(WOLFSSL_BIO* bio, int pendingSz, char** pem) { int ret = 0; char* mem; /* Allocate buffer to hold pending data. */ mem = (char*)XMALLOC(pendingSz, bio->heap, DYNAMIC_TYPE_OPENSSL); if (mem == NULL) { WOLFSSL_MSG("Memory error"); ret = MEMORY_E; } else if ((ret = wolfSSL_BIO_read(bio, mem, pendingSz)) <= 0) { /* Pending data not read. */ XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); mem = NULL; ret = MEMORY_E; } *pem = mem; return ret; } static int pem_read_bio_key(WOLFSSL_BIO* bio, wc_pem_password_cb* cb, void* pass, int keyType, int* eccFlag, DerBuffer** der) { #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif /* WOLFSSL_SMALL_STACK */ wc_pem_password_cb* localCb = NULL; char* mem = NULL; int ret; if (cb != NULL) { localCb = cb; } else if (pass != NULL) { localCb = wolfSSL_PEM_def_callback; } if ((ret = wolfSSL_BIO_pending(bio)) > 0) { ret = pem_read_bio_pending(bio, ret, &mem); } else if (bio->type == WOLFSSL_BIO_FILE) { ret = pem_read_bio_file(bio, &mem); } else { WOLFSSL_MSG("No data to read from bio"); ret = NOT_COMPILED_IN; } #ifdef WOLFSSL_SMALL_STACK if (ret >= 0) { info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (info == NULL) { WOLFSSL_MSG("Error getting memory for EncryptedInfo structure"); XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); mem = NULL; ret = MEMORY_E; } } #endif /* WOLFSSL_SMALL_STACK */ if (ret >= 0) { int memSz = ret; XMEMSET(info, 0, sizeof(EncryptedInfo)); info->passwd_cb = localCb; info->passwd_userdata = pass; /* Do not strip PKCS8 header */ ret = PemToDer((const unsigned char*)mem, memSz, keyType, der, NULL, info, eccFlag); if (ret < 0) { WOLFSSL_MSG("Bad PEM To DER"); } /* Write left over data back to BIO if not a file BIO */ else if ((memSz - (int)info->consumed) > 0 && bio->type != WOLFSSL_BIO_FILE) { if (wolfSSL_BIO_write(bio, mem + (int)info->consumed, memSz - (int)info->consumed) <= 0) { WOLFSSL_MSG("Unable to advance bio read pointer"); } } } #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); return ret; } WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** key, wc_pem_password_cb* cb, void* pass) { WOLFSSL_EVP_PKEY* pkey = NULL; DerBuffer* der = NULL; int keyFormat = 0; int type = -1; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_PrivateKey"); if (bio == NULL) return pkey; if (pem_read_bio_key(bio, cb, pass, PRIVATEKEY_TYPE, &keyFormat, &der) >= 0) { const unsigned char* ptr = der->buffer; if (keyFormat) { /* keyFormat is Key_Sum enum */ if (keyFormat == RSAk) type = EVP_PKEY_RSA; else if (keyFormat == ECDSAk) type = EVP_PKEY_EC; else if (keyFormat == DSAk) type = EVP_PKEY_DSA; else if (keyFormat == DHk) type = EVP_PKEY_DH; } else { /* Default to RSA if format is not set */ type = EVP_PKEY_RSA; } /* handle case where reuse is attempted */ if (key != NULL && *key != NULL) pkey = *key; wolfSSL_d2i_PrivateKey(type, &pkey, &ptr, der->length); if (pkey == NULL) { WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY"); } } FreeDer(&der); if (key != NULL && pkey != NULL) *key = pkey; WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_PrivateKey", 0); return pkey; } WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_bio_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY **key, wc_pem_password_cb *cb, void *pass) { WOLFSSL_EVP_PKEY* pkey = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_PUBKEY"); if (bio == NULL) return pkey; if (pem_read_bio_key(bio, cb, pass, PUBLICKEY_TYPE, &keyFormat, &der) >= 0) { const unsigned char* ptr = der->buffer; /* handle case where reuse is attempted */ if (key != NULL && *key != NULL) pkey = *key; wolfSSL_d2i_PUBKEY(&pkey, &ptr, der->length); if (pkey == NULL) { WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY"); } } FreeDer(&der); if (key != NULL && pkey != NULL) *key = pkey; WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_PUBKEY", 0); return pkey; } #endif /* !NO_BIO */ #if !defined(NO_FILESYSTEM) WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PUBKEY(XFILE fp, WOLFSSL_EVP_PKEY **x, wc_pem_password_cb *cb, void *u) { (void)fp; (void)x; (void)cb; (void)u; WOLFSSL_MSG("wolfSSL_PEM_read_PUBKEY not implemented"); return NULL; } #endif /* NO_FILESYSTEM */ #endif /* OPENSSL_EXTRA */ #ifdef WOLFSSL_ALT_CERT_CHAINS int wolfSSL_is_peer_alt_cert_chain(const WOLFSSL* ssl) { int isUsing = 0; if (ssl) isUsing = ssl->options.usingAltCertChain; return isUsing; } #endif /* WOLFSSL_ALT_CERT_CHAINS */ #ifdef SESSION_CERTS #ifdef WOLFSSL_ALT_CERT_CHAINS /* Get peer's alternate certificate chain */ WOLFSSL_X509_CHAIN* wolfSSL_get_peer_alt_chain(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_alt_chain"); if (ssl) return &ssl->session->altChain; return 0; } #endif /* WOLFSSL_ALT_CERT_CHAINS */ /* Get peer's certificate chain */ WOLFSSL_X509_CHAIN* wolfSSL_get_peer_chain(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_chain"); if (ssl) return &ssl->session->chain; return 0; } /* Get peer's certificate chain total count */ int wolfSSL_get_chain_count(WOLFSSL_X509_CHAIN* chain) { WOLFSSL_ENTER("wolfSSL_get_chain_count"); if (chain) return chain->count; return 0; } /* Get peer's ASN.1 DER certificate at index (idx) length in bytes */ int wolfSSL_get_chain_length(WOLFSSL_X509_CHAIN* chain, int idx) { WOLFSSL_ENTER("wolfSSL_get_chain_length"); if (chain) return chain->certs[idx].length; return 0; } /* Get peer's ASN.1 DER certificate at index (idx) */ byte* wolfSSL_get_chain_cert(WOLFSSL_X509_CHAIN* chain, int idx) { WOLFSSL_ENTER("wolfSSL_get_chain_cert"); if (chain) return chain->certs[idx].buffer; return 0; } /* Get peer's wolfSSL X509 certificate at index (idx) */ WOLFSSL_X509* wolfSSL_get_chain_X509(WOLFSSL_X509_CHAIN* chain, int idx) { int ret; WOLFSSL_X509* x509 = NULL; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_get_chain_X509"); if (chain != NULL) { #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert != NULL) #endif { InitDecodedCert(cert, chain->certs[idx].buffer, chain->certs[idx].length, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) != 0) { WOLFSSL_MSG("Failed to parse cert"); } else { x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL, DYNAMIC_TYPE_X509); if (x509 == NULL) { WOLFSSL_MSG("Failed alloc X509"); } else { InitX509(x509, 1, NULL); if ((ret = CopyDecodedToX509(x509, cert)) != 0) { WOLFSSL_MSG("Failed to copy decoded"); wolfSSL_X509_free(x509); x509 = NULL; } } } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif } } (void)ret; return x509; } /* Get peer's PEM certificate at index (idx), output to buffer if inLen big enough else return error (-1). If buffer is NULL only calculate outLen. Output length is in *outLen WOLFSSL_SUCCESS on ok */ int wolfSSL_get_chain_cert_pem(WOLFSSL_X509_CHAIN* chain, int idx, unsigned char* buf, int inLen, int* outLen) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) const char* header = NULL; const char* footer = NULL; int headerLen; int footerLen; int i; int err; word32 szNeeded = 0; WOLFSSL_ENTER("wolfSSL_get_chain_cert_pem"); if (!chain || !outLen || idx < 0 || idx >= wolfSSL_get_chain_count(chain)) return BAD_FUNC_ARG; err = wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer); if (err != 0) return err; headerLen = (int)XSTRLEN(header); footerLen = (int)XSTRLEN(footer); /* Null output buffer return size needed in outLen */ if(!buf) { if(Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length, NULL, &szNeeded) != LENGTH_ONLY_E) return WOLFSSL_FAILURE; *outLen = szNeeded + headerLen + footerLen; return LENGTH_ONLY_E; } /* don't even try if inLen too short */ if (inLen < headerLen + footerLen + chain->certs[idx].length) return BAD_FUNC_ARG; /* header */ if (XMEMCPY(buf, header, headerLen) == NULL) return WOLFSSL_FATAL_ERROR; i = headerLen; /* body */ *outLen = inLen; /* input to Base64_Encode */ if ( (err = Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length, buf + i, (word32*)outLen)) < 0) return err; i += *outLen; /* footer */ if ( (i + footerLen) > inLen) return BAD_FUNC_ARG; if (XMEMCPY(buf + i, footer, footerLen) == NULL) return WOLFSSL_FATAL_ERROR; *outLen += headerLen + footerLen; return WOLFSSL_SUCCESS; #else (void)chain; (void)idx; (void)buf; (void)inLen; (void)outLen; return WOLFSSL_FAILURE; #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ } /* get session ID */ WOLFSSL_ABI const byte* wolfSSL_get_sessionID(const WOLFSSL_SESSION* session) { WOLFSSL_ENTER("wolfSSL_get_sessionID"); session = ClientSessionToSession(session); if (session) return session->sessionID; return NULL; } #endif /* SESSION_CERTS */ #ifdef HAVE_FUZZER void wolfSSL_SetFuzzerCb(WOLFSSL* ssl, CallbackFuzzer cbf, void* fCtx) { if (ssl) { ssl->fuzzerCb = cbf; ssl->fuzzerCtx = fCtx; } } #endif #ifndef NO_CERTS #ifdef HAVE_PK_CALLBACKS #ifdef HAVE_ECC void wolfSSL_CTX_SetEccKeyGenCb(WOLFSSL_CTX* ctx, CallbackEccKeyGen cb) { if (ctx) ctx->EccKeyGenCb = cb; } void wolfSSL_SetEccKeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccKeyGenCtx = ctx; } void* wolfSSL_GetEccKeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccKeyGenCtx; return NULL; } void wolfSSL_CTX_SetEccSignCtx(WOLFSSL_CTX* ctx, void *userCtx) { if (ctx) ctx->EccSignCtx = userCtx; } void* wolfSSL_CTX_GetEccSignCtx(WOLFSSL_CTX* ctx) { if (ctx) return ctx->EccSignCtx; return NULL; } WOLFSSL_ABI void wolfSSL_CTX_SetEccSignCb(WOLFSSL_CTX* ctx, CallbackEccSign cb) { if (ctx) ctx->EccSignCb = cb; } void wolfSSL_SetEccSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccSignCtx = ctx; } void* wolfSSL_GetEccSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccSignCtx; return NULL; } void wolfSSL_CTX_SetEccVerifyCb(WOLFSSL_CTX* ctx, CallbackEccVerify cb) { if (ctx) ctx->EccVerifyCb = cb; } void wolfSSL_SetEccVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccVerifyCtx = ctx; } void* wolfSSL_GetEccVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccVerifyCtx; return NULL; } void wolfSSL_CTX_SetEccSharedSecretCb(WOLFSSL_CTX* ctx, CallbackEccSharedSecret cb) { if (ctx) ctx->EccSharedSecretCb = cb; } void wolfSSL_SetEccSharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccSharedSecretCtx = ctx; } void* wolfSSL_GetEccSharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccSharedSecretCtx; return NULL; } #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 void wolfSSL_CTX_SetEd25519SignCb(WOLFSSL_CTX* ctx, CallbackEd25519Sign cb) { if (ctx) ctx->Ed25519SignCb = cb; } void wolfSSL_SetEd25519SignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed25519SignCtx = ctx; } void* wolfSSL_GetEd25519SignCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed25519SignCtx; return NULL; } void wolfSSL_CTX_SetEd25519VerifyCb(WOLFSSL_CTX* ctx, CallbackEd25519Verify cb) { if (ctx) ctx->Ed25519VerifyCb = cb; } void wolfSSL_SetEd25519VerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed25519VerifyCtx = ctx; } void* wolfSSL_GetEd25519VerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed25519VerifyCtx; return NULL; } #endif /* HAVE_ED25519 */ #ifdef HAVE_CURVE25519 void wolfSSL_CTX_SetX25519KeyGenCb(WOLFSSL_CTX* ctx, CallbackX25519KeyGen cb) { if (ctx) ctx->X25519KeyGenCb = cb; } void wolfSSL_SetX25519KeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X25519KeyGenCtx = ctx; } void* wolfSSL_GetX25519KeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->X25519KeyGenCtx; return NULL; } void wolfSSL_CTX_SetX25519SharedSecretCb(WOLFSSL_CTX* ctx, CallbackX25519SharedSecret cb) { if (ctx) ctx->X25519SharedSecretCb = cb; } void wolfSSL_SetX25519SharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X25519SharedSecretCtx = ctx; } void* wolfSSL_GetX25519SharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->X25519SharedSecretCtx; return NULL; } #endif /* HAVE_CURVE25519 */ #ifdef HAVE_ED448 void wolfSSL_CTX_SetEd448SignCb(WOLFSSL_CTX* ctx, CallbackEd448Sign cb) { if (ctx) ctx->Ed448SignCb = cb; } void wolfSSL_SetEd448SignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed448SignCtx = ctx; } void* wolfSSL_GetEd448SignCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed448SignCtx; return NULL; } void wolfSSL_CTX_SetEd448VerifyCb(WOLFSSL_CTX* ctx, CallbackEd448Verify cb) { if (ctx) ctx->Ed448VerifyCb = cb; } void wolfSSL_SetEd448VerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed448VerifyCtx = ctx; } void* wolfSSL_GetEd448VerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed448VerifyCtx; return NULL; } #endif /* HAVE_ED448 */ #ifdef HAVE_CURVE448 void wolfSSL_CTX_SetX448KeyGenCb(WOLFSSL_CTX* ctx, CallbackX448KeyGen cb) { if (ctx) ctx->X448KeyGenCb = cb; } void wolfSSL_SetX448KeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X448KeyGenCtx = ctx; } void* wolfSSL_GetX448KeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->X448KeyGenCtx; return NULL; } void wolfSSL_CTX_SetX448SharedSecretCb(WOLFSSL_CTX* ctx, CallbackX448SharedSecret cb) { if (ctx) ctx->X448SharedSecretCb = cb; } void wolfSSL_SetX448SharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X448SharedSecretCtx = ctx; } void* wolfSSL_GetX448SharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->X448SharedSecretCtx; return NULL; } #endif /* HAVE_CURVE448 */ #ifndef NO_RSA void wolfSSL_CTX_SetRsaSignCb(WOLFSSL_CTX* ctx, CallbackRsaSign cb) { if (ctx) ctx->RsaSignCb = cb; } void wolfSSL_CTX_SetRsaSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb) { if (ctx) ctx->RsaSignCheckCb = cb; } void wolfSSL_SetRsaSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaSignCtx = ctx; } void* wolfSSL_GetRsaSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaSignCtx; return NULL; } void wolfSSL_CTX_SetRsaVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb) { if (ctx) ctx->RsaVerifyCb = cb; } void wolfSSL_SetRsaVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaVerifyCtx = ctx; } void* wolfSSL_GetRsaVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaVerifyCtx; return NULL; } #ifdef WC_RSA_PSS void wolfSSL_CTX_SetRsaPssSignCb(WOLFSSL_CTX* ctx, CallbackRsaPssSign cb) { if (ctx) ctx->RsaPssSignCb = cb; } void wolfSSL_CTX_SetRsaPssSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb) { if (ctx) ctx->RsaPssSignCheckCb = cb; } void wolfSSL_SetRsaPssSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaPssSignCtx = ctx; } void* wolfSSL_GetRsaPssSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaPssSignCtx; return NULL; } void wolfSSL_CTX_SetRsaPssVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb) { if (ctx) ctx->RsaPssVerifyCb = cb; } void wolfSSL_SetRsaPssVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaPssVerifyCtx = ctx; } void* wolfSSL_GetRsaPssVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaPssVerifyCtx; return NULL; } #endif /* WC_RSA_PSS */ void wolfSSL_CTX_SetRsaEncCb(WOLFSSL_CTX* ctx, CallbackRsaEnc cb) { if (ctx) ctx->RsaEncCb = cb; } void wolfSSL_SetRsaEncCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaEncCtx = ctx; } void* wolfSSL_GetRsaEncCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaEncCtx; return NULL; } void wolfSSL_CTX_SetRsaDecCb(WOLFSSL_CTX* ctx, CallbackRsaDec cb) { if (ctx) ctx->RsaDecCb = cb; } void wolfSSL_SetRsaDecCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaDecCtx = ctx; } void* wolfSSL_GetRsaDecCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaDecCtx; return NULL; } #endif /* NO_RSA */ /* callback for premaster secret generation */ void wolfSSL_CTX_SetGenPreMasterCb(WOLFSSL_CTX* ctx, CallbackGenPreMaster cb) { if (ctx) ctx->GenPreMasterCb = cb; } /* Set premaster secret generation callback context */ void wolfSSL_SetGenPreMasterCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->GenPreMasterCtx = ctx; } /* Get premaster secret generation callback context */ void* wolfSSL_GetGenPreMasterCtx(WOLFSSL* ssl) { if (ssl) return ssl->GenPreMasterCtx; return NULL; } /* callback for master secret generation */ void wolfSSL_CTX_SetGenMasterSecretCb(WOLFSSL_CTX* ctx, CallbackGenMasterSecret cb) { if (ctx) ctx->GenMasterCb = cb; } /* Set master secret generation callback context */ void wolfSSL_SetGenMasterSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->GenMasterCtx = ctx; } /* Get master secret generation callback context */ void* wolfSSL_GetGenMasterSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->GenMasterCtx; return NULL; } /* callback for session key generation */ void wolfSSL_CTX_SetGenSessionKeyCb(WOLFSSL_CTX* ctx, CallbackGenSessionKey cb) { if (ctx) ctx->GenSessionKeyCb = cb; } /* Set session key generation callback context */ void wolfSSL_SetGenSessionKeyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->GenSessionKeyCtx = ctx; } /* Get session key generation callback context */ void* wolfSSL_GetGenSessionKeyCtx(WOLFSSL* ssl) { if (ssl) return ssl->GenSessionKeyCtx; return NULL; } /* callback for setting encryption keys */ void wolfSSL_CTX_SetEncryptKeysCb(WOLFSSL_CTX* ctx, CallbackEncryptKeys cb) { if (ctx) ctx->EncryptKeysCb = cb; } /* Set encryption keys callback context */ void wolfSSL_SetEncryptKeysCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EncryptKeysCtx = ctx; } /* Get encryption keys callback context */ void* wolfSSL_GetEncryptKeysCtx(WOLFSSL* ssl) { if (ssl) return ssl->EncryptKeysCtx; return NULL; } /* callback for Tls finished */ /* the callback can be used to build TLS Finished message if enabled */ void wolfSSL_CTX_SetTlsFinishedCb(WOLFSSL_CTX* ctx, CallbackTlsFinished cb) { if (ctx) ctx->TlsFinishedCb = cb; } /* Set Tls finished callback context */ void wolfSSL_SetTlsFinishedCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->TlsFinishedCtx = ctx; } /* Get Tls finished callback context */ void* wolfSSL_GetTlsFinishedCtx(WOLFSSL* ssl) { if (ssl) return ssl->TlsFinishedCtx; return NULL; } #if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_AEAD_ONLY) /* callback for verify data */ void wolfSSL_CTX_SetVerifyMacCb(WOLFSSL_CTX* ctx, CallbackVerifyMac cb) { if (ctx) ctx->VerifyMacCb = cb; } /* Set set keys callback context */ void wolfSSL_SetVerifyMacCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->VerifyMacCtx = ctx; } /* Get set keys callback context */ void* wolfSSL_GetVerifyMacCtx(WOLFSSL* ssl) { if (ssl) return ssl->VerifyMacCtx; return NULL; } #endif /* !WOLFSSL_NO_TLS12 && !WOLFSSL_AEAD_ONLY */ #endif /* HAVE_PK_CALLBACKS */ #endif /* NO_CERTS */ #if defined(HAVE_PK_CALLBACKS) && !defined(NO_DH) void wolfSSL_CTX_SetDhAgreeCb(WOLFSSL_CTX* ctx, CallbackDhAgree cb) { if (ctx) ctx->DhAgreeCb = cb; } void wolfSSL_SetDhAgreeCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->DhAgreeCtx = ctx; } void* wolfSSL_GetDhAgreeCtx(WOLFSSL* ssl) { if (ssl) return ssl->DhAgreeCtx; return NULL; } #endif /* HAVE_PK_CALLBACKS && !NO_DH */ #if defined(HAVE_PK_CALLBACKS) && defined(HAVE_HKDF) void wolfSSL_CTX_SetHKDFExtractCb(WOLFSSL_CTX* ctx, CallbackHKDFExtract cb) { if (ctx) ctx->HkdfExtractCb = cb; } void wolfSSL_SetHKDFExtractCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->HkdfExtractCtx = ctx; } void* wolfSSL_GetHKDFExtractCtx(WOLFSSL* ssl) { if (ssl) return ssl->HkdfExtractCtx; return NULL; } #endif /* HAVE_PK_CALLBACKS && HAVE_HKDF */ #ifdef WOLFSSL_HAVE_WOLFSCEP /* Used by autoconf to see if wolfSCEP is available */ void wolfSSL_wolfSCEP(void) {} #endif #ifdef WOLFSSL_HAVE_CERT_SERVICE /* Used by autoconf to see if cert service is available */ void wolfSSL_cert_service(void) {} #endif #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ !defined(WOLFCRYPT_ONLY) #ifndef NO_CERTS #if defined(OPENSSL_ALL) || defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Convert ASN1 input string into canonical ASN1 string */ /* , which has the following rules: */ /* convert to UTF8 */ /* convert to lower case */ /* multi-spaces collapsed */ /* @param asn_out a pointer to ASN1_STRING to be converted */ /* @param asn_in a pointer to input ASN1_STRING */ /* @return WOLFSSL_SUCCESS on successful converted, otherwise <=0 error code*/ int wolfSSL_ASN1_STRING_canon(WOLFSSL_ASN1_STRING* asn_out, const WOLFSSL_ASN1_STRING* asn_in) { char* dst; char* src; int i, len; WOLFSSL_ENTER("wolfSSL_ASN1_STRING_canon"); /* sanity check */ if (asn_out == NULL || asn_in == NULL) { WOLFSSL_MSG("invalid function arguments"); return BAD_FUNC_ARG; } switch (asn_in->type) { case MBSTRING_UTF8: case V_ASN1_PRINTABLESTRING: break; default: WOLFSSL_MSG("just copy string"); return wolfSSL_ASN1_STRING_copy(asn_out, asn_in); } /* type is set as UTF8 */ asn_out->type = MBSTRING_UTF8; asn_out->length = wolfSSL_ASN1_STRING_to_UTF8( (unsigned char**)&asn_out->data, (WOLFSSL_ASN1_STRING*)asn_in); if (asn_out->length < 0) { return WOLFSSL_FAILURE; } /* point to the last */ dst = asn_out->data + asn_out->length; /* point to the start */ src = asn_out->data; len = asn_out->length; /* trimming spaces at the head and tail */ dst--; for (; (len > 0 && XISSPACE(*dst)); len--) { dst--; } for (; (len > 0 && XISSPACE(*src)); len--) { src++; } /* point to the start */ dst = asn_out->data; for (i = 0; i < len; dst++, i++) { if (!XISASCII(*src)) { /* keep non-ascii code */ *dst = *src++; } else if (XISSPACE(*src)) { *dst = 0x20; /* space */ /* remove the rest of spaces */ while (XISSPACE(*++src) && i++ < len); } else { *dst = (char)XTOLOWER((unsigned char)*src++); } } /* put actual length */ asn_out->length = (int)(dst - asn_out->data); return WOLFSSL_SUCCESS; } #if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) #if !defined(NO_FILESYSTEM) #ifndef NO_BIO WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_PrivateKey(XFILE fp, WOLFSSL_EVP_PKEY **x, wc_pem_password_cb *cb, void *u) { int err = 0; WOLFSSL_EVP_PKEY* ret = NULL; WOLFSSL_BIO* bio = NULL; WOLFSSL_ENTER("wolfSSL_PEM_read_PrivateKey"); if (fp == XBADFILE) { err = 1; } if (err == 0) { bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file()); err = bio == NULL; } if (err == 0) { err = wolfSSL_BIO_set_fp(bio, fp, BIO_NOCLOSE) != WOLFSSL_SUCCESS; } if (err == 0) { ret = wolfSSL_PEM_read_bio_PrivateKey(bio, x, cb, u); } if (bio != NULL) { wolfSSL_BIO_free(bio); } return ret; } #endif #endif #endif #endif /* OPENSSL_ALL || OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL*/ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) #define PEM_BEGIN "-----BEGIN " #define PEM_BEGIN_SZ 11 #define PEM_END "-----END " #define PEM_END_SZ 9 #define PEM_HDR_FIN "-----" #define PEM_HDR_FIN_SZ 5 #define PEM_HDR_FIN_EOL_NEWLINE "-----\n" #define PEM_HDR_FIN_EOL_NULL_TERM "-----\0" #define PEM_HDR_FIN_EOL_SZ 6 #ifndef NO_BIO int wolfSSL_PEM_read_bio(WOLFSSL_BIO* bio, char **name, char **header, unsigned char **data, long *len) { int ret = WOLFSSL_SUCCESS; char pem[256]; int pemLen; char* p; char* nameStr = NULL; int nameLen = 0; char* headerStr = NULL; int headerLen; int headerFound = 0; unsigned char* der = NULL; word32 derLen = 0; if (bio == NULL || name == NULL || header == NULL || data == NULL || len == NULL) { return WOLFSSL_FAILURE; } /* Find header line. */ pem[sizeof(pem) - 1] = '\0'; while ((pemLen = wolfSSL_BIO_gets(bio, pem, sizeof(pem) - 1)) > 0) { if (XSTRNCMP(pem, PEM_BEGIN, PEM_BEGIN_SZ) == 0) break; } if (pemLen <= 0) ret = WOLFSSL_FAILURE; /* Have a header line. */ if (ret == WOLFSSL_SUCCESS) { while (pem[pemLen - 1] == '\r' || pem[pemLen - 1] == '\n') pemLen--; pem[pemLen] = '\0'; if (XSTRNCMP(pem + pemLen - PEM_HDR_FIN_SZ, PEM_HDR_FIN, PEM_HDR_FIN_SZ) != 0) { ret = WOLFSSL_FAILURE; } } /* Get out name. */ if (ret == WOLFSSL_SUCCESS) { nameLen = pemLen - PEM_BEGIN_SZ - PEM_HDR_FIN_SZ; nameStr = (char*)XMALLOC(nameLen + 1, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (nameStr == NULL) ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { XSTRNCPY(nameStr, pem + PEM_BEGIN_SZ, nameLen); nameStr[nameLen] = '\0'; /* Get header of PEM - encryption header. */ headerLen = 0; while ((pemLen = wolfSSL_BIO_gets(bio, pem, sizeof(pem) - 1)) > 0) { while (pemLen > 0 && (pem[pemLen - 1] == '\r' || pem[pemLen - 1] == '\n')) { pemLen--; } pem[pemLen++] = '\n'; pem[pemLen] = '\0'; /* Header separator is a blank line. */ if (pem[0] == '\n') { headerFound = 1; break; } /* Didn't find a blank line - no header. */ if (XSTRNCMP(pem, PEM_END, PEM_END_SZ) == 0) { der = (unsigned char*)headerStr; derLen = headerLen; /* Empty header - empty string. */ headerStr = (char*)XMALLOC(1, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (headerStr == NULL) ret = WOLFSSL_FAILURE; else headerStr[0] = '\0'; break; } p = (char*)XREALLOC(headerStr, headerLen + pemLen + 1, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (p == NULL) { ret = WOLFSSL_FAILURE; break; } headerStr = p; XMEMCPY(headerStr + headerLen, pem, pemLen + 1); headerLen += pemLen; } if (pemLen <= 0) ret = WOLFSSL_FAILURE; } /* Get body of PEM - if there was a header */ if (ret == WOLFSSL_SUCCESS && headerFound) { derLen = 0; while ((pemLen = wolfSSL_BIO_gets(bio, pem, sizeof(pem) - 1)) > 0) { while (pemLen > 0 && (pem[pemLen - 1] == '\r' || pem[pemLen - 1] == '\n')) { pemLen--; } pem[pemLen++] = '\n'; pem[pemLen] = '\0'; if (XSTRNCMP(pem, PEM_END, PEM_END_SZ) == 0) break; p = (char*)XREALLOC(der, derLen + pemLen + 1, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (p == NULL) { ret = WOLFSSL_FAILURE; break; } der = (unsigned char*)p; XMEMCPY(der + derLen, pem, pemLen + 1); derLen += pemLen; } if (pemLen <= 0) ret = WOLFSSL_FAILURE; } /* Check trailer. */ if (ret == WOLFSSL_SUCCESS) { if (XSTRNCMP(pem + PEM_END_SZ, nameStr, nameLen) != 0) ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { if (XSTRNCMP(pem + PEM_END_SZ + nameLen, PEM_HDR_FIN_EOL_NEWLINE, PEM_HDR_FIN_EOL_SZ) != 0 && XSTRNCMP(pem + PEM_END_SZ + nameLen, PEM_HDR_FIN_EOL_NULL_TERM, PEM_HDR_FIN_EOL_SZ) != 0) { ret = WOLFSSL_FAILURE; } } /* Base64 decode body. */ if (ret == WOLFSSL_SUCCESS) { if (Base64_Decode(der, derLen, der, &derLen) != 0) ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { *name = nameStr; *header = headerStr; *data = der; *len = derLen; nameStr = NULL; headerStr = NULL; der = NULL; } if (nameStr != NULL) XFREE(nameStr, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (headerStr != NULL) XFREE(headerStr, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (der != NULL) XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } int wolfSSL_PEM_write_bio(WOLFSSL_BIO* bio, const char *name, const char *header, const unsigned char *data, long len) { int err = 0; int outSz = 0; int nameLen; int headerLen; byte* pem = NULL; word32 pemLen; word32 derLen = (word32)len; if (bio == NULL || name == NULL || header == NULL || data == NULL) return 0; nameLen = (int)XSTRLEN(name); headerLen = (int)XSTRLEN(header); pemLen = (derLen + 2) / 3 * 4; pemLen += (pemLen + 63) / 64; pem = (byte*)XMALLOC(pemLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); err = pem == NULL; if (!err) err = Base64_Encode(data, derLen, pem, &pemLen) != 0; if (!err) { err = wolfSSL_BIO_write(bio, PEM_BEGIN, PEM_BEGIN_SZ) != (int)PEM_BEGIN_SZ; } if (!err) err = wolfSSL_BIO_write(bio, name, nameLen) != nameLen; if (!err) { err = wolfSSL_BIO_write(bio, PEM_HDR_FIN_EOL_NEWLINE, PEM_HDR_FIN_EOL_SZ) != (int)PEM_HDR_FIN_EOL_SZ; } if (!err && headerLen > 0) { err = wolfSSL_BIO_write(bio, header, headerLen) != headerLen; /* Blank line after a header and before body. */ if (!err) err = wolfSSL_BIO_write(bio, "\n", 1) != 1; headerLen++; } if (!err) err = wolfSSL_BIO_write(bio, pem, pemLen) != (int)pemLen; if (!err) err = wolfSSL_BIO_write(bio, PEM_END, PEM_END_SZ) != (int)PEM_END_SZ; if (!err) err = wolfSSL_BIO_write(bio, name, nameLen) != nameLen; if (!err) { err = wolfSSL_BIO_write(bio, PEM_HDR_FIN_EOL_NEWLINE, PEM_HDR_FIN_EOL_SZ) != (int)PEM_HDR_FIN_EOL_SZ; } if (!err) { outSz = PEM_BEGIN_SZ + nameLen + PEM_HDR_FIN_EOL_SZ + headerLen + pemLen + PEM_END_SZ + nameLen + PEM_HDR_FIN_EOL_SZ; } if (pem != NULL) XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return outSz; } #if !defined(NO_FILESYSTEM) int wolfSSL_PEM_read(XFILE fp, char **name, char **header, unsigned char **data, long *len) { int ret; WOLFSSL_BIO* bio; if (name == NULL || header == NULL || data == NULL || len == NULL) return WOLFSSL_FAILURE; bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file()); if (bio == NULL) return 0; if (wolfSSL_BIO_set_fp(bio, fp, BIO_NOCLOSE) != WOLFSSL_SUCCESS) { wolfSSL_BIO_free(bio); bio = NULL; } ret = wolfSSL_PEM_read_bio(bio, name, header, data, len); if (bio != NULL) wolfSSL_BIO_free(bio); return ret; } int wolfSSL_PEM_write(XFILE fp, const char *name, const char *header, const unsigned char *data, long len) { int ret; WOLFSSL_BIO* bio; if (name == NULL || header == NULL || data == NULL) return 0; bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file()); if (bio == NULL) return 0; if (wolfSSL_BIO_set_fp(bio, fp, BIO_NOCLOSE) != WOLFSSL_SUCCESS) { wolfSSL_BIO_free(bio); bio = NULL; } ret = wolfSSL_PEM_write_bio(bio, name, header, data, len); if (bio != NULL) wolfSSL_BIO_free(bio); return ret; } #endif #endif /* !NO_BIO */ int wolfSSL_PEM_get_EVP_CIPHER_INFO(const char* header, EncryptedInfo* cipher) { if (header == NULL || cipher == NULL) return WOLFSSL_FAILURE; XMEMSET(cipher, 0, sizeof(*cipher)); if (wc_EncryptedInfoParse(cipher, &header, XSTRLEN(header)) != 0) return WOLFSSL_FAILURE; return WOLFSSL_SUCCESS; } int wolfSSL_PEM_do_header(EncryptedInfo* cipher, unsigned char* data, long* len, wc_pem_password_cb* callback, void* ctx) { int ret = WOLFSSL_SUCCESS; char password[NAME_SZ]; int passwordSz; if (cipher == NULL || data == NULL || len == NULL || callback == NULL) return WOLFSSL_FAILURE; passwordSz = callback(password, sizeof(password), PEM_PASS_READ, ctx); if (passwordSz < 0) ret = WOLFSSL_FAILURE; if (ret == WOLFSSL_SUCCESS) { if (wc_BufferKeyDecrypt(cipher, data, (word32)*len, (byte*)password, passwordSz, WC_MD5) != 0) { ret = WOLFSSL_FAILURE; } } if (passwordSz > 0) XMEMSET(password, 0, passwordSz); return ret; } #ifndef NO_BIO /* * bp : bio to read X509 from * x : x509 to write to * cb : password call back for reading PEM * u : password * _AUX is for working with a trusted X509 certificate */ WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509_AUX(WOLFSSL_BIO *bp, WOLFSSL_X509 **x, wc_pem_password_cb *cb, void *u) { WOLFSSL_ENTER("wolfSSL_PEM_read_bio_X509"); /* AUX info is; trusted/rejected uses, friendly name, private key id, * and potentially a stack of "other" info. wolfSSL does not store * friendly name or private key id yet in WOLFSSL_X509 for human * readability and does not support extra trusted/rejected uses for * root CA. */ return wolfSSL_PEM_read_bio_X509(bp, x, cb, u); } #endif /* !NO_BIO */ #endif /* OPENSSL_EXTRA || OPENSSL_ALL */ #endif /* !NO_CERTS */ /* NID variables are dependent on compatibility header files currently * * returns a pointer to a new WOLFSSL_ASN1_OBJECT struct on success and NULL * on fail */ WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj(int id) { return wolfSSL_OBJ_nid2obj_ex(id, NULL); } WOLFSSL_LOCAL WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj_ex(int id, WOLFSSL_ASN1_OBJECT* arg_obj) { word32 oidSz = 0; int nid = 0; const byte* oid; word32 type = 0; WOLFSSL_ASN1_OBJECT* obj = arg_obj; byte objBuf[MAX_OID_SZ + MAX_LENGTH_SZ + 1]; /* +1 for object tag */ word32 objSz = 0; const char* sName = NULL; int i; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_OBJ_nid2obj()"); #endif for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) { if (wolfssl_object_info[i].nid == id) { nid = id; id = wolfssl_object_info[i].id; sName = wolfssl_object_info[i].sName; type = wolfssl_object_info[i].type; break; } } if (i == (int)WOLFSSL_OBJECT_INFO_SZ) { WOLFSSL_MSG("NID not in table"); #ifdef WOLFSSL_QT sName = NULL; type = id; #else return NULL; #endif } #ifdef HAVE_ECC if (type == 0 && wc_ecc_get_oid(id, &oid, &oidSz) > 0) { type = oidCurveType; } #endif /* HAVE_ECC */ if (sName != NULL) { if (XSTRLEN(sName) > WOLFSSL_MAX_SNAME - 1) { WOLFSSL_MSG("Attempted short name is too large"); return NULL; } } oid = OidFromId(id, type, &oidSz); /* set object ID to buffer */ if (obj == NULL){ obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); return NULL; } } obj->nid = nid; obj->type = id; obj->grp = type; obj->sName[0] = '\0'; if (sName != NULL) { XMEMCPY(obj->sName, (char*)sName, XSTRLEN((char*)sName)); } objBuf[0] = ASN_OBJECT_ID; objSz++; objSz += SetLength(oidSz, objBuf + 1); if (oidSz) { XMEMCPY(objBuf + objSz, oid, oidSz); objSz += oidSz; } if (obj->objSz == 0 || objSz != obj->objSz) { obj->objSz = objSz; if(((obj->dynamic & WOLFSSL_ASN1_DYNAMIC_DATA) != 0) || (obj->obj == NULL)) { if (obj->obj != NULL) XFREE((byte*)obj->obj, NULL, DYNAMIC_TYPE_ASN1); obj->obj = (byte*)XMALLOC(obj->objSz, NULL, DYNAMIC_TYPE_ASN1); if (obj->obj == NULL) { wolfSSL_ASN1_OBJECT_free(obj); return NULL; } obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA ; } else { obj->dynamic &= ~WOLFSSL_ASN1_DYNAMIC_DATA ; } } XMEMCPY((byte*)obj->obj, objBuf, obj->objSz); (void)type; return obj; } static const char* oid_translate_num_to_str(const char* oid) { const struct oid_dict { const char* num; const char* desc; } oid_dict[] = { { "2.5.29.37.0", "Any Extended Key Usage" }, { "1.3.6.1.5.5.7.3.1", "TLS Web Server Authentication" }, { "1.3.6.1.5.5.7.3.2", "TLS Web Client Authentication" }, { "1.3.6.1.5.5.7.3.3", "Code Signing" }, { "1.3.6.1.5.5.7.3.4", "E-mail Protection" }, { "1.3.6.1.5.5.7.3.8", "Time Stamping" }, { "1.3.6.1.5.5.7.3.9", "OCSP Signing" }, { NULL, NULL } }; const struct oid_dict* idx; for (idx = oid_dict; idx->num != NULL; idx++) { if (!XSTRCMP(oid, idx->num)) { return idx->desc; } } return NULL; } static int wolfssl_obj2txt_numeric(char *buf, int bufLen, const WOLFSSL_ASN1_OBJECT *a) { int bufSz; int length; word32 idx = 0; byte tag; if (GetASNTag(a->obj, &idx, &tag, a->objSz) != 0) { return WOLFSSL_FAILURE; } if (tag != ASN_OBJECT_ID) { WOLFSSL_MSG("Bad ASN1 Object"); return WOLFSSL_FAILURE; } if (GetLength((const byte*)a->obj, &idx, &length, a->objSz) < 0 || length < 0) { return ASN_PARSE_E; } if (bufLen < MAX_OID_STRING_SZ) { bufSz = bufLen - 1; } else { bufSz = MAX_OID_STRING_SZ; } if ((bufSz = DecodePolicyOID(buf, (word32)bufSz, a->obj + idx, (word32)length)) <= 0) { WOLFSSL_MSG("Error decoding OID"); return WOLFSSL_FAILURE; } buf[bufSz] = '\0'; return bufSz; } /* If no_name is one then use numerical form, otherwise short name. * * Returns the buffer size on success, WOLFSSL_FAILURE on error */ int wolfSSL_OBJ_obj2txt(char *buf, int bufLen, const WOLFSSL_ASN1_OBJECT *a, int no_name) { int bufSz; const char* desc; const char* name; WOLFSSL_ENTER("wolfSSL_OBJ_obj2txt()"); if (buf == NULL || bufLen <= 1 || a == NULL) { WOLFSSL_MSG("Bad input argument"); return WOLFSSL_FAILURE; } if (no_name == 1) { return wolfssl_obj2txt_numeric(buf, bufLen, a); } /* return long name unless using x509small, then return short name */ #if defined(OPENSSL_EXTRA_X509_SMALL) && !defined(OPENSSL_EXTRA) name = a->sName; #else name = wolfSSL_OBJ_nid2ln(wolfSSL_OBJ_obj2nid(a)); #endif if (name == NULL) { WOLFSSL_MSG("Name not found"); bufSz = 0; } else if (XSTRLEN(name) + 1 < (word32)bufLen - 1) { bufSz = (int)XSTRLEN(name); } else { bufSz = bufLen - 1; } if (bufSz) { XMEMCPY(buf, name, bufSz); } else if (a->type == GEN_DNS || a->type == GEN_EMAIL || a->type == GEN_URI) { bufSz = (int)XSTRLEN((const char*)a->obj); XMEMCPY(buf, a->obj, min(bufSz, bufLen)); } else if ((bufSz = wolfssl_obj2txt_numeric(buf, bufLen, a)) > 0) { if ((desc = oid_translate_num_to_str(buf))) { bufSz = (int)XSTRLEN(desc); bufSz = min(bufSz, bufLen - 1); XMEMCPY(buf, desc, bufSz); } } buf[bufSz] = '\0'; return bufSz; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \ defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_WPAS_SMALL) /* Returns the long name that corresponds with an ASN1_OBJECT nid value. * n : NID value of ASN1_OBJECT to search */ const char* wolfSSL_OBJ_nid2ln(int n) { const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info; size_t i; WOLFSSL_ENTER("wolfSSL_OBJ_nid2ln"); for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) { if (obj_info->nid == n) { return obj_info->lName; } } WOLFSSL_MSG("NID not found in table"); return NULL; } #endif /* OPENSSL_EXTRA, HAVE_LIGHTY, WOLFSSL_MYSQL_COMPATIBLE, HAVE_STUNNEL, WOLFSSL_NGINX, HAVE_POCO_LIB, WOLFSSL_HAPROXY, WOLFSSL_WPAS_SMALL */ #if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \ defined(WOLFSSL_HAPROXY) char wolfSSL_CTX_use_certificate(WOLFSSL_CTX *ctx, WOLFSSL_X509 *x) { int ret; WOLFSSL_ENTER("wolfSSL_CTX_use_certificate"); if (!ctx || !x || !x->derCert) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } FreeDer(&ctx->certificate); /* Make sure previous is free'd */ ret = AllocDer(&ctx->certificate, x->derCert->length, CERT_TYPE, ctx->heap); if (ret != 0) return WOLFSSL_FAILURE; XMEMCPY(ctx->certificate->buffer, x->derCert->buffer, x->derCert->length); #ifdef KEEP_OUR_CERT if (ctx->ourCert != NULL && ctx->ownOurCert) { wolfSSL_X509_free(ctx->ourCert); } #ifndef WOLFSSL_X509_STORE_CERTS ctx->ourCert = x; if (wolfSSL_X509_up_ref(x) != 1) { return WOLFSSL_FAILURE; } #else ctx->ourCert = wolfSSL_X509_d2i(NULL, x->derCert->buffer,x->derCert->length); if(ctx->ourCert == NULL){ return WOLFSSL_FAILURE; } #endif /* We own the cert because either we up its reference counter * or we create our own copy of the cert object. */ ctx->ownOurCert = 1; #endif /* Update the available options with public keys. */ switch (x->pubKeyOID) { case RSAk: ctx->haveRSA = 1; break; #ifdef HAVE_ED25519 case ED25519k: #endif #ifdef HAVE_ED448 case ED448k: #endif case ECDSAk: ctx->haveECC = 1; #if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448) ctx->pkCurveOID = x->pkCurveOID; #endif break; } return WOLFSSL_SUCCESS; } static int PushCertToDerBuffer(DerBuffer** inOutDer, int weOwn, byte* cert, word32 certSz, void* heap) { int ret; DerBuffer* inChain = NULL; DerBuffer* der = NULL; word32 len = 0; if (inOutDer == NULL) return BAD_FUNC_ARG; inChain = *inOutDer; if (inChain != NULL) len = inChain->length; ret = AllocDer(&der, len + CERT_HEADER_SZ + certSz, CERT_TYPE, heap); if (ret != 0) { WOLFSSL_MSG("AllocDer error"); return ret; } if (inChain != NULL) XMEMCPY(der->buffer, inChain->buffer, len); c32to24(certSz, der->buffer + len); XMEMCPY(der->buffer + len + CERT_HEADER_SZ, cert, certSz); if (weOwn) FreeDer(inOutDer); *inOutDer = der; return WOLFSSL_SUCCESS; } /** * wolfSSL_CTX_add1_chain_cert makes a copy of the cert so we free it * on success */ int wolfSSL_CTX_add0_chain_cert(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509) { WOLFSSL_ENTER("wolfSSL_CTX_add0_chain_cert"); if (wolfSSL_CTX_add1_chain_cert(ctx, x509) != WOLFSSL_SUCCESS) { return WOLFSSL_FAILURE; } wolfSSL_X509_free(x509); return WOLFSSL_SUCCESS; } int wolfSSL_CTX_add1_chain_cert(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509) { int ret; WOLFSSL_ENTER("wolfSSL_CTX_add1_chain_cert"); if (ctx == NULL || x509 == NULL || x509->derCert == NULL) { return WOLFSSL_FAILURE; } if (ctx->certificate == NULL) ret = (int)wolfSSL_CTX_use_certificate(ctx, x509); else { if (wolfSSL_X509_up_ref(x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_X509_up_ref error"); return WOLFSSL_FAILURE; } ret = wolfSSL_CTX_load_verify_buffer(ctx, x509->derCert->buffer, x509->derCert->length, WOLFSSL_FILETYPE_ASN1); if (ret == WOLFSSL_SUCCESS) { /* push to ctx->certChain */ ret = PushCertToDerBuffer(&ctx->certChain, 1, x509->derCert->buffer, x509->derCert->length, ctx->heap); } /* Store cert to free it later */ if (ret == WOLFSSL_SUCCESS && ctx->x509Chain == NULL) { ctx->x509Chain = wolfSSL_sk_X509_new(); if (ctx->x509Chain == NULL) { WOLFSSL_MSG("wolfSSL_sk_X509_new error"); ret = WOLFSSL_FAILURE; } } if (ret == WOLFSSL_SUCCESS && wolfSSL_sk_X509_push(ctx->x509Chain, x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_sk_X509_push error"); ret = WOLFSSL_FAILURE; } if (ret != WOLFSSL_SUCCESS) wolfSSL_X509_free(x509); /* Decrease ref counter */ } return (ret == WOLFSSL_SUCCESS) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } #ifdef KEEP_OUR_CERT int wolfSSL_add0_chain_cert(WOLFSSL* ssl, WOLFSSL_X509* x509) { int ret; WOLFSSL_ENTER("wolfSSL_add0_chain_cert"); if (ssl == NULL || ssl->ctx == NULL || x509 == NULL || x509->derCert == NULL) return WOLFSSL_FAILURE; if (ssl->buffers.certificate == NULL) { ret = wolfSSL_use_certificate(ssl, x509); /* Store cert to free it later */ if (ret == WOLFSSL_SUCCESS) { if (ssl->buffers.weOwnCert) wolfSSL_X509_free(ssl->ourCert); ssl->ourCert = x509; ssl->buffers.weOwnCert = 1; } } else { ret = PushCertToDerBuffer(&ssl->buffers.certChain, ssl->buffers.weOwnCertChain, x509->derCert->buffer, x509->derCert->length, ssl->heap); if (ret == WOLFSSL_SUCCESS) { ssl->buffers.weOwnCertChain = 1; /* Store cert to free it later */ if (ssl->ourCertChain == NULL) { ssl->ourCertChain = wolfSSL_sk_X509_new(); if (ssl->ourCertChain == NULL) { WOLFSSL_MSG("wolfSSL_sk_X509_new error"); return WOLFSSL_FAILURE; } } if (wolfSSL_sk_X509_push(ssl->ourCertChain, x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_sk_X509_push error"); return WOLFSSL_FAILURE; } } } return ret == WOLFSSL_SUCCESS ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_add1_chain_cert(WOLFSSL* ssl, WOLFSSL_X509* x509) { int ret; WOLFSSL_ENTER("wolfSSL_add1_chain_cert"); if (ssl == NULL || ssl->ctx == NULL || x509 == NULL || x509->derCert == NULL) return WOLFSSL_FAILURE; if (wolfSSL_X509_up_ref(x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_X509_up_ref error"); return WOLFSSL_FAILURE; } ret = wolfSSL_add0_chain_cert(ssl, x509); /* Decrease ref counter on error */ if (ret != WOLFSSL_SUCCESS) wolfSSL_X509_free(x509); return ret; } #endif /* Return the corresponding short name for the nid . * or NULL if short name can't be found. */ const char * wolfSSL_OBJ_nid2sn(int n) { const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info; size_t i; WOLFSSL_ENTER("wolfSSL_OBJ_nid2sn"); if (n == NID_md5) { /* NID_surname == NID_md5 and NID_surname comes before NID_md5 in * wolfssl_object_info. As a result, the loop below will incorrectly * return "SN" instead of "MD5." NID_surname isn't the true OpenSSL * NID, but other functions rely on this table and modifying it to * conform with OpenSSL's NIDs isn't trivial. */ return "MD5"; } for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) { if (obj_info->nid == n) { return obj_info->sName; } } WOLFSSL_MSG("SN not found"); return NULL; } #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) int wolfSSL_OBJ_sn2nid(const char *sn) { WOLFSSL_ENTER("wolfSSL_OBJ_sn2nid"); if (sn == NULL) return NID_undef; return wc_OBJ_sn2nid(sn); } #endif size_t wolfSSL_OBJ_length(const WOLFSSL_ASN1_OBJECT* o) { size_t ret = 0; int err = 0; word32 idx = 0; int len = 0; WOLFSSL_ENTER("wolfSSL_OBJ_length"); if (o == NULL || o->obj == NULL) { WOLFSSL_MSG("Bad argument."); err = 1; } if (err == 0 && GetASNObjectId(o->obj, &idx, &len, o->objSz)) { WOLFSSL_MSG("Error parsing ASN.1 header."); err = 1; } if (err == 0) { ret = len; } WOLFSSL_LEAVE("wolfSSL_OBJ_length", (int)ret); return ret; } const unsigned char* wolfSSL_OBJ_get0_data(const WOLFSSL_ASN1_OBJECT* o) { const unsigned char* ret = NULL; int err = 0; word32 idx = 0; int len = 0; WOLFSSL_ENTER("wolfSSL_OBJ_get0_data"); if (o == NULL || o->obj == NULL) { WOLFSSL_MSG("Bad argument."); err = 1; } if (err == 0 && GetASNObjectId(o->obj, &idx, &len, o->objSz)) { WOLFSSL_MSG("Error parsing ASN.1 header."); err = 1; } if (err == 0) { ret = o->obj + idx; } return ret; } /* Gets the NID value that corresponds with the ASN1 object. * * o ASN1 object to get NID of * * Return NID on success and a negative value on failure */ int wolfSSL_OBJ_obj2nid(const WOLFSSL_ASN1_OBJECT *o) { word32 oid = 0; word32 idx = 0; int ret; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_OBJ_obj2nid"); #endif if (o == NULL) { return -1; } #ifdef WOLFSSL_QT if (o->grp == oidCertExtType) { /* If nid is an unknown extension, return NID_undef */ if (wolfSSL_OBJ_nid2sn(o->nid) == NULL) return NID_undef; } #endif if (o->nid > 0) return o->nid; if ((ret = GetObjectId(o->obj, &idx, &oid, o->grp, o->objSz)) < 0) { if (ret == ASN_OBJECT_ID_E) { /* Put ASN object tag in front and try again */ int len = SetObjectId(o->objSz, NULL) + o->objSz; byte* buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (!buf) { WOLFSSL_MSG("malloc error"); return -1; } idx = SetObjectId(o->objSz, buf); XMEMCPY(buf + idx, o->obj, o->objSz); idx = 0; ret = GetObjectId(buf, &idx, &oid, o->grp, len); XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (ret < 0) { WOLFSSL_MSG("Issue getting OID of object"); return -1; } } else { WOLFSSL_MSG("Issue getting OID of object"); return -1; } } return oid2nid(oid, o->grp); } /* Return the corresponding NID for the long name * or NID_undef if NID can't be found. */ int wolfSSL_OBJ_ln2nid(const char *ln) { const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info; size_t i, lnlen; WOLFSSL_ENTER("wolfSSL_OBJ_ln2nid"); if (ln && (lnlen = XSTRLEN(ln)) > 0) { /* Accept input like "/commonName=" */ if (ln[0] == '/') { ln++; lnlen--; } if (lnlen) { if (ln[lnlen-1] == '=') { lnlen--; } for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) { if (lnlen == XSTRLEN(obj_info->lName) && XSTRNCMP(ln, obj_info->lName, lnlen) == 0) { return obj_info->nid; } } } } return NID_undef; } /* compares two objects, return 0 if equal */ int wolfSSL_OBJ_cmp(const WOLFSSL_ASN1_OBJECT* a, const WOLFSSL_ASN1_OBJECT* b) { WOLFSSL_ENTER("wolfSSL_OBJ_cmp"); if (a && b && a->obj && b->obj) { if (a->objSz == b->objSz) { return XMEMCMP(a->obj, b->obj, a->objSz); } else if (a->type == EXT_KEY_USAGE_OID || b->type == EXT_KEY_USAGE_OID) { /* Special case for EXT_KEY_USAGE_OID so that * cmp will be treated as a substring search */ /* Used in libest to check for id-kp-cmcRA in * EXT_KEY_USAGE extension */ unsigned int idx; const byte* s; /* shorter */ unsigned int sLen; const byte* l; /* longer */ unsigned int lLen; if (a->objSz > b->objSz) { s = b->obj; sLen = b->objSz; l = a->obj; lLen = a->objSz; } else { s = a->obj; sLen = a->objSz; l = b->obj; lLen = b->objSz; } for (idx = 0; idx <= lLen - sLen; idx++) { if (XMEMCMP(l + idx, s, sLen) == 0) { /* Found substring */ return 0; } } } } return WOLFSSL_FATAL_ERROR; } #endif /* OPENSSL_EXTRA, HAVE_LIGHTY, WOLFSSL_MYSQL_COMPATIBLE, HAVE_STUNNEL, WOLFSSL_NGINX, HAVE_POCO_LIB, WOLFSSL_HAPROXY */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \ defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_POCO_LIB) || defined(WOLFSSL_HAPROXY) /* Gets the NID value that is related to the OID string passed in. Example * string would be "2.5.29.14" for subject key ID. * * returns NID value on success and NID_undef on error */ int wolfSSL_OBJ_txt2nid(const char* s) { unsigned int i; #ifdef WOLFSSL_CERT_EXT int ret; unsigned int sum = 0; unsigned int outSz = MAX_OID_SZ; unsigned char out[MAX_OID_SZ]; #endif WOLFSSL_ENTER("OBJ_txt2nid"); if (s == NULL) { return NID_undef; } #ifdef WOLFSSL_CERT_EXT ret = EncodePolicyOID(out, &outSz, s, NULL); if (ret == 0) { /* sum OID */ for (i = 0; i < outSz; i++) { sum += out[i]; } } #endif /* WOLFSSL_CERT_EXT */ /* get the group that the OID's sum is in * @TODO possible conflict with multiples */ for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) { int len; #ifdef WOLFSSL_CERT_EXT if (ret == 0) { if (wolfssl_object_info[i].id == (int)sum) { return wolfssl_object_info[i].nid; } } #endif /* try as a short name */ len = (int)XSTRLEN(s); if ((int)XSTRLEN(wolfssl_object_info[i].sName) == len && XSTRNCMP(wolfssl_object_info[i].sName, s, len) == 0) { return wolfssl_object_info[i].nid; } /* try as a long name */ if ((int)XSTRLEN(wolfssl_object_info[i].lName) == len && XSTRNCMP(wolfssl_object_info[i].lName, s, len) == 0) { return wolfssl_object_info[i].nid; } } return NID_undef; } #endif #if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \ defined(WOLFSSL_HAPROXY) /* Creates new ASN1_OBJECT from short name, long name, or text * representation of oid. If no_name is 0, then short name, long name, and * numerical value of oid are interpreted. If no_name is 1, then only the * numerical value of the oid is interpreted. * * Returns pointer to ASN1_OBJECT on success, or NULL on error. */ #if defined(WOLFSSL_CERT_EXT) && defined(WOLFSSL_CERT_GEN) WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_txt2obj(const char* s, int no_name) { int i, ret; int nid = NID_undef; unsigned int outSz = MAX_OID_SZ; unsigned char out[MAX_OID_SZ]; WOLFSSL_ASN1_OBJECT* obj; WOLFSSL_ENTER("wolfSSL_OBJ_txt2obj"); if (s == NULL) return NULL; /* If s is numerical value, try to sum oid */ ret = EncodePolicyOID(out, &outSz, s, NULL); if (ret == 0 && outSz > 0) { /* If numerical encode succeeded then just * create object from that because sums are * not unique and can cause confusion. */ obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); return NULL; } obj->dynamic |= WOLFSSL_ASN1_DYNAMIC; obj->obj = (byte*)XMALLOC(1 + MAX_LENGTH_SZ + outSz, NULL, DYNAMIC_TYPE_ASN1); if (obj->obj == NULL) { wolfSSL_ASN1_OBJECT_free(obj); return NULL; } obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA ; i = SetObjectId(outSz, (byte*)obj->obj); XMEMCPY((byte*)obj->obj + i, out, outSz); obj->objSz = i + outSz; return obj; } /* TODO: update short names in wolfssl_object_info and check OID sums are correct */ for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) { /* Short name, long name, and numerical value are interpreted */ if (no_name == 0 && ((XSTRCMP(s, wolfssl_object_info[i].sName) == 0) || (XSTRCMP(s, wolfssl_object_info[i].lName) == 0))) { nid = wolfssl_object_info[i].nid; } } if (nid != NID_undef) return wolfSSL_OBJ_nid2obj(nid); return NULL; } #endif /* compatibility function. Its intended use is to remove OID's from an * internal table that have been added with OBJ_create. wolfSSL manages its * own internal OID values and does not currently support OBJ_create. */ void wolfSSL_OBJ_cleanup(void) { WOLFSSL_ENTER("wolfSSL_OBJ_cleanup()"); } #ifndef NO_WOLFSSL_STUB int wolfSSL_OBJ_create(const char *oid, const char *sn, const char *ln) { (void)oid; (void)sn; (void)ln; WOLFSSL_STUB("wolfSSL_OBJ_create"); return WOLFSSL_FAILURE; } #endif void wolfSSL_set_verify_depth(WOLFSSL *ssl, int depth) { #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) WOLFSSL_ENTER("wolfSSL_set_verify_depth"); ssl->options.verifyDepth = (byte)depth; #endif } #endif /* OPENSSL_ALL || HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE || HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \ defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_POCO_LIB) || defined(WOLFSSL_HAPROXY) WOLFSSL_ASN1_OBJECT * wolfSSL_X509_NAME_ENTRY_get_object(WOLFSSL_X509_NAME_ENTRY *ne) { WOLFSSL_ASN1_OBJECT* obj = NULL; #ifdef WOLFSSL_DEBUG_OPENSSL WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_get_object"); #endif if (ne == NULL) return NULL; obj = wolfSSL_OBJ_nid2obj_ex(ne->nid, ne->object); if (obj != NULL) { obj->nid = ne->nid; return obj; } return NULL; } #endif /* OPENSSL_ALL || HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE || HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */ #ifdef OPENSSL_EXTRA /* wolfSSL uses negative values for error states. This function returns an * unsigned type so the value returned is the absolute value of the error. */ unsigned long wolfSSL_ERR_peek_last_error_line(const char **file, int *line) { WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error"); (void)line; (void)file; #ifdef WOLFSSL_HAVE_ERROR_QUEUE { int ret; if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } printf("ret from peek error node = %d\n", ret); #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) if (ret == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; #endif #if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON) if (ret == ASN1_R_HEADER_TOO_LONG) { return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG; } #endif return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #ifndef NO_CERTS int wolfSSL_CTX_use_PrivateKey(WOLFSSL_CTX *ctx, WOLFSSL_EVP_PKEY *pkey) { WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey"); if (ctx == NULL || pkey == NULL) { return WOLFSSL_FAILURE; } switch (pkey->type) { #if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_USER_RSA) && !defined(NO_RSA) case EVP_PKEY_RSA: WOLFSSL_MSG("populating RSA key"); if (PopulateRSAEvpPkeyDer(pkey) != WOLFSSL_SUCCESS) return WOLFSSL_FAILURE; break; #endif /* (WOLFSSL_KEY_GEN || OPENSSL_EXTRA) && !NO_RSA */ #if !defined(HAVE_SELFTEST) && (defined(WOLFSSL_KEY_GEN) || \ defined(WOLFSSL_CERT_GEN)) && !defined(NO_DSA) case EVP_PKEY_DSA: break; #endif /* !HAVE_SELFTEST && (WOLFSSL_KEY_GEN || WOLFSSL_CERT_GEN) && !NO_DSA */ #ifdef HAVE_ECC case EVP_PKEY_EC: WOLFSSL_MSG("populating ECC key"); if (ECC_populate_EVP_PKEY(pkey, pkey->ecc) != WOLFSSL_SUCCESS) return WOLFSSL_FAILURE; break; #endif default: return WOLFSSL_FAILURE; } if (pkey->pkey.ptr != NULL) { /* ptr for WOLFSSL_EVP_PKEY struct is expected to be DER format */ return wolfSSL_CTX_use_PrivateKey_buffer(ctx, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, SSL_FILETYPE_ASN1); } WOLFSSL_MSG("wolfSSL private key not set"); return BAD_FUNC_ARG; } #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ #if defined(HAVE_EX_DATA) && \ (defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || \ defined(HAVE_LIGHTY)) || defined(HAVE_EX_DATA) || \ defined(WOLFSSL_WPAS_SMALL) /** * get_ex_new_index is a helper function for the following * xx_get_ex_new_index functions: * - wolfSSL_CRYPTO_get_ex_new_index * - wolfSSL_CTX_get_ex_new_index * - wolfSSL_get_ex_new_index * Issues a unique index number for the specified class-index. * Returns an index number greater or equal to zero on success, * -1 on failure. */ int wolfssl_get_ex_new_index(int class_index) { /* index counter for each class index*/ static int ctx_idx = 0; static int ssl_idx = 0; static int ssl_session_idx = 0; static int x509_idx = 0; int idx = -1; switch(class_index) { case WOLF_CRYPTO_EX_INDEX_SSL: idx = ssl_idx++; break; case WOLF_CRYPTO_EX_INDEX_SSL_CTX: idx = ctx_idx++; break; case WOLF_CRYPTO_EX_INDEX_X509: idx = x509_idx++; break; case WOLF_CRYPTO_EX_INDEX_SSL_SESSION: idx = ssl_session_idx++; break; /* following class indexes are not supoprted */ case WOLF_CRYPTO_EX_INDEX_X509_STORE: case WOLF_CRYPTO_EX_INDEX_X509_STORE_CTX: case WOLF_CRYPTO_EX_INDEX_DH: case WOLF_CRYPTO_EX_INDEX_DSA: case WOLF_CRYPTO_EX_INDEX_EC_KEY: case WOLF_CRYPTO_EX_INDEX_RSA: case WOLF_CRYPTO_EX_INDEX_ENGINE: case WOLF_CRYPTO_EX_INDEX_UI: case WOLF_CRYPTO_EX_INDEX_BIO: case WOLF_CRYPTO_EX_INDEX_APP: case WOLF_CRYPTO_EX_INDEX_UI_METHOD: case WOLF_CRYPTO_EX_INDEX_DRBG: default: break; } return idx; } #endif /* HAVE_EX_DATA || WOLFSSL_WPAS_SMALL */ #if defined(HAVE_EX_DATA) || defined(WOLFSSL_WPAS_SMALL) void* wolfSSL_CTX_get_ex_data(const WOLFSSL_CTX* ctx, int idx) { WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data"); #ifdef HAVE_EX_DATA if(ctx != NULL) { return wolfSSL_CRYPTO_get_ex_data(&ctx->ex_data, idx); } #else (void)ctx; (void)idx; #endif return NULL; } int wolfSSL_CTX_get_ex_new_index(long idx, void* arg, void* a, void* b, void* c) { WOLFSSL_ENTER("wolfSSL_CTX_get_ex_new_index"); (void)idx; (void)arg; (void)a; (void)b; (void)c; return wolfssl_get_ex_new_index(WOLF_CRYPTO_EX_INDEX_SSL_CTX); } /* Return the index that can be used for the WOLFSSL structure to store * application data. * */ int wolfSSL_get_ex_new_index(long argValue, void* arg, WOLFSSL_CRYPTO_EX_new* cb1, WOLFSSL_CRYPTO_EX_dup* cb2, WOLFSSL_CRYPTO_EX_free* cb3) { WOLFSSL_ENTER("wolfSSL_get_ex_new_index"); (void)argValue; (void)arg; (void)cb1; (void)cb2; (void)cb3; return wolfssl_get_ex_new_index(WOLF_CRYPTO_EX_INDEX_SSL); } int wolfSSL_CTX_set_ex_data(WOLFSSL_CTX* ctx, int idx, void* data) { WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data"); #ifdef HAVE_EX_DATA if (ctx != NULL) { return wolfSSL_CRYPTO_set_ex_data(&ctx->ex_data, idx, data); } #else (void)ctx; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } #ifdef HAVE_EX_DATA_CLEANUP_HOOKS int wolfSSL_CTX_set_ex_data_with_cleanup( WOLFSSL_CTX* ctx, int idx, void* data, wolfSSL_ex_data_cleanup_routine_t cleanup_routine) { WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data_with_cleanup"); if (ctx != NULL) { return wolfSSL_CRYPTO_set_ex_data_with_cleanup(&ctx->ex_data, idx, data, cleanup_routine); } return WOLFSSL_FAILURE; } #endif /* HAVE_EX_DATA_CLEANUP_HOOKS */ #endif /* defined(HAVE_EX_DATA) || defined(WOLFSSL_WPAS_SMALL) */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Returns char* to app data stored in ex[0]. * * ssl WOLFSSL structure to get app data from */ void* wolfSSL_get_app_data(const WOLFSSL *ssl) { /* checkout exdata stuff... */ WOLFSSL_ENTER("wolfSSL_get_app_data"); return wolfSSL_get_ex_data(ssl, 0); } /* Set ex array 0 to have app data * * ssl WOLFSSL struct to set app data in * arg data to be stored * * Returns WOLFSSL_SUCCESS on success and SSL_FAILURE on failure */ int wolfSSL_set_app_data(WOLFSSL *ssl, void* arg) { WOLFSSL_ENTER("wolfSSL_set_app_data"); return wolfSSL_set_ex_data(ssl, 0, arg); } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(HAVE_EX_DATA) || defined(OPENSSL_EXTRA) || \ defined(OPENSSL_EXTRA_X509_SMALL) || defined(WOLFSSL_WPAS_SMALL) int wolfSSL_set_ex_data(WOLFSSL* ssl, int idx, void* data) { WOLFSSL_ENTER("wolfSSL_set_ex_data"); #ifdef HAVE_EX_DATA if (ssl != NULL) { return wolfSSL_CRYPTO_set_ex_data(&ssl->ex_data, idx, data); } #else WOLFSSL_MSG("HAVE_EX_DATA macro is not defined"); (void)ssl; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } #ifdef HAVE_EX_DATA_CLEANUP_HOOKS int wolfSSL_set_ex_data_with_cleanup( WOLFSSL* ssl, int idx, void* data, wolfSSL_ex_data_cleanup_routine_t cleanup_routine) { WOLFSSL_ENTER("wolfSSL_set_ex_data_with_cleanup"); if (ssl != NULL) { return wolfSSL_CRYPTO_set_ex_data_with_cleanup(&ssl->ex_data, idx, data, cleanup_routine); } return WOLFSSL_FAILURE; } #endif /* HAVE_EX_DATA_CLEANUP_HOOKS */ void* wolfSSL_get_ex_data(const WOLFSSL* ssl, int idx) { WOLFSSL_ENTER("wolfSSL_get_ex_data"); #ifdef HAVE_EX_DATA if (ssl != NULL) { return wolfSSL_CRYPTO_get_ex_data(&ssl->ex_data, idx); } #else WOLFSSL_MSG("HAVE_EX_DATA macro is not defined"); (void)ssl; (void)idx; #endif return 0; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || WOLFSSL_WPAS_SMALL */ #if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \ || defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA) #if defined(OPENSSL_EXTRA) && !defined(NO_DH) /* Initialize ctx->dh with dh's params. Return WOLFSSL_SUCCESS on ok */ long wolfSSL_CTX_set_tmp_dh(WOLFSSL_CTX* ctx, WOLFSSL_DH* dh) { int pSz, gSz; byte *p, *g; int ret=0; WOLFSSL_ENTER("wolfSSL_CTX_set_tmp_dh"); if(!ctx || !dh) return BAD_FUNC_ARG; /* Get needed size for p and g */ pSz = wolfSSL_BN_bn2bin(dh->p, NULL); gSz = wolfSSL_BN_bn2bin(dh->g, NULL); if(pSz <= 0 || gSz <= 0) return WOLFSSL_FATAL_ERROR; p = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if(!p) return MEMORY_E; g = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if(!g) { XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); return MEMORY_E; } pSz = wolfSSL_BN_bn2bin(dh->p, p); gSz = wolfSSL_BN_bn2bin(dh->g, g); if(pSz >= 0 && gSz >= 0) /* Conversion successful */ ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz); XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); return pSz > 0 && gSz > 0 ? ret : WOLFSSL_FATAL_ERROR; } #endif /* OPENSSL_EXTRA && !NO_DH */ /* returns the enum value associated with handshake state * * ssl the WOLFSSL structure to get state of */ int wolfSSL_get_state(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_state"); if (ssl == NULL) { WOLFSSL_MSG("Null argument passed in"); return SSL_FAILURE; } return ssl->options.handShakeState; } #endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE */ #ifdef OPENSSL_EXTRA void wolfSSL_certs_clear(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_certs_clear()"); if (ssl == NULL) return; /* ctx still owns certificate, certChain, key, dh, and cm */ if (ssl->buffers.weOwnCert) FreeDer(&ssl->buffers.certificate); ssl->buffers.certificate = NULL; if (ssl->buffers.weOwnCertChain) FreeDer(&ssl->buffers.certChain); ssl->buffers.certChain = NULL; #ifdef WOLFSSL_TLS13 ssl->buffers.certChainCnt = 0; #endif if (ssl->buffers.weOwnKey) FreeDer(&ssl->buffers.key); ssl->buffers.key = NULL; ssl->buffers.keyType = 0; ssl->buffers.keyId = 0; ssl->buffers.keyLabel = 0; ssl->buffers.keySz = 0; ssl->buffers.keyDevId = 0; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || defined(WOLFSSL_HAPROXY) \ || defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) long wolfSSL_ctrl(WOLFSSL* ssl, int cmd, long opt, void* pt) { WOLFSSL_ENTER("wolfSSL_ctrl"); if (ssl == NULL) return BAD_FUNC_ARG; switch (cmd) { #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) || defined(OPENSSL_ALL) #ifdef HAVE_SNI case SSL_CTRL_SET_TLSEXT_HOSTNAME: WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TLSEXT_HOSTNAME."); if (pt == NULL) { WOLFSSL_MSG("Passed in NULL Host Name."); break; } return wolfSSL_set_tlsext_host_name(ssl, (const char*) pt); #endif /* HAVE_SNI */ #endif /* WOLFSSL_NGINX || WOLFSSL_QT || OPENSSL_ALL */ default: WOLFSSL_MSG("Case not implemented."); } (void)opt; (void)pt; return WOLFSSL_FAILURE; } long wolfSSL_CTX_ctrl(WOLFSSL_CTX* ctx, int cmd, long opt, void* pt) { #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) long ctrl_opt; #endif long ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_CTX_ctrl"); if (ctx == NULL) return WOLFSSL_FAILURE; switch (cmd) { case SSL_CTRL_CHAIN: #ifdef SESSION_CERTS { /* * We don't care about opt here because a copy of the certificate is * stored anyway so increasing the reference counter is not necessary. * Just check to make sure that it is set to one of the correct values. */ WOLF_STACK_OF(WOLFSSL_X509)* sk = (WOLF_STACK_OF(WOLFSSL_X509)*) pt; WOLFSSL_X509* x509; int i; if (opt != 0 && opt != 1) { ret = WOLFSSL_FAILURE; break; } /* Clear certificate chain */ FreeDer(&ctx->certChain); if (sk) { for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) { x509 = wolfSSL_sk_X509_value(sk, i); /* Prevent wolfSSL_CTX_add_extra_chain_cert from freeing cert */ if (wolfSSL_X509_up_ref(x509) != 1) { WOLFSSL_MSG("Error increasing reference count"); continue; } if (wolfSSL_CTX_add_extra_chain_cert(ctx, x509) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error adding certificate to context"); /* Decrease reference count on failure */ wolfSSL_X509_free(x509); } } } /* Free previous chain */ wolfSSL_sk_X509_pop_free(ctx->x509Chain, NULL); ctx->x509Chain = sk; if (sk && opt == 1) { /* up all refs when opt == 1 */ for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) { x509 = wolfSSL_sk_X509_value(sk, i); if (wolfSSL_X509_up_ref(x509) != 1) { WOLFSSL_MSG("Error increasing reference count"); continue; } } } } #else WOLFSSL_MSG("Session certificates not compiled in"); ret = WOLFSSL_FAILURE; #endif break; #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) case SSL_CTRL_OPTIONS: WOLFSSL_MSG("Entering Case: SSL_CTRL_OPTIONS."); ctrl_opt = wolfSSL_CTX_set_options(ctx, opt); #ifdef WOLFSSL_QT /* Set whether to use client or server cipher preference */ if ((ctrl_opt & WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) == WOLFSSL_OP_CIPHER_SERVER_PREFERENCE) { WOLFSSL_MSG("Using Server's Cipher Preference."); ctx->useClientOrder = FALSE; } else { WOLFSSL_MSG("Using Client's Cipher Preference."); ctx->useClientOrder = TRUE; } #endif /* WOLFSSL_QT */ return ctrl_opt; #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ case SSL_CTRL_EXTRA_CHAIN_CERT: WOLFSSL_MSG("Entering Case: SSL_CTRL_EXTRA_CHAIN_CERT."); if (pt == NULL) { WOLFSSL_MSG("Passed in x509 pointer NULL."); ret = WOLFSSL_FAILURE; break; } return wolfSSL_CTX_add_extra_chain_cert(ctx, (WOLFSSL_X509*)pt); #ifndef NO_DH case SSL_CTRL_SET_TMP_DH: WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_DH."); if (pt == NULL) { WOLFSSL_MSG("Passed in DH pointer NULL."); ret = WOLFSSL_FAILURE; break; } return wolfSSL_CTX_set_tmp_dh(ctx, (WOLFSSL_DH*)pt); #endif #ifdef HAVE_ECC case SSL_CTRL_SET_TMP_ECDH: WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_ECDH."); if (pt == NULL) { WOLFSSL_MSG("Passed in ECDH pointer NULL."); ret = WOLFSSL_FAILURE; break; } return wolfSSL_SSL_CTX_set_tmp_ecdh(ctx, (WOLFSSL_EC_KEY*)pt); #endif case SSL_CTRL_MODE: wolfSSL_CTX_set_mode(ctx,opt); break; case SSL_CTRL_SET_MIN_PROTO_VERSION: WOLFSSL_MSG("set min proto version"); return wolfSSL_CTX_set_min_proto_version(ctx, (int)opt); case SSL_CTRL_SET_MAX_PROTO_VERSION: WOLFSSL_MSG("set max proto version"); return wolfSSL_CTX_set_max_proto_version(ctx, (int)opt); case SSL_CTRL_GET_MIN_PROTO_VERSION: WOLFSSL_MSG("get min proto version"); return wolfSSL_CTX_get_min_proto_version(ctx); case SSL_CTRL_GET_MAX_PROTO_VERSION: WOLFSSL_MSG("get max proto version"); return wolfSSL_CTX_get_max_proto_version(ctx); default: WOLFSSL_MSG("CTX_ctrl cmd not implemented"); ret = WOLFSSL_FAILURE; break; } (void)ctx; (void)cmd; (void)opt; (void)pt; WOLFSSL_LEAVE("wolfSSL_CTX_ctrl", (int)ret); return ret; } #ifndef WOLFSSL_NO_STUB long wolfSSL_CTX_callback_ctrl(WOLFSSL_CTX* ctx, int cmd, void (*fp)(void)) { (void) ctx; (void) cmd; (void) fp; WOLFSSL_STUB("wolfSSL_CTX_callback_ctrl"); return WOLFSSL_FAILURE; } #endif /* WOLFSSL_NO_STUB */ #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_clear_extra_chain_certs(WOLFSSL_CTX* ctx) { return wolfSSL_CTX_ctrl(ctx, SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS, 0L, NULL); } #endif /* Returns the verifyCallback from the ssl structure if successful. Returns NULL otherwise. */ VerifyCallback wolfSSL_get_verify_callback(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_verify_callback()"); if (ssl) { return ssl->verifyCallback; } return NULL; } /* Adds the ASN1 certificate to the user ctx. Returns WOLFSSL_SUCCESS if no error, returns WOLFSSL_FAILURE otherwise.*/ int wolfSSL_CTX_use_certificate_ASN1(WOLFSSL_CTX *ctx, int derSz, const unsigned char *der) { WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_ASN1()"); if (der != NULL && ctx != NULL) { if (wolfSSL_CTX_use_certificate_buffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } } return WOLFSSL_FAILURE; } #if !defined(HAVE_FAST_RSA) && defined(WOLFSSL_KEY_GEN) && \ !defined(NO_RSA) && !defined(HAVE_USER_RSA) /* Adds the rsa private key to the user ctx. Returns WOLFSSL_SUCCESS if no error, returns WOLFSSL_FAILURE otherwise.*/ int wolfSSL_CTX_use_RSAPrivateKey(WOLFSSL_CTX* ctx, WOLFSSL_RSA* rsa) { int ret; int derSize; unsigned char *maxDerBuf; unsigned char* key = NULL; WOLFSSL_ENTER("wolfSSL_CTX_use_RSAPrivateKey()"); if (ctx == NULL || rsa == NULL) { WOLFSSL_MSG("one or more inputs were NULL"); return BAD_FUNC_ARG; } maxDerBuf = (unsigned char*)XMALLOC(4096, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (maxDerBuf == NULL) { WOLFSSL_MSG("Malloc failure"); return MEMORY_E; } key = maxDerBuf; /* convert RSA struct to der encoded buffer and get the size */ if ((derSize = wolfSSL_i2d_RSAPrivateKey(rsa, &key)) <= 0) { WOLFSSL_MSG("wolfSSL_i2d_RSAPrivateKey() failure"); XFREE(maxDerBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } ret = wolfSSL_CTX_use_PrivateKey_buffer(ctx, (const unsigned char*)maxDerBuf, derSize, SSL_FILETYPE_ASN1); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_CTX_USE_PrivateKey_buffer() failure"); XFREE(maxDerBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } XFREE(maxDerBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif /* NO_RSA && !HAVE_FAST_RSA */ #ifndef NO_BIO /* Converts EVP_PKEY data from a bio buffer to a WOLFSSL_EVP_PKEY structure. Returns pointer to private EVP_PKEY struct upon success, NULL if there is a failure.*/ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_bio(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** out) { unsigned char* mem = NULL; int memSz = 0; WOLFSSL_EVP_PKEY* key = NULL; int i = 0, j = 0; unsigned char* extraBioMem = NULL; int extraBioMemSz = 0; int derLength = 0; WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_bio()"); if (bio == NULL) { return NULL; } (void)out; memSz = wolfSSL_BIO_get_len(bio); if (memSz <= 0) { WOLFSSL_MSG("wolfSSL_BIO_get_len() failure"); return NULL; } mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { WOLFSSL_MSG("Malloc failure"); return NULL; } if (wolfSSL_BIO_read(bio, (unsigned char*)mem, memSz) == memSz) { /* Determines key type and returns the new private EVP_PKEY object */ if ((key = wolfSSL_d2i_PrivateKey_EVP(NULL, &mem, (long)memSz)) == NULL) { WOLFSSL_MSG("wolfSSL_d2i_PrivateKey_EVP() failure"); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } /* Write extra data back into bio object if necessary. */ derLength = key->pkey_sz; extraBioMemSz = (memSz - derLength); if (extraBioMemSz > 0) { extraBioMem = (unsigned char *)XMALLOC(extraBioMemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (extraBioMem == NULL) { WOLFSSL_MSG("Malloc failure"); XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } for (i = derLength; i < memSz; i++) { *(extraBioMem + j) = *(mem + i); j++; } wolfSSL_BIO_write(bio, extraBioMem, extraBioMemSz); if (wolfSSL_BIO_get_len(bio) <= 0) { WOLFSSL_MSG("Failed to write memory to bio"); XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); } if (out != NULL) { *out = key; } } XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return key; } #endif /* !NO_BIO */ #endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || defined(WOLFSSL_HAPROXY) || \ defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) || defined(WOLFSSL_WPAS_SMALL) /* Converts a DER encoded private key to a WOLFSSL_EVP_PKEY structure. * returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL * on fail */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_EVP(WOLFSSL_EVP_PKEY** out, unsigned char** in, long inSz) { WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_EVP"); return d2iGenericKey(out, (const unsigned char**)in, inSz, 1); } #endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT || WOLFSSL_WPAS_SMALL*/ /* stunnel compatibility functions*/ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && (defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_OPENSSH))) void wolfSSL_ERR_remove_thread_state(void* pid) { (void) pid; return; } #ifndef NO_FILESYSTEM /***TBD ***/ void wolfSSL_print_all_errors_fp(XFILE fp) { (void)fp; } #endif /* !NO_FILESYSTEM */ #endif /* OPENSSL_ALL || OPENSSL_EXTRA || HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \ defined(HAVE_EX_DATA) #if defined(HAVE_EX_DATA) && !defined(NO_SESSION_CACHE) static void SESSION_ex_data_cache_update(WOLFSSL_SESSION* session, int idx, void* data, byte get, void** getRet, int* setRet) { int row; int i; int error = 0; SessionRow* sessRow = NULL; const byte* id; byte foundCache = 0; if (getRet != NULL) *getRet = NULL; if (setRet != NULL) *setRet = WOLFSSL_FAILURE; id = session->sessionID; if (session->haveAltSessionID) id = session->altSessionID; row = (int)(HashSession(id, ID_LEN, &error) % SESSION_ROWS); if (error != 0) { WOLFSSL_MSG("Hash session failed"); return; } sessRow = &SessionCache[row]; if (SESSION_ROW_LOCK(sessRow) != 0) { WOLFSSL_MSG("Session row lock failed"); return; } for (i = 0; i < SESSIONS_PER_ROW && i < sessRow->totalCount; i++) { if (XMEMCMP(id, sessRow->Sessions[i].sessionID, ID_LEN) == 0 && session->side == sessRow->Sessions[i].side) { if (get) { *getRet = wolfSSL_CRYPTO_get_ex_data( &sessRow->Sessions[i].ex_data, idx); } else { *setRet = wolfSSL_CRYPTO_set_ex_data( &sessRow->Sessions[i].ex_data, idx, data); } foundCache = 1; break; } } SESSION_ROW_UNLOCK(sessRow); /* If we don't have a session in cache then clear the ex_data and * own it */ if (!foundCache) { XMEMSET(&session->ex_data, 0, sizeof(WOLFSSL_CRYPTO_EX_DATA)); session->ownExData = 1; if (!get) { *setRet = wolfSSL_CRYPTO_set_ex_data(&session->ex_data, idx, data); } } } #endif int wolfSSL_SESSION_set_ex_data(WOLFSSL_SESSION* session, int idx, void* data) { int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_SESSION_set_ex_data"); #ifdef HAVE_EX_DATA session = ClientSessionToSession(session); if (session != NULL) { #ifndef NO_SESSION_CACHE if (!session->ownExData) { /* Need to update in cache */ SESSION_ex_data_cache_update(session, idx, data, 0, NULL, &ret); } else #endif { ret = wolfSSL_CRYPTO_set_ex_data(&session->ex_data, idx, data); } } #else (void)session; (void)idx; (void)data; #endif return ret; } #ifdef HAVE_EX_DATA_CLEANUP_HOOKS int wolfSSL_SESSION_set_ex_data_with_cleanup( WOLFSSL_SESSION* session, int idx, void* data, wolfSSL_ex_data_cleanup_routine_t cleanup_routine) { WOLFSSL_ENTER("wolfSSL_SESSION_set_ex_data_with_cleanup"); session = ClientSessionToSession(session); if(session != NULL) { return wolfSSL_CRYPTO_set_ex_data_with_cleanup(&session->ex_data, idx, data, cleanup_routine); } return WOLFSSL_FAILURE; } #endif /* HAVE_EX_DATA_CLEANUP_HOOKS */ void* wolfSSL_SESSION_get_ex_data(const WOLFSSL_SESSION* session, int idx) { void* ret = NULL; WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_data"); #ifdef HAVE_EX_DATA session = ClientSessionToSession(session); if (session != NULL) { #ifndef NO_SESSION_CACHE if (!session->ownExData) { /* Need to retrieve the data from the session cache */ SESSION_ex_data_cache_update((WOLFSSL_SESSION*)session, idx, NULL, 1, &ret, NULL); } else #endif { ret = wolfSSL_CRYPTO_get_ex_data(&session->ex_data, idx); } } #else (void)session; (void)idx; #endif return ret; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || HAVE_EX_DATA */ /* Note: This is a huge section of API's - through * wolfSSL_X509_OBJECT_get0_X509_CRL */ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \ (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \ defined(WOLFSSL_OPENSSH) || defined(HAVE_SBLIM_SFCB))) #ifdef HAVE_EX_DATA int wolfSSL_SESSION_get_ex_new_index(long idx, void* data, void* cb1, void* cb2, CRYPTO_free_func* cb3) { WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_new_index"); (void)idx; (void)cb1; (void)cb2; (void)cb3; (void)data; return wolfssl_get_ex_new_index(WOLF_CRYPTO_EX_INDEX_SSL_SESSION); } #endif #if defined(USE_WOLFSSL_MEMORY) && !defined(WOLFSSL_DEBUG_MEMORY) static wolfSSL_OSSL_Malloc_cb ossl_malloc = NULL; static wolfSSL_OSSL_Free_cb ossl_free = NULL; static wolfSSL_OSSL_Realloc_cb ossl_realloc = NULL; static void* OSSL_Malloc(size_t size) { if (ossl_malloc != NULL) return ossl_malloc(size, NULL, 0); else return NULL; } static void OSSL_Free(void *ptr) { if (ossl_free != NULL) ossl_free(ptr, NULL, 0); } static void* OSSL_Realloc(void *ptr, size_t size) { if (ossl_realloc != NULL) return ossl_realloc(ptr, size, NULL, 0); else return NULL; } #endif /* USE_WOLFSSL_MEMORY && !WOLFSSL_DEBUG_MEMORY */ int wolfSSL_CRYPTO_set_mem_functions( wolfSSL_OSSL_Malloc_cb m, wolfSSL_OSSL_Realloc_cb r, wolfSSL_OSSL_Free_cb f) { #ifdef USE_WOLFSSL_MEMORY #ifdef WOLFSSL_DEBUG_MEMORY WOLFSSL_MSG("mem functions will receive function name instead of " "file name"); if (wolfSSL_SetAllocators((wolfSSL_Malloc_cb)m, (wolfSSL_Free_cb)f, (wolfSSL_Realloc_cb)r) == 0) return WOLFSSL_SUCCESS; #else WOLFSSL_MSG("wolfSSL was compiled without WOLFSSL_DEBUG_MEMORY. mem " "functions will receive a NULL file name and 0 for the " "line number."); if (wolfSSL_SetAllocators(OSSL_Malloc, OSSL_Free, OSSL_Realloc) == 0) { ossl_malloc = m; ossl_free = f; ossl_realloc = r; return WOLFSSL_SUCCESS; } #endif else return WOLFSSL_FAILURE; #else (void)m; (void)r; (void)f; WOLFSSL_MSG("wolfSSL allocator callback functions not compiled in"); return WOLFSSL_FAILURE; #endif } int wolfSSL_ERR_load_ERR_strings(void) { return WOLFSSL_SUCCESS; } void wolfSSL_ERR_load_crypto_strings(void) { WOLFSSL_ENTER("wolfSSL_ERR_load_crypto_strings"); /* Do nothing */ return; } int wolfSSL_FIPS_mode(void) { #ifdef HAVE_FIPS return 1; #else return 0; #endif } int wolfSSL_FIPS_mode_set(int r) { #ifdef HAVE_FIPS if (r == 0) { WOLFSSL_MSG("Cannot disable FIPS at runtime."); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; #else if (r == 0) { return WOLFSSL_SUCCESS; } WOLFSSL_MSG("Cannot enable FIPS. This isn't the wolfSSL FIPS code."); return WOLFSSL_FAILURE; #endif } int wolfSSL_CIPHER_get_bits(const WOLFSSL_CIPHER *c, int *alg_bits) { int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_CIPHER_get_bits"); #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) (void)alg_bits; if (c!= NULL) ret = c->bits; #else if (c != NULL && c->ssl != NULL) { ret = 8 * c->ssl->specs.key_size; if (alg_bits != NULL) { *alg_bits = ret; } } #endif return ret; } /* returns value less than 0 on fail to match * On a successful match the priority level found is returned */ int wolfSSL_sk_SSL_CIPHER_find( WOLF_STACK_OF(WOLFSSL_CIPHER)* sk, const WOLFSSL_CIPHER* toFind) { WOLFSSL_STACK* next; int i, sz; if (sk == NULL || toFind == NULL) { return WOLFSSL_FATAL_ERROR; } sz = wolfSSL_sk_SSL_CIPHER_num(sk); next = sk; for (i = 0; i < sz && next != NULL; i++) { if (next->data.cipher.cipherSuite0 == toFind->cipherSuite0 && next->data.cipher.cipherSuite == toFind->cipherSuite) { return sz - i; /* reverse because stack pushed highest on first */ } next = next->next; } return WOLFSSL_FATAL_ERROR; } /* free's all nodes in the stack and there data */ void wolfSSL_sk_SSL_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk) { WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_free"); wolfSSL_sk_free(sk); } #ifdef HAVE_SNI int wolfSSL_set_tlsext_host_name(WOLFSSL* ssl, const char* host_name) { int ret; WOLFSSL_ENTER("wolfSSL_set_tlsext_host_name"); ret = wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, host_name, (word16)XSTRLEN(host_name)); WOLFSSL_LEAVE("wolfSSL_set_tlsext_host_name", ret); return ret; } #ifndef NO_WOLFSSL_SERVER const char * wolfSSL_get_servername(WOLFSSL* ssl, byte type) { void * serverName = NULL; if (ssl == NULL) return NULL; TLSX_SNI_GetRequest(ssl->extensions, type, &serverName); return (const char *)serverName; } #endif /* NO_WOLFSSL_SERVER */ #endif /* HAVE_SNI */ WOLFSSL_CTX* wolfSSL_set_SSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx) { if (ssl && ctx && SetSSL_CTX(ssl, ctx, 0) == WOLFSSL_SUCCESS) return ssl->ctx; return NULL; } VerifyCallback wolfSSL_CTX_get_verify_callback(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_verify_callback"); if(ctx) return ctx->verifyCallback; return NULL; } #ifdef HAVE_SNI void wolfSSL_CTX_set_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_servername_callback"); if (ctx) ctx->sniRecvCb = cb; } int wolfSSL_CTX_set_tlsext_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_tlsext_servername_callback"); if (ctx) { ctx->sniRecvCb = cb; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } int wolfSSL_CTX_set_servername_arg(WOLFSSL_CTX* ctx, void* arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_servername_arg"); if (ctx) { ctx->sniRecvCbArg = arg; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #endif /* HAVE_SNI */ #ifndef NO_BIO void wolfSSL_ERR_load_BIO_strings(void) { WOLFSSL_ENTER("ERR_load_BIO_strings"); /* do nothing */ } #endif #ifndef NO_WOLFSSL_STUB /* Set THREADID callback, return 1 on success, 0 on error */ int wolfSSL_THREADID_set_callback( void(*threadid_func)(WOLFSSL_CRYPTO_THREADID*)) { WOLFSSL_ENTER("wolfSSL_THREADID_set_callback"); WOLFSSL_STUB("CRYPTO_THREADID_set_callback"); (void)threadid_func; return 1; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_THREADID_set_numeric(void* id, unsigned long val) { WOLFSSL_ENTER("wolfSSL_THREADID_set_numeric"); WOLFSSL_STUB("CRYPTO_THREADID_set_numeric"); (void)id; (void)val; return; } #endif #endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (HAVE_STUNNEL || WOLFSSL_NGINX || * HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH || * HAVE_SBLIM_SFCB)) */ #if defined(OPENSSL_EXTRA) int wolfSSL_CRYPTO_memcmp(const void *a, const void *b, size_t size) { if (!a || !b) return 0; return ConstantCompare((const byte*)a, (const byte*)b, (int)size); } unsigned long wolfSSL_ERR_peek_last_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error"); #ifdef WOLFSSL_HAVE_ERROR_QUEUE { int ret; if ((ret = wc_PeekErrorNode(-1, NULL, NULL, NULL)) < 0) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } if (ret == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; #if defined(WOLFSSL_PYTHON) if (ret == ASN1_R_HEADER_TOO_LONG) return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG; #endif return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif /* OPENSSL_EXTRA */ int wolfSSL_version(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_version"); if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { case SSLv3_MINOR : return SSL3_VERSION; case TLSv1_MINOR : return TLS1_VERSION; case TLSv1_1_MINOR : return TLS1_1_VERSION; case TLSv1_2_MINOR : return TLS1_2_VERSION; case TLSv1_3_MINOR : return TLS1_3_VERSION; default: return WOLFSSL_FAILURE; } } else if (ssl->version.major == DTLS_MAJOR) { switch (ssl->version.minor) { case DTLS_MINOR : return DTLS1_VERSION; case DTLSv1_2_MINOR : return DTLS1_2_VERSION; default: return WOLFSSL_FAILURE; } } return WOLFSSL_FAILURE; } WOLFSSL_CTX* wolfSSL_get_SSL_CTX(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_SSL_CTX"); return ssl->ctx; } #if defined(OPENSSL_ALL) || \ defined(OPENSSL_EXTRA) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) const byte* wolfSSL_SESSION_get_id(const WOLFSSL_SESSION* sess, unsigned int* idLen) { WOLFSSL_ENTER("wolfSSL_SESSION_get_id"); sess = ClientSessionToSession(sess); if (sess == NULL || idLen == NULL) { WOLFSSL_MSG("Bad func args. Please provide idLen"); return NULL; } *idLen = sess->sessionIDSz; return sess->sessionID; } #if (defined(HAVE_SESSION_TICKET) || defined(SESSION_CERTS)) && \ !defined(NO_FILESYSTEM) #ifndef NO_BIO #if defined(SESSION_CERTS) || \ (defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)) /* returns a pointer to the protocol used by the session */ static const char* wolfSSL_SESSION_get_protocol(const WOLFSSL_SESSION* in) { in = ClientSessionToSession(in); return wolfSSL_internal_get_version((ProtocolVersion*)&in->version); } #endif /* returns true (non 0) if the session has EMS (extended master secret) */ static int wolfSSL_SESSION_haveEMS(const WOLFSSL_SESSION* in) { in = ClientSessionToSession(in); if (in == NULL) return 0; return in->haveEMS; } #if defined(HAVE_SESSION_TICKET) /* prints out the ticket to bio passed in * return WOLFSSL_SUCCESS on success */ static int wolfSSL_SESSION_print_ticket(WOLFSSL_BIO* bio, const WOLFSSL_SESSION* in, const char* tab) { unsigned short i, j, z, sz; short tag = 0; byte* pt; in = ClientSessionToSession(in); if (in == NULL || bio == NULL) { return BAD_FUNC_ARG; } sz = in->ticketLen; pt = in->ticket; if (wolfSSL_BIO_printf(bio, "%s\n", (sz == 0)? " NONE": "") <= 0) return WOLFSSL_FAILURE; for (i = 0; i < sz;) { char asc[16]; if (sz - i < 16) { if (wolfSSL_BIO_printf(bio, "%s%04X -", tab, tag + (sz - i)) <= 0) return WOLFSSL_FAILURE; } else { if (wolfSSL_BIO_printf(bio, "%s%04X -", tab, tag) <= 0) return WOLFSSL_FAILURE; } for (j = 0; i < sz && j < 8; j++,i++) { asc[j] = ((pt[i])&0x6f)>='A'?((pt[i])&0x6f):'.'; if (wolfSSL_BIO_printf(bio, " %02X", pt[i]) <= 0) return WOLFSSL_FAILURE; } if (i < sz) { asc[j] = ((pt[i])&0x6f)>='A'?((pt[i])&0x6f):'.'; if (wolfSSL_BIO_printf(bio, "-%02X", pt[i]) <= 0) return WOLFSSL_FAILURE; j++; i++; } for (; i < sz && j < 16; j++,i++) { asc[j] = ((pt[i])&0x6f)>='A'?((pt[i])&0x6f):'.'; if (wolfSSL_BIO_printf(bio, " %02X", pt[i]) <= 0) return WOLFSSL_FAILURE; } /* pad out spacing */ for (z = j; z < 17; z++) { if (wolfSSL_BIO_printf(bio, " ") <= 0) return WOLFSSL_FAILURE; } for (z = 0; z < j; z++) { if (wolfSSL_BIO_printf(bio, "%c", asc[z]) <= 0) return WOLFSSL_FAILURE; } if (wolfSSL_BIO_printf(bio, "\n") <= 0) return WOLFSSL_FAILURE; tag += 16; } return WOLFSSL_SUCCESS; } #endif /* HAVE_SESSION_TICKET */ /* prints out the session information in human readable form * return WOLFSSL_SUCCESS on success */ int wolfSSL_SESSION_print(WOLFSSL_BIO *bp, const WOLFSSL_SESSION *session) { const unsigned char* pt; unsigned char buf[SECRET_LEN]; unsigned int sz = 0, i; int ret; session = ClientSessionToSession(session); if (session == NULL) { return WOLFSSL_FAILURE; } if (wolfSSL_BIO_printf(bp, "%s\n", "SSL-Session:") <= 0) return WOLFSSL_FAILURE; #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) if (wolfSSL_BIO_printf(bp, " Protocol : %s\n", wolfSSL_SESSION_get_protocol(session)) <= 0) return WOLFSSL_FAILURE; #endif if (wolfSSL_BIO_printf(bp, " Cipher : %s\n", wolfSSL_SESSION_CIPHER_get_name(session)) <= 0) return WOLFSSL_FAILURE; pt = wolfSSL_SESSION_get_id(session, &sz); if (wolfSSL_BIO_printf(bp, " Session-ID: ") <= 0) return WOLFSSL_FAILURE; for (i = 0; i < sz; i++) { if (wolfSSL_BIO_printf(bp, "%02X", pt[i]) <= 0) return WOLFSSL_FAILURE; } if (wolfSSL_BIO_printf(bp, "\n") <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_printf(bp, " Session-ID-ctx: \n") <= 0) return WOLFSSL_FAILURE; ret = wolfSSL_SESSION_get_master_key(session, buf, sizeof(buf)); if (wolfSSL_BIO_printf(bp, " Master-Key: ") <= 0) return WOLFSSL_FAILURE; if (ret > 0) { sz = (unsigned int)ret; for (i = 0; i < sz; i++) { if (wolfSSL_BIO_printf(bp, "%02X", buf[i]) <= 0) return WOLFSSL_FAILURE; } } if (wolfSSL_BIO_printf(bp, "\n") <= 0) return WOLFSSL_FAILURE; /* @TODO PSK identity hint and SRP */ if (wolfSSL_BIO_printf(bp, " TLS session ticket:") <= 0) return WOLFSSL_FAILURE; #ifdef HAVE_SESSION_TICKET if (wolfSSL_SESSION_print_ticket(bp, session, " ") != WOLFSSL_SUCCESS) return WOLFSSL_FAILURE; #endif #if !defined(NO_SESSION_CACHE) && (defined(OPENSSL_EXTRA) || \ defined(HAVE_EXT_CACHE)) if (wolfSSL_BIO_printf(bp, " Start Time: %ld\n", wolfSSL_SESSION_get_time(session)) <= 0) return WOLFSSL_FAILURE; if (wolfSSL_BIO_printf(bp, " Timeout : %ld (sec)\n", wolfSSL_SESSION_get_timeout(session)) <= 0) return WOLFSSL_FAILURE; #endif /* !NO_SESSION_CACHE && OPENSSL_EXTRA || HAVE_EXT_CACHE */ /* @TODO verify return code print */ if (wolfSSL_BIO_printf(bp, " Extended master secret: %s\n", (wolfSSL_SESSION_haveEMS(session) == 0)? "no" : "yes") <= 0) return WOLFSSL_FAILURE; return WOLFSSL_SUCCESS; } #endif /* !NO_BIO */ #endif /* (HAVE_SESSION_TICKET || SESSION_CERTS) && !NO_FILESYSTEM */ #endif /* OPENSSL_ALL || OPENSSL_EXTRA || HAVE_STUNNEL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && defined(HAVE_STUNNEL)) \ || defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) /* TODO: Doesn't currently track SSL_VERIFY_CLIENT_ONCE */ int wolfSSL_get_verify_mode(const WOLFSSL* ssl) { int mode = 0; WOLFSSL_ENTER("wolfSSL_get_verify_mode"); if (!ssl) { return WOLFSSL_FAILURE; } if (ssl->options.verifyNone) { mode = WOLFSSL_VERIFY_NONE; } else { if (ssl->options.verifyPeer) { mode |= WOLFSSL_VERIFY_PEER; } if (ssl->options.failNoCert) { mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT; } if (ssl->options.failNoCertxPSK) { mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK; } #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) if (ssl->options.verifyPostHandshake) { mode |= WOLFSSL_VERIFY_POST_HANDSHAKE; } #endif } WOLFSSL_LEAVE("wolfSSL_get_verify_mode", mode); return mode; } int wolfSSL_CTX_get_verify_mode(const WOLFSSL_CTX* ctx) { int mode = 0; WOLFSSL_ENTER("wolfSSL_CTX_get_verify_mode"); if (!ctx) { return WOLFSSL_FAILURE; } if (ctx->verifyNone) { mode = WOLFSSL_VERIFY_NONE; } else { if (ctx->verifyPeer) { mode |= WOLFSSL_VERIFY_PEER; } if (ctx->failNoCert) { mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT; } if (ctx->failNoCertxPSK) { mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK; } #if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) if (ctx->verifyPostHandshake) { mode |= WOLFSSL_VERIFY_POST_HANDSHAKE; } #endif } WOLFSSL_LEAVE("wolfSSL_CTX_get_verify_mode", mode); return mode; } #endif #if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE25519) /* return 1 if success, 0 if error * output keys are little endian format */ int wolfSSL_EC25519_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ int ret = WOLFSSL_FAILURE; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_EC25519_generate_key"); if (priv == NULL || privSz == NULL || *privSz < CURVE25519_KEYSIZE || pub == NULL || pubSz == NULL || *pubSz < CURVE25519_KEYSIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FAILURE; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { curve25519_key key; if (wc_curve25519_init(&key) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_init failed"); else if (wc_curve25519_make_key(rng, CURVE25519_KEYSIZE, &key)!=MP_OKAY) WOLFSSL_MSG("wc_curve25519_make_key failed"); /* export key pair */ else if (wc_curve25519_export_key_raw_ex(&key, priv, privSz, pub, pubSz, EC25519_LITTLE_ENDIAN) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_export_key_raw_ex failed"); else ret = WOLFSSL_SUCCESS; wc_curve25519_free(&key); } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; #endif /* WOLFSSL_KEY_GEN */ } /* return 1 if success, 0 if error * input and output keys are little endian format */ int wolfSSL_EC25519_shared_key(unsigned char *shared, unsigned int *sharedSz, const unsigned char *priv, unsigned int privSz, const unsigned char *pub, unsigned int pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) shared; (void) sharedSz; (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ int ret = WOLFSSL_FAILURE; curve25519_key privkey, pubkey; WOLFSSL_ENTER("wolfSSL_EC25519_shared_key"); if (shared == NULL || sharedSz == NULL || *sharedSz < CURVE25519_KEYSIZE || priv == NULL || privSz < CURVE25519_KEYSIZE || pub == NULL || pubSz < CURVE25519_KEYSIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import private key */ if (wc_curve25519_init(&privkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init privkey failed"); return ret; } if (wc_curve25519_import_private_ex(priv, privSz, &privkey, EC25519_LITTLE_ENDIAN) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_import_private_ex failed"); wc_curve25519_free(&privkey); return ret; } /* import public key */ if (wc_curve25519_init(&pubkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init pubkey failed"); wc_curve25519_free(&privkey); return ret; } if (wc_curve25519_import_public_ex(pub, pubSz, &pubkey, EC25519_LITTLE_ENDIAN) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_import_public_ex failed"); wc_curve25519_free(&privkey); wc_curve25519_free(&pubkey); return ret; } if (wc_curve25519_shared_secret_ex(&privkey, &pubkey, shared, sharedSz, EC25519_LITTLE_ENDIAN) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed"); else ret = WOLFSSL_SUCCESS; wc_curve25519_free(&privkey); wc_curve25519_free(&pubkey); return ret; #endif /* WOLFSSL_KEY_GEN */ } #endif /* OPENSSL_EXTRA && HAVE_CURVE25519 */ #if defined(OPENSSL_EXTRA) && defined(HAVE_ED25519) /* return 1 if success, 0 if error * output keys are little endian format */ int wolfSSL_ED25519_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #elif !defined(HAVE_ED25519_KEY_EXPORT) WOLFSSL_MSG("No ED25519 key export built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_EXPORT */ int ret = WOLFSSL_FAILURE; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_ED25519_generate_key"); if (priv == NULL || privSz == NULL || *privSz < ED25519_PRV_KEY_SIZE || pub == NULL || pubSz == NULL || *pubSz < ED25519_PUB_KEY_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { ed25519_key key; if (wc_ed25519_init(&key) != MP_OKAY) WOLFSSL_MSG("wc_ed25519_init failed"); else if (wc_ed25519_make_key(rng, ED25519_KEY_SIZE, &key)!=MP_OKAY) WOLFSSL_MSG("wc_ed25519_make_key failed"); /* export private key */ else if (wc_ed25519_export_key(&key, priv, privSz, pub, pubSz)!=MP_OKAY) WOLFSSL_MSG("wc_ed25519_export_key failed"); else ret = WOLFSSL_SUCCESS; wc_ed25519_free(&key); } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; #endif /* WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_EXPORT */ } /* return 1 if success, 0 if error * input and output keys are little endian format * priv is a buffer containing private and public part of key */ int wolfSSL_ED25519_sign(const unsigned char *msg, unsigned int msgSz, const unsigned char *priv, unsigned int privSz, unsigned char *sig, unsigned int *sigSz) { #if !defined(HAVE_ED25519_SIGN) || !defined(WOLFSSL_KEY_GEN) || !defined(HAVE_ED25519_KEY_IMPORT) #if !defined(HAVE_ED25519_SIGN) WOLFSSL_MSG("No ED25519 sign built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED25519_KEY_IMPORT) WOLFSSL_MSG("No ED25519 Key import built in"); #endif (void) msg; (void) msgSz; (void) priv; (void) privSz; (void) sig; (void) sigSz; return WOLFSSL_FAILURE; #else /* HAVE_ED25519_SIGN && WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_IMPORT */ ed25519_key key; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_ED25519_sign"); if (priv == NULL || privSz != ED25519_PRV_KEY_SIZE || msg == NULL || sig == NULL || *sigSz < ED25519_SIG_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import key */ if (wc_ed25519_init(&key) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init failed"); return ret; } if (wc_ed25519_import_private_key(priv, privSz/2, priv+(privSz/2), ED25519_PUB_KEY_SIZE, &key) != MP_OKAY){ WOLFSSL_MSG("wc_ed25519_import_private failed"); wc_ed25519_free(&key); return ret; } if (wc_ed25519_sign_msg(msg, msgSz, sig, sigSz, &key) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed"); else ret = WOLFSSL_SUCCESS; wc_ed25519_free(&key); return ret; #endif /* HAVE_ED25519_SIGN && WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_IMPORT */ } /* return 1 if success, 0 if error * input and output keys are little endian format * pub is a buffer containing public part of key */ int wolfSSL_ED25519_verify(const unsigned char *msg, unsigned int msgSz, const unsigned char *pub, unsigned int pubSz, const unsigned char *sig, unsigned int sigSz) { #if !defined(HAVE_ED25519_VERIFY) || !defined(WOLFSSL_KEY_GEN) || !defined(HAVE_ED25519_KEY_IMPORT) #if !defined(HAVE_ED25519_VERIFY) WOLFSSL_MSG("No ED25519 verify built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED25519_KEY_IMPORT) WOLFSSL_MSG("No ED25519 Key import built in"); #endif (void) msg; (void) msgSz; (void) pub; (void) pubSz; (void) sig; (void) sigSz; return WOLFSSL_FAILURE; #else /* HAVE_ED25519_VERIFY && WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_IMPORT */ ed25519_key key; int ret = WOLFSSL_FAILURE, check = 0; WOLFSSL_ENTER("wolfSSL_ED25519_verify"); if (pub == NULL || pubSz != ED25519_PUB_KEY_SIZE || msg == NULL || sig == NULL || sigSz != ED25519_SIG_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import key */ if (wc_ed25519_init(&key) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init failed"); return ret; } if (wc_ed25519_import_public(pub, pubSz, &key) != MP_OKAY){ WOLFSSL_MSG("wc_ed25519_import_public failed"); wc_ed25519_free(&key); return ret; } if ((ret = wc_ed25519_verify_msg((byte*)sig, sigSz, msg, msgSz, &check, &key)) != MP_OKAY) { WOLFSSL_MSG("wc_ed25519_verify_msg failed"); } else if (!check) WOLFSSL_MSG("wc_ed25519_verify_msg failed (signature invalid)"); else ret = WOLFSSL_SUCCESS; wc_ed25519_free(&key); return ret; #endif /* HAVE_ED25519_VERIFY && WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_IMPORT */ } #endif /* OPENSSL_EXTRA && HAVE_ED25519 */ #if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE448) /* return 1 if success, 0 if error * output keys are little endian format */ int wolfSSL_EC448_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ int ret = WOLFSSL_FAILURE; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_EC448_generate_key"); if (priv == NULL || privSz == NULL || *privSz < CURVE448_KEY_SIZE || pub == NULL || pubSz == NULL || *pubSz < CURVE448_KEY_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FAILURE; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { curve448_key key; if (wc_curve448_init(&key) != MP_OKAY) WOLFSSL_MSG("wc_curve448_init failed"); else if (wc_curve448_make_key(rng, CURVE448_KEY_SIZE, &key)!=MP_OKAY) WOLFSSL_MSG("wc_curve448_make_key failed"); /* export key pair */ else if (wc_curve448_export_key_raw_ex(&key, priv, privSz, pub, pubSz, EC448_LITTLE_ENDIAN) != MP_OKAY) WOLFSSL_MSG("wc_curve448_export_key_raw_ex failed"); else ret = WOLFSSL_SUCCESS; wc_curve448_free(&key); } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; #endif /* WOLFSSL_KEY_GEN */ } /* return 1 if success, 0 if error * input and output keys are little endian format */ int wolfSSL_EC448_shared_key(unsigned char *shared, unsigned int *sharedSz, const unsigned char *priv, unsigned int privSz, const unsigned char *pub, unsigned int pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) shared; (void) sharedSz; (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ int ret = WOLFSSL_FAILURE; curve448_key privkey, pubkey; WOLFSSL_ENTER("wolfSSL_EC448_shared_key"); if (shared == NULL || sharedSz == NULL || *sharedSz < CURVE448_KEY_SIZE || priv == NULL || privSz < CURVE448_KEY_SIZE || pub == NULL || pubSz < CURVE448_KEY_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import private key */ if (wc_curve448_init(&privkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve448_init privkey failed"); return ret; } if (wc_curve448_import_private_ex(priv, privSz, &privkey, EC448_LITTLE_ENDIAN) != MP_OKAY) { WOLFSSL_MSG("wc_curve448_import_private_ex failed"); wc_curve448_free(&privkey); return ret; } /* import public key */ if (wc_curve448_init(&pubkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve448_init pubkey failed"); wc_curve448_free(&privkey); return ret; } if (wc_curve448_import_public_ex(pub, pubSz, &pubkey, EC448_LITTLE_ENDIAN) != MP_OKAY) { WOLFSSL_MSG("wc_curve448_import_public_ex failed"); wc_curve448_free(&privkey); wc_curve448_free(&pubkey); return ret; } if (wc_curve448_shared_secret_ex(&privkey, &pubkey, shared, sharedSz, EC448_LITTLE_ENDIAN) != MP_OKAY) WOLFSSL_MSG("wc_curve448_shared_secret_ex failed"); else ret = WOLFSSL_SUCCESS; wc_curve448_free(&privkey); wc_curve448_free(&pubkey); return ret; #endif /* WOLFSSL_KEY_GEN */ } #endif /* OPENSSL_EXTRA && HAVE_CURVE448 */ #if defined(OPENSSL_EXTRA) && defined(HAVE_ED448) /* return 1 if success, 0 if error * output keys are little endian format */ int wolfSSL_ED448_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #elif !defined(HAVE_ED448_KEY_EXPORT) WOLFSSL_MSG("No ED448 key export built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN && HAVE_ED448_KEY_EXPORT */ int ret = WOLFSSL_FAILURE; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_ED448_generate_key"); if (priv == NULL || privSz == NULL || *privSz < ED448_PRV_KEY_SIZE || pub == NULL || pubSz == NULL || *pubSz < ED448_PUB_KEY_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { ed448_key key; if (wc_ed448_init(&key) != MP_OKAY) WOLFSSL_MSG("wc_ed448_init failed"); else if (wc_ed448_make_key(rng, ED448_KEY_SIZE, &key) != MP_OKAY) WOLFSSL_MSG("wc_ed448_make_key failed"); /* export private key */ else if (wc_ed448_export_key(&key, priv, privSz, pub, pubSz) != MP_OKAY) WOLFSSL_MSG("wc_ed448_export_key failed"); else ret = WOLFSSL_SUCCESS; wc_ed448_free(&key); } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; #endif /* WOLFSSL_KEY_GEN && HAVE_ED448_KEY_EXPORT */ } /* return 1 if success, 0 if error * input and output keys are little endian format * priv is a buffer containing private and public part of key */ int wolfSSL_ED448_sign(const unsigned char *msg, unsigned int msgSz, const unsigned char *priv, unsigned int privSz, unsigned char *sig, unsigned int *sigSz) { #if !defined(HAVE_ED448_SIGN) || !defined(WOLFSSL_KEY_GEN) || !defined(HAVE_ED448_KEY_IMPORT) #if !defined(HAVE_ED448_SIGN) WOLFSSL_MSG("No ED448 sign built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED448_KEY_IMPORT) WOLFSSL_MSG("No ED448 Key import built in"); #endif (void) msg; (void) msgSz; (void) priv; (void) privSz; (void) sig; (void) sigSz; return WOLFSSL_FAILURE; #else /* HAVE_ED448_SIGN && WOLFSSL_KEY_GEN && HAVE_ED448_KEY_IMPORT */ ed448_key key; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_ED448_sign"); if (priv == NULL || privSz != ED448_PRV_KEY_SIZE || msg == NULL || sig == NULL || *sigSz < ED448_SIG_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import key */ if (wc_ed448_init(&key) != MP_OKAY) { WOLFSSL_MSG("wc_curve448_init failed"); return ret; } if (wc_ed448_import_private_key(priv, privSz/2, priv+(privSz/2), ED448_PUB_KEY_SIZE, &key) != MP_OKAY){ WOLFSSL_MSG("wc_ed448_import_private failed"); wc_ed448_free(&key); return ret; } if (wc_ed448_sign_msg(msg, msgSz, sig, sigSz, &key, NULL, 0) != MP_OKAY) WOLFSSL_MSG("wc_curve448_shared_secret_ex failed"); else ret = WOLFSSL_SUCCESS; wc_ed448_free(&key); return ret; #endif /* HAVE_ED448_SIGN && WOLFSSL_KEY_GEN && HAVE_ED448_KEY_IMPORT */ } /* return 1 if success, 0 if error * input and output keys are little endian format * pub is a buffer containing public part of key */ int wolfSSL_ED448_verify(const unsigned char *msg, unsigned int msgSz, const unsigned char *pub, unsigned int pubSz, const unsigned char *sig, unsigned int sigSz) { #if !defined(HAVE_ED448_VERIFY) || !defined(WOLFSSL_KEY_GEN) || !defined(HAVE_ED448_KEY_IMPORT) #if !defined(HAVE_ED448_VERIFY) WOLFSSL_MSG("No ED448 verify built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED448_KEY_IMPORT) WOLFSSL_MSG("No ED448 Key import built in"); #endif (void) msg; (void) msgSz; (void) pub; (void) pubSz; (void) sig; (void) sigSz; return WOLFSSL_FAILURE; #else /* HAVE_ED448_VERIFY && WOLFSSL_KEY_GEN && HAVE_ED448_KEY_IMPORT */ ed448_key key; int ret = WOLFSSL_FAILURE, check = 0; WOLFSSL_ENTER("wolfSSL_ED448_verify"); if (pub == NULL || pubSz != ED448_PUB_KEY_SIZE || msg == NULL || sig == NULL || sigSz != ED448_SIG_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import key */ if (wc_ed448_init(&key) != MP_OKAY) { WOLFSSL_MSG("wc_curve448_init failed"); return ret; } if (wc_ed448_import_public(pub, pubSz, &key) != MP_OKAY){ WOLFSSL_MSG("wc_ed448_import_public failed"); wc_ed448_free(&key); return ret; } if ((ret = wc_ed448_verify_msg((byte*)sig, sigSz, msg, msgSz, &check, &key, NULL, 0)) != MP_OKAY) { WOLFSSL_MSG("wc_ed448_verify_msg failed"); } else if (!check) WOLFSSL_MSG("wc_ed448_verify_msg failed (signature invalid)"); else ret = WOLFSSL_SUCCESS; wc_ed448_free(&key); return ret; #endif /* HAVE_ED448_VERIFY && WOLFSSL_KEY_GEN */ } #endif /* OPENSSL_EXTRA && HAVE_ED448 */ #ifdef WOLFSSL_JNI int wolfSSL_set_jobject(WOLFSSL* ssl, void* objPtr) { WOLFSSL_ENTER("wolfSSL_set_jobject"); if (ssl != NULL) { ssl->jObjectRef = objPtr; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } void* wolfSSL_get_jobject(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_jobject"); if (ssl != NULL) return ssl->jObjectRef; return NULL; } #endif /* WOLFSSL_JNI */ #ifdef WOLFSSL_ASYNC_CRYPT int wolfSSL_CTX_AsyncPoll(WOLFSSL_CTX* ctx, WOLF_EVENT** events, int maxEvents, WOLF_EVENT_FLAG flags, int* eventCount) { if (ctx == NULL) { return BAD_FUNC_ARG; } return wolfAsync_EventQueuePoll(&ctx->event_queue, NULL, events, maxEvents, flags, eventCount); } int wolfSSL_AsyncPoll(WOLFSSL* ssl, WOLF_EVENT_FLAG flags) { int ret, eventCount = 0; WOLF_EVENT* events[1]; if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfAsync_EventQueuePoll(&ssl->ctx->event_queue, ssl, events, sizeof(events)/sizeof(events[0]), flags, &eventCount); if (ret == 0) { ret = eventCount; } return ret; } #endif /* WOLFSSL_ASYNC_CRYPT */ #ifdef OPENSSL_EXTRA unsigned long wolfSSL_ERR_peek_error_line_data(const char **file, int *line, const char **data, int *flags) { WOLFSSL_ENTER("wolfSSL_ERR_peek_error_line_data"); (void)line; (void)file; /* No data or flags stored - error display only in Nginx. */ if (data != NULL) { *data = ""; } if (flags != NULL) { *flags = 0; } #ifdef WOLFSSL_HAVE_ERROR_QUEUE { int ret = 0; while (1) { ret = wc_PeekErrorNode(-1, file, NULL, line); if (ret == BAD_MUTEX_E || ret == BAD_FUNC_ARG || ret == BAD_STATE_E) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } /* OpenSSL uses positive error codes */ if (ret < 0) { ret = -ret; } if (ret == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; #ifdef OPENSSL_ALL /* PARSE_ERROR is returned if an HTTP request is detected. */ if (ret == -SSL_R_HTTP_REQUEST) return (ERR_LIB_SSL << 24) | -SSL_R_HTTP_REQUEST; #endif #if defined(OPENSSL_ALL) && defined(WOLFSSL_PYTHON) if (ret == ASN1_R_HEADER_TOO_LONG) { return (ERR_LIB_ASN1 << 24) | ASN1_R_HEADER_TOO_LONG; } #endif if (ret != -WANT_READ && ret != -WANT_WRITE && ret != -ZERO_RETURN && ret != -WOLFSSL_ERROR_ZERO_RETURN && ret != -SOCKET_PEER_CLOSED_E && ret != -SOCKET_ERROR_E) break; wc_RemoveErrorNode(-1); } return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) #if !defined(WOLFSSL_USER_IO) /* converts an IPv6 or IPv4 address into an octet string for use with rfc3280 * example input would be "127.0.0.1" and the returned value would be 7F000001 */ WOLFSSL_ASN1_STRING* wolfSSL_a2i_IPADDRESS(const char* ipa) { int ipaSz = WOLFSSL_IP4_ADDR_LEN; char buf[WOLFSSL_IP6_ADDR_LEN + 1]; /* plus 1 for terminator */ int af = WOLFSSL_IP4; WOLFSSL_ASN1_STRING *ret = NULL; if (ipa == NULL) return NULL; if (XSTRSTR(ipa, ":") != NULL) { af = WOLFSSL_IP6; ipaSz = WOLFSSL_IP6_ADDR_LEN; } buf[WOLFSSL_IP6_ADDR_LEN] = '\0'; if (XINET_PTON(af, ipa, (void*)buf) != 1) { WOLFSSL_MSG("Error parsing IP address"); return NULL; } ret = wolfSSL_ASN1_STRING_new(); if (ret != NULL) { if (wolfSSL_ASN1_STRING_set(ret, buf, ipaSz) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error setting the string"); wolfSSL_ASN1_STRING_free(ret); ret = NULL; } } return ret; } #endif /* !WOLFSSL_USER_IO */ /* Is the specified cipher suite a fake one used an an extension proxy? */ static WC_INLINE int SCSV_Check(byte suite0, byte suite) { (void)suite0; (void)suite; #ifdef HAVE_RENEGOTIATION_INDICATION if (suite0 == CIPHER_BYTE && suite == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) return 1; #endif return 0; } static WC_INLINE int sslCipherMinMaxCheck(const WOLFSSL *ssl, byte suite0, byte suite) { const CipherSuiteInfo* cipher_names = GetCipherNames(); int cipherSz = GetCipherNamesSize(); int i; for (i = 0; i < cipherSz; i++) if (cipher_names[i].cipherSuite0 == suite0 && cipher_names[i].cipherSuite == suite) break; if (i == cipherSz) return 1; /* Check min version */ if (cipher_names[i].minor < ssl->options.minDowngrade) { if (ssl->options.minDowngrade <= TLSv1_2_MINOR && cipher_names[i].minor >= TLSv1_MINOR) /* 1.0 ciphersuites are in general available in 1.1 and * 1.1 ciphersuites are in general available in 1.2 */ return 0; return 1; } /* Check max version */ switch (cipher_names[i].minor) { case SSLv3_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_SSLv3; case TLSv1_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1; case TLSv1_1_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1; case TLSv1_2_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2; case TLSv1_3_MINOR : return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3; default: WOLFSSL_MSG("Unrecognized minor version"); return 1; } } /* returns a pointer to internal cipher suite list. Should not be free'd by * caller. */ WOLF_STACK_OF(WOLFSSL_CIPHER) *wolfSSL_get_ciphers_compat(const WOLFSSL *ssl) { WOLF_STACK_OF(WOLFSSL_CIPHER)* ret = NULL; Suites* suites; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) const CipherSuiteInfo* cipher_names = GetCipherNames(); int cipherSz = GetCipherNamesSize(); #endif WOLFSSL_ENTER("wolfSSL_get_ciphers_compat"); if (ssl == NULL || (ssl->suites == NULL && ssl->ctx->suites == NULL)) { return NULL; } if (ssl->suites != NULL) { if (ssl->suites->suiteSz == 0 && InitSSL_Suites((WOLFSSL*)ssl) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Suite initialization failure"); return NULL; } suites = ssl->suites; } else { suites = ssl->ctx->suites; } /* check if stack needs populated */ if (suites->stack == NULL) { int i; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) int j; /* higher priority of cipher suite will be on top of stack */ for (i = suites->suiteSz - 2; i >=0; i-=2) { #else for (i = 0; i < suites->suiteSz; i+=2) { #endif WOLFSSL_STACK* add; /* A couple of suites are placeholders for special options, * skip those. */ if (SCSV_Check(suites->suites[i], suites->suites[i+1]) || sslCipherMinMaxCheck(ssl, suites->suites[i], suites->suites[i+1])) { continue; } add = wolfSSL_sk_new_node(ssl->heap); if (add != NULL) { add->type = STACK_TYPE_CIPHER; add->data.cipher.cipherSuite0 = suites->suites[i]; add->data.cipher.cipherSuite = suites->suites[i+1]; add->data.cipher.ssl = ssl; #if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) for (j = 0; j < cipherSz; j++) { if (cipher_names[j].cipherSuite0 == add->data.cipher.cipherSuite0 && cipher_names[j].cipherSuite == add->data.cipher.cipherSuite) { add->data.cipher.offset = j; break; } } #endif #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) /* in_stack is checked in wolfSSL_CIPHER_description */ add->data.cipher.in_stack = 1; #endif add->next = ret; if (ret != NULL) { add->num = ret->num + 1; } else { add->num = 1; } ret = add; } } suites->stack = ret; } return suites->stack; } #endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) \ || defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || defined(HAVE_SECRET_CALLBACK) long wolfSSL_SSL_CTX_get_timeout(const WOLFSSL_CTX *ctx) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_timeout"); if (ctx == NULL) return 0; return ctx->timeout; } /* returns the time in seconds of the current timeout */ long wolfSSL_get_timeout(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_timeout"); if (ssl == NULL) return 0; return ssl->timeout; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) \ || defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) #ifdef HAVE_ECC int wolfSSL_SSL_CTX_set_tmp_ecdh(WOLFSSL_CTX *ctx, WOLFSSL_EC_KEY *ecdh) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_tmp_ecdh"); if (ctx == NULL || ecdh == NULL) return BAD_FUNC_ARG; ctx->ecdhCurveOID = ecdh->group->curve_oid; return WOLFSSL_SUCCESS; } #endif /* Assumes that the session passed in is from the cache. */ int wolfSSL_SSL_CTX_remove_session(WOLFSSL_CTX *ctx, WOLFSSL_SESSION *s) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_remove_session"); s = ClientSessionToSession(s); if (ctx == NULL || s == NULL) return BAD_FUNC_ARG; #ifdef HAVE_EXT_CACHE if (!ctx->internalCacheOff) #endif { /* Don't remove session just timeout session. */ s->timeout = 0; #ifndef NO_SESSION_CACHE /* Clear the timeout in the cache */ { int row; int i; SessionRow* sessRow = NULL; WOLFSSL_SESSION *cacheSession; const byte* id; int ret = 0; id = s->sessionID; if (s->haveAltSessionID) id = s->altSessionID; row = (int)(HashSession(id, ID_LEN, &ret) % SESSION_ROWS); if (ret != 0) { WOLFSSL_MSG("Hash session failed"); return ret; } sessRow = &SessionCache[row]; if (SESSION_ROW_LOCK(sessRow) != 0) { WOLFSSL_MSG("Session row lock failed"); return BAD_MUTEX_E; } for (i = 0; i < SESSIONS_PER_ROW && i < sessRow->totalCount; i++) { cacheSession = &sessRow->Sessions[i]; if (XMEMCMP(id, cacheSession->sessionID, ID_LEN) == 0) { if (ctx->method->side != cacheSession->side) continue; cacheSession->timeout = 0; #ifdef HAVE_EX_DATA if (cacheSession->ownExData) { /* Most recent version of ex data is in cache. Copy it * over so the user can free it. */ XMEMCPY(&s->ex_data, &cacheSession->ex_data, sizeof(WOLFSSL_CRYPTO_EX_DATA)); } cacheSession->ownExData = 0; /* We clear below */ s->ownExData = 1; #endif break; } } SESSION_ROW_UNLOCK(sessRow); } #endif } #if defined(HAVE_EXT_CACHE) || defined(HAVE_EX_DATA) if (ctx->rem_sess_cb != NULL) { ctx->rem_sess_cb(ctx, s); } #endif return 0; } #ifndef NO_BIO BIO *wolfSSL_SSL_get_rbio(const WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_get_rbio"); /* Nginx sets the buffer size if the read BIO is different to write BIO. * The setting buffer size doesn't do anything so return NULL for both. */ if (s == NULL) return NULL; return s->biord; } BIO *wolfSSL_SSL_get_wbio(const WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_get_wbio"); (void)s; /* Nginx sets the buffer size if the read BIO is different to write BIO. * The setting buffer size doesn't do anything so return NULL for both. */ if (s == NULL) return NULL; return s->biowr; } #endif /* !NO_BIO */ int wolfSSL_SSL_do_handshake(WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_do_handshake"); if (s == NULL) return WOLFSSL_FAILURE; if (s->options.side == WOLFSSL_CLIENT_END) { #ifndef NO_WOLFSSL_CLIENT return wolfSSL_connect(s); #else WOLFSSL_MSG("Client not compiled in"); return WOLFSSL_FAILURE; #endif } #ifndef NO_WOLFSSL_SERVER return wolfSSL_accept(s); #else WOLFSSL_MSG("Server not compiled in"); return WOLFSSL_FAILURE; #endif } #if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L int wolfSSL_SSL_in_init(const WOLFSSL *ssl) #else int wolfSSL_SSL_in_init(WOLFSSL *ssl) #endif { WOLFSSL_ENTER("SSL_in_init"); if (ssl == NULL) return WOLFSSL_FAILURE; if (ssl->options.side == WOLFSSL_CLIENT_END) { return ssl->options.connectState < SECOND_REPLY_DONE; } return ssl->options.acceptState < ACCEPT_THIRD_REPLY_DONE; } int wolfSSL_SSL_in_connect_init(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_connect_init"); if (ssl == NULL) return WOLFSSL_FAILURE; if (ssl->options.side == WOLFSSL_CLIENT_END) { return ssl->options.connectState > CONNECT_BEGIN && ssl->options.connectState < SECOND_REPLY_DONE; } return ssl->options.acceptState > ACCEPT_BEGIN && ssl->options.acceptState < ACCEPT_THIRD_REPLY_DONE; } #ifndef NO_SESSION_CACHE WOLFSSL_SESSION *wolfSSL_SSL_get0_session(const WOLFSSL *ssl) { WOLFSSL_ENTER("wolfSSL_SSL_get0_session"); return ssl->session; } #endif /* NO_SESSION_CACHE */ #ifndef NO_BIO int wolfSSL_a2i_ASN1_INTEGER(WOLFSSL_BIO *bio, WOLFSSL_ASN1_INTEGER *asn1, char *buf, int size) { int readNextLine; int lineLen; int len; byte isNumCheck; word32 outLen; const int extraTagSz = MAX_LENGTH_SZ + 1; byte intTag[MAX_LENGTH_SZ + 1]; int idx = 0; WOLFSSL_ENTER("wolfSSL_a2i_ASN1_INTEGER"); if (!bio || !asn1 || !buf || size <= 0) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } /* Reset asn1 */ if (asn1->isDynamic && asn1->data) { XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL); } XMEMSET(asn1->intData, 0, WOLFSSL_ASN1_INTEGER_MAX); asn1->data = asn1->intData; asn1->isDynamic = 0; asn1->length = 0; asn1->negative = 0; asn1->type = V_ASN1_INTEGER; lineLen = wolfSSL_BIO_gets(bio, buf, size); do { readNextLine = 0; if (lineLen <= 0) { WOLFSSL_MSG("wolfSSL_BIO_gets error"); return WOLFSSL_FAILURE; } while (lineLen && (buf[lineLen-1] == '\n' || buf[lineLen-1] == '\r')) lineLen--; if (buf[lineLen-1] == '\\') readNextLine = 1; /* Ignore none-hex chars at the end of the line */ outLen = 1; while (lineLen && Base16_Decode((byte*)buf + lineLen - 1, 1, &isNumCheck, &outLen) == ASN_INPUT_E) lineLen--; if (!lineLen || lineLen % 2) { WOLFSSL_MSG("Invalid line length"); return WOLFSSL_FAILURE; } len = asn1->length + (lineLen/2); /* Check if it will fit in static memory and * save space for the ASN tag in front */ if (len > (int)(WOLFSSL_ASN1_INTEGER_MAX - extraTagSz)) { /* Allocate mem for data */ if (asn1->isDynamic) { byte* tmp = (byte*)XREALLOC(asn1->data, len + extraTagSz, NULL, DYNAMIC_TYPE_OPENSSL); if (!tmp) { WOLFSSL_MSG("realloc error"); return WOLFSSL_FAILURE; } asn1->data = tmp; } else { /* Up to this point asn1->data pointed to asn1->intData. * Now that the size has grown larger than intData can handle * the asn1 structure moves to a dynamic type with isDynamic * flag being set and asn1->data being malloc'd. */ asn1->data = (byte*)XMALLOC(len + extraTagSz, NULL, DYNAMIC_TYPE_OPENSSL); if (!asn1->data) { WOLFSSL_MSG("malloc error"); return WOLFSSL_FAILURE; } asn1->isDynamic = 1; XMEMCPY(asn1->data, asn1->intData, asn1->length); } } len = lineLen/2; if (Base16_Decode((byte*)buf, lineLen, asn1->data + asn1->length, (word32*)&len) != 0) { WOLFSSL_MSG("Base16_Decode error"); return WOLFSSL_FAILURE; } asn1->length += len; } while (readNextLine); /* Write ASN tag */ idx = SetASNInt(asn1->length, asn1->data[0], intTag); XMEMMOVE(asn1->data + idx, asn1->data, asn1->length); XMEMCPY(asn1->data, intTag, idx); asn1->dataMax = asn1->length += idx; return WOLFSSL_SUCCESS; } int wolfSSL_i2a_ASN1_INTEGER(BIO *bp, const WOLFSSL_ASN1_INTEGER *a) { word32 idx = 1; int len = 0; byte buf[512]; word32 bufLen = 512; WOLFSSL_ENTER("wolfSSL_i2a_ASN1_INTEGER"); if (bp == NULL || a == NULL) return WOLFSSL_FAILURE; /* Skip ASN.1 INTEGER (type) byte. */ if (a->data[idx] == 0x80 || /* Indefinite length, can't determine length */ GetLength(a->data, &idx, &len, a->length) < 0) { return 0; } /* Zero length integer is the value zero. */ if (len == 0) { return wolfSSL_BIO_write(bp, "00", 2); } if (Base16_Encode(a->data + idx, len, buf, &bufLen) != 0 || bufLen == 0) { return 0; } return wolfSSL_BIO_write(bp, buf, bufLen - 1); /* Don't write out NULL char */ } #endif /* !NO_BIO */ #if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER) /* Expected return values from implementations of OpenSSL ticket key callback. */ #define TICKET_KEY_CB_RET_FAILURE (-1) #define TICKET_KEY_CB_RET_NOT_FOUND 0 #define TICKET_KEY_CB_RET_OK 1 #define TICKET_KEY_CB_RET_RENEW 2 /* Implementation of session ticket encryption/decryption using OpenSSL * callback to initialize the cipher and HMAC. * * ssl The SSL/TLS object. * keyName The key name - used to identify the key to be used. * iv The IV to use. * mac The MAC of the encrypted data. * enc Encrypt ticket. * encTicket The ticket data. * encTicketLen The length of the ticket data. * encLen The encrypted/decrypted ticket length - output length. * ctx Ignored. Application specific data. * returns WOLFSSL_TICKET_RET_OK to indicate success, * WOLFSSL_TICKET_RET_CREATE if a new ticket is required and * WOLFSSL_TICKET_RET_FATAL on error. */ static int wolfSSL_TicketKeyCb(WOLFSSL* ssl, unsigned char keyName[WOLFSSL_TICKET_NAME_SZ], unsigned char iv[WOLFSSL_TICKET_IV_SZ], unsigned char mac[WOLFSSL_TICKET_MAC_SZ], int enc, unsigned char* encTicket, int encTicketLen, int* encLen, void* ctx) { byte digest[WC_MAX_DIGEST_SIZE]; WOLFSSL_EVP_CIPHER_CTX evpCtx; WOLFSSL_HMAC_CTX hmacCtx; unsigned int mdSz = 0; int len = 0; int ret = WOLFSSL_TICKET_RET_FATAL; int res; (void)ctx; WOLFSSL_ENTER("wolfSSL_TicketKeyCb"); if (ssl == NULL || ssl->ctx == NULL || ssl->ctx->ticketEncWrapCb == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_TICKET_RET_FATAL; } /* Initialize the cipher and HMAC. */ wolfSSL_EVP_CIPHER_CTX_init(&evpCtx); if (wolfSSL_HMAC_CTX_Init(&hmacCtx) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_HMAC_CTX_Init error"); return WOLFSSL_TICKET_RET_FATAL; } res = ssl->ctx->ticketEncWrapCb(ssl, keyName, iv, &evpCtx, &hmacCtx, enc); if (res != TICKET_KEY_CB_RET_OK && res != TICKET_KEY_CB_RET_RENEW) { WOLFSSL_MSG("Ticket callback error"); ret = WOLFSSL_TICKET_RET_FATAL; goto end; } if (enc) { /* Encrypt in place. */ if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len, encTicket, encTicketLen)) goto end; encTicketLen = len; if (!wolfSSL_EVP_EncryptFinal(&evpCtx, &encTicket[encTicketLen], &len)) goto end; /* Total length of encrypted data. */ encTicketLen += len; *encLen = encTicketLen; /* HMAC the encrypted data into the parameter 'mac'. */ if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen)) goto end; #ifdef WOLFSSL_SHA512 /* Check for SHA512, which would overrun the mac buffer */ if (hmacCtx.hmac.macType == WC_SHA512) goto end; #endif if (!wolfSSL_HMAC_Final(&hmacCtx, mac, &mdSz)) goto end; } else { /* HMAC the encrypted data and compare it to the passed in data. */ if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen)) goto end; if (!wolfSSL_HMAC_Final(&hmacCtx, digest, &mdSz)) goto end; if (XMEMCMP(mac, digest, mdSz) != 0) goto end; /* Decrypt the ticket data in place. */ if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len, encTicket, encTicketLen)) goto end; encTicketLen = len; if (!wolfSSL_EVP_DecryptFinal(&evpCtx, &encTicket[encTicketLen], &len)) goto end; /* Total length of decrypted data. */ *encLen = encTicketLen + len; } if (res == TICKET_KEY_CB_RET_RENEW && !IsAtLeastTLSv1_3(ssl->version) && !enc) ret = WOLFSSL_TICKET_RET_CREATE; else ret = WOLFSSL_TICKET_RET_OK; end: (void)wc_HmacFree(&hmacCtx.hmac); return ret; } /* Set the callback to use when encrypting/decrypting tickets. * * ctx The SSL/TLS context object. * cb The OpenSSL session ticket callback. * returns WOLFSSL_SUCCESS to indicate success. */ int wolfSSL_CTX_set_tlsext_ticket_key_cb(WOLFSSL_CTX *ctx, ticketCompatCb cb) { /* Set the ticket encryption callback to be a wrapper around OpenSSL * callback. */ ctx->ticketEncCb = wolfSSL_TicketKeyCb; ctx->ticketEncWrapCb = cb; return WOLFSSL_SUCCESS; } #endif /* HAVE_SESSION_TICKET */ #endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || HAVE_LIGHTY */ #if defined(HAVE_SESSION_TICKET) && !defined(WOLFSSL_NO_DEF_TICKET_ENC_CB) && \ !defined(NO_WOLFSSL_SERVER) /* Serialize the session ticket encryption keys. * * @param [in] ctx SSL/TLS context object. * @param [in] keys Buffer to hold session ticket keys. * @param [in] keylen Length of buffer. * @return WOLFSSL_SUCCESS on success. * @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the * correct length. */ long wolfSSL_CTX_get_tlsext_ticket_keys(WOLFSSL_CTX *ctx, unsigned char *keys, int keylen) { if (ctx == NULL || keys == NULL) { return WOLFSSL_FAILURE; } if (keylen != WOLFSSL_TICKET_KEYS_SZ) { return WOLFSSL_FAILURE; } XMEMCPY(keys, ctx->ticketKeyCtx.name, WOLFSSL_TICKET_NAME_SZ); keys += WOLFSSL_TICKET_NAME_SZ; XMEMCPY(keys, ctx->ticketKeyCtx.key[0], WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; XMEMCPY(keys, ctx->ticketKeyCtx.key[1], WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; c32toa(ctx->ticketKeyCtx.expirary[0], keys); keys += OPAQUE32_LEN; c32toa(ctx->ticketKeyCtx.expirary[1], keys); return WOLFSSL_SUCCESS; } /* Deserialize the session ticket encryption keys. * * @param [in] ctx SSL/TLS context object. * @param [in] keys Session ticket keys. * @param [in] keylen Length of data. * @return WOLFSSL_SUCCESS on success. * @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the * correct length. */ long wolfSSL_CTX_set_tlsext_ticket_keys(WOLFSSL_CTX *ctx, unsigned char *keys, int keylen) { if (ctx == NULL || keys == NULL) { return WOLFSSL_FAILURE; } if (keylen != WOLFSSL_TICKET_KEYS_SZ) { return WOLFSSL_FAILURE; } XMEMCPY(ctx->ticketKeyCtx.name, keys, WOLFSSL_TICKET_NAME_SZ); keys += WOLFSSL_TICKET_NAME_SZ; XMEMCPY(ctx->ticketKeyCtx.key[0], keys, WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; XMEMCPY(ctx->ticketKeyCtx.key[1], keys, WOLFSSL_TICKET_KEY_SZ); keys += WOLFSSL_TICKET_KEY_SZ; ato32(keys, &ctx->ticketKeyCtx.expirary[0]); keys += OPAQUE32_LEN; ato32(keys, &ctx->ticketKeyCtx.expirary[1]); return WOLFSSL_SUCCESS; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) #ifdef HAVE_OCSP /* Not an OpenSSL API. */ int wolfSSL_get_ocsp_response(WOLFSSL* ssl, byte** response) { *response = ssl->ocspResp; return ssl->ocspRespSz; } /* Not an OpenSSL API. */ char* wolfSSL_get_ocsp_url(WOLFSSL* ssl) { return ssl->url; } /* Not an OpenSSL API. */ int wolfSSL_set_ocsp_url(WOLFSSL* ssl, char* url) { if (ssl == NULL) return WOLFSSL_FAILURE; ssl->url = url; return WOLFSSL_SUCCESS; } #endif /* OCSP */ #endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */ #if defined(HAVE_OCSP) && !defined(NO_ASN_TIME) int wolfSSL_get_ocsp_producedDate( WOLFSSL *ssl, byte *producedDate, size_t producedDate_space, int *producedDateFormat) { if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) && (ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME)) return BAD_FUNC_ARG; if ((producedDate == NULL) || (producedDateFormat == NULL)) return BAD_FUNC_ARG; if (XSTRLEN((char *)ssl->ocspProducedDate) >= producedDate_space) return BUFFER_E; XSTRNCPY((char *)producedDate, (const char *)ssl->ocspProducedDate, producedDate_space); *producedDateFormat = ssl->ocspProducedDateFormat; return 0; } int wolfSSL_get_ocsp_producedDate_tm(WOLFSSL *ssl, struct tm *produced_tm) { int idx = 0; if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) && (ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME)) return BAD_FUNC_ARG; if (produced_tm == NULL) return BAD_FUNC_ARG; if (ExtractDate(ssl->ocspProducedDate, (unsigned char)ssl->ocspProducedDateFormat, produced_tm, &idx)) return 0; else return ASN_PARSE_E; } #endif #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \ defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) int wolfSSL_CTX_get_extra_chain_certs(WOLFSSL_CTX* ctx, WOLF_STACK_OF(X509)** chain) { word32 idx; word32 length; WOLFSSL_STACK* node; WOLFSSL_STACK* last = NULL; if (ctx == NULL || chain == NULL) { chain = NULL; return WOLFSSL_FAILURE; } if (ctx->x509Chain != NULL) { *chain = ctx->x509Chain; return WOLFSSL_SUCCESS; } /* If there are no chains then success! */ *chain = NULL; if (ctx->certChain == NULL || ctx->certChain->length == 0) { return WOLFSSL_SUCCESS; } /* Create a new stack of WOLFSSL_X509 object from chain buffer. */ for (idx = 0; idx < ctx->certChain->length; ) { node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_OPENSSL); if (node == NULL) return WOLFSSL_FAILURE; node->next = NULL; /* 3 byte length | X509 DER data */ ato24(ctx->certChain->buffer + idx, &length); idx += 3; /* Create a new X509 from DER encoded data. */ node->data.x509 = wolfSSL_X509_d2i(NULL, ctx->certChain->buffer + idx, length); if (node->data.x509 == NULL) { XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL); /* Return as much of the chain as we created. */ ctx->x509Chain = *chain; return WOLFSSL_FAILURE; } idx += length; /* Add object to the end of the stack. */ if (last == NULL) { node->num = 1; *chain = node; } else { (*chain)->num++; last->next = node; } last = node; } ctx->x509Chain = *chain; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_get_tlsext_status_cb(WOLFSSL_CTX* ctx, tlsextStatusCb* cb) { if (ctx == NULL || ctx->cm == NULL || cb == NULL) return WOLFSSL_FAILURE; #if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)) if (ctx->cm->ocsp_stapling == NULL) return WOLFSSL_FAILURE; *cb = ctx->cm->ocsp_stapling->statusCb; #else (void)cb; *cb = NULL; #endif return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_tlsext_status_cb(WOLFSSL_CTX* ctx, tlsextStatusCb cb) { if (ctx == NULL || ctx->cm == NULL) return WOLFSSL_FAILURE; #if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)) /* Ensure stapling is on for callback to be used. */ wolfSSL_CTX_EnableOCSPStapling(ctx); if (ctx->cm->ocsp_stapling == NULL) return WOLFSSL_FAILURE; ctx->cm->ocsp_stapling->statusCb = cb; #else (void)cb; #endif return WOLFSSL_SUCCESS; } int wolfSSL_CTX_get0_chain_certs(WOLFSSL_CTX *ctx, WOLF_STACK_OF(WOLFSSL_X509) **sk) { WOLFSSL_ENTER("wolfSSL_CTX_get0_chain_certs"); if (ctx == NULL || sk == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } *sk = ctx->x509Chain; return WOLFSSL_SUCCESS; } #ifdef KEEP_OUR_CERT int wolfSSL_get0_chain_certs(WOLFSSL *ssl, WOLF_STACK_OF(WOLFSSL_X509) **sk) { WOLFSSL_ENTER("wolfSSL_get0_chain_certs"); if (ssl == NULL || sk == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } *sk = ssl->ourCertChain; return WOLFSSL_SUCCESS; } #endif WOLF_STACK_OF(WOLFSSL_STRING)* wolfSSL_sk_WOLFSSL_STRING_new(void) { WOLF_STACK_OF(WOLFSSL_STRING)* ret = wolfSSL_sk_new_node(NULL); if (ret) { ret->type = STACK_TYPE_STRING; } return ret; } void wolfSSL_WOLFSSL_STRING_free(WOLFSSL_STRING s) { WOLFSSL_ENTER("wolfSSL_WOLFSSL_STRING_free"); if (s != NULL) XFREE(s, NULL, DYNAMIC_TYPE_OPENSSL); } void wolfSSL_sk_WOLFSSL_STRING_free(WOLF_STACK_OF(WOLFSSL_STRING)* sk) { WOLFSSL_STACK* tmp; WOLFSSL_ENTER("wolfSSL_sk_WOLFSSL_STRING_free"); if (sk == NULL) return; /* parse through stack freeing each node */ while (sk) { tmp = sk->next; XFREE(sk->data.string, NULL, DYNAMIC_TYPE_OPENSSL); XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL); sk = tmp; } } WOLFSSL_STRING wolfSSL_sk_WOLFSSL_STRING_value(WOLF_STACK_OF(WOLFSSL_STRING)* strings, int idx) { for (; idx > 0 && strings != NULL; idx--) strings = strings->next; if (strings == NULL) return NULL; return strings->data.string; } int wolfSSL_sk_WOLFSSL_STRING_num(WOLF_STACK_OF(WOLFSSL_STRING)* strings) { if (strings) return (int)strings->num; return 0; } #endif /* WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || OPENSSL_ALL */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(HAVE_LIGHTY) #ifdef HAVE_ALPN void wolfSSL_get0_alpn_selected(const WOLFSSL *ssl, const unsigned char **data, unsigned int *len) { word16 nameLen; if (ssl != NULL && data != NULL && len != NULL) { TLSX_ALPN_GetRequest(ssl->extensions, (void **)data, &nameLen); *len = nameLen; } } int wolfSSL_select_next_proto(unsigned char **out, unsigned char *outLen, const unsigned char *in, unsigned int inLen, const unsigned char *clientNames, unsigned int clientLen) { unsigned int i, j; byte lenIn, lenClient; if (out == NULL || outLen == NULL || in == NULL || clientNames == NULL) return OPENSSL_NPN_UNSUPPORTED; for (i = 0; i < inLen; i += lenIn) { lenIn = in[i++]; for (j = 0; j < clientLen; j += lenClient) { lenClient = clientNames[j++]; if (lenIn != lenClient) continue; if (XMEMCMP(in + i, clientNames + j, lenIn) == 0) { *out = (unsigned char *)(in + i); *outLen = lenIn; return OPENSSL_NPN_NEGOTIATED; } } } *out = (unsigned char *)clientNames + 1; *outLen = clientNames[0]; return OPENSSL_NPN_NO_OVERLAP; } void wolfSSL_CTX_set_alpn_select_cb(WOLFSSL_CTX *ctx, int (*cb) (WOLFSSL *ssl, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg), void *arg) { if (ctx != NULL) { ctx->alpnSelect = cb; ctx->alpnSelectArg = arg; } } void wolfSSL_CTX_set_next_protos_advertised_cb(WOLFSSL_CTX *s, int (*cb) (WOLFSSL *ssl, const unsigned char **out, unsigned int *outlen, void *arg), void *arg) { (void)s; (void)cb; (void)arg; WOLFSSL_STUB("wolfSSL_CTX_set_next_protos_advertised_cb"); } void wolfSSL_CTX_set_next_proto_select_cb(WOLFSSL_CTX *s, int (*cb) (WOLFSSL *ssl, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg), void *arg) { (void)s; (void)cb; (void)arg; WOLFSSL_STUB("wolfSSL_CTX_set_next_proto_select_cb"); } void wolfSSL_get0_next_proto_negotiated(const WOLFSSL *s, const unsigned char **data, unsigned *len) { (void)s; (void)data; (void)len; WOLFSSL_STUB("wolfSSL_get0_next_proto_negotiated"); } #endif /* HAVE_ALPN */ #endif /* WOLFSSL_NGINX / WOLFSSL_HAPROXY */ #if defined(OPENSSL_EXTRA) && defined(HAVE_ECC) int wolfSSL_CTX_set1_curves_list(WOLFSSL_CTX* ctx, const char* names) { int idx, start = 0, len; word16 curve; char name[MAX_CURVE_NAME_SZ]; if (ctx == NULL || names == NULL) { WOLFSSL_MSG("ctx or names was NULL"); return WOLFSSL_FAILURE; } /* Disable all curves so that only the ones the user wants are enabled. */ ctx->disabledCurves = 0xFFFFFFFFUL; for (idx = 1; names[idx-1] != '\0'; idx++) { if (names[idx] != ':' && names[idx] != '\0') continue; len = idx - start; if (len > MAX_CURVE_NAME_SZ - 1) return WOLFSSL_FAILURE; XMEMCPY(name, names + start, len); name[len] = 0; if ((XSTRCMP(name, "prime256v1") == 0) || (XSTRCMP(name, "secp256r1") == 0) || (XSTRCMP(name, "P-256") == 0)) { curve = WOLFSSL_ECC_SECP256R1; } else if ((XSTRCMP(name, "secp384r1") == 0) || (XSTRCMP(name, "P-384") == 0)) { curve = WOLFSSL_ECC_SECP384R1; } else if ((XSTRCMP(name, "secp521r1") == 0) || (XSTRCMP(name, "P-521") == 0)) { curve = WOLFSSL_ECC_SECP521R1; } else if (XSTRCMP(name, "X25519") == 0) { curve = WOLFSSL_ECC_X25519; } else if (XSTRCMP(name, "X448") == 0) { curve = WOLFSSL_ECC_X448; } else { #if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) int ret; const ecc_set_type *eccSet; ret = wc_ecc_get_curve_idx_from_name(name); if (ret < 0) { WOLFSSL_MSG("Could not find name in set"); return WOLFSSL_FAILURE; } eccSet = wc_ecc_get_curve_params(ret); if (eccSet == NULL) { WOLFSSL_MSG("NULL set returned"); return WOLFSSL_FAILURE; } curve = GetCurveByOID(eccSet->oidSum); #else WOLFSSL_MSG("API not present to search farther using name"); return WOLFSSL_FAILURE; #endif } if (curve >= (sizeof(word32) * WOLFSSL_BIT_SIZE)) { /* shift left more than size of ctx->disabledCurves causes static * analysis report */ WOLFSSL_MSG("curve value is too large for upcoming shift"); return WOLFSSL_FAILURE; } #if defined(HAVE_SUPPORTED_CURVES) && !defined(NO_WOLFSSL_CLIENT) /* set the supported curve so client TLS extension contains only the * desired curves */ if (wolfSSL_CTX_UseSupportedCurve(ctx, curve) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Unable to set supported curve"); return WOLFSSL_FAILURE; } #endif /* Switch the bit to off and therefore is enabled. */ ctx->disabledCurves &= ~(1U << curve); start = idx + 1; } return WOLFSSL_SUCCESS; } int wolfSSL_set1_curves_list(WOLFSSL* ssl, const char* names) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return wolfSSL_CTX_set1_curves_list(ssl->ctx, names); } #endif /* OPENSSL_EXTRA && HAVE_ECC */ #ifdef OPENSSL_EXTRA /* Sets a callback for when sending and receiving protocol messages. * This callback is copied to all WOLFSSL objects created from the ctx. * * ctx WOLFSSL_CTX structure to set callback in * cb callback to use * * return WOLFSSL_SUCCESS on success and SSL_FAILURE with error case */ int wolfSSL_CTX_set_msg_callback(WOLFSSL_CTX *ctx, SSL_Msg_Cb cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_msg_callback"); if (ctx == NULL) { WOLFSSL_MSG("Null ctx passed in"); return WOLFSSL_FAILURE; } ctx->protoMsgCb = cb; return WOLFSSL_SUCCESS; } /* Sets a callback for when sending and receiving protocol messages. * * ssl WOLFSSL structure to set callback in * cb callback to use * * return WOLFSSL_SUCCESS on success and SSL_FAILURE with error case */ int wolfSSL_set_msg_callback(WOLFSSL *ssl, SSL_Msg_Cb cb) { WOLFSSL_ENTER("wolfSSL_set_msg_callback"); if (ssl == NULL) { return SSL_FAILURE; } if (cb != NULL) { ssl->toInfoOn = 1; } ssl->protoMsgCb = cb; return WOLFSSL_SUCCESS; } /* set the user argument to pass to the msg callback when called * return WOLFSSL_SUCCESS on success */ int wolfSSL_CTX_set_msg_callback_arg(WOLFSSL_CTX *ctx, void* arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_msg_callback_arg"); if (ctx == NULL) { WOLFSSL_MSG("Null WOLFSSL_CTX passed in"); return WOLFSSL_FAILURE; } ctx->protoMsgCtx = arg; return WOLFSSL_SUCCESS; } int wolfSSL_set_msg_callback_arg(WOLFSSL *ssl, void* arg) { WOLFSSL_ENTER("wolfSSL_set_msg_callback_arg"); if (ssl == NULL) return WOLFSSL_FAILURE; ssl->protoMsgCtx = arg; return WOLFSSL_SUCCESS; } void *wolfSSL_OPENSSL_memdup(const void *data, size_t siz, const char* file, int line) { void *ret; (void)file; (void)line; if (data == NULL || siz >= INT_MAX) return NULL; ret = OPENSSL_malloc(siz); if (ret == NULL) { return NULL; } return XMEMCPY(ret, data, siz); } void wolfSSL_OPENSSL_cleanse(void *ptr, size_t len) { if (ptr) ForceZero(ptr, (word32)len); } int wolfSSL_CTX_set_alpn_protos(WOLFSSL_CTX *ctx, const unsigned char *p, unsigned int p_len) { WOLFSSL_ENTER("wolfSSL_CTX_set_alpn_protos"); if (ctx == NULL) return BAD_FUNC_ARG; if (ctx->alpn_cli_protos != NULL) { XFREE((void*)ctx->alpn_cli_protos, ctx->heap, DYNAMIC_TYPE_OPENSSL); } ctx->alpn_cli_protos = (const unsigned char*)XMALLOC(p_len, ctx->heap, DYNAMIC_TYPE_OPENSSL); if (ctx->alpn_cli_protos == NULL) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } XMEMCPY((void*)ctx->alpn_cli_protos, p, p_len); ctx->alpn_cli_protos_len = p_len; #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 0; #else return WOLFSSL_SUCCESS; #endif } #ifdef HAVE_ALPN #ifndef NO_BIO /* Sets the ALPN extension protos * * example format is * unsigned char p[] = { * 8, 'h', 't', 't', 'p', '/', '1', '.', '1' * }; * * returns WOLFSSL_SUCCESS on success */ int wolfSSL_set_alpn_protos(WOLFSSL* ssl, const unsigned char* p, unsigned int p_len) { WOLFSSL_BIO* bio; char* pt; unsigned int sz; unsigned int idx = 0; int alpn_opt = WOLFSSL_ALPN_CONTINUE_ON_MISMATCH; WOLFSSL_ENTER("wolfSSL_set_alpn_protos"); if (ssl == NULL || p_len <= 1) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem()); if (bio == NULL) { #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } /* convert into comma separated list */ while (idx < p_len - 1) { unsigned int i; sz = p[idx++]; if (idx + sz > p_len) { WOLFSSL_MSG("Bad list format"); wolfSSL_BIO_free(bio); #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 1; #else return WOLFSSL_FAILURE; #endif } if (sz > 0) { for (i = 0; i < sz; i++) { wolfSSL_BIO_write(bio, &p[idx++], 1); } if (idx < p_len - 1) wolfSSL_BIO_write(bio, ",", 1); } } wolfSSL_BIO_write(bio, "\0", 1); /* clears out all current ALPN extensions set */ TLSX_Remove(&ssl->extensions, TLSX_APPLICATION_LAYER_PROTOCOL, ssl->heap); if ((sz = wolfSSL_BIO_get_mem_data(bio, &pt)) > 0) { wolfSSL_UseALPN(ssl, pt, sz, (byte) alpn_opt); } wolfSSL_BIO_free(bio); #if defined(WOLFSSL_ERROR_CODE_OPENSSL) /* 0 on success in OpenSSL, non-0 on failure in OpenSSL * the function reverses the return value convention. */ return 0; #else return WOLFSSL_SUCCESS; #endif } #endif /* !NO_BIO */ #endif /* HAVE_ALPN */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) #ifndef NO_BIO #define WOLFSSL_BIO_INCLUDED #include "src/bio.c" #endif word32 nid2oid(int nid, int grp) { /* get OID type */ switch (grp) { /* oidHashType */ case oidHashType: switch (nid) { #ifdef WOLFSSL_MD2 case NID_md2: return MD2h; #endif #ifndef NO_MD5 case NID_md5: return MD5h; #endif #ifndef NO_SHA case NID_sha1: return SHAh; #endif case NID_sha224: return SHA224h; #ifndef NO_SHA256 case NID_sha256: return SHA256h; #endif #ifdef WOLFSSL_SHA384 case NID_sha384: return SHA384h; #endif #ifdef WOLFSSL_SHA512 case NID_sha512: return SHA512h; #endif #ifndef WOLFSSL_NOSHA3_224 case NID_sha3_224: return SHA3_224h; #endif #ifndef WOLFSSL_NOSHA3_256 case NID_sha3_256: return SHA3_256h; #endif #ifndef WOLFSSL_NOSHA3_384 case NID_sha3_384: return SHA3_384h; #endif #ifndef WOLFSSL_NOSHA3_512 case NID_sha3_512: return SHA3_512h; #endif } break; /* oidSigType */ case oidSigType: switch (nid) { #ifndef NO_DSA case NID_dsaWithSHA1: return CTC_SHAwDSA; case NID_dsa_with_SHA256: return CTC_SHA256wDSA; #endif /* NO_DSA */ #ifndef NO_RSA case NID_md2WithRSAEncryption: return CTC_MD2wRSA; case NID_md5WithRSAEncryption: return CTC_MD5wRSA; case NID_sha1WithRSAEncryption: return CTC_SHAwRSA; case NID_sha224WithRSAEncryption: return CTC_SHA224wRSA; case NID_sha256WithRSAEncryption: return CTC_SHA256wRSA; case NID_sha384WithRSAEncryption: return CTC_SHA384wRSA; case NID_sha512WithRSAEncryption: return CTC_SHA512wRSA; #ifdef WOLFSSL_SHA3 case NID_RSA_SHA3_224: return CTC_SHA3_224wRSA; case NID_RSA_SHA3_256: return CTC_SHA3_256wRSA; case NID_RSA_SHA3_384: return CTC_SHA3_384wRSA; case NID_RSA_SHA3_512: return CTC_SHA3_512wRSA; #endif #endif /* NO_RSA */ #ifdef HAVE_ECC case NID_ecdsa_with_SHA1: return CTC_SHAwECDSA; case NID_ecdsa_with_SHA224: return CTC_SHA224wECDSA; case NID_ecdsa_with_SHA256: return CTC_SHA256wECDSA; case NID_ecdsa_with_SHA384: return CTC_SHA384wECDSA; case NID_ecdsa_with_SHA512: return CTC_SHA512wECDSA; #ifdef WOLFSSL_SHA3 case NID_ecdsa_with_SHA3_224: return CTC_SHA3_224wECDSA; case NID_ecdsa_with_SHA3_256: return CTC_SHA3_256wECDSA; case NID_ecdsa_with_SHA3_384: return CTC_SHA3_384wECDSA; case NID_ecdsa_with_SHA3_512: return CTC_SHA3_512wECDSA; #endif #endif /* HAVE_ECC */ } break; /* oidKeyType */ case oidKeyType: switch (nid) { #ifndef NO_DSA case NID_dsa: return DSAk; #endif /* NO_DSA */ #ifndef NO_RSA case NID_rsaEncryption: return RSAk; #endif /* NO_RSA */ #ifdef HAVE_ECC case NID_X9_62_id_ecPublicKey: return ECDSAk; #endif /* HAVE_ECC */ } break; #ifdef HAVE_ECC case oidCurveType: switch (nid) { case NID_X9_62_prime192v1: return ECC_SECP192R1_OID; case NID_X9_62_prime192v2: return ECC_PRIME192V2_OID; case NID_X9_62_prime192v3: return ECC_PRIME192V3_OID; case NID_X9_62_prime239v1: return ECC_PRIME239V1_OID; case NID_X9_62_prime239v2: return ECC_PRIME239V2_OID; case NID_X9_62_prime239v3: return ECC_PRIME239V3_OID; case NID_X9_62_prime256v1: return ECC_SECP256R1_OID; case NID_secp112r1: return ECC_SECP112R1_OID; case NID_secp112r2: return ECC_SECP112R2_OID; case NID_secp128r1: return ECC_SECP128R1_OID; case NID_secp128r2: return ECC_SECP128R2_OID; case NID_secp160r1: return ECC_SECP160R1_OID; case NID_secp160r2: return ECC_SECP160R2_OID; case NID_secp224r1: return ECC_SECP224R1_OID; case NID_secp384r1: return ECC_SECP384R1_OID; case NID_secp521r1: return ECC_SECP521R1_OID; case NID_secp160k1: return ECC_SECP160K1_OID; case NID_secp192k1: return ECC_SECP192K1_OID; case NID_secp224k1: return ECC_SECP224K1_OID; case NID_secp256k1: return ECC_SECP256K1_OID; case NID_brainpoolP160r1: return ECC_BRAINPOOLP160R1_OID; case NID_brainpoolP192r1: return ECC_BRAINPOOLP192R1_OID; case NID_brainpoolP224r1: return ECC_BRAINPOOLP224R1_OID; case NID_brainpoolP256r1: return ECC_BRAINPOOLP256R1_OID; case NID_brainpoolP320r1: return ECC_BRAINPOOLP320R1_OID; case NID_brainpoolP384r1: return ECC_BRAINPOOLP384R1_OID; case NID_brainpoolP512r1: return ECC_BRAINPOOLP512R1_OID; } break; #endif /* HAVE_ECC */ /* oidBlkType */ case oidBlkType: switch (nid) { #ifdef WOLFSSL_AES_128 case AES128CBCb: return AES128CBCb; #endif #ifdef WOLFSSL_AES_192 case AES192CBCb: return AES192CBCb; #endif #ifdef WOLFSSL_AES_256 case AES256CBCb: return AES256CBCb; #endif #ifndef NO_DES3 case NID_des: return DESb; case NID_des3: return DES3b; #endif } break; #ifdef HAVE_OCSP case oidOcspType: switch (nid) { case NID_id_pkix_OCSP_basic: return OCSP_BASIC_OID; case OCSP_NONCE_OID: return OCSP_NONCE_OID; } break; #endif /* HAVE_OCSP */ /* oidCertExtType */ case oidCertExtType: switch (nid) { case NID_basic_constraints: return BASIC_CA_OID; case NID_subject_alt_name: return ALT_NAMES_OID; case NID_crl_distribution_points: return CRL_DIST_OID; case NID_info_access: return AUTH_INFO_OID; case NID_authority_key_identifier: return AUTH_KEY_OID; case NID_subject_key_identifier: return SUBJ_KEY_OID; case NID_inhibit_any_policy: return INHIBIT_ANY_OID; case NID_key_usage: return KEY_USAGE_OID; case NID_name_constraints: return NAME_CONS_OID; case NID_certificate_policies: return CERT_POLICY_OID; case NID_ext_key_usage: return EXT_KEY_USAGE_OID; } break; /* oidCertAuthInfoType */ case oidCertAuthInfoType: switch (nid) { case NID_ad_OCSP: return AIA_OCSP_OID; case NID_ad_ca_issuers: return AIA_CA_ISSUER_OID; } break; /* oidCertPolicyType */ case oidCertPolicyType: switch (nid) { case NID_any_policy: return CP_ANY_OID; } break; /* oidCertAltNameType */ case oidCertAltNameType: switch (nid) { case NID_hw_name_oid: return HW_NAME_OID; } break; /* oidCertKeyUseType */ case oidCertKeyUseType: switch (nid) { case NID_anyExtendedKeyUsage: return EKU_ANY_OID; case EKU_SERVER_AUTH_OID: return EKU_SERVER_AUTH_OID; case EKU_CLIENT_AUTH_OID: return EKU_CLIENT_AUTH_OID; case EKU_OCSP_SIGN_OID: return EKU_OCSP_SIGN_OID; } break; /* oidKdfType */ case oidKdfType: switch (nid) { case PBKDF2_OID: return PBKDF2_OID; } break; /* oidPBEType */ case oidPBEType: switch (nid) { case PBE_SHA1_RC4_128: return PBE_SHA1_RC4_128; case PBE_SHA1_DES: return PBE_SHA1_DES; case PBE_SHA1_DES3: return PBE_SHA1_DES3; } break; /* oidKeyWrapType */ case oidKeyWrapType: switch (nid) { #ifdef WOLFSSL_AES_128 case AES128_WRAP: return AES128_WRAP; #endif #ifdef WOLFSSL_AES_192 case AES192_WRAP: return AES192_WRAP; #endif #ifdef WOLFSSL_AES_256 case AES256_WRAP: return AES256_WRAP; #endif } break; /* oidCmsKeyAgreeType */ case oidCmsKeyAgreeType: switch (nid) { #ifndef NO_SHA case dhSinglePass_stdDH_sha1kdf_scheme: return dhSinglePass_stdDH_sha1kdf_scheme; #endif #ifdef WOLFSSL_SHA224 case dhSinglePass_stdDH_sha224kdf_scheme: return dhSinglePass_stdDH_sha224kdf_scheme; #endif #ifndef NO_SHA256 case dhSinglePass_stdDH_sha256kdf_scheme: return dhSinglePass_stdDH_sha256kdf_scheme; #endif #ifdef WOLFSSL_SHA384 case dhSinglePass_stdDH_sha384kdf_scheme: return dhSinglePass_stdDH_sha384kdf_scheme; #endif #ifdef WOLFSSL_SHA512 case dhSinglePass_stdDH_sha512kdf_scheme: return dhSinglePass_stdDH_sha512kdf_scheme; #endif } break; default: WOLFSSL_MSG("NID not in table"); /* MSVC warns without the cast */ return (word32)-1; } /* MSVC warns without the cast */ return (word32)-1; } int oid2nid(word32 oid, int grp) { size_t i; /* get OID type */ switch (grp) { /* oidHashType */ case oidHashType: switch (oid) { #ifdef WOLFSSL_MD2 case MD2h: return NID_md2; #endif #ifndef NO_MD5 case MD5h: return NID_md5; #endif #ifndef NO_SHA case SHAh: return NID_sha1; #endif case SHA224h: return NID_sha224; #ifndef NO_SHA256 case SHA256h: return NID_sha256; #endif #ifdef WOLFSSL_SHA384 case SHA384h: return NID_sha384; #endif #ifdef WOLFSSL_SHA512 case SHA512h: return NID_sha512; #endif } break; /* oidSigType */ case oidSigType: switch (oid) { #ifndef NO_DSA case CTC_SHAwDSA: return NID_dsaWithSHA1; case CTC_SHA256wDSA: return NID_dsa_with_SHA256; #endif /* NO_DSA */ #ifndef NO_RSA case CTC_MD2wRSA: return NID_md2WithRSAEncryption; case CTC_MD5wRSA: return NID_md5WithRSAEncryption; case CTC_SHAwRSA: return NID_sha1WithRSAEncryption; case CTC_SHA224wRSA: return NID_sha224WithRSAEncryption; case CTC_SHA256wRSA: return NID_sha256WithRSAEncryption; case CTC_SHA384wRSA: return NID_sha384WithRSAEncryption; case CTC_SHA512wRSA: return NID_sha512WithRSAEncryption; #ifdef WOLFSSL_SHA3 case CTC_SHA3_224wRSA: return NID_RSA_SHA3_224; case CTC_SHA3_256wRSA: return NID_RSA_SHA3_256; case CTC_SHA3_384wRSA: return NID_RSA_SHA3_384; case CTC_SHA3_512wRSA: return NID_RSA_SHA3_512; #endif #endif /* NO_RSA */ #ifdef HAVE_ECC case CTC_SHAwECDSA: return NID_ecdsa_with_SHA1; case CTC_SHA224wECDSA: return NID_ecdsa_with_SHA224; case CTC_SHA256wECDSA: return NID_ecdsa_with_SHA256; case CTC_SHA384wECDSA: return NID_ecdsa_with_SHA384; case CTC_SHA512wECDSA: return NID_ecdsa_with_SHA512; #ifdef WOLFSSL_SHA3 case CTC_SHA3_224wECDSA: return NID_ecdsa_with_SHA3_224; case CTC_SHA3_256wECDSA: return NID_ecdsa_with_SHA3_256; case CTC_SHA3_384wECDSA: return NID_ecdsa_with_SHA3_384; case CTC_SHA3_512wECDSA: return NID_ecdsa_with_SHA3_512; #endif #endif /* HAVE_ECC */ } break; /* oidKeyType */ case oidKeyType: switch (oid) { #ifndef NO_DSA case DSAk: return NID_dsa; #endif /* NO_DSA */ #ifndef NO_RSA case RSAk: return NID_rsaEncryption; #endif /* NO_RSA */ #ifdef HAVE_ECC case ECDSAk: return NID_X9_62_id_ecPublicKey; #endif /* HAVE_ECC */ } break; #ifdef HAVE_ECC case oidCurveType: switch (oid) { case ECC_SECP192R1_OID: return NID_X9_62_prime192v1; case ECC_PRIME192V2_OID: return NID_X9_62_prime192v2; case ECC_PRIME192V3_OID: return NID_X9_62_prime192v3; case ECC_PRIME239V1_OID: return NID_X9_62_prime239v1; case ECC_PRIME239V2_OID: return NID_X9_62_prime239v2; case ECC_PRIME239V3_OID: return NID_X9_62_prime239v3; case ECC_SECP256R1_OID: return NID_X9_62_prime256v1; case ECC_SECP112R1_OID: return NID_secp112r1; case ECC_SECP112R2_OID: return NID_secp112r2; case ECC_SECP128R1_OID: return NID_secp128r1; case ECC_SECP128R2_OID: return NID_secp128r2; case ECC_SECP160R1_OID: return NID_secp160r1; case ECC_SECP160R2_OID: return NID_secp160r2; case ECC_SECP224R1_OID: return NID_secp224r1; case ECC_SECP384R1_OID: return NID_secp384r1; case ECC_SECP521R1_OID: return NID_secp521r1; case ECC_SECP160K1_OID: return NID_secp160k1; case ECC_SECP192K1_OID: return NID_secp192k1; case ECC_SECP224K1_OID: return NID_secp224k1; case ECC_SECP256K1_OID: return NID_secp256k1; case ECC_BRAINPOOLP160R1_OID: return NID_brainpoolP160r1; case ECC_BRAINPOOLP192R1_OID: return NID_brainpoolP192r1; case ECC_BRAINPOOLP224R1_OID: return NID_brainpoolP224r1; case ECC_BRAINPOOLP256R1_OID: return NID_brainpoolP256r1; case ECC_BRAINPOOLP320R1_OID: return NID_brainpoolP320r1; case ECC_BRAINPOOLP384R1_OID: return NID_brainpoolP384r1; case ECC_BRAINPOOLP512R1_OID: return NID_brainpoolP512r1; } break; #endif /* HAVE_ECC */ /* oidBlkType */ case oidBlkType: switch (oid) { #ifdef WOLFSSL_AES_128 case AES128CBCb: return AES128CBCb; #endif #ifdef WOLFSSL_AES_192 case AES192CBCb: return AES192CBCb; #endif #ifdef WOLFSSL_AES_256 case AES256CBCb: return AES256CBCb; #endif #ifndef NO_DES3 case DESb: return NID_des; case DES3b: return NID_des3; #endif } break; #ifdef HAVE_OCSP case oidOcspType: switch (oid) { case OCSP_BASIC_OID: return NID_id_pkix_OCSP_basic; case OCSP_NONCE_OID: return OCSP_NONCE_OID; } break; #endif /* HAVE_OCSP */ /* oidCertExtType */ case oidCertExtType: switch (oid) { case BASIC_CA_OID: return NID_basic_constraints; case ALT_NAMES_OID: return NID_subject_alt_name; case CRL_DIST_OID: return NID_crl_distribution_points; case AUTH_INFO_OID: return NID_info_access; case AUTH_KEY_OID: return NID_authority_key_identifier; case SUBJ_KEY_OID: return NID_subject_key_identifier; case INHIBIT_ANY_OID: return NID_inhibit_any_policy; case KEY_USAGE_OID: return NID_key_usage; case NAME_CONS_OID: return NID_name_constraints; case CERT_POLICY_OID: return NID_certificate_policies; case EXT_KEY_USAGE_OID: return NID_ext_key_usage; } break; /* oidCertAuthInfoType */ case oidCertAuthInfoType: switch (oid) { case AIA_OCSP_OID: return NID_ad_OCSP; case AIA_CA_ISSUER_OID: return NID_ad_ca_issuers; } break; /* oidCertPolicyType */ case oidCertPolicyType: switch (oid) { case CP_ANY_OID: return NID_any_policy; } break; /* oidCertAltNameType */ case oidCertAltNameType: switch (oid) { case HW_NAME_OID: return NID_hw_name_oid; } break; /* oidCertKeyUseType */ case oidCertKeyUseType: switch (oid) { case EKU_ANY_OID: return NID_anyExtendedKeyUsage; case EKU_SERVER_AUTH_OID: return EKU_SERVER_AUTH_OID; case EKU_CLIENT_AUTH_OID: return EKU_CLIENT_AUTH_OID; case EKU_OCSP_SIGN_OID: return EKU_OCSP_SIGN_OID; } break; /* oidKdfType */ case oidKdfType: switch (oid) { case PBKDF2_OID: return PBKDF2_OID; } break; /* oidPBEType */ case oidPBEType: switch (oid) { case PBE_SHA1_RC4_128: return PBE_SHA1_RC4_128; case PBE_SHA1_DES: return PBE_SHA1_DES; case PBE_SHA1_DES3: return PBE_SHA1_DES3; } break; /* oidKeyWrapType */ case oidKeyWrapType: switch (oid) { #ifdef WOLFSSL_AES_128 case AES128_WRAP: return AES128_WRAP; #endif #ifdef WOLFSSL_AES_192 case AES192_WRAP: return AES192_WRAP; #endif #ifdef WOLFSSL_AES_256 case AES256_WRAP: return AES256_WRAP; #endif } break; /* oidCmsKeyAgreeType */ case oidCmsKeyAgreeType: switch (oid) { #ifndef NO_SHA case dhSinglePass_stdDH_sha1kdf_scheme: return dhSinglePass_stdDH_sha1kdf_scheme; #endif #ifdef WOLFSSL_SHA224 case dhSinglePass_stdDH_sha224kdf_scheme: return dhSinglePass_stdDH_sha224kdf_scheme; #endif #ifndef NO_SHA256 case dhSinglePass_stdDH_sha256kdf_scheme: return dhSinglePass_stdDH_sha256kdf_scheme; #endif #ifdef WOLFSSL_SHA384 case dhSinglePass_stdDH_sha384kdf_scheme: return dhSinglePass_stdDH_sha384kdf_scheme; #endif #ifdef WOLFSSL_SHA512 case dhSinglePass_stdDH_sha512kdf_scheme: return dhSinglePass_stdDH_sha512kdf_scheme; #endif } break; #ifdef WOLFSSL_CERT_REQ case oidCsrAttrType: switch (oid) { case PKCS9_CONTENT_TYPE_OID: return NID_pkcs9_contentType; case CHALLENGE_PASSWORD_OID: return NID_pkcs9_challengePassword; case SERIAL_NUMBER_OID: return NID_serialNumber; case USER_ID_OID: return NID_userId; } break; #endif default: WOLFSSL_MSG("NID not in table"); } /* If not found in above switch then try the table */ for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) { if (wolfssl_object_info[i].id == (int)oid) { return wolfssl_object_info[i].nid; } } return -1; } /* when calling SetIndividualInternal, mpi should be cleared by caller if no * longer used. ie mp_free(mpi). This is to free data when fastmath is * disabled since a copy of mpi is made by this function and placed into bn. */ int SetIndividualInternal(WOLFSSL_BIGNUM* bn, mp_int* mpi) { WOLFSSL_MSG("Entering SetIndividualInternal"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FATAL_ERROR; } if (mpi == NULL) { WOLFSSL_MSG("mpi NULL error"); return WOLFSSL_FATAL_ERROR; } if (mp_copy((mp_int*)bn->internal, mpi) != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); return WOLFSSL_FATAL_ERROR; } return WOLFSSL_SUCCESS; } #ifndef NO_ASN WOLFSSL_BIGNUM *wolfSSL_ASN1_INTEGER_to_BN(const WOLFSSL_ASN1_INTEGER *ai, WOLFSSL_BIGNUM *bn) { #ifdef WOLFSSL_SMALL_STACK mp_int* mpi = NULL; #else mp_int mpi[1]; #endif word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_ASN1_INTEGER_to_BN"); if (ai == NULL) { return NULL; } #ifdef WOLFSSL_SMALL_STACK mpi = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (mpi == NULL) { return NULL; } #endif ret = GetInt(mpi, ai->data, &idx, ai->dataMax); if (ret != 0) { #if defined(WOLFSSL_QT) || defined(WOLFSSL_HAPROXY) ret = mp_init(mpi); /* must init mpi */ if (ret != MP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT); #endif return NULL; } /* Serial number in QT starts at index 0 of data */ if (mp_read_unsigned_bin(mpi, (byte*)ai->data, ai->length) != 0) { mp_clear(mpi); #ifdef WOLFSSL_SMALL_STACK XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT); #endif return NULL; } #else /* expecting ASN1 format for INTEGER */ WOLFSSL_LEAVE("wolfSSL_ASN1_INTEGER_to_BN", ret); #ifdef WOLFSSL_SMALL_STACK XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT); #endif return NULL; #endif } /* mp_clear needs called because mpi is copied and causes memory leak with * --disable-fastmath */ ret = SetIndividualExternal(&bn, mpi); mp_clear(mpi); #ifdef WOLFSSL_SMALL_STACK XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT); #endif if (ret != WOLFSSL_SUCCESS) { return NULL; } return bn; } #endif /* !NO_ASN */ /* frees all nodes in the current threads error queue * * id thread id. ERR_remove_state is depreciated and id is ignored. The * current threads queue will be free'd. */ void wolfSSL_ERR_remove_state(unsigned long id) { WOLFSSL_ENTER("wolfSSL_ERR_remove_state"); (void)id; if (wc_ERR_remove_state() != 0) { WOLFSSL_MSG("Error with removing the state"); } } WOLFSSL_BN_CTX* wolfSSL_BN_CTX_new(void) { static int ctx; /* wolfcrypt doesn't now need ctx */ WOLFSSL_MSG("wolfSSL_BN_CTX_new"); return (WOLFSSL_BN_CTX*)&ctx; } void wolfSSL_BN_CTX_init(WOLFSSL_BN_CTX* ctx) { (void)ctx; WOLFSSL_MSG("wolfSSL_BN_CTX_init"); } void wolfSSL_BN_CTX_free(WOLFSSL_BN_CTX* ctx) { (void)ctx; WOLFSSL_MSG("wolfSSL_BN_CTX_free"); /* do free since static ctx that does nothing */ } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_BN_sub(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b) { WOLFSSL_MSG("wolfSSL_BN_sub"); if (r == NULL || a == NULL || b == NULL) return 0; if (mp_sub((mp_int*)a->internal,(mp_int*)b->internal, (mp_int*)r->internal) == MP_OKAY) return WOLFSSL_SUCCESS; WOLFSSL_MSG("wolfSSL_BN_sub mp_sub failed"); return 0; } WOLFSSL_API int wolfSSL_BN_mul(WOLFSSL_BIGNUM *r, WOLFSSL_BIGNUM *a, WOLFSSL_BIGNUM *b, WOLFSSL_BN_CTX *ctx) { int ret = WOLFSSL_SUCCESS; (void)ctx; WOLFSSL_ENTER("wolfSSL_BN_mul"); if (r == NULL || a == NULL || b == NULL || r->internal == NULL || a->internal == NULL || b->internal == NULL) { ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { ret = mp_mul((mp_int*)a->internal, (mp_int*)b->internal, (mp_int*)r->internal); if (ret == MP_OKAY) { ret = WOLFSSL_SUCCESS; } else { ret = WOLFSSL_FAILURE; } } WOLFSSL_LEAVE("wolfSSL_BN_mul", ret); return ret; } #ifndef WOLFSSL_SP_MATH int wolfSSL_BN_div(WOLFSSL_BIGNUM* dv, WOLFSSL_BIGNUM* rem, const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* d, WOLFSSL_BN_CTX* ctx) { int ret = WOLFSSL_SUCCESS; (void)ctx; WOLFSSL_ENTER("wolfSSL_BN_div"); if (dv == NULL || rem == NULL || a == NULL || d == NULL || dv->internal == NULL || rem->internal == NULL || a->internal == NULL || d->internal == NULL) { ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { ret = mp_div((mp_int*)a->internal, (mp_int*)d->internal, (mp_int*)dv->internal, (mp_int*)rem->internal); if (ret == MP_OKAY) { ret = WOLFSSL_SUCCESS; } else { ret = WOLFSSL_FAILURE; } } WOLFSSL_LEAVE("wolfSSL_BN_div", ret); return ret; } #endif #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) /* Needed to get mp_gcd. */ int wolfSSL_BN_gcd(WOLFSSL_BIGNUM* r, WOLFSSL_BIGNUM* a, WOLFSSL_BIGNUM* b, WOLFSSL_BN_CTX* ctx) { int ret = WOLFSSL_SUCCESS; (void)ctx; WOLFSSL_ENTER("wolfSSL_BN_gcd"); if (r == NULL || a == NULL || b == NULL || r->internal == NULL || a->internal == NULL || b->internal == NULL) { ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { ret = mp_gcd((mp_int*)a->internal, (mp_int*)b->internal, (mp_int*)r->internal); if (ret == MP_OKAY) { ret = WOLFSSL_SUCCESS; } else { ret = WOLFSSL_FAILURE; } } WOLFSSL_LEAVE("wolfSSL_BN_gcd", ret); return ret; } #endif /* !NO_RSA && WOLFSSL_KEY_GEN */ /* WOLFSSL_SUCCESS on ok */ int wolfSSL_BN_mod(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b, const WOLFSSL_BN_CTX* c) { (void)c; WOLFSSL_MSG("wolfSSL_BN_mod"); if (r == NULL || a == NULL || b == NULL) return 0; if (mp_mod((mp_int*)a->internal,(mp_int*)b->internal, (mp_int*)r->internal) == MP_OKAY) return WOLFSSL_SUCCESS; WOLFSSL_MSG("wolfSSL_BN_mod mp_mod failed"); return 0; } /* r = (a^p) % m */ int wolfSSL_BN_mod_exp(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a, const WOLFSSL_BIGNUM *p, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx) { int ret; WOLFSSL_ENTER("wolfSSL_BN_mod_exp"); (void) ctx; if (r == NULL || a == NULL || p == NULL || m == NULL) { WOLFSSL_MSG("Bad Argument"); return WOLFSSL_FAILURE; } if ((ret = mp_exptmod((mp_int*)a->internal,(mp_int*)p->internal, (mp_int*)m->internal, (mp_int*)r->internal)) == MP_OKAY) { return WOLFSSL_SUCCESS; } WOLFSSL_LEAVE("wolfSSL_BN_mod_exp", ret); (void)ret; return WOLFSSL_FAILURE; } /* r = (a * p) % m */ int wolfSSL_BN_mod_mul(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a, const WOLFSSL_BIGNUM *p, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx) { int ret; WOLFSSL_ENTER("wolfSSL_BN_mod_mul"); (void) ctx; if (r == NULL || a == NULL || p == NULL || m == NULL) { WOLFSSL_MSG("Bad Argument"); return SSL_FAILURE; } if ((ret = mp_mulmod((mp_int*)a->internal,(mp_int*)p->internal, (mp_int*)m->internal, (mp_int*)r->internal)) == MP_OKAY) { return WOLFSSL_SUCCESS; } WOLFSSL_LEAVE("wolfSSL_BN_mod_mul", ret); (void)ret; return SSL_FAILURE; } const WOLFSSL_BIGNUM* wolfSSL_BN_value_one(void) { WOLFSSL_MSG("wolfSSL_BN_value_one"); if (bn_one == NULL) { bn_one = wolfSSL_BN_new(); if (bn_one) { if (mp_set_int((mp_int*)bn_one->internal, 1) != MP_OKAY) { /* handle error by freeing BN and returning NULL */ wolfSSL_BN_free(bn_one); bn_one = NULL; } } } return bn_one; } /* return compliant with OpenSSL * size of BIGNUM in bytes, 0 if error */ int wolfSSL_BN_num_bytes(const WOLFSSL_BIGNUM* bn) { WOLFSSL_ENTER("wolfSSL_BN_num_bytes"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; return mp_unsigned_bin_size((mp_int*)bn->internal); } /* return compliant with OpenSSL * size of BIGNUM in bits, 0 if error */ int wolfSSL_BN_num_bits(const WOLFSSL_BIGNUM* bn) { WOLFSSL_ENTER("wolfSSL_BN_num_bits"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; return mp_count_bits((mp_int*)bn->internal); } int wolfSSL_BN_is_negative(const WOLFSSL_BIGNUM* bn) { if (bn == NULL) return WOLFSSL_FAILURE; return mp_isneg((mp_int*)bn->internal); } WOLFSSL_API void wolfSSL_BN_zero(WOLFSSL_BIGNUM* bn) { if (bn == NULL || bn->internal == NULL) { return; } mp_zero((mp_int*)bn->internal); } WOLFSSL_API int wolfSSL_BN_one(WOLFSSL_BIGNUM* bn) { int ret = WOLFSSL_SUCCESS; if (bn == NULL || bn->internal == NULL) { return WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { ret = wolfSSL_BN_set_word(bn, 1); } return ret; } /* return compliant with OpenSSL * 1 if BIGNUM is zero, 0 else */ int wolfSSL_BN_is_zero(const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_is_zero"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; if (mp_iszero((mp_int*)bn->internal) == MP_YES) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } /* return compliant with OpenSSL * 1 if BIGNUM is one, 0 else */ int wolfSSL_BN_is_one(const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_is_one"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; if (mp_cmp_d((mp_int*)bn->internal, 1) == MP_EQ) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } /* return compliant with OpenSSL * 1 if BIGNUM is odd, 0 else */ int wolfSSL_BN_is_odd(const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_is_odd"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; if (mp_isodd((mp_int*)bn->internal) == MP_YES) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } /* return compliant with OpenSSL * 1 if BIGNUM is word, 0 else */ int wolfSSL_BN_is_word(const WOLFSSL_BIGNUM* bn, WOLFSSL_BN_ULONG w) { WOLFSSL_MSG("wolfSSL_BN_is_word"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (w <= (WOLFSSL_BN_ULONG)MP_MASK) { if (mp_isword((mp_int*)bn->internal, (mp_digit)w) == MP_YES) { return WOLFSSL_SUCCESS; } } else { int ret; mp_int w_mp; if (mp_init(&w_mp) != MP_OKAY) return WOLFSSL_FAILURE; if (mp_set_int(&w_mp, w) != MP_OKAY) return WOLFSSL_FAILURE; ret = mp_cmp((mp_int *)bn->internal, &w_mp); mp_free(&w_mp); if (ret == MP_EQ) return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } /* return compliant with OpenSSL * -1 if a < b, 0 if a == b and 1 if a > b */ int wolfSSL_BN_cmp(const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b) { int ret; WOLFSSL_MSG("wolfSSL_BN_cmp"); if (a == NULL || a->internal == NULL || b == NULL || b->internal == NULL) return WOLFSSL_FATAL_ERROR; ret = mp_cmp((mp_int*)a->internal, (mp_int*)b->internal); return (ret == MP_EQ ? 0 : (ret == MP_GT ? 1 : -1)); } /* return compliant with OpenSSL * length of BIGNUM in bytes, -1 if error */ int wolfSSL_BN_bn2bin(const WOLFSSL_BIGNUM* bn, unsigned char* r) { WOLFSSL_MSG("wolfSSL_BN_bn2bin"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("NULL bn error"); return WOLFSSL_FATAL_ERROR; } if (r == NULL) return mp_unsigned_bin_size((mp_int*)bn->internal); if (mp_to_unsigned_bin((mp_int*)bn->internal, r) != MP_OKAY) { WOLFSSL_MSG("mp_to_unsigned_bin error"); return WOLFSSL_FATAL_ERROR; } return mp_unsigned_bin_size((mp_int*)bn->internal); } WOLFSSL_BIGNUM* wolfSSL_BN_bin2bn(const unsigned char* str, int len, WOLFSSL_BIGNUM* ret) { int weOwn = 0; WOLFSSL_MSG("wolfSSL_BN_bin2bn"); /* if ret is null create a BN */ if (ret == NULL) { ret = wolfSSL_BN_new(); weOwn = 1; if (ret == NULL) return NULL; } /* check ret and ret->internal then read in value */ if (ret && ret->internal) { if (mp_read_unsigned_bin((mp_int*)ret->internal, str, len) != 0) { WOLFSSL_MSG("mp_read_unsigned_bin failure"); if (weOwn) wolfSSL_BN_free(ret); return NULL; } } else { /* This may be overly defensive */ if (weOwn) wolfSSL_BN_free(ret); return NULL; } return ret; } /* return compliant with OpenSSL * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_mask_bits(WOLFSSL_BIGNUM* bn, int n) { (void)bn; (void)n; WOLFSSL_ENTER("wolfSSL_BN_mask_bits"); WOLFSSL_STUB("BN_mask_bits"); return SSL_FAILURE; } #endif /* WOLFSSL_SUCCESS on ok */ int wolfSSL_BN_rand(WOLFSSL_BIGNUM* bn, int bits, int top, int bottom) { int ret = WOLFSSL_SUCCESS; int len = (bits + 7) / 8; WC_RNG* rng = &globalRNG; byte* buff = NULL; WOLFSSL_ENTER("wolfSSL_BN_rand"); if ((bn == NULL || bn->internal == NULL) || bits < 0 || (bits == 0 && (bottom != 0 || top != -1)) || (bits == 1 && top > 0)) { WOLFSSL_MSG("Bad argument"); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { if (len == 0) { mp_zero((mp_int*)bn->internal); } else { buff = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buff == NULL) { WOLFSSL_MSG("Failed to allocate buffer."); XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS && initGlobalRNG == 0 && wolfSSL_RAND_Init() != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Failed to use global RNG."); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS && wc_RNG_GenerateBlock(rng, buff, len) != 0) { WOLFSSL_MSG("wc_RNG_GenerateBlock failed"); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS && mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY) { WOLFSSL_MSG("mp_read_unsigned_bin failed"); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { /* Truncate to requested bit length. */ mp_rshb((mp_int*)bn->internal, 8 - (bits % 8)); if (top == 0) { if (mp_set_bit((mp_int*)bn->internal, bits - 1) != MP_OKAY) { WOLFSSL_MSG("Failed to set top bit"); ret = WOLFSSL_FAILURE; } } else if (top > 0) { if (mp_set_bit((mp_int*)bn->internal, bits - 1) != MP_OKAY || mp_set_bit((mp_int*)bn->internal, bits - 2) != MP_OKAY) { WOLFSSL_MSG("Failed to set top 2 bits"); ret = WOLFSSL_FAILURE; } } } if (ret == WOLFSSL_SUCCESS && bottom && mp_set_bit((mp_int*)bn->internal, 0) != MP_OKAY) { WOLFSSL_MSG("Failed to set 0th bit"); ret = WOLFSSL_FAILURE; } if (buff != NULL) { XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); } } } WOLFSSL_LEAVE("wolfSSL_BN_rand", ret); return ret; } /** * N = length of range input var * Generate N-bit length numbers until generated number is less than range * @param r Output number * @param range The upper limit of generated output * @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure */ int wolfSSL_BN_rand_range(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *range) { int n; int iter = 0; WOLFSSL_MSG("wolfSSL_BN_rand_range"); if (r == NULL || range == NULL) { WOLFSSL_MSG("Bad parameter"); return WOLFSSL_FAILURE; } n = wolfSSL_BN_num_bits(range); if (n <= 1) { wolfSSL_BN_zero(r); } else { do { if (iter >= 100) { WOLFSSL_MSG("wolfSSL_BN_rand_range too many iterations"); return WOLFSSL_FAILURE; } iter++; if (wolfSSL_BN_pseudo_rand(r, n, -1, 0) == WOLFSSL_FAILURE) { WOLFSSL_MSG("wolfSSL_BN_rand error"); return WOLFSSL_FAILURE; } } while(wolfSSL_BN_cmp(r, range) >= 0); } return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok * code is same as wolfSSL_BN_rand except for how top and bottom is handled. * top -1 then leave most sig bit alone * top 0 then most sig is set to 1 * top is 1 then first two most sig bits are 1 * * bottom is hot then odd number */ int wolfSSL_BN_pseudo_rand(WOLFSSL_BIGNUM* bn, int bits, int top, int bottom) { int ret = 0; int len; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; byte* buff = NULL; #else WC_RNG tmpRNG[1]; byte buff[1024]; #endif WOLFSSL_ENTER("wolfSSL_BN_pseudo_rand"); if (bits <= 0) { return WOLFSSL_FAILURE; } len = bits / 8; if (bits % 8) len++; /* has to be a length of at least 1 since we set buf[0] and buf[len-1] */ if (top == 1 || top == 0 || bottom == 1) { if (len < 1) { return WOLFSSL_FAILURE; } } #ifdef WOLFSSL_SMALL_STACK buff = (byte*)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER); tmpRNG = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buff == NULL || tmpRNG == NULL) { XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif if (bn == NULL || bn->internal == NULL) WOLFSSL_MSG("Bad function arguments"); else if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else if (initGlobalRNG) rng = &globalRNG; if (rng) { if (wc_RNG_GenerateBlock(rng, buff, len) != 0) WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); else { switch (top) { case -1: break; case 0: buff[0] |= 0x80; break; case 1: buff[0] |= 0x80 | 0x40; break; } if (bottom == 1) { buff[len-1] |= 0x01; } if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY) WOLFSSL_MSG("mp read bin failed"); else ret = WOLFSSL_SUCCESS; } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } /* return code compliant with OpenSSL : * 1 if bit set, 0 else */ int wolfSSL_BN_is_bit_set(const WOLFSSL_BIGNUM* bn, int n) { if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } return mp_is_bit_set((mp_int*)bn->internal, (mp_digit)n); } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_set_bit(WOLFSSL_BIGNUM* bn, int n) { if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_set_bit((mp_int*)bn->internal, n) != MP_OKAY) { WOLFSSL_MSG("mp_set_bit error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } int wolfSSL_BN_clear_bit(WOLFSSL_BIGNUM* bn, int n) { int ret = WOLFSSL_FAILURE; #ifndef WOLFSSL_SMALL_STACK mp_int tmp[1]; #else mp_int* tmp = NULL; #endif if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); goto end; } if (mp_is_bit_set((mp_int*)bn->internal, n)) { #ifdef WOLFSSL_SMALL_STACK tmp = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (tmp == NULL) { goto end; } #endif if (mp_init(tmp) != MP_OKAY) { goto end; } if (mp_set_bit(tmp, n) != MP_OKAY) { goto cleanup; } if (mp_sub((mp_int*)bn->internal, tmp, (mp_int*)bn->internal) != MP_OKAY) { goto cleanup; } } else { goto end; } ret = WOLFSSL_SUCCESS; cleanup: mp_clear(tmp); end: #ifdef WOLFSSL_SMALL_STACK if (tmp) XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } /* WOLFSSL_SUCCESS on ok */ /* Note on use: this function expects str to be an even length. It is * converting pairs of bytes into 8-bit values. As an example, the RSA * public exponent is commonly 0x010001. To get it to convert, you need * to pass in the string "010001", it will fail if you use "10001". This * is an affect of how Base16_Decode() works. */ int wolfSSL_BN_hex2bn(WOLFSSL_BIGNUM** bn, const char* str) { int ret = 0; word32 decSz = 1024; #ifdef WOLFSSL_SMALL_STACK byte* decoded; #else byte decoded[1024]; #endif int weOwn = 0; int strLen; WOLFSSL_MSG("wolfSSL_BN_hex2bn"); #ifdef WOLFSSL_SMALL_STACK decoded = (byte*)XMALLOC(decSz, NULL, DYNAMIC_TYPE_DER); if (decoded == NULL) return ret; #endif if (str == NULL || str[0] == '\0') { WOLFSSL_MSG("Bad function argument"); ret = WOLFSSL_FAILURE; } else { strLen = (int)XSTRLEN(str); /* ignore trailing new lines */ while (str[strLen-1] == '\n' && strLen > 0) strLen--; if (Base16_Decode((byte*)str, strLen, decoded, &decSz) < 0) WOLFSSL_MSG("Bad Base16_Decode error"); else if (bn == NULL) ret = decSz; else { if (*bn == NULL) { *bn = wolfSSL_BN_new(); if (*bn != NULL) { weOwn = 1; } } if (*bn == NULL) WOLFSSL_MSG("BN new failed"); else if (wolfSSL_BN_bin2bn(decoded, decSz, *bn) == NULL) { WOLFSSL_MSG("Bad bin2bn error"); if (weOwn == 1) { wolfSSL_BN_free(*bn); /* Free new BN */ } } else ret = WOLFSSL_SUCCESS; } } #ifdef WOLFSSL_SMALL_STACK XFREE(decoded, NULL, DYNAMIC_TYPE_DER); #endif return ret; } WOLFSSL_BIGNUM* wolfSSL_BN_dup(const WOLFSSL_BIGNUM* bn) { WOLFSSL_BIGNUM* ret; WOLFSSL_MSG("wolfSSL_BN_dup"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return NULL; } ret = wolfSSL_BN_new(); if (ret == NULL) { WOLFSSL_MSG("bn new error"); return NULL; } if (mp_copy((mp_int*)bn->internal, (mp_int*)ret->internal) != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); wolfSSL_BN_free(ret); return NULL; } ret->neg = bn->neg; return ret; } WOLFSSL_BIGNUM* wolfSSL_BN_copy(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_copy"); if (r == NULL || bn == NULL) { WOLFSSL_MSG("r or bn NULL error"); return NULL; } if (mp_copy((mp_int*)bn->internal, (mp_int*)r->internal) != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); return NULL; } r->neg = bn->neg; return r; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_set_word(WOLFSSL_BIGNUM* bn, unsigned long w) { WOLFSSL_MSG("wolfSSL_BN_set_word"); if (bn == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_set_int((mp_int*)bn->internal, w) != MP_OKAY) { WOLFSSL_MSG("mp_init_set_int error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } static WOLFSSL_BN_ULONG wolfSSL_BN_get_word_1(mp_int *mp) { #if DIGIT_BIT >= (SIZEOF_LONG * CHAR_BIT) return (WOLFSSL_BN_ULONG)mp->dp[0]; #else WOLFSSL_BN_ULONG ret = 0UL; int digit_i; for (digit_i = 0; digit_i < mp->used; ++digit_i) ret |= ((WOLFSSL_BN_ULONG)mp->dp[digit_i]) << (DIGIT_BIT * digit_i); return ret; #endif } /* Returns the big number as an unsigned long if possible. * * bn big number structure to get value from * * Returns value or 0xFFFFFFFFL if bigger than unsigned long. */ WOLFSSL_BN_ULONG wolfSSL_BN_get_word(const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_get_word"); if (bn == NULL) { WOLFSSL_MSG("Invalid argument"); return 0; } if (wolfSSL_BN_num_bytes(bn) > (int)sizeof(unsigned long)) { WOLFSSL_MSG("bignum is larger than unsigned long"); return 0xFFFFFFFFL; } return wolfSSL_BN_get_word_1((mp_int*)bn->internal); } /* return code compliant with OpenSSL : * number length in decimal if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_BN_dec2bn(WOLFSSL_BIGNUM** bn, const char* str) { (void)bn; (void)str; WOLFSSL_MSG("wolfSSL_BN_dec2bn"); WOLFSSL_STUB("BN_dec2bn"); return SSL_FAILURE; } #endif #if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) char *wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM *bn) { int len = 0; char *buf; WOLFSSL_MSG("wolfSSL_BN_bn2dec"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return NULL; } if (mp_radix_size((mp_int*)bn->internal, MP_RADIX_DEC, &len) != MP_OKAY) { WOLFSSL_MSG("mp_radix_size failure"); return NULL; } buf = (char*) XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL); if (buf == NULL) { WOLFSSL_MSG("BN_bn2dec malloc buffer failure"); return NULL; } if (mp_todecimal((mp_int*)bn->internal, buf) != MP_OKAY) { XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL); return NULL; } return buf; } #else char* wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM* bn) { (void)bn; WOLFSSL_MSG("wolfSSL_BN_bn2dec"); return NULL; } #endif /* defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) */ /* Internal function for adding/subtracting an unsigned long from a * WOLFSSL_BIGNUM. To add, pass "sub" as 0. To subtract, pass it as 1. * Returns 1 (WOLFSSL_SUCCESS) on success and 0 (WOLFSSL_FAILURE) on failure. */ static int wolfSSL_BN_add_word_int(WOLFSSL_BIGNUM *bn, WOLFSSL_BN_ULONG w, int sub) { int ret = WOLFSSL_SUCCESS; int rc = 0; mp_int w_mp; XMEMSET(&w_mp, 0, sizeof(mp_int)); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { if (w <= (WOLFSSL_BN_ULONG)MP_MASK) { if (sub == 1) { rc = mp_sub_d((mp_int*)bn->internal, (mp_digit)w, (mp_int*)bn->internal); } else { rc = mp_add_d((mp_int*)bn->internal, (mp_digit)w, (mp_int*)bn->internal); } if (rc != MP_OKAY) { WOLFSSL_MSG("mp_add/sub_d error"); ret = WOLFSSL_FAILURE; } } else { if (mp_init(&w_mp) != MP_OKAY) { ret = WOLFSSL_FAILURE; } if (ret == WOLFSSL_SUCCESS) { if (mp_set_int(&w_mp, w) != MP_OKAY) { ret = WOLFSSL_FAILURE; } } if (ret == WOLFSSL_SUCCESS) { if (sub == 1) { rc = mp_sub((mp_int *)bn->internal, &w_mp, (mp_int *)bn->internal); } else { rc = mp_add((mp_int *)bn->internal, &w_mp, (mp_int *)bn->internal); } if (rc != MP_OKAY) { WOLFSSL_MSG("mp_add/sub error"); ret = WOLFSSL_FAILURE; } } } } mp_free(&w_mp); return ret; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_add_word(WOLFSSL_BIGNUM *bn, WOLFSSL_BN_ULONG w) { int ret; WOLFSSL_ENTER("wolfSSL_BN_add_word"); ret = wolfSSL_BN_add_word_int(bn, w, 0); WOLFSSL_LEAVE("wolfSSL_BN_add_word", ret); return ret; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ WOLFSSL_API int wolfSSL_BN_sub_word(WOLFSSL_BIGNUM* bn, WOLFSSL_BN_ULONG w) { int ret; WOLFSSL_ENTER("wolfSSL_BN_sub_word"); ret = wolfSSL_BN_add_word_int(bn, w, 1); WOLFSSL_LEAVE("wolfSSL_BN_sub_word", ret); return ret; } #ifndef WOLFSSL_SP_MATH /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_lshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n) { WOLFSSL_MSG("wolfSSL_BN_lshift"); if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){ WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_mul_2d((mp_int*)bn->internal, n, (mp_int*)r->internal) != MP_OKAY) { WOLFSSL_MSG("mp_mul_2d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_rshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n) { WOLFSSL_MSG("wolfSSL_BN_rshift"); if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){ WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_div_2d((mp_int*)bn->internal, n, (mp_int*)r->internal, NULL) != MP_OKAY) { WOLFSSL_MSG("mp_mul_2d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_add(WOLFSSL_BIGNUM *r, WOLFSSL_BIGNUM *a, WOLFSSL_BIGNUM *b) { WOLFSSL_MSG("wolfSSL_BN_add"); if (r == NULL || r->internal == NULL || a == NULL || a->internal == NULL || b == NULL || b->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_add((mp_int*)a->internal, (mp_int*)b->internal, (mp_int*)r->internal) != MP_OKAY) { WOLFSSL_MSG("mp_add_d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #ifndef WOLFSSL_SP_MATH /* r = a + b (mod m) */ int wolfSSL_BN_mod_add(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a, const WOLFSSL_BIGNUM *b, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx) { (void)ctx; WOLFSSL_MSG("wolfSSL_BN_add"); if (r == NULL || r->internal == NULL || a == NULL || a->internal == NULL || b == NULL || b->internal == NULL || m == NULL || m->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_addmod((mp_int*)a->internal, (mp_int*)b->internal, (mp_int*)m->internal, (mp_int*)r->internal) != MP_OKAY) { WOLFSSL_MSG("mp_add_d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif #if defined(WOLFSSL_KEY_GEN) && (!defined(NO_RSA) || !defined(NO_DH) || !defined(NO_DSA)) int wolfSSL_BN_generate_prime_ex(WOLFSSL_BIGNUM* prime, int bits, int safe, const WOLFSSL_BIGNUM* add, const WOLFSSL_BIGNUM* rem, WOLFSSL_BN_GENCB* cb) { int ret = WOLFSSL_SUCCESS; #ifdef WOLFSSL_SMALL_STACK WC_RNG* rng = NULL; #else WC_RNG rng[1]; #endif (void)cb; WOLFSSL_ENTER("wolfSSL_BN_generate_prime_ex"); if (safe == 1 || add != NULL || rem != NULL) { /* These parameters aren't supported, yet. */ ret = WOLFSSL_FAILURE; } if (prime == NULL || prime->internal == NULL) { ret = WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK if (ret == WOLFSSL_SUCCESS) { rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (rng == NULL) { ret = WOLFSSL_FAILURE; } } #endif if (ret == WOLFSSL_SUCCESS) { XMEMSET(rng, 0, sizeof(WC_RNG)); if (wc_InitRng(rng) != 0) { ret = WOLFSSL_FAILURE; } } if (ret == WOLFSSL_SUCCESS) { if (mp_rand_prime((mp_int*)prime->internal, (bits + 7) / 8, rng, NULL) != MP_OKAY) { ret = WOLFSSL_FAILURE; } } wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK if (rng != NULL) XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif WOLFSSL_LEAVE("wolfSSL_BN_generate_prime_ex", ret); return ret; } /* return code compliant with OpenSSL : * 1 if prime, 0 if not, -1 if error */ int wolfSSL_BN_is_prime_ex(const WOLFSSL_BIGNUM *bn, int nbchecks, WOLFSSL_BN_CTX *ctx, WOLFSSL_BN_GENCB *cb) { WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif int initTmpRng = 0; int res = MP_NO; (void)ctx; (void)cb; WOLFSSL_MSG("wolfSSL_BN_is_prime_ex"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FAILURE; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) { WOLFSSL_MSG("Global RNG no Init"); } else rng = &globalRNG; } if (rng) { if (mp_prime_is_prime_ex((mp_int*)bn->internal, nbchecks, &res, rng) != MP_OKAY) { WOLFSSL_MSG("mp_prime_is_prime_ex error"); res = MP_NO; } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif if (res != MP_YES) { WOLFSSL_MSG("mp_prime_is_prime_ex not prime"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* return code compliant with OpenSSL : * (bn mod w) if success, -1 if error */ WOLFSSL_BN_ULONG wolfSSL_BN_mod_word(const WOLFSSL_BIGNUM *bn, WOLFSSL_BN_ULONG w) { WOLFSSL_BN_ULONG ret = 0; WOLFSSL_MSG("wolfSSL_BN_mod_word"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return (WOLFSSL_BN_ULONG)WOLFSSL_FATAL_ERROR; } if (w <= (WOLFSSL_BN_ULONG)MP_MASK) { mp_digit bn_ret; if (mp_mod_d((mp_int*)b