
EMBEDDED SoPC DESIGN
WITH NIOS II PROCESSOR
AND VERILOG EXAMPLES

EMBEDDED SoPC DESIGN
WITH NIOS II PROCESSOR
AND VERILOG EXAMPLES

www.it-ebooks.info

http://www.it-ebooks.info/

EMBEDDED SoPC DESIGN
WITH NIOS II PROCESSOR
AND VERILOG EXAMPLES

Pong P. Chu
Cleveland State University

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

www.it-ebooks.info

http://www.it-ebooks.info/

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748.-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Chu, Pong P., 1959-
Embedded SoPC design with NIOSII processor and Verilog examples / Pong P. Chu.

p. cm.
Includes bibliographical references and index.

ISBN 978-1-118-01103-4 (hardback)
1. Embedded computer systems. 2. Field programmable gate arrays. 3. Verilog (Computer hardware description

language) I. Title.
TK7895.E42C48 2012
006.2'2—dc23 2011048946

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

www.it-ebooks.info

http://www.it-ebooks.info/

To my mother, Chi-Te, my wife, Lee, and my
daughter, Patricia

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Preface

Acknowledgments

1 Overview of Embedded System

1.1

1.2
1.3

1.4
1.5

Introduction
1.1.1 Definition of an embedded system
1.1.2 Example systems
System design requirements
Embedded SoPC systems
1.3.1 Basic development flow
Book organization
Bibliographic notes

xxvu

xxxiii

1
1
2
3
4
5
8
8

PART I BASIC DIGITAL CIRCUITS DEVELOPMENT

Gate-level Combinational Circuit 11

2.1 Introduction 11
2.2 General description 12
2.3 Basic lexical elements and data types 13

2.3.1 Lexical elements 13
2.4 Data types 14

vii

2 Overvie

www.it-ebooks.info

http://www.it-ebooks.info/

V¡¡¡ CONTENTS

2.4.1 Four-value system 14
2.4.2 Data type groups 14
2.4.3 Number representation 15
2.4.4 Operators 16

2.5 Program skeleton 16
2.5.1 Port declaration 16
2.5.2 Program body 17
2.5.3 Signal declaration 18
2.5.4 Another example 18

2.6 Structural description 19
2.7 Testbench 22
2.8 Bibliographic notes 23
2.9 Suggested experiments 24

2.9.1 Code for gate-level greater-than circuit 24
2.9.2 Code for gate-level binary decoder 24

3 Overview of FPGA and EDA Software 25

3.1 FPGA 25
3.1.1 Overview of a general FPGA device 25
3.1.2 Overview of the Altera Cyclone II devices 27

3.2 Overview of the Altera DEI and DE2 boards 30
3.3 Development flow 30
3.4 Overview of Quartus II 33
3.5 Short tutorial of Quartus II 35

3.5.1 Create the design project 36
3.5.2 Create a testbench and perform the RTL simulation 41
3.5.3 Compile the project 41
3.5.4 Perform timing analysis 43
3.5.5 Program the FPGA device 43

3.6 Short tutorial on the ModelSim HDL simulator 45
3.7 Bibliographic notes 50
3.8 Suggested experiments 50

3.8.1 Gate-level greater-than circuit 50
3.8.2 Gate-level binary decoder 51

4 RT-level Combinational Circuit 53

4.1 Operators 53
4.1.1 Arithmetic operators 55
4.1.2 Shift operators 55
4.1.3 Relational and equality operators 56
4.1.4 Bitwise, reduction, and logical operators 56

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ¡X

4.1.5 Concatenation and replication operators 57
4.1.6 Conditional operators 58
4.1.7 Operator precedence 59
4.1.8 Expression bit-length adjustment 59
4.1.9 Synthesis of z and x values 60

4.2 Always block for a combinational circuit 62
4.2.1 Basic syntax and behavior 62
4.2.2 Procedural assignment 63
4.2.3 Variable data types 63
4.2.4 Simple examples 64

4.3 If statement 65
4.3.1 Syntax 65
4.3.2 Examples 66

4.4 Case statement 68
4.4.1 Syntax 68
4.4.2 Examples 69
4.4.3 The casez and casex statements 69
4.4.4 Full case and parallel case 70

4.5 Routing structure of conditional control constructs 71
4.5.1 Priority routing network 71
4.5.2 Multiplexing network 73

4.6 General coding guidelines for an always block 74
4.6.1 Common errors in combinational circuit codes 74
4.6.2 Guidelines 77

4.7 Parameter and constant 78
4.7.1 Constant 78
4.7.2 Parameter 79
4.7.3 Use of parameters in Verilog-1995 81

4.8 Design examples 81
4.8.1 Hexadecimal digit to seven-segment LED decoder 81
4.8.2 Sign-magnitude adder 83
4.8.3 Barrel shifter 85
4.8.4 Simplified floating-point adder 87

4.9 Bibliographic notes 90
4.10 Suggested experiments 91

4.10.1 Multifunction barrel shifter 91
4.10.2 Dual-priority encoder 91
4.10.3 BCD incrementor 91
4.10.4 Floating-point greater-than circuit 92
4.10.5 Floating-point and signed integer conversion circuit 92
4.10.6 Enhanced floating-point adder 92

www.it-ebooks.info

http://www.it-ebooks.info/

X CONTENTS

Regular Sequential Circuit 93

5.1 Introduction 93
5.1.1 D FF and register 94
5.1.2 Synchronous system 94
5.1.3 Code development 95

5.2 HDL code of the FF and register 95
5.2.1 D FF 96
5.2.2 Register 99
5.2.3 Register file 99
5.2.4 SRAM 102

5.3 Simple design examples 103
5.3.1 Shift register 103
5.3.2 Binary counter and variant 104

5.4 Testbench for sequential circuits 107
5.5 Timing analysis 110

5.5.1 Timing parameters 110
5.5.2 Timing considerations in Quartus II 112

5.6 Case study 114
5.6.1 Stopwatch 114
5.6.2 FIFO buffer 117

5.7 Cyclone II device embedded memory module 121
5.7.1 Overview of memory options of DEI board 121
5.7.2 Overview of embedded M4K module 122
5.7.3 Methods to incorporate embedded memory module 122
5.7.4 HDL module to infer synchronous single-port RAM 124
5.7.5 HDL module to infer synchronous simple dual-port RAM 126
5.7.6 HDL module to infer synchronous true dual-port RAM 127
5.7.7 HDL module to infer synchronous ROM 129
5.7.8 HDL module to specify RAM initial values 130
5.7.9 FIFO buffer revisited 131

5.8 Bibliographic notes 132
5.9 Suggested experiments 132

5.9.1 Programmable square-wave generator 132
5.9.2 Pulse width modulation circuit 133
5.9.3 Rotating square circuit 133
5.9.4 Heartbeat circuit 133
5.9.5 Rotating LED banner circuit 134
5.9.6 Enhanced stopwatch 134
5.9.7 FIFO with data width conversion 134
5.9.8 Stack 134
5.9.9 ROM-based sign-magnitude adder 134
5.9.10 ROM-based temperature conversion 135

5 Overvie

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS X¡

6 FSM 137

6.1 Introduction 137
6.1.1 Mealy and Moore outputs 138
6.1.2 FSM representation 138

6.2 FSM code development 140
6.3 Design examples. 143

6.3.1 Rising-edge detector 143
6.3.2 Debouncing circuit 147
6.3.3 Testing circuit 151

6.4 Bibliographic notes 153
6.5 Suggested experiments 153

6.5.1 Dual-edge detector 153
6.5.2 Alternative debouncing circuit 153
6.5.3 Parking lot occupancy counter 153

7 FSMD 155

7.1 Introduction 155
7.1.1 Single RT operation 156
7.1.2 ASMD chart 156
7.1.3 Decision box with a register 158

7.2 Code development of an FSMD 161
7.2.1 Debouncing circuit based on RT methodology 161
7.2.2 Code with explicit data path components 161
7.2.3 Code with implicit data path components 164
7.2.4 Comparison 166

7.3 Design examples 168
7.3.1 Fibonacci number circuit 168
7.3.2 Division circuit 171
7.3.3 Binary-to-BCD conversion circuit 175
7.3.4 Period counter 178
7.3.5 Accurate low-frequency counter 181

7.4 Bibliographic notes 184
7.5 Suggested experiments 184

7.5.1 Alternative debouncing circuit 184
7.5.2 BCD-to-binary conversion circuit 184
7.5.3 Fibonacci circuit with BCD I/O: design approach 1 185
7.5.4 Fibonacci circuit with BCD I/O: design approach 2 185
7.5.5 Auto-scaled low-frequency counter 186
7.5.6 Reaction timer 186
7.5.7 Babbage difference engine emulation circuit 187

www.it-ebooks.info

http://www.it-ebooks.info/

XÜ CONTENTS

Selected Topics of Verilog 189

8.1

8.2

8.3

8.4

8.5

8.6
8.7

Blockh
8.1.1
8.1.2
8.1.3
8.1.4

ig versus nonbiocking assignment
Overview
Combinational circuit
Memory element
Sequential circuit with mixed blocking and nonbiocking
assignments

Alternative coding style for sequential circuit
8.2.1
8.2.2
8.2.3
8.2.4

Binary counter
FSM
FSMD
Summary

Use of the signed data type
8.3.1
8.3.2
8.3.3

Overview
Signed number in Verilog-1995
Signed number in Verilog-2001

Use of function in synthesis
8.4.1
8.4.2

Overview
Examples

Additional constructs for testbench development
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9
8.5.10

Always block and initial block
Procedural statements
Timing control
Delay control
Event control
Wait statement
Timescale directive
System functions and tasks
User-defined functions and tasks
Example of a comprehensive testbench

Bibliographic notes
Suggested experiments
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7

Shift register with blocking and nonbiocking assignments
Alternative coding style for BCD counter
Alternative coding style for FIFO buffer
Alternative coding style for Fibonacci circuit
Dual-mode comparator
Enhanced binary counter monitor
Testbench for FIFO buffer

189
190
191
193

194
196
196
198
199
201
201
201
203
203
204
204
205
207
207
207
209
209
210
211
211
212
216
217
223
223
223
224
224
224
224
224
225

PART II BASIC NIOS II SOFTWARE DEVELOPMENT

8 Overvie

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XIII

Nios II Processor Overview 229

9.1 Introduction 229
9.2 Register file and ALU 231

9.2.1 Register file 231
9.2.2 ALU 231

9.3 Memory and I/O organization 232
9.3.1 Nios II memory interface 232
9.3.2 Overview of memory hierarchy 232
9.3.3 Virtual memory 232
9.3.4 Memory protection 233
9.3.5 Cache memory 233
9.3.6 Tightly coupled memory 234
9.3.7 I /O organization 234
9.3.8 Interconnect structure 235

9.4 Exception and interrupt handler 235
9.5 JTAG debug module 235
9.6 Bibliographic notes 235
9.7 Suggested projects 236

9.7.1 Comparison of Nios II and MIPS 236

Nios II System Derivation and Low-Level Access 237

10.1 Development flow revisited 237
10.1.1 Hardware development 237
10.1.2 Software development 239
10.1.3 Flashing-LED system 239

10.2 Nios II hardware generation tutorial 240
10.2.1 Create a hardware project in Quartus II 240
10.2.2 Create a Nios II system and generate HDL codes 240
10.2.3 Create a top-level HDL file that instantiates the Nios II

system 246
10.2.4 Compiling and programming 247

10.3 Nios II SBT GUI tutorial 248
10.3.1 Create BSP library 248
10.3.2 Configure the BSP using BSP Editor 249
10.3.3 Create user application directory and add application files 250
10.3.4 Build and run software 251
10.3.5 Check code size 252

10.4 System id core for hardware-software consistency 252
10.5 Direct low-level I /O access 254

10.5.1 Review of C pointer 254
10.5.2 C pointer for I/O register 255

9 Overvie

10Overvie

www.it-ebooks.info

http://www.it-ebooks.info/

XIV CONTENTS

10.6 Robust low-level I /O access 256
10.6.1 system, h 256
10.6.2 a l t . t y p e s . h 257
10.6.3 i o . h 257

10.7 Some C techniques for low-level I /O operations 258
10.7.1 Bit manipulation 258
10.7.2 Packing and unpacking 258

10.8 Software development 259
10.8.1 Basic embedded program architecture 259
10.8.2 Main program and task routines 260

10.9 Bibliographic notes 261
10.10 Suggested experiments 261

10.10.1 Chasing LED circuit 261
10.10.2 Collision LED circuit 262
10.10.3 Pulse width modulation circuit 262
10.10.4 Rotating square circuit 262
10.10.5 Heartbeat circuit 262

10.11 Complete program listing 263

11 Predesigned Nios II I/O Peripherals 265

11.1 Overviews 265
11.2 PlOcore 266

11.2.1 Configuration 266
11.2.2 Register map 269
11.2.3 Visible register 270

11.3 JTAGUART core 270
11.3.1 Configuration 270
11.3.2 Register map 271

11.4 Internal timer core 272
11.4.1 Configuration 272
11.4.2 Register map 273

11.5 Enhanced flashing-LED Nios II system 274
11.5.1 SOPC design 274
11.5.2 Top-level HDL file 278

11.6 Software development of enhanced flashing-LED system 279
11.6.1 Introduction to device driver 280
11.6.2 Program structure of the enhanced flashing-LED system 280
11.6.3 Main program 281
11.6.4 Function naming convention 281

11.7 Device driver routines 282
11.7.1 Driver for PIO peripherals 282
11.7.2 JTAG UART 284

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XV

11.7.3 Timer 285
11.8 Task routines 286

11.8.1 The f l a shsys . in i t_v l () function 287
11.8.2 The sw^get_command_vl O function 287
11.8.3 The jtaguart_disp_msg_vl() function 287
11.8.4 The sseg_disp_msg_vl() function 288
11.8.5 The led_flash_vl() function 289

11.9 Software construction and testing 289
11.10 Bibliographic notes 290
11.11 Suggested experiments 290

11.11.1 "Uptime" feature in flashing-LED system 290
11.11.2 Counting with different timer mode 290
11.11.3 JTAG UART input 290
11.11.4 Enhanced collision LED circuit 290
11.11.5 Rotating LED banner circuit 291
11.11.6 Enhanced stopwatch 291
11.11.7 Parking lot occupancy counter 291
11.11.8 Reaction timer with pushbutton switch control 291
11.11.9 Reaction timer with keyboard control 291
11.11.10 Communication with serial port 292

11.12 Complete program listing 293

12 Predesigned Nios II I/O Drivers and HAL API 303

12.1 Overview of HAL 303
12.1.1 Desktop-like and barebone embedded systems 304
12.1.2 HAL paradigm 305
12.1.3 Device classes 306
12.1.4 HAL-compliant device drivers 307
12.1.5 The _regs.h file 307
12.1.6 HAL-based initialization sequence 308

12.2 BSP 309
12.2.1 Overview 309
12.2.2 BSP file structure 309
12.2.3 BSP configuration 309

12.3 HAL-based flashing-LED program 313
12.3.1 Functions using generic I/O devices 313
12.3.2 Functions using non-generic I/O devices 315
12.3.3 Initialization routine and main program 316
12.3.4 Software construction and testing 317

12.4 Device driver consideration 318
12.4.1 I/O access methods 318
12.4.2 Comparisons 319

www.it-ebooks.info

http://www.it-ebooks.info/

XVI CONTENTS

12.4.3 Device drivers in this book 320
12.5 Bibliographie notes 321
12.6 Suggested experiments 321

12.6.1 "Uptime" feature in flashing-LED system 321
12.6.2 Enhanced collision LED circuit 322
12.6.3 Parking lot occupancy counter 322
12.6.4 Reaction timer with keyboard control 322
12.6.5 Digital alarm clock 322

12.7 Complete program listing 323

13 Interrupt and ISR 325

13.1 Interrupt processing in the HAL framework 325
13.1.1 Overview 326
13.1.2 Interrupt controller of the Nios II processor 326
13.1.3 Top-level exception handler 327
13.1.4 Interrupt service routines 328

13.2 Interrupt-based flashing-LED program 328
13.2.1 Interrupt of timer core 329
13.2.2 Driver of timer core 329
13.2.3 ISR version 1 330
13.2.4 ISR version 2 332

13.3 Interrupt and scheduling 333
13.3.1 Scheduling 333
13.3.2 Performance 335

13.4 Bibliographic notes 336
13.5 Suggested experiments 336

13.5.1 Flashing-LED system with pushbutton switch ISR 336
13.5.2 ISR-driven flashing-LED system 336
13.5.3 "Uptime" feature in flashing-LED system 337
13.5.4 Reaction timer with keyboard control 337
13.5.5 Digital alarm clock 337

13.6 Complete program listing 338

PART III CUSTOM I/O PERIPHERAL DEVELOPMENT

14 Custom I/O Peripheral with PIO Cores 345

14.1 Introduction 345
14.2 Integration of division circuit to a Nios II system 346

14.2.1 PIO modules 346
14.2.2 Integration 347

14.3 Testing 347
14.4 Suggested experiments 350

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XVÜ

14.4.1 Division core ISR 350
14.4.2 Division core with eight-bit data 350
14.4.3 Division core with 64-bit data 350
14.4.4 Fibonacci number circuit 350
14.4.5 Period counter 350

15 Avalon Interconnect and SOPC Component 351

15.1 Introduction 351
15.2 Avalon MM interface 355

15.2.1 Avalon MM slave interface signals 355
15.2.2 Avalon MM slave interface properties 356
15.2.3 Avalon MM slave timing 356

15.3 System interconnect fabric for Avalon interface 359
15.4 SOPC I/O component wrapping circuit 361

15.4.1 Interface I/O buffer 361
15.4.2 Memory alignment 364
15.4.3 Output decoding from an Avalon MM master 364
15.4.4 Input multiplexing to an Avalon MM master 366
15.4.5 Practical consideration 367

15.5 SOPC component construction tutorial 368
15.5.1 Avalon interfaces 368
15.5.2 Register map 369
15.5.3 Wrapped division circuit 370
15.5.4 SOPC component creation 372
15.5.5 SOPC component instantiation 379

15.6 Testing 381
15.7 Bibliographic notes 383
15.8 Suggested experiments 383

15.8.1 Division core ISR 383
15.8.2 Alternative buffering scheme for the division core 383
15.8.3 Division core with eight-bit data 384
15.8.4 Division core with 64-bit data 384
15.8.5 Fibonacci number circuit 384
15.8.6 Period counter 384

16 SRAM and SDRAM Controllers 385

16.1 Memory resources of DEI board 385
16.2 Brief overview of timing and clock management 386

16.2.1 Clock distribution network 386
16.2.2 Timing consideration of off-chip access 387
16.2.3 PLL 388

www.it-ebooks.info

http://www.it-ebooks.info/

XV¡¡¡ CONTENTS

16.3 Overview of SRAM 389
16.3.1 SRAM cell 389
16.3.2 Basic organization 390
16.3.3 Timing 391
16.3.4 IS61LV25616AL SRAM device 393

16.4 SRAM controller IP core 394
16.4.1 Avalon interfaces 394
16.4.2 Controller circuit 396
16.4.3 SOPC component creation 397

16.5 Overview of DRAM 398
16.5.1 DRAM cell 398
16.5.2 Basic DRAM organization 400
16.5.3 DRAM timing 401

16.6 Overview of SDRAM 403
16.6.1 Basic SDRAM organization 403
16.6.2 SDRAM timing 404
16.6.3 ICSIIS42S16400 SDRAM device 406

16.7 SDRAM controller and PLL 406
16.7.1 Basic SDRAM controller 406
16.7.2 SDRAM controller IP core 408
16.7.3 SOPC PLL IP core 408

16.8 Testing system 411
16.8.1 Testing hardware configuration 411
16.8.2 Testing software 415

16.9 Bibliographic notes 418
16.10 Suggested experiments 418

16.10.1 SRAM controller without I/O register 418
16.10.2 SRAM controller speed test 418
16.10.3 SRAM controller with Avalon MM tristate interface 419
16.10.4 SDRAM controller clock skew test 419
16.10.5 Memory performance comparison 419
16.10.6 Effect of cache memory 419
16.10.7 SDRAM controller from scratch 419

16.11 Complete program listing 420

17 PS2 Keyboard and Mouse 423

17.1 Introduction 423
17.2 PS2 receiving subsystem 424

17.2.1 PS2-device-to-host communication protocol 424
17.2.2 Design and code 425

17.3 PS2 transmitting subsystem 428
17.3.1 Host-to-PS2-device communication protocol 428

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XIX

17.3.2 Design and code 429
17.4 Complete PS2 system 433
17.5 PS2 controller IP core development 435

17.5.1 Avalon interfaces 435
17.5.2 Register map 435
17.5.3 Wrapped PS2 system 436
17.5.4 SOPC component creation 437

17.6 PS2 driver 438
17.6.1 Register map 438
17.6.2 Write routines 438
17.6.3 Read routines 439

17.7 Keyboard driver 440
17.7.1 Overview of the scan code 440
17.7.2 Interaction with host 441
17.7.3 Driver routines 441

17.8 Mouse driver 445
17.8.1 Overview of PS2 mouse protocol 445
17.8.2 Interaction with host 446
17.8.3 Driver routines 447

17.9 Test 449
17.10 Use of book's custom IP cores 451

17.10.1 File organization 451
17.10.2 SOPC library integration 452
17.10.3 Comprehensive Nios II testing system 452

17.11 Bibliographic notes 456
17.12 Suggested experiments 456

17.12.1 PS2 receiving subsystem with watchdog timer 456
17.12.2 Software receiving FIFO 458
17.12.3 Software PS2 controller 458
17.12.4 Keyboard-controlled LED flashing circuit 458
17.12.5 Enhanced keyboard driver routine I 458
17.12.6 Enhanced keyboard driver routine II 458
17.12.7 Remote-mode mouse driver 459
17.12.8 Scroll-wheel mouse driver 459

17.13 Complete program listing 460

18 VGA Controller 475

18.1 Introduction 475
18.1.1 Basic operation of a CRT 475
18.1.2 VGA port of the DEI board 477
18.1.3 Video controller 478

18.2 VGA synchronization 479

www.it-ebooks.info

http://www.it-ebooks.info/

XX CONTENTS

18.2.1 Horizontal synchronization 480
18.2.2 Vertical synchronization 481
18.2.3 Timing calculation of VGA synchronization signals 482
18.2.4 HDL implementation 482

18.3 SRAM-based video RAM controller 484
18.3.1 Overview of video memory 484
18.3.2 Memory consideration of DEI board 485
18.3.3 Ad hoc SRAM controller 486
18.3.4 HDL code 491

18.4 Palette circuit 494
18.5 Video controller IP core development 495

18.5.1 Complete video controller 495
18.5.2 Avalon interfaces 495
18.5.3 Register map 496
18.5.4 Wrapped video controller 496
18.5.5 SOPC component creation 497

18.6 Video driver 498
18.6.1 Video memory access routines 498
18.6.2 Geometrical model routine 499
18.6.3 Bitmap processing routines 500
18.6.4 Bit-mapped text routines 503

18.7 Mouse processing routines 506
18.8 Testing program 507

18.8.1 Chart plotting routine 509
18.8.2 General plotting functions 510
18.8.3 Strip swapping routine 512
18.8.4 Mouse demonstration routine 512
18.8.5 Bit-mapped text routine 513

18.9 Bitmap file processing 514
18.9.1 BMP format overview 514
18.9.2 Generation of BMP file 515
18.9.3 Sprite-based design 515
18.9.4 BMP file access 516
18.9.5 Host-based file system 517
18.9.6 Bitmap file retrieval routines 519

18.10 Bibliographic notes 522
18.11 Suggested experiments 523

18.11.1 PLL-based VGA controller 523
18.11.2 VGA controller with 16-bit memory configuration 523
18.11.3 VGA controller with 3-bit color depth 523
18.11.4 VGA controller with 1-bit color depth 523
18.11.5 VGA controller with double buffering 523

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XXI

18.11.6 VGA Controller with 320-by-240 resolution 523
18.11.7 VGA Controller with vertical mode operation 524
18.11.8 Geometrical model functions 524
18.11.9 Bitmap manipulation functions 524
18.11.10 Simulated "Etch A Sketch" toy 524
18.11.11 Palette lookup table circuit 524
18.11.12 Virtual LED flashing system panel 525
18.11.13 Virtual analog wall clock 525

18.12 Suggested projects 525
18.12.1 Configurable VGA controller 525
18.12.2 VGA controller using system SDRAM 525
18.12.3 Paint program 525
18.12.4 Videogame 526

18.13 Complete program listing 527

19 Audio Codec Controller 555

19.1 Introduction 555
19.1.1 Overview of codec 555
19.1.2 Overview of WM8731 device 556
19.1.3 Registers of WM8731 device 557

19.2 I2C controller 560
19.2.1 Overview of I2C interface 560
19.2.2 HDL implementation 562

19.3 Codec data access controller 568
19.3.1 Overview of digital audio interface 568
19.3.2 HDL implementation 569

19.4 Audio codec controller IP core development 572
19.4.1 Complete audio codec controller 572
19.4.2 Avalon interfaces 574
19.4.3 Register map 575
19.4.4 Wrapped audio codec controller 575
19.4.5 SOPC component creation 577

19.5 Codec driver 577
19.5.1 I2C command routines 577
19.5.2 Data source select routine 578
19.5.3 Device initialization routine 578
19.5.4 Audio data access routines 579

19.6 Testing program 580
19.7 Audio file processing 583

19.7.1 WAV format overview 583
19.7.2 Audio format conversion program 584
19.7.3 Audio data retrieval routine 585

www.it-ebooks.info

http://www.it-ebooks.info/

XXÜ CONTENTS

19.8 Bibliographie notes 587
19.9 Suggested experiments 587

19.9.1 Software I2C controller 587
19.9.2 Hardware data access controller using master clocking mode 587
19.9.3 Software data access controller using slave clocking mode 587
19.9.4 Software data access controller using master clocking mode 587
19.9.5 Configurable data access controller 588
19.9.6 Voice recorder 588
19.9.7 Real-time sinusoidal wave generator 588
19.9.8 Real-time audio wave display 588
19.9.9 Echo effect 588

19.10 Suggested projects 589
19.10.1 Full-fledged I2C controller 589
19.10.2 Digital equalizer 589
19.10.3 Digital audio oscilloscope 589

19.11 Complete program listing 590

20 SD Card Controller 601

20.1 Overview of SD card 601
20.2 SPI controller 602

20.2.1 Overview of SPI interface 602
20.2.2 HDL implementation 603

20.3 SPI controller IP core development 606
20.3.1 Avalon interfaces 606
20.3.2 Register map 606
20.3.3 Wrapped SPI controller 607
20.3.4 SOPC component creation 608

20.4 SD card protocol 608
20.4.1 SD card command and response formats 608
20.4.2 Initialization and identification process 610
20.4.3 Data read and write process 611

20.5 SPI and SD card driver 613
20.5.1 SPI driver routines 613
20.5.2 SD card driver routines 614

20.6 File access 619
20.6.1 Overview of FAT16 structure 620
20.6.2 Read-only FAT16 file access driver routines 625

20.7 Testing program 632
20.8 Performance of SD card data transfer 636
20.9 Bibliographic notes 637
20.10 Suggested experiments 637

20.10.1 SD card data transfer performance test 637

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XXÜi

20.10.2 Robust SD card driver routines 637
20.10.3 Dedicated processor for SD card access 638
20.10.4 Hardware-based SD card read and write operation 638
20.10.5 SD card information retrieval 638
20.10.6 MMC card support 638
20.10.7 Multiple sector read and write operation 638
20.10.8 SD card driver routines with CRC checking 639
20.10.9 Digital music player 639
20.10.10 Digital picture frame 639
20.10.11 Additional FAT functionalities 639

20.11 Suggested projects 639
20.11.1 HAL API file access integration 639

20.12 Complete program listing 640

PART IV HARDWARE ACCELERATOR CASE STUDIES

21 GCD Accelerator 663

21.1 Introduction 663
21.2 Software implementation 664
21.3 Hardware implementation 665

21.3.1 ASMD chart 665
21.3.2 HDL implementation 665

21.4 Time measurement 668
21.4.1 HAL time stamp driver 668
21.4.2 Custom hardware counter 669

21.5 GCD accelerator IP core development 669
21.5.1 Avalon interfaces 669
21.5.2 Register map 669
21.5.3 Wrapped GCD accelerator 669

21.6 Testing program 671
21.6.1 GCD routines 671
21.6.2 Main program 673

21.7 Performance comparison 673
21.8 Bibliographic notes 674
21.9 Suggested experiments 675

21.9.1 Performance with other processor configuration 675
21.9.2 GCD accelerator with minimal size 675
21.9.3 GCD accelerator with trailing zero circuit 675
21.9.4 GCD accelerator with 64-bit data 675
21.9.5 GCD accelerator with 128-bit data 675
21.9.6 GCD by Euclid's algorithm 675

21.10 Complete program listing 676

www.it-ebooks.info

http://www.it-ebooks.info/

ΧΧΪν CONTENTS

22 Mandelbrot Set Fractal Accelerator 681

22.1 Introduction 681
22.1.1 Overview of the Mandelbrot set 683
22.1.2 Determination of a Mandelbrot set point 683
22.1.3 Coloring scheme 684
22.1.4 Generation of a fractal image 685

22.2 Fixed-point arithmetic 687
22.3 Software implementation of cale J r a c p o i n t O 688
22.4 Hardware implementation of calc_f r a c p o i n t 0 689

22.4.1 ASMD chart 689
22.4.2 HDL implementation 689

22.5 Mandelbrot set fractal accelerator IP core development 692
22.5.1 Avalon interface 692
22.5.2 Register map 692
22.5.3 Wrapped Mandelbrot set fractal accelerator 693

22.6 Testing program 694
22.6.1 Fractal graphic user interface 694
22.6.2 Fractal hardware accelerator engine control routine 695
22.6.3 Fractal drawing routine 696
22.6.4 Text panel display routines 697
22.6.5 Mouse processing routine 698
22.6.6 Main program 700

22.7 Discussion 701
22.8 Bibliographic notes 701
22.9 Suggested experiments 702

22.9.1 Hardware accelerator with one multiplier 702
22.9.2 Hardware accelerator with modified escape condition 702
22.9.3 Hardware accelerator with Q4.12 format 702
22.9.4 Hardware accelerator with multiple fractal engines 702
22.9.5 "Burning-ship" fractal 702
22.9.6 Enhanced testing program 703

22.10 Suggested projects 703
22.10.1 Floating-point hardware accelerator 703
22.10.2 General fractal drawing platform 703

22.11 Complete program listing 704

23 Direct Digital Frequency Synthesis 715

23.1 Introduction 715
23.2 Design and implementation 715

23.2.1 Direct synthesis of a digital waveform 716
23.2.2 Direct synthesis of an unmodulated analog waveform 717

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XXV

23.2.3 Direct synthesis of a modulated analog waveform 718
23.2.4 HDL implementation 718

23.3 DDFS IP core development 721
23.3.1 Avalon interface 721
23.3.2 Register map 721
23.3.3 Wrapped DDFS circuit 721
23.3.4 Codec DAC integration 723

23.4 DDFS driver 723
23.4.1 Configuration routines 724
23.4.2 Initialization routine 724

23.5 Testing 725
23.5.1 Overview of music notes and synthesis 725
23.5.2 Testing program 726

23.6 Bibliographic notes 730
23.7 Suggested experiments 730

23.7.1 Quadrature phase carrier generation 730
23.7.2 Reduced-size phase-to-amplitude lookup table 731
23.7.3 Synthetic music player 731
23.7.4 Keyboard piano 731
23.7.5 Keyboard recorder 731
23.7.6 Hardware envelope generator 731
23.7.7 Additive harmonic synthesis 731
23.7.8 Sample-based synthesis 732

23.8 Suggested projects 732
23.8.1 Sound generator 732
23.8.2 Function generator 732
23.8.3 Full-fledged electric synthesizer 732

23.9 Complete program listing 733

References 741

Topic Index 745

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

An SoC (system on a chip) integrates a processor, memory modules, I/O periph-
erals, and custom hardware accelerators into a single integrated circuit. As the
capacity of FPGA (field-programmable gate array) devices continues to grow, the
same design methodology can be realized in an FPGA chip and is sometimes known
as SoPC (system on a programmable chip). In a traditional embedded system, the
hardware is constructed around a fixed-sized processor and off-the-shelf peripherals
and the software is customized to implement the desired functionalities. The emerg-
ing SoPC-based design provides a new alternative. Because of the programmability
of FPGA devices, customized hardware can be incorporated into the embedded sys-
tem as well. We can tailor the processor, select only the needed I/O peripherals,
create a custom I/O interface, and develop specialized hardware accelerators for
computation-intensive tasks.

The current development of HDL (hardware description language) synthesis and
FPGA devices and the availability of soft-core processors allow designers to quickly
develop and simulate custom hardware and software, realize the entire system on
a prototyping device, and verify the operation of the physical implementation. We
can now use a PC and an inexpensive FPGA prototyping board to construct a
sophisticated embedded system. This book uses a "learning by doing" approach
and illustrates the hardware and software design and development process by a
series of examples. An Altera FPGA prototyping board and its Nios II soft-core
processor are used for this purpose.

The book is divided into four major parts. Part I covers HDL and synthesis of
custom hardware. Part II provides an overview of embedded software development
with the emphasis on low-level I/O access and drivers. Part III demonstrates the

XXVÜ

www.it-ebooks.info

http://www.it-ebooks.info/

XXVÜi PREFACE

design and development of hardware and software for several complex I/O periph-
erals, including a PS2 keyboard and mouse, a graphic video controller, an audio
codec, and an SD (secure digital) card. Part IV provides several case studies of
the integration of hardware accelerators, including a custom GCD (greatest com-
mon divisor) circuit, a Mandelbrot set fractal circuit, and an audio synthesizer
based on DDFS (direct digital frequency synthesis) methodology. All the hardware
and software examples can be synthesized, compiled, and physically tested on the
prototyping board.

Focus and audience

Focus The embedded system is studied extensively and many books cover this
subject. The coverage is mostly focused on software development, usually around
a specific processor. The new "hardware programmability" of the SoPC platform
provides a new dimension on the embedded system development. This book mainly
focuses on this aspect and the relevant design issues, including the derivation of a
soft-core processor and IP (intellectual property) core based system, the partition
and integration of software and hardware, and the development of custom I/O
peripherals and hardware accelerators.

Audience and prerequisites The intended audience is students in an advanced digital
design, embedded system, or software-hardware codesign course as well as prac-
ticing engineers who wish to learn FPGA-, HDL-, and SoPC-based development.
Readers need to have a basic knowledge of digital systems, usually a required course
in electrical engineering and computer engineering curricula, and a working knowl-
edge of the C language. Prior exposure to computer architecture, microcontroller,
and operating system is not necessary but will be helpful.

Logistics

FPGA prototyping board This book is prepared to be used with an Altera DEI
board (also known as the Cyclone II FPGA Starter Development Kit) and DE2
board. All HDL and C codes and discussions can be applied to the two boards
directly. Most peripherals discussed in this book are de facto industrial standards,
and the corresponding codes can be used as long as a board contains an Altera
FPGA device and provides proper analog interface circuits and connectors.

PC accessories The design examples include interfaces to several PC peripheral
devices. A PS2 keyboard, a PS2 mouse, a VGA compatible monitor, a pair of
earphones or powered speakers, and an SD card are required for the respective I/O
peripherals. These accessories are widely available and probably can be obtained
from an old PC.

Software Several Altera software packages are needed for the Nios H-based sys-
tem: Quartus II Web edition, which performs HDL synthesis; SOPC Builder,
which configures and creates a Nios II-based system; Nios EDS (embedded design
suite), which is the integrated software development platform; and ModelSim-Altera
Starter Edition, which performs HDL simulation. They can be downloaded from
Altera's website.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE ΧΧΪΧ

Codes and tutorials The HDL and C codes of the book can be obtained from the
companion website. The codes and tutorials are developed and tested with Altera
Quartus II Web Edition vlO spl and Altera Nios II EDS vlO spl. The software
packages are running under Windows 7 32-bit with administrator privileges. Minor
differences in the procedure may occur for other versions and operating systems.

Book organization

The book consists of four parts plus an introductory chapter. It starts with the
"big picture":

• Chapter 1 provides an overview of the embedded system and introduces the
SoPC concept and development flow.

Part I introduces the basic HDL constructs and synthesis procedure and demon-
strates the construction of custom digital circuits. It consists of seven chapters:

• Chapter 2 describes the skeleton of an HDL program, basic language syntax,
and logical operators. Gate-level combinational circuits are derived with these
language constructs.

• Chapter 3 provides an overview of an FPGA device, prototyping board, and
development flow. The development process is demonstrated by a tutorial of
the Altera Quartus II synthesis software.

• Chapter 4 introduces HDL's relational and arithmetic operators and routing
constructs. These correspond to medium-sized components, such as com-
parators, adders, and multiplexers. Module-level combinational circuits are
derived with these language constructs.

• Chapter 5 presents the description of memory elements and the construction
of "regular" sequential circuits, such as counters and shift registers, in which
the state transitions exhibit a regular pattern, as well as a discussion of the
use and inference of Cyclone II device's internal memory modules.

• Chapter 6 discusses the construction of a finite state machine (FSM), which
is a sequential circuit whose state transitions do not exhibit a simple, regular
pattern.

• Chapter 7 presents the construction of an FSM with data path (FSMD). The
FSMD is used to implement register transfer (RT) methodology, in which
the system operation is described by data transfers and manipulations among
registers.

• Chapter 8 discusses several more advanced topics on language constructs and
coding techniques and introduces the development of more sophisticated test-
benches. This chapter can be skipped without affecting the remaining chap-
ters.

Part II introduces the construction of a Nios II-based system and the develop-
ment of embedded software. A simple flashing-LED design is used to illustrate the
key concepts of this process. It consists of five chapters:

• Chapter 9 provides an overview of the Nios II soft-core processor and examines
its key components.

• Chapter 10 introduces the construction of a Nios II-based system and the
basic coding techniques to access low-level I /O peripherals. The derivation of

www.it-ebooks.info

http://www.it-ebooks.info/

XXX PREFACE

hardware and software is demonstrated by a tutorial of Altera SOPC Builder
and Nios II EDS, respectively.

• Chapter 11 examines the structure and use of several IP cores (i.e., pre-
designed I/O peripherals) of SOPC Builder and covers the development of ad
hoc I/O driver software routines.

• Chapter 12 provides an overview of the Altera HAL (hardware abstraction
layer) run-time environment and illustrates its usage.

• Chapter 13 discusses the interrupt structure, including the operation of Nios IPs
interrupt controller and the development of software interrupt service rou-
tines.

Part III applies the techniques from Parts I and II to design an array of peripheral
modules on the prototyping board. Each module consists of custom hardware and
a basic software driver. These can be considered primitive IP cores and can be
incorporated into a larger project. Part III consists of seven chapters:

• Chapter 14 demonstrates the I /O interfacing with PIO IP cores. This scheme
can be used for simple I/O peripherals and can avoid the overhead of creating
a new SoPC component.

• Chapter 15 gives an overview of Altera's Avalon interface, which functions as
a "bus structure" for a Nios II processor to connect memory and I/O modules,
and demonstrates the procedure of creating a customized IP core.

• Chapter 16 covers the interface to the external SRAM (static RAM) and
SDRAM (synchronous dynamic RAM) devices and the basic testing proce-
dure.

• Chapter 17 covers the design of the PS2 interface. The hardware portion
consists of a PS2 controller to generate and process the PS2 clock and data
signals. The software portion is composed of two sets of drivers: one for the
PS2 keyboard, which reads and decodes scan codes from a keyboard, and one
for the PS2 mouse, which obtains and processes the button and movement
information from a mouse.

• Chapter 18 presents the design and implementation of a graphic video con-
troller. The hardware portion covers the generation of video synchronization
signals and the construction and interface of a custom SRAM-based video
memory module. The software portion covers the basic driver routines to
draw pixels and to display and process bitmap images and texts.

• Chapter 19 discusses the design of the audio codec chip interface. The hard-
ware portion consists of an I2C bus controller for codec configuration and a
serial bus controller to transmit and receive digitalized audio data streams.
The software portion is composed of routines to set codec parameters and to
generate and record the audio data.

• Chapter 20 presents the design of the SD card interface. The hardware portion
is done by an SPI bus controller and the software portion consists of driver
routines for card initialization and basic file read and write operations.

Part IV presents three case studies of hardware accelerators, which utilize custom
hardware to perform computation-intensive tasks. It includes three chapters:

• Chapter 21 shows the design of a custom GCD (greatest common divisor) ac-
celerator based on the binary Euclid algorithm. Its performance is compared
with software-based implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE XXX¡

• Chapter 22 illustrates the construction and integration of a Mandelbrot set
fractal accelerator, which can select any portion of the set and displays the
fractal on a VGA screen.

• Chapter 23 discusses the implementation of a direct digital frequency synthe-
sis and modulation circuit. The circuit is used for an audio synthesizer with
adjustable envelops.

Companion Website

An accompanying website (http://academic.csuohio.edu/chu_p/rtl) provides addi-
tional information, including the following materials:

• Errata
• Code listing and relevant files
• Links to Altera software
• Links to referenced materials
• Additional project ideas

Errata The book is self-prepared, which means that the author has produced all
aspects of the text, including illustrations, tables, code listings, indexing, and for-
matting. As errors are always bound to happen, the accompanying web site provides
an updated errata sheet and a place to report errors.

P. P. CHU

Cleveland, Ohio
January, 2012

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

The author wishes to express his thanks to Blair Fort, Ralene Marcoccia, and
Stephen Brown of the Altera University Program for their help.

The author also thanks Ari Feldman for giving permission to use the sprite
page and the Altera Corporation for giving permission to use figures from various
handbooks and manuals.

Altera is a trademark and service mark of Altera Corporation in the United
States and other countries. Altera products are the intellectual property of Altera
Corporation and are protected by copyright laws and one or more U.S. and foreign
patents and patent applications. All other trademarks used or referred to in this
book are the property of their respective owners.

P. P. Chu

xxxiii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

OVERVIEW OF EMBEDDED SYSTEM

An embedded system is a special type of computer system. In this chapter, we
examine the basic characteristics of an embedded system, highlight its differences
from a general-purpose computer system, and introduce the concept and develop-
ment flow of a "high-end" FPGA-based embedded system, which is the focus of
this book.

1.1 INTRODUCTION

1.1.1 Definition of an embedded system

An embedded system (or embedded computer system) can be loosely defined as a
computer system designed to perform one or a few specific tasks. The computer
system is not the end product but a dedicated "embedded" part of a larger system
that often includes additional electronic and mechanical parts. By contrast, a
general-purpose computer system, such as a PC (personal computer), is a general
computing platform and itself is the end product. It is designed to be flexible and
to support a variety of end-user needs. Application programs are developed based
on the available resource of the general-purpose computer system.

Since an embedded system is dedicated to specific tasks, its design can be opti-
mized to reduce cost. A good design should contain just enough hardware resources
to meet the application's required functionalities. On the other hand, a general-
purpose computer system is expected to support a variety of needs and thus an ap-

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 1
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

2 OVERVIEW OF EMBEDDED SYSTEM

plication program is provided with a relatively abundant hardware resource. From
this perspective, an embedded system can be thought of as a computer system with
a severely resource constraint.

The terms "embedded system" and "general-purpose computer system" are not
strictly defined, as most systems have some elements of extensibility or programma-
bility. For example, a cell phone can be treated as an embedded system since it is
mainly for wireless communication. However, an advanced phone allows users to
load other types of applications, such as simple video games, and thus exhibits the
characteristics of a general-purpose computer system.

In this book, a general-purpose computer system is referred to as a "desktop
system" since a desktop computer is the most commonly used general-purpose
system.

1.1.2 Example systems

Embedded systems are used in a wide range of applications and each application
has its own specific requirements. We examine three example systems to illustrate
the basic characteristics of embedded applications:

• Microwave oven.
• Digital camera.
• Vehicle stability control system.

Microwave oven A microwave oven cooks or heats food with microwave radiation
generated by a magnetron. A microwave oven usually has a keypad to select the
cooking time and power level and an LCD or LED display that shows the status
or time. It contains an embedded computer that processes the keypad input, keeps
track of timing, generates the display patterns, and controls the magnetron unit.

The operation of the microwave oven requires no extensive computation and does
not involve high-speed data transfer. The tasks can be accomplished by a very
simple 8-bit processor (i.e., a processor with 8-bit internal data width) and a small
read-only program memory. The entire embedded system can be implemented by a
microcontroller, which is usually a single IC chip containing the 8-bit core processor,
small memory, and simple I/O peripherals.

The microwave oven is a representative "low-end" embedded system.

Digital camera A digital camera takes photographs by recording images electron-
ically via an image sensor and stores the digitized image in a flash memory card.
The image sensor contains millions of pixel sensors. A pixel sensor converts light
to an electronic signal. The output of the pixel sensors is digitized and stored as an
image file. A typical digital camera contains a set of buttons and knobs to control
and adjust the camera operation and a small LCD display to preview the stored
pictures.

The embedded system in the camera performs two major tasks. The first task
involves the general "housekeeping" I/O operations, including processing the button
and knob activities, generating the graphic on an LCD display, and writing image
files to the storage device. These operations are more involved than those of a
microwave oven and the system requires a more capable 16- or 32-bit processor
as well as a separate memory chip. The second task is to process the image and
perform data compression to reduce the file size. Because of the large number of

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM DESIGN REQUIREMENTS 3

pixels and the complexity of the compression algorithm, it requires a significant
amount of computation. An embedded processor is usually not powerful enough
to handle the computation-intensive operation. A custom digital circuit can be
designed to perform this particular task and to take the load off the processor.
This type of circuits is known as hardware accelerators.

The digital camera is a representative "high-end" embedded system.

Vehicle electronic stability control system A vehicle ESC (electronic stability con-
trol) system helps to improve a vehicle's maneuverability by detecting and mini-
mizing skids. During driving, it continues comparing the driver's intended direction
with the vehicle's actual direction. When the loss of steering control is detected
(e.g., as a result of a wet or iced surface), the ESC system intervenes automatically
and applies the brakes to individual wheels to steer the vehicle to the intended
direction.

The embedded system obtains the intended direction from the steering wheel
angle and obtains the actual direction from the vehicle lateral acceleration and the
individual wheel's rotating speed. It determines the occurrence and nature of the
skid and then calculates and applies brake forces to individual wheels to offset the
skid condition.

The ESC embedded system has two special characteristics. First, the ESC sys-
tem imposes a real-time constraint—an operational deadline from the triggering
event (i.e., onset of skid condition) to the system response (i.e., application of the
brake forces). The system fails to work if the brake is not applied within a spe-
cific amount of time. Second, since the steering concerns the driver's safety, the
embedded system is mission critical and thus must be robust and reliable.

1.2 SYSTEM DESIGN REQUIREMENTS

When designing a computer system, we must consider a variety of factors:
• Cost
• General computation speed
• Special computation need
• Real-time constraint
• Reliability
• Power consumption

The term special computation need means the type of computation task, such as
data compression, encryption, pattern recognition, etc., which cannot be easily
accomplished by a general-purpose processor.

In general, we wish that every computer system would be inexpensive, fast,
reliable, and would use little power. However, these criteria are frequently fighting
against each other. For example, a faster processor is more expensive and consumes
more power. An embedded system can be used in a wide range of applications and
each system has its own unique needs. For each system, we need to identify the key
requirements and seek the best trade-off. One way to illustrate these requirements
is to use a "radar chart" shown in Figure 1.1. There are six axes in the chart, each
indicating the importance of a factor. As a point in an axis moves outward from the
center, its importance increases from "not important" to "extremely important."

www.it-ebooks.info

http://www.it-ebooks.info/

4 OVERVIEW OF EMBEDDED SYSTEM

cost cost

real-time
constraint '

reliability

^ * > C ^ ^

J^U ̂ H.

power

(a) Desk-top PC

special
computing

general
computing

real-time J L special

constraint ^ v . ■ ^ computing

reliability '
^ \ general

computing

power

(b) Microwave oven

cost cost

power

(c)Dig i taJ camera

real-time
constraint

reliability

special
" t e g ^ ^ ^ y computing

^ ν ^ general
computing

power

(d) Vehicle ESC system

Figure 1.1 Radar charts of various systems.

A desktop PC is for general use and thus does not place weight on a particular
factor. Its chart is "well rounded," as shown in Figure 1.1(a). A microwave oven
can be considered a "commodity" and its profit margin is not very high. Thus, it
is extremely sensitive to the part cost. The embedded system for the microwave
is very simple and its key requirement is to reduce the cost. Its chart is shown in
Figure 1.1(b). A digital camera requires special image processing and compression
capability.. Since it is a handheld device powered by a battery, reducing power usage
is important. Thus, the two key requirements of the camera's embedded system
are the power and special computation need. Its chart is shown in Figure 1.1(c).
A vehicle ESC system imposes a strict operational deadline and is mission critical.
The key requirements of the ESC embedded system are the real-time constraint
and reliability. Its chart is shown in Figure 1.1(d).

From the requirement's point of view, we can treat an embedded system as a
computer system with extreme design requirements.

1.3 EMBEDDED SOPC SYSTEMS

The main focus of this book is on the "high-end" embedded systems similar to
the digital camera. This type of system usually has a processor and simple I/O
peripherals to perform general user interface and housekeeping tasks and special
hardware accelerators to handle computation-intensive operations. These compo-

www.it-ebooks.info

http://www.it-ebooks.info/

EMBEDDED S0PC SYSTEMS 5

nents can be integrated into a single integrated circuit, commonly referred to as
SoC (system on a chip). As the capacity of FPGA (field-programmable gate ar-
ray) devices continues to grow, the same design methodology can be realized in an
FPGA chip and is sometimes known as SoPC (system on a programmable chip) or
PSoC (programmable system on a chip). We use the term "SoPC" in the book.

While designing a system based on a conventional embedded processor, we exam-
ine the required functionalities and then select a processor, external I/O peripherals,
and ASSP (application-specific standard product) devices to construct the hard-
ware platform. Because of the fixed-sized processor architecture, a limited choice of
ASSP devices, and the cost of manufacturing printed circuit boards, the hardware
configuration is usually rather "rigid" and the desired system functionalities are
usually done by customized software.

An FPGA device contains logic cells and interconnects that can be configured
(i.e., "programmed") to perform a specific function. The desired hardware function-
alities are usually described in HDL (hardware description language) code, which is
then synthesized and implemented by the logic cells. Because of the programmabil-
ity of FPGA devices, customized hardware can be incorporated into the embedded
system as well. We can tailor the processor, select only the needed I/O peripher-
als, create a custom I/O interface, and develop specialized hardware accelerators
for computation-intensive tasks. The SoPC-based embedded system provides a
new dimension of flexibility because both the hardware and the software can be
customized to match specific needs.

1.3.1 Basic development flow

The embedded SoPC system development consists of the following parts:
• Partition the tasks to software and hardware accelerators.
• Develop the hardware, including the hardware accelerators and I/O periph-

erals, and integrate it with the processor.
• Develop the software.
• Implement the hardware and software and perform testing.

Since the design examples in this book are targeted for Altera prototyping
boards, our discussion uses the Altera development platform and its Nios II pro-
cessor. Note that Nios II is a soft-core processor, which means the processor is
described in HDL code and synthesized later by using FPGA's generic logic cells.

The basic Nios II-based development flow is shown in Figure 1.2. The four basic
parts are elaborated in the following subsections.

Software-hardware partition Step 1 (labeled 1 in the diagram) is to determine the
software-hardware partition. An embedded application usually performs a collec-
tion of tasks. In an SoPC-based design, a task can be implemented by hardware,
software, or both. Based on the performance requirement, complexity, and hard-
ware core availability, we can decide the type of implementation accordingly.

Hardware development flow The left branch represents the hardware design flow.
Step 2 derives the basic hardware architecture. The custom hardware can be divided
into three categories:

• Nios II processor and standard I/O peripherals (labeled "Nios configuration"
in the diagram). Altera provides the soft cores of the processor and a col-

www.it-ebooks.info

http://www.it-ebooks.info/

6 OVERVIEW OF EMBEDDED SYSTEM

/ soffile / / elf file /

device
programming

/ file& /
/ data / process

Altera
librar

/FPGAchip//
/ memory /

test

load

Figure 1.2 Development flow of a system with Nios II.

www.it-ebooks.info

http://www.it-ebooks.info/

EMBEDDED SOPC SYSTEMS 7

lection of frequently used I/O peripherals. Third-party vendors supply ad-
ditional I /O cores as well. We can select the needed I/O peripherals and
configure the basic Nios II system.

• User I/O peripherals and hardware accelerators (labeled "User I /O L· HA" in
the diagram). For certain specialized I/O functions or computation-intensive
tasks, a pre-designed core may not exist or cannot satisfy the performance
requirement. We must design the hardware from scratch and integrate it into
the Nios II system as a custom I /O peripheral.

• User logic. Some portion of the hardware may be separated from the Nios II
system. It is not attached to the Nios interconnect structure and does not
interact directly with the processor.

Step 3 generates the HDL code from the customized Nios II system. It is done by
using Altera's SOPC Builder software package. In this software, we can configure
the processor, select the desired standard I/O cores, and incorporate the user-
designed I/O peripherals. SOPC Builder then generates the HDL codes for the
customized Nios II system and also generates the .sopcinfo file that contains system
configuration information. We can combine the generated HDL codes with the
other use logic codes to form the final top-level HDL description.

The top-level HDL code contains the description of the complete hardware.
Step 4 performs synthesis and placement and routing and eventually generates
the FPGA configuration file (i.e., the .sof file).

Software development flow The right branch represents the software design flow.
Step 6 derives the basic software structure. Altera provides a software library, which
is integrated into its HAL (hardware abstraction layer) platform, for the Nios II
system. It consists of I/O device drivers, which are low-level routines to access I /O
peripherals, and a collection of high-level functions in an application programming
interface {API). From the hardware-software interface's point of view, we can
divide the software code into three categories:

• API functions. These are the functions from the Altera HAL platform.
• User I/O drivers. When designing a custom I/O peripheral or hardware accel-

erator, we also need to develop software I/O routines to control its operation
and to exchange its data with the processor.

• User functions. These implement the needed functionalities for the embedded
application.

We can utilize these drivers and functions to construct the application program.
When a Nios II system is created, the processor and I/O configuration is recorded

in the .sopcinfo file. In Step 7, the BSP Editor software program examines this file,
extracts the needed device drivers from the HAL library, and builds up a BSP
(board support package) library to support the system.

Step 8 compiles and links the software routines and BSP library and builds the
final software image file (i.e., the .elf file).

Physical implementation and test Physically implementing the system involves two
steps. We first download the FPGA configuration file to the FPGA device (i.e.,
"program" the device), as in Step 5, and then load the software image into Nios II's
memory, as in Step 9. The physical system can be tested afterwards, as in Step 10.

The most unique characteristics of an SoPC-based embedded system are that
custom I/O peripherals and hardware accelerators can be integrated into the sys-

www.it-ebooks.info

http://www.it-ebooks.info/

8 OVERVIEW OF EMBEDDED SYSTEM

tem. The major task involves the development of custom hardware and a software
driver, as shown in the dotted box in Figure 1.2. This is the main focus of the
book.

1.4 BOOK ORGANIZATION

The remainder of the book is divided into four parts. Part I introduces the basic
HDL constructs and synthesis procedure and discusses the development of custom
digital circuits. Part II provides an overview of a Nios II-based system and embed-
ded software development with the emphasis on low-level I/O access and drivers. A
simple fiashing-LED design is used to illustrate the key concepts. Part III applies
the techniques from Parts I and II to design an array of complex I/O peripheral
modules on the Altera DEI prototyping board, including a PS2 keyboard and mouse
controller, a graphic video controller, an audio codec controller, and an SD (secure
digital) card controller. Part IV presents three case studies of the integration of
hardware accelerators, including a custom GCD (greatest common divisor) circuit,
a Mandelbrot set fractal circuit, and an audio synthesizer based on DDFS (direct
digital frequency synthesis) methodology.

1.5 BIBLIOGRAPHIC NOTES

In this book, a short bibliographic section appears at the end of each chapter to
provide the most relevant references for further exploration. A more comprehensive
bibliography is included at the end of the book.

Embedded systems encompass a spectrum of design issues. The two books, Em-
bedded System Design: A Unified Hardware/Software Introduction by F. Vahid and
T. D. Givargis and Computers as Components: Principles of Embedded Computing
System Design, 2nd edition by W. Wolf, provide a comprehensive discussion. Most
processor-oriented embedded system books are around specific low-end microcon-
trollers. However, Programming 32-bit Microcontrollers in C: Exploring the PIC32
by L. Di Jasio, as its title indicates, is based on 32-bit PIC processors and covers
more advanced design examples.

Software-hardware co-design is an emerging research area. A Practical Intro-
duction to Hardware/Software Codesign by P. R. Schaumont addresses the basic
concepts and issues of combining hardware and software into a single system design
process.

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

BASIC DIGITAL CIRCUITS
DEVELOPMENT

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

GATE-LEVEL COMBINATIONAL CIRCUIT

HDL (hardware description language) is used to describe and model digital systems.
Verilog is one of the two major HDLs. In this chapter, we use a simple comparator
to illustrate the skeleton of a Verilog program. The description uses only logical
operators and represents a gate-level combinational circuit, which is composed of
simple logic gates.

2.1 INTRODUCTION

Verilog is a hardware description language. It was developed in the mid-1980s and
later transferred to the IEEE (Institute of Electrical and Electronics Engineers).
The language is formally defined by IEEE Standard 1364. The standard was ratified
in 1995 (referred to as Verilog-1995) and revised in 2001 (referred to as Verilog-
2001). Many useful enhancements are added in the revised version. We use Verilog-
2001 in this book.

Verilog is intended for describing and modeling a digital system at various lev-
els and is an extremely complex language. The focus of this book is on hardware
design rather than on the language. Instead of covering every aspect of Verilog,
we introduce the key Verilog synthesis constructs by examining a collection of ex-
amples. Several advanced topics are examined further in Chapter 8 and detailed
Verilog coverage may be explored through the sources listed in the bibliographic
section at the end of the chapter.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 11
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

1 2 GATE-LEVEL COMBINATIONAL CIRCUIT

Table 2.1 Truth table of 1-bit equality comparator

Input
¿Oil

0 0
0 1
1 0
1 1

Output
eq

1
0
0
1

Although the syntax of Verilog is somewhat like that of the C language, its
semantics (i.e., "meaning") is based on concurrent hardware operation and is to-
tally different from the sequential execution of C. The subtlety of some language
constructs and certain inherent non-deterministic behavior of Verilog can lead to
difficult-to-detect errors and can introduce a discrepancy between simulation and
synthesis. The coding of this book follows a "better-safe-than-buggy" philosophy.
Instead of writing quick and short codes, the focus is on style and constructs that
are clear and synthesizable and can accurately describe the desired hardware.

In this chapter, we use a simple comparator to illustrate the skeleton of a Verilog
program. The description uses only logic operators and represents a gate-level com-
binational circuit, which is composed of simple logic gates. In Chapter 4, we cover
the remaining Verilog operators and constructs and examine the register-transfer-
level combinational circuits, which are composed of intermediate-sized components,
such as adders, comparators, and multiplexers.

2.2 GENERAL DESCRIPTION

Consider a 1-bit equality comparator with two inputs, iO and i l , and an output,
eq. The eq signal is asserted when iO and i l are equal. The truth table of this
circuit is shown in Table 2.1.

Assume that we want to use basic logic gates, which include not, and, or, and
xor cells, to implement the circuit. One way to describe the circuit is to use a
sum-of-products format. The logic expression is

eq = iQ-il+ iO' ■ il'

One possible Verilog code is shown in Listing 2.1. We examine the language con-
structs and statements of this code in the following subsections.

Listing 2.1 Gate-level implementation of a 1-bit comparator
i module eql

/ / I/O ports
(
input wire iO, i l ,
output wire eq

B) ;

/ / signal declaration
wire pO , p i ;

www.it-ebooks.info

http://www.it-ebooks.info/

BASIC LEXICAL ELEMENTS AND DATA TYPES 1 3

»
-¡O &~¡1

i0&j1

ρθ

D1

P0|p1

V

Figure 2.1 Graphical representation of a comparator program.

u / / body
// sum of two product terms
assign eq = pO I p i ;
/ / product terms
assign pO = "iO k " i l ;

IG ass ign pi " iO & i l ;
endmodule

The best way to understand an HDL program is to think in terms of hardware
circuits. This program consists of three portions. The I/O port portion describes
the input and output ports of this circuit, which are iO and i l , and eq, respectively.
The signal declaration portion specifies the internal connecting signals, which are
pO and p i . The body portion describes the internal organization of the circuit.
There are three continuous assignments in this code. Each can be thought of as
a circuit part that performs certain simple logical operations. We examine the
language constructs and statements of this code in the next section.

The graphical representation of this program is shown in Figure 2.1. The three
continuous assignments constitute the three circuit parts. The connections among
these parts are specified implicitly by the signal and port names.

2.3 BASIC LEXICAL ELEMENTS AND DATA TYPES

2.3.1 Lexical elements

Identifier An identifier gives a unique name to an object, such as eq, iO, or pO. It
is composed of letters, digits, the underscore character (_), and the dollar sign ($).
$ is usually used with a system task or function.

The first character of an identifier must be a letter or underscore. It is a good
practice to give an object a descriptive name. For example, mem_addr_en is more
meaningful than mae for a memory address enable signal.

Verilog is a case-sensitive language. Thus, data_bus, Data-bus, and DATA-BUS
refer to three different objects. To avoid confusion, we should refrain from using
the case to create different identifiers.

Keywords Keywords are predefined identifiers that are used to describe language
constructs. In this book, we use boldface type for Verilog keywords, such as module
and wire in Listing 2.1.

White space White space, which includes the space, tab, and newline characters,
is used to separate identifiers and can be used freely in the Verilog code. We can
use proper white spaces to format the code and make it more readable.

www.it-ebooks.info

http://www.it-ebooks.info/

1 4 GATE-LEVEL COMBINATIONAL CIRCUIT

Comments A comment is just for documentation purposes and will be ignored by
software. Verilog has two forms of comments. A one-line comment starts with / / ,
as in

/ / This is a comment.

A multiple-line comment is encapsulated between /* and */, as in

/* This is comment line 1.
This is comment line 2.
This is comment line 3. */

In this book, we use italic type for comments, as in the examples above.

2.4 DATA TYPES

2.4.1 Four-value system

Four basic values are used in most data types:
• 0: for "logic 0", or a false condition
• 1: for "logic 1", or a true condition
• z: for the high-impedance state
• x: for an unknown value

The z value corresponds to the output of a tri-state buffer. The x value is usually
used in modeling and simulation, representing a value that is not 0, 1, or z, such
as an uninitialized input or output conflict.

2.4.2 Data type groups

Verilog has two main groups of data types: net and variable.

Net group The data types in the net group represent the physical connections
between hardware components. They are used as the outputs of continuous assign-
ments and as the connection signals between different modules. The most com-
monly used data type in this group is wire. As the name indicates, it represents a
connecting wire.

The wire data type represents a 1-bit signal, as in

wire p0 , p i ; / / two 1—hit signals

When a collection of signals is grouped into a bus, we can represent it using a
one-dimensional array (vector), as in

wire [7:0] d a t a l , d a t a 2 ; / / 8— bit data
wire [31:0] addr ; / / 32—bit address
wire [0:7] r e v e r s _ d a t a ; / / ascending index should be avoided

While the index range can be either descending (as in [7:0]) or ascending (as in
[0:7]), the former is preferred since the leftmost position (i.e., 7) corresponds to
the MSB of a binary number.

A two-dimensional array is sometimes needed to represent a memory. For exam-
ple, a 32-by-4 memory (i.e., a memory has 32 words and each word is 4 bits wide)
can be represented as

www.it-ebooks.info

http://www.it-ebooks.info/

DATA TYPES 15

w i r e [3 : 0] meml [3 1 : 0] ; / / 32—by—4 memory

The other data types in the net group imply certain logical behavior or function-
ality, such as wand (for wired-and connection) and supplyO (for circuit ground
connection). We don't use these data types in this book. Verilog-2001 also allows
the signed data type and this issue is discussed in Section 8.3.

Variable group The data types in the variable group represent abstract storage in
behavioral modeling and are used in the outputs of procedural assignments. There
are five data types in this group: reg, integer, real, time, and realtime. The
most commonly used data type in this group is reg and it can be synthesized. The
inferred circuit may or may not contain physical storage components. The last
three data types can only be used in modeling and simulation, and the use of the
integer data type is discussed in Section 8.3.

In Verilog-1995, the variable group is known as the register group. Since this
term is the same for a physical hardware register (i.e., a collection of flip-flops), it
is changed in the Verilog-2001 documentation to avoid confusion. In this book, we
use the term variable for the data type and use the term register for the physical
register circuit.

2.4.3 Number representation

An integer constant in Verilog can be represented in various formats. Its general
form is

[s i g n] [s i z e] ' [b a s e] [v a l u e]

The [base] term specifies the base of the number, which can be the following:
• b or B: binary
• o or 0: octal
• h or H: hexadecimal
• d or D: decimal

The [value] term specifies the value of the number in the corresponding base.
The underline character (_) can be included for clarity.

The [s ize] term specifies the number of bits in a number. It is optional. The
number is known as a sized number when a [s ize] term exists and is known as an
unsized number otherwise.

Sized number A sized number specifies the number of bits explicitly. If the size of
the value is smaller than the [s ize] term specified, zeros are padded in front to
extend the number, except in several special cases. The z or x value is padded if
the MSB of the value is z or x, and the MSB is padded if the signed data type is
used. Several sized number examples are shown in the top portion of Table 2.2.

Unsized number An unsized number omits the [s ize] term. Its actual size de-
pends on the host computer but must be at least 32 bits. The ' [base] term can
also be omitted if the number is in decimal format. Assume that 32 bits are used
in the host machine. Several unsized number examples are shown in the bottom
portion of Table 2.2.

www.it-ebooks.info

http://www.it-ebooks.info/

16 GATE-LEVEL COMBINATIONAL CIRCUIT

Table 2.2 Examples of sized and unsized numbers

Number Stored value Comment

5'bllOlO
5'bll.OlO
5Ό32
5 ' h l a
5'd26
5'bO
5 'b l
5>bz
5'bx
5'bxOl
-5'b00001

11010
11010
11010
11010
11010
00000
00001
zzzzz
xxxxx
xxxOl
11111

ignored

0 extended
0 extended
z extended
x extended
x extended
2's complement of 00001

'bllOlO * 00000000000000000000000000011010
'hee 00000000000000000000000011101110
1 00000000000000000000000000000001
-1 11111111111111111111111111111111

extended to 32 bits
extended to 32 bits
extended to 32 bits
extended to 32 bits

2.4.4 Operators

Verilog has about two dozen operators. For the gate-level description, we need
only the following bitwise operators: " (not), & (and), I (or), and * (xor). These
operators infer basic gate-level cells. Other operators are discussed in Section 4.1.

2.5 PROGRAM SKELETON

As its name indicates, HDL is used to describe hardware. When we develop or
examine a Verilog code, it is much easier to comprehend if we think in terms of
"hardware organization" rather than "sequential algorithm." Most Verilog codes
in this book follow the basic skeleton shown in Listing 2.1. It consists of three
portions: I/O port declaration, signal declaration, and module body.

2.5.1 Port declaration

The module declaration and port declaration of Listing 2.1 are
module eql

(
input wire iO , i l ,
output wire eq

) ;
The I/O declaration specifies the modes, data types, and names of the module's
I/O ports. The simplified syntax is

module [module.name]
(
[mode] [data_type] [port_names],

www.it-ebooks.info

http://www.it-ebooks.info/

PROGRAM SKELETON 17

[mode] [data_type] [port_names],

[mode] [data.type] [port.names]

) ;

The [mode] term can be input, output, or inout, which represent the input,
output, or bidirectional port, respectively. Note that there is no comma in the last
declaration. The [data_type] term can be omitted if it is wire.

Verilog-1995 port declaration In Verilog-1995, port names, modes, and data types
are declared separately. For example, the preceding port declaration becomes

module eql (iO, i l , e q) ; / / only port names in brackets
// declare mode
input 10, i l ;
output eq;
/ / declare data type
wire iO, i l ;
wire eq;

We do not use this format in this book.

2.5.2 Program body

Unlike a program in the C language, in which the statements are executed sequen-
tially, the program body of a synthesizable Verilog module can be thought of as
a collection of circuit parts. These parts are operated in parallel and executed
concurrently. There are several ways to describe a part:

• Continuous assignment
• "Always block"
• Module instantiation

The first way to describe a circuit part is by using a continuous assignment. It
is useful for simple combinational circuits. Its simplified syntax is

a s s ign [s igna l .name] = [e x p r e s s i o n] ;

Each continuous assignment can be thought as a circuit part. The signal on the
left-hand side is the output and the signals used in the right-hand-side expression
are the inputs. The expression describes the function of this circuit. For example,
consider the statement

a ss ign eq - pO I p i ;

It is a circuit that performs the or operation. When pO or p i changes its value, this
statement is activated and the expression is evaluated. The new value is assigned
to eq after the propagation delay. There are three continuous assignments in List-
ing 2.1 and they correspond to the three circuit parts shown in Figure 2.1. Since
the assignments correspond to the circuit parts, the order of these statements does
not matter.

The second way to describe a circuit part is by using an always block. More
abstract procedural assignments are used inside the always block and thus it can
be used to describe more complex circuit operation. The always block is discussed
in Section 4.2.

www.it-ebooks.info

http://www.it-ebooks.info/

1 8 GATE-LEVEL COMBINATIONAL CIRCUIT

The third way to describe a circuit part is by using module instantiation. In-
stantiation creates an instance of another module and allows us to incorporate pre-
designed modules as subsystems of the current module. Instantiation is discussed
in Section 2.6.

2.5.3 Signal declaration

The declaration portion specifies the internal signals and parameters used in the
module. The internal signals can be thought of as the interconnecting wires between
the circuit parts, as shown in Figure 2.1.

The simplified syntax of signal declaration is

[data_type] [port.names];

Two internal signals are declared in Listing 2.1:

w i r e pO, p i ;

Implicit net In Verilog, an identifier does not need to be declared explicitly. If a
declaration is omitted, it is assumed to be an implicit net. The default data type
is wire. We can remove the explicit declarations in Listing 2.1 and the simplified
code is shown in Listing 2.2.

Listing 2.2 Code with implicit net
module e q l _ i m p l i c i t

(
input iO, i l , / / no data type declaration

4 output eq
) ;

/ / no internal signal declaration

9 / / product terms must be placed in front
ass ign pO » "iO ft " i l ; //implicit declaration
ass ign pi - iO ft 11; //implicit declaration
// sum of two product terms
ass ign eq - pO I p i ;

i4 endmodule

Although the code is more compact, it may introduce subtle errors of misspelled
identifiers. For clarity and documentation, we always use explicit declarations in
this book.

2.5.4 Another example

We can expand the comparator to 2-bit inputs. Let the input be a and b and the
output be aeqb. The aeqb signal is asserted when both bits of a and b are equal.
The code is shown in Listing 2.3.

Listing 2.3 Gate-level implementation of a 2-bit comparator
i module eq2_sop

(
input wire [1:0] a, b,
output wire aeqb

www.it-ebooks.info

http://www.it-ebooks.info/

STRUCTURAL DESCRIPTION 19

eq_bitO_unit

»

Figure 2.2 Construction of a 2-bit comparator from 1-bit comparators.

) ;

/ / internal signal declaration
wire pO , pi , p2 , p3 ;

/ / sum of product terms
assign aeqb » pO I pi I p2 I p3;
/ / product terms
assign pO » ("a[l] k "b[l])

C a [l] k - b [l])
(a [l] k b [l]) k
(a [l] k b [l]) k

assign pi
ass ign p2
ass ign p3

endmodule

k ("a[0] k "b[0]) ;
k (a [0] k b [0]) ;
C a [0] k - b [0]) ;
(a [0] k b [0]) ;

The a and b ports are now declared as a two-element array. Derivation of the
architecture body is similar to that of the 1-bit comparator. The pO, p i , p2, and p3
signals represent the results of the four product terms, and the final result, aeqb,
is the logic expression in sum-of-products format.

2.6 STRUCTURAL DESCRIPTION

A digital system is frequently composed of several smaller subsystems. This allows
us to build a large system from simpler or predesigned components. Verilog provides
a mechanism, known as module instantiation, to perform this task. This type of
code is called structural description.

An alternative to the design of the 2-bit comparator of Section 2.5.4 is to utilize
previously constructed 1-bit comparators as the building blocks. The diagram is
shown in Figure 2.2, in which two 1-bit comparators are used to check the two
individual bits and their results are fed to an and cell. The aeqb signal is asserted
only when both bits are equal. The corresponding code is shown in Listing 2.4.

Listing 2.4 Structural description of a 2-bit comparator
module eq2

(
3 input wire [1:0] a, b,

output wire aeqb
) ;

/ / internal signal declaration
wire eO , e l ;

www.it-ebooks.info

http://www.it-ebooks.info/

2 0 GATE-LEVEL COMBINATIONAL CIRCUIT

/ / body
// instantiate two 1—bit comparators
eql eq .b i tO.uni t (. i O (a [0]) (. i l (b [0]) , . eq(eO)) ;

la eql e q . b i t l . u n i t (. e q (e l) , . i O (a [l]) , . i l (b [l])) ;

/ / a and b are equal if individual bits are equal
assign aeqb - eO ft e l ;

endmodule

The code includes two module instantiation statements. The simplified syntax
of module instantiation is

[module .name] [i n s t a n c e . n a m e]
(

. [p o r t _ n a m e] ([s i g n a l . n a m e]) ,

. [p o r t . n a m e] ([s i g n a l . n a m e]) ,

) ;

The first line of the statement specifies which component is used. The [module-name]
term indicates the name of the module and the [instance_name] term gives a
unique id for an instance. The remaining portion is port connection, which indi-
cates the connections between the I/O ports of an instantiated module (the lower-
level module) and the external signals used in the current module (the higher-level
module). This form of mapping is known as connection by name. The order of the
port-name and signal-name pairs does not matter.

In Listing 2.4, the first component instantiation statement is
eql eq.bitO.unit (.iO(a[0])> .il(b[0]), .eq(eO));

The eql is the module name defined in Listing 2.1. The port mapping reflects the
connections shown in Figure 2.2. The component instantiation statement represents
a circuit that is encompassed in a "black box" whose function is defined in another
module.

This example demonstrates the close relationship between a block diagram and
code. The code is essentially a textual description of a schematic. Although it is
a clumsy way for humans to comprehend the diagram, it puts all representations
into a single HDL framework.

Connection by ordered list An alternative scheme to associate the ports and exter-
nal signals is connection by ordered list (sometimes also known as connection by
position). In this scheme, the port names of the lower-level module are omitted
and the signals of the higher-level module are listed in the same order as the lower-
level module's port declaration. With this scheme, the two module instantiation
statements in Listing 2.4 can be rewritten as

e q l e q . b i t O . u n i t (a [0] , b [0] , eO);
e q l e q . b i t l . u n i t (a [l] , b [l] , e l) ;

Although this scheme makes the code more compact, it is error prone, especially
for a module with many I/O ports. For example, if we modify the code of the
lower-level module and switch the order of two ports in the port declaration, all
the instantiated modules need to be corrected as well. If this is done accidentally
during code editing, the altered port order may be left undetected during synthesis

www.it-ebooks.info

http://www.it-ebooks.info/

STRUCTURAL DESCRIPTION 2 1

Figure 2.3 Low-level diagram of a 1-bit comparator.

and leads to difficult-to-find bugs. We always use the connection-by-name scheme
in this book.

Verilog primitive Verilog includes a set of predefined primitives that can be instan-
tiated as modules. These primitives correspond to simple gate-level function blocks,
such as the and, or, and not cells. For example, the eql circuit can be implemented
by using simple cells, as shown in Figure 2.3. The corresponding primitive-based
code is shown in Listing 2.5.

Listing 2.5 Implementation with Verilog primitive
module e q l . p r i m i t i v e

(
input wire iO, i l ,
output wire eq

) ;

/ / internal signal declaration
wire iO_n , i l _ n , pO, p i ;

//primitive gate instantiations
not u n i t l (iO_n, iO) ;
not u n i t 2 (l l _ n , i l) ;
and u n i t 3 (pO, iO_n, i l _ n) ;
and un i t4 (p i , iO, i l) ;
or un i t 5 (eq , pO, p i) ;

endmodule

/ / iO-n = "iO;
// il.n = "il ;
// pO = iO.n & il.n;
// pi = iO & il ;
// eq = pO | pi;

This form of code is very tedious and can easily be replaced with simple bitwise
logical operators. We do not use primitives in this book.

In addition to the predefined primitives, we can also define customized primitives,
known as user-defined primitives (UDPs). For example, we can define a 1-bit
comparator circuit in a UDP, as shown in Listing 2.6.

L
primit ive eq l_udp(eq ,

output eq;
input iO, i l ;

table
/ / iO il

0 0
0 1
1 0
1 1

eq
l ;
0;
0;
1;

ist in
i O .

g2.6
i l) ;

UDP of a 1-bit comparator

www.it-ebooks.info

http://www.it-ebooks.info/

2 2 GATE-LEVEL COMBINATIONAL CIRCUIT

UUt

test vector generator

testin 0
—ι 1

tesLinJ
a

b

aeqb

eq2

tesLout

monitor

F i g u r e 2 .4 Testbench for a 2-bit comparator .

e n d t a b l e
e n d p r i m i t i v e

A UPD is essentially a table-based description of a circuit. The same table can
also be described by a case statement (discussed in Section 4.4). We use the latter
approach and do not use UDPs in this book.

2.7 TESTBENCH

After code is developed, it can be simulated in a host computer to verify the correct-
ness of the circuit operation and can be synthesized to a physical device. Simulation
is usually performed within the same HDL framework. We create a special pro-
gram, known as a testbench, to mimic a physical lab bench. The sketch of a 2-bit
comparator testbench is shown in Figure 2.4. The uut block is the unit under
test, the tes t vector generator block generates testing input patterns, and the
monitor block examines the output responses. A simple testbench for the 2-bit
comparator is shown in Listing 2.7.

L i s t i n g 2 . 7 Testbench for a 2-bit comparator

/ / The 'timescale directive specifies that
// the simulation time unit is 1 ns and

a / / the simulation timestep is 10 ps
' t i m e s c a l e 1 n s / 1 0 p s

module e q 2 _ t e s t b e n c h ;
/ / signal declaration

8 r eg [1 : 0] t e s t _ i . n 0 , t e s t _ i n l ;
w i r e t e s t . o u t ;

/ / instantiate the circuit under test
eq2 u u t

is (. a (t e s t _ i n 0) , . b (t e s t _ i n l) , . a e q b (t e s t . o u t)) ;

/ / test vector generator
i n i t i a l
b e g i n

i« / / test vector 1
t e s t . i n O - 2 ' b 0 0 ;
t e s t . i n l - 2 ' b 0 0 ;
200 ;
/ / test vector 2

23 t e s t _ i . n 0 « 2 ' b O l ;
t e s t . i n l = 2 'bOO;

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHIC NOTES 23

200;
/ / test vector 3
test.inO = 2'b01;

28 test_i.nl ■ 2'bl l ;
200;
/ / test vector 4
test.inO - 2'blO;
test_i.nl » 2'blO;

33 # 200;
/ / test vector 5
test.inO » 2'blO;
t e s t . in l = 2'b00;
200;

38 / / test vector 6
test.inO = 2'bl l ;
t e s t . in l » 2'bl l ;
200;
/ / test vector 7

43 test.inO » 2'bl l ;
t e s t . in l « 2'bOl;
200;
/ / stop simulation
$stop;

4β end
endmodule

The code consists of a module instantiation statement, which creates an instance
of the 2-bit comparator, and an initial block, which generates a sequence of test pat-
terns. The initial block is a special Verilog construct, which is executed once when
simulation starts. The statements inside an initial block are executed sequentially.
Each test pattern is generated by three statements, as in

/ / test vector 2
t e s t . inO = 2'bOi;
t e s t . i n l ■ 2'b00;
200;

The first two statements specify the values for the test_inO and test_in_ signals
and the third indicates that the two values will last for 200 time units. The last
statement, $stop, is a Verilog system function that stops the simulation and returns
the control to simulation software.

The code has no monitor. We can observe the input and output waveforms
on a simulator's display, which can be treated as a "virtual logic analyzer." The
simulated timing diagram of this testbench is shown in Figure 3.23.

Writing code for a comprehensive test vector generator and a monitor requires
detailed knowledge of Verilog. For now, this listing can serve as a testbench tem-
plate for other combinational circuits. We can substitute the uut instance and
modify the test patterns according to the new circuit. We provide a review of ad-
ditional modeling and simulation-related language constructs and demonstrate the
construction of a more sophisticated testbench in Section 8.5.

2.8 BIBLIOGRAPHIC NOTES

Verilog is a complex language. The standard is specified in IEEE Standard Verilog
Hardware Description Language, IEEE Std 1364-2001. Verilog HDL, 2nd edition,

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 GATE-LEVEL COMBINATIONAL CIRCUIT

by S. Palnitkar and Starter's Guide to Verilog 2001 by M. D. Ciletti provide de-
tailed coverage of the language's syntax and constructs. Verilog-2001 includes many
improvements over the old standard. The article "The IEEE Verilog 1364-2001
Standard: What's New, and Why You Need It" by S. Sutherland summarizes the
new features. Derivation of the testbench for a large digital system is a difficult
task. Writing Testbenches: Functional Verification of HDL Models, 2nd edition, by
J. Bergeron focuses on this topic.

2.9 SUGGESTED EXPERIMENTS

2.9.1 Code for gate-level greater-than circuit

Develop the HDL codes in Experiment 3.8.1. The code can be simulated and
synthesized after we complete Chapter 3.

2.9.2 Code for gate-level binary decoder

Develop the HDL codes in Experiment 3.8.2. The code can be simulated and
synthesized after we complete Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

OVERVIEW OF FPGA AND EDA SOFTWARE

Developing a large FPGA-based system is an involved process that consists of many
complex transformations and optimization algorithms. Software tools are needed to
automate some of the tasks. We use the Altera Quartus II Web Edition package for
synthesis, implementation, and device programming, and use the Mentor Graphics
ModelSim Altera Starter Edition package for HDL simulation. In this chapter, we
give a brief overview of the FPGA device and the DEI prototyping board, and
provide short tutorials for the two software packages to "jump-start" the learning
process.

3.1 FPGA

3.1.1 Overview of a general FPGA device

A field-programmable gate array (FPGA) is a logic device that contains a two-
dimensional array of generic logic cells and programmable switches. The conceptual
structure of an FPGA device is shown in Figure 3.1. A logic cell can be configured
(i.e., programmed) to perform a simple function, and a programmable switch can be
customized to provide interconnections among the logic cells. A custom design can
be implemented by specifying the function of each logic cell and selectively setting
the connection of each programmable switch. Once the design and synthesis are
completed, we can use a simple adaptor cable to download the desired logic cell
and switch configuration to the FPGA device and obtain the custom circuit. Since
Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 25
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

2 6 OVERVIEW OF FPGA AND EDA SOFTWARE

S programmable switch

Figure 3.1 Conceptual structure of an FPGA device.

(a) Conceptual diagram

a b c

0 0 0
0 0 1
0 1 0
01 1
1 0 0
101
1 10
1 1 1

y
0
1
1
0
1
0
0
1

(b) Example table

Figure 3.2 Three-input LUT-based logic cell.

this process can be done "in the field" rather than "in a fabrication facility (fab),"
the device is known as field programmable.

LUT-based logic cell A logic cell usually contains a small configurable combina-
tional circuit with a D-type flip-flop (D FF). The most common method to imple-
ment a configurable combinational circuit is a lookup table (LUT). An n-input LUT
can be considered as a small 2n-by-l memory. By properly writing the memory con-
tent, we can use the LUT to implement any n-input combinational function. The
conceptual diagram of a three-input LUT-based logic cell is shown in Figure 3.2(a).

www.it-ebooks.info

http://www.it-ebooks.info/

FPGA 27

An example of three-input LUT implementation of a φ b Θ c is shown in Fig-
ure 3.2(b). Note that the output of the LUT can be used directly or stored to the
D FF. The latter can be used to implement sequential circuits.

Macro cell Most FPGA devices also embed certain macro celL· or macro blocL·.
These are designed and fabricated at the transistor level, and their functionalities
complement the general logic cells. Commonly used macro cells include memory
blocks, combinational multipliers, clock management circuits, and I/O interface
circuits. Advanced FPGA devices may even contain one or more prefabricated
processor cores.

3.1.2 Overview of the Altera Cyclone II devices

The Altera DEI prototyping board is used in this book and it contains an FPGA
device from Altera's Cyclone II family. Although Cyclone II devices are low-cost
entry-level FPGA devices, they have all the key features of advanced devices and
support the use of a soft-core processor. Their basic characteristics are examined
in the following subsections.

Logic cell A logic cell in the Cyclone II device is known as an LE (logic element).
An LE contains a four-input lookup table, which is a function generator that can
implement any function of four variables, and a D FF. The lookup table can be split
into two three-input lookup tables to implement a carry-chain used in arithmetic
circuits. The FF also contains additional enable and loading logic so that it can be
configured to support various types of register operations. The block diagram of
an LE is shown in Figure 3.3. The lookup table and the D FF are highlighted with
thick dotted boxes.

Interconnect structure As the size of the transistor shrinks, the routing delay be-
comes a significant portion of a circuit's overall propagation delay. To optimize
the performance, routing within a Cyclone II device is performed on several levels.
The conceptual diagram is shown in Figure 3.4. On the local level, 16 LEs are
grouped together to form a LAB (logic array block). The LEs within the same
LAB are connected via the local interconnect and signals can be routed within the
LAB directly. There are also direct link interconnects for routing signals between
the adjacent LABs. On the global level, the LABs and macro cells are connected
via a two-dimensional row- and column-based Multilrack interconnect structure.
The MultiTrack interconnect is made of dedicated fixed-length horizontal (row)
and vertical (column) routing channels. A horizontal channel consists of R4 and
R24 interconnects, which traverse a distance of 4 and 24 blocks to the right or
left, respectively. A vertical channel consists of C4 and C16 interconnects, which
traverse a distance of 4 and 16 blocks in an up or down direction, respectively. An
LE's output can be connected to any type of interconnect structure, as shown in
Figure 3.3.

Macro cell The Cyclone II device contains four types of macro blocks: combina-
tional multiplier, embedded memory block, phase-locked loop (PLL), and input/out-
put element (IOE). The combinational multiplier accepts two 18-bit numbers as
inputs and calculates the product. Its usage is discussed in Section 4.1.1. The

www.it-ebooks.info

http://www.it-ebooks.info/

28 OVERVIEW OF FPGA AND EDA SOFTWARE

LAB Carry Π -

Register Chain
Routing From
Previous LE

LAB Wide
Synchronous

Load
LAB-WWa

Registet Bywss

Local Renting

^ . Register Chain
Output

LAB Carry Out

Figure 3.3 Block diagram of a Cyclone II logic element. (Courtesy of Altera Corp.)

i

Direct Hnk - *
interconnect
to adjacent

(V^

Dlred link —
¡nteiconneci
I rom adjacent
clock

v-J

ΛνΛ

* — * ■

n rv>
Row Interconnect

3
Column
Intsttonaect

DnecC lin*
interconnect
Irom aojacen
dock

»- Direct link
interconnect
to adjacent
btock

IAS Local InteKonnsct

Figure 3.4
Corp.)

Conceptual diagram of Cyclone II interconnect structure. (Courtesy of Altera

www.it-ebooks.info

http://www.it-ebooks.info/

FPGA 2 9

lOEs

Embedded
Multipliers

M4K Blocks

lOEs Logic
Array

Logic
Array

Logic
Array

Logic
Array lOEa

M4K Blacks

lOfcs

Figure 3.5 Top-level diagram of Cyclone II EP2C20 device. (Courtesy of Altera Corp.)

Table 3.1 Devices in the Cyclone II family

Device Number of Number of Total Number of Number of
LEs M4K blocks R A M bits multipliers PLLs

EP2C5
EP2C8
EP2C15
EP2C20
EP2C35
EP2C50
EP2C70

4,608
8,256
14,448
18,752
33,216
50,528
68,416

26
36
52
52
105
129
250

120K
166K
240K
240K
484K
594K
1152K

13
18
26
26
35
86
150

2
2
4
4
4
4
4

embedded memory block, known as the M^K block, is a 4K-bit synchronous SRAM
that can be arranged in various types of configurations. Its inference is discussed
in Section 5.7. A PLL provides general-purpose clocking with clock synthesis and
phase shifting and can be used to reduce clock skew. Its instantiation and config-
uration are discussed in Section 16.7. An IOE is associated within a physical I/O
pin. It is located at the ends of LAB rows and columns around the periphery of the
device. The IOE controls the flow of data between the device's I/O pins and the
internal logic and can be configured to support a wide variety of I/O signaling stan-
dards. The top-level layout of a Cyclone II device EP2C20 is shown in Figure 3.5.

Devices in the Cyclone II family The Cyclone II family contains a collection of
devices. The devices have similar types of logic cells and macro cells but their
densities differ. The numbers of LEs, M4K RAM blocks, multipliers, and PLLs of
these devices are summarized in Table 3.1.

www.it-ebooks.info

http://www.it-ebooks.info/

3 0 OVERVIEW OF FPGA AND EDA SOFTWARE

3.2 OVERVIEW OF THE ALTERA DEI AND DE2 BOARDS

The Altera DEI board is based on a Cyclone II EP2C20 device and has an array
of built-in peripherals. The main parts and connectors are as follows:

• Altera Cyclone II EP2C20 FPGA device
• Onboard USB blaster for device programming
• Altera EPCS4 serial configuration EEPROM
• 512K byte SRAM
• 8M byte SDRAM
• 4M byte Flash memory
• Four pushbutton switches
• Ten slide switches
• Ten red user LEDs
• Eight green user LEDs
• Four seven-segment LED displays
• Audio codec with line-in, line-out, and microphone-in jacks
• VGA port with three 4-bit DACs
• RS-232 transceiver and 9-pin port
• PS2 mouse and keyboard port
• SD card socket
• Two 40-pin expansion headers
• 50-MHz oscillator, 27-MHz oscillator, and 24-MHz oscillator for clock sources

The layout of the board is shown in Figure 3.6.
The Altera DE2 board is similar to the DEI board but with larger parts and

additional peripherals. It increases the sizes of the following parts:
• Altera Cyclone II EP2C35 FPGA device
• 18 slide switches
• 18 red user LEDs
• Nine green user LEDs
• Eight seven-segment LED displays
• VGA port with three 10-bit DACs

and adds several more advanced peripherals:
• Video-in port
• USB 2.0 port (type A and type B)
• Ethernet port
• 16-by-2 LCD display
• Infrared port

The discussion and design examples in this book are based on the DEI board and
can be adopted for the DE2 board with minor or no modification. The advanced
peripherals of the DE2 board are not covered.

3.3 DEVELOPMENT FLOW

Steps 4 and 5 in Figure 1.2 represent the HDL development. The more elaborated
flow, which also includes the verification track, is shown in Figure 3.7. To facilitate
further reading, we adopt some terms used in the Altera documentation. The left
track of the flow is the refinement and programming process, in which a system is

www.it-ebooks.info

http://www.it-ebooks.info/

DEVELOPMENT FLOW 3 1

7.5V DC Power Supply
Connector

USB
Busier M1C Lino Line
Port ¡n in Oui

14-bH Audio CODEC

PewerQWOFF-
S witch

:' :■' VI12 O;. I. atOI

SOMhi Oscillator

24MhlGSCillalOr
Altera USB Blester
Controller chipset

Allere EPCS4
ConligLiration Device

RUN/PROG Switch _ I
loUTAG/AS Modes

lu i t
. ■

M

VGA
Video
Port

t
RS-232
Porl

t
ft V I l

hkmm ■
l u r ¡urn *m- ■ s ■ T - l"H

BHmcl | :
- ϋ ϋ ' ϋ ϋ ΐ η ΐ ' · » : : « :

A« ft«

■ΪΚΪ a «a

7-5EG Display Module-

lORedLEDs-

10Torjg>e Switches-

sänEEa. ßf5jEd&.an*im.fm*

SMbyte SDRAM S12Kbyle SHAM 4Mbyte Flash Memory

■a* PSH Port

- Expansion Header ? IJP2]
(with fte sister Prc-tecl ιο n)

- Expansion Header 1 (JP11
{wilh Re&i fiter Pro tachón)

A l te ra 90nm Cyc lone II

' F P G A w i t h 20KLES

— SO Card Sockel

- 8 Green LEDs

-5MA External Clock

-4 Push-Dutlon Switches

Figure 3.6 Layout of the Altera DEI board. (Courtesy of Altera Corp.)

transformed from an abstract textual HDL description to a device cell-level config-
uration and then downloaded to the FPGA device. The right track is the validation
process, which checks whether the system meets the functional specifications and
performance goals. The major steps in the flow are:

1. Design the system and derive the HDL file(s). We may need to add a separate
constraint file to specify certain implementation constraints.

2. Develop the testbench in HDL and perform RTL simulation. The RTL term
reflects the fact that the HDL code is done at the register transfer level. The
simulation checks whether the initial HDL description meets the specifications
and functions properly.

3. Perform analysis and synthesis. As the name indicates, this process contains
two smaller processes, analysis and synthesis. The analysis process analyzes
the file structure, checks the syntax of HDL codes, and performs elaboration,
which constructs the design hierarchy and establishes signal connectivity. The
synthesis process transforms the HDL constructs to generic gate-level compo-
nents and then maps them to the FPGA's logic elements and IOEs.

4. Perform placement and routing. The placement and routing process derives
the physical layout inside the FPGA chip. It places the logic elements in
physical locations and determines the routes to connect various signals. It is
sometimes referred to as fitting in Altera documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

3 2 OVERVIEW OF FPGA AND EDA SOFTWARE

/ input file / process

/constraint / / R T L c o d e /{

"compiling" < Q

analysis &
synthesis

placement &
routing

"assembling"

device
programming

static timing
analysis

/ testbench /

RTL
simulation

I Post-synthesis I
I simulation I
i J

ΕΓ^-Γ7
I Post-P&R I
I simulation |
i J

FPGA
chip

Figure 3.7 Development flow.

5. Generate the configuration file. In this step, the output of the fitter is con-
verted into a "programming image" file for the designated target device. It
is referred to as assembling in Altera documentation.

6. Program the device. In this process, the configuration file is downloaded into
the target device. The action is also referred to as programming an FPGA
device. The physical circuit can be verified accordingly.

Steps 3, 4, and 5 combined are sometimes referred to as the compilation process in
Altera documentation.

The optional post-synthesis simulation can be performed after synthesis, and the
optional post-placement-and-routing simulation can be performed after placement
and routing. The post-synthesis simulation uses a synthesized netlist to replace
the RTL description and checks the correctness of the synthesis process. The post-
placement-and-routing simulation uses the final netlist, along with detailed timing
data, to perform the simulation. Because of the complexity of the netlist, these
types of simulation may require a significant amount of time. If we follow good
design and coding practices, the HDL code will be synthesized and implemented
correctly. We only need to use RTL simulation to check the correctness of the HDL
code and use static timing analysis to examine the relevant timing information.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF QUARTUS II 3 3

Project Navigator window

Tasks window

Messages window

Workplace area

1 = i°i

1 HW"i"ñ"c"FfT"'rn":"""

input w^r*[l :ü) a. bH
output, v i r e ¿eqb

/ / i r t t t i r tái s igna l d«cl*Xiiciofl
w i r e eDf

/ / ιτφζΜϊΐ.ίΔΐ* tuo 1 b i t ccnpdu-Lcis
« j l <fo biLU uni t [Λ ύ | * | 0 Π , - i l (b (D l l r . « | (« u] | ;

and D äED equal if individual bits flr* equal

Mil

Typ* Meaädge

í V Info: ^uartua II Tiawjiitat Tuning Anaiyi i i vaa successful . O ι π ο η , 4 turnings
i 4> tofo: QuiiTus i i ftjscitbier u*s iucceMt i i i . t e r t a r a , u warning. 3 -

í íassLi. '" Esa
■ Τ^" » ■ ■ » * ■ »Www-
J IMHMJ*. rj(i 141

ΡτΜΜΜΜΙίΙΙ Λ Í"H W> A **3 H7Í Λ W<rTwm Tal A Cr*Kt¡ Warning ¿Í~¡ A trrpr A ^ « π « Ι { ί > A "M / I
r ^ w ^ p r t ■ fc fc ν Τ π π η · ¥ Υ ¥ ¥ Π Β Τ Υ 1 Τ Β ¥ ¥ Ϊ W'W H WW WW ■ Ι 1 Ϊ Α Ϊ Ι V w H M WW WW W ■ W ■ ft ■ ■ ■ ■ ■ ■

• ■ΓΜ» fc * iocfeb»>

—

Figure 3.8 Typical Quartus II GUI window.

Both post-synthesis and post-placement-and-routing simulations may be omitted
from the development flow.

3.4 OVERVIEW OF QUARTUS II

Altera Quartus II contains software tools for the left track of the development
flow in Figure 3.7. It provides a graphic interface for users to access tools and
display relevant files. Altera software is updated regularly and the discussion in
this section and the tutorial in the next section are based on Quartus II vlO.O.
Some differences may exist in other versions. The default Quartus II GUI window
is shown in Figure 3.8. Its menu items and frequently used action icons are displayed
on top. The remaining is divided into four smaller windows:

• Project Navigator window (top left)
• Tasks window (middle left)
• Messages window (bottom)
• Workplace area (top right)

Note that a window may contain multiple pages and the tabs at the top or bottom
are used to select the desired page. Each window may be resized, moved, docked,
or undocked. The default layout can be restored by selecting Tools >- Customize...
and then clicking the Reset All button.

www.it-ebooks.info

http://www.it-ebooks.info/

3 4 OVERVIEW OF FPGA AND EDA SOFTWARE

Project Navigator Ü1

Γ
Entity

&ÍCycÍone ÍÍ: E R a Ö H M Ö
A M eq2

mn eql:eq_bitO unit
ώ eql req_bitl_unit

« 1 i!i i

^ Hierarchy

r

►

ñ Bles rfP Design Units

Figure 3.9 Hierarchy display in the Project Navigator window.

Tasks

Flow;

0 %

ICV.

[i

Compilation * · |

Task

Λ > Ciimpile Design

I> ¥■ Analysis Λ Synthesis

P ► Frttei (Place a. Ri

i> i * Assembler Dtes)

1> ►■ n m m r Timm]] i*nnl)iin

t> ► EDA Hetltst Writer

φ Program Device (Open Programmer)

III

B
Customize... I1Ü

Ü

l !

Figure 3.10 Compilation flow in the Tasks window.

Project Navigator window The Project Navigator window shows the design hierar-
chy, files, and design units associated with the project. This information becomes
available after we perform the initial analysis and elaboration process. The hier-
archy page displays the design in a hierarchical tree, starting with the top-level
module. The lower-level modules can be expanded and hidden as needed. The Files
and Design Units pages list the design files and units in the projects, respectively.
Double-clicking on a module, a file, or a unit will open the corresponding file in
the Workplace area. A sample Project Navigator window is shown in Figure 3.9. It
displays the hierarchy of the 2-bit comparator in Listing 3.2. The top row indicates
the target FPGA device for the design.

Tasks window The Tasks window allows a user to gather relevant processes (known
as a flow) and show them in a flow-based layout. Several predefined flows are
provided and can be selected from the Flow list. The default is the Compilation
flow, which represents the left track of Figure 3.7, and a snapshot flow is shown in
Figure 3.10. It shows the processes as a flow from top to bottom. The left portion
shows the progress of the process and a check mark is placed when a process is

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL OF QUARTUS II 35

successfully completed. The details of a process can be expanded or hidden as
needed. We only use this flow in our book.

Messages window The Message window displays status messages, errors, warnings,
etc. We can select the appropriate tab to get the desired information.

Workplace area The workplace area is the remaining area in the GUI window. It
can contains multiple document windows, such as HDL code, reports, schematics,
and so on. We can view and edit various types of files in this area.

3.5 SHORT TUTORIAL OF QUARTUS II

Altera Quartus II consists of an array of software tools, but a detailed discussion
of their use is beyond the scope of this book. We present a short tutorial in this
section to illustrate the basic development process. A separate HDL simulation
tutorial is provided in Section 3.6.

The development process is oriented to the DEI board and the designs in this
book. The major steps are:

1. Create the design project with HDL codes and constraints.
2. Create a testbench and perform RTL simulation.
3. Compile the project.
4. Perform a timing analysis.
5. Program the FPGA device.

These steps follow the general development flow discussed in Section 3.3.
We use the 2-bit comparator discussed in Chapter 2 in the tutorial. To physically

test the circuit, we connect the four input signals to four slide switches and the
output to an LED. The codes are repeated in Listings 3.1 and 3.2.

Listing 3.1 Gate-level implementation of a 1-bit comparator
i module eql

/ / I/O ports
(
input wire iO, i l ,
output wire eq

«) ;

/ / signal declaration
wire pO , p i ;

il / / body
// sum of two product terms
assign eq - pO I p i ;
/ / product terms
assign pO = "iO IE " i l ;

ie ass ign pi · iO ü i l ;
endmodule

Listing 3.2 Structural description of a 2-bit comparator
module eq2

(
3 input wire [1:0] a, b,

output wire aeqb

www.it-ebooks.info

http://www.it-ebooks.info/

3 6 OVERVIEW OF FPGA AND EDA SOFTWARE

);

/ / internal signal declaration
8 wire eO , e l ;

/ / body
// instantiate two 1—bit comparators
eql eq_bitO_unit (. iO(a [0]) (. i l (b [0]) , .eq(eO));

13 eql eq_bitl_unit (. e q (e l) , . 1 0 (a [l]) , . i l (b [1])) ;

/ / a and b are equal if individual bits are equal
assign aeqb = eO * e l ;

endmodule

In the Quartus II GUI, the same action can be invoked in multiple ways. For
example, we can start the compiling process by selecting the proper menu item,
clicking the icon on the top, or clicking the process in the Tasks window. We use
the menu in the tutorial.

3.5.1 Create the design project

A Quartus II project contains the basic information of a design, which includes the
location of the working directory, the top-level entity, the source files, the target
device, the constraints, and the tool settings. There are several tasks associated
with this step:

• Create a project.
• Assign a device.
• Create new HDL files.
• Check the code syntax.
• Add existing HDL files.
• Import a pin-assignment constraint file.

Create a project During project creation, Quartus IPs New Project Wizard is in-
voked and it guides users through five pages to set up a new project. The initial
project settings and relevant information are specified in this process. For flexibil-
ity, we manually update the setting later and only use the wizard to specify the
location of the working directory and project name. A new project can be created
as follows:

1. Launch the Quartus II program.
2. In the Quartus II GUI, select File >- New Project Wizard.... The New Project

Wizard dialog appears. Click the Next> button to go to the next page. Enter
the working directory name and enter the name of the project as demo.

3. Click the Finish button to exit the dialog.
If all the relevant information and files are known in advance, we can continue with
the wizard and skip some of the subsequent tasks.

Assign a device Since we plan to implement the design on the prototyping board,
we must specify the board's FPGA chip as the target device. On the DEI board, it
is a Cyclone II EP2C20F484C7 device. For other boards, the device name can be
found in the board manual or by checking the marking on the actual FPGA chip.
For a DEI board, we can specify the target device as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL OF QUARTUS II

Select the famity and devce you want to target tor compilation.

Deuce family

Family: Cyclone II

Devices: W l

v

Show t\ 'Available devces' list

Pri count:

Any

tóny

langet devte

O Auto device ¿elected by the Fitter

{*) Specific device selected n 'Available devices' let

Other: n/a

Speed grade; ΑΠ^

St IOW advarted devices

H e f d C i ^ corripattjle Ljfily

Deuce and Fn Options..

Available devices:

Name Core

EP2C2CF25äI8 1.2V

EP2C2£F4B<1C6 1.2V

EP2C2DMS4C7 [1 2V

EP2C20F4B4C8 1.3V

EP2C20F4frU9 1.2V

<

Voltage LEs

1B7S2

18752

!lB752

18752

19752

Usur l /Us

152

315

315

315

315

Memory Bits

239616

239616

feeeie
239616

239616

Embedded multl *

52

52

■
52

52 £

>
Migration compatibility

Migration Devices.,.

0 migration devices selected

Companion device

Hardtop^:

Limit DSP 6 RAM to HardCopy device resources

Cancel] [

Figure 3.11 Device selection dialog.

1. In the Quartus II menu, select Assignments >- Device.... The Device dialog
appears, as shown in Figure 3.11.

2. Select Cyclone II in the Family field and click the Specific device selected in
'Available devices' list button.

3. Scroll down the device list and select EP2C20F484C7.
4. Click the OK button to complete the selection.
The EP2C20F484C7 device has a special dual-purposed pin, known as nCEO,

which can be configured as a special "programming pin" or a regular I/O pin. The
pin is set up as a programming pin in Quartus II by default. On the DEI board,
the nCEO pin is configured as a normal I/O pin and used for the SD card interface.
If the SD card is used in a design, we need to properly configure this pin to prevent
a compiling error. The procedure to configure this pin is:

1. In the previous Device dialog, click the Device and Pin Options... button. The
Device and Pin Options dialog appears, as shown in Figure 3.12.

2. In the left Category: panel, select the Dual-Purpose Pins item.
3. In the right panel, select the nCEO row.
4. Click the right field of this row and expand the pull-down menu. Select Use

as regular I/O, as shown in Figure 3.12.
5. Click the OK button to return to the Device dialog.

3 7 OVERVIE

www.it-ebooks.info

http://www.it-ebooks.info/

3 8 OVERVIEW OF FPGA AND EDA SOFTWARE

i' Device and Pin Options - test3

Cttagvy

General
Cor>figurat)Of]
Programming Files
urusedPris
Dual-Ptrpose Pins
Capacitiva Lcödmg
Board Traes Model
I/O TimÉ-ig
Voltage
Pn PLäte-ment
Error Detectan CRC

Oiial-Purpu^e PPIS

Specify h a * dial-purpose pins should be used after devea- configuration £
córretele. The default sattes for each ph depend on the curent confguration
scheme selected n the Configuration tab, which B : Ac«« serial

Mote: For HsrdCopy, these settngs apply to the FPGA prototype itemce.

Dual-purpose p r e :

Mame Value

ASDCMTCSO AS trtput frr-stated

nCEO luse x regul* i/o ■ '.':-*■ -JS rjfULrdrTimmjpiri

Specifies hew the nCEO pin shout) be used when the device κ operating n
user mode alter configuration ft complete. Tne nCEO pn can be reserved as
dedcated nCEO programmng p*n or a regular t/0 pn.

HaE

Figure 3.12 Pin option dialog.

Create a new HDL file A project may contain one or multiple HDL files. If a file
does not exist, we must create a new source file. Quartus II contains an HDL editor
for this task. For demonstration purposes, we create a file that contains the code
in Listings 3.1. The procedure is:

1. Select File >- New. The New dialog appears.
2. Select Verilog HDL file and then click the OK button. A new text editor

window appears in the Workplace area.
3. Select File >- Save. The Save as dialog appears. Enter list_ch03_01_eql.v

in the File name: field, put a check mark in the Add file to current project box,
and click the Save button.

4. Enter the HDL code.
5. Select File >~ save to save the file.

The Quartus II HDL editor is language sensitive and colors the language constructs
for clarity.. It also provides a collection of pre-defined templates of various language
segments to facilitate the code entry. To insert a template into a file, select Edit >-
Insert Template, expand the Verilog HDL row, and double-click the desired template.

Check the code syntax After completing a new HDL file, we need to check the
syntax of the code:

1. Select the desired file window in the Workplace area.
2. Select Processing >- Analyze Current File.

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL OF QUARTUS II 39

f Settings ■ üenxj UJjtäi
Cjt*90fy:

■■■■ i 5*t*ct th* dtbgn Eiitt r*u wem \Q jndude m I M p r o j K t C l * i Add A i to add eu de^gn Γιίκ n the ¡Ho|*ct directory

J Operating Settings and Condfians * * ■ c " 0 J f t L

' » ' — - U U w y bütfln End I ^

I**

tflfly Timing, tstimnle

Incremental Cümplaüon

Pttys^ii S y n t h * « Optimuarjofti

' EQA Tool Serangs

Destqn Enfy/SynrJHSts

Simulation
Timing Annr&i

Board i evel

' ViBrybl A SyrtrtiVS Sett ing

V W L h p u t

Ventag HOL Input

Defaufc Fat ameterc

Ftt t f Safljnaj

TimcQuefi T mimo Analyzer

Deogn Assistant

SigVUlTafi Π Logjt Ana lym

Logit Analyser Interface

Powerfley hDrtíf Arur^zer üeOHXjs

S5H AMhrier

■

N i Nam« Typt

IÍ:/»Ú^íoi>c_v4Cig_«cyctia3_Cfimbl/list.chfl3_01_*4l.v VtrHag HDL FJ#

·■■ ■ * ■ ■ - y j

On I C M U I ! Hrip

Figure 3.13 Files item in Setting dialog.

The bottom Messages window displays the progress of the process and reports errors
and warnings. Double-clicking an error message leads to the offending line in the
file. We can correct the problem, save the file, and repeat the syntax checking
process until all syntax errors are eliminated. The analysis process only checks the
syntax of the current file and does not perform elaboration. Other errors may still
occur when the entire project is compiled.

Add existing HDL files A project usually contains multiple files and some files
have been developed in previous projects or can be obtained from other sources.
We can add existing HDL files to a project. The file containing the codes in
Listings 3.2 can be downloaded from the companion website and its file name is
Iist_ch03_02_eq2.v. The procedure to add the file is:

1. Select Assignments y Settings.... The Settings dialog appears.
2. In the left panel, click on the Files item. The Setting dialog shows the relevant

file information in the right panel, as shown in Figure 3.13. The previously
created list_ch03_01_eqi.v file should be already included in the list.

3. Click the ... button in the File Name row and a Select File window appears.
4. Navigate to the proper directory, select the file, and click the Open button to

return to the Setting dialog.
5. Click the Add button to add the file to the project.
6. Click the OK button to complete the addition.

Import a pin-assignment constraint file Constraints are certain conditions imposed
on the synthesis and placement and routing processes. For our purposes, the main

www.it-ebooks.info

http://www.it-ebooks.info/

4 0 OVERVIEW OF FPGA AND EDA SOFTWARE

type of constraint is the pin assignment of top-level I/O ports and the minimal clock
rate. The latter is discussed in Section 5.5.2. During the placement and routing
process, an I/O port of the top-level module must be mapped to a physical pin
of the FPGA device. Since the peripherals' I /O signals are already permanently
connected to the designated FPGA's pins on the DEI prototyping board, we must
ensure that the HDL module's I /O ports are mapped to the corresponding pins.

In the eq2 circuit, we can connect the a and b ports to four slide switches and
the aeqb port to an LED to verify the physical operation of the circuit. For the
DEI board, the corresponding pins are L22, L21, M22, V12, and R20.

The pin assignment can be performed with Quartus IPs Assignment Editor, in
which we can manually assign top-level I/O ports to FPGA's pins as well as specify
the desired I/O standards. The process is tedious and error prone, especially for a
project with a large number of I /O ports. Quartus II allows the user to save the pin
assignment in a file and export and import the file as needed. The .csv file format,
which is a comma-separated text format, is used for this purpose. The following is
the file content for the eq2 circuit:

From,To,Ass ignment Name,Value ,Enabled
, a [0] . L o c a t i o n , P I N _ L 2 2 , Y e s
, a [l] . L o c a t i o n , P I N _ L 2 1 , Y e s
, b [0] , L o c a t i o n , P I N . M 2 2 , Y e s
, b [l] , L o c a t i o n , P I N _ V 1 2 , Y e s
, a e q b , L o c a t i o n , P I N . R 2 0 , Y e s

The first line is the column header indicating various fields and the remaining lines
specify the mappings between I/O ports and pins. We can use the Quartus II built-
in editor or any other program to create this file and save it as eq2_pin.csv. The
procedure to import the pin assignment file is:

1. Select Assignments >- Import Assignment.... The Import Assignment dialog
appears.

2. Click the ... button in the File Name row and the Select File window appears.
3. Navigate to the proper directory, select the eq2_pin.csv file, and click the

OK button to complete the process.
Since all of our experiments are done in the same prototyping board, the pin

assignment is fixed. A pin assignment file that includes all connected I/O peripheral
signals of the DEI board, chu.de l_pin. csv, is created for this purpose. We can
edit this file according to the I/O port names used in the top-level HDL module
and delete the unused pins.

If the top-level module follows the names used in this file, it can be imported to
the project without modification. One way to do this is to add a top-level wrapping
file with the pre-defined board I/O signal names. The slide switches and red LEDs
are named as sw and l ed r in the chu_del_pin.csv file. The wrapping code is
shown in Listing 3.3.

Listing 3.3 Top-level wrapping circuit
module eq.top

(
input wire elk ,

4 input wire [3:0] sw,
output wire [0:0] ledr

) ;

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL OF QUARTUS II 4 1

/ / body
a / / instantiate 2— bit comparator

eq2 eq.unit
(. a (s u [3 : 2]) , . b (s w [l : 0]) , . aeqbQedr [0])) ;

endmodule

The code essentially maps the "logical" port names of the comparator to the physi-
cal signals on the prototyping board. Note that the output l ed r signal is defined as
a one-element vector to accommodate future expansion. During compiling, Quar-
tus II may generate warnings for the unused I/O ports.

3.5.2 Create a testbench and perform the RTL simulation

The testbench functions as a virtual lab bench. It consists of the HDL module to be
tested and a code segment to generate the stimulus. The RTL simulation verifies
the operation of the HDL module in the host computer. We use the ModelSim
simulator manufactured by Mentor Graphics Corporation for this purpose. Its
usage is illustrated in Section 3.6.

3.5.3 Compile the project

There are several tasks in this step:
• Specify the top-level module.
• Compile the project.
• Examine the compilation report.
• Examine the netlists.

The last two tasks provide additional information about the design but can be
omitted.

Specify the top-level module After adding and creating all HDL files, we can specify
the top-level module. The procedure is:

1. Select Assignments >- Settings.... The Settings dialog appears.
2. In the left panel, click the General item.
3. Enter the top-level entity name, eq2, in the Top-level entity: field.
4. Click the OK button to complete the process.

After compiling, Quartus II analyzes the files based on the top-level module and
establishes the hierarchical structure, which is displayed in the Project Navigator
window, as shown in Figure 3.9.

Compile the project Compiling contains the processes to analyze design hierarchy,
to perform elaboration, synthesis, and placement and routing, and to generate the
configuration file. It can be invoked by selecting Processing >- Start Compilation.
The progress of the compiling is displayed on the Tasks window, as shown in Fig-
ure 3.10. A green check mark will be placed on the left if the corresponding process
is successful.

Although the syntax of individual files is checked earlier, the code may contain
constructs that cannot be synthesized or may lead to poor implementation (such
as a combinational loop). The error and warning messages are displayed in the
Messages window. We must correct the problems and repeat the compiling process
if needed.

www.it-ebooks.info

http://www.it-ebooks.info/

4 2 OVERVIEW OF FPGA AND EDA SOFTWARE

ÍJ> Compttobon Report

Table of Contents B

Θ f low Summary

■ Flow Settings
9 Flow Non-Default Global Settings

■ Row Elapsed Time
■ Flow OS Summery
B Flow Log
Zl Analysis & Synthesis

* ^ Fitter
H Summary
■ Settings
S Parallel Compilation
■ Ignoied Assignments

. '¿Λ Incremental Compilation Sect
I»· Pin-Out File

[* LLj Resource Section

■ Deuice Options
■ Operating Settings and Condil

[■ _J Estimated Delay Added for Ho
V Messages

.- ZA Assembler
2} Timing Analyzer

i · " , ! >

1 ° ; |
tttarSuwury

Fitter Status
Quartus II Version
Revi y Oi Name

Top-level Entity Name
Famkry
Device
Timing Modela

J Total logic elements
Total combinational functions
Dedicated logic registers

Total registers
Total pins

1 _ , t ,
Total virtual pins
Total memory bits
Embedded Multiplier 9-bit elements
Total PU5

lir

Successful - Sat Sep 11 IS

ü l B ¡
:38:01 201~Ö~1

10.0 Build 262 09/18/2010 SP 1 SJ Web ^
demo

eq_top
Cyclone D
EP2C2UF4MC7
Final
1 / 18,752 (< 1 %)
1 / 18,752 {< 1 <*>)
0 / 18,752 (0 *fc)

a
S / 3 1 5 C 2 1 *)

■
0 / 239,616 (0 I t)
0 / S (0 %)
0 / ^ (0 %)

J _ »

Figure 3.14 Compilation report.

Examine the compilation report After successful compilation, a report window is
generated and opened automatically on the Workplace area, as shown in Figure 3.14.
It can also be invoked later by selecting Processing >- Compilation Report.

The window contains information for the overall flow as well as detailed reports
for individual processes. A list of more detailed reports can be obtained by clicking
on the corresponding directory, as in the Fitter item of Figure 3.14.

The compilation report is quite comprehensive. For our purposes, the following
information is of special interest:

• Resource utilization
• Use of I /O pins

The resource utilization basically indicates the size of the resulting circuit in terms
of the number of logic elements. It also shows the usage of various macro cells.
This information can be found in the Flow summary report or the Fitter's Summary
report. The report in Figure 3.14 indicates that one logic element (out of 18,752)
is used to synthesize the two-bit comparator.

Pin assignment is an error-prone task. To verify the pin locations, we can expand
Fitter and then Resource Section and check the Input Pins and Output Pins reports
for the pin assignment of HDL module's I /O ports.

Examine the netlists Quartus II provides a utility program to show the synthesized
netlist in graphic format (i.e., to view the netlist as a schematic) in both the RT
(register transfer) level and the logic element level. The former uses generic logic
components and maintains the original design hierarchy and thus is more useful.
The RT level viewing utility can be invoked by selecting Tools >- Netlist Viewers
X RTL Viewer. A snapshot of the RTL Viewer window is shown in Figure 3.15.
The Netlist Navigator panel shows the original design hierarchy and the right panel

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL OF QUARTUS II 4 3

§ RTL Viewer - Ci/ tmp/eq/demo - demo Ui ts l
File Edit View Tools Window

m Θ s ^ s> [s] a
Netlist Navigator 0 K

^ □ Instances
S eql:eq_bitO_un[t
O eqL:eq_brtl_unit

O Pnmrtives
o Pins

|£C O Page Title: eq2 Page:| l· ot ί - |

eq1 eq_s<0_un<

aj1. 0 | |
t H 1 . H l

eqt pc_^ii_LjriH
ΛΡ ¡;.

. i . -p

= J

100% 00:00:02

Figure 3.15 Snapshot of RTL Viewer.

displays the schematic of the currently selected eq2_unit, which is similar to that
in Figure 2.2.

Because of the simplicity of this circuit, the generated schematic clearly shows
the correspondence between the HDL code constructs and the circuit parts. The
schematic for complicated HDL codes tends to be complex and involved and is less
clear. Nevertheless, it still provides some insights about the HDL description and
allows us to check the HDL codes from another perspective.

3.5.4 Perform timing analysis

The timing analysis relates to a system's performance, which is one of the key
design criteria. The timing speciation is normally defined around the clock rate of
a sequential circuit. We discuss this aspect in Section 5.5.2.

3.5.5 Program the FPGA device

The last step is to download the configuration file to the FPGA device. For the DEI
board, this task can be performed by two methods, known as the JTAG (joint test
action group) mode and .AS (active serial) mode. The mode is manually selected
by a switch on the DEI board.

In the JTAG mode, the configuration data are loaded from the host computer
into the FPGA device directly. The DEI board contains a special circuit, known
as the USB Blaster, that accepts a configuration data stream from a USB port and
feeds the data into the FPGA device via the device's JTAG port. Since a Cyclone II
FPGA is an SRAM-based device, the configuration data are lost when the power
is removed.

To overcome this problem, the DEI board provides an EEPROM (electrically
erasable programmable read-only memory) device, which is nonvolatile and thus
can maintain data after power-off. On the DEI board, the configuration data from

www.it-ebooks.info

http://www.it-ebooks.info/

4 4 OVERVIEW OF FPGA AND EDA SOFTWARE

φ P m r j u m m « - Γ -Srmp/Myr iM in - ΗΡΠΛΛ - íftemn rrtf] 1 t = | - Í H h f l K ^ |

File Edit View Processing Toots Window

i^HArdwiHif^iup. . . USB-eiaster [USB-Q) MtKk?; JTAG » | Progress: ■ M M 1 0 0 *

_ | Enable real-äm* ISP to allow background programming ¿for M\X D dtvtc«)

| · » * * |
* S t o n

[pf/UttlMMCI

X Matt

| A Altó Fita... I

S í QiBiga File.

i ^η !
WS ¿ave fite I

j ^ A (t ó M M t » . . |

* U P

4̂

File QtvKM Checksum Jwrcoda Program/ Verify Blank- Examtn
Cuni'igure Check

öemo.sof EP1C30HW 0Ü1B053F FFFFFFFF |VJ

TOI :

:pjC2DHe'

*

I

TOO

1 ί

Figure 3.16 Programmer window.

the EEPROM is automatically loaded into the FPGA chip upon power-up. If a
configuration is needed repeatedly, we can load the file into the EEPROM device.
This can be done with the AS mode.

Our discussion focuses on the JTAG mode. The key tasks in this step are:
• Set up the DEI board.
• Download the configuration file.

Set up the DEI board The procedure is as follows:
1. Make sure that the programming mode switch is in the RUN position (for the

JTAG mode). It is located on the left edge of the DEI board, labeled swl2.
2. Connect the USB cable.
3. The power of the DEI board can be provided either by the USB cable or

a 7.5V adaptor. Connect the 7.5V adaptor if the host's USB port cannot
provide adequate power.

4. Turn on the power by pressing down the red button on the left edge of the
DEI board.

Note that if a configuration file was previously stored in the EEPROM, it will
automatically load and lead to some board activities, like flashing LEDs.

Download the configuration file The procedure is as follows:
1. Select Tools >- Programmer. A stand-alone utility program called Programmer

is invoked, as shown in Figure 3.16.
2. Check for the following setting:

(a) Hardware Setup field: USB-Blaster.
(b) Mode field: JTAG.

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 4 5

Cürwttfy selected hat ¿wart:
Agitable hardware items Mo HmWOT

US6-BI**« [USU)
Hardware

UOß-Bester

Setver

i.ü-Λΐ

Port

U 5 H

[Add HAnKw·...]

fU'inove HdiJware

QC44

Figure 3.17 Hardware Setup dialog.

(c) File column: demo.sof (the .sof stands for SRAM object file).
(d) Device in the bottom: EP2C20F484.

3. The Hardware Setup field specifies the intended programming adapter. It
may show No hardware initially. To correct this, click the Hardware Setup
button to invoke the Hardware Setup dialog, click the pull-down menu to
select the USB-Blaster, and then click the Close button. The dialog is shown
in Figure 3.17.

4. Click the Start button to start the downloading process.
Now the FPGA device is configured and we can test the circuit with the switches

and observe the output LED.

3.6 SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR

The ModelSim software is an HDL simulator manufactured by Mentor Graphics
Corporation and can run independently.

The default ModelSim window is shown in Figure 3.18. It is divided into three
subwindows: Transcript window (bottom), Workspace window, and multiple doc-
ument interface (MDI) window. The Workspace window displays information on
the current process. The bottom tab is used to select the desired process page,
which can be Project, Library, Sim, and so on. The Transcript window keeps track
of command history and messages. It can also be used as a command-line interface
to enter ModelSim commands. The MDI window is an area to display HDL text,
waveform, and so on. The bottom tab selects the desired pages.

Each subwindow may be resized, moved, docked, or undocked. Additional win-
dows may appear for some operations. The default layout can be restored by
selecting Window >- Initial Layout.

We present a short tutorial in this section to illustrate the basic simulation
process. There are three steps:

1. Prepare a simulation project.
2. Compile the HDL codes.
3. Perform a simulation and examine the waveform.

www.it-ebooks.info

http://www.it-ebooks.info/

4 6 OVERVIEW OF FPGA AND EDA SOFTWARE

Transcript window

MDI window

Figure 3.18 Typical ModelSim window.

We use the 2-bit comparator testbench discussed in Chapter 2 for the tutorial, and
the code is repeated in Listing 3.4.

Lis t ing 3 . 4 Testbench of a 2-bit comparator

/ / The 'timescale directive specifies that
// the simulation time unit is 1 ns and

3 // the simulation timestep is 10 ps
' t i m e s c a l e 1 n s / 1 0 ps

module e q 2 _ t e s t b e n c h ;
/ / signal declaration

8 reg [1 : 0] t e s t . i n O , t e s t _ i . n l ;
w i r e t e s t . o u t ;

/ / instantiate the circuit under test
eq2 uut

i3 (. a (t e s t _ i n 0) , . b (t e s t _ i n l) , . a e q b (t e s t _ o u t)) ;

/ / test vector generator
i n i t i a l
b e g i n

is / / test vector 1
t e s t _ i . n 0 - 2 ' b 0 0 ;
t e s t . i n l = 2'bOO;
200;

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 4 7

/ / test vector 2
i t e s t . inO = 2*b01;

t e s t . i n l » 2'b00;
200;
/ / test vector 3
t e s t . inO - 2'bOl;

i t e s t . i n l - 2 ' b l l ;
200;
// test vector 4
test.inO - 2'blO;
test.inl = 2'blO;

ι * 200;
// test vector 5
test.inO - 2'blO;
test.inl » 2'bOO;
200;

i // test vector 6
test.inO - 2'bll;
test.inl « 2'bll;
200;
/ / test vector 7

i t e s t . i n O = 2 ' b l l ;
t e s t . i n l = 2'bOl;
200;
/ / stop simulation
$stop;

i end
endmodule

Prepare a simulation project A ModelSim simulation project consists of the library
definition and a collection of HDL files. A testbench is an HDL program that
can be created by using the Quartus II text editor, as discussed in Section 3.5.1.
Alternatively, ModelSim also has a built-in editor. We assume that all HDL files
are already constructed. The procedure to create a project is as follows:

1. Select All Programs >- Altera >- ModelSim-Altera 6.6c Starter Edition ¡>- ModelSim-
Altera 6.6c Starter Edition (or wherever ModelSim resides) to launch the Mod-
elSim program.

2. Select File >- New >- Project and the Create Project dialog appears, as shown
in Figure 3.19(a). Enter the project name as eq.testbench, select the project
location, and set Default Library Name to work. Click OK. A blank Project
page appears in the main window and the Add items to the project dialog
appears, as shown in Figure 3.19(b).

3. In the Add items to the project dialog, click Add Existing File and add the three
previously constructed files, eql.v, eq2.v, and eq.tb.v. Click OK. The project
tab page appears in the Workplace window and displays the selected files, as
shown in Figure 3.20.

Compile the HDL code The compile term here means to convert the HDL code
into ModelSim internal format. In Verilog, compiling is done on the module basis.
The procedure is:

1. Highlight the eql.v file and right-click the mouse. Select Compile >- Compile
Selected. Note that the compiling should be started from the modules at the
bottom of the design hierarchy. The progress and messages are displayed in
the transcript window.

www.it-ebooks.info

http://www.it-ebooks.info/

4 8 OVERVIEW OF FPGA AND EDA SOFTWARE

Teate Project

Project Name
[eqjeslbench

Project Location

| /tex/vh d l_ch_f pg a/ mod elSim Browsa

OafanIt Library Name
[work |

OK | Cancel |

■:] Add items to the Project
Click an rite icon ta add items ol that Τ/Ρβ'

Create New File Add Existing File

TA C J
Create Simulation Créale New Folder

Close |

(ίι) Create Project dialog (b) Add items dialog

Figure 3.19 New project dialogs.

"Hi * '-T" 1^^—^^Js an. i« i
»I Name | Status

J3J| eq1 v y*
_ϊϊ| eq2v y

i3¿| eq_tb.v y

<!
^) Project P j Library

Type lOrder ^JModtlied
ill

^ Sim

07/DB/07D211
11/17/07 02:55
11/17/07 03 :(H

1

K Files ■ Wem4-il
1

Figure 3.20 Project tab page of the workplace panel.

2. If the file contains no syntactical error, a check mark shows up. Otherwise,
an X mark shows up. Click the red error line in the transcript window to
locate the errors. Correct the problems, save the file, and recompile the file.

3. Repeat the preceding steps to compile the eq2.v file and then the eq . tb .v
file.

Perform a simulation and examine the waveform After compiling the testbench and
corresponding files, we can perform the simulation and examine the resulting wave-
form. This corresponds to running the circuit in a virtual lab bench and checking
the waveform in a virtual logic analyzer. The procedure is:

1. Select Simulate >- Simulate and the Simulate dialog appears.
2. In the Design tab page, find and expand the work library, which is the one

defined when we create the project. All compiled units are displayed, as
shown in Figure 3.21.

3. Load eq2_testbench by double-clicking the corresponding icon. The sim tab
page appears in the workplace window and the corresponding page displays
the structure of the eq2_testbench module, as shown in Figure 3.22. An
Objects subwindow, which contains the signals in the selected module, may
also appear.

www.it-ebooks.info

http://www.it-ebooks.info/

SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 4 9

Ί Start Simulat ion

Design 1 VHOL | Verflog | Libraries) SDF | Others <lil
»|Name

-■$. work

I j a q 2
1 _] e q i j e s r b e n c h

j y j d uitslSDOO

± J l L ieee

u j (l · mode ls im j ih

. . É l sir!

íl

|Type

Librory

Module

Module

Moduls

1 lir.iry

Library

Library

1 ihrrtrv

Path

work

K:/code/veril og/chGÍ!/eql v

K / co d e/veril og / ch D ?/e q 2 v

K./ co de / veri 1 og / ch 0 2/e q j b . v

IMODEL_TECH/.7wrtal20C0

ÍMODEL .TECH/ / ieea

% MODEL_TE CH /../ m o d a Isi m j it

IMORrFl T F O t / fstrl

_ J _±J

A

-
"Design IJmt(s) Rs solution

| default

Optimization

Γ Enable optimize!on

Cancel

Figure 3.21 Simulate dialog.

M Instance

ζίΛ eq2_leslbench

I *tM eq_b¡1[)_unrt

I *tM eq_brll_ijnit

T- 4 #ASSIGN#17

- l

US Project P j Library m

| Design unit

eqZ jes tb

aq2

eq1

eq l

eq2

..ΙΓΙΙ '£ Ries

|Designur *

Module

Module

Module

Module

Process - 1 .

-tJ Ί
IS M e m o r ^

1

Objects

|*| Name

¡B-* tesljnD

IK* tesijnl

+ test out

' ■ Η Λ β

Figure 3.22 Sim panel of the workplace panel.

www.it-ebooks.info

http://www.it-ebooks.info/

50 OVERVIEW OF FPGA AND EDA SOFTWARE

^-«v. M*i JJJC

Horn

-J _!

DO

00
1

0»|M

Uü
HI

Ϊ
■ ■ ■ ·

¡ 1

D I Tin

ni un in
1 1 1

20Ün *ijij r.·. ttßm 600«

**

V

-

Figure 3.23 Waveform window.

4. Highlight the uut unit and right-click the mouse. Select Add y Add to Wave.
This adds all the signals of the uut unit to the waveform page. The waveform
page appears in the MDI window.

5. If necessary, rearrange the signals order and set them to the proper formats
(decimal, hex, and so on).

6. Select Simulate >- Run. There are several commands to control the simulation:
Restart (restart the simulation), Run (run the simulation one step), Continue
run (resume the run from the interrupt), Run All (run the simulation forever),
and Break (break the simulation). These commands are also shown as icons
at the top of the window.

7. The waveform window displays the simulated result, as shown in Figure 3.23.
We oan scroll the window, zoom in, or zoom out to check the correctness of
the design.

3.7 BIBLIOGRAPHIC NOTES

Both Altera Quartus II and Mentor Graphics ModelSim are complex software pack-
ages, and their manuals exceeds several thousand pages. Most documentation can
be accessed via the Help menu. Quartus II has a comprehensive 140-page review,
titled Introduction to Quartus II Software. ModelSim has a detailed tutorial, Mod-
elSim Tutorial. These tutorials provide an overview of all features of the software
package. Relevant information for the Cyclone II device can be found in its data
sheets, Cyclone II Device Handbook, which includes a detailed explanation of the
logic elements and macro cells. The Design Warrior's Guide to FPGAs by Clive
Maxfield provides a comprehensive review of FPGA-related issues. The detailed
layout and I/O pin assignment of the DEI board can be found in DEI Board User
Manual. Information on other prototyping boards can be found in their manuals.

3.8 SUGGESTED EXPERIMENTS

3.8.1 Gate-level greater-than circuit

The greater-than circuit compares two inputs, a and b, and asserts an output when
a is greater than b. We want to create a 4-bit greater-than circuit from the bottom
up and use only gate-level logical operators. Design the circuit as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 5 1

Table 3.2 Truth table of a 2-to-4 decoder with enable

Input Output
en a(l) a(0) bcode

0
1
1
1
1

-
0
0
1
1

-
0
1
0
1

0000
0001
0010
0100
1000

1. Derive the truth table for a 2-bit greater-than circuit and obtain the logic
expression in the sum-of-products format. Based on the expression, derive
the HDL code using only logical operators.

2. Derive a testbench for the 2-bit greater-than circuit. Perform a simulation
and verify the correctness of the design.

3. Use four slide switches as the inputs and one LED as the output. Synthesize
the circuit and download the configuration file to the prototyping board.
Verify its operation.

4. Use the 2-bit greater-than circuits and 2-bit equality comparators and a min-
imal number of "glue gates" to construct a 4-bit greater-than circuit. First
draw a block diagram and then derive the structural HDL code according to
the diagram.

5. Derive a testbench for the 4-bit greater-than circuit. Perform a simulation
and verity the correctness of the design.

6. Use eight slide switches as the inputs and one LED as the output. Synthesize
the circuit and download the configuration file to the prototyping board.
Verify its operation.

3.8.2 Gate-level binary decoder

An n-to-2n binary decoder asserts one of 2n bits according to the input combination.
The functional table of a 2-to-4 decoder with an enable signal is shown in Table 3.2.
We want to create several decoders using only gate-level logical operators. The
procedure is as follows:

1. Determine the logic expressions for the 2-to-4 decoder with enable and derive
the HDL code using only logical operators.

2. Derive a testbench for the decoder. Perform a simulation and verify the
correctness of the design.

3. Use three slide switches as the inputs and four LEDs as the outputs. Synthe-
size the circuit and download the configuration file to the prototyping board.
Verify its operation.

4. Use the 2-to-4 decoders to derive a 3-to-8 decoder. First draw a block diagram
and then derive the structural HDL code according to the diagram.

5. Derive a testbench for the 3-to-8 decoder. Perform a simulation and verity
the correctness of the design.

www.it-ebooks.info

http://www.it-ebooks.info/

52 OVERVIEW OF FPGA AND EDA SOFTWARE

6. Use four slide switches as the inputs and eight LEDs as the outputs. Synthe-
size the circuit and download the configuration file to the prototyping board.
Verify its operation.

7. Use the 2-to-4 decoders to derive a 4-to-16 decoder. First draw a block dia-
gram and then derive the structural HDL code according to the diagram.

8. Derive a testbench for the 4-to-16 decoder. Perform a simulation and verify
the correctness of the design.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

RT-LEVEL COMBINATIONAL CIRCUIT

The gate-level circuits discussed in Chapter 2 utilize simple logical operators to
describe gate-level design, which is composed of simple logic cells. In this chap-
ter, we examine the HDL description of module-level circuits, which are composed
of intermediate-sized components, such as adders, comparators, and multiplex-
ers. Since these components are the basic building blocks used in register transfer
methodology, it is sometimes referred to as RT-level design. We first discuss more
sophisticated Verilog operators, the always block, and routing constructs, and then
demonstrate the RT-level combinational circuit design through a series of examples.

4.1 OPERATORS

Verilog consists of about two dozen operators. In addition to the bitwise operators
discussed in Chapter 2, there are arithmetic, shift, and relational operators. These
operators correspond to intermediate-sized components, such as adders and com-
parators. We examine these operators in this section and also cover miscellaneous
synthesis-related Verilog constructs. Table 4.1 summarizes the operators.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 53
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

5 4 RT-LEVEL COMBINATIONAL CIRCUIT

Table 4.1 Verilog operators

Type of
operation

Arithmetic

Shift

Relational

Equality

Bitwise

Reduction

Logical

Concatenation

Operator
symbol

+

*
/
·/.
**

»
«
> »
< «

>
<
>=
<=

1
&
1

&
1

!
&&
II

{ }
{ { } }

Description

addition
subtraction
multiplication
division
modulus
exponentiation

logical right shift
logical left shift
arithmetic right shift
logical left shift

greater than
less than
greater than or equal to
less than or equal to

equality
inequality
case equality
case inequality

bitwise negation
bitwise and
bitwise or
bitwise xor

reduction and
reduction or
reduction xor

logical negation
logical and
logical or

concatenation
replication

Number
of operands

2
2
2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

1
2
2
2

1
1
1

1
2
2

any
any

Conditional ? : conditional 3

www.it-ebooks.info

http://www.it-ebooks.info/

OPERATORS 55

Table 4.2 Operator precedence

Operator Precedence

! " + - (unary) highest

**

* / ·/.
+ - (binary)
» « >» «<

&

I

&&

lowest

4.1.1 Arithmetic operators

There are six arithmetic operators: +, -, *, / , '/„ and **. They represent addition,
subtraction, multiplication, division, modulus, and exponentiation operations, re-
spectively. The + and - operators can also be used as unary operators, as in -a.
During synthesis, the + and - operators infer the adder and subtracter and they
are synthesized by FPGA's logic cells.

Multiplication is a complicated operation, and synthesis of the multiplication
operator * depends on the synthesis software and target device technology. The
Altera Cyclone II FPGA family contains prefabricated combinational multiplier
blocks (macro cells). The Quartus II software can infer these blocks during synthe-
sis, and thus the multiplication operator can be used in HDL code. The EP2C20
FPGA device of the DEI board consists of 26 18-by-18 multiplier blocks. While
the synthesis of the multiplication operator is supported, we need to be aware of
the limitation on the number and input width of these blocks and use them with
care.

The / , '/„ and ** operators usually cannot be synthesized automatically.

4.1.2 Shift operators

There are four shift operators: » , « , » > , and < « . The first two represent the
logical shift right and left and the last two represent the arithmetic shift right and
left.

The O's are shifted in for a logical shift operation (i.e., » and «) . The sign
bits (i.e., the MSB) are shifted in for the > » operation and the O's are shifted in
for the < « operation. Note that there is no difference between the « and < «

www.it-ebooks.info

http://www.it-ebooks.info/

5 6 RT-LEVEL COMBINATIONAL CIRCUIT

Table 4.3 Shift operation examples

a a » 2 a > » 2 a « 2 a < « 2

0100.1111 0001.0011 0001.0011 0011.1100 0011.1100
1100.1111 0011-0011 1111.0011 0011.1100 0011-1100

operations. The latter is included for completeness. Some shifting examples are
shown in Table 4.3.

If both operands of a shift operator are signals, as in a « b, the operator
infers a barrel shifter, which is a fairly complex circuit. On the other hand, if the
shifted amount is fixed, as in a « 2, the operation infers no logic and involves
only routiag of the input signals. This type of operation can also be described by
using the catenation operator discussed in Section 4.1.5.

4.1.3 Relational and equality operators

There are four relational operators: >, <, <=, and >=. These operators compare
two operands and return a Boolean result, which can be fahe (represented by 1-bit
scalar value 0) or true (represented by 1-bit scalar value 1).

There are four equality operators: ==, ! =, ===, and ! ==. As with the relational
operators, they return false (1-bit 0) or true (1-bit 1). The === and !== operators,
known as case equality and case inequality operators, take into consideration of the
matches of the x and z bits in the operands. They cannot be synthesized.

The relational operators and the == and ! = operators infer comparators during
synthesis.

4.1.4 Bitwise, reduction, and logical operators

The bitwise, reduction, and logical operators are somewhat similar and perform the
and, or, xor, as well as not operations. These operators are implemented by basic
logic cells.

Bitwise operators There are four basic bitwise operators: & (and), I (or), " (xor),
and " (not). The first three operators require two operands. Negation and xor op-
eration can be combined, as in or , to form the xnor operator. The operations
are performed on a bit-by-bit basis and thus are known as bitwise operators. For
example, let a, b, and c be 4-bit signals:

wire [3:0] a, b , c;

The statement

a ss ign c = a I b ;

is the same as

a ss ign c[3] = a [3] I b [3]
a s s ign c[2] = a [2] I b [2]
a s s ign c [l] = a [l] I b [i]
a s s ign c [0] = a [0] I b [0]

www.it-ebooks.info

http://www.it-ebooks.info/

OPERATORS 57

Table 4.4 Logical and bitwise operation examples

a

0
000
000
011

b

1
000
001
001

a&b

0
000
000
001

a|b

1
000
001
011

a&&b

0 (false)
0 (false)
0 (false)
1 (true)

al lb

1 (true)
0 (false)
1 (true)
1 (true)

Reduction operators The previous &, I, and " operators may have only one operand
and then are known as reduction operators. The single operand usually has an array
data type. The designated operation is performed on all elements of the array and
returns a 1-bit result. For example, let a be a 4-bit signal and y be a 1-bit signal:

wire [3:0] a;
wire y;

The statement

a s s ign y - I a; / / only one operand

is the same as

a s s ign y = a [3] I a [2] I a [l] I a [0] ;

Logical operators There are three logical operators: && (logical and), I I (logical
or), and ! (logical negate). The logical operators are different from the bitwise
operators. If we assume that no x or z is used, the operands of a logical operator
are interpreted as false (when all bits are 0's) or true (when at least one bit is 1),
and the operation always returns a 1-bit result. As the name suggests, the logical
operators should be used as logical connectives of Boolean expressions, as in

(s t a t e = = i d l e) II ((s t a t e = = o p) && (count>10))

Some examples are shown in Table 4.4. The corresponding bitwise operations
are also included to illustrate the difference between the two types of operations.
Since Verilog uses 0 and 1 to represent the false and true values, bitwise and logical
operators can be used interchangeably in some situations. However, it is good
practice to use logical operators for Boolean expressions and use bitwise operators
for signal manipulation.

4.1.5 Concatenation and replication operators

The concatenation operator, { }, combines segments of elements and small arrays
to form a larger array. The following example illustrates its use:

wire a l ;
wire [3 : 0] a4 ;
wire [7:0] b8 , c8 , d8 ;

a s s ign b8 = {a4, a 4 } ;
a s s ign c8 = { a l , a l , a4 , 2'bOO};
ass ign d8 = { b 8 [3 : 0] , c 8 [3 : 0] > ;

www.it-ebooks.info

http://www.it-ebooks.info/

5 8 RT-LEVEL COMBINATIONAL CIRCUIT

Implementation of the concatenation operator involves reconnection of the input
and output signals and only requires "wiring."

One application of the concatenation operator is to shift and rotate a signal by
a fixed amount, as shown in the following example:

wire [7:0] a;
wire [7:0] r o t , s h l , sha;

/ / rotate a to right 3 bits
ass ign r o t = { a [2 : 0] , a [8 : 3] } ;
/ / shift a to right 3 bits and insert 0 (logic shift)
ass ign sh l = {3 'b000 , a [8 : 3] } ;
/ / shift a to right 3 bits and insert MSB
// (arithmetic shift)
ass ign sha - {a [8] , a [8] , a [8] , a [8 : 3] } ;

The concatenation operator, N{ }, replicates the enclosed string. The replication
constant, N, specifies the number of replications. For example, {4{2'b0l}} returns
8'b01010101. The previous arithmetic shift operation can be simplified:

a s s ign sha = { 3 { a [8] } , a [8 : 3] } ;

4.1.6 Conditional operators

The conditional operator, ? : , takes three operands and its general format is

[s i g n a l] = [boo lean .exp] ? [t rue_exp] : [f a l s e . e x p] ;

The [boolean_exp] is a Boolean expression that returns true (1 'b l) or false (1 'b0).
The [s ignal] gets [true_exp] if it is true and [f alse.exp] if it is false. For
example, the following circuit obtains the maximum of a and b:

a s s ign max - (a>b) ? a : b ;

The operator can be thought as a simplified if-then-else statement:

if [boo lean .exp] then
[s i g n a l] = [t r u e _ e x p] ;

e l s e
[s i g n a l] = [f a l s e . e x p] ;

Despite its simplicity, the conditional operators can be cascaded or nested to specify
the desired selection. For example, the eql circuit described in Table 2.1 can be
rewritten using conditional operators:

a s s ign eq = (" i l ft ~i0) ? l ' b l
(" i l ft iO) ? i 'bO
(i l ft "iO) ? I 'bO
l ' b l ;

We can extend the maximal circuit to return the maximum of a, b, and c:

a s s ign max = (a>b) ? ((a>c) ? a : c)
((b>c) ? b : c) ;

While synthesized, a conditional operator infers a 2-to-l multiplexing circuit.
The detailed derivation is discussed in Section 4.5.

www.it-ebooks.info

http://www.it-ebooks.info/

OPERATORS 59

4.1.7 Operator precedence

The operator precedence specifies the order of evaluation. The precedence is shown
in Table 4.2. When an expression is evaluated, the operator with higher precedence
is evaluated first. For example, in the a + b » 1 expression, a + b is evaluated
first and then » 1 is evaluated. We can use parentheses to alter the precedence,
as in a + (b » 1). It is a good practice to use parentheses to make an expression
clearer, as in (a + b) » 1, even when they are not required.

4.1.8 Expression bit-length adjustment

As signals in real hardware, nets and variables in a Verilog program usually have
different numbers of bits (i.e., bit lengths or widths). In a Verilog statement, the
bit lengths of operands can be different and the adjustment is determined by a set
of implicit rules:

• Determine the maximal bit length of the operands in the context, which
includes the right-hand-side expression and the left-hand-side signal.

• Extend the bit lengths of operands on the right-hand side to the maximum
and evaluate the expression.

• Assign the result to the left-hand-side signal. Truncate the MSBs if the
signal's bit length is smaller.

Let us first consider a simple example:
wire [7:0] a, b ;

a s s ign a - 8'bOOOOOOOO;
ass ign b = 0;

The first statement assigns an 8-bit value, "00000000", to a. The second statement
assigns the integer 0 to b. Recall that the integer in Verilog is 32 bits and thus
0 is represented as "00000000000000000000000000000000". Since b is 8 bits wide,
it is truncated to "00000000" during the assignment. Although both statements
assign an all-zero pattern to the signals, we need to be aware of how the values are
obtained.

Let us consider another example:
wire [7:0] a, b ;
wire [7:0] sum8;
wire [8:0] sum9;

a s s ign sum8 = a + b ;
a s s ign sum9 = a + b ;

In the first assignment, all operands are 8 bits wide and an 8-bit addition is per-
formed. The carry-out bit of the addition is discarded. In the second assignment,
the a and b signals are extended to 9 bits, the bit length of the sum9 signal, and
a 9-bit addition is performed. The sum [9] bit gets the resulting carry-out bit. We
can also use a concatenation operator if an explicit carry-out signal is desired:

a s s ign ίc_out , sum8)· = a + b ;
Although the basic conversion rule is simple and intuitive, the subtleties can be

error-prone. For example, let a, b, suml, and sum2 be 8-bit signals. The following
statements give a different result:

www.it-ebooks.info

http://www.it-ebooks.info/

6 0 RT-LEVEL COMBINATIONAL CIRCUIT

oe y

a_in £ > y 0 Z
1 a in

Figure 4.1 Symbol and functional table of a tristate buffer.

/ / shift 0 to MSB of suml
ass ign suml « (a + b) >> i ;
/ / shift carry—out of a+b to MSB of sum2
ass ign sum2 * (0 + a + b) >> 1;

In the first assignment, all operands are 8 bits wide and an 8-bit addition is per-
formed. The carry-bit is discarded. When the shift operation is performed, 0 is
shifted into the MSB. In the second assignment, 0 is an integer and thus is 32 bits
wide. The a and b are extended to 32 bits for addition and the summation is
shifted. The result is then truncated to 8 bits when assigned to sum2 and sum2 [7]
gets the original carry-out bit. The conversion becomes more involved when the
signed data type is used (discussed in Section 8.3).

A safe but somewhat cumbersome alternative is to adjust the bit lengths of the
operands manually. For example, an alternative that may be used to obtain sum2
is

wire [8:0] sum.ext ; / / extend sum to 9 bits

ass ign sum.ext - {1 'bO.a} + { 1 ' b O . b } ;
a s s ign sum2 - sum.ext [9 : 1] ;

The code is longer but is more descriptive and less prone to error.
In summary, we must be aware of the Verilog's automatic bit-length adjustment

mechanism. Unintended bit-length mismatch may lead to subtle, difncult-to-find
errors. Except for trivial adjustments, such as assigning an all-zero pattern with an
integer 0, we should either adjust the bit lengths manually or thoroughly document
the desired automatic adjustment.

4.1.9 Synthesis of z and x values

In addition to the regular logic 0 and logic 1, net and variable can contain z and x
values. Although they are not operators, we discuss the synthesis aspect of these
two values in this subsection.

Synthesis of z The z value implies high impedance or an open circuit. It is not a
normal logic value and can only be synthesized by a tristate buffer. The symbol
and function table of a tristate buffer are shown in Figure 4.1. The operation of the
buffer is controlled by an enable signal, oe (for "output enable"). When it is 1, the
input is passed to output. On the other hand, when it is 0, the y output appears
to be an open circuit. The code of the tristate buffer is

a s s ign y = (oe) ? a_in : l ' b z ;

The most common application for a tristate buffer is to implement a bidirectional
port to better utilize a physical I/O pin. A simple example is shown in Figure 4.2.

www.it-ebooks.info

http://www.it-ebooks.info/

OPERATORS 6 1

dir·

_out

& — i — —

sigjn

Figure 4.2 Single-buffer bidirectional I/O port.

The dir signal controls the direction of signal flow of the b i pin. When it is 0, the
tristate buffer is in a high-impedance state and the s ig.out signal is blocked. The
pin is used as an input port and the input signal is routed to the s i g . i n signal.
When the dir signal is 1, the pin is used as an output port and the sig.out signal
is routed to an external circuit. The HDL code can be derived according to the
diagram:

module bi_demo(
inout wire bi ,

)

ass ign s i g . o u t - output .express ion;

ass ign some.signal - e x p r e s s i o n . w i t h . s i g . i n ;

ass ign bi = (d ir) ? s i g . o u t : l ' b z ;
ass ign s i g . i n - b i ;

Note that the mode of the b i port must be declared as inout for the bidirectional
operation.

For a Cyclone II device, a tristate buffer exists only in the I/O buffer of a physical
pin. Thus, the tristate buffer can be used only for I /O ports that are mapped to
the physical pins of an FPGA device.

Synthesis of x In some combinational circuits, certain input patterns may never
occur and thus the output value is irrelevant. We frequently assign a "don't-care"
value to the output. During synthesis, the don't-care will be assigned a value (either
0 or 1) that can help the optimization process. Consider the truth table shown in
Table 4.5. We assume that the i will never be 11 and thus the corresponding output
is specified as don't-care. In synthesis, we can use x for the don't-care value. One
possible code for the previous table is

a s s i g n y = (i = = 2 ' b 0 0) ? 1'bO
(i = = 2 ' b 0 1) ? l ' b l
(i = = 2 ' b l 0) ? l ' b l
l ' b x ; / / i==2'bll

www.it-ebooks.info

http://www.it-ebooks.info/

6 2 RT-LEVEL COMBINATIONAL CIRCUIT

Table 4.5 Truth table with don't-care

Input
1

0 0
0 1
1 0
1 1

Output
y

0
1
1
X

Although this approach helps to minimize the circuit, it introduces a discrepancy
between simulation and synthesis. In simulation, x is a unique value rather than
"0 or 1". If the input is 11 in simulation, the output becomes x and is not consistent
with the synthesized result (which can be either 0 or 1). However, since the 11
pattern should never occur in the original specification, the appearance of the x
value can be used to signal potential errors in the testbench.

4.2 ALWAYS BLOCK FOR A COMBINATIONAL CIRCUIT

To facilitate system modeling, Verilog contains a number of procedural statements,
which are executed in sequence. Since their behavior is different from the normal
concurrent circuit model, these statements are encapsulated inside an always block
or initial block. The initial block is executed once when the simulation is started.
It can be used in simulation, as in the testbench example in Listing 2.7. Only
the always block can be synthesized and it is discussed in this section. Since the
procedural statement is more abstract, this type of code is sometimes known as
behavioñal description.

An always block can be thought of as a black box whose behavior is described
by the internal procedural statements. Procedural statements include a rich va-
riety of constructs but many of them don't have clear hardware counterparts. A
poorly coded always block frequently leads to unnecessarily complex implementa-
tion or cannot be synthesized at all. The focus of this section is on the synthesis of
combinational circuits and we limit the discussion to three types of statements:

• Blocking procedural assignment
• If statement
• Case statement

The latter two can be considered constructs that infer the routing structure.

4.2.1 Basic syntax and behavior

The simplified syntax of an always block with a sensitivity list (also known as an
event control expression) is

always ®([sensitivity_list])
begin [optional name]

[optional local variable declaration];

[procedural statement];

www.it-ebooks.info

http://www.it-ebooks.info/

ALWAYS BLOCK FOR A COMBINATIONAL CIRCUIT 6 3

[procedural statement];

end

The [s e n s i t i v i t y _ l i s t] term is a list of signals and events to which the always
block responds (i.e., is "sensitive to"). For a combinational circuit, all the input
signals should be included in this list. The body is composed of any number of
procedural statements. The begin and end delimiters can be omitted if there is
only one procedural statement in the body. The <S([sens i t iv i ty_ l i s t]) term is
actually a timing control construct. It is usually the only timing control construct
in a synthesizable always block.

An always block can be considered as a complex circuit part. It can be suspended
or activated. When any signal of the sensitivity list changes or an event occurs, the
part is activated and executes the internal procedural statements. Since there is
no other timing control construct, the execution continues to the end and the part
is suspended. Thus, an always block actually "loops forever" and the initiation of
each loop is controlled by the sensitivity list.

4.2.2 Procedural assignment

A procedural assignment can only be used within an always block or initial block.
There are two types of assignments: blocking assignment and nonblocking assign-
ment. Their basic syntax is

[variable_name] ■ [e x p r e s s i o n] ; / / blocking assignment
[variable.name] <= [express ion] ; / / nonblocking assignment

In a blocking assignment, the expression is evaluated and then assigned to the
variable immediately, before execution of the next statement (the assignment thus
"blocks" the execution of other statements). It behaves like the normal variable
assignment in the C language. In a nonblocking assignment, the evaluated expres-
sion is assigned at the end of the always block (the assignment thus does not block
the execution of other statements).

The blocking and nonblocking assignments frequently confuse new Verilog users
and failing to comprehend their differences can lead to unexpected behavior or race
conditions. The basic rule of thumb is:

• Use blocking assignments for a combinational circuit.
• Use nonblocking assignments for a sequential circuit.

This topic is explained in detail in Section 8.1. Since we focus on combinational
circuits in this chapter, only the blocking statement is used.

4.2.3 Variable data types

In a procedural assignment, an expression can only be assigned to an output with
one of the variable data types, which are reg, integer, real, time, and realtime.
The reg data type is like the wire data type but used with a procedural output.
The integer data type represents a fixed-size (usually 32 bits) signed number in
2's-complement format. Since its size is fixed, we usually don't use it in synthesis.
The other data types are for modeling and simulation and cannot be synthesized.

www.it-ebooks.info

http://www.it-ebooks.info/

6 4 RT-LEVEL COMBINATIONAL CIRCUIT

4.2.4 Simple examples

We use two simple examples to illustrate the use and behavior of the always block
and procedural blocking assignment.

1-bit comparator We can rewrite the previous 1-bit comparator circuit in List-
ing 2.1 using an always block. The code is shown in Listing 4.1.

Listing 4.1 Always block implementation of a 1-bit comparator
module eql_always

(
a input wire iO , i l ,

output reg eq / / eq declared as reg
) ;

/ / pO and pi declared as reg
8 reg ρθ, p i ;

always β(ίΟ, i l) / / iO an il must be in sensitivity list
begin

/ / the order of statements is important
is pO ■ "iO k " i l ;

p i = iO t i l ;
eq - pO I p i ;

end
endmodule

Since the eq, pO, and pi signals are assigned within the always block, they are
declared as the reg data type. The sensitivity list consists of iO and i l , which are
separated by a comma. When one of them changes, the always block is activated.
The three blocking assignments are executed sequentially, much like the statements
in a C program. The order of the statements is important and pO and pi must be
assigned values before being used.

In Verilog-1995, the keyword or is used in place of the comma in a sensitivity
list. For example, the list

always <D(a, b, c)
is written as

a l w a y s β (a or b or c)

We use only commas in this book.
A combinational circuit must include all its input signals in the sensitivity list

to correctly model the desired behavior. Missing a signal can lead to a discrepancy
between synthesis and simulation. In Verilog-2001, we can use the notation

always β*

to implicitly include all the input signals. In this book, we use this construct for
the combinational circuit.

Three-input and circuit The similarity of the codes in Listings 2.1 and 4.1 is some-
what misleading. The behavior of continuous assignments and procedural state-
ments is quite different.

Consider the code in Listing 4.2. It is a circuit that performs an and operation
over a, b, and c (i.e., a & b ft c).

www.it-ebooks.info

http://www.it-ebooks.info/

IF STATEMENT 6 5

a

>^t^> -por' b~r°r~'

(a) (b) (c)

Figure 4.3 Circuits inferred from correct and incorrect code segments.

Listing 4.2 Behaviorial reduced and circuit using a variable
module and_block_assign

(
input wire a, b, c,

4 output reg y
) ;

always 0*
begin

9 y ■ a;
y = y k b;
y - y k c;

end
endmodule

The inferred circuit is shown in Figure 4.3(a). If we use continuous assignments in
a similar way, as shown in Listing 4.3, the description is incorrect.

Listing 4.3 Incorrect code for a reduced and circuit
module and_cont_assign

2 (

input wire a, b , c,
output wire y
) ;

7 assign y = a;
assign y - y k b;
assign y » y k c;

endmodule

In this code, each continuous assignment infers a circuit part. The three appear-
ances of y on the left-hand side imply that the three outputs are tied together. The
corresponding circuit diagram is shown in Figure 4.3(c) and it is clearly not the
desired circuit.

4.3 IF STATEMENT

4.3.1 Syntax

The simplified syntax of an if statement is
if [boolean_expr]

www.it-ebooks.info

http://www.it-ebooks.info/

6 6 RT-LEVEL COMBINATIONAL CIRCUIT

Table 4.6 Function table of a four-request priority encoder

I npu t
r

1
0 1 - -
0 0 1 -
0 0 0 1
0 0 0 0

O u t p u t
pcode

100
011
010
001
000

begin
[procedural statement];
[procedural statement];

end
else

begin
[procedural statement];
[procedural statement];

end

The [boolean_expr] term is a Boolean expression and is evaluated first. If it is true,
the statements in the following branch are executed. Otherwise, the statements in
the else branch are executed. The else branch is optional and can be omitted. The
begin and end delimiters can be omitted if there is only one procedural statement
in a branch.

Multiple if statements can be "cascaded" to evaluate multiple Boolean conditions
and establish priorities, as in

if [boolean_expr_l]

else if [boolean_expr_2]

else if [boolean_expr_3]

else

When synthesized, the if statements infer "priority routing" networks. This topic
is discussed in Section 4.5.

4.3.2 Examples

We use two simple examples to demonstrate use of the if statement. The first
example is a priority encoder. The priority encoder has four requests, r [4], r [3],
r [2] , and r [l] , which are grouped as a single 4-bit r input, and r[4] has the
highest priority. The output is the binary code of the highest-order request. The
function table is shown in Table 4.6. The HDL code is shown in Listing 4.4.

www.it-ebooks.info

http://www.it-ebooks.info/

IF STATEMENT 67

Table 4.7 Truth table of a 2-to-4 decoder with enable

en

0
1
1
1
1

Input
a (l)

-
0
0
1
1

a(0)

-
0
1
0
1

Output
y

0000
0001
0010
0100
1000

Listing 4.4 Priority encoder using an if statement
module p r i o . e n c o d e r i f

2 (

input wire [4:1] r,
output reg [2:0] y

) ;

7 always a*
if (r [4] = = l ' b l)

y - 3 ' b l00
e l s e if (r [3]

y - 3 'b011
12 e l s e if (r [2]

y = 3'bOlO
e l s e if (r [l]

y - 3 'b001
e l s e

17 y = 3'bOOO
endmodule

/ / can be written as (r[4j)

■ l ' b i) / / can be written as (r[3])

= l ' b l) / / con be written as (r[2j)

» l ' b l) / / can be written as (r[lj)

The code first checks the r [4] request and assigns 100 to pcode if it is asserted. It
continues to check the r [3] request if r [4] is not asserted and repeats the process
until all requests are examined. Note that the Boolean expression (r [4]== l ' b l)
is true when r [4] is 1. Since the true value is also expressed as l ' b l in Verilog,
the expression can be written as (r [4]) as well.

The second example is a binary decoder. An n-to-2n binary decoder asserts one
bit of the 2™-bit output according to the input combination. The functional table
of a 2-to-4 decoder is shown in Table 4.7. The circuit also has a control signal, en,
which enables the decoding function when asserted. The HDL code is shown in
Listing 4.5.

Listing 4.5 Binary decoder using an if statement
module decoder_2_4_if

2 (

input wire [1:0] a ,
input wire en ,
output reg [3:0] y

) ;

always Q *
i f (e n " l ' b 0)

y - 4 'b0000;
e l se if (a -=2 'b00)

y - 4 ' b 0 0 0 1 ;

/ / can be written as (~en)

www.it-ebooks.info

http://www.it-ebooks.info/

6 8 RT-LEVEL COMBINATIONAL CIRCUIT

e l s e i f (a—2'bOl)
y - 4'b0010;

e l s e if (a==2'bl0)
y = 4'b0100;

else
y = 4*bl000;

endmodule

The code first checks whether en is not asserted. If the condition is false (i.e., en
is 1), it tests the four binary combinations in sequence. Note that the Boolean
expression (en==l'bO) can be written as ("en) as well.

4.4 CASE STATEMENT

4.4.1 Syntax

The simplified syntax of a case statement is
case [case . expr]

[i t e m] :
begin

[procedural s ta tement] ;
[procedural s ta tement] ;

end
[item] :

begin
[procedural statement];
[procedural statement];

end
[item]:

begin
[procedural statement];
[procedural statement];

end

default :
begin

[procedural statement];
[procedural statement];

end
endcase

A case statement is a multiway decision statement that compares the [case.expr]
expression with a number of [item] expressions. The execution jumps to the
branch whose [item] matches the current value of [case.expr]. If there are mul-
tiple matched [item] expressions, execution jumps to the branch of the first match.
The last item can be an optional default keyword. It covers all the unspecified val-
ues of the [case.expr] expression. The begin and end delimiters can be omitted
if there is only one procedural statement in a branch.

www.it-ebooks.info

http://www.it-ebooks.info/

CASE STATEMENT 69

4.4.2 Examples

We use the same priority encoder and decoder examples to demonstrate the use of
the case statement. The functional table of a 2-to-4 decoder is shown in Table 4.7.
The HDL code using a case statement is shown in Listing 4.6.

Listing 4.6 Binary decoder using a case statement
module d e c o d e r _ 2 4 _ c a s e

(
i n p u t w i r e [1 : 0] a ,
i n p u t w i r e e n ,
o u t p u t r e g [3 : 0] y

) ;

a l w a y s 0*
c a s e ({ e n , a })

3 ' b 0 0 0 , 3 ' b 0 0 1 , 3 'bOlO, 3 ' b O l l : y - 4'bOOOO;

/ / default can also be used

3'MOO
3 ' b l O l
3 ' b l l O
3 ' b l l l

e n d c a s e
endmodule

y
y
y
y

a

»
-
-

4
4
4
4

bOOOl
bOOlO
bOlOO
blOOO

We can group multiple values into one item expression, as in line 10, if the iden-
tical statements are used for these values. Note that all possible values of the
{en,a} expression are covered by the item expressions.

The function table of the priority encoder is shown in Table 4.6. The HDL code
is shown in Listing 4.7.

Lis t ing 4 . 7 Priority encoder using a case statement

module p r i o _ e n c o d e r _ c a s e
(

i n p u t w i r e [4 : 1] r ,
o u t p u t r e g [2 : 0] y

) ;

a l w a y s β*
c a s e (r)

4'blOOO, 4 ' b l O O l , 4 ' b l O l O , 4 ' b l 0 1 1 ,
4 ' b l l 0 0 , 4 ' b l l 0 1 , 4 ' b l l l O , 4 ' b l l l l :

y - 3 'b lOO;
4'bOlOO, 4 ' b O l O l , 4 ' b O l l O , 4 ' b O l l l :

y - 3 ' b O l l ;
4'bOOlO, 4 ' b O O l l :

y » 3 * b 0 1 0 ;
4 ' b 0 0 0 1 :

y - 3 'bOOl;
4 ' b 0 0 0 0 : / / default can also be used

y = 3 ' b 0 0 0 ;
e n d c a s e

endmodule

4.4.3 The casez and casex statements

There are two variations in addition to the regular case statement. In a casez
statement, the z value and the ? character in the item expression are treated as

www.it-ebooks.info

http://www.it-ebooks.info/

70 RT-LEVEL COMBINATIONAL CIRCUIT

don't-care (i.e., the corresponding bit does not need to be matched). In a casex
statement, the z and x values and the ? character in the item expression are treated
as don't-care. Since the z and x values may appear in simulation, the ? character
is preferred.

For example, the previous priority encoder can be coded with a casez statement,
as shown in Listing 4.8.

Listing 4.8 Priority encoder using a casez statement
module prio_encoder_casez

(
input wire [4:1] r ,
output reg [2:0] y

) ;

a l w a y s ffl*
c a s e z (r)

4 ' b l ? ? ?
4 ' b 0 1 ? ?
4 ' b 0 0 1 ?
4 ' b 0 0 0 1
4*b0000

e n d c a s e
endmodule

y - 3
y - 3
y = 3
y - 3
y - 3

blOO
bOll
bOlO
bOOl
bOOO / / default can also be used

4.4.4 Full case and parallel case

In Verilog, the item expressions do not need to include all values of the [case.expr]
expression and some values can be matched more than once. Consider the following
casez statement:

reg [2:0] s

casez (s)
3'blil
3'bl??
3'b000

endcase

i ' b l
1'bO
I ' b l

In this statement, the value 3 ' b l l l is matched twice in the item expressions (once
in 3 ' b l l l and once in 3 'b l??) . Since the first match takes effect, y gets I ' b l if
s is 3 ' b l l l . If s is 3'b001, 3'bOlO, or 3'b011, there are no matches and y will
"keep its previous value."

When all possible binary values of the [case.expr] expression are covered by the
item expressions, the statement is known as a full case statement. For a combina-
tional circuit, we must use a full case statement since each input combination should
have an output value. We can add the default item to cover all the unmatched
values. For example, the previous statement can be revised either as

casez (s)
3 ' b l l l :
3 ' b l ? ? :
de f au l t

endcase

y = I ' b l ;
y - 1'bO;

y = I ' b l ; / / V gets 1 for unspecified values

or as

www.it-ebooks.info

http://www.it-ebooks.info/

ROUTING STRUCTURE OF CONDITIONAL CONTROL CONSTRUCTS 7 1

c a s e z (s)
3 ' b l l l : y = I ' M ;
3 ' b l ? ? : y = 1'bO;
3 ' b 0 0 0 : y = l ' b l ;
d e f a u l t : y = l ' b x ; / / y gets don 't—care

endcase

When the values in the item expressions are mutually exclusive (i.e., a value
appears in only one item expression), the statement is known as a parallel case
statement. For example, the previous casez statement is not a parallel case state-
ment since the value 3 ' b l l l appears twice. The case statements of Listings 4.6
and 4.7 are parallel case statements.

When synthesized, a parallel case statement usually infers a multiplexing routing
network and a non-parallel case statement usually infers a priority routing network.
This topic is discussed in the next section.

Many synthesis software packages have "full case directive" and "parallel case
directive." When they are used, all case statements are treated as full case state-
ments and parallel case statements and synthesized accordingly. Verilog-2001 has
similar attributes for this purpose. Using these directives essentially overrides the
original semantics of Verilog code and introduces a discrepancy between simula-
tion and synthesis. In this book, we express these conditions in code rather than
applying these directives or attributes.

4.5 ROUTING STRUCTURE OF CONDITIONAL CONTROL
CONSTRUCTS

We examine several conditional control language constructs, including the ?: op-
erator and the if and case statements. In the C language, these constructs are
executed sequentially. There is no "sequential" control in a combinational circuit.
These constructs are realized by routing networks. All expressions are evaluated
concurrently and the routing network routes the desired result to the output. There
are two types of routing structures: priority routing network and multiplexing net-
work, which are inferred by an if-else type statement and a parallel case statement,
respectively.

4.5.1 Priority routing network

A priority routing network is implemented by a sequence of 2-to-l multiplexers.
The diagram and truth table of a 2-to-l multiplexer are shown in Figure 4.4(a).
An if-else statement implies a priority routing network. Consider the following
statement:

if (m==n)
r - a + b + c;

e l s e i f (m > n)
r - a - b;

e l s e
r = c + 1;

The conceptual diagram of the statement is shown in Figure 4.4(b). The two 2-to-l
multiplexers form the priority routing network and other components implement

www.it-ebooks.info

http://www.it-ebooks.info/

7 2 RT-LEVEL COMBINATIONAL CIRCUIT

¡1

»

sel

sel y

0 (false) ¡0

1 (true) ¡1

(a) Diagram of a 2-to-l multiplexer

Circuits for
"value expressions*

Priority routing
network

Circuits for
"Boolean expressions"

(b) Diagram of an if statement

Figure 4.4 Implementation of an if statement.

various Boolean and arithmetic expressions. If the first Boolean condition (i.e.,
m==n) is true, the result of a+b+c is routed to r . Otherwise, the data connected to
port 0 are passed to r . The next Boolean condition (i.e., m>n) determines whether
the result of a-b or c+1 is routed to the output.

Note that all the Boolean expressions and arithmetic expressions are evaluated
concurrently. The outputs from the Boolean circuits set the selection signals of
the multiplexers to route the desired value to r . The number of cascading stages
increases proportionally to the number of if-else clauses. A large number of if-else
clauses will lead to a long cascading chain and introduce a large propagation delay.

The conditional operator (?:) is like a simplified if-else statement and infers
similar priority routing networks. A non-parallel case statement sets a preference
on the first matched item and thus also infers similar priority routing networks.
For example, consider the following case statement:

case (expr)
iteml: statement 1;
item2: statement2;
item3: statement3;
'default: statement4;

www.it-ebooks.info

http://www.it-ebooks.info/

ROUTING STRUCTURE OF CONDITIONAL CONTROL CONSTRUCTS 7 3

sel

sel

00
01
10
11

¡0
i1
¡2
ι3

(a) Diagram and functional table of a 4-to-l multiplexer

Circuits for
"value expressions"

Multiplexer

(b) Diagram of a parallel case statement

Figure 4.5 Implementation of a parallel case statement.

e n d c a s e

It can be translated to
if [e x p r « i t e m l]

s t a t e m e n t l ;
e l s e if [expr==item2]

s t a t e m e n t s ;
e l s e if [expr=*item3]

s t a t e m e n t s ;
e l s e

s t a t e m e n t 4 ;

4.5.2 Multiplexing network

A multiplexing network is implemented by an n-to-1 multiplexer. The desired input
port is specified by the selection signal and the corresponding input is routed to
the output. The diagram and functional table of the 22-to-l multiplexer are shown
in Figure 4.5(a).

In a parallel case statement, we can map each value of the case expression to an
input port of the multiplexer and connect the corresponding evaluated result to the
port. The case expression is connected to the selection signal. The construction
can best be explained by an example. Consider the following case statement:

wire [1:0] s e l ;

www.it-ebooks.info

http://www.it-ebooks.info/

7 4 RT-LEVEL COMBINATIONAL CIRCUIT

c a s e (s e l)
2'bOO: r = a + b + c;
2 ' b l O : r = a - b ;
de fau l t : r = c + 1; / / 2'b01, 2'bll

endcase

The conceptual diagram of this statement is shown in Figure 4.5(b). The s e l
variable can assume four possible values: 00, 01, 10, and 11. It implies a 22-to-l
multiplexer with s e l as the selection signal. The evaluated result of a+b+c is routed
to r when s e l is 00, the result of a-b is routed to r when s e l is 10, and the result
of c+1 is routed to r when s e l is 01 or 11.

Again, note that all value expressions are evaluated concurrently. The s e l vari-
able is used as the selection signal to route the desired value to the output. The
width (i.e., number of input ports) of the multiplexer increases geometrically with
the number of bits of s e l .

In general, the priority routing network is more effective when a preference is
given under certain conditions, such as for a priority encoder, and the multiplexing
network is more effective for a truth table or function table-based description, such
as for a binary decoder.

4.6 GENERAL CODING GUIDELINES FOR AN ALWAYS BLOCK

Verilog is for both modeling and synthesis. While writing code for synthesis, we
need to be aware of how the various language constructs are mapped to hardware.
This is especially true for an always block since variables and procedural statements
can be used within the block. We should remember that the purpose of the code is
to infer hardware rather than describing a sequential algorithm in C. Failing to do so
frequently leads to unsynthesizable codes, unnecessarily complex implementation,
or a discrepancy between simulation and synthesis. In this section, we review some
common errors and suggest a collection of coding guidelines.

4.6.1 Common errors in combinational circuit codes

The following are common errors found in combinational circuit codes:
• Variable assigned in multiple always blocks
• Incomplete sensitivity list
• Incomplete branch and incomplete output assignment

These errors are discussed below.

Variable assigned in multiple always blocks In Verilog, variables can be assigned
(i.e., appear on the left-hand side) in multiple always blocks. For example, the y
variable is shared by two always blocks is the following code segment:

reg y;
reg a, b, clear;

always fi*
if (clear) y - 1'bO;

www.it-ebooks.info

http://www.it-ebooks.info/

GENERAL CODING GUIDELINES FOR AN ALWAYS BLOCK 75

a l w a y s β*
y = a ft b;

Although the code is syntactically correct and can be simulated, it cannot be
synthesized. Recall that each always block can be interpreted as a circuit part.
The code above indicates that y is the output of both circuit parts and can be
updated by each part. No physical circuit exhibits this kind of behavior and thus
the code cannot be synthesized. We must group the assignment statements in a
single always block, as in

always '®*
if (c l e a r)

y = 1'bO;
e l s e

y = a ft b ;

Incomplete sensitivity list For a combinational circuit, the output is a function
of input and thus any change in an input signal should activate the circuit. This
implies that all input signals should be included in the sensitivity list. For example,
a two-input and gate can be written as

always ®(a, b) / / both a and b are in sensitivity list
y = a ft b ;

If we forget to include b, the code becomes
always fi(a) / / 6 missing from sensitivity list

y = a ft b ;

Although the code is still syntactically correct, its behavior is very different.
When a changes, the always block is activated and y gets the value of a&b. When
b changes, the always block remains suspended since it is not "sensitive to" b and
y keeps its previous value. No physical circuit exhibits this kind of behavior. Most
synthesis software will issue a warning message and infer the and gate instead.
However, the simulation software still models the intended behavior and hence
introduces a discrepancy between simulation and synthesis.

In Verilog-2001, a special notation, ®*, is introduced to implicitly include all the
relevant input signals and thus eliminates this problem. It is a good practice to use
this notation for combinational circuit description.

Incomplete branch and incomplete output assignment The output of a combinational
circuit is a function of input only and the circuit should not contain any internal
state (i.e., memory). One common error with an always block is the inference of
unintended memory in a combinational circuit. The Verilog standard specifies that
a variable will keep its previous value if it is not assigned a value in an always
block. During synthesis, this infers an internal state (via a closed feedback loop)
or a memory element (such as a latch).

To prevent unintended memory in an always block, all output signals must be
assigned proper values all the time. Incomplete branch and incomplete output as-
signment are two common errors that lead to unintended memory. To avoid these,
we should observe the following rules while developing code for the combinational
circuit:

• Include all the branches of an if or case statement.

www.it-ebooks.info

http://www.it-ebooks.info/

7 6 RT-LEVEL COMBINATIONAL CIRCUIT

• Assign a value to every output signal in every branch.
Consider the following code segment, which intends to describe a circuit that

generates greater-than (i.e., gt) and equal-to (i.e., eq) output signals:

always β*
if (a > b) // eq not assigned in this branch

gt = i'bl;
else if (a «■ b) // gt not assigned in this branch

eq = l'bl;
/ / final else branch is omitted

The segment violates both rules.
Let us first examine the incomplete branch error. There is no else branch in the

segment. If both the a>b and a==b expressions are false, both gt and eq are not
assigned values. According to Verilog definition, they keep their previous values
(i.e., the outputs depend on the internal state) and unintended latches are inferred.

The segment also has incomplete output assignment errors. For example, when
the a>b expression is true, eq is not assigned a value and thus will keep its previous
state. A latch will be inferred accordingly.

There are two ways to fix the errors. The first is to add the else branch and
explicitly assign all output variables. The code becomes

always β*
if (a > b)

begin
g t = l ' b l ;
eq = 1'bO;

end
e l s e if (a == b)

begin
gt = 1'bO;
eq = l ' b l ;

end
e l s e / / i.e., a < b

begin
gt = 1'bO;
eq = 1'bO;

end

The alternative is to assign a default value to each variable in the beginning of
the always block to cover the unspecified branch and unassigned variable. The code
becomes

always Φ*
begin

gt = 1'bO; / / default value for gt
eq = 1'bO; / / default value for eq
if (a > b)

gt = l ' b l ;
e l s e if (a == b)

eq =■ l ' b l ;
end

Both gt and eq assume 0 if they are not assigned a value later.

www.it-ebooks.info

http://www.it-ebooks.info/

GENERAL CODING GUIDELINES FOR AN ALWAYS BLOCK 77

The case statement experiences the same errors if some values of the [case.expr]
expression are not covered by the item expressions (i.e., not a full-case statement).
Consider the following code segment:

reg [1:0] s

case (s)
2 ' b 0 0 : y = l ' b l
2 ' b lO : y = 1'bO
2 ' b l l : y = l ' b l

endcase

The 2'bOl value is not covered by any branch. If s assumes this combination, y
will keep its previous value and an unintended latch is inferred. To fix the error,
we must ensure that y is assigned a value all the time. One way to do this is to use
the default keyword in the end to cover all the unspecified values. We can either
replace the last item expression:

case (s)
2'bOO: y = l ' b l ;
2'blO: y = 1'bO;
defau l t : y = l ' b l ;

endcase
/ / y gets 1 for 2'bOl

or add a new item expression with the don't-care value:

case (s)
2'bOO
2'b lO
2 ' b l l
d e f a u l t

endcase

y =
y -
y =

y

l ' b l ;
1'bO;
l ' b l :
= l ' b x ; / / y gets x for 2 'bOl

Alternatively, we can assign a default value in the beginning of the always block:

y = 1'bO;
case (s)

2'bOO
2'blO
2'bll

endcase

// can also use y = 1 'bx for don 't—care

y = l'bl
y « 1'bO
y « l'bl

4.6.2 Guidelines

The always block is a flexible and powerful language construct. However, it must
be used with care to infer correct and efficient circuits and to avoid any discrepancy
between synthesis and simulation. The following are the coding guidelines for the
description of combinational circuits:

• Assign a variable only in a single always block.
• Use blocking statements for combinational circuits.
• Use <8* to include all inputs automatically in the sensitivity list.
• Make sure that all branches of the if and case statements are included.
• Make sure that the outputs are assigned in all branches.

www.it-ebooks.info

http://www.it-ebooks.info/

7 8 RT-LEVEL COMBINATIONAL CIRCUIT

• One way to satisfy the two previous guidelines is to assign default values for
outputs in the beginning of the always block.

• Describe the desired full case and parallel case in code rather than using
software directives or attributes.

• Be aware of the type of routing network inferred by different control con-
structs.

• Think hardware, not C code.

4.7 PARAMETER AND CONSTANT

4.7.1 Constant

HDL code frequently uses constant values in expressions and array boundaries.
These values are fixed within the module and cannot be modified. One good design
practice is to replace the "hard literals" with symbolic constants. It makes code
clear and helps future maintenance and revision. In Verilog, a constant can be
declared using the localparam (for "local parameter") keyword. For example, we
can declare the width and range of a data bus as

loca lparam DATA.WIDTH » 8,
DATA.RANGE = 2**DATA_WIDTH - 1;

or define a symbolic port name:
loca lparam UART.PORT = 4'bOOOl,

LCD_P0RT = 4'bOOlO,
MOUSE.PORT = 4 'b0100 ;

The expression in the declaration, such as 2**DATA_WIDTH-1, is evaluated during
preprocessing and thus infers no physical circuit. In this book, we use capital letters
for constants.

The use of a constant can best be explained by an example. Consider the code of
an adder with the carry-out bit. One way to do it is to extend the input manually
by 1 bit, perform the regular addition, and extract the MSB of the summation as
the carry-out bit. The code is shown in Listing 4.9.

Listing 4.9 Adder using a hard literal
module a d d e r _ c a r r y _ h a r d _ l i t

2 (

input wire [3:0] a, b,
output wire [3:0] sum,
output wire cout / / carry—out

) ;
7

/ / signal declaration
wire [4:0] s u i . e x t ;

//body
12 ass ign sum.ext - {1 'bO, a} + { l ' b O , b } ;

a s s ign sum - sum.ext [3 : 0] ;
a s s ign cout= sum.ext [4] ;

endmodule

The code is for a 4-bit adder. Hard literals, such as 3 and 4, are used for the ranges,
as in wire [4:0] and sum_ext [3 :0] , and the MSB, as in sum_ext[4]. If we want

www.it-ebooks.info

http://www.it-ebooks.info/

PARAMETER AND CONSTANT 79

to revise the code for an 8-bit adder, these literals have to be modified manually.
This will be a tedious and error-prone process if the code is complex and the literals
are referred to in many places.

To improve readability, we can use a symbolic constant, N, to represent the
number of bits of the adder. The revised code is shown in Listing 4.10.

Listing 4.10 Adder using constants
module adder_carry_local_par

(
input wire [3:0] a, b,
output wire [3:0] sum,

5 output wire cout / / carry—out
) ;

/ / constant declaration
localparam N - 4,

HI N l = N - l ;

/ / signal declaration
wire [N:0] sum.ext;

is //body
assign sum.ext » {l 'bO, a} + {l 'bO, b};
assign sum » sum.ext [Nl : 0] ;
assign cout= sum.ext[N];

endmodule

The constant makes the code easier to understand and maintain.

4.7.2 Parameter

A Verilog module can be instantiated as a component and becomes a part of a
larger design, as discussed in Section 2.6. Verilog provides a construct, known as a
parameter, to pass information into a module. This mechanism makes the module
versatile and reusable. A parameter cannot be modified inside the module and thus
functions like a constant.

In Verilog-2001, a parameter declaration section can be added in the header,
before the port declaration. Its simplified syntax is

module [module.name]
#(

parameter [parameter .name]«[defaul t .va lue] ,

[parameter.name]=[default_value];
)
(

. . . / / I/O port declaration
) ;

For example, the previous adder code can be modified to use the adder width as a
parameter, as shown in Listing 4.11.

www.it-ebooks.info

http://www.it-ebooks.info/

8 0 RT-LEVEL COMBINATIONAL CIRCUIT

Lis t ing 4 . 1 1 Adder using a parameter

i module a d d e r _ c a r r y _ p a r a
#(p a r a m e t e r N-4)
(

i n p u t w i r e [N - 1 : 0] a , b ,
o u t p u t w i r e [N - 1 : 0] sum,

6 o u t p u t w i r e c o u t / / carry—out
);

/ / constant declaration
l o c a l p a r a m Nl - N - l ;

11

/ / signal declaration
w i r e [N:0] s u m . e x t ;

//body
íe a s s i g n s u m . e x t - { 1 ' b O , a } + { 1 ' b O , b } ;

a s s i g n sum = s u m . e x t [Nl : 0] ;
a s s i g n c o u t = s u m . e x t [N] ;

endmodule

The N parameter is declared with a default value of 4. After N is declared, it can
be used in the port declaration and module body, just like a constant.

If the adder is later used as a component in other code, we can assign a desired
value to the parameter during component instantiation and override the default
value. Similar to the port connection discussed in Section 2.6, parameter assignment
can be done either by name or by ordered list. A potential problem of the by-
ordered-list scheme is discussed in Section 2.6 and we always use the by-name
scheme in this book. The default value will be used if the parameter assignment is
omitted. The use of the parameter in component instantiation is demonstrated in
Listing 4.12.

Listing 4.12 Adder instantiation example
i module a d d e r . i n s t a

(
i n p u t w i r e [3 : 0] a 4 , b 4 ,
o u t p u t w i r e [3 : 0] sum4 ,
o u t p u t w i r e c 4 ,

β i n p u t w i r e [7 : 0] a 8 , b 8 ,
o u t p u t w i r e [7 : 0] sum8 ,
o u t p u t w i r e c8

);
ii / / instantiate 8—bit adder

a d d e r . c a r r y . p a r a # (. N (8)) u n i t l
(. a (a 8) , . b (b 8) , . s u m (s u m 8) , . c o u t (c 8)) ;

/ / instantiate 4~bit adder
in a d d e r . c a r r y . p a r a u n i t 2

(. a (a 4) , . b (b 4) , . s u m (s u m 4) , . c o u t (c 4)) ;
endmodule

A parameter provides a mechanism to create scalable code, in which the "width"
of a circuit can be adjusted to meet a specific need. This makes code more portable
and encourages design reuse.

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 8 1

4.7.3 Use of parameters in Verilog-1995

The localparam keyword, header declaration, and assignment by name discussed
earlier are all new Verilog-2001 features. In Verilog-1995, parameters are declared
after the header and can only be redefined by using the by-order-list scheme or
the defparam statement. Furthermore, constants must be declared as parameters,
even though they should not be redefined. The previous adder code in Verilog-1995
syntax is shown in Listing 4.13.

Listing 4.13 Parameter use in Verilog-1995
module adder_carry_95 (a, b , sum, cout);

2 parameter N = 4; / / parameter declared before the port
parameter Ni « N-l; / / no localparam in Verilog-1995
input wire [N1-.0] a, b;
output wire [N1:0] sum;
output wire cout;

7

/ / signal declaration
wire [N:0] sum.ext;

//body
12 assign sum.ext = {1'bO, a} + {1'bO, b};

assign sum - sum.ext [Nl :0] ;
assign cout = sum.ext[N];

endmodule

When a component is instantiated, the parameter can only be redefined by using
the by-ordered-list scheme, as in

adder_carry_95 # (8 , 7) u n i t l
(. a (a 8) , . b (b 8) , .sum(sum8), . c o u t (c 8)) ;

or by using the defparam statement, as in
defparam u n i t l . N=8;
defparam u n i t l . Nl=7 ;
adder_carry_95 u n i t l

(. a (a 8) , . b (b 8) , .sum(sum8), . c o u t (c 8)) ;

The Verilog-1995 scheme is more tedious and may introduce subtle errors and we
don't use it in this book.

4.8 DESIGN EXAMPLES

4.8.1 Hexadecimal digit to seven-segment LED decoder

The sketch of a seven-segment LED display is shown in Figure 4.6(a). It consists
of seven LED bars and a single round LED decimal point. On the prototyping
board, the seven-segment LED is configured as active low, which means that an
LED segment is lit if the corresponding control signal is 0.

A hexadecimal digit to seven-segment LED decoder treats a 4-bit binary input
as a hexadecimal digit and generates appropriate LED patterns, as shown in Fig-
ure 4.6(b). The LED control signals, g, f, e, d, c, b, and a, are grouped together
as a single 7-bit signal, sseg. The code is shown in Listing 4.14. It uses one case
statement to list all the desired patterns for the sseg signal.

www.it-ebooks.info

http://www.it-ebooks.info/

8 2 RT-LEVEL COMBINATIONAL CIRCUIT

9

r O dp

(a) Diagram of a seven-segment LED display

OOQOQOQOOQQOQQQQ
U U O U O U O U U O O U Q O O O

(b) Hexadecimal digit patterns

Figure 4.6 Seven-segment LED display and hexadecimal patterns.

Listing 4.14 Hexadecimal digit to seven-segment LED decoder
i module bin_to_sseg

(
input wire [3:0]
output reg [6:0]

) ;

a l w a y s a*
b e g i n

c a s e (b i n)
4'hO
4*hl
4>h2
4 ' h 3
4 ' h 4
4*h5
4 ' h 6
4 'h7
4 ' h 8
4 ' h 9
4 ' h a
4 ' h b
4 · he
4 'hd
4 ' h e
d e f a

e n d c a s e
end

endmodule

s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g
s s e g

b i n ,

-
■

S

-
-
a

=
-
s

at

ac

at

=
-
ai

s seg / / outpu

7 ' b l 0 0 0 0 0 0
7 ' b l l l l 0 0 1
7'bOlOOlOO
7*b0110000
7'bOOllOOl
7 ' b 0 0 1 0 0 1 0
7'bOOOOOlO
7 ' b l i l l 0 0 0
7 ' b 0 0 0 0 0 0 0
7'bOOiOOOO
7'bOOOlOOO
7'bOOOOOll
7 ' b l 0 0 0 1 1 0
7 ' b 0 1 0 0 0 0 1
7'bOOOOllO

u l t : s s e g - 7 ' b 0 0 0 1 1 1 0 //A 'hi

Testing circuit There are four seven-segment LED displays on the DEI board. We
use a simple 8-bit increment circuit to verify operation of the decoder. The sketch
is shown in Figure 4.7. The sw input is connected to the eight slide switches of the
prototyping board. It is fed to an incrementor to obtain sw+1. The original and
incremented sw signals are then passed to four decoders to display the four hex-
adecimal digits on seven-segment LED displays. The code is shown in Listing 4.15.

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 83

'
/
4

β

+1

4

/
/ 8

/
4

i
4

bin_to_sseg

bin_to_sseg

b¡n_to_sseg

bin sseg

bin_to_sseg

,
/
7

/ 7

7

/ 7

hex3

hex2

hex!

hexO

Figure 4.7 Seven-segment LED display testing circuit.

The inputs to the four seven-segment LED displays are named hex3, hex2, hexl,
and hexO, as labeled on the DEI board.

Listing 4.15 Hex-to-LED decoder testing circuit
module b i n _ t o _ s s e g _ t e s t

(
input wire [7 :0] sw,
output wire [7:0] hex3 , hex2, h e x l , hexO

) ;

/ / signal declaration
wire [7:0] i n c ;

// body
// increment input
assign inc « sw + 1;

/ / instantiate four instances of 7—seg LED decoders
bin_ to_sseg d i sp_un i t_0

(. b i n (s w [3 : 0]) , . s s e g (h e x O)) ;
b i n . t o _ s s e g d i s p _ u n i t _ l

(. b i n (s w [7 : 4]) , . s s e g (h e x l)) ;
b in_ to_sseg d i sp_un i t_2

(. b i n (i n c [3 : 0]) , . s s e g (h e x 2)) ;
b in_ to_sseg d i s p _ u n i t _ 3

(. b i n i i n c [7 : 4]) , . s s e g (h e x 3)) ;
endmodule

We can follow the procedure in Chapter 3 to synthesize and implement the circuit
on the prototyping board and verify its operation.

4.8.2 Sign-magnitude adder

An integer can be represented in sign-magnitude format, in which the MSB is the
sign and the remaining bits form the magnitude. For example, 3 and —3 become
"0011" and "1011" in 4-bit sign-magnitude format.

www.it-ebooks.info

http://www.it-ebooks.info/

8 4 RT-LEVEL COMBINATIONAL CIRCUIT

A sign-magnitude adder performs an addition operation in this format. The
operation can be summarized as follows:

• If the two operands have the same sign, add the magnitudes and keep the
sign.

• If the two operands have different signs, subtract the smaller magnitude from
the larger one and keep the sign of the number that has the larger magnitude.

One possible implementation is to divide the circuit into two stages. The first
stage sorts the two input numbers according to their magnitudes and routes them
to the max and min signals. The second stage examines the signs and performs
addition or subtraction on the magnitude accordingly. Note that since the two
numbers have been sorted, the magnitude of max is always larger than that of min
and the final sign is the sign of max.

The code is shown in Listing 4.16, which realizes the two-stage implementation
scheme. For clarity, we split the input number internally and use separate sign and
magnitude signals. A parameter, N, is used to represent the width of the adder.

Listing 4.16 Sign-magnitude adder
module s i g n _ m a g _ a d d

2 * (

p a r a m e t e r N=4
)
(

i n p u t w i r e [N - 1 : 0] a , b ,
7 o u t p u t r e g [N - 1 : 0] sum

) ;

/ / signal declaration
reg [N - 2 : 0] m a g . a , mag_b , m a g . s u m , max, min ;

i2 r eg s i g n . a , s i g n _ b , s i g n . s u m ;

//body
a l w a y s β*
b e g i n .

i7 / / separate magnitude and sign
mag_a « a [N - 2 : 0] ;
mag .b - b [N - 2 : 0] ;
s i g n _ a » a [N - l] ;
s i g n . b - b [N - l] ;

22 / / s o r t according to magnitude
i f (mag_a > mag_b)

b e g i n
max » mag_a;
min = m a g . b ;

27 s i g n _ s u m = s i g n . a ;
end

e l s e
b e g i n

max « m a g . b ;
32 min = m a g . a ;

s i g n . s u m - s i g n _ b ;
end

/ / add/sub magnitude
i f (s i g n _ a - = s i g n _ b)

37 m a g . s u m = max + m i n ;
e l s e

mag.sum - max - min ;
/ / form output

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 85

sum - { s i g n _ 8 u m , mag_sum};
42 end

endmodule

Testing circuit We use a 4-bit sign-magnitude adder to verify the circuit operation.
The testing circuit uses eight slide switches as the two 4-bit inputs and shows
the result in two seven-segment LED displays. The rightmost seven-segment LED
display shows the 3-bit magnitude and the next LED display shows the sign bit,
which is blank for the plus sign and is lit with a middle LED bar for the minus
sign. The code is shown in Listing 4.17.

Listing 4.17 Sign-magnitude adder testing circuit
module s m _ a d d _ t e s t

2 (

i n p u t w i r e [7 : 0] sw,
o u t p u t w i r e [6 : 0] h e x 3 , h e x 2 , h e x l , hexO

);

7 / / signal declaration
w i r e [3 : 0] sum, o c t ;

//body
// instantiate adder

i2 s ign_mag_add # (. N (4)) sm_adder_uni t
(. a (s w [3 : 0]) , . b (s w [7 : 4]) , . s u m (s u m)) ;

/ / magnitude displayed on rightmost 7—seg LED
a s s i g n o c t = { l ' b O , sum [2 : 0] } ;
/ / instantiate hex decoder

17 b i n _ t o _ s s e g d i s p _ u n i t _ 0
(. b i n (o c t) , . s s e g (h e x O)) ;

/ / sign displayed on 2nd 7—seg LED
// middle LED bar on for negative number
a s s i g n h e x l = sum [3] ? 7 ' b O l l l l l l : 7 ' b l l l l l l l ;

22 / / blank two other LEDs
a s s i g n hex2 - 7 ' b l l l l l l l ;
a s s i g n hex3 - 7 ' b l l l l l l l ;

endmodule

4.8.3 Barrel shifter

Although Verilog has built-in shift functions, there is no rotation operation. In this
subsection, we examine an 8-bit barrel shifter that rotates an arbitrary number of
bits to the right. The circuit has an 8-bit data input, a, and a 3-bit control signal,
amt, which specifies the amount to be rotated. The first design uses a case statement
to exhaustively list all combinations of the amt signal and the corresponding rotated
results. The code is shown in Listing 4.18.

Listing 4.18 Barrel shifter using a case statement
module b a r r e l . s b i f t e r . c a s e

(
i n p u t w i r e [7 : 0] a ,
i n p u t w i r e [2 : 0] amt,

5 o u t p u t r e g [7 : 0] y
);

www.it-ebooks.info

http://www.it-ebooks.info/

8 6 RT-LEVEL COMBINATIONAL CIRCUIT

/ / body
a l w a y s β*

io c a s e (amt)
3 Ό 0 : y - a;
3 Ό 1 : y - { a [0] , a [7 : l] } ;
3 Ό 2 : y - { a [l : 0] , a [7 : 2] } ;
3 Ό 3 : y - { a [2 : 0] , a [7 : 3] } ;

is 3 ' 0 4 : y - {a [3 : 0] , a [7 : 4] } ;
3 Ό 5 : y = { a [4 : 0] , a [7 : 5] } ;
3 Ό 6 : y - { a [5 : 0] , a [7 : 6] } ;
d e f a u l t : y - { a [6 : 0] , a [7] } ;

e n d c a s e
2o endmodule

While the code is straightforward, it will become cumbersome when the number
of data bits increases. Furthermore, a large number of items in a case statement
implies a wide multiplexer, which makes synthesis difficult and leads to a large
propagation delay. Alternatively, we can construct the circuit by stages. In the
nth stage, the input signal is either passed directly to output or rotated right by
2™ positions. The nth stage is controlled by the nth bit of the amt signal. Assume
that the 3 bits of amt are m2mimo· The total rotated amount after three stages
is rri222 + mi2x + mo2°, which is the desired rotating amount. The code for this
scheme is shown in Listing 4.19.

Listing 4.19 Barrel shifter using multistage shifts
module b a r r e l _ s h i f t e r . s t a g e

(
i n p u t w i r e [7 : 0] a ,
i n p u t w i r e [2 : 0] amt,

s o u t p u t w i r e [7 : 0] y
) ;

/ / signal declaration
w i r e [7 : 0] sO, s i ;

10
/ / body
// stage 0, shift 0 or 1 bit
a s s i g n sO » amt [0] ? { a [0] , a [7 : 1] } : a;
/ / stage 1, shift 0 or 2 bits

is a s s i g n s i = amt [1] ? < s O [l : 0] , s 0 [7 : 2] } : sO;
/ / stage 2, shift 0 or 4 bits
a s s i g n y = amt [2] ? { s i [3 : 0] , s i [7 : 4] } : s i ;

endmodule

Testing circuit To test the circuit, we can use the 8-bit switch for the a signal,
three pushbutton switches for the amt signal, and the eight discrete LEDs for the
output. The pushbutton switches are labeled key on the DEI board and a switch
outputs 0 when it is pressed. A top-level wrapping HDL code is created to map
the circuit's I/O port to the prototyping board's signals, as shown in Listing 4.20.
Note that key is inverted when mapped to amt (i.e., a 1 is generated for amt when
a pushbutton switch is pressed).

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 87

Listing 4.20 Barrel shifter testing circuit
module s h i f t e r _ t e s t

2 (

input wire [2:0] key,
input wire [7 :0] sw,
output wire [7:0] led

) ;
7

/ / instantiate shifter
b a r r e l . s h i f t e r _ s t a g e s h i f t . u n i t

(. a (s w) , . a m t C k e y) , . y (l e d r)) ;
endmodule

4.8.4 Simplified floating-point adder

Floating point is another format to represent a number. With the same number of
bits, the range in floating-point format is much larger than that in signed integer
format.

Detailed discussion of floating-point representation is beyond the scope of this
book. We use a simplified 13-bit format in this example and ignore the round-off
error. The representation consists of a sign bit, s, which indicates the sign of the
number (1 for negative); a 4-bit exponent field, e, which represents the exponent;
and an 8-bit significand field, / , which represents the significand or the fraction.
In this format, the value of a floating-point number is (—1)* * . / * 2e. The . / * 2e

is the magnitude of the number and (—1)* is just a formal way of stating that "s
equal to 1 implies a negative number." Since the sign bit is separated from the rest
of the number, floating-point representation can be considered as a variation of the
sign-magnitude format.

We also make the following assumptions:
• Both exponent and significand fields are in unsigned format.
• The representation has to be either normalized or zero. Normalized repre-

sentation means that the MSB of the significand field must be 1. If the
magnitude of the computation result is smaller than the smallest normalized
nonzero magnitude, 0.10000000 * 20000, it must be converted to zero.

Under these assumptions, the largest and smallest nonzero magnitudes are 0.11111111*
2 i m and 0.10000000 * 20000, and the range is about 216 (i.e., olíooooooo**»««)·

Our floating-point adder design follows the process of adding numbers manually
in scientific notation. This process can best be explained by examples. We assume
that the widths of the exponent and significand are 2 and 1 digits, respectively.
Decimal format is used for clarity. The computations of several representative
examples are shown in Figure 4.8. The computation is done in four major steps:

1. Sorting: puts the number with the larger magnitude on the top and the
number with the smaller magnitude on the bottom (we call the sorted numbers
"big number" and "small number").

2. Alignment: aligns the two numbers so that they have the same exponent.
This can be done by adjusting the exponent of the small number to match
the exponent of the big number. The significand of the small number has to
shift to the right according to the difference in exponents.

www.it-ebooks.info

http://www.it-ebooks.info/

8 8 RT-LEVEL COMBINATIONAL CIRCUIT

eg.

eg.

eg.

eg-

1

2

3

4

+0.54E3
-0.87E4

+0.54E3
-0.55E3

+0.54E0
-0.55E0

+0.56E3
+0.52E3

sort

-0.87E4
+0.54E3

-0.55E3
+0.54E3

-0.55E0
+0.54E0

+0.56E3
+0.52E3

align

-0.87E4
+0.05E4

-0.55E3
+0.54E3

-0.55E0
+0.54E0

+0.56E3
+0.52E3

a d d / s u b

-0.87E4
+0.05E4
-0.82E4

-0.55E3
+0.54E3
-0.01E3

-0.55E0
+0.54E0
-O.OIEO

+0.56E3
+0.52E3
+1.08E3

normalize

-0.87E4
+0.05E4
-0.82E4

-0.55E3
+0.54E3
-0.10E2

-0.55E0
+O.54E0
-0.00E0

+0.56E3
+0.52E3
+0.10E4

Figure 4.8 Floating-point addition examples.

3. Addition/subtraction: adds or subtracts the significands of two aligned num-
bers.

4. Normalization: adjusts the result to the normalized format. Three types of
normalization procedures may be needed:

• After a subtraction, the result may contain leading zeros in front, as in
example 2.

• After a subtraction, the result may be too small to be normalized and
thus needs to be converted to zero, as in example 3.

• After an addition, the result may generate a carry-out bit, as in exam-
ple 4.

Our binary floating-point adder design uses a similar algorithm. To simplify
the implementation, we ignore the rounding. During alignment and normalization,
the lower bits of the significand will be discarded when shifted out. The design
is divided into four stages, each corresponding to a step in the foregoing algo-
rithm. The suffixes, b, s, a, r, and n, used in signal names are for "big number,"
"small number," "aligned number," "result of addition/subtraction," and "normal-
ized number," respectively. The code is developed according to these stages, as
shown in Listing 4.21.

Listing 4.21 Simplified floating-point adder
module fp_adder

(
input wire s i gn l , s ign2 ,
input wire [3:0] e x p l , exp2 ,
input wire [7:0] f r a c l , f rac2 ,
output reg s i g n . o u t ,
output reg [3:0] exp.out ,
output reg [7:0] f r a c . o u t

);

www.it-ebooks.info

http://www.it-ebooks.info/

/ / Signal declaration
//suffix b, s, a, n for
// big , small , aligned , normalized number

14 reg signb , s i g n s ;
reg [3:0] expb, exps , expn, exp_diff ;
reg [7:0] f r a c b , f r a c s , f r a c a , f r a e n , sum.norm;
reg [8:0] sum;
reg [2:0] leadO;

19
// body
always 0*
begin

// 1st stage: sort to find the larger number
24 if ({expl, fracl} > {exp2, frac2})

begin
signb » signl;
signs - sign2;
expb ■ expl;

29 exps > exp2;
fracb ■ fracl;
fracs - frac2;

end
else

34 begin
signb » sign2;
signs = signl;
expb · exp2;
exps ■ expl;

39 fracb ■ frac2;
fracs " fracl;

end

// 2nd stage: align smaller number
44 exp.diff » expb - exps;

fraca » fracs >> exp.diff;

// 3rd stage: add/substract
if (signb-=signs)

49 sum = {l'bO, fracb} + {l'bO, fraca};
else

sum » {l'bO, fracb} - {l'bO, fraca};

// 4 th stage: normalize
54 // count leading Os

if (sum[7])
leadO - 3 Ό 0 ;

else if (sum [6])
leadO » 3 Ό 1 ;

59 else if (sum [5])
leadO » 3 Ό 2 ;

else if (sum [4])
leadO » 3 Ό 3 ;

else if (sum [3])
64 leadO = 3 Ό 4 ;

else if (sum [2])
leadO » 3 Ό 5 ;

else if (sum[l])
leadO » 3 Ό 6 ;

69 else
leadO ■ 3 Ό 7 ;

www.it-ebooks.info

http://www.it-ebooks.info/

90 RT-LEVEL COMBINATIONAL CIRCUIT

/ / shift significand according to leading 0
sum.norm - sum << leadO;
/ / normalize with special conditions
if (sum [8]) / / with carry out; shift frac to right

begin
expn = expb + 1;
f racn * sum [8 : 1] ;

end
e l s e if (leadO > expb) / / too small to normalize

begin
expn » 0 ; // set to 0
fracn = 0;

end
e l s e

begin
expn » expb - leadO;

fracn « sum.norm;
end

/ / form output
s i g n . o u t ■ s i g n b ;
exp_out ~ expn;
f r a c . o u t « f r a c n ;

end
endmodule

The circuit in the first stage compares the magnitudes and routes the big number
to the signb, expb, and f racb signals and the smaller number to the signs, exps,
and f racs signals. The comparison is done between expl&fracl and exp2&frac2.
It implies that the exponents are compared first, and if they are the same, the
significands are compared.

The circuit in the second stage performs alignment. It first calculates the differ-
ence between the two exponents, which is expb-exps, and then shifts the signifi-
cand, f racs , to the right by this amount. The aligned significand is labeled fraca.
The circuit in the third stage performs sign-magnitude addition, similar to that in
Section 4.8.2. Note that the operands are extended by 1 bit to accommodate the
carry-out bit.

The circuit in the fourth stage performs normalization, which adjusts the result
to make the final output conform to the normalized format. The normalization
circuit is constructed in three segments. The first segment counts the number of
leading zeros. It is somewhat like a priority encoder. The second segment shifts
the significands to the left by the amount specified by the leading-zero counting
circuit. The last segment checks the carry-out and zero conditions and generates
the final normalized number.

4.9 BIBLIOGRAPHIC NOTES

Verilog HDL, 2nd edition, by S. Palnitkar and Starter's Guide to Venlog 2001 by
M. D. Ciletti provide detailed coverage of Verilog's syntax and constructs. The
article "The IEEE Verilog 1364-2001 Standard: What's New, and Why You Need
It" by S. Sutherland summarizes the new features. The article ""fulLcase paral-
leLcase", the Evil Twins of Verilog Synthesis" by C. E. Cummings examines the
caveats of the full-case and parallel-case directives, and his other article, "New

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 9 1

Verilog-2001 Techniques for Creating Parameterized Models," discusses the advan-
tage of Verilog-2001's new parameter passing scheme.

4.10 SUGGESTED EXPERIMENTS

4.10.1 Multifunction barrel shifter

Consider an 8-bit shifting circuit that can perform rotating right or rotating left.
An additional 1-bit control signal, l r , specifies the desired direction.

1. Design the circuit using one rotate-right circuit, one rotate-left circuit, and
one 2-to-l multiplexer to select the desired result. Derive the code.

2. Derive a test bench and use simulation to verify operation of the code.
3. Synthesize the circuit, program the FPGA, and verify its operation.
4. This circuit can also be implemented by one rotate-right shifter with pre- and

post-reversing circuits. The reversing circuit either passes the original input
or reverses the input bitwise (e.g., if an 8-bit input is 0706050403020100, the
reversed result becomes 0001020305050607). Repeat steps 2 and 3.

5. Check the report files and compare the number of logic cells and propagation
delays of the two designs.

6. Expand the code for a 16-bit circuit and synthesize the code. Repeat steps 1
to 5.

7. Expand the code for a 32-bit circuit and synthesize the code. Repeat steps 1
to 5.

4.10.2 Dual-priority encoder

A dual-priority encoder returns the codes of the highest or second-highest priority
requests. The input is a 12-bit req signal and the outputs are f i r s t and second,
which are the 4-bit binary codes of the highest and second-highest priority requests,
respectively.

1. Design the circuit and derive the code.
2. Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit that displays the two output codes on the seven-

segment LED display of the prototyping board, and derive the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.

4.10.3 BCD incrementor

The binary-coded-decimal (BCD) format uses 4 bits to represent 10 decimal digits.
For example, 25910 is represented as "0010 0101 1001" in BCD format. A BCD
incrementor adds 1 to a number in BCD format. For example, after incrementing,
"0010 0101 1001" (i.e., 25910) becomes "0010 0110 0000" (i.e., 260i0).

1. Design a three-digit 12-bit incrementor and derive the code.
2. Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit that displays three digits on the seven-segment LED

display and derive the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

9 2 RT-LEVEL COMBINATIONAL CIRCUIT

4.10.4 Floating-point greater-than circuit

A floating-point greater-than circuit compares two floating-point numbers and as-
serts output, gt , when the first number is larger than the second number. Assume
that the two numbers are represented in the format discussed in Section 4.8.4.

1. Design the circuit and derive the code.
2. Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit and derive the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.

4.10.5 Floating-point and signed integer conversion circuit

A number may need to be converted to different formats in a large system. Assume
that we use the 13-bit format in Section 4.8.4 for the floating-point representa-
tion and the 8-bit signed data type for the integer representation. An integer-to-
floating-point conversion circuit converts an 8-bit integer input to a normalized,
13-bit floating-point output. A fioating-point-to-integer conversion circuit reverses
the operation. Since the range of a floating-point number is much larger, conversion
may lead to the underflow condition (i.e., the magnitude of the converted number
is smaller than "00000001") or the overflow condition (i.e., the magnitude of the
converted number is larger than "01111111").

1. Design an integer-to-floating-point conversion circuit and derive the code.
2. Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit and derive the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.
5. Design a floating-point-to-integer conversion circuit. In addition to the 8-bit

integer output, the design should include two status signals, uf and of, for
the underflow and overflow conditions. Derive the code and repeat steps 2
to 4.

4.10.6 Enhanced floating-point adder

The floating-point adder in Section 4.8.4 discards the lower bits when they are
shifted out (it is known as round to zero). A more accurate method is to round
to the nearest even, as defined in the IEEE Standard for Binary Floating-Point
Arithmetic (IEEE Std 754). Three extra bits, known as the guard, round, and
sticky bits, are required to implement this method. If you learned floating-point
arithmetic before, modify the floating-point adder in Section 4.8.4 to accommodate
the round-to-the-nearest-even method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

REGULAR SEQUENTIAL CIRCUIT

A sequential circuit is a circuit with memory. Modern development follows syn-
chronous design methodology and uses a common clock signal to control storage
elements. In this chapter, we describe the HDL codes for basic storage elements,
introduce the design and coding of "regular sequential circuits," in which the state
transitions in the circuit exhibit a "regular" pattern, as in a counter or shift register,
and discuss the use and inference of FPGA's internal memory module.

5.1 INTRODUCTION

A sequential circuit is a circuit with memory, which forms the internal state of the
circuit. Unlike a combinational circuit, in which the output is a function of input
only, the output of a sequential circuit is a function of the input and the internal
state. The synchronous design methodology is the most commonly used practice
in designing a sequential circuit. In this methodology, all storage elements are
controlled (i.e., synchronized) by a global clock signal and the data are sampled and
stored at the rising or falling edge of the clock signal. It allows designers to separate
the storage components from the circuit and greatly simplifies the development
process. This methodology is the most important principle in developing a large,
complex digital system and is the foundation of most synthesis, verification, and
testing algorithms. All of the designs in the book follow this methodology.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 93
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

94 REGULAR SEQUENTIAL CIRCUIT

d q

>dk

elk

0

1

q*

q

q

d

d q

>dk

reset

reset

1

0

0

0

elk

0

1

f

q*

0

q
q

d

(a) D FF (b) D FF with asynchronous reset

d q

en
>

reset

reset

1

0

0
0

0

dk

_

u

1

en

_

-

.
0

1

q*

0

q

q

q

d

(c) D FF with synchronous enable

Figure 5.1 Block diagram and functional table of a D FF.

5.1.1 D FF and register

The most basic storage component in a sequential circuit is a D-type flip-flop
(D FF). The symbol and function table of a positive edge-triggered D FF are
shown in Figure 5.1(a). The value of the d signal is sampled at the rising edge of
the elk signal and stored to FF. A D FF may contain an asynchronous reset signal
to clear the FF to Ό'. Its symbol and function table are shown in Figure 5.1(b).
Note that the reset operation is independent of the clock signal.

The three main timing parameters of a D FF are tcQ (clock-to-q delay), tSETUP
(setup time), and ÍHOLD (hold time). tcQ is the time required to propagate the
value of d to q at the rising edge of the clock signal. The d signal must be stable
around the sampling edge to prevent the FF from entering the metastable state.
tsETUP and ÍHOLD specify the time intervals before or after the sampling edge.

A D FF provides 1-bit storage. A collection of D FFs can be grouped together
to store multiple bits and is known as a register.

5.1.2 Synchronous system

Block diagram The block diagram of a synchronous system is shown in Figure 5.2.
It consists of the following parts:

• State register: a collection of D FFs controlled by the same clock signal
• Next-state logic: combinational logic that uses the external input and internal

state (i.e., the output of the register) to determine the new value of the register
• Output logic: combinational logic that generates the output signal

www.it-ebooks.info

http://www.it-ebooks.info/

HDL CODE OF THE FF AND REGISTER 9 5

external
input

elk

Figure 5.2 Block diagram of a synchronous system.

5.1.3 Code development

Our code development follows the basic block diagram in Figure 5.2. The key
is to separate the memory component (i.e., the register) from the system. Once
the register is isolated, the remaining portion is a pure combinational circuit, and
the coding and analysis schemes discussed in previous chapters can be applied
accordingly. While this approach may make the code a bit more cumbersome at
times, it helps us to better visualize the circuit architecture and avoid unintended
memory and subtle mistakes.

Based on the characteristics of the next-state logic, we divide sequential circuits
into three categories:

• Regular sequential circuit. The state transitions in the circuit exhibit a "reg-
ular" pattern, as in a counter or shift register. The next-state logic is con-
structed primarily by a predesigned, "regular" component, such as an incre-
mentor or shifter.

• FSM. The state transitions in the circuit do not exhibit a simple, repetitive
pattern. The next-state logic is constructed by "random logic" and synthe-
sized from scratch. It should be called a random sequential circuit but is
commonly known as an FSM (finite state machine).

• FSMD. The circuit consists of a regular sequential circuit and an FSM. The
two parts are known as a data path and a control path, and the complete circuit
is known as an FSMD (FSM with data path). This type of circuit is used to
implement an algorithm represented by register transfer (RT) methodology,
which describes the system operation by a sequence of data transfers and
manipulations among registers.

The three types of circuits are discussed in this and the next two subsequent chap-
ters.

5.2 HDL CODE OF THE FF AND REGISTER

Describing storage components in HDL is a subtle procedure, and there are many
ways to do it. In fact, one common problem encountered by a new HDL user is the
inference of unintended latches and buffers. Instead of covering all possible forms of
syntactic descriptions, we introduce the code templates for several commonly used
memory components. Since our development process separates the register and the

next-state
logic statejiext

J1
logic output

state_reg

www.it-ebooks.info

http://www.it-ebooks.info/

9 6 REGULAR SEQUENTIAL CIRCUIT

combinational circuit, these components are sufficient for all designs in this book.
The components are:

• DFF
• Register
• Register file

For demonstration purposes, we also include code for a generic SRAM (static ran-
dom access memory). Its operation is not controlled by a clock signal and thus it
is an asynchronous device.

Cyclone II devices contain internal memory modules. These modules are device
specific and their use and inferences are discussed in Section 5.7.

All code templates use always blocks. As discussed in Section 4.2.2, nonblocking
assignments should be used for the memory elements, whose basic syntax is

[v a r i a b l e . n a m e] <= [e x p r e s s i o n] ;

This type of assignment can avoid potential race condition and eliminate the dis-
crepancy between simulation and synthesis. This topic is explained in detail in
Section 8.1.

5.2.1 D FF

We consider three types of D FFs:
• D FF without asynchronous reset
• D FF with asynchronous reset
• D FF with synchronous enable

The first two are the most basic memory components and can be found in the library
of any device technology. The third can be constructed from a simple D FF. We
include the code since it is a frequently used memory component and can be mapped
to the FF of the Cyclone II device's logic cell.

D FF without asynchronous reset The function table of a D FF is shown in Fig-
ure 5.1(a) and the code is shown in Listing 5.1.

Listing 5.1 D FF without asynchronous reset
module d_ff

(
input wire elk ,

4 input wire d,
output reg q

) ;

/ / body
9 always Q(posedge elk)

q <- d;
endmodule

The rising edge is expressed by the posedge e lk event in the sensitivity list. The
posedge (for "positive edge") keyword specifies the direction of the elk signal
changing toward 1. It indicates that the always block is activated only at the
rising edge of the e lk signal, a condition reflecting the characteristics of an edge-
triggered FF. Note that the d signal is not included in the sensitive list. This is
consistent with the fact that the d signal is sampled only at the rising edge of the
elk signal, and a change in its value does not trigger any immediate response.

www.it-ebooks.info

http://www.it-ebooks.info/

HDL CODE OF THE FF AND REGISTER 9 7

D FF with asynchronous reset A D FF may contain an asynchronous reset signal,
as shown in the function table of Figure 5.1(b). The signal clears the D FF to 0
any time and is not controlled by the clock signal. It actually has a higher priority
than the regularly sampled input. Using an asynchronous reset signal violates the
synchronous design methodology and thus should be avoided in normal operation.
Its major application is to perform system initialization. For example, we can
generate a short reset pulse to force a system to an initial state after turning on
the power. The code for a D FF with asynchronous reset is shown in Listing 5.2.

Listing 5.2 D FF with asynchronous reset
module d_f f_rese t

(
input wire e l k , r e s e t ,

4 input wire d ,
output reg q

) ;

/ / body
a always Q(posedge e lk , posedge r e s e t)

if (r e s e t)
q <- 1'bO;

e l se
q <- d;

i4 endmodule

Note that the posedge reset event is also included in the sensitivity list and its
value is checked first in the if statement. The q signal is cleared to 0 if it is asserted
and its operation is independent of the e lk signal.

D FF with synchronous enable A D FF may include an additional control signal,
en, to enable the FF to sample the input value. Its symbol and functional table
are shown in Figure 5.1(c). Note that the en signal is examined only at the rising
edge of the clock and thus is synchronous. If it is not asserted, the FF keeps its
previous value. The code is shown in Listing 5.3.

Listing 5.3 One-segment coding style for a D FF with synchronous enable
i module d_ff_en_lseg

(
input wire elk ,
input wire en,
input wire d,

6 output reg q
) ;

/ / body
always 8(posedge

u if (r e s e t)
q <- 1'bO;

e l s e if (en)
q <- d;

endmodule

Note that there is no else branch after the second if statement. According to the
Verilog definition, a variable keeps its previous value if it is not assigned. If en is 0,
q keeps its previous value. Thus, omission of the else branch describes the desired
behavior of this FF.

r e s e t ,

e l k , posedge r e s e t)

www.it-ebooks.info

http://www.it-ebooks.info/

98 REGULAR SEQUENTIAL CIRCUIT

Figure 5.3 D FF with synchronous enable.

The enabling feature of this D FF is useful in maintaining synchronism between
a fast subsystem and a slow subsystem. For example, assume that the operation
rates of a fast and a slow subsystem are 50 MHz and 1 MHz. Instead of using a
derived 1-MHz clock to drive the slow subsystem, we can generate a periodic enable
tick that is asserted one clock cycle every 50 clock cycles. The slow subsystem is
disabled (i.e., keeps the previous state) for the remaining 49 clock cycles. The same
scheme can also be applied to eliminate a gated clock signal.

Since the enable signal is synchronous, this circuit can be constructed by a regular
D FF and simple next-state logic. The code is shown in Listing 5.4, and its block
diagram is shown in Figure 5.3.

Listing 5.4 Two-segment coding style for a D FF with synchronous enable
module d_ff_en_2seg

(
input wire e lk , r e s e t ,
input wire en,
input wire d,
output reg q

) ;

/ / signal declaration
reg r_reg, r_next;

/ / body
// D FF
always 0(posedge e l k , posedge r e s e t)

i f (r e s e t)
r .reg <= 1'bO;

e l s e
r . r e g <■ r _ n e x t ;

i / / next—state logic
always <B*

if (en)
r .next = d;

e l s e
r .next = r_reg;

/ / output logic
always β»

q ■ r . reg ;
30 endmodule

For clarity, we use suffixes _next and _reg to emphasize the next input value and
the registered output of an FF. They are connected to the d and q signals of a

www.it-ebooks.info

http://www.it-ebooks.info/

HDL CODE OF THE FF AND REGISTER 9 9

D FF. The code in Listing 5.3 can be considered shorthand for this more explicit
description.

5.2.2 Register

A register is a collection of D FFs that are controlled by the same clock and reset
signals. Like a D FF, a register can have an optional asynchronous reset signal
and a synchronous enable signal. The code is identical to that of a D FF except
that the array data type is needed for the relevant input and output signals. For
example, an 8-bit register with asynchronous reset is shown in Listing 5.5.

Listing 5.5 Register
module r e g . r e s e t

(
i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e [7 : 0] d ,

5 o u t p u t reg [7 : 0] q
) ;

/ / body
a l w a y s @(posedge e l k , p o s e d g e r e s e t)

io i f (r e s e t)
q <- 0;

e l s e
q <- d;

endmodule

5.2.3 Register file

A register file is a collection of registers with one input port and one or more
output ports. The write address signal, w_addr, specifies where to store data, and
the read address signal, r_addr, specifies where to retrieve data. The register file
is generally used as fast, temporary storage. The conceptual diagram of a 4-by-8
(i.e., four words and 8 bits per word) register file is shown Figure 5.4. The design
consists of four registers with enable signals, a write decoding circuit, and read
multiplexing circuits.

The write decoding circuit examines the wr_en signal and decodes the write port
address. If the wr.en signal is asserted, the decoding circuit functions as a regular
2-to-22 binary decoder that asserts one of the four en signals of the corresponding
register. The w_data signal will be sampled and stored into the corresponding
register at the rising edge of the clock. The read multiplexing circuit consists of
a 4-to-l multiplexer. It utilizes r_addr as the selection signal to route the desired
register output to the read port.

Note that the registers are structured as a two-dimensional 4-by-8 array of D FFs
and would best be represented by a two-dimensional data type. Assume that
there are ADDR_WIDTH bits in the address (i.e., 2ADDR-WIDTH words) and there
are DATA.WIDTH bits per word. The signal array_reg can be defined as

r e g [DATA.WIDTH-1:0] a r r a y . r e g [2 * * A D D R _ W I D T H - 1 : 0] ;

We can derive the code following the conceptual diagram, as shown in Listing 5.6.

www.it-ebooks.info

http://www.it-ebooks.info/

100 REGULAR SEQUENTIAL CIRCUIT

decoder

1

d
en
>

d
en
>

ς

c

d c
en
>

d
en
>

c

r_data

r_addr ·

Figure 5.4 Block diagram of a four-word register file.

Listing 5.6 Register file with explicit decoding and multiplexing logic
module reg_file_4x8

(
input wire elk ,
input wire ur.en ,
input wire [1:0] w_addr , r .addr ,
input wire [7:0] «.data,
output reg [7:0] r .da ta

) ;

/ / constant declaration
localparam DATA.WIDTH = 8, / / number of bits in a word

ADDR.WIDTH - 2; / / number of address bits

// signal declaration
reg [DATA_WIDTH-1:0] array.reg [2**ADDR.WIDTH-1:0];
reg [2**ADDR.WIDTH-1:0] en;

/ / body

// 4 registers
always QCposedge elk)
begin

if (en[0])
array.reg [0] <» w.data;

if (en[l])
array.reg [1] <■ w.data;

if (en [2])
array.reg [2] <■ w.data;

if (en [3])
array.reg [3] <- w.data;

end

/ / decoding logic for write address
34 always β»

www.it-ebooks.info

http://www.it-ebooks.info/

HDL CODE OF THE FF AND REGISTER 1 0 1

if ("wr.en)
en - 4'b0000;

e l se
case(w_addr)

2'bOO: en - 4'bOOOl
2'bOl: en - 4'bOOlO
2'blO: en - 4'bOlOO
2 ' b l l : en = 4'blOOO

endcase

/ / read output muiplexing
always β*

case (r .addr)
2'bOO: r .data » array.reg [0]
2'bOl: r .data » array_reg[l]
2'blO: r .data » array .reg[2]
2 ' b l l : r .data = array.reg [3]

endcase
endmodule

It consists of a collection of four registers, a decoding logic to generate the enable
signals, and a multiplexer to route the desired data to the read port. We can
duplicate the decoding logic and multiplexing logic if additional write ports or read
ports are needed.

Although the code is straightforward, the decoding and multiplexing statements
become cumbersome as the size of the register file increases. An alternative method
is to use dynamic indexing, in which a signal is used as an index to access an element
in the array. The code for a parameterized register file is shown in Listing 5.7. Two
parameters are defined in this design. The DATA-WIDTH parameter specifies the
number of bits in a word and the ADDR.WIDTH parameter specifies the number of
address bits, which implies that there are 2ADDR-WWTH words in the file.

Listing 5.7 Parameterized register file

module r e g . f i l e
#(

parameter DATA.WIDTH «■ 8, / / number of bits in a word
ADDR.WIDTH «= 2 / / number of address bits

)
(

input wire elk ,
input wire wr.en ,
input wire [ADDR.WIDTH-1:0] w.addr, r .addr,
input wire [DATA.WIDTH-1:0] w.data,
output wire [DATA.WIDTH-1:0] r .data

);

/ / signal declaration
reg [DATA.WIDTH-1:0] array.reg [2**ADDR.WIDTH-1:0];

/ / body
// write operation
always <S(posedge e lk)

if (wr.en)
array.reg[w.addr] <= w.data;

i / / read operation
assign r .data - a r r a y . r e g [r . a d d r] ;

endmodule

www.it-ebooks.info

http://www.it-ebooks.info/

102 REGULAR SEQUENTIAL CIRCUIT

Note that the array_reg[. . .] <= . . . and . . . » array _reg [...] statements infer
decoding and multiplexing logic, respectively. Although the description is very
abstract, Altera software recognizes this language construct and can derive the
correct implementation accordingly.

Wide decoding and multiplexing circuits have a large number of inputs but are
with simple internal logic. Their structure does not match well with the LUT-based
cell and leads to poor utilization of FPGA's resources. For example, synthesizing
a 212-by-l (i.e., 4K-by-l) register file requires about 8700 LEs, which counts about
50% of the LEs in the Cyclone II EP2C20 device. Thus, this method is only
feasible for a small register file. The Cyclone II device contains internal synchronous
embedded memory modules. These modules can be configured for synchronous
operation, and their characteristics are somewhat like a restricted version of the
register file. They are a better alternative for larger storage requirements. For
example, a Cyclone II EP2C20 device has 52 M4K internal modules and a modified
4K-by-l register file requires only one module, which counts about 2% of its internal
memory resource. The configuration and inference of these modules are discussed
in Section 5.7.

5.2.4 SRAM

A register file can be considered a storage component in which the D FFs constitute
the basic memory cells. Since all D FFs are driven by the same clock signal, the
operation is synchronous. The SRAM (static random access memory) organization
is similar to that of a register file except that the D FFs are replaced with the
D latches. Since there is no clock, its operation is asynchronous. The HDL descrip-
tion for a generic SRAM is similar to that of a register file but without the clock,
as shown in Listing 5.8.

Listing 5.8 Generic SRAM
/ / for demonstration only; not to be used with FPGA
module async.sram

#(
parameter DATA.WIDTH = 8, / / number of bits in a word

5 ADDR.WIDTH - 2 / / number of address bits
)
(
input wire wr_en ,
input wire [ADDR.WIDTH:0] w.addr , r_addr,

lo input wire [DATA.WIDTH-1:0] d,
output wire [DATA.WIDTH-1:0] q

) ;

/ / signal declaration
is reg [DATA_WIDTH-1:0] array.reg [2»*ADDR_WIDTH-1:0];

/ / body
// write operation
always β*

2o if (wr_en)
array.reg[w_addr] <■ d;

/ / read operation
assign q - array.reg[r.addr];

endmodule

www.it-ebooks.info

http://www.it-ebooks.info/

SIMPLE DESIGN EXAMPLES 103

At the transistor level, the area used to construct a latch is much smaller than that
of a D FF. However, since there is no inherent structure in the Cyclone II device
resembling asynchronous SRAM, it is synthesized from scratch using a feedback
circuit with LEs. The implementation is inefficient and frequently leads to difficult
timing problems. Thus, using FPGA's internal resource for asynchronous SRAM
should be avoided and the code is just for demonstration purposes.

There is an external SRAM chip on the DEI board. Accessing the device requires
a memory controller and the design is discussed in Section 16.3.

5.3 SIMPLE DESIGN EXAMPLES

We illustrate the construction of several simple, representative sequential circuits
in this section.

5.3.1 Shift register

Free-running shift register A free-running shift register shifts its content to the left
or right by one position in each clock cycle. There is no other control signal. The
code for an TV-bit free-running shift-right register is shown in Listing 5.9.

Listing 5.9 Free-running shift register
i module f r e e _ r u n _ s h i f t _ r e g

#(parameter N-8)
(
input wire elk , r e s e t ,
input wire s_in ,

ß output wire s . ou t
) ;

//signal declaration
reg [N-1:0] r _ r e g ;

u wire [N-1:0] r . n e x t ;

/ / body
// register
always e(posedge e l k , posedge r e s e t)

ie i f (r e s e t)
r . r e g <■ 0;

e l s e
r_reg <= r . n e x t ;

2i / / next—state logic
assign r . n e x t - i s . i n , r _ r e g [N - l : 1] } ;
/ / output logic
assign s_out » r_reg [0] ;

endmodule

The next-state logic is a 1-bit shifter, which shifts r_reg right one position and
inserts the serial input, s. in, to the MSB. Since the 1-bit shifter involves only
reconnection of the input and output signals, no real logic is needed. Its propagation
delay represents the smallest possible next-state logic delay, and the corresponding
clock rate represents the highest clock rate that can be achieved for a given device
technology.

www.it-ebooks.info

http://www.it-ebooks.info/

104 REGULAR SEQUENTIAL CIRCUIT

Universal shift register A universal shift register can load parallel data, shift its
content left or right, or remain in the same state. It can perform parallel-to-
serial operation (first loading parallel input and then shifting) or serial-to-parallel
operation (first shifting and then retrieving parallel output). The desired operation
is specified by a 2-bit control signal, Ctrl. The code is shown in Listing 5.10.

Listing 5.10 Universal shift register
module u n i v . s h i f t . r e g

#(parameter N-8)
(
input wire e lk , reset ,
input wire [1:0] Ctr l ,
input wire [N-1:0] d,
output wire [N-1:0] q

);

//signal declaration
reg [N-1:0] r_reg, r .nex t ;

/ / body
// register
always ffl(posedge e lk , posedge r e s e t)

if (r e s e t)
r_reg <= 0;

e l s e
r .reg <- r .nex t ;

/ / next—state logic
always 0*

c a s e (c t r l)
2'b00: r_next - r . reg ; / / no op
2'b01: r .next - { r . r e g [N - 2 : 0] , d [0] } ; / / shift left
2'blO: r .next - { d [N - l] , r . r e g [N - l : 1] } ; / / shift right
defau l t : r .next = d; / / load

endcase
/ / output logic
assign q = r . reg ;

endmodule

The next-state logic uses a 4-to-l multiplexer to select the desired next value of
the register. Note that the LSB and MSB of d (i.e., d[0] and d[N-l]) are used as
serial input for the shift-left and shift-right operations.

5.3.2 Binary counter and variant

Free-running binary counter A free-running binary counter circulates through a bi-
nary sequence repeatedly. For example, a 4-bit binary counter counts from "0000",
"0001", ..., to "1111" and wraps around. The code for a parameterized jV-bit
free-running binary counter is shown in Listing 5.11.

Listing 5.11 Free-running binary counter

module f ree . run .b in . counter
»(parameter N-8)
(
input wire elk , reset ,
output wire max.t ick,
output wire [N-1:0] q

www.it-ebooks.info

http://www.it-ebooks.info/

SIMPLE DESIGN EXAMPLES 1 0 5

Table 5.1 Function table of a universal binary counter

syn_clr

1
0
0
0
0

load

-
1
0
0
0

en

-
-
1
1
0

up

-
-
1
0
-

q*

00 · · · 00
d

q+i
q-l

q

Operation

synchronous clear
parallel load
count up
count down
pause

);

//signal declaration
reg [N-1:0] r . r e g ;
wire [N-1:0] r .next ;

/ / body
// register
always Q(posedge elk, posedge rese t)

if (rese t)
r . reg <- 0; / / {N{lb Ό}}

else
r . reg <= r .nex t ;

/ / next—state logic
assign r .next ■ r . reg + 1;
/ / output logic

i assign q « r . r eg ;
assign max.tick - (r_reg-»2**N-l) ? 1:

//can also use (r.reg=={N{l 'bl}})
endmodule

b l 1 ' b O :

The next-state logic is an incrementor, which adds 1 to the register's current
value. By definition of the + operator, the addition implicitly wraps around after
the r_reg reaches "1. . .1" . The circuit also consists of an output status signal,
maxjtick, which is asserted when the counter reaches the maximal value, " 1 . . .1"
(which is equal to 2N — 1).

The max.tick signal represents a special type of signal that is asserted for a
single clock cycle. In this book, we call this type of signal a tick and use the suffix
. t ick to indicate a signal with this property. It is commonly used to interface with
the enable signal of other sequential circuits.

Universal binary counter A universal binary counter is more versatile. It can count
up or down, pause, be loaded with a specific value, or be synchronously cleared. Its
functions are summarized in Table 5.1. Note the difference between the reset and
syn_clr signals. The former is asynchronous and should only be used for system
initialization. The latter is sampled at the rising edge of the clock and can be used
in normal synchronous design. The code for this counter is shown in Listing 5.12.

Listing 5.12 Universal binary counter
module univ.bin.counter

#(parameter N=8)
3 (

input wire elk, r e se t ,

www.it-ebooks.info

http://www.it-ebooks.info/

106 REGULAR SEQUENTIAL CIRCUIT

input wire syn_clr, load, en, up,
input wire [N-1:0] d,
output wire max_tick, min.tick,

8 output wire [N-1:0] q
) ;

//signal declaration
reg [N-1:0] r_reg, r_next;

13
/ / body
// register
always QCposedge elk, posedge reset)

if (reset)
is r_reg <» 0; / /

else
r_reg <» r.next¡

/ / next—state logic
23 always a*

if (syn.clr)
r.next = 0;

else if (load)
r_next = d;

28 else if (en ft up)
r.next - r_reg + 1;

else if (en ft "up)
r_next » r_reg - 1;

else
33 r.next = r_reg;

/ / output logic
assign q = r.reg;
assign max.tick - (r_reg-»2**N-l) ? l 'bl : 1'bO;

se assign min.tick - (r_reg»=0) ? l 'bl : 1'bO;
endmodule

The next-state logic follows the functional table and is described by an always block,
which contains an if statement to prioritize the desired operations.

Mod-m counter A mod-m counter counts from 0 to m — 1 and wraps around. A
parameterized mod-m counter is shown in Listing 5.13. It has two parameters: M,
which specifies the limit, m; and N, which specifies the number of bits needed and
should be equal to flog2M]. The code is shown in Listing 5.13, and the default
value is for a mod-10 counter.

Listing 5.13 Mod-m counter
i module mod.m.counter

#(
parameter N«4, / / number of bits in counter

M=10 / / mod-M
)

e (
input wire elk, reset,
output wire max.tick,
output wire [N-1:0] q

) ;
11

//signal declaration
reg [H-1:0] r.reg;

www.it-ebooks.info

http://www.it-ebooks.info/

TESTBENCH FOR SEQUENTIAL CIRCUITS 107

w i r e [N - 1 : 0] r . n e x t ;

i6 / / body
// register
a l w a y s Q (p o s e d g e e l k , p o s e d g e r e s e t)

i f (r e s e t)
r _ r e g <- 0;

2i e l s e
r _ r e g <■ r . n e i t ;

/ / next—state logic
a s s i g n r . n e x t » (r _ r e g " (M - l)) ? 0 : r _ r e g + 1;

26 / / output logic
a s s i g n q = r . r e g ;
a s s i g n m a x . t i c k ■ (r _ r e g = - (M - l)) ? l ' b i : 1'bO;

endmodule

The next-state logic is constructed by a conditional operator. If the counter reaches
M-l, the new value is cleared to 0. Otherwise, it is incremented by 1.

Inclusion of the N parameter in the code is somewhat redundant since its value
depends on M. A more elegant way is to define a function that calculates N from M
automatically. This scheme is discussed in Section 8.4.

5.4 TESTBENCH FOR SEQUENTIAL CIRCUITS

A testbench is a program that mimics a physical lab bench, as discussed in Sec-
tion 2.7. In this section, we illustrate the construction of a simple testbench for the
previous universal binary counter. It can serve as a template for other sequential
circuits. Development of a more sophisticated testbench is discussed in Section 8.5.
The code for the simple testbench is shown in Listing 5.14.

L i s t i n g 5 .14 Testbench for a universal binary counter

i ' t i m e s c a l e 1 n s / 1 0 ps

/ / The 'timescale directive specifies that
// the simulation time unit is 1 ns and
// the simulator timestep is 10 ps

6

module b i n _ c o u n t e r _ t b () ;

/ / declaration
l o c a l p a r a m T=20; / / clock period

li r e g e lk , r e s e t ;
r e g s y n . c l r , l o a d , e n , up;
r e g [2 : 0] d;
w i r e m a x . t i c k , m i n . t i c k ;
w i r e [2 : 0] q;

16

/ / uut instantiation
u n i v _ b i n _ c o u n t e r # (. N (3)) uut

(. c l k (c l k) , . r e s e t (r e s e t) , . s y n . c l r (s y n . c l r) ,
. l o a d (l o a d) , . e n (e n) , . u p (u p) , . d (d) ,

2i . m a x . t i c k (m a x . t i c k) , . m i n . t i c k (m i n . t i c k) , . q (q)) ;

/ / clock
// SO ns clock running forever
a l w a y s

www.it-ebooks.info

http://www.it-ebooks.info/

108 REGULAR SEQUENTIAL CIRCUIT

26 b e g i n
e l k » I ' M ;
(T / 2) ;
e l k - 1'bO;
(T / 2) ;

si end

/ / reset for the first half cycle
i n i t i a l
b e g i n

36 r e s e t - I ' M ;
(T / 2) ;
r e s e t = 1'bO;

end

4i / / other stimulus
i n i t i a l
b e g i n

/ / = = initial input =====
s y n . c l r = 1'bO;

46 l o a d = 1 ' b O ;
e n = 1 ' b O ;
up = l ' b l ; / / count up
d = 3 ' b 0 0 0 ;
OCnegedge r e s e t) ; / / wait reset to deassert

si 8 (n e g e d g e e l k) ; / / wait for one clock
// = = test load =====
l oad = l ' b l ;
d - 3 ' b O l l ;
SCnegedge e l k) ; / / wait for one clock

se load » 1'bO;
r e p e a t (2) © (n e g e d g e e l k) ;
/ / = = test syn.clear = =
s y n . c l r = l ' b l ; / / assert clear
a (n e g e d g e e l k) ;

ei s y n . c l r » 1 ' bO ;
/ / = = test up counter and pause = = =
en » l ' b l ; / / count
up = l ' b l ;
repeat(10) a(negedge elk);

66 en » 1'bO; // pause
repeat(2) a(negedge elk);
en - l'bl;
r e p e a t (2) a (n e g e d g e e l k) ;
/ / = test down counter = = =

7i up = 1 ' bO ;
r e p e a t (1 0) a (n e g e d g e e l k) ;
/ / = = wait statement = = =
/ / continue until q=Z
w a i t (q"»2) ;

76 a (n e g e d g e e l k) ;
up = l ' b l ;
/ / continue until min.tick becomes 1
SCnegedge e l k) ;
w a i t (m i n . t i c k) ;

si a (n e g e d g e e l k) ;
up - 1'bO;
/ / ===== absolute delay = = =
(4 * T) ; / / wait for 80 ns
en = 1'bO; / / pause

»6 # (4 * T) ; / / wait for 80 ns

www.it-ebooks.info

http://www.it-ebooks.info/

TESTBENCH FOR SEQUENTIAL CIRCUITS 109

/ / ===== stop simulation =====
/ / return to interactive simulation mode
Sstop ;

end
9i endmodule

The code consists of a component instantiation statement, which creates an
instance of a 3-bit counter, and three segments, which generate a stimulus for
clock, reset, and regular inputs.

The clock generation is specified by an always block:
always
begin

elk = i ' b l ;
(T / 2) ;
elk = i ' bO;
(T / 2) ;

end

The T term is a constant that represents the number of time units in a clock period.
It is defined as

loca lparam T=20; / / clock period

Note that the always block has no sensitivity list and repeats itself forever. The
elk signal is assigned between 0 and 1 alternately, and each value lasts for half a
period.

The reset stimulus is specified by an initial block:
i n i t i a l
b e g i n

r e s e t = l ' b l ;
(T / 2) ;
r e s e t = 1 ' bO ;

end

An initial block is executed once at the beginning of a simulation. It indicates that
the r e s e t signal is set to 1 initially and changed to 0 after half a period. The
block represents the "power-on" condition, in which the r e s e t signal is asserted
momentarily to clear the system to the initial state. Note that, by default, the x
value (for unknown), not 0, is assigned to a variable. Using a short reset pulse is a
good mechanism for performing system initialization.

The second initial block generates a stimulus for other input signals. We first
test the load and clear operations and then exercise counting in both directions.
The final Sstop function forces the simulator to stop simulation.

For a synchronous system with positive edge-triggered FFs, an input signal must
be stable around the rising edge of the clock signal to satisfy the setup and hold
time constraints. One easy way to achieve this is to change an input signal's value
during the l-to-0 transition of the elk signal. We can wait for this transition edge
by using

β(negedge e l k) ;

The negedge elk event specifies the condition that the e lk signal changes to 0
(i.e., negative edge). Note that each statement represents a new falling edge, which
corresponds to the advancement of one clock cycle. In our template, we generally

www.it-ebooks.info

http://www.it-ebooks.info/

1 1 0 REGULAR SEQUENTIAL CIRCUIT

elk i_J |_J 1

reset' 1

svn clr i

load, 1 1

en i

up '

d 0 13

Q 0 13

mln tick | |

max tick ι

1

lo
I -

ll U

~1

3 14 15 Ιβ 17

1

0 11 (2

I

- * ~

Figure 5.5 Testbench waveform.

use this statement to specify the progress of time. For multiple clock cycles, we can
use a repeat statement, as in

repeat(10) Q(negedge e l k) ; / / repeat 10 times

Several additional timing control constructs are shown at the end of the initial
block. We can wait until a special condition, such as "when q is equal to 2"

wait (q»=2) ;

or wait until a signal changes, such as

wait (min . t i ck) ;

or wait for an absolute time, such as

#(4*T); / / wati for 4T

If an input signal is modified after these statements, we need to make sure that the
input change does not occur at the rising edge of the clock. An additional

SCnegedge e l k) ;

statement should be added when needed.
We can compile the code and perform simulation. Part of the simulated waveform

is shown in Figure 5.5.

5.5 TIMING ANALYSIS

5.5.1 Timing parameters

In a combinational circuit, the key timing parameter is the propagation delay, which
is the longest path within the circuit to propagate a signal from an input port to
an output port. The register of a sequential circuit imposes additional the setup
time and hold time constraints and thus the timing analysis is more involved. The
key parameter is fmax, the maximal clock frequency, which specifies how fast the
circuit can operate. Another parameter relevant to the design is too, the clock to
output delay.

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING ANALYSIS 1 1 1

minimal- area
im pie mentation

ideal implementation
{with minimal area and delay)

minimal delay
implementation

Figure 5.6 Areâ delay trade-off curve.

Maximal operating frequency One of the most difficult design aspects of a sequential
circuit is to ensure that the system timing does not violate the setup and hold time
constraints. In a synchronous system, the storage components are grouped together
and treated as a single register, as shown in Figure 5.2. We need to perform timing
analysis on only one memory component.

The timing of a sequential circuit is characterized by /m o x . The reciprocal of
fmax specifies tcLOCK, the minimal clock period, which can be interpreted as the
interval between two sampling edges of the clock signal. To ensure correct operation,
the next value (i.e., state_next in Figure 5.2) must be generated and stabilized
within this interval. Assume that the maximal propagation delay of next-state logic
is tcoMB- The minimal clock period can be obtained by adding the propagation
delays and setup time constraint of the closed loop in Figure 5.2:

tCLOCK = tcQ + tcOMB + tsETUP

and the maximal clock rate is the reciprocal:

1 1
Jmax —

tCLOCK ÍCQ + tcOMB + tsETUP

For a given FPGA device, tcQ and ÍSETUP are fixed. The only way to increase
fmax is to use a faster combinational logic to reduce tcoMB- Synthesis software
sometimes can identify the slowest path and reduce its delay by adding extra logic
(i.e., larger area). A typical area-delay curve is shown in Figure 5.6, in which each
point is a possible implementation. The software usually starts with the minimal-
area implementation and traverses through the curve to reach a point that satisfies

www.it-ebooks.info

http://www.it-ebooks.info/

112 REGULAR SEQUENTIAL CIRCUIT

TBOktOf toot f f l t l Λ

H Flow Summary

■ FlOft- Settings

■ Flow bon-tfeleut CJctal Sitting

p l Flon Elapsed Time

0 Flow OB Summary

f f HDw Lag

u J AruWfäs & Syntftess

- ÜJFew

. C j Assembly

* _ i Tmung M a t y i f r

fi d a s s c Timing AfialyMr D tp

Q| Summary

■ Settings

■ Clock jetting 5 Summary

■ Pur Ú He i CtHnptldUan

I Q dock Setup: 'elk'

Π5 C k n i h o t d : 'dk'

I H LCu

V Messages

-"* J L

Figure 5.7 Summary page of Classic Timing Analyzer.

the designated timing constraint. Of course, the trade-off can be achieved only in
a limited range. We cannot increase the performance indefinitely.

Clock to output delay A sequential circuit is sometimes used to generate control
signals. The timing specification of the output signal plays a key role in this type of
application. The main parameter is tco, the time required to obtain a valid output
signal after the rising edge of the clock. The value of tco is the summation of tcQ
and touTPUT (the propagation delay of the output logic); that is,

tco = tcQ + toUTPUT

To obtain better performance, we can try to obtain the signal directly from the
state register or add an additional output register. After the elimination of the
output logic, the tco becomes

tco =tcQ

5.5.2 Timing considerations in Quartus II

Quartus II provides two timing software tools, known as Classic Timing Analyzer
and TimeQuest Timing Analyzer. The former is simpler and we use it in this book.

Static timing analysis Static timing analysis is performed to determine various tim-
ing parameters of a circuit and can be used to determine whether a system meets the
performance goal. During the compiling process, Quartus II automatically starts
the Classic Timing Analyzer tool, as shown in the Tasks window in Figure 3.10,
and includes a timing analysis report. The Classic Timing Analyzer tool can also
be invoked by selecting Processing >- Start >- Start Classic Timing Analyzer.

The timing analysis report can be examined by expanding the Timing Analyzer
item. The summary page of a 32-bit universal binary counter of Listing 5.12 is
shown in Figure 5.7. It shows that fmax is 209.16 MHz, as indicated in the Clock
Setup:'clk' row and the Actual Time column.

Γ Μ Η Analyzer ΐunwary

Typ*

Worst -use ISu

Word- tase Ico

worst-case m

dock Setup: 'dk'

G o t * Hold; i i l

total number of U

Slack Required Time

tone

None

WA None

15.119 h i 50.00 MH£ (period = 20.000 Π5)

0.ΟΪ5ΛΕ 50.00 HKf t period = 20,000 nS J

S.9Ü7 nS

t0 .23Grt t

3.257 flS

209.1 Í MHZ (ptnod = *.7SÍ *S)

N/A

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING ANALYSIS 113

y Settings - tetMest I c=.|.B

Category:

Minimum delay < equtfen lents

MinitMur» fta I [FT« -■

F: ■ ;.

. Specify settings tor the Classic Timing Analyzer. Use Che Assignment Editor Tor iridttndual liming assign merits.
I Not«: ThH« iMnDiefradlhvCtBHIcTirTyrgAraJyierarity. To SpecfyTirrw£lu«tTiFningAnil|fitrs

J Opansurig Sellings aryjQnuitwis ; k ^ rJw TíTWQurt Τ ί Π ^ Ana^itf ^Imifig Ana^w SWI^S mtfluj.
Vtofttgi
Temperate*

a CwnpHflt«JM Process Sittings
Early Timing estímale
Intreme mal Cümpil ation
PhyACAl Synthesis OpUrwzaLKjn

J EDATCMJ(Settings
Oesgn entry/Synthesis
Simulaban
Timing Analyses
Formal vevrficaiMn
Soard Í *wl

J Analysis 4 Synthesis Settings
VHDL Input
VerikDg Ikui Input
Default Parameters

Fitter Settings
J TiiTuí>g AnalyVS Serena.*

TimeQuest Timing Analyzer
a Classic Timing Andfyzer Selling

Classic Tuning Analyze! Rer.
Assembler
Design Assistant
SigrwuTap t] Logic Analyzer
LIXJK Analyzer Interface
PowarPlfty Power Artalyier Selling::

Specifies trie minimum acceptable clock frequency, that w tr* majomum clock frequency that can b*
athiewd lMtrnul vnlabng internal setup and hold lime requlf eiTtenis,

Delay

tea: [a»"]

tpd; |mm *1

th: [mt »)

Clod Settings

Default required tmra 9]

¿'.¿Γ.;ώ^* J u l i . , ,

SSh Araryzar

- ^ ■ ■ ■ ■ ' - " I * P* I I Caâ Π [Aprt I Γ " * .

Figure 5.8 Timing Analysis Settings dialog.

Timing constraint in Quartus II We can specify the desired maximal operating fre-
quency as a synthesis constraint, and the synthesis software will try to obtain a
circuit to satisfy this requirement (i.e., a circuit whose fmax is equal to or greater
than the desired operating frequency). For example, since we use the 50-MHz (i.e.,
20-ns period) oscillator on the DEI board as the clock source, fmax of a sequential
circuit must exceed this frequency (i.e., the period must be smaller than 20 ns).
The procedure is:

1. Select Assignments >- Settings.... The Settings dialog appears.
2. In the left panel, expand the Timing Analysis Settings item and then select

Classic Timing Analyzer Settings. The dialog shows the relevant file information
in the right panel, as shown in Figure 5.8.

3. Enter 50 MHz in the Default required fmax field.
4. Click the OK button to complete the addition.

After the synthesis and timing analysis are completed, 50 MHz is displayed in the
Clock Setup:'elk' row and in the Required Time column, as shown in Figure 5.7. The
actual fmax of 209.16 MHz clearly met the imposed 50-MHz constraint.

To find the highest possible / m a x , we can enter a really high clock rate, such as
300 or 400 MHz, in the Default required fmax field and then check for the actual
clock rate that can be achieved.

www.it-ebooks.info

http://www.it-ebooks.info/

114 REGULAR SEQUENTIAL CIRCUIT

5.6 CASE STUDY

After examining several simple circuits, we discuss the design of more sophisticated
examples in this section.

5.6.1 Stopwatch

We consider the design of a stopwatch in this subsection. The watch displays
the time in three decimal digits, and counts from 00.0 to 99.9 seconds and wraps
around. It contains a synchronous clear signal, c l r , which returns the count to
00.0, and an enable signal, go, which enables and suspends the counting. This
design is basically a BCD (binary-coded decimal) counter, which counts in BCD
format. In this format, a decimal number is represented by a sequence of 4-bit
BCD digits. For example, 139i0 is represented as "0001 0011 1001" and the next
number in sequence is 140χο, which is represented as "0001 0100 0000".

Since the S3 board has a 50-MHz clock, we first need a mod-5,000,000 counter
that generates a one-clock-cycle tick every 0.1 second. The tick is then used to
enable counting of the three-digit BCD counter.

Design I Our first design of the BCD counter uses a cascading structure of three
decade (i.e., mod-10) counters, representing counts of 0.1, 1, and 10 seconds, re-
spectively. The decade counter has an enable signal and generates a one-clock-cycle
tick when it reaches 9. We can use these signals to "hook" the three counters. For
example, the 10-second counter is enabled only when the enable tick of the mod-
5,000,000 counter is asserted and both the 0.1- and 1-second counters are 9. The
code is shown in Listing 5.15.

Listing 5.15 Cascading description for a stopwatch
module stop_watch_cascade

(
input wire elk ,

4 input wire go, clr ,
output wire [3:0] d2, dl , dO

) ;

/ / declaration
a localparam DVSR = 5000000;

reg [22:0] ms.reg;
wire [22:0] ms.next;
reg [3:0] d2_reg, dl_reg, d0_reg;
wire [3:0] d2_next , dl.next , dO.next;

14 wire dl.en , d2_en , d0_en;
wire ms.tick, dO.tick, d l . t i ck ;

/ / body
// register

i9 always QCposedge elk)
begin

ms_reg <" ms.next;
d2_reg <- d2_next;
dl.reg <■ dl.next;

24 dO.reg <- dO.next;
end

/ / next—state logic

www.it-ebooks.info

http://www.it-ebooks.info/

CASE STUDY 115

/ / 0.1 sec tick generator: mod—5000000
29 assign ms.next - (clr II (ms_reg«-DVSR tit go)) ? 4'bO :

(go) ? ms.reg + 1 :
ms_reg;

assign ms.tick « (ms_reg»=DVSR) ? l 'bl : 1'bO;
/ / 0.1 sec counter

34 assign dO_en - ms.tick;
assign dO.next « (clr II (dO.en kk d0_reg-=9)) ? 4'bO :

(dO_en) ? dO.reg + 1 :
dO.reg;

assign dO.tick - (dO_reg«=9) ? l 'bl : 1'bO;
39 / / 1 sec counter

assign dl_en = ms.tick k dO.tick;
assign dl.next - (clr II (dl_en kk d0_reg==9)) ? 4'bO :

(dl_en) ? dl.reg + 1 :
dl.reg;

44 assign dl.t ick = (dl_reg=»9) ? l 'bl : 1'bO;

/ / 10 sec counter
assign d2_en · ms.tick IE dO.tick k dl . t ick;
assign d2_next = (clr | | (d2_en kk d2_reg==9)) ? 4'bO :

49 (d2_en) ? d2_reg + 1 :
d2_reg;

/ / output logic
assign dO « dO.reg;

54 assign dl » dl.reg;
assign d2 = d2_reg;

endmodule

Note that all registers are controlled by the same clock signal. This example
illustrates how to use a one-clock-cycle enable tick to maintain synchronicity. An
inferior approach is to use the output of the lower counter as the clock signal for
the next stage. Although it may appear to be simpler, it violates the synchronous
design principle and is a very poor practice.

Design II An alternative for the three-digit BCD counter is to describe the entire
structure in a nested if statement. The nested conditions indicate that the counter
reaches .9, 9.9, and 99.9 seconds. The code is shown in Listing 5.16.

Listing 5.16 Nested if-statement description for a stopwatch

module stop.watch.if
(
input wire elk ,

4 input wire go , clr ,
output wire [3:0] d2, dl, dO

) ;

/ / declaration
9 localparam DVSR = 5000000;

reg [22:0] ms.reg;
wire [22:0] ms.next ;
reg [3:0] d2_reg, dl .reg, dO.reg;
reg [3:0] d2_next , dl.next , dO.next;

14 wire ms.tick;

/ / body
// register
always (¡Kposedge elk)

www.it-ebooks.info

http://www.it-ebooks.info/

116 REGULAR SEQUENTIAL CIRCUIT

begin
ms.reg
d2_reg
dl_reg
dO.reg

end

<=
<»
<=
< ■

ms_next;
d2_next;
dl_next;
dO.next;

4'bO

1'bO;

/ / next—state logic
// 0.1 sec tick generator: mod—5000000
ass ign ms.next « (c l r II (ms_reg-«DVSR kk go)) ?

(go) ? ms.reg + 1 :
ms_reg;

ass ign ms.t ick » (ms_reg=-DVSR) ? l ' b l
/ / 3— digit bed counter
always 0*
begin

/ / default: keep the previous value
dO_next = dO.reg;
d l .nex t » dl_reg;
d2_next = d2_reg;
i f (c l r)

begin
dO.next = 4'bO
d l .nex t » 4'bO
d2_next ■ 4 ' bO

end
e l s e if (ms . t i ck)

if (dO.reg ! - 9)
dO.next - dO.reg + 1;

e l s e / / reach XX9
begin

dO.next = 4'bO;
if (d l . r e g !- 9)

d l .nex t - d l . r e g + 1;
e l s e / / reach X99

begin
d l .next - 4'bO;
if (d2_reg ! - 9)

d2_next - d2_reg +
e l s e / / reach 999

d2_next - 4'bO;
end

end
end

/ / output logic
assign dO - dO.reg;
ass ign dl = d l . r e g ;
ass ign d2 =" d2_reg;

endmodule

i ;

Verification circuit To verify operation of the stopwatch, we can use the seven-
segment LED displays to show the output of the watch. The code is shown in
Listing 5.17. Note that the leftmost LED display is assigned to 0 and the go and
c l r signals are mapped to two pushbutton switches (labeled keyO and keyl) of the
DEI board.

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

www.it-ebooks.info

http://www.it-ebooks.info/

CASE STUDY 117

-\

FIFObu

\ data written
into FIFO

ffer

\
\ data read

from FIFO

Figure 5.9 Conceptual diagram of a FIFO buffer.

Listing 5.17 Testing circuit for a stopwatch
module s t o p _ u a t c h _ t e s t

(
input wire elk ,
input wire [1 :0] key,
output wire [7 :0] hex3 , bex2, hexl , hexO

) ;

/ / signal declaration
wire [3:0] d2 , dl , dO;
wire go , c l r ;

! //body
assign go » * k e y [l] ;
assign c l r - 'key [0] ;

/ / instantiate stopwatch
stop_watch_if c o u n t e r . u n i t

(. c l k (c l k) , . g o (g o) , . c l r (c l r) ,
. d 2 (d 2) , . d l (d l) , .d0(d0)) ;

/ / instantiate four instances of 7—seg LED decoders
>. b in_ to_sseg d i sp_un i t_0

(. b i n (d O) , . s s eg (hexO)) ;
b in_ to_sseg d i s p _ u n i t _ l

(. b i n (d l) , . 8 s e g (h e x l)) ;
b in_ to_sseg d i sp_un i t_2

r (. b i n (d 2) , .S3eg(hex2)) ¡
b in_ to_sseg d i s p _ u a i t _ 3

(. b l n (4 ' b 0 0 0) , . s s e g (h e x 3)) ;
endmodule

5.6.2 FIFO buffer

A FIFO (first-in-first-out) buffer is an "elastic" storage between two subsystems,
as shown in the conceptual diagram of Figure 5.9. It has two control signals, wr
and rd, for write and read operations. When wr is asserted, the input data are
written into the buffer. The read operation is somewhat misleading. The head of
the FIFO buffer is normally always available and thus can be read at any time. The
rd signal actually acts like a "remove" signal. When it is asserted, the first item
(i.e., head) of the FIFO buffer is removed and the next item becomes available. In
this subsection, we introduce a simple, genuine circular-queue-based design.

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

e loa

i s y n . c l

6 e

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

118 REGULAR SEQUENTIAL CIRCUIT

J— rd ptr
/,— wrptr

rd ptr

(a), initial (empty)

wrplr

wrptr

nd ptr

(b). after a write (c). 3 more writes

wrptr

rd ptr

(d). after a read (e). 4 more writes (f). 1 more write (full)

rdptr

fdptr

(g). 2 reads (h). 5 more reads (i). 1 more read (empty)

Figure 5.10 FIFO buffer based on a circular queue.

Circular-queue-based implementation One way to implement a FIFO buffer is to
add a control circuit to a register file. The registers in the register file are arranged
as a circular queue with two pointers. The write pointer points to the head of the
queue, and the read pointer points to the tail of the queue. The pointer advances
one position for each write or read operation. The operation of an eight-word
circular queue is shown in Figure 5.10. The top-level block is shown in Figure 5.11.

www.it-ebooks.info

http://www.it-ebooks.info/

CASE STUDY 119

w data

wr ■

full ·+-

r_data -► r data

w_addr

wr

full

r_addr

rd

empty
FIFO

> control circuit

rd

■> empty

Figure 5.11 Block diagram of a register file based FIFO buffer.

A FIFO buffer usually contains two status signals, f u l l and empty, to indicate
that the FIFO is full (i.e., cannot be written) and empty (i.e., cannot be read),
respectively. One of the two conditions occurs when the read pointer is equal to
the write pointer, as shown in Figure 5.10(a), (f), and (i). The most difficult design
task of the controller is to derive a mechanism to distinguish the two conditions.
One scheme is to use two FFs to keep track of the empty and full statuses. The
FFs are set to T and Ό' during system initialization and then modified in each
clock cycle according to the values of the wr and rd signals. The code of this FIFO
controller is shown in Listing 5.18.

Listing 5.18 FIFO controller
module f i f o _ c t r l

#(
parameter ADDR_WIDTH=4 / / number of address bits

)
(

input wire e lk , r e s e t ,
input wire rd , wr ,
output wire empty, f u l l ,
output wire [ADDR.WIDTH-1:0] w.addr ,

i output wire [ADDR_WIDTH-1:0] r .addr, r_addr_next
) ;

//signal declaration
reg [ADDR.WIDTH-1:0] w_ptr_reg, w_ptr_next, w_ptr_succ;
reg [ADDR_WIDTH-1:0] r_ptr_reg, r_ptr_next , r_ptr_succ;
reg f u l l _ r e g , empty.reg, f u l l _ n e x t , empty.next;

/ / body
// f*f° control logic

) / / registers for status and read and write pointers
always 0(posedge e lk , posedge r e s e t)

if (r e s e t)
begin

26 b e g i

si en

36 r e s e

4i /

www.it-ebooks.info

http://www.it-ebooks.info/

120 REGULAR SEQUENTIAL CIRCUIT

w_ptr_reg <» 0;
r_ptr_reg <= 0;
f u l l . r e g <» 1'bO;
empty_reg <= I ' M ;

end
e l s e

begin
w_ptr_reg <- w_ptr_next;
r_ptr_reg <= r_ptr_next;
fu l l _reg <» f u l l . n e x t ;
empty.reg <- empty.next;

end

/ / next —state logic for read and write pointers
always β»
begin

/ / successive pointer values
u_ptr_succ ■ w_ptr_reg + 1;
r_ptr_succ « r_ptr_reg + 1;
/ / default: keep old values
v_ptr_next ■ w_ptr_reg;
r_ptr_next = r_ptr_reg;
f u l l . n e x t » f u l l . r e g ;
empty.next = empty.reg;
case ({wr, rd})

/ / 2'b00: no op
2'b01: / / read

i f ("empty.reg) / / not empty
begin

r_ptr_next - r_ptr_succ;
f u l l . n e x t = 1'bO;
if (r_ptr_succ==w_ptr_reg)

empty_next - l ' b l ;
end

2'blO: / / write
i f C f u l l . r e g) / / not full

begin
w_ptr_next - w_ptr_succ;
empty_next » 1'bO;
if (v_ptr_succ==r_ptr_reg)

f u l l . n e x t » l ' b l ;
end

2 ' M l : / / write and read
begin

w_ptr_next » u_ptr_succ;
r_ptr_next = r_ptr_succ;

end
endcase

end

/ / output
assign w_addr = w_ptr_reg;
ass ign r.addr = r_ptr_reg;
ass ign r_addr_next ■ r_ptr_next;
assign f u l l - f u l l . r e g ;
ass ign empty » empty.reg;

endmodule

The controller consists of two pointers and two status FFs. Its next-state logic
examines the wr and rd signals and takes actions accordingly. For example, let us
consider the 2'blO case, which implies that only a write operation occurs. The

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

CYCLONE II DEVICE EMBEDDED MEMORY MODULE 1 2 1

status FF is checked first to ensure that the buffer is not full. If this condition is
met, we advance the write pointer by one position and clear the empty status FF.
Storing one extra word to the buffer may make it full. This happens if the new write
pointer "catches" the read pointer, which is expressed by the w_ptr_succ=r_ptr_reg
expression.

To increase flexibility, we include an output port, r_addr_next, for the unregis-
tered read pointer. It is used in the RAM-based design in Section 5.7.9.

By following the diagram in Figure 5.11, we can combine the controller and the
register file to construct the complete FIFO buffer. This is shown in Listing 5.18.
Note that the r_addr_next port is not used in this design.

Listing 5.19 FIFO buffer
module f i f o

#(
p a r a m e t e r DATA_WIDTH«8, / / number of bits in a word

ADDR_WIDTH=4 / / number of address bits
5)

(
i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e rd , wr ,
i n p u t w i r e [DATA.WIDTH-1:0] u . d a t a ,

io o u t p u t w i r e empty , f u l l ,
o u t p u t w i r e [DATA.WIDTH-1:0] r . d a t a

) ;

//signal declaration
is w i r e [ADDR_WIDTH-1:0] w . a d d r , r . a d d r ;

w i r e wr_en , f u l l _ t m p ;

/ / body
// write enabled only when FIFO is not full

2u a s s i g n wr_en - wr ft " f u l l . t m p ;
a s s i g n f u l l = f u l l . t m p ;

/ / instantiate fifo control unit
f i f o . c t r l #(.ADDR_WIDTH(ADDR_WIDTH)) c . u n i t

25 (. c l k (c l k) , . r e s e t (r e s e t) , . r d (r d) , . w r (u r) , . e m p t y (e m p t y) ,
. f u l l (f u l l . t m p) , . w _ a d d r (w . a d d r) , . r . a d d r (r . a d d r) , . r . a d d r . n e x t ()) ;

/ / instantiate register file
r e g . f i l e #(.DATA.WIDTH(DATA.WIDTH), .ADDR_WIDTH(ADDR.WIDTH)) r . u n i t

so (. c l k (c l k) , . w r . e n (w r . e n) , . w . a d d r (w . a d d r) , . r . a d d r (r . a d d r) ,
. w . d a t a (w . d a t a) , . r . d a t a (r . d a t a)) ;

endmodule

The FIFO buffer is a critical component in many applications and its opti-
mized implementation can be quite complex. We discuss an alternative synchronous
RAM-based implementation in Section 5.7.5. A more efficient, device-specific im-
plementation can be found in the Altera literature.

5.7 CYCLONE II DEVICE EMBEDDED MEMORY MODULE

5.7.1 Overview of memory options of DEI board

An embedded application may require storage elements for various purposes. No
single type of memory can satisfy all criteria. There is usually a trade-off between

www.it-ebooks.info

http://www.it-ebooks.info/

122 REGULAR SEQUENTIAL CIRCUIT

the size and performance. The Cyclone II device and the DEI board provide several
options for storage elements:

• EP2C20C's FFs (for registers): about 20K bits, embedded in logic cells and
I/O buffers

• EP2C20C's on-chip embedded memory modules: about 212K data bits, con-
figured as 52 4K-bit modules

• External SRAM: 4M bits, configured as one 256K-by-16 SRAM device
• External SDRAM (synchronous dynamic RAM): 64M bits, configured as one

4M-by-16 SDRAM device
This helps us to decide which option is most suitable for an application at hand. We
examine the use of FPGA's embedded memory module in this section and discuss
the access of the external SRAM and SDRAM devices in Chapter 16.

5.7.2 Overview of embedded M4K module

An M4K block is a special memory module embedded in a Cyclone II device and
is separated from the regular logic cells. Each M4K block consists of 4K (212) data
bits plus optional 512 parity bits. It can be organized in different widths, from
4K by 1 (i.e., 212 by 2°) to 128 by 32 (i.e., 27 by 25). Multiple modules can be
combined to create larger memory.

An M4K block can be thought of as a fast SRAM with a controller. The con-
troller contains input and output registers and generates control signals for the
SRAM. The conceptually diagram of an M4K block in single-port mode is shown
in Figure 5.12. The controller essentially creates a synchronous interface wrapping
around the SRAM and thus the M4K block is used as a synchronous SRAM. The
Cyclone II EP2C20C device has 52 M4K blocks, totaling 212K data bits. These
blocks can be used for designs requiring intermediate-sized memory storage, such
as a FIFO buffer, a large lookup table, or local memory. The M4K module is very
flexible and can be configured to perform single- or dual-port access and to support
various types of buffering and clocking schemes. We examine several commonly
used configurations in the following subsections.

5.7.3 Methods to incorporate embedded memory module

Although memory modules have a similar internal structure, there are many subtle
differences in their interfaces, such as the numbers of read and write ports, clocking
scheme, data and address buffering, enable and reset signals, and initial values. It
is possible to describe the desired module behaviors in HDL code. However, the
synthesis software may or may not recognize the designer's intention. Therefore,
the HDL code cannot always infer the proper memory module and is normally not
portable. In Altera Quartus II, there are two methods to incorporate an embedded
memory module into a design:

• HDL instantiation via the MegaWizard Plug-in Manager program
• HDL inference with behavioral template

The first one is specific for Altera devices and the second is a semi-device-independent
behavioral description.
Instantiation via MegaWizard Plug-in Manager MegaWizard Plug-in Manager is a
utility program to generate Altera-specific components. It can be invoked in the

www.it-ebooks.info

http://www.it-ebooks.info/

CYCLONE II DEVICE EMBEDDED MEMORY MODULE 123

datal]

address!]

byteenaj]

enable

■a>D

Φ
~*1^φ

D Q
ENA

>

O Q
ENA
>

D Q
ENA

>

D Q
ENA

Write
Pulse

Generator

Memory Block

Data In

Data Out

Byte Enable

-L· D Q-L-J~^

Address
Clock Enable

Write Enable

r->

Figure 5.12
Corp.)

Block diagram of an M4K block in single-port mode. (Courtesy of Altera

Quartus II GUI by selecting Tool >- MegaWizard Plug-in Manager. A dialog appears
and the program guides the user through a series of questions and then gener-
ates several files. The file with the .qip extension is a text file that contains the
information about the core. The file with the .v extension contains the instanti-
ated component and wrapping code. The following is the segment of a 4K-by-l
single-port RAM:

a l t syncram ram_unit (
. a d d r e s s . a (a d d r e s s) ,
.clockO (c l o c k) ,
. d a t a . a (d a t a) ,
.wren_a (wren) ,
.q_a (sub_wireO),
. ac l rO (l*bO) ,
. a c l r l (1 ' b O) ,
. a d d r e s s . b (l ' b l) ,
. a d d r e s s s t a l l . a (1 ' b O) ,
. a d d r e s s s t a l l . b (1 ' b O) ,
. b y t e e n a . a (l ' b l) ,
.byteena_b (l ' b l) ,
. c l o c k l (l ' b l) ,
.clockenO (l ' b l) ,
. c l o c k e n l (l ' b l) ,
. c locken2 (l ' b l) ,
. c locken3 (l ' b l) ,

www.it-ebooks.info

http://www.it-ebooks.info/

1 2 4 REGULAR SEQUENTIAL CIRCUIT

.data .b (I ' M) ,

. e c c s t a t u s () ,
■q_b () ,
. rden.a (I ' M) ,
.rden.b (I ' M) ,
.wren.b (1'bO));

defparam
altsyncram.component.clock_enable_input_a = "BYPASS",
altsyncram.component.clock_enable_output_a = "BYPASS",
altsyncram.component. intended_device_family ■ "Cyclone I I " ,
altsyncram.component.lpm_hint * "ENABLE_RUNTIME_MOD=NO",
altsyncram.component.lpm.type = "altsyncram",
altsyncram.component.numuords.a * 4096,
altsyncram.component. operation.mode = "SINGLE.PORT",
altsyncram.component.outdata_aclr_a = "NONE",
altsyncram.component.outdata_reg_a = "CLOCKO",
altsyncram.component.power_up_uninitial ized ■ "FALSE",
altsyncram.component.widthad.a = 12,
altsyncram.component.width.a ■ 1,
altsyncram.component.width.byteena.a = 1;

Note that the altsyncram component is the Altera's proprietary core for the mem-
ory module. Although the code is readily available, we must consult the manual to
understand its operation and various configuration parameters.

HDL inference with behavioral template Although it is not possible to develop a
device-independent HDL description, the Quartus II manual suggests a collection
of behavioral HDL templates to infer memory modules for Altera FPGA devices.
These templates are done by behavioral descriptions and contain no device-specific
component instantiation. They are easy to understand and can be simulated with-
out an additional HDL library. However, while the description does not explicitly
refer to any Altera component, the code may not be recognized by other third-
party synthesis software and the desired memory module cannot always be inferred.
Thus, these templates can best be described as "semi-portable" and "semi-device-
independent" behavioral descriptions. Because of the clarity of the behavioral de-
scription, we use this method in this book.

Note that the Altera embedded memory module can only be configured in a
few specific ways. If there is no match for the desired description, the module will
be synthesized from scratch with the normal LEs. For example, the register file
in Listing 5.7 does not use a buffer for a read address or readout data and thus
does not match any of the M4K block configurations. The code does not infer an
embedded memory module and is synthesized by LEs.

Templates for commonly used memory modules, including a synchronous single-
port RAM, a synchronous read-write dual-port RAM, and a ROM, are discussed in
the following subsections. It is good practice to separate the memory module code
in an individual file and to examine the compiling report to verify the inference of
the memory module.

5.7.4 HDL module to infer synchronous single-port RAM

A synchronous single-port memory uses the same address for read and write oper-
ations. The code for the single-port memory is shown in Listing 5.20.

www.it-ebooks.info

http://www.it-ebooks.info/

CYCLONE II DEVICE EMBEDDED MEMORY MODULE 1 2 5

Listing 5.20 Altera synchronous single-port RAM (with registered read address)
module a l t e ra_one_por t_ ram

2 # (

parameter DATA.WIDTH = 8, / / number of bits in a word
ADDR.WIDTH - 10 / / number of address bits

)
(

7 inpu t wire elk ,
i npu t wire we ,
inpu t wire [ADDR.WIDTH-1:0] addr ,
i npu t wire [DATA.WIDTH-1:0] d,
ou tpu t wire [DATA_WIDTH-1:0] q

i2) ;

/ / signal declaration
reg [DATA_WIDTH-1:0] ram [2**ADDR.WIDTH-1:0];
reg [ADDR.WIDTH-1:0] a d d r . r e g ;

17
/ / body
// write operation
always Q(posedge e lk)
begin

22 if (we)
r a n [a d d r] <= d;

a d d r . r e g <» addr;
end

27 / / read operation
ass ign q ■ r a m [a d d r _ r e g] ;

endmodule

In the code, the address is stored into a register and then the registered output is
used to retrieve the read da ta . This reflects t h a t the Cyclone II embedded memory
modules are wrapped with a synchronous interface, as shown in Figure 5.12, and
the address, input da ta , and relevant control signals, such as we (i.e., write enable),
are first sampled and stored into its internal registers.

The existence of the address register implies t ha t the readout d a t a are not im-
mediately available and essentially delayed by one clock cycle. An alternative way
to describe the behavior is to register the readout data , as shown in Listing 5.21.

Listing 5.21 Altera synchronous single-port RAM (with registered read data)
i module a l t e r a . o n e . p o r t . r a m . a l t e r n a t i v e

#(
parameter DATA.WIDTH = 8, / / number of bits in a word

ADDR.WIDTH » 10 / / number of address bits
)

6 (
i npu t wire elk ,
i npu t wire we ,
inpu t wire [ADDR.WIDTH-1:0] addr ,
i npu t wire [DATA.WIDTH-1:0] d,

li ou tpu t wire [DATA.WIDTH-1:0] q
) ;

/ / signal declaration
reg [DATA.WIDTH-1:0] ram [2**ADDR.WIDTH-1:0];

ie reg [DATA.WIDTH-1:0] d a t a . r e g ;

/ / body

www.it-ebooks.info

http://www.it-ebooks.info/

1 2 6 REGULAR SEQUENTIAL CIRCUIT

/ / write operation
always QCposedge elk)

21 begin
i f (we)

ram[addr] <= d;
data.reg <» ram[addr];

end
26

/ / read operation
assign q - data .reg;

endmodule

After synthesis, we can examine the Total memory bits item of the Flow Summary
report to verify that embedded memory modules are inferred.

5.7.5 HDL module to infer synchronous simple dual-port RAM

A dual-port RAM includes a second port for memory access and thus has two
independent addresses. A commonly used configuration is one port for writing and
one port for reading, as in a FIFO buffer. It is called simple dual-port RAM in
Altera documentation. The coding for a synchronous simple dual-port RAM is
similar to that of a synchronous single-port RAM except that a separate address is
used for read operation.

The code for the simple dual-port RAM with a read address register is shown in
Listing 5.22.

Listing 5.22 Altera synchronous simple dual-port RAM (with new data)

i module altera_dual_port ram.simple
#(

parameter DATA.WIDTH » 8 , / / number of bits in a word
ADDR.WIDTH = 10 / / number of address bits

)
o (

input wire elk ,
input wire we ,
input wire [ADDR.WIDTH-1:0] w_addr, r .addr,
input wire [DATA.WIDTH-1:0] d,

n output wire [DATA.WIDTH-1:0] q
) ;

/ / signal declaration
reg [DATA.WIDTH-1:0] ram [2**ADDR.WIDTH-1:0];

16 reg [ADDR.WIDTH-1:0] addr.reg;

/ / body
// write operation
always e(posedge e lk)

2i begin
if (we)

ram[w_addr] <= d;
addr.reg <» r.addr;

end
26

/ / read operation
assign q - ram[addr.reg];

endmodule

Note that w.addr is used for writing and r_addr is used for reading.

www.it-ebooks.info

http://www.it-ebooks.info/

CYCLONE II DEVICE EMBEDDED MEMORY MODULE 127

The code for the synchronous simple dual-port RAM is similar to that of the
register file in Listing 5.7. The only difference is that the former buffers the read
address and thus suffers a delay of one clock cycle. In most applications, we can
work around this delay and use the simple dual-port RAM as a large register file.

The code for the synchronous simple dual-port RAM with a readout data register
is shown in Listing 5.23.

Listing 5.23 Altera synchronous simple dual-port RAM (with old data)
i module a l t e r a _ d u a l _ p o r t _ r a m _ o l d _ d a t a

(
p a r a m e t e r DATA.WIDTH » 8 , / / number of bits in a word

ADDR.WIDTH ■ 10 / / number of address bits
)

β (

i n p u t w i r e e l k ,
i n p u t w i r e we ,
i n p u t w i r e [ADDR.WIDTH-1:0] w . a d d r , r . a d d r ,
i n p u t w i r e [DATA.WIDTH-1:0] d ,

li o u t p u t w i r e [DATA.WIDTH-1:0] q
) ;

/ / signal declaration
reg [DATA_WIDTH-1:0] ram [2**ADDR.WIDTH-1:0];

íe r e g [DATA.WIDTH-1:0] d a t a . r e g ;

/ / body
// write operation
a l w a y s 0 (p o s e d g e e l k)

2i b e g i n
i f (we)

ram[w.addr] <» d;
data.reg <= ram[r.addr];

end
20

/ / read operation
a s s i g n q = d a t a . r e g ;

endmodule

Unlike the single-port RAM, there is a minor difference between the two de-
scriptions of the simple dual-port RAM. One new issue for a dual-port RAM is the
read- during- write behavior, which concerns the memory behavior when the same
address is used in write and read operations. In Listing 5.23, writing and reading
occur at the clock edge and thus datajreg obtained the previous stored data (i.e.,
old data). In Listing 5.22, writing and storing read address occur at the clock
edge. The data are read out one clock later with the registered read address. Thus,
current data (i.e., new data) are obtained accordingly. For the Cyclone II family,
a special "bypass logic" will be added during synthesis to support the "new data"
configuration.

5.7.6 HDL module to infer synchronous true dual-port RAM

A full-fledged synchronous dual-port RAM contains two independent access ports
and allows two memory operations to be performed simultaneously. It is called
true dual-port RAM in Altera documentation. Like the simple dual-port RAM, we

www.it-ebooks.info

http://www.it-ebooks.info/

128 REGULAR SEQUENTIAL CIRCUIT

need to consider memory behavior when the same address is used in write and read
operations. An Altera Cyclone II memory module functions as follows:

• When a read operation and a write operation occur on the same port, the
new data being written to the memory are read.

• When a read operation and a write operation occur on different ports for the
same address, the old data in the memory are read. Additional bypass logic
is needed to retrieve new data.

• Simultaneous writes to the same location on both ports results in indetermin-
istic behavior.

The code for the synchronous true dual-port RAM without new data bypass logic
is shown in Listing 5.24.

Listing 5.24 Altera synchronous true dual-port RAM
i module altera_dual_port_ram_true

#(
parameter DATA_WIDTH " 8 , / / number of bits in a word

ADDR.WIDTH » 10 / / number of address bits
)

6 (

input wire elk ,
input wire we_a, we_b,
input wire [ADDR.WIDTH-1:0] addr.a , addr.b,
input wire [DATA.WIDTH-1:0] d_a, d_b,

u output wire [DATA_WIDTH-1:0] q_a, q_b
) ;

/ / signal declaration
reg [DATA_WIDTH-1:0] ram [2**ADDR.WIDTH-1:0];

i<> reg [DATA_WIDTH-1:0] data_a_reg , data_b_reg;

/ / body
// port a
always QCposedge elk)

2i begin
if (we_a)
begin

ram[addr.a] <» d_a;
data_a_reg <■ d_a;

2u end
else

data_a_reg <= ram[addr.a];
end
/ / port b

3i always 0(posedge elk)
begin

if (ve_b)
begin

ram[addr.b] <= d.b;
ae data.b.reg <» d.b;

end
else

data.b.reg <= ram[addr.b];
end

41

/ / output
assign q.a » data.a.reg;
assign q.b = data.b.reg;

endmodule

www.it-ebooks.info

http://www.it-ebooks.info/

CYCLONE II DEVICE EMBEDDED MEMORY MODULE 1 2 9

5.7.7 HDL module to infer synchronous ROM

Despite its name, a ROM (read-only memory) is a combinational circuit and has no
internal state. Its output depends only on its input (i.e., address). There is no real
embedded ROM in a Cyclone II device, but it can be emulated by a synchronous
single-port RAM with the write operation disabled. The content of the ROM can
be expressed as a case statement in the HDL code and the values are loaded to the
RAM when the device is programmed. A real ROM is a combinational circuit and
thus should not have a buffer or a clock signal. However, since the ROM is based
on a Cyclone II synchronous RAM module, the emulated ROM needs a clock signal
and we call it synchronous ROM.

The template of a synchronous ROM is shown by an example in Listing 5.25. The
code is to implement the seven-segment LED decoder, similar to that in Listing 4.14.
The address of the ROM functions as the 4-bit hexadecimal input and its content
is the corresponding LED patterns. The content of the ROM is defined by the case
statement and is essentially the truth table of this circuit.

Listing 5.25 Template for a synchronous ROM with case statement
module a l tera_sync .rom.case template

(
input wire e lk ,
input wire [3:0] addr,
output wire [6:0] data

) ;

/ / signal declaration
reg [6:0] rom.data, data .reg;

/ / body
always (¡Kposedge e lk)

data.reg <» rom.data;

always 9*
case (addr)

4' hO:
4' hi:
4'h2:
4'h3:
4'h4:
4'h5:
4'h6:
4'h7:
4'h8:
4'h9:
4'ha:
4'hb:
4'he:
4'hd:
4* he:
4'hf :

endcase

assign data
endmodule

rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data
rom.data

=
-
=
-
-
m

K

a

V

m

=
m

m

»
=
-

» data.reg

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

1

blOOOOOO
bllllOOl
bOlOOlOO
bOHOOOO
bOOHOOl
bOOlOOlO
bOOOOOlO
bllllOOO
bOOOOOOO
bOOlOOOO
bOOOlOOO
'bOOOOOll
blOOOHO
bOlOOOOl
'bOOOOHO
'bOOOlllO

Note that operation of this ROM depends on the clock signal, and its timing is
different from that of a normal ROM. Artificial inclusion of the clock signal and

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

www.it-ebooks.info

http://www.it-ebooks.info/

130 REGULAR SEQUENTIAL CIRCUIT

data register is necessary to infer FPGA's internal memory modules for the ROM
implementation. During synthesis, the software automatically determines whether
to use regular logic elements or M4K modules to realize this circuit. If M4K modules
are used, the patterns specified in the case statement are loaded into the RAM
modules when the FPGA device is programmed.

5.7.8 HDL module to specify RAM initial values

Quratus II can load initial values to FPGA device's embedded memory modules
when programming the device. The synchronous ROM code in the previous sub-
section can be considered a special case. We can actually load initial values to any
type of RAM module discussed in this section by adding an extra initial statement.
The revised code for the single-port RAM module is shown in List 5.26.

Listing 5.26 RAM with initial values
module a l t e r a _ s y n c _ r a m _ i n i t

#(
p a r a m e t e r DATA.WIDTH « 8 , / / number of bits in a word

4 ADDR_WIDTH = 10 / / number of address bits
)
(

i n p u t w i r e e l k ,
i n p u t w i r e we ,

9 i n p u t w i r e [ADDR.WIDTH-1:0] a d d r ,
i n p u t w i r e [DATA.WIDTH-1:0] d ,
o u t p u t w i r e [DATA_WIDTH-1:0] q

);

14 / / signal declaration
reg [DATA_WIDTH-1:0] ram [2·*ADDR.WIDTH-1:0];
r eg [DATA_WIDTH-1:0] d a t a _ r e g ;

/ / powerup.txt specifies the initial values of ram
i» i n i t i a l

$ r e a d m e m h (" p o w e r u p . t x t " , ram);

/ / body
// write operation

24 a l w a y s © (p o s e d g e e l k)
b e g i n

i f (we)
ram[addr] <» d;

d a t a . r e g <■ r a m [a d d r] ;
29 end

/ / read operation
a s s i g n q - d a t a . r e g ;

endmodule

The task is performed by the segment
i n i t i a l

$ r e a d m e m h (" p o w e r u p . t x t " , r a m) ;

Recall that an initial statement is somewhat like an always statement but is only ex-
ecuted once when the system is initialized. The $readmemh("powerup.txt", ram)
statement reads the powerup.txt file and loads its content to the ram variable.

www.it-ebooks.info

http://www.it-ebooks.info/

CYCLONE II DEVICE EMBEDDED MEMORY MODULE 1 3 1

The file should contain 2ADDR-WIDTH values, each with DATA-WIDTH bits. The h
of $readmemliO indicates that the values should be in hexadecimal format. The
alternative $readmemb() can be used for binary format. The i n i t i a l statement
and file operation are discussed in more detail in Section 8.5. They are generally
reserved for simulation and should not be used in other synthesis context. Further-
more, while this type of code works with Quartus II, it may not be recognized by
other synthesis software and thus the code may not be portable.

Since ram is defined in descending order (as in [2**ADDR_WIDTH-1:0]), the values
in the file should be listed in the reversed order. If the normal ascending listing
order is desired, the ram definition can be modified with an ascending range:

reg [DATA_WIDTH-1:0] ram [0:2**ADDR_WIDTH-1];

With the new construct, the seven-segment LED decoder in Listing 5.25 can be
modified and the revised code is shown in Listing 5.27

Listing 5.27 Template for a synchronous ROM with initial statement
module a l t e r a . s y n c _ r o m _ i n i t . t e m p l a t e

(
input wire elk ,

4 input wire [3 :0] addr ,
output wire [6:0] da ta

) ;

/ / signal declaration
o reg [6:0] ram [0 : 1 5] ; / / ascending range

reg [6:0] d a t a . r e g ;

/ / load initial values from file led-pattern.txt
// content of led.pattern.txt:

i4 / / 1000000 1111001 0100100 0110000 0011001 0010010 0000010 1111000
// 0000000 0010000 0001000 0000011 1000110 0100001 0000110 0001110
i n i t i a l

$readmemb("led_pattern . t x t " , ram);

i9 / / body
always ©(posedge e lk)

d a t a . r e g <= r a m [a d d r] ;
/ / read operation
assign da ta - d a t a . r e g ;

24 endmodule

5.7.9 FIFO buffer revisited

For a FIFO buffer discussed in Section 5.6.2, we can use the synchronous simple
dual-port RAM for storage. Because of the registered address signal, direct re-
placement of the register file will lead to different read behavior. When designing
the FIFO controller, we intentionally provide both registered and unregistered read
pointers as outputs (i.e., r_addr and r_addr_next). Note that the registered sig-
nal, r_addr, is used in Listing 5.19. The unregistered signal, r_addr_next, can be
used with the synchronous RAM to offset the effect of its internal address regis-
ter and thus obtain the identical timing behavior for read operation. The revised
architecture body is shown in Listing 5.28.

www.it-ebooks.info

http://www.it-ebooks.info/

132 REGULAR SEQUENTIAL CIRCUIT

Lis t ing 5 .28 FIFO buffer using synchronous SRAM

i module f i f o . r a i
#(

p a r a m e t e r DATA_WIDTH-8, / / number of bits in a word
ADDR_WIDTH»10 / / number of address bits

)
« (

i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e r d , wr ,
i n p u t w i r e [DATA_WIDTH-1:0] w . d a t a ,
o u t p u t w i r e empty, f u l l ,

li o u t p u t w i r e [DATA.WIDTH-1:0] r . d a t a
) ;

//signal declaration
w i r e [ADDR_WIDTH-1:0] w.addr , r _ a d d r _ n e x t ;

is w i r e wr_en , f u l l _ t m p ;

/ / body
// write enabled only when FIFO is not full
a s s i g n wr . en = wr & " f u l l _ t m p ;

21 a s s i g n f u l l « f u l l . t m p ;

/ / instantiate fifo control unit
f i f o . c t r l #(.ADDR_WIDTH(ADDR_WIDTH)) c . u n i t

(. c l k (c l k) , . r e s e t (r e s e t) , . r d (r d) , . w r (w r) , . e m p t y (e m p t y) ,
26 . f u l l (f u l l _ t m p) , . w _ a d d r (w . a d d r) ,

. r _ a d d r () , . r _ a d d r _ n e x t (r _ a d d r _ n e x t)) ;

/ / instantiate synchronous SRAM
a l t e r a _ d u a l _ p o r t _ r a m _ s i m p l e

ai #(.DATA_WIDTH(DATA_WIDTH), .ADDR_WIDTH(ADDR.WIDTH)) r a m . u n i t
(. e l k (e l k) , . w e (w r _ e n) , . w _ a d d r (w . a d d r) , . r . a d d r (r _ a d d r _ n e x t) ,

. d (w _ d a t a) , . q (r _ d a t a)) ;
endmodule

5.8 BIBLIOGRAPHIC NOTES

Chapter 8 of the Cyclone II Device Handbook, titled Cyclone II Memory Blocks,
provides detailed information on its internal memory module. Chapter 6 of the
Quartus II Handbook vlO.0.1, titled Recommended HDL Coding Styles, discusses
the HDL descriptions to infer various memory configurations. Altera's Embedded
Peripherah IP User Guide provides detailed information of a full-fledged on-chip
FIFO buffer.

5.9 SUGGESTED EXPERIMENTS

5.9.1 Programmable square-wave generator

A programmable square-wave generator is a circuit that can generate a square wave
with variable on (i.e., logic 1) and off (i.e., logic 0) intervals. The durations of the
intervals are specified by two 4-bit control signals, m and n, which are interpreted as
unsigned integers. The on and off intervals are m*100 ns and n*100 ns, respectively
(recall that the period of the S3 onboard oscillator is 20 ns). Design a programmable

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 133

U U U 1
OUCH

t
POP!
D O O !

:hy8UH-ÜUHtM
Β-Θ888-888ΘΗ

JÜÜH
i

B8B8
Figure 5.13 Pattern for Experiment 5.9.3.

aee 8 D

Figure 5.14 Pattern for Experiment 5.9.4.

square-wave generator circuit. The circuit should be completely synchronous. We
need a logic analyzer or oscilloscope to verify its operation.

5.9.2 Pulse width modulation circuit

The duty cycle of a square wave is defined as the percentage of the on interval (i.e.,
logic 1) in a period. A PWM (pulse width modulation) circuit can generate an
output with variable duty cycles. For a PWM with 4-bit resolution, a 4-bit control
signal, w, specifies the duty cycle. The w signal is interpreted as an unsigned integer
and the duty cycle is j | . Design a PWM circuit with 4-bit resolution and verify its
operation using a logic analyzer or oscilloscope.

5.9.3 Rotating square circuit

In a seven-segment LED display, a square pattern can be created by enabling the
a, b, f, and g segments or the c, d, e, and g segments. We want to design a
circuit that circulates the square patterns on the DEI board's seven-segment LED
displays. The clockwise circulating pattern is shown in Figure 5.13. The circuit
should have an input, en, which enables or pauses the circulation, and an input, cw,
which specifies the direction (i.e., clockwise or counterclockwise) of the circulation.

Design the circuit and verify its operation on the prototyping board. Make sure
that the circulation rate is slow enough for visual inspection.

5.9.4 Heartbeat circuit

We want to create a "heartbeat" for the prototyping board. It repeats the simple
pattern in the four-digit seven-segment display, as shown in Figure 5.14, at a rate
of 72 Hz. Design the circuit and verify its operation on the prototyping board.

www.it-ebooks.info

http://www.it-ebooks.info/

134 REGULAR SEQUENTIAL CIRCUIT

5.9.5 Rotating LED banner circuit

The DEI prototyping board has four seven-segment LED displays and thus only
four symbols can be displayed at a time. We can show more information if the
data are rotated and moved continuously. For example, assume that the message
is 10 digits (i.e., "0123456789"). The display can show the message as "0123",
"1234", "2345", ..., "6789", "7890", ..., "0123". The circuit should have an input,
en, which enables or pauses the rotation, and an input, dir, which specifies the
direction (i.e., rotate left or right).

Design the circuit and verify its operation on the prototyping board. Make sure
that the rotation rate is slow enough for visual inspection.

5.9.6 Enhanced stopwatch

Modify the stopwatch with the following extensions:
• Add an additional signal, up, to control the direction of counting. The stop-

watch counts up when the up signal is asserted and counts down otherwise.
• Add a minute digit to the display. The LED display format should be like

MSSD, where D represents 0.1 second and its range is between 0 and 9, SS rep-
resents seconds and its range is between 00 and 59, and M represents minutes
and its range is between 0 and 9.

Design the new stopwatch and verify its operation with a testing circuit.

5.9.7 FIFO with data width conversion

In some applications, the widths of the write port and read port of a FIFO buffer
may not be the same. For example, a subsystem may write 16-bit data into the
FIFO buffer and another subsystem only reads and removes 8-bit data at a time.
Assume that the width of the write port is twice the width of the read port. Re-
design the FIFO with a modified controller and register file and verify its operation.
The DATA_WIDTH generic should be the width of the read port.

5.9.8 Stack

A stack is a last-in-first-out buffer in which the last stored data are retrieved first.
Storing a data word to a stack is known as a push operation, and retrieving a data
word from a stack is known as a pop operation. The I/O signals of a stack are
similar to those of a FIFO buffer except that we generally use the push and pop
signals in place of the wr and rd signals. Design a stack using a register file and
verify its operation.

5.9.9 ROM-based sign-magnitude adder

We can implement any n-input, m-output function with a 2n-by-m ROM. Consider
the sign-magnitude adder discussed in Section 4.8.2 and assume that a and b are
4-bit input signals. Design this circuit as follows:

1. Write a program in a conventional programming language, such as C or Java,
to generate a 28-by-4 truth table for this circuit.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 135

2. Follow the ROM template in Listing 5.25 to derive the HDL code. Cut and
paste the table to the code.

3. Synthesize the circuit and verify its operation.
4. Check the synthesis report and compare the sizes (in terms of the number of

logic cells) of the original implementation and the ROM-based implementa-
tion.

5. Expand a and b to 8-bit input signals and repeat steps 1 to 4.

5.9.10 ROM-based temperature conversion

Temperature can be measured in Celsius or Fahrenheit scale. Let c and / be a
temperature reading in Celsius and Fahrenheit scales. They are related by

/ = 2 * c + 32 5
The conversion involves multiplication and division operations and direct implemen-
tation requires a significant amount of hardware resource. For a simple application,
such as a digital thermometer, we can create a lookup table for conversion and store
it in a ROM.

Consider a conversion circuit with the following specifications:
• The range is between 0°C and 100°C (32°F and 212°F).
• The input and output are in 8-bit unsigned format.
• A separate format signal indicates whether the input is in Celsius or Fahren-

heit scale. The output is to be converted to another scale.
We can create two lookup tables for the two conversions. Note that because of the
small size of these tables, it is possible to store the two tables in a single Cyclone II
M4K module. Design the circuit and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

FSM

An FSM (finite state machine) is a sequential circuit that transits among a finite
number of internal states. The transitions depend on the current state and external
input and do exhibit a simple, "regular" pattern. In this chapter, we provide an
overview of the basic characteristics and representation of FSMs and discuss the
derivation of HDL codes.

6.1 INTRODUCTION

An FSM is used to model a system that transits among a finite number of internal
states. The transitions depend on the current state and external input. Unlike a
regular sequential circuit, the state transitions of an FSM do not exhibit a simple,
repetitive pattern. Its next-state logic is usually constructed from scratch and is
sometimes known as "random" logic. This is different from the next-state logic of
a regular sequential circuit, which is composed mostly of "structured" components,
such as incrementors and shifters.

In practice, the main application of an FSM is to act as the controller of a large
digital system, which examines the external commands and status and activates
proper control signals to control operation of a data path, which is usually composed
of regular sequential components. This is known as an FSMD (finite state machine
with data path) and is discussed in Chapter 7.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 137
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

138 FSM

Moore
output

Figure 6.1 Block diagram of a synchronous FSM.

6.1.1 Mealy and Moore outputs

The basic block diagram of an FSM is the same as that of a regular sequential
circuit and is repeated in Figure 6.1. It consists of a state register, next-state logic,
and output logic. An FSM is' known as a Moore machine if the output is only
a function of state, and is known as a Mealy machine if the output is a function
of state and external input. Both types of output may exist in a complex FSM,
and we simply refer to it as containing a Moore output and a Mealy output. The
Moore and Mealy outputs are similar but not identical. Understanding their subtle
differences is the key for controller design. The example in Section 6.3.1 illustrates
the behaviors and constructions of the two types of outputs.

6.1.2 FSM representation

An FSM is usually specified by an abstract state diagram or ASM chart (algo-
rithmic state machine chart), both capturing the FSM's input, output, states, and
transitions in a graphical representation. The two representations provide the same
information. The FSM representation is more compact and better for simple ap-
plications. The ASM chart representation is somewhat like a flowchart and is more
descriptive for applications with complex transition conditions and actions.

State diagram A state diagram is composed of nodes, which represent states and
are drawn as circles, and annotated transitional arcs. A single node and its transi-
tion arcs are shown in Figure 6.2(a). A logic expression expressed in terms of input
signals is associated with each transition arc and represents a specific condition.
The arc is taken when the corresponding expression is evaluated true.

The Moore output values are placed inside the circle since they depend only
on the current state. The Mealy output values are associated with the conditions
of transition arcs since they depend on the current state and external input. To
reduce clutter in the diagram, only asserted output values are listed. The output
signal takes the default (i.e., unasserted) value otherwise.

A representative state diagram is shown in Figure 6.3(a). The FSM has three
states, two external input signals (i.e., a and b), one Moore output signal (i.e., yl),
and one Mealy output signal (i.e., yO). The yl signal is asserted when the FSM is
in the sO or s i state. The yO signal is asserted when the FSM is in the sO state
and the a and b signals are "11".

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 139

mo: Moore output
me: Mealy output

logic expression / me = value logic expression / me = value

mo: Moore output
me: Mealy output

to other state to other state

(a) Node

/— state entry

state
name ., S

mo = value

y
Boolean
condition

(me = value)

exit to other ASM
block

state box

decision box

conditional
output box

exit to other ASM
block

(b) ASM block

Figure 6.2 Symbol of a state.

www.it-ebooks.info

http://www.it-ebooks.info/

140 FSM

(a) State diagram (b) ASM chart

Figure 6.3 Example of an FSM.

ASM chart An ASM chart is composed of a network of ASM blocks. An ASM block
consists of one state box and an optional network of decision boxes and conditional
output boxes. A representative ASM block is shown in Figure 6.2(b).

A state box represents a state in an FSM, and the asserted Moore output values
are listed inside the box. Note that it has only one exit path. A decision box tests
the input condition and determines which exit path to take. It has two exit paths,
labeled T and F, which correspond to the true and false values of the condition.
A conditional output box lists asserted Mealy output values and is usually placed
after a decision box. It indicates that the listed output signal can be activated only
when the corresponding condition in the decision box is met.

A state diagram can easily be converted to an ASM chart, and vice versa. The
corresponding ASM chart of the previous FSM state diagram is shown in Fig-
ure 6.3(b).

6.2 FSM CODE DEVELOPMENT

The procedure of developing code for an FSM is similar to that of a regular se-
quential circuit. We first separate the state register and then derive the code for
the combinational next-state logic and output logic. The main difference is the

www.it-ebooks.info

http://www.it-ebooks.info/

FSM CODE DEVELOPMENT 1 4 1

next-state logic. For an FSM, the code for the next-state logic follows the flow of
a state diagram or ASM chart.

For clarity and flexibility, we use symbolic constants to represent the FSM's
states. For examples, the three states in Figure 6.3 can be defined as

localparam [1:0] sO = 2'bOO,
s i * 2'bOl ,
s2 = 2'blO;

During synthesis, software usually can recognize the FSM structure and may map
these symbolic constants to different binary representations (e.g., one-hot codes),
a process known as state assignment.

The complete code of the FSM is shown in Listing 6.1. It consists of segments
for the state register, next-state logic, Moore output logic, and Mealy output logic.

Listing 6.1 FSM example
module f s m _ e g _ m u l t _ s e g

2 (

i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e a , b ,
o u t p u t w i r e yO, y l

) :
7

/ / symbolic state declaration
l o c a l p a r a m [1 : 0] sO » 2'bOO,

s i = 2 ' b O l ,
s2 - 2 ' b l O ;

12
/ / signal declaration
reg [1 : 0] s t a t e _ r e g , s t a t e . n e x t ;

/ / state register
i7 a l w a y s <S(posedge e l k , p o s e d g e r e s e t)

i f (r e s e t)
s t a t e . r e g <» sO;

e l s e
s t a t e . r e g <= s t a t e . n e x t ;

22

/ / next—state logic
a l w a y s β*

c a s e (s t a t e . r e g)
sO: i f (a)

27 ¡ f (b)
s t a t e . n e x t " s 2 ;

e l s e
s t a t e . n e x t » s i ;

e l s e
32 s t a t e . n e x t » sO;

s i : i f (a)
s t a t e . n e x t » sO;

e l s e
s t a t e . n e x t - s i ;

37 s 2 : s t a t e . n e x t ■ sO;
d e f a u l t : s t a t e . n e x t " sO;

e n d c a s e

/ / Moore output logic
42 a s s i g n y l ■ (s t a t e _ r e g » » s O) I I (s t a t e _ r e g = - s l) ;

www.it-ebooks.info

http://www.it-ebooks.info/

142 FSM

/ / Mealy output logic
assign yO » (state_reg«=sO) k a k b;

endmodule

The key part is the next-state logic. It uses a case statement with the state_reg
signal as the selection expression. The next state (i.e., state-next signal) is deter-
mined by the current state (i.e., state_reg) and external input. The code for each
state basically follows the activities inside each ASM block of Figure 6.3(b).

An alternative code is to merge next-state logic and output logic into a single
combinational block, as shown in Listing 6.2.

Listing 6.2 FSM with merged combinational logic
module f sm_eg_2_seg

(
input wire elk , reset ,
input wire a, b,
output reg yO, yl

);

/ / symbolic state declaration
i localparam [1:0] sO = 2'b00,

si - 2'b01 ,
s2 = 2'blO;

/ / signal declaration
reg [1:0] state.reg , state.next;

i

/ / state register
always Q(posedge elk, posedge reset)

if (reset)
state.reg <= sO;

i else
state_reg <= state.next;

/ / next—state logic and output logic
always β*

, begin
state.next ■ state.reg; / / default next state: the same
yl - 1'bO; / / default output: 0
yO - 1 'bO; / / default output: 0
case (state.reg)

> sO: begin
yl = I'M;
if (a)

if (b)
begin

i state.next ■ s2;
yO = I 'M;

end
else

state.next » s i ;
i end

s i : begin
yl = I'M;
if (a)

state.next - sO;
i end

s2: state.next · sO;
default: state.next = sO;

endcase
end

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 143

49 endmodule

Note that the default output values are listed at the beginning of the code.
The code for the next-state logic and output logic follows the ASM chart closely.

Once a detailed state diagram or ASM chart is derived, converting an FSM to HDL
code is almost a mechanical procedure. Listings 6.1 and 6.2 can serve as templates
for this purpose.

6.3 DESIGN EXAMPLES

6.3.1 Rising-edge detector

The rising-edge detector is a circuit that generates a short one-clock-cycle tick when
the input signal changes from 0 to 1. It is usually used to indicate the onset of a
slow time-varying input signal. We design the circuit using both Moore and Mealy
machines, and compare their differences.

Moore-based design The state diagram and ASM chart of a Moore machine-based
edge detector are shown in Figure 6.4. The zero and one states indicate that the
input signal has been 0 and 1 for a while. The rising edge occurs when the input
changes to 1 in the zero state. The FSM moves to the edg state and the output,
t i ck , is asserted in this state. A representative timing diagram is shown at the
middle of Figure 6.5. The code isshown in Listing 6.3.

Listing 6.3 Moore machine-based edge detector
i module e d g e . d e t e c t . m o o r e

(
i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e l e v e l ,
o u t p u t r e g t i c k

«) ;

/ / symbolic state declaration
l o c a l p a r a m [1 : 0]

z e r o · 2 ' b O O ,
u edg = 2 ' b O l ,

one » 2 ' b l O ;

/ / signal declaration
r e g [1 : 0] s t a t e . r e g , s t a t e . n e x t ;

16

/ / state register
a l w a y s «Kposedge e l k , p o s e d g e r e s e t)

i f (r e s e t)
s t a t e . r e g <= z e r o ;

2i e l s e
s t a t e _ r e g <■ s t a t e . n e x t ;

/ / next—state logic and output logic
a l w a y s 0 *

26 b e g i n
s t a t e . n e x t = s t a t e . r e g ; / / default state: the same
t i c k « 1 'bO; / / default output: 0
c a s e (s t a t e . r e g)

z e r o :

www.it-ebooks.info

http://www.it-ebooks.info/

144 FSM

level'

level'

level

(a) State diagram (b) ASM chart

Figure 6.4 Edge detector based on a Moore machine.

tl b

Moore
machine

Mealy
machine

elk

level

state

tick

tick

ΧΖΞ.

X

XIZ^C

l_

X zero

Figure 6.5 Timing diagram of two edge detectors.

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES

level'

level'

level

(a) State diagram (b) ASM chart

Figure 6.6 Edge detector based on a Mealy machine.

if (level)
state.next edg;

edg:
begin

tick = l'bl;
if (level)

state.next · one;
else

state.next ■ zero;
end

one:
if Clevel)

state.next » zero;
default: state.next » zero;

endcase
end

endmoduie

Mealy-based design The state diagram and ASM chart of a Mealy machine-based
edge detector are shown in Figure 6.6. The zero and one states have a similar
meaning. When the FSM is in the zero state and the input changes to 1, the
output is asserted immediately. The FSM moves to the one state at the rising edge
of the next clock and the output is deasserted. A representative timing diagram is
shown at the bottom of Figure 6.5. Note that due to the propagation delay, the

26 b e g i

si en

36 r e s e

4i /

www.it-ebooks.info

http://www.it-ebooks.info/

146 FSM

output signal is still asserted at the rising edge of the next clock (i.e., at i i) . The
code is shown in Listing 6.4.

Listing 6.4 Mealy machine-based edge detector
module edge.detect.mealy

(
3 input wire elk, reset ,

input wire level,
output reg tick

);

8 / / symbolic state declaration
localparam zero ■ 1'bO,

one » l 'bl;

/ / signal declaration
i3 reg state.reg, state.next;

/ / state register
always OCposedge elk, posedge reset)

if (reset)
is state.reg <■ zero;

else
state_reg <- state.next;

/ / next-state logic and output logic
23 always Q*

begin
state.next - state.reg; / / default state: the same
tick ■ 1'bO; / / default output: 0
case (state.reg)

28 zero:
if (level)

begin
tick = l 'bl;
state.next · one;

33 e n d
one :

if ("level)
state_next ■ zero;

default: state_next ■ zero;
3β endcase

end
endmodule

Direct implementation Since the transitions of the edge detector circuit are very
simple, it can be implemented without using an FSM. We include this implemen-
tation for comparison purposes. The circuit diagram is shown in Figure 6.7. It
can be interpreted that the output is asserted only when the current input is 1 and
the previous input, which is stored in the register, is 0. The corresponding code is
shown in Listing 6.5.

Listing 6.5 Gate-level implementation of an edge detector
module edge.detect.gate

(
input wire elk , reset ,
input wire level ,

5 output wire tick

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 147

level ·
elk

Figure 6.7 Gate-level implementation of an edge detector.

) ;

/ / signal declaration
reg d e l a y . r e g ;

1Ü

/ / delay register
always <a(posedge e l k , posedge r e s e t)

if (r e s e t)
de lay_reg <■ 1'bO;

is e l s e
de lay_reg <= l e v e l ;

/ / decoding logic
ass ign t i c k « "de lay_reg ft l e v e l ;

2o endmodule

Although the descriptions in Listings 6.4 and 6.5 appear to be very different,
they describe the same circuit. The circuit diagram can be derived from the FSM
if we assign 0 and 1 to the zero and one states.

Comparison Whereas both Moore machine- and Mealy machine-based designs can
generate a short tick at the rising edge of the input signal, there are several subtle
differences. The Mealy machine-based design requires fewer states and responds
faster, but the width of its output may vary and input glitches may be passed to
the output.

The choice between the two designs depends on the subsystem that uses the
output signal. Most of the time the subsystem is a synchronous system that shares
the same clock signal. Since the FSM's output is sampled only at the rising edge of
the clock, the width and glitches do not matter as long as the output signal is stable
around the edge. Note that the Mealy output signal is available for sampling at
i i , which is one clock cycle faster than the Moore output, which is available at t-¡,.
Therefore, the Mealy machine-based circuit is preferred for this type of application.

6.3.2 Debouncing circuit

The slide and pushbutton switches on the prototyping board are mechanical devices.
When pressed, the switch may bounce back and forth a few times before settling
down. The bounces lead to glitches in the signal, as shown at the top of Figure 6.8.
The bounces usually settle within 20 ms. The purpose of a debouncing circuit is
to filter out the glitches associated with switch transitions. The debounced output
signals from two FSM-based design schemes are shown in the two bottom parts of
Figure 6.8. The first design scheme is discussed in this subsection and the second
scheme is left as an exercise in Experiment 6.5.2. A better alternative FSMD-based
scheme is discussed in Section 7.2.1.

d

>

tick

delayjeg

www.it-ebooks.info

http://www.it-ebooks.info/

148 FSM

original
switch output

debounced output
(scheme 1)

debounced output
(scheme 2)

bounces
(last less than 20 ms)

20 ms 1

4

bounces
(last less than 20 ms)

u
*

20 ms

I

*

i — 2 0 ms

Π
I

-20 ms

Figure 6.8 Original and debounced waveforms.

An FSM-based design uses a free-running 10-ms timer and an FSM. The timer
generates a one-clock-cycle enable tick (the m_tick signal) every 10 ms and the
FSM uses this information to keep track of whether the input value is stabilized. In
the first design scheme, the FSM ignores the short bounces and changes the value
of the debounced output only after the input is stabilized for 20 ms. The output
timing diagram is shown at the middle of Figure 6.8. The state diagram of this
FSM is shown in Figure 6.9. The zero and one states indicate that the switch
input signal, sw, has been stabilized with 0 and 1 values. Assume that the FSM is
initially in the zero state. It moves to the wa i t l . l state when sw changes to 1. At
the wa i t l . l state, the FSM waits for the assertion of m_tick. If sw becomes 0 in
this state, it implies that the width of the 1 value does not last long enough and
the FSM returns to the zero state. This action repeats two more times for the
waitl_2 and wait 1.3 states. The operation from the one state is similar except
that the sw signal must be 0.

Since the 10-ms timer is free-running and the m.tick tick can be asserted at
any time, the FSM checks the assertion three times to ensure that the sw signal
is stabilized for at least 20 ms (it is actually between 20 and 30 ms). The code is
shown in Listing 6.6. It includes a 10-ms timer and the FSM.

Listing 6.6 FSM implementation of a debouncing circuit
module db_fsm

(
input wire e l k , r e s e t ,
input wire sw ,
output reg db

);

/ / symbolic
localparam

state declaration
[2:0]
zero
w a i t l .
u a i t l .
w a i t l .
one
waitO.

3'bOOO,
3 ' b 0 0 1 ,
3'bOlO,
3 'bOl l ,
3 'blOO,
3 'b lOl ,

26 b e g i

si en

36 r e s e

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 149

Figure 6.9 State diagram of a debouncing circuit.

wait0_2 = 3'bllO,
wait0_3 - 3'blll;

/ / number of counter bits (2'N * 20ns = 10ms tick)
localparam N -19;

/ / signal declaration
reg [N-1:0] q_reg;
wire [N-1:0] q .next;
wire m.tick;
reg [2:0] s t a t e . r e g , s t a t e . n e x t ;

// body

//
// counter to generate 10 ms tick
//
always Q(posedge elk)

q.reg <» q_next;
/ / next—state logic
assign q.next » q_reg + 1;
/ / output tick
assign m.tick - (q _ r e g « 0) ? l ' b l : 1'bO;

26 b e g i

si en

36 r e s e

4i /

26 b e g i

www.it-ebooks.info

http://www.it-ebooks.info/

150 FSM

/ /
/ / debouncing FSM
//= // state register

always OCposedge e lk , posedge r e s e t)
if (r e s e t)

s t a t e . r e g <■ zero;
e l s e

s tate_reg <■ s t a t e . n e x t ;

/ / next—state logic and output logic
always 0*
begin

s t a t e . n e x t = s t a t e . r e g ; / / default state: the same
db - 1'bO; / / default output: 0
case (s ta te_reg)

zero:
if (sw)

state.next - waitl_l;
waitl.l:

if ("sw)
state.next - zero;

else
if (m.tick)

state.next = waitl_2;
waitl_2:

if ("su)
state.next - zero;

else
if (m.tick)

state.next = uaitl_3;
waitl_3:

if ("sw)
state.next - zero;

else
if (m.tick)

s t a t e . n e x t = one;
one :

begin
db = l ' b l ;
i f ("sw)

s t a t e . n e x t - wai tO. l ;
end

waitO. l :
begin

db = l ' b l ;
if (sw)

s t a t e . n e x t = one;
e l s e

if (m.t ick)
s t a t e . n e x t = wait0_2;

end
wait0_2:

begin
db » l ' b l ;
if (sw)

s t a t e . n e x t = one;
e l s e

if (m. t ick)
s t a t e . n e x t ■ wait0_3;

end

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 1 5 1

SW(0) level tick
edge

> detector

en q
counter

>

bin sseg

bin_to_sseg

bin sseg

bin_to_sseg

elk

sw db
debouncing

level tick

edge
> detector

en q
counter

>

bin sseg

binJo_sseg

bin sseg

bin_to_sseg

hex3

hex2

hexl

hexO

Figure 6.10 Debouncing testing circuit.

waitO_3:
begin

db
if

- I ' M ;
(sw)
s t a t e . n e x t «

e l s e

end
d e f a u l t :

endcase
e n d

endmodule

if (m . t i c k)
s t a t e . n e x t

s t a t e _ n e x t »

one ;

- z e r o ;

z e r o ;

6.3.3 Testing circuit

We use a bounce counting circuit to verify operation of the rising-edge detector
and the debouncing circuit. The block diagram is shown in Figure 6.10. The input
of the verification circuit is from a slide switch. In the lower part, the signal is
first fed to the debouncing circuit and then to the rising-edge detector. Therefore,
a one-clock-cycle tick is generated each time the switch is moved up and down.
The tick in turn controls the enable input of an 8-bit counter, whose content is
passed to the seven-segment LED decoders and shown on the left two digits of
the prototyping board's seven-segment LED display. In the upper part, the input
signal is fed directly to the edge detector without the debouncing circuit, and the
number is shown on the right two digits of the prototyping board's seven-segment
LED display. The bottom counter thus counts one desired 0-to-l transition as well
as the bounces.

The code is shown in Listing 6.7. It basically uses component instantiation to
realize the block diagram. In addition, a pushbutton switch is used to clear the
counters to zero.

26 b e g i

si en

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

152 FSM

Listing 6.7 Verification circuit for a debouncing circuit and rising-edge detector

module debounce. test
(

input wire e lk , r e s e t ,
input wire [0:0] sw,
input wire [0:0] key,
output wire [6:0] hex3, hex2, hexl , hexO

) ;

/ / signal declaration
reg [7:0] b . reg , d_reg;
wire [7:0] b.next , d_next;
reg sw.reg , db_reg;
wire db . l eve l , d b . t i c k , b t n . t i c k , c l r ;

/ / instantiate debouncing circuit
db_fsm db_unit

(. c l k (c l k) , . r e s e t (r e s e t) , . s w (s w [0]) , . d b (d b _ l e v e l)) ;
/ / instantiate four instances of 7—seg LED decoders
bin_to_sseg disp_unit_0

(.bin(d_reg [3 : 0]) , . s seg(bexO)) ;
bin_to_sseg d isp_uni t_ l

(. b i n (d _ r e g [7 : 4]) , . s s e g i h e x l)) ;
bin_to_sseg disp_unit_2

(. b i n (b _ r e g [3 : 0]) , . e s e g (h e x 2)) ;
bin_to_sseg disp_unit_3

i (. b i n (b _ r e g [7 : 4]) , . s s e g (h e x 3)) ;

/ / edge detection circuits
always 9(posedge elk)

begin
sw.reg <= sw [0] ;
db.reg <» d b . l e v e l ;

end
ass ign b t n . t i c k = "sw.reg ft sw [0] ;
ass ign db . t i ck ■ "db_reg ft d b . l e v e l ;

/ / two counters
ass ign c lr ■ "key[0] ;
always QCposedge e lk)

begin
i b_reg <- b_next;

d_reg <= d.next;
end

ass ign b_next = (c l r) ? 8'bO :
(b t n . t i c k) ? b.reg + 1 : b .reg;

i ass ign d.next - (c l r) ? 8'bO :
(db_tick) ? d_reg + 1 : d_reg;

endmodule

The seven-segment display shows the accumulated numbers of 0-to-l edges of the
bounced and debounced switch input. After pressing and releasing the pushbutton
switch several times, we can determine the average number of bounces for each
transition.

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

 a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHIC NOTES 153

6.4 BIBLIOGRAPHIC NOTES

The article "Coding and Scripting Techniques for FSM Designs with Synthesis-
Optimized, Glitch-Free Outputs" by C. E. Cummings provides a detailed discussion
on the various coding styles of FSM.

6.5 SUGGESTED EXPERIMENTS

6.5.1 Dual-edge detector

A dual-edge detector is similar to a rising-edge detector except that the output is
asserted for one clock cycle when the input changes from 0 to 1 (i.e., rising edge)
and 1 to 0 (i.e., falling edge).

1. Design a circuit based on the Moore machine and draw the state diagram and
ASM chart.

2. Derive the HDL code based on the state diagram of the ASM chart.
3. Derive a testbench and use simulation to verify operation of the code.
4. Replace the rising detectors in Section 6.3.3 with dual-edge detectors and

verify their operations.
5. Repeat steps 1 to 4 for a Mealy machine-based design.

6.5.2 Alternative debouncing circuit

One problem with the debouncing design in Section 6.3.2 is the delayed response
of the onset of a switch transition. An alternative is to react to the first edge in
the transition and then wait for a small amount of time (at least 20 ms) to have
the input signal settled. The output timing diagram is shown at the bottom of
Figure 6.8. When the input changes from 0 to 1, the FSM responds immediately.
The FSM then ignores the input for about 20 ms to avoid glitches. After this
amount of time, the FSM starts to check the input for the falling edge. Follow the
design procedure in Section 6.3.2 to design the alternative circuit.

1. Derive the state diagram and ASM chart for the circuit.
2. Derive the HDL code.
3. Derive the HDL code based on the state diagram and ASM chart.
4. Derive a testbench and use simulation to verify operation of the code.
5. Replace the debouncing circuit in Section 6.3.3 with the alternative design

and verify its operation.

6.5.3 Parking lot occupancy counter

Consider a parking lot with a single entry and exit gate. Two pairs of photo sensors
are used to monitor the activity of cars, as shown in Figure 6.11. When an object
is between the photo transmitter and the photo receiver, the light is blocked and
the corresponding output is asserted to 1. By monitoring the events of two sensors,
we can determine whether a car is entering or exiting or a pedestrian is passing
through. For example, the following sequence indicates that a car enters the lot:

• Initially, both sensors are unblocked (i.e., the a and b signals are "00").
• Sensor a is blocked (i.e., the a and b signals are "10").

www.it-ebooks.info

http://www.it-ebooks.info/

154 FSM

Figure 6.11 Conceptual diagram of gate sensors.

• Both sensors are blocked (i.e., the a and b signals are "11").
• Sensor a is unblocked (i.e., the a and b signals are "01").
• Both sensors becomes unblocked (i.e., the a and b signals are "00").

Design a parking lot occupancy counter as follows:
1. Design an FSM with two input signals, a and b, and two output signals,

enter and ex i t . The enter and ex i t signals assert one clock cycle when a
car enters and one clock cycle when a car exits the lot, respectively.

2. Derive the HDL code for the FSM.
3. Design a counter with two control signals, inc and dec, which increment and

decrement the counter when asserted. Derive the HDL code.
4. Combine the counter and the FSM and seven-segment LED decoding circuits.

Use two pushbuttons to mimic operation of the two sensor outputs. Verify
operation of the occupancy counter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

FSMD

An FSMD (finite state machine with data path) combines an FSM and regular
sequential circuits. The FSMD can be used to implement systems described by RT
(register transfer) operation, which is a methodology to realize a software algorithm
in hardware. In this chapter, we provide an overview of the RT operation and
extended ASM chart, discuss the derivation of HDL codes, and use several examples
to illustrate the development.

7.1 INTRODUCTION

An FSMD (finite state machine with data path) combines an FSM and regular se-
quential circuits. The FSM, which is sometimes known as a control path, examines
the external commands and status and generates control signals to specify opera-
tion of the regular sequential circuits, which are known collectively as a data path.
Algorithms described in RT (register transfer) operation, in which the operations
are specified as data manipulation and transfer among a collection of registers, can
be converted to FSMD and realized in hardware.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 155
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

156 FSMD

7.1.1 Single RT operation

An RT operation specifies data manipulation and transfer for a single destination
register. It is represented by the notation

Tdest 4~ J (rsrcl > Tsrc2 > · · · j r
Srcn).

where r<iest is the destination register; r s r c i , rsrC2, and rarcn are the source registers;
and /(·) specifies the operation to be performed. The notation indicates that the
contents of the source registers are fed to the /(·) function, which is realized by
a combinational circuit, and the result is passed to the input of the destination
register and stored in the destination register at the next rising edge of the clock.
The following are several representative RT operations:

• r l «- 0. A constant 0 is stored in the r l register.
• r l <- r l . The content of the r l register is written back to itself.
• r2 <- r2 » 3. The r2 register is shifted right three positions and then

written back to itself.
• r2 4- r l . The content of the r l register is transferred to the r2 register.
• i <- i + 1. The content of the i register is incremented by 1 and the result

is written back to itself.
• d «- s i + s2 + s3. The summation of the s i , s2, and s3 registers is written

to the d register.
• y <— a*a. The a squared is written to the y register.

A single RT operation can be implemented by constructing a combinational
circuit for the /(·) function and connecting the input and output of the registers.
For example, consider the a <— a-b+1 operation. The /(·) function involves a
subtractor and an incrementor. The block diagram is shown in Figure 7.1(a). For
clarity, we use the _reg and .next sufBxes to represent the input and output of a
register. Note that an RT operation is synchronized by an embedded clock. The
result from the / (·) function is not stored to the destination register until the next
rising edge of the clock. The timing diagram of the previous RT operation is shown
in Figure 7.1(b).

7.1.2 ASMD chart

A circuit based on the RT methodology specifies which RT operations should be
executed in each step. Since an RT operation is done on a clock-by-clock basis,
its timing is similar to a state transition of an FSM. Thus, an FSM is a natural
choice to specify the sequencing of an RT algorithm. We extend the ASM chart to
incorporate RT operations and call it an ASMD (ASM with data path) chart. The
RT operations are treated as another type of activity and can be placed where the
output signals are used.

A segment of an ASMD chart is shown in Figure 7.2(a). It contains one destina-
tion register, r l , which is initialized with 8, added with content of the r2 register,
and then shifted left two positions. Note that the r l register must be specified in
each state. When r l is not changed, the r l <— r l operation should be used to
maintain its current content, as in the s3 state. In future discussion, we assume
that r <- r is the default RT operation for the r register and do not include it
in the ASMD chart. Implementing the RT operations of an ASMD chart involves
a multiplexing circuit to route the desired next value to the destination register.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 157

-

dk

dk |

b_reg

a_reg

+1
a_next

(a) Block diagr i m

d q

>

d q

>

a_reg

b_reg

¡ |

(| Í 3 s i)

»I I 7 1 X 5

I—T«, L_Toq

(b) Timing diagram

Figure 7.1 Block and timing diagrams of an RT operation.

sO

rl 8

s1

M r

s2 ,

r1 r

s3 <

'

1+r2

'

1 « 2

'

rl rl

«2

state_reg

dk

8 —
rl.next

d q
M_reg

d q

♦ > r2_reg

(a) ASMD segment (b) Block diagram

Figure 7.2 Realization of an ASMD segment.

www.it-ebooks.info

http://www.it-ebooks.info/

158 FSMD

For example, the previous segment can be implemented by a 4-to-l multiplexer, as
shown in Figure 7.2(b). The current state (i.e., the output of the state register) of
the FSM controls the selection signal of the multiplexer and thus chooses the result
of the desired RT operation.

An RT operation can also be specified in a conditional output box, as the r2
register shown in Figure 7.3(a). Depending on the a>b condition, the FSMD per-
forms either r2 4- r2+a or r2 <- r2+b. Note that all operations are done in parallel
inside an ASMD block. We need to realize the a>b, r2+a, and r2+b operations and
use a multiplexer to route the desired value to r2 . The block diagram is shown in
Figure 7.3(b).

7.1.3 Decision box with a register

The appearance of an ASMD chart is similar to that of a normal flowchart. The
main difference is that the RT operation in an ASMD chart is controlled by an
embedded clock signal and the destination register is updated when the FSMD
exits the current ASMD block, but not within the block. The r *- r - 1 operation
actually means that:

• r_next = r_reg - 1;
• r_reg <= r_next at the rising edge of the clock (i.e., when the FSMD exits

the current block).
This "delayed store" may introduce subtle errors when a register is used in a decision
box. Consider the FSMD segment in Figure 7.4(a). The r register is decremented
in the state box and used in the decision box. Since the r register is not updated
until the FSMD exits the block, the old content of r is used for comparison in
the decision box. If the new value of r is desired, we should use the output of
the combinational logic (i.e., r_next) in the decision box (i.e., replace the r==0
expression with r_next==0), as shown in Figure 7.4(b).

Block diagram of an FSMD The conceptual block diagram of an FSMD is divided
into a data path and a control path, as shown in Figure 7.5. The data path performs
the required RT operations. It consists of:

• Data registers: store the intermediate computation results
• Functional units: perform the functions specified by the RT operations
• Routing network: routes data between the storage registers and the functional

units
The data path follows the cont ro l signal to perform the desired RT operations
and generates the i n t e r n a l s t a t u s signal.

The control path is an FSM. As a regular FSM, it contains a state register,
next-state logic, and output logic. It uses the external command signal and the
data path's s t a t u s signal as the input and generates the cont ro l signal to control
the data path operation. The FSM also generates the ex te rna l s t a t u s signal to
indicate the status of the FSMD operation.

Note that although an FSMD consists of two types of sequential circuits, both
circuits are controlled by the same clock, and thus the FSMD is still a synchronous
system.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

SO

rl rl -1

pi—< a»D y— i—i

(ft Γ2-Η) j (ft ft-m J

(a) ASM block

— -1

•

0 ^ S _r

w
a q
>

rl

d q

>
r2_reg

state_reg

(b) Block diagram

Figure 7.3 Realization of an RT operation in a conditional output box.

www.it-ebooks.info

http://www.it-ebooks.info/

FSMD

(a) Use old value of r (b) Use new value of r

Figure 7.4 ASM block affected by a delayed store.

data path

data
input

command

routing
network

functional units

internal status

next-state
logic

routing
network

I
d q

data
> registers

control signal

d q
state

> register
output
logic

data
output

external
status

control path

Figure 7.5 Block diagram of an FSMD.

www.it-ebooks.info

http://www.it-ebooks.info/

CODE DEVELOPMENT OF AN FSMD 1 6 1

7.2 CODE DEVELOPMENT OF AN FSMD

We use an improved debouncing circuit to demonstrate derivation of the FSMD
code. Although the debouncing circuit in Section 6.3.2 uses an FSM and a timer
(which is a regular sequential circuit), it is not based on the RT methodology
because the two units are running independently and the FSM has no control over
the timer. Since the 10-ms enable tick can be asserted at any time, the FSM does
not know how much time has elapsed when the first tick is detected in the w a i t l . l
or waitO_l state. Thus, the waiting period in this design is between 20 and 30 ms
but is not an exact interval. This deficiency can be overcome by applying the RT
methodology. In this section, we use this improved debouncing circuit to illustrate
FSMD code development.

7.2.1 Debouncing circuit based on RT methodology

With the RT methodology, we can use an FSM to control the initiation of the timer
to obtain the exact interval. The ASMD chart is shown in Figure 7.6. The circuit is
expanded to include two output signals: db_level, which is the debounced output,
and db. t ick, which is a one-clock-cycle enable pulse asserted at the zero-to-one
transition. The zero and one states mean that the sw input has been stabilized
for 0 and 1, respectively. The wai t l and waitO states are used to filter out short
glitches. The sw signal must be stable for a certain amount of time or the transition
will be treated as a glitch. The data path contains one register, q, which is 21 bits
wide. Assume that the FSMD is originally in the zero state. When the sw input
signal becomes 1, the FSMD moves to the wai t l state and initializes q to " 1 . . . 1".
In the wai t l state, the q decrements in each clock cycle. If sw remains as 1, the
FSMD returns to this state repeatedly until q reaches " 0 . . . 0" and then moves to
the one state.

Recall that the 50-MHz (i.e., 20-ns period) system clock is used on the proto-
typing board. Since the FSMD stays in the wai t l state for 221 clock cycles, it is
about 40 ms (i.e., 221*20 ns). We can modify the initial value of the q register to
obtain the desired wait interval.

There are two ways to derive the HDL code: one with explicit description of
the data path components and the other with implicit description of the data path
components.

7.2.2 Code with explicit data path components

The first approach to FSMD code development is to separate the control FSM and
the key data path components. From an ASMD chart, we first identify the key
components in the data path and the associated control signals and then describe
these components in individual code segments.

The key data path component of the debouncing circuit ASMD chart is a custom
21-bit decrement counter that can:

• Be initialized with a specific value
• Count downward or pause
• Assert a status signal when the counter reaches 0

www.it-ebooks.info

http://www.it-ebooks.info/

162 FSMD

/q_next = q-i\
Vqq-nexty

(dbjick = 1 j

one ♦

dbjevel = 1

- F — ^ sw==0 \

&

».__

waitO

dbjevel = 1

sw==0

T

(qjiext = q- í \
q_q_nexy

^_next==oV

T

Figure 7.6 ASMD chart of a debouncing circuit.

www.it-ebooks.info

http://www.it-ebooks.info/

CODE DEVELOPMENT OF AN FSMD 1 6 3

We can create a binary counter with a q_load signal to load the initial value and
a q_dec signal to enable the counting. The counter also generates a q_zero status
signal, which is asserted when the counter reaches zero. The complete data path
is composed of the q register and the next-state logic of the custom decrement
counter. A comparison circuit is included to generate the q_zero status signal.
The control path consists of an FSM, which takes the sw input and the q_zero
status and asserts the control signals, q_load and q.dec, according to the desired
action in the ASMD chart. The HDL code follows the data path specification and
the ASMD chart, and is shown in Listing 7.1.

Listing 7.1 Debouncing circuit with an explicit data path component
module debounce.explicit

2 (

input wire elk, reset,
input wire sw,
output reg db.level, db.tick

) ;
7

/ / symbolic state declaration
localparam [1:0]

zero » 2'bOO,
waitO » 2'bOl,

12 one ■ 2'blO,
waitl - 2'bl l ;

/ / number of counter bits (2'N * 20ns = 40ms)
localparam N-21;

17
/ / signal declaration
reg [1:0] state.reg, state.next;
reg [N-1:0] q_reg;
wire [N-i:0] q.next;

22 wire q_zero;
reg q.load , q_dec;

/ / body
// fsmd state & data registers

27 always OCposedge elk, posedge reset)
if (reset)

begin
state.reg <~ zero;
q.reg <= 0;

32 end
else

begin
state.reg <= state.next;
q_reg <« q_next;

37 end

/ / FSMD data path (counter) next—state logic
assign q.next = (q.load) ? {Nil 'bl}} : / / load 1..1

(q_dec) ? q_reg - 1 : / / decrement
42 q.reg;

/ / status signal
assign q_zero = (q_next»»0);

/ / FSMD control path next—state logic
47 always β*

begin

www.it-ebooks.info

http://www.it-ebooks.info/

164 FSMD

state.next » state_reg; / / default state: the same
q.load = 1'bO; / / default output: 0
q_dec » 1'bO; / / default output: O

52 db_tick - 1'bO; / / default output: 0
case (state.reg)

zero:
begin

db.level = 1'bO;
57 ¡ f (SW)

begin
state.next - waitl;
q.load - l'bl;

end
62 end

waitl:
begin

db.level = 1'bO;
if (sw)

67 begin
q_dec = 1'bl ;
if (q.zero)

begin
state.next » one;

72 db.tick = l'bl;
end

end
else / / sw==0

state.next - zero;
77 end

one:
begin

db.level - l 'bl;
if ("sw)

82 begin
state.next = waitO;
q.load - l 'bl;

end
end

87 wal tO:
begin

db.level ■ l'bl;
if ("sw)

begin
»2 q.dec » l'bl;

if (q.zero)
state.next = zero;

end
else / / sw==l

97 state.next - one;
end

default: state.next - zero;
endcase

end
102 endmodule

7.2.3 Code with implicit data path components

An alternative coding style is to embed the RT operations within the FSM control
path. Instead of explicitly denning the data path components, we just list RT

www.it-ebooks.info

http://www.it-ebooks.info/

CODE DEVELOPMENT OF AN FSMD 165

operations with the corresponding FSM state. The code of the debouncing circuit
is shown in Listing 7.2.

Listing 7.2 Debouncing circuit with an implicit data path component

module debounce
(

input wire elk , reset ,
input wire sw,
output reg db_ leve l , db . t ick

) ;

/ / symbolic state declaration
localparam [1:0]

zero - 2'bOO,
waitO ■ 2 'b01 ,
one - 2'blO,
wait l - 2 ' b l l ;

/ / number of counter bits (2'N * 20ns = 40ms)
localparam N-21;

/ / signal declaration
reg [N-1:0] q .reg , q .next;
reg [1:0] s t a t e . r e g , s t a t e . n e x t ;

/ / body
i / / fsmd state & data registers

always <0(posedge e lk , posedge r e s e t)
if (r e s e t)

begin
s t a t e . r e g <= zero;

• q.reg <= 0;
end

e l s e
begin

s t a t e . r e g <» s t a t e . n e x t ;
i q.reg <« q_next;

end

/ / next—state logic & data path functional units/routing
always 0*

t begin
s t a t e . n e x t « s ta te_reg ; / / default state: the same
q.next = q .reg; / / default q: unchnaged
db. t ick » 1'bO; / / default output: 0
case (s t a t e . r e g)

i zero:
begin

db . l eve l = 1'bO;
i f (sw)

begin
* s t a t e . n e x t = wa i t l ;

q.next - { N i l ' b l } } ; / / load 1..1
end

end
wa i t l :

■s begin
db . l eve l - 1'bO;
i f (sw)

begin
q.next · q.reg - 1;

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

166 FSMD

i f (q_next==0)
begin

s t a t e . n e x t » one;
db . t i ck - l ' b l ;

end
end

e l s e / / sw==0
s t a t e . n e x t » zero;

end
one :

begin
d b . l e v e l - l ' b l ;
if ("su)

begin
s t a t e . n e x t « waitO;
q.next - { N i l ' b l } } ; / / load 1..1

end
end

uaitO:
begin

d b . l e v e l - l ' b l ;
if (-su)

begin
q.next = q.reg - 1;
if (q_next==0)

s t a t e . n e x t - zero;
end

e l s e / / sw==l
s t a t e . n e x t » one;

i end
de fau l t : s t a t e . n e x t » zero;

endcase
end

endmodule

The code consists of a memory segment and a combinational logic segment. The
former contains the state register of the FSM and the data register of the data
path. The latter basically specifies the next-state logic of the control path FSM.
Instead of generating control signals, the next data register values are specified in
individual states. The next-state logic of the data path, which consists of functional
units and a routing network, is created accordingly.

7.2.4 Comparison

Code with implicit data path components essentially follows the ASMD chart. We
just convert the chart to an HDL description. Although this approach is simpler
and more descriptive, we rely on synthesis software for data path construction and
have less control. This can best be explained by an example. Consider the ASMD
segment in Figure 7.7. The implicit description becomes

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

 e

www.it-ebooks.info

http://www.it-ebooks.info/

CODE DEVELOPMENT OF AN FSMD 167

βΐ , ,

d1 a * b

L—

s2 , ,

d2 b*c

s3 ,,

d3 a * c

' '

—-!

Figure 7.7 ASMD segment with sharing opportunity.

case (s ta t e_reg)
s i :

begin
dl_next =

end
s 2 :

begin
d2_next =

a

b

*

*

b ;

c;

s 3 :
end

J:
begin

d3_next = a * c;

end

endcase

The synthesis software may infer three multipliers. Since a combinational multiplier
is a complex circuit, it is more efficient to share the circuit. We can use explicit
description to isolate the multiplier:

case (s t a t e . r e g)
s i :

begin
in l = a;
in2 = b;

www.it-ebooks.info

http://www.it-ebooks.info/

168 FSMD

dl_next = m_out;

end
s2:

begin
in l = b;
in2 ■ c;
d2_next = m_out;

end
s3:

begin
i n l - a;
in2 = c;
d3_next = m_out;

end

endcase

/ / explicit description of a single multiplier
// outside the always block
ass ign m.out * in l * in2;

The code ensures that only one multiplier is inferred during synthesis. The
implicit and explicit descriptions can be mixed for a complex FSMD design. We
frequently isolate and extract complex data path components for code clarity and
efficiency.

7.3 DESIGN EXAMPLES

7.3.1 Fibonacci number circuit

The Fibonacci numbers constitute a sequence defined as

{ 0 if i = 0

1 if i = 1
fib(i - 1) + fib(i - 2) if i > 1

One way to calculate fib(i) is to construct the function iteratively, from 0 to the
desired i. This approach requires two temporary registers to store the two most
recently calculated values [i.e., fib(i—1) and fib(i—2)] and one index register to keep
track of the number of iterations. The ASMD chart is shown in Figure 7.8, in which
t l and tO are temporary storage registers and n is the index register. In addition
to the regular data input and output signals, i and f, we include a command
signal, s t a r t , which signals the beginning of operation, and two status signals:
ready, which indicates that the circuit is idle and ready to take new input, and
done.tick, which is asserted for one clock cycle when the operation is completed.
Since this circuit, like many other FSMD designs, is probably a part of a larger
system, these signals are needed to interface with other subsystems.

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 169

i j

idle , r

ready = 1

&

IG1

op ,

t>
f

< - >

•X

done '

1

F

n==1

I
T

I

'

donejick = 1

' F

Λ 1 n+to\
(to ti
V n-1 /

Figure 7.8 ASMD chart of a Fibonacci circuit.

www.it-ebooks.info

http://www.it-ebooks.info/

170 FSMD

The ASMD chart has three states. The i d l e state indicates that the circuit is
currently idle. When s t a r t is asserted, the FSMD moves to the op state and loads
initial values to three registers. The tO and t l registers are loaded with 0 and 1,
which represent fib(Q) and fib(l), respectively. The n register is loaded with i , the
desired number of iterations.

The main computation is iterated through the op state by three RT operations:
• t l <- t l + tO
• tO <- t l
• n <- n - 1

The first two RT operations obtain a new value and store the two most recently
calculated values in t l and tO. The third RT operation decrements the iteration
index. The iteration ended when n reaches 1 or its initial value is 0 [i.e., fib(0)].
Unlike a regular flowchart, the operations in an ASMD block can be performed
concurrently in the same clock cycle. We put all comparison and RT operations in
the op state to reduce the computation time. Note that the new values of the t l
and tO registers are loaded at the same time when the FSMD exits the op state
(i.e., at the next rising edge of the clock). Thus, the original value of t l , not t l+tO,
is stored to tO. The purpose of the done state is to generate the one-clock-cycle
done.t ick signal to indicate completion of the computation. This state can be
omitted if this status signal is not needed.

The code follows the ASMD chart and is shown in Listing 7.3. Note that the
Fibonacci function grows rapidly and the output signal should be wide enough to
accommodate the desired result.

Listing 7.3 Fibonacci number circuit
module f i b

(
i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e s t a r t ,

5 i n p u t w i r e [4 : 0] i ,
o u t p u t r e g r e a d y , d o n e . t i c k ,
o u t p u t w i r e [1 9 : 0] f

) ;

io / / symbolic state declaration
l o c a l p a r a m [1 : 0]

i d l e ■ 2 ' bOO,
op = 2 ' b 0 1 ,
done - 2 ' b l O ;

15
/ / signal declaration
r e g [1 : 0] s t a t e . r e g , s t a t e . n e x t ;
r e g [1 9 : 0] t 0 _ r e g , t O . n e x t , t l . r e g , t l _ n e x t ¡
r e g [4 : 0] n _ r e g , n . n e x t ;

20

/ / body
// FSMD state & data registers
a l w a y s Q (p o s e d g e e l k , p o s e d g e r e s e t)

i f (r e s e t)
25 b e g i n

s t a t e . r e g <= i d l e ;
t O . r e g <= 0;
t l . r e g <- 0;
n_reg <= 0;

so end

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 171

else
begin

s t a t e . r e g <= s t a t e _ n e x t ;
tO . reg <= t O . n e x t ;
t l . r e g <= t i . n e x t ;
n_reg <- n . n e x t ;

end
/ / FSMD next—state logic
always β*
begin

s t a t e _ n e x t - s t a t e _ r e g ;
ready ■ 1'bO;
d o n e . t i c k » 1'bO;
tO.next = t O . r e g ;
t l _ n e x t « t l _ r e g ¡
n_next » n_reg;
case (s t a t e . r e g)

i d l e :
begin

ready · l ' b l ;
if (s t a r t)

begin
tO.next » 0;
t l . n e x t ■ 2 0 ' d l ;
n_next » i ;
s t a t e _ n e x t ■ op;

end
end

op:
if (n_reg==0)

begin
tl.next » 0;
state_next » done ;

end
else if (n_reg»»l)

state.next - done;
else

begin
t l _ n e x t ■ t l _ r e g + t O . r e g ;
tO_next - t l . r e g ;
n .nex t « n_reg - 1;

end
done :

begin
d o n e . t i c k ■ l ' b l ;
s t a t e . n e x t - i d l e ;

end
de fau l t : s t a t e . n e x t - i d l e ;

endcase
end
/ / output
ass ign f » t l . r e g ;

endmodule

7.3.2 Division circuit

Because of complexity, the division operator cannot be synthesized automatically.
We use an FSMD to implement the long-division algorithm in this subsection. The

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

 a (n e g e d g

i a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

172 FSMO

divisor

0 0 1 1 0 — quotient
0 0 1 0 J 0 0 0 0 1 1 0 1 -

0000
0001
0000

0011
0010

0010
0010

0 0 0 1 -

- dividend

- remainder

Figure 7.9 Long division of two 4-bit unsigned integers.

— i i
compare and subtract

rhjmp η hit I
' ' '

shift left 1 bit

• ' '

rh
V

1

'

1

H

Figure 7.10 Sketch of division circuit's data path.

algorithm is illustrated by the division of two 4-bit unsigned integers in Figure 7.9.
The algorithm can be summarized as follows:

1. Double the dividend width by appending 0's in front and align the divisor to
the leftmost bit of the extended dividend.

2. If the corresponding dividend bits are greater than or equal to the divisor,
subtract the divisor from the dividend bits and make the corresponding quo-
tient bit 1. Otherwise, keep the original dividend bits and make the quotient
bitO.

3. Append one additional dividend bit to the previous result and shift the divisor
to the right one position.

4. Repeat steps 2 and 3 until all dividend bits are used.
The sketch of the data path is shown in Figure 7.10. Initially, the divisor is stored

in the d register and the extended dividend is stored in the rh and r l registers.
In each iteration, the rh and r l registers are shifted to the left one position. This
corresponds to shifting the divisor to the right of the preceding algorithm. We can

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 173

then compare rh and d and perform subtraction if rh is greater than or equal to d.
When rh and r l are shifted to the left, the rightmost bit of r l becomes available. It
can be used to store the current quotient bit. After we iterate through all dividend
bits, the result of the last subtraction is stored in rh and becomes the remainder
of the division, and all quotients are shifted into r l .

The ASMD chart of the division circuit is somewhat similar to that of the previ-
ous Fibonacci circuit. The FSMD consists of four states: i d l e , op, l a s t , and done.
To make the code clear, we extract the compare and subtract circuit to separate
code segments. The main computation is performed in the op state, in which the
dividend bits and divisor are compared and subtracted and then shifted left 1 bit.
Note that the remainder should not be shifted in the last iteration. We create a
separate state, l a s t , to accommodate this special requirement. As in the preceding
example, the purpose of the done state is to generate a one-clock-cycle done. t ick
signal to indicate completion of the computation. The code is shown in Listing 7.4.

Listing 7.4 Division circuit

module div
2 # (

parameter W « 8,
CBIT = 4 / / CBIT=log2(W) + l

)
(

7 input wire elk, reset,
input wire start ,
input wire [W-1:0] dvsr, dvnd,
output reg ready, done.tick ,
output wire [W-1:0] quo, rmd

12) ;

/ / symbolic state declaration
localparam [1:0]

idle - 2'bOO,
17 op = 2'bOl ,

last - 2'blO,
done = 2 'bl l ;

/ / signal declaration
22 reg [1:0] state.reg , state.next;

reg [W-1:0] rh.reg , rh.next , rl .reg , r l .next, rh.tmp;
reg [W-1:0] d_reg, d.next ;
reg [CBIT-1:0] n.reg, n.next;
reg q.bit;

27

/ / body
// FSMD state & data registers
always «(posedge elk, posedge reset)

if (reset)
32 begin

state.reg <■ idle;
rh.reg <· 0;
rl .reg <» 0;
d_reg <= 0;

37 n_reg <- 0;
end

else
begin

state.reg <■ state.next;
42 rh.reg <» rh.next;

www.it-ebooks.info

http://www.it-ebooks.info/

174 FSMD

r l . r e g <~ r l . n e x t ;
d.reg <= d.next;
n.reg <- n .next;

end

/ / FSMD next—state logic
always 0 *
begin

s t a t e . n e x t = s t a t e . r e g ;
ready ■ 1'bO;
done. t ick » 1'bO;
rh.next ■ rh .reg ;
r l . n e x t - r l . r e g ;
d.next » d_reg;
n.next » n_reg;
case (s t a t e . r e g)

i d l e :
begin

ready » l ' b l ;
i f (s t a r t)

begin
rh.next ■ 0;
r l . n e x t = dvnd; / / dividend
d.next » dvsr; / / divisor
n_next - W+l; / / index
s t a t e . n e x t = op;

end
end

op:
begin

/ / shift rh and rl left
r l . n e x t = { r l . r e g [W-2:0] , q . b i t } ;
rh.next - {rh.tmp[W-2:0], r l . r e g [W-l] } ;
/ / decrease index
o.next ■ n.reg - 1;
if (n_next==l)

s t a t e . n e x t - l a s t ;
end

l a s t : / / last iteration
begin

r l . n e x t - { r l . r e g [U - 2 : 0] , q . b i t } ;
rh.next ■ rh.tmp;
s t a t e . n e x t » done;

end
done :

begin
done . t ick " l ' b l ;
s t a t e . n e x t » i d l e ;

end
de fau l t : s t a t e . n e x t ■ i d l e ;

endcase
end

/ / compare and subtract circuit
always Q*

if (rh.reg >» d.reg)
begin

rh.tmp » rh.reg - d.reg;
q.bit - l'bl;

end
else

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 175

begin
rh_tmp » rh .reg;
q .b i t - 1'bO;

107 e n d

//output
ass ign quo = r l . r e g ;
ass ign rmd =■ rh .reg;

112 endmodule

7.3.3 Binary-to-BCD conversion circuit

We discussed the BCD format in Section 5.6.1. In this format, a decimal number is
represented as a sequence of 4-bit BCD digits. A binary-to-BCD conversion circuit
converts a binary number to the BCD format. For example, the binary number
"0010 0000 0000" becomes "0101 0001 0010" (i.e., 51210) after conversion.

The binary-to-BCD conversion can be processed by a special BCD shift register,
which is divided into 4-bit groups internally, each representing a BCD digit. Shifting
a BCD sequence to the left requires adjustment if a BCD digit is greater than 9io
after shifting. For example, if a BCD sequence is "0001 0111" (i.e., 17io), it should
become "0011 0100" (i.e., 3410) rather than "0010 1110". The adjustment requires
subtracting 10io (i.e., "1010") from the right BCD digit and adding 1 (which can
be considered carry-out) to the next BCD digit. Note that subtracting ΙΟχο is
equivalent to adding 6χο for a 4-bit binary number. Thus, the foregoing adjustment
can also be achieved by adding 610 to the right BCD digit. The carry-out bit is
generated automatically in this process.

In the actual implementation, it is more efficient to first perform the necessary
adjustment on a BCD digit and then shift. We can check whether a BCD digit is
greater than 410 and, if this is the case, add 3χο to the digit. After all the BCD
digits are corrected, we can then shift the entire register to the left one position. A
binary-to-BCD conversion circuit can be constructed by shifting the binary input to
a BCD shift register bit by bit, from MSB to LSB. Its operation can be summarized
as follows:

1. For each 4-bit BCD digit in a BCD shift register, check whether the digit is
greater than 4. If this is the case, add 3χο to the digit.

2. Shift the entire BCD register left one position and shift in the MSB of the
input binary sequence to the LSB of the BCD register.

3. Repeat steps 1 and 2 until all input bits are used.
The conversion process of a 7-bit binary input, "111 1111" (i.e., 127io), is demon-
strated in Table 7.1.

The code of a 13-bit conversion circuit is shown in Listing 7.5. It uses a simple
FSMD to control the overall operation. When the s t a r t signal is asserted, the
binary input is stored to the p2s register. The FSM then iterates through the
13 bits, similar to the process described in previous examples. Four adjustment
circuits are used to correct the four BCD digits. For clarity, they are isolated from
the next-state logic and described in a separate code segment.

www.it-ebooks.info

http://www.it-ebooks.info/

176 FSMD

Table 7.1 Binary-to-BCD conversion example

Operation

Initial

Bit 6

Bit5

Bit 4

Bit 3

Bit 2

Bitl

BitO

no adjustment
shift left 1 bit

no adjustment
shift left 1 bit

no adjustment
shift left 1 bit

BCD digit 0 adjustment
shift left 1 bit

BCD digit 0 adjustment
shift left 1 bit

no adjustment
shift left 1 bit

BCD digit 1 adjustment
shift left 1 bit

Special BCD shift register

BCD
digit 2

1

(l.o)

BCD
digit 1

1
(l.o)

1
11

(3,o)

110
(6,o)
1001
0010

(2,o)

BCD
digit 0

1
(l.o)

11
(3,o)

111
(7,o)
1010
0101

(5,o)
1000
0001

(lio)

0011
(3,o)
0011
O l l i

(7,o)

Binary
input

111 1111

11 1111

1 1111

1111

111

11

1

Listing 7.5 Binary-to-BCD conversion circuit

module bin2bcd
(

■j input wire elk , reset ,
input wire s tart ,
input wire [12:0] b in ,
output reg ready, done.t ick ,
output wire [3:0] bcd3, bcd2, bcdl , bcdO

«) ;

/ / symbolic state declaration
localparam [1:0]

id le - 2'bOO,
is op = 2'bOl ,

done - 2'blO;

/ / signal declaration
reg [1:0] s t a t e . r e g , s t a t e . n e x t ;

is reg [12:0] p2s_reg , p2s_next ;
reg [3:0] n_reg, n_next;
reg [3:0] bcd3_reg, bcd2_reg, bcdi .reg , bcdO.reg;
reg [3:0] bcd3_next , bcd2_next , bcdl .next , bcdO.next;
wire [3:0] bcd3_tmp , bcd2_tmp , bcdl_tmp , bcdO.tmp;

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES

/ / body
// FSMD state & data registers
always QCposedge e lk , posedge r e s e t)

if (r e s e t)
begin

s ta te_reg <■ i d l e ;
p2s_reg <= 0;
n_reg <» 0;
bcd3_reg <= 0
bcd2_reg <= 0
bcdl_reg <· 0
bcdO.reg <= 0

end
else

begin
state_reg <- state_next;
p2s_reg <» p2s_next;
n_reg <= n.next;
bcd3_reg <» bcd3_next;
bcd2_reg <■ bcd2_next;
bcdl.reg <» bcdl.next;
bcd0_reg <= bcdO.next;

end

// FSMD next—state logic
always β»
begin

state.next ■ state.reg;
ready = 1'bO;
done.tick - 1'bO;
p2s_next » p2s_reg;
bcdO.next = bcdO.reg;
bcdl.next » bcdl.reg;
bcd2_next ■ bcd2_reg;
bcd3_next = bcd3_reg;
n.next » n.reg;
case (state.reg)

idle:
begin

ready · l'bl;
if (start)

begin
state.next =
bcd3_next ■
bcd2_next -
bcdl.next «
bcdO.next =

0
0
0
0

end

op;

n.next = 4'bllOl;
p2s_next ■ bin;
state.next = op;

// index
// shift register

end
op:

begin
/ / shift in binary bit
p2s_next « p2s_reg << 1;
/ / shift 4 BCD digits
//{bcd3-next , bcdS-next, bcdl.next, bcdO.next}-

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

178 FSMD

//{bcd3.tmp [2:0] , bcd2-tmp , bcdl.tmp , bcdO-tmp ,
// p2s.reg(12]}

bcdO.next - {bcdO.tmp [2: 0] , p2s_reg [12]} ;
bcdl .next - { b c d l . t m p [2 : 0] , bcdO.tmp [3] } ;
bcd2_next = {bcd2_tmp [2:0] , bcdl.tmp [3] } ;
bcd3_next - {bcd3_tmp[2:0] , bcd2_tmp[3]};
n.next » n.reg - 1;
if (n _ n e x t « 0)

s t a t e . n e x t " done;
end

done :
begin

done. t ick » l ' b l ;
s t a t e . n e x t =■ i d l e ;

end
de fau l t : s t a t e . n e x t » Id l e ;

endcase
end

/ / data path function units
ass ign bcdO.tmp ■ (bcdO.reg
ass ign bcdl.tmp = (bcd l . reg
ass ign bcd2_tmp » (bcd2_reg
ass ign bcd3_tmp - (bcd3_reg

/ / output
ass ign bcdO = bcdO.reg;
ass ign bcdl « bcd l . r eg ;
ass ign bcd2 - bcd2_reg;
ass ign bcd3 = bcd3_reg;

endmodule

>
>
>
>

4)
4)
4)
4)

?

■?

?

·?

bcd0_reg+3 :
bcdl_reg+3
bcd2_reg+3
bcd3_reg+3 :

: bcdO.reg;
: bcd l . r eg ;
: bcd2_reg;
: bcd3_reg;

7.3.4 Period counter

A period counter measures the period of a periodic input waveform. One way to
construct the circuit is to count the number of clock cycles between two rising edges
of the input signal. Since the frequency of the system clock is known, the period
of the input signal can be derived accordingly. For example, if the frequency of the
system clock is / and the number of clock cycles between two rising edges is N, the
period of the input signal is N * 4.

The design in this subsection measures the period in milliseconds. Its ASMD
chart is shown in Figure 7.11. The period counter takes a measurement when the
s t a r t signal is asserted. We use a rising-edge detection circuit to generate a one-
clock-cycle tick, edge, to indicate the rising edge of the input waveform. After
s t a r t is asserted, the FSMD moves to the waite state to wait for the first rising
edge of the input. It then moves to the count state when the next rising edge
of the input is detected. In the count state, we use two registers to keep track
of the time. The t register counts for 50,000 clock cycles, from 0 to 49,999, and
then wraps around. Since the period of the system clock is 20 ns, the t register
takes 1 ms to circulate through 50,000 cycles. The p register counts in terms of
milliseconds. It is incremented once when the t register reaches 49,999. When the
FSMD exits the count state, the period of the input waveform is stored in the p
register and its unit is milliseconds. The FSMD asserts the done. t ick signal in the
done state, as in previous examples.

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 179

idle

ready =1

f C start==1

waite w

_/edge==1 \

¿D
count

i

done +

SD O i

donejick = 1

I

Figure 7.11 ASMD chart of a period counter.

www.it-ebooks.info

http://www.it-ebooks.info/

180 FSMD

The code follows the ASMD chart and is shown in Listing 7.6. We use a constant,
CLKJfi5_C0UNT, for the boundary of the millisecond counter. It can be replaced if a
different measurement unit is desired.

Listing 7.6 Period counter
module period.counter

(
input wire elk, reset ,
input wire start , si ,
output reg ready, done.tick,
output wire [9:0] prd

);

/ / symbolic state declaration
i localparam [1:0]

25

idle -
waits =
count »
done *

2
2
2
2

'b00,
'bOl ,
>bl0,
'bll;

/ / constant declaration
localparam CLK.MS.COUNT- 50000; // 1 ms tick

// signal declaration
20 reg [1:0] state.reg , state.next ;

reg [15:0] t.reg, t.next; / / up to 50000
reg [9:0] p.reg, p.next; / / up to 1 sec
reg delay.reg;
wire edg;

/ / body
// FSMD state & data registers
always ffl(posedge elk, posedge reset)

if (reset)
begin

state.reg <» idle;
t.reg <= 0;
p.reg <= 0;
delay.reg <- 0;

end
else

begin
state.reg <■ state.next;
t.reg <= t.next;
p.reg <■ p.next;
delay.reg <» si;

end

/ / rising — edge tick
assign edg « 'delay.reg & si;

/ / FSMD next—state logic
always <5*
begin

state.next » state.reg;
ready ■ 1' bO ;
done.tick = 1'bO;
p.next » p.reg;
t.next ■ t.reg;
case (state.reg)

idle:

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 1 8 1

begin
ready - I'M;
if (start)

s t a t e . n e x t » u a i t e ;
end

w a i t e : / / wait for the first edge
if (edg)

begin
s t a t e . n e x t - count ;
t . n e x t = 0;
p .nex t = 0;

end
count :

if (edg) / / 2nd edge arrived
s t a t e . n e x t = done;

e l s e / / otherwise count
if (t . r e g — CLK_MS_C0UNT-1) / / 1 ms tick

begin
t_next » 0;
p .nex t = p . r e g + 1;

end
e l s e

t_next - t . r e g + 1;
done :

begin
d o n e . t i c k - l ' b l ;
s t a t e . n e x t » i d l e ;

end
d e f a u l t : s t a t e . n e x t » i d l e ;

endcase
end

//ouput
i a s s ign prd = p . r e g ;
endmodule

7.3.5 Accurate low-frequency counter

A frequency counter measures the frequency of a periodic input waveform. The
common way to construct a frequency counter is to count the number of input
pulses in a fixed amount of time, say, 1 second. Although this approach is fine
for high-frequency input, it cannot measure a low-frequency signal accurately. For
example, if the input is around 2 Hz, the measurement cannot tell whether it is
2.123 Hz or 2.567 Hz. Recall that the frequency is the reciprocal of the period
(i.e., frequency = pe^iod)· An alternative approach is to measure the period of the
signal and then take the reciprocal to find the frequency. We use this approach to
implement a low-frequency counter in this subsection.

This design example demonstrates how to use the previously designed parts to
construct a large system. For simplicity, we assume that the frequency of the input
is between 1 and 10 Hz (i.e., the period is between 100 and 1000 ms). The operation
of this circuit includes three tasks:

1. Measure the period.
2. Find the frequency by performing a division operation.
3. Convert the binary number to BCD format.

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

 e

www.it-ebooks.info

http://www.it-ebooks.info/

182 FSfvTD

We can use the period counter, division circuit, and binary-to-BCD converter to
perform the three tasks and create another FSM as the master control to sequence
and coordinate the operation of the three circuits. The block diagram is shown in
Figure 7.12(a), and the ASM chart of the master control is shown in Figure 7.12(b).
The FSM uses the s tart and done.tick signals of these circuits to initialize each
task and to detect completion of the task. The code is shown in Listing 7.7.

Listing 7.7 Low-frequency counter
module low.freq.counter

(
input wire elk, reset ,

4 input wire start , si ,
output wire [3:0] bcd3, bcd2, bcdl, bcdO

);

/ / symbolic state declaration
o localparam [1:0]

idle » 2'bOO,
count = 2'bOl,
frq - 2'blO,
b2b = 2'bll;

14
/ / signal declaration
reg [1:0] state.reg, state.next;
wire [9:0] prd;
wire [19:0] dvsr , dvnd, quo;

i« reg prd.start , div.start , b2b_start;
wire prd.done.tick , div.done.tick , b2b_done_tick;

/ /
/ / component instantiation

24 / /

/ / instantiate period counter
period_counter prd_count_unit

(.c lk(clk) , .reset(reset) , .start(prd.start) , . s i (s i) ,
.ready(), .done.tick(prd_done_tick), .prd(prd));

2a / / instantiate division circuit
div #(.W(20), .CBIT(5)) div.unit

(.c lk(clk) , .reset(reset) , .start(div_start) ,
.dvsr(dvsr), .dvnd(dvnd), .quo(quo), .rmd(),
.ready(), .done_tick(div_done_tick));

34 / / instantiate binary —to—BCD converter
bin2bcd b2b_unit

(.c lk(clk) , .reset(reset) , .start(b2b_start),
.bin (quo [12:0]) , .readyO, . done.tick (b2b_done_tick) ,
.bcd3(bcd3), .bcd2(bcd2), .bcdl(bcdl), .bcdO(bcdO));

30 / / signal width extension
assign dvnd - 20'dlOOOOOO;
assign dvsr » {10'bO, prd};

/ /
44 / / master FSM

//
always Q(posedge elk, posedge reset)

if (reset)
state.reg <= idle;

4» else
state.reg <« state.next;

always 0*

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN EXAMPLES 183

start-

main control
FSM

prd.start

prdjtonejk*

- J start »
donejick period_counter

prd

10O00O0,o ·

dK.slart

div_done_tick

b2b_start

Ξ
start
donejick

dvnd dvsr

div

quo rmd

b2b_doneJck

Ξ
start
donejick

bin

bin2bcd

bcd3 bcd2 bcdl bcdO

-*■ bcdO

- ♦ b e d !

-*■ bcd2

-»■bcd3

(a) Top-level block diagram

idle

< ^ start==1 ^ > -

c prd_start = 1

count w

j>

^ r d _ d o n e _ t i c k = = 0 -

T

f div_start = 1 J

(b) ASM chart of main control

Figure 7.12 Accurate low-frequency counter.

www.it-ebooks.info

http://www.it-ebooks.info/

184 FSMD

begin
s t a t e _ n e x t ■ s t a t e _ r e g ;
p r d . s t a r t
d i v . s t a r t

= 1'bO;
« 1'bO;

b 2 b _ s t a r t - 1'bO;
case (s t a t e . r e g)

i d l e :
if (s t a r t)

begin
p r d _ s t a r t = l ' b l ;

count
i f

f r q :
if

b2b:
if

endcase
end

endmodule

s t a t e . n e x t « count ;
end

(p rd_done_ t i ck)
begin

d i v . s t a r t « l ' b l ;
s t a t e . n e x t « f r q ;

end

(d iv_done_ t i ck)
begin

b 2 b _ s t a r t - l ' b l ;
s t a t e . n e x t = b2b;

end

(b2b_done_t ick)
s t a t e . n e x t » i d l e ;

7.4 BIBLIOGRAPHIC NOTES

FSMD is usually discussed in the context of high-level synthesis. Principles of
Digital Design by D. D. Gajski contains a comprehensive chapter discussing relevant
issues and algorithms of FSMD design and implementation.

7.5 SUGGESTED EXPERIMENTS

7.5.1 Alternative debouncing circuit

Consider the alternative debouncing circuit in Experiment 6.5.2. Redesign the
circuit using the RT methodology:

1. Derive the ASMD chart for the circuit.
2. Derive the HDL code based on the ASMD chart.
3. Derive a testing circuit similar to that in Section 6.3.3 with the alternative

debouncing circuit and verify its operation.

7.5.2 BCD-to-binary conversion circuit

A BCD-to-binary conversion converts a BCD number to the equivalent binary rep-
resentation. Assume that the input is an 8-bit signal in BCD format (i.e., two

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 185

BCD digits) and the output is a 7-bit signal in binary representation. Follow the
procedure in Section 7.3.3 to design a BCD-to-binary conversion circuit:

1. Derive the conversion algorithm and ASMD chart.
2. Derive the HDL code based on the ASMD chart.
3. Derive a testbench and use simulation to verify operation of the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.

7.5.3 Fibonacci circuit with BCD I /O: design approach 1

To make the Fibonacci circuit more user friendly, we can modify the circuit to
use the BCD format for the input and output. Assume that the input is an 8-bit
signal in BCD format (i.e., two BCD digits) and the output is displayed as four
BCD digits on the seven-segment LED display. Furthermore, the LED will display
"9999" if the resulting Fibonacci number is larger than 9999 (i.e., overflow). The
operation can be done in three steps: convert input to the binary format, compute
the Fibonacci number, and convert the result back to BCD format.

The first design approach is to follow the procedure outlined in Section 7.3.5. We
first construct three smaller subsystems, which are the BCD-to-binary conversion
circuit, Fibonacci circuit, and binary-to-BCD conversion circuit, and then use a
master FSM to control the overall operation. Design the circuit as follows:

1. Implement the BCD-to-binary conversion circuit in Experiment 7.5.2.
2. Modify the Fibonacci number circuit in Section 7.3.1 to include an output

signal to indicate the overflow condition.
3. Derive the top-level block diagram and the master control FSM state diagram.
4. Derive the HDL code.
5. Derive a testbench and use simulation to verify operation of the code.
6. Synthesize the circuit, program the FPGA, and verify its operation.

7.5.4 Fibonacci circuit with BCD I /O: design approach 2

An alternative to the "subsystem approach" in Experiment 7.5.3 is to integrate
the three subsystems into a single system and derive a customized FSMD for this
particular application. The approach eliminates the overhead of the control FSM
and provides opportunities to share registers among the three tasks. Design the
circuit as follows:

1. Redesign the circuit of Experiment 7.5.3 using one FSMD. The design should
eliminate all unnecessary circuits and states, such as the various done.t ick
signals and the done states, and exploit the opportunity to share and reuse
the registers in different steps.

2. Derive the ASMD chart.
3. Derive the HDL code based on the ASMD chart.
4. Derive a testbench and use simulation to verify operation of the code.
5. Synthesize the circuit, program the FPGA, and verify its operation.
6. Check the synthesis report and compare the number of LEs used in the two

approaches.
7. Calculate the number of clock cycles required to complete the operation in

the two approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

186 FSMD

7.5.5 Auto-scaled low-frequency counter

The operation of the low-frequency counter in Section 7.3.5 is very restricted. The
frequency range of the input signal is limited between 1 and 10 Hz. It loses accuracy
when the frequency is beyond this range. Recall that the accuracy of this frequency
counter depends on the accuracy of the period counter of Section 7.3.5, which counts
in terms of millisecond ticks. We can modify the t counter to generate a microsecond
tick (i.e., counting from 0 to 49) and increase the accuracy 1000-fold. This allows
the range of the frequency counter to increase to 9999 Hz and still maintain at least
four-digit accuracy.

Using a microsecond tick introduces more than four accuracy digits for low-
frequency input, and the number must be shifted and truncated to be displayed
on the seven-segment LED. An auto-scaled low-frequency counter performs the
adjustment automatically, displays the four most significant digits, and places a
decimal point in the proper place. For example, according to their range, the
frequency measurements will be shown as "1.234", "12.34", "123.4", or "1234".

The auto-scaled low-frequency counter needs an additional BCD adjustment
circuit. It first checks whether the most significant BCD digit (i.e., the four MSBs)
of a BCD sequence is zero. If this is the case, the circuit shifts the BCD sequence
to the left four positions and increments the decimal point counter. The operation
is repeated until the most significant BCD digit is not "0000".

The complete auto-scaled low-frequency counter can be implemented as follows:
1. Modify the period counter to use the microsecond tick.
2. Extend the size of the binary-to-BCD conversion circuit.
3. Derive the ASMD chart for the BCD adjustment circuit and the HDL code.
4. Modify the control FSM to include the BCD adjustment in the last step.
5. Design a simple decoding circuit that uses the decimal-point counter's output

to activate the desired decimal point of the seven-segment LED display.
6. Derive a testbench and use simulation to verify operation of the code.
7. Synthesize the circuit, program the FPGA, and verify its operation.

7.5.6 Reaction timer

Eye-hand coordination is the ability of the eyes and hands to work together to
perform a task. A reaction timer circuit measures how fast a human hand can
respond after a person sees a visual stimulus. This circuit operates as follows:

1. The circuit has three input pushbuttons, corresponding to the c lea r , s t a r t ,
and s top signals. It uses a single discrete LED as the visual stimulus and
displays relevant information on the seven-segment LED display.

2. A user pushes the c l ea r button to force the circuit to return to the initial
state, in which the seven-segment LED shows a welcome message, "HI," and
the stimulus LED is off.

3. When ready, the user pushes the s t a r t button to initiate the test. The
seven-segment LED goes off.

4. After a random interval between 2 and 15 seconds, the stimulus LED goes on
and the timer starts to count upward. The timer increases every millisecond
and its value is displayed in the format of "0.000" second on the seven-segment
LED.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 187

5. After the stimulus LED goes on, the user should try to push the s top button
as soon as possible. The timer pauses counting once the s top button is
asserted. The seven-segment LED shows the reaction time. It should be
around 0.15 to 0.30 second for most people.

6. If the s top button is not pushed, the timer stops after 1 second and displays
"1.000".

7. If the s top button is pushed before the stimulus LED goes on, the circuit
displays "9.999" on the seven-segment LED and stops.

Design the circuit as follows:
1. Derive the ASMD chart.
2. Derive the HDL code based on the ASMD chart.
3. Synthesize the circuit, program the FPGA, and verify its operation.

7.5.7 Babbage difference engine emulation circuit

The Babbage difference engine is a mechanical digital computation device designed
to tabulate a polynomial function. It was proposed by Charles Babbage, an En-
glish mathematician, in the nineteenth century. The engine is based on Newton's
method of differences and avoids the need for multiplication. For example, consider
a second-order polynomial f(n) = 2n2 + 3n + 5. We can find the difference between
f(n) and f(n — 1):

/ (n) - f(n - 1) = An + 1

Assume that n is an integer and n > 0. The / (n) can be defined recursively as

/(«) = { 5 if n = 0
f(n - 1) + An + 1 i f n > 0

This process can be repeated for the An +1 expression. Let g(n) = An +1. We can
find the difference between g(n) and g(n — 1):

g(n) -g(n-l) = A

The g(n) can be defined recursively as

9(n) = { 5 if n = 1
g(n - 1) + 4 if n > 1

and f(n) can be rewritten as

/(») = { 5 if n = 0
/ (n - 1) + g(n) if n > 0

Note that only additions are involved in the recursive definitions of f(n) and g(n).
Based on the definition of the last two recursive equations, we can derive an

algorithm to compute / (n) . Two temporary registers are needed to keep track of
the most recently calculated / (n) and g(n), and two additions are needed to update
f(n) and g(n). Assume that n is a 6-bit input and interpreted as an unsigned
integer. Design this circuit using the RT methodology:

1. Derive the ASMD chart.
2. Derive the HDL code based on the ASMD chart.

www.it-ebooks.info

http://www.it-ebooks.info/

188 FSMD

3. Derive a testbench and use simulation to verify operation of the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.
5. Let h(n) = n3 + 2n2 + In + 1. Use the method above to find the recursive

representation of h(n) (note that three levels of recursive equations are needed
for a three-order polynomial). Repeat steps 1 to 4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

SELECTED TOPICS OF VERILOG

Since the main focus of this book is on digital design, we just introduce the minimal
subset of Verilog and rely on some simple guidelines and templates. In this chapter,
we examine several selected Verilog topics in more detail. Except for the last section,
which provides an overview of simulation-related constructs, these topics are related
to synthesis and help us to develop more sophisticated codes. This chapter can be
skipped without affecting the remaining chapters.

8,1 BLOCKING VERSUS NONBLOCKING ASSIGNMENT

There are two kinds of assignments that can be used in an always block: blocking
assignment and nonblocking assignment. Three simple guidelines were given in the
earlier chapters:

• Separate the circuit into registers and combinational circuits.
• Select a proper template for the registers, which use nonblocking assignments

inside.
• Use blocking assignments to describe the combinational circuits.

We examine the two kinds of assignments and explain the rationale behind the
guidelines in this section, and introduce an alternative coding style in the next
section.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 189
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

190 SELECTED TOPICS OF VERILOG

8.1.1 Overview

Blocking assignment The basic syntax of a blocking assignment is
[var] = [e x p r e s s i o n] ;

When the assignment is executed, the right-hand-side expression is evaluated and
assigned to the left-hand-side variable without interruption from any other state-
ments. Thus, it "blocks" the other assignments until execution of the current
assignment is completed. The behavior of the blocking assignment is similar to the
variable assignment in the C language.

Nonblocking assignment The basic syntax of a nonblocking assignment is
[var] <= [e x p r e s s i o n] ;

The behavior of a nonblocking assignment is more subtle and can best be explained
from a hardware's perspective. Recall that an always block can be thought of as
an abstract hardware part. Timing control constructs can be added to the block to
model the propagation delays. When there is no explicit timing control, as in our
synthesizable codes, an implicit hypothetical time step is used to model the delay.
When an always block is activated, the right-hand-side expressions of nonblocking
assignments are evaluated at the beginning of the time step. When the execution
reaches the end of the always block (i.e., at the end of the time step), the evaluated
values are assigned to the left-hand-side variables of the nonblocking assignment.
The assignment is known as "nonblocking" since other statements can be executed
between the evaluation and the assignment.

Let x be the variable assigned in a nonblocking assignment. While the actual
scheduling in the Verilog model is quite complex, the behavior of a nonblocking
assignment can be interpreted as follows:

• The value of x is assigned to xentry in the beginning of the always block.
• xex»t replaces x in left-hand-side variable.
• Gentry replaces x in right-hand-side expressions.
• The value of xexit is assigned to x at the end of the always block.

An interpretation is shown in the comments of the following code segment:
always β*
begin / / Xentry = X

y <= X k . . . // y - Xentry & . . .
X < ■ . . · / / Xexit = ■ ■ ■

end / / x = Xexu

Example To understand the difference between the blocking and nonblocking as-
signments, let us reconsider the three-input and circuit discussed in Section 4.2.4.
The code is repeated in Listing 8.1. It uses blocking assignments and the inferred
circuit is shown in Figure 4.3(a).

Listing 8.1 And circuit using blocking assignments
module and.b lock

(
3 input wire a, b, c ,

www.it-ebooks.info

http://www.it-ebooks.info/

BLOCKING VERSUS NONBLOCKING ASSIGNMENT 1 9 1

output
);

always
begin

y -
y ■

y =
end

reg

β *

a;
y ft
y *

endmodule

y

b ;

c;

The behavior of the assignments is similar to the sequential statements in the
C language and y gets the values of a & b ft c in the end. Note that the code is
just for demonstration purposes. It is a poor practice to describe hardware using
sequential semantics.

If we replace the blocking assignments with nonblocking assignments, the re-
vised code is shown in Listing 8.2. The interpretation of the use of y is shown as
comments.

Listing 8.2 And circuit using nonblocking assignments
module a n d . n o n b l o c k

2 (

i n p u t w i r e a , b , c ,
o u t p u t r e g y
) ;

always β*
begin / / yentry = V

y <- a; / / yexit = a
y <- y ft b ; / / yexit = yentry & b
y <- y ft c ; / / yexit = yentry & c

end // V = Vexit
endmodule

Note that the first two assignments have no effect and the code is the same as
a l w a y s fi*

y <» y ft c ;

The corresponding circuit diagram is shown in Figure 4.3(b) and it is not the desired
circuit.

8.1.2 Combinational circuit

The example of the previous subsection is an extreme case. Except for the default
value, most codes for combinational circuits do not assign the same variable multiple
times. Both blocking and nonblocking assignments can be used to describe the same
circuit. However, there are subtle differences. The following example explains the
differences. Let us consider the 1-bit equality circuit discussed in Section 2.2. The
revised code using blocking assignments is shown in Listing 8.3. We explicitly list
the variables in the sensitivity list.

Listing 8.3 Equality circuit using blocking assignments
module e q l _ b l o c k

(
i n p u t w i r e iO , i l ,

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

192 SELECTED TOPICS OF VERILOG

o u t p u t r e g eq

);
reg pO, p i ;

I

a l w a y s e (i O . i l) / / only iO and il in sensitivity list
// the order of statements is important
b e g i n

pO = "iO t " i l ;
p i - iO ft i l ;
eq = pO I p i ;

end
endmodule

Note that the sensitivity list consists of only iO and i l . When one of them changes,
the always block is activated, pO, pi, and eq are evaluated sequentially, and eq is
updated at the end of the first time step.

The order of the statements is important. Assume that we move the last state-
ment to the beginning:

always <0(iO,il)
begin

eq = pO I p i ;
pO * "iO & " i l ;
p i = iO & i l ;

e n d

In the first statement, since pO and pi have not yet been assigned new values, the
values from the previous activation will be used. The previous values infer latches
and thus the code is not correct.

We can replace the blocking assignments with nonblocking assignments, as shown
in Listing 8.4. The interpretations of these assignments are shown as comments.

L i s t i n g 8 .4 Equali ty circuit using nonblocking assignments

module e q l _ n o n _ b l o c k
(
i n p u t w i r e iO, i l ,

i o u t p u t reg eq
);

r e g pO, p i ;

> a l w a y s 0 (i O , i l , p O , p i) / / pO, pi also in sensitivity list
// the order of statements is not important

// pOentry = pO; plentry = P¡¡
// P0exit = Í0& il;
// Phxit =i0 & il
// &lexit = pOentry — phntry
// eq = eqexit; pO = pOexit; pi = plexit!

Note that pO and pi are also included in the sensitivity list. When iO or i l changes,
the always block is activated and the new values are assigned to pO and pi in the
end of the first time step. Since eq is based on the old values of pO and pi (i.e.,
T>Oentry and POentry)) it remains the same. After completion of the execution of the
current time step, the always block is activated again because pO and pi change
(and this is the reason that pO and pi are included in the sensitivity list). The

begin
pO
p i
eq

end

<=
o
<=

endmodule

"iO
iO
pO

ft "i
ft i l ;
1 p i ;

.1

26 b e g i

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

6

6 e

7i u

www.it-ebooks.info

http://www.it-ebooks.info/

BLOCKING VERSUS NONBLOCKING ASSIGNMENT 193

eq variable is updated with the new values of pO and p i at the end of the second
time step. Note that the result will be the same if we change the order of these
statements.

While both codes describe the same circuits, it takes more time to simulate the
code with nonblocking assignments. As a result, the guideline recommends using
blocking assignments to describe combinational circuits.

8.1.3 Memory element

In the memory element templates in Section 5.2, nonblocking assignments are used
to infer memory. For example, the code for a D FF is

a l w a y s Q(posedge e l k)
q <= d;

It is possible to infer a memory element using a blocking assignment, as in
always <S(posedge elk)

q - d;

Although the code works properly for an isolated FF, there are some subtle problems
when multiple registers interact with each other.

Consider two registers that switch data in every clock cycle. With blocking
assignments, the code becomes

a l w a y s ©(posedge e l k)
a = b;

a l w a y s QCposedge e l k)
b = a;

At the rising edge of elk, both always blocks are activated and operated in parallel.
The two operations should be completed in a time step. According to the Verilog
standard, the execution of the two always blocks can be scheduled in any order. If
the first always block is executed first, a gets the value of b immediately because
of the blocking assignment. When the second always block is executed, b gets the
updated value of a, which is its original value and thus its value remains the same.
Similarly, a gets its original value if the second always block is executed first. This
is known as a race condition in Verilog. From Verilog's point of view, both results
are valid.

Now let us revise the code with nonblocking assignments (the begin and end
delimiters are added to accommodate the comments):

always 4)(posedge elk)
begin / / 6er.tr» = b

a <= b; / / aeXit = bentrv

end / / a = aex%t

a l w a y s QCposedge e l k)
begin / / (¡entry = O

b <= a; / / bexit = aentry
end / / b = bexu

The interpretation of blocking assignment is shown in the comments. Since the
original entry values are used in assignments, both a and b get the correct values
regardless of the order of execution.

www.it-ebooks.info

http://www.it-ebooks.info/

194 SELECTED TOPICS OF VERILOG

d q

>clk

d q

>clk

:=Ch

— qO

(a)

d q

>clk

— qO

3D-

L

d q

>dk

d q-

>clk

ab1

— <

(b) (c)

Figure 8.1 Circuits inferred by mixed assignment.

Because the blocking assignments model the desired behavior and avoid the race
condition, the templates in Section 5.2 always use nonblocking assignments to infer
FFs and registers.

8.1.4 Sequential circuit with mixed blocking and nonblocking assignments

The memory element templates discussed in Section 5.2 are the simplest sequential
codes. It is possible to put multiple assignments, including both blocking and
nonblocking assignments, in the same always block. We use a simple example
to explain the behaviors of various combinations and to better understand the
assignments.

Consider the circuit in Figure 8.1(b). It performs the and operation over a and b
and stores the result to a D FF at the rising edge of the clock. Based on our previous
approach, we can separate memory and the combinational circuit and derive the
two-segment code, as shown in Listing 8.5.

Listing 8.5 Two-segment implementation
i module ab_f f _2seg

(
input wire elk ,
input wire a, b,
output reg q

«) ;

reg q .next ;

/ / D FF
li always QCposedge e lk)

q <= q_next;

/ / combinational circuit
always β*

iu q_next = a ft b ;
endmodule

Alternatively, we can combine the two segments and describe the circuit in a
single always block. Six attempts, with various combinations of blocking and non-
blocking assignments, are made in Listing 8.6.

www.it-ebooks.info

http://www.it-ebooks.info/

BLOCKING VERSUS NONBLOCKING ASSIGNMENT 195

L i s t i n g 8 .6 Mixed assignment example

module a b _ f f _ a l l
(

i n p u t w i r e e l k ,
i n p u t w i r e a , b ,
output reg qO , ql , q2 , q3, q4 , q5

);

reg abO , abl , ab2 , ab3 , ab4 , ab5;

/ / attempt 0
a l w a y s OCposedge e l k)
b e g i n

abO = a ft b ;
qO <■ abO;

end

/ / attempt 1
a l w a y s OCposedge e l k)
b e g i n / / ablentry = abl; qlentry = ql;

abl <» a ft b ; //ablexit =a&b
ql <- abl ; / / qlexit = ablentry

end / / abl = ablexit; ql = qlexit
I

/ / attempt 2
a l w a y s OCposedge e l k)
b e g i n

ab2 - a ft b;
i q2 = ab2;

end

/ / attempt 3 (switch the order of attempt 0)
> a l w a y s QCposedge e l k)

b e g i n
q3 <= ab3;
ab3 - a ft b ;

end
I

/ / attempt 4 (switch the order of attempt 1)
a l w a y s OCposedge e l k)
begin / / ab4entry = ab4; q4entry = q4'<

q4 <» ab4 ; / / q4exit = «gentry
i ab4 <= a ft b ; / / ab4exit = a & b

end / / ab4 = ab4exu; q4 = q4exit

// attempt 5 (switch the order of attempt 2)
a l w a y s OCposedge e l k)

i b e g i n
q5 - ab5;
ab5 = a ft b ;

end
e

In attempt 0, assignments to abO and qO infer two registers initially, one to store
the registered abO and one to store the registered qO. Since abO is updated imme-
diately by the blocking assignment, qO gets the value of a ft b. The corresponding
circuit diagram is shown in Figure 8.1(a). Since abO is not used outside the always
block, the registered abO output is not needed and thus the corresponding, register

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

www.it-ebooks.info

http://www.it-ebooks.info/

196 SELECTED TOPICS OF VERILOG

can be removed. The resulting diagram is shown in Figure 8.1(b), which is the
desired circuit.

In attempt 1, a blocking assignment is used for abl . The corresponding inter-
pretation is shown in the comments. Note that q l gets ab l e n t r y , not ablex¿t· The
abl e n t r j , is the previous stored value of abl and corresponds to the registered out-
put. The corresponding diagram is shown in Figure 8.1(c). An unintended input
buffer is inferred and the storage of a & b is delayed by one clock cycle.

In attempt 2, blocking assignments are used for both ab2 and q2. The circuit
inferred is identical to that in attempt 0, as shown in Figure 8.1(a) and (b). Since
using blocking assignments to infer FFs may introduce a race condition, as discussed
in Section 8.1.3, this type of code is not recommended.

For demonstration purposes, let us examine what happens after switching the or-
der of the assignments of attempts 0, 1, and 2. The results are shown in attempts 3,
4, and 5. In attempt 3, ab3 is used before it is assigned a new value. Thus, q3 gets
the "previous value" from the earlier activation. The value is stored in a register
and corresponds to the registered a & b. The inferred circuit corresponds to the
diagram in Figure 8.1(c). In attempt 4, switching the order has no effect on the
code, as explained by the interpretation in the comments. It is identical to the code
in attempt 1. In attempt 5, ab5 is used before it is assigned a new value and thus
q5 gets the registered a & b. It infers a circuit identical to that in attempt 3.

In summary, only the code in attempt 0 describes the desired circuit correctly
and reliably.

8.2 ALTERNATIVE COOING STYLE FOR SEQUENTIAL CIRCUIT

Our sequential code template follows the block diagram in Figure 5.2 and separates
the register to an individual code segment. With an understanding of blocking and
nonblocking assignments, we can merge the register and the next-state logic into
a single always block. This style of coding tends to be more compact. The code
should follow the approach of attempt 1 in Section 8.1.4:

• Use blocking assignments to obtain intermediate results of the next-state logic.
These assignments should be sequenced in proper order.

• Use nonblocking assignments to assign the intermediate results to registers.
In the following subsections, we use several examples to illustrate this style.

8.2.1 Binary counter

The free-running counter is discussed in Section 5.3.2. We can revise the code in
Listing 5.11 to combine the next-state logic and the register, as shown in Listing 8.7.

Listing 8.7 Free-running binary counter with merged register and next-state logic
module bin_counter_merge

»(parameter N-8)
3 (

input wire elk , r e s e t ,
output wire max. t ick ,
output wire [11-1:0] q

) ;
8

//signal declaration

www.it-ebooks.info

http://www.it-ebooks.info/

ALTERNATIVE CODING STYLE FOR SEQUENTIAL CIRCUIT 1 9 7

reg [N-1:0] r . n e x t , r _ r e g ;

/ / body
// register and next—state logic
always (!) (posedge e l k , posedge r e s e t)

if (r e s e t)
r . r e g <- 0; / / {N{lb'0}}

e l s e
begin

/ / next—state logic
r.next - r .reg + 1;
/ / register
r_reg <" r . n e x t ;

end
/ / output logic
assign q = r . r eg ;
ass ign max . t i ck - (r_ reg-»2**N- l) ? i ' b i : 1'bO;

endmodule

Note that the output logic description
a s s i g n m a x . t i c k = (r _ r e g = = 2 * * N - l) ? I ' M : 1'bO;

must be placed outside the always block. If it is within the block, an extra FF is
inferred for max.tick and introduces a delay of one clock cycle.

Since r_next is not used in another place, we can merge the two statements
r . n e x t = r . r e g + 1;
r . r e g <= r . n e x t ;

into

r_reg <= r . r e g + 1;

After we replace r_reg with q, the code can be simplified further, as shown in
Listing 8.8.

Listing 8.8 Free-running binary counter with compact code
module b i n . c o u n t e r . t e r s e

#(parameter N-8)
(
input wire e l k , r e s e t ,
output wire max.t ick,
output reg [N-1:0] q

);

/ / body
always i (p o s e d g e e l k , posedge r e s e t)

if (r e s e t)
q <= 0;

e l s e
q <= q + 1;

/ / output logic
ass ign max . t i ck - (q ~ 2 * * N - l) ? l ' b l : 1 ' bO;

endmodule

In this code, q in the right-hand-side expression is the output of the register and q
on the left-hand side is the new value, which is stored to the register at the rising
edge of the next clock.

The universal binary counter in Listing 5.12 can be modified in a similar way
and the code is shown in Listing 8.9.

26 b e g i

si en

36 r e s e

i /

 l o a

 8 (n e g e d g

 loa

i s y n . c l

66 e

7i u

76 a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

198 SELECTED TOPICS OF VERILOG

Lis t ing 8 .9 Universal binary counter with merged register and next-state logic

module u n i v _ b i n _ c o u n t e r _ m e r g e d
» (p a r a m e t e r N=8)

3 (

i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e s y n . c l r , l o a d , e n , u p ,
i n p u t w i r e [N - 1 : 0] d ,
o u t p u t w i r e m a x . t i c k , m i n . t i c k ,

» o u t p u t reg [N - 1 : 0] q
) ;

/ / body
// register and next—state logic

i3 a l w a y s OCposedge e l k , p o s e d g e r e s e t)
i f (r e s e t)

q <- o; / /
e l s e i f (s y n . c l r)

q <- 0;
is e l s e i f (l o a d)

q <= d;
e l s e i f (en ft up)

q <- q + 1;
e l s e i f (en k "up)

23 q <= q - 1 ;
/ / no else branch since g <= q is implicitly implied

// output logic
a s s i g n m a x . t i c k = (q = = 2 * * N - l) ? l ' b l : 1'bO;

2s a s s i g n m i n . t i c k - (q - = 0) ? l ' b l : 1'bO;
endmodule

Note that the last else branch is omitted. It implies that q gets its previous value,
i.e.,

q <= q;
This is exactly the desired behavior.

8.2.2 FSM

The state'register and next-state logic of an FSM can be merged in a similar
way. For example, consider the FSM in Listing 6.1. The revised code is shown in
Listing 8.10.

Listing 8.10 FSM with merged register and next-state logic
module fsm_eg_merged

(
i n p u t w i r e e lk , r e s e t ,

4 i n p u t w i r e a , b ,
o u t p u t w i r e yO, y l

) ;

/ / symbolic state declaration
9 p a r a m e t e r [1 : 0] sO = 2'bOO,

s i - 2 ' b O l ,
s2 - 2 ' b l O ;

/ / signal declaration
14 reg [1 : 0] s t a t e . r e g ;

www.it-ebooks.info

http://www.it-ebooks.info/

ALTERNATIVE CODING STYLE FOR SEQUENTIAL CIRCUIT 1 9 9

/ / state register and next—state logic
always QCposedge elk, posedge reset)

if (reset)
19 state.reg <= sO;

else
case (state.reg)

sO: if (a)
¡f (b)

24 state.reg <= s2;
else

state.reg <= s i ;
else

state.reg <» sO;
29 s i : if (a)

state.reg <= sO;
else

state.reg <- s i ;
s2: state_reg <= sO;

34 default state.reg <« sO;
endcase

/ / Moore output logic
assign yl = (state_reg==sO) II (state_reg-=sl) ;

39
/ / Mealy output logic
assign yO « (state_reg»»sO) & a & b;

endmodule

Since the outputs are not registered, the corresponding statements must be placed
outside the always block.

8.2.3 FSMD

We can apply the same approach to an FSMD as well. Consider the division FSMD
example in Listing 7.4. The revised code is shown in Listing 8.11.

Listing 8.11 Division FSMD with merged register and combinational circuit

module div_combined
#(

3 parameter W · 8,
CBIT = 4 / / CBIT=log2(W) + l

)
(
input wire elk, reset,

8 input wire start ,
input wire [W-1:0] dvsr, dvnd,
output wire ready, done.tick ,
output wire [W-1:0] quo, rmd

) ;
13

/ / symbolic state declaration
localparam [1:0]

idle - 2'bOO,
op - 2'bOl,

18 last « 2'blO,
done = 2'bl l ;

/ / signal declaration

www.it-ebooks.info

http://www.it-ebooks.info/

2 0 0 SELECTED TOPICS OF VERILOG

reg [1:0] s t a t e . r e g ;
reg [W-1:0] r h . r e g , r l . r e g , rh.tmp, d .reg;
reg [CBIT-1:0] n.reg, n.next;
reg q.bit;

/ / fsmd registers and next—state logic
always <2(posedge e lk , posedge r e s e t)
begin

if (r e s e t)
begin

state.reg <= idle;
rh.reg <· 0;
rl.reg <= 0;
d.reg <■ 0;
n.reg <- 0;

end
else

begin
//=
/ / data path functional units
/ / to get intermediate results
//=
/ / compare and subtract circuit
if (rh .reg >■ d.reg)

begin
rh.tmp » rh.reg - d .reg;
q .b i t - l ' b l ;

end
e l s e

begin
rh.tmp " rh .reg;
q .b i t » 1'bO;

end
/ / index decrement circuit
n.next « n.reg - 1;

//=
// state and data registers and next—state logic
//
case (s t a t e . r e g)

i d l e :
begin

if (s t a r t)
begin

rh.reg <» 0;
r l . r e g <» dvnd; / / dividend
d.reg <= dvsr; / / divisor

n.reg <» CBIT; / / index
n.reg <» W+l; / / index
s t a t e . r e g <- op;

end
end

op:
begin

/ / shift rh and rl left
r l . r e g <= { r l . r e g [W - 2 : 0] , q . b i t } ;
rh.reg <- {rh.tmp[W-2:0], r l . r e g [W - l] } ;
/ / decrease index
n.reg <» n.next;
i f (n_next==l)

s t a t e . r e g <- l a s t ;

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

USE OF THE SIGNED DATA TYPE 2 0 1

83 e n d
las t : / / last iteration

begin
r l . reg <= {rl.reg[W-2:0], q_bit};
rh.reg <» rh_tmp;

«8 state_reg <= done ;
end

done:
state.reg <» idle;

default: state.reg <■ Idle;
93 endcase

end
end

/ / output
9« assign quo » r l . reg;

assign rmd = rb.reg;
/ / unregistered output
assign ready » (state_reg»«idle);
assign done.tick » (state_reg==done);

iu3 endmodule

The code is more complex and includes a section for data path functional units,
which generates the intermediate results. Note that some intermediate variables,
such as n-next, are used in multiple places later.

8.2.4 Summary

In summary, it is possible to merge the next-state logic and register in one always
block. This style tends to be more compact and requires fewer variables. However,
the code must be crafted carefully to avoid unintended registers. It is recommended
only after we have a good comprehension of blocking and nonblocking assignments.

8.3 USE OF THE SIGNED DATA TYPE

8.3.1 Overview

Depending on the nature of an application, we can use an unsigned integer, which
consists of zero and the positive numbers, or a signed integer, which consists of zero
and both negative and positive numbers, in a digital system. We may even need to
use both types in a complex system.

The signed integer is usually represented in 2's-complement format. A 4-bit
"binary wheel" is shown in Figure 8.2, which lists the binary representations and
the corresponding unsigned and signed numbers. Close observation shows that the
addition and subtraction operations are identical for the two types of numbers. The
addition and subtraction of a positive amount corresponds to moving clockwise and
counterclockwise along the wheel. For example, "1001" +"0100" means to move four
positions clockwise from "1001" and the result is "1101". In the unsigned integer
format, it is interpreted as (+9) + (+4) = +13, and in the signed integer format, it
is interpreted as (—7) + (+4) = —3. The overflow in addition corresponds to a move
over the "threshold" of the binary wheel. Note that the thresholds are different for
the unsigned and signed interpretations. It is between "1111" and "0000" for the
unsigned integer and between "0111" and "1000" for the signed integer.

www.it-ebooks.info

http://www.it-ebooks.info/

2 0 2 SELECTED TOPICS OF VERILOG

Threshold of overflow
for unsigned format

, subtract a
¿ positive amount

-4 +12 +4 +4

add a
positive amount

Threshold of overflow
for signed format

Figure 8.2 Four-bit binary wheel.

The behavior of a physical adder or subtractor is just like the movement in the
binary wheel. The same circuit can be applied to both unsigned and signed formats
as long as all operands and the result have the same bit length. For example, let a,
b, and sum be three 8-bit signals. The statement

sum b;

infers the same hardware and uses the same binary representations regardless of
whether these signals are interpreted as unsigned or signed format. This observa-
tion is also correct in other arithmetic operations (however, it cannot be applied
for nonarithmetic operations, such as relational operations or overflow status gen-
eration).

On the other hand, we need to distinguish the format when the operands or the
result have different bit lengths. This is attributed to the different requirements in
width extension. The O's are appended to the front for the unsigned format, which
is known as zero extension, but the sign bits are appended to the front for the signed
format, which is known as sign extension. For example, the 4-bit representation of
- 5 is "1011". It becomes "1111.1011", not "0000.1011" when extended to 8 bits.

For example, let a and sum be two 8-bit signals and b be a 4-bit signal, 63626160.
The statement

a + b;

www.it-ebooks.info

http://www.it-ebooks.info/

USE OF THE SIGNED DATA TYPE 2 0 3

requires b to be extended to 8 bits. The extended b becomes OOOO63626160 if it is
in the unsigned format but becomes 6363636363626160 if it is in the signed format.
The inferred hardware for this statement consists of the width extension circuit
and an adder. Since the extension circuit is different for the unsigned and signed
formats, the statement infers different hardware implementations for the unsigned
and signed formats.

8.3.2 Signed number in Verilog-1995

In Verilog-1995, only the integer data type is interpreted as a signed number,
and the reg and wire data types are interpreted as unsigned numbers. Since the
integer data type has a fixed size (usually 32 bits), it is not flexible. To achieve
the signed operation, we frequently need to manipulate the code manually. The
signed and unsigned operations are illustrated in the following code segment:

reg [7:0] a, b ;
reg [3:0] c;
reg [7:0] sumí, sum2 , sum3, sum4;

/ / same width, can be applied to signed and unsigned
suml = a + b ;
/ / automatic 0 extension
sum2 = a + c;
/ / manual 0 extension
sum3 = a + { 4 { l ' b 0 } , c } ;
/ / manual sign extension
sum4 = a + { 4 { c [3] } , c } ;

In the first statement, a, b, and suml have identical width and thus infer the
same adder circuit regardless of whether they are interpreted as unsigned or signed
numbers.

In the second statement, c is only 4 bits wide. Its bit length is adjusted according
to the rules discussed in Section 4.1.8. Since the reg type is treated as an unsigned
number, zero extension is performed and four zeros are appended in front of c.

In the third statement, we manually append four zeros in front of c and achieve
the same effect as in the previous statement.

In the fourth statement, we interpret the variables as signed numbers. To achieve
the desired behavior, c must be sign-extended to 8 bits. This can only be done
manually. In the code, we replicate the MSB of c four times (i.e., 4{c[3]}) to
create the sign-extended 8-bit number.

8.3.3 Signed number in Verilog-2001

In Verilog-2001, the signed format is extended to the reg and wire data types.
This is done by adding the keyword, signed, in declaration, as in

reg s igned [7:0] a , b ;

With the signed data type, the previous code segment can be revised as

reg s igned [7:0] a, b ;
reg s igned [3:0] c ;
reg s igned [7:0] suml, sum4;

www.it-ebooks.info

http://www.it-ebooks.info/

204 SELECTED TOPICS OF VERILOG

/ / same width, can be applied to signed and unsigned
suml ■ a + b;
/ / automatic sign extension
sum4 = a + c;

The first statement infers a regular adder since a, b, and suml have identical bit
length. The signed data type just helps us to be aware of the interpretation of the
binary representation.

In the second statement, all variables in the right-hand-side expression are with
the signed data type and c is sign-extended to 8 bits automatically. Thus, we
don't need to pad the variable manually.

In a small digital system, we usually use either unsigned or signed format. How-
ever, a larger system may contain subsystems of different formats. Verilog is a
loosely typed language and the unsigned and signed variables can be mixed in the
same expression. According to the Verilog standard, the sign extension is per-
formed only if all variables in the right-hand-side expression are with the signed
data type. Otherwise, zero extension is performed for all variables. Consider the
code segment

reg signed [7:0] a, sum;
reg signed [3:0] b;
reg [3:0] c;

sum = a + b + c;

Since c is'not with the signed data type, the variables in the right-hand-side
expression, b and c, are zero extended.

Verilog consists of two system functions, $signed() and $unsigned(), which
convert the enclosed expression to the signed and unsigned data types, respec-
tively. For example, we can convert the data type of c in the preceding statement:

sum « a + b + $ s i g n e d (c) ;

Now all three variables in the right-hand-side expression are with the signed data
type and thus b and c are sign extended.

Mixed signed and unsigned data types in a complex expression can introduce
subtle errors and should be avoided. If it is really necessary, the expression should
be kept simple and the conversion functions should be used to ensure the consistency
of the data type.

8.4 USE OF FUNCTION IN SYNTHESIS

8.4.1 Overview

In a Verilog module, some expressions may occur at many places. Instead of re-
peating the code, the commonly used part should be abstracted into a routine.
This can be achieved by defining functions within a module. A Verilog function
takes one or more input arguments and returns a single value. During synthesis,
the functions are expanded and "flattened" and mapped to hardware. Thus, for
synthesis purposes, functions should be kept simple and treated as shorthand for a
complex expression. The basic syntax of a function is

www.it-ebooks.info

http://www.it-ebooks.info/

USE OF FUNCTION IN SYNTHESIS 2 0 5

module . . .

/ / function defined within module
func t ion [r e s u l t _ t y p e] [func_id] ([i n p u t _ a r g]) ;

begin
[statements];

end
endfunc t ion

endmodule

A function is defined within the function and endfunction delimiters. The op-
tional [resul t_type] specifies the data type of the returned result, which is usually
reg with range or integer. The input arguments are declared in [input .arg] and
the name of the function is specified by [f u n c i d] . A function is described by the
statements and the result is returned by a statement like

[func_id] = . . . ;

8.4.2 Examples

Consider the binary-to-BCD conversion circuit in Listing 7.5. During the conver-
sion, each BCD digit needs to be incremented in a specific way. To make the FSMD
portion clear, we use a separate segment in code:

module . . .

a s s ign bcd0_tmp = (bcdO.reg > 4) ? bcd0_reg+3
a s s ign bcdl_tmp = (bcd l_reg > 4) ? bcdl_reg+3
a s s ign bcd2_tmp = (bcd2_reg > 4) ? bcd2_reg+3
a s s ign bcd3_tmp = (bcd3_reg > 4) ? bcd3_reg+3

bcd0_reg;
bcd l_ reg ;
bcd2_reg;
bcd3_reg;

endmodule
Instead of repeating the same expression four times, we can define a function, ba () ,
for this purpose. The revised code segment becomes

module . . .

a s s ign bcd0_tmp = ba(bcdO_reg) ;
a s s ign bcdl_tmp = b a (b c d l _ r e g) ;
a s s ign bcd2_tmp = ba (bcd2_ reg) ;
a s s ign bcd3_tmp = ba (bcd3_ reg) ;

/ / function definition (ba: bed adjust)
func t ion [3:1] b a (r e g [3:0] b c d _ i n) ;
begin

ba = (b c d . i n > 4) ? bcd_in + 3 : bcd_in;
end
endfunc t ion

endmodule

The function ba() (for BCD adjust) is defined in the end. It takes a 4-bit argu-
ment and returns a 4-bit result. We can use this function to replace the previous

www.it-ebooks.info

http://www.it-ebooks.info/

206 SELECTED TOPICS OF VERILOG

expression. In fact, we can use bc(bcdO-reg) to substitute bcdO.tmp directly and
eliminate these variables from the code.

Another common application of a function is to calculate the constants whose
values depend on other parameters. Consider the mod-m counter discussed in
Listing 5.13. There are two parameters: M, which specifies the m value, and, N,
which specifies the number of bits needed in the counter. The value of N is [log2 M]
and should not be an independent parameter. A better approach is to specify N as
a local constant and calculate its value inside the module. This can be achieved by
using a function. The modified code is shown in Listing 8.12.

Listing 8.12 Mod-m counter with function
module mod_m_counter_fc

#(p a r a m e t e r M = 10) / / mod-M
(

i n p u t w i r e e lk , r e s e t ,
5 o u t p u t w i r e m a x . t i c k ,

o u t p u t w i r e [l o g 2 (M) - 1 : 0] q
) ;

//signal declaration
io l o c a l p a r a m N · l o g 2 (H) ; / / number of bits for M

reg [N - 1 : 0] r _ r e g ;
w i r e [N - 1 : 0] r _ n e x t ;

/ / body
is / / register

a l w a y s QCposedge e l k , p o s e d g e r e s e t)
i f (r e s e t)

r_reg <» 0;
e l s e

2o r_reg <= r _ n e x t ;

/ / next—state logic
a s s i g n r . n e i t = (r _ r e g = = (M - l)) ? 0 : r _ r e g + 1;
/ / output logic

25 a s s i g n q « r _ r e g ;
a s s i g n m a x . t i c k = (r _ r e g » » (M - l)) ? l ' b l : 1'bO;

/ / log2 constant function
f u n c t i o n i n t e g e r l o g 2 (i n p u t i n t e g e r n) ;

so i n t e g e r i ;
b e g i n

l o g 2 - 1;
for (i - 0; 2** i < n; i = i + 1)

l o g 2 = i + 1;
35 end

e n d f u n c t i o n
endmodule

A function, log2() , which computes [log2(x)], is defined inside the module and
used to obtain the local parameter N. Since the computation is performed when the
code is elaborated, the value is determined before synthesis and no physical circuit
will be inferred for this function.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 207

8.5 ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT

Since our focus is mainly on hardware development, we examine only a small syn-
thesizable subset of Verilog and use two basic testbench templates for verification.
Although detailed coverage of the Verilog language and testbench is beyond the
scope of this book, in this section we provide a brief overview of several language
constructs that help us to develop a more sophisticated testbench.

Unlike the synthesizable code, the testbench code is fed to a simulator and
executed on a host computer. We can include complex language constructs and
sequential algorithms in the code. Many of Verilog constructs resemble those in the
C language and can be used in a similar way.

8.5.1 Always block and initial block

Verilog has two types of procedural blocks: always block and initial block. An
always block contains procedural statements inside and models an abstract circuit
part. We examine one special type of always block in Section 4.2. It is intended
for synthesis. The block has a sensitivity list but contains no other explicit timing
control constructs. Activation and execution of the always block are trigged by the
designated events of the sensitivity list.

For modeling purposes, an always block can contain timing constructs to specify
the relevant propagation delays of various constructs or to wait for a specific event.
The sensitivity list can sometimes be omitted. For example, we can use the following
segment to model a clock signal, which alternates between 0 and 1 every 20 time
units and runs forever.

always
begin

elk
#20;
elk
#20;

end

An initial block also contains procedural statements inside. However, it is exe-
cuted only once at the beginning of simulation. The simplified syntax is

initial
begin

[procedural statements]
end

An initial block is frequently used to set the initial values of variables. In Listing 2.7,
it is used to generate the entire testing sequence. Except for the special situation,
such as the RAM initialization discussed in Section 5.7.8, the "run-once" behavior
of an initial block cannot be synthesized.

8.5.2 Procedural statements

Procedural statements are used within initial blocks, always blocks, functions, and
tasks. Commonly used procedural statements are

• Blocking assignment

I ' M ;

1'bO;

www.it-ebooks.info

http://www.it-ebooks.info/

2 0 8 SELECTED TOPICS OF VERILOG

• Nonblocking assignment
• If statement
• Various case statements
• Various loop statements

We discuss the blocking and nonblocking assignments in Section 8.1 and the if and
case statements in Sections 4.3 and 4.4.

Verilog supports four loop constructs: for, while, repeat, and forever. The
simplified syntax of the for loop is

for ([i n i t i a l . a s s i g n m e n t] ; [e n d . c o n d i t i o n] ; [s tep .ass ignment])
begin

[procedural_statements;]
end

For example, we can clear the content of a 16-word register file:
integer i ;

for (i=0; i<16; i = i + l)
r e g _ f i l e [i] ■ 0;

Note that the begin and end delimiters can be omitted if there is only one state-
ment inside the body.

The simplified syntax of the while loop is
while ([end . cond i t i on])
begin

[procedural . s ta tements ;]
end

The statements in the loop body are repeated continuously until the condition
specified by the [end-condition] expression is met. For example, the previous
clearing register operation can also be done with a while loop:

integer i ;

i=0;
while (i<16)
begin

r e g _ f i l e [i] = 0;
i = i + 1;

end

The simplified syntax of the repeat loop is
repeat([number])
begin

[procedural . s ta tements ;]
end

The statements in the loop body are repeated a specific number of times, which is
specified by [number]. For example, the previous operation can also be done with
a repeat loop:

integer i ;

i=0;

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 2 0 9

repeat(16)
begin

r e g _ f i l e [i] = 0;
i = i + i ;

end

The simplified syntax of the forever loop is
forever
begin

[procedural_statements ;]
end

The forever loop, as its name shows, repeats its body until the end of the simu-
lation. The loop body usually contains certain timing control constructs and thus
is suspended periodically. For example, the following segment is another way to
describe a clock signal, which toggles its value every 10 time units and runs forever.

i n i t i a l begin
elk = 1'bO;
forever

#10 elk - "elk;
end

8.5.3 Timing control

In a testbench, we must specify the time that various signals are activated and
deactivated or wait for certain events or conditions. There are three timing control
constructs:

• Delay control: # [delay.time]
• Event control: ©([event] , [even t] , . . .)
• Wait statement: wait ([boolean-expression])

In addition, a compiler directive, ' t imescale , is also related to the timing specifi-
cation.

8.5.4 Delay control

Delay control is indicated by the # symbol, followed by the amount of the time
unit to be delayed. It delays execution of a procedural statement by the amount
specified.

If the delay control is placed on the left-hand side, execution of the entire state-
ment is delayed. For example, consider the segment

#10 a = 1'bO;
#5 y = a I b ;

Assume that the current simulation time is t. The statements mean that a gets
0 at t + 10 and after another 5 time units (i.e., at t + 15) the a lb expression is
evaluated and the result is assigned to y.

If the delay control is placed on the right-hand side, the expression is executed
immediately but the assignment to the left-hand-side variable is delayed. Consider
the segment

www.it-ebooks.info

http://www.it-ebooks.info/

210 SELECTED TOPICS OF VERILOG

#10 a = 1'bO;
y = #5 a I b ;

Again, a gets 0 at t + 10. The a lb expression is evaluated immediately (i.e., at
t + 10) but the result is assigned to y at t + 15.

Instead of modeling the propagation delay, we generally use the delay control to
generate a stimulus in the testbench. The following format makes the code more
intuitive:

a - 1'bO; // a gets 0
#10; / / the 0 value lasts 10 time units
a = I ' M ; / / a changes to 1
#5 / / the 1 value lasts 5 time units
a = 1'bO; //a changes to 0
#20 / / the 0 value lasts 20 time units

8.5.5 Event control

Event control is indicated by the <8 symbol, followed by the sensitivity list, which
specified the desired events. The event control is similar to that used in an always
block. An event is the occasion that a signal in the sensitivity list changes its value
(i.e., a signal transition). The posedge and negedge keywords can be added to
specify the desired transition edge (i.e., rising edge or falling edge). In a testbench,
the execution is suspended until one of the specified events occurs. One common
application of event control is to synchronize the stimulus generation with a clock
signal. For example, the following segment activated the enable signal, en, for one
clock cycle:

localparam d e l t a = l ;

«(posedge e lk) / / wait for the rising edge of elk
#de l ta ; / / wait for delta to avoid hold—time violation
en = l ' b l ; / / assert en to 1
a(posedge e lk) / / wait for the next rising edge of elk
#de l ta ; / / wait for delta to avoid hold—time violation
en = 1'bO; / / deassert en to 0

Alternatively, we can also assert and deassert en at the falling edge of the clock
signal:

Ö(negedge e lk) / / wait for the falling edge of elk
en * l ' b l ; / / assert en to 1
a(negedge e lk) / / wait for the next falling edge of elk
en = 1'bO; / / deassert en to 0

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 2 1 1

8.5.6 Wait statement

The wait statement waits for a specific condition. The simplified syntax is

wait [boo lean_express ion]

Execution of the subsequent statements is suspended until the condition specified
by the [boolean-expression] term is evaluated to be true. For example, we can
write code like

wait(state==READ && mem_ready==i 'bl) [s t a t e m e n t _ t o _ g e t _ d a t a] ;

We can also use the wait statement to suspend the execution. For example, we can
wait for a counter to reach 15 and then activate certain signals:

wait (counter«=4 ' b l l l l) ; / / wait unit counter is 15
. . . // continue

The wait statement is somewhat similar to the event control. The latter waits for
the transition edges of certain signals and the former waits for a specific condition
and is sometimes known as level-sensitive.

8.5.7 Timescale directive

Compiler directives are used to control the compiling and processing of Verilog
code. They are preceded by the grave accent mark (') , which is usually located in
the top-left corner of the keyboard. A timing-related directive is the ' t imesca le
directive, whose syntax is

' t imesca le [time_unit] / [time_precision]

The [t ime.unit] term specifies the unit of measurement for time and delays and
the [time_precision] term specifies the "resolution" of simulation.

For example, the directive

' t imesca le 10 ns / 1 ns

indicates that the simulation unit is 10 ns and the resolution is 1 ns. When a delay
is specified in the code, as in

#5 y = a & b ;

it indicates that the actual delay is 50 ns (i.e., 5 * 10 ns).
The delay specification can be a fraction of a unit, as in

5 . 1 2 3 4 5 y = a 4 b;

which indicates that the actual delay is 51.2345 ns. Since the precision is 1 ns, the
number is rounded to 51 ns in simulation. Finer precision can increase the accuracy
of the simulation but may reduce the simulation speed.

The number portion of the [time_unit] and [time_precision] terms can b e l ,
10, or 100, and the time units can be s (second), ms (millisecond), us (microsecond),
ns (nanosecond), ps (picosecond), or fs (femtosecond).

www.it-ebooks.info

http://www.it-ebooks.info/

212 SELECTED TOPICS OF VERILOG

8.5.8 System functions and tasks

Verilog has a set of predefined system functions and tasks. They perform system-
related operations, such as simulation control and file access. Their names begin
with a dollar sign ($). We examine several commonly used functions and tasks in
this subsection.

Data type conversion functions The Sunsigned and Ssigned functions perform
the conversion between the unsigned and signed data types. Their use is discussed
in Section 8.3.

Simulation time functions Simulation time functions return the current simulation
time. The $time, $stime, and $realtime functions return the time as a 64-bit
integer, a 32-bit integer, and a real number, respectively.

Simulation control tasks There are two simulation control tasks: $finish and
$stop. The $finish task terminates the simulation and exits the simulation pro-
gram. The $stop task suspends simulation. In ModelSim, it returns simulation to
the interactive mode. In our development flow, we usually stay within the Model-
Sim environment to do further editing or to examine the waveform, and thus $stop
is used in the code.

Display tasks The development flow discussed in Section 3.3 resembles doing an
experiment at a lab bench. The simulated result is shown in waveform format in
ModelSim, which emulates a logic analyzer used at a lab bench. An alternative is
to display the results in textual format. The four main display system tasks are
$display, $write, Sstrobe, and $monitor. They have similar syntax and display
the text during simulation. In ModelSim, the text is shown in the console panel.

The format of $display is similar to the print function in the C language. Its
simplified syntax is

$ d i s p l a y ([f o r m a t . s t r i n g] , [argument], [argument], . . .) ;

The [f ormat_string] term contains regular character and "escape sequences" to
specify the format of the corresponding arguments. When the string is displayed,
the values of the corresponding arguments are substituted into the string and shown
in the designated format. For example, in the the statement

$display("at '/.d; s igna l x « '/.b" , $time, x) ;

*/,d and */.b are escape sequences and specify that current simulation time and x
are to be displayed in the decimal and binary formats, respectively. The rustling
display looks like

at 5100; signal x = 00110001

The commonly used escape sequences in our simulation include 7,d, */,b, %o, %h.,
*/,c, */.s, and */,g, which are for decimal, binary, octal, hexadecimal, character, string,
and real number, respectively.

The $write task is almost identical to the $display task except that $write
does not add a newline character in the end. The output of the display-related task
continues from the current position. The newline character, \n, must be added to
the string manually to create a line break.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 2 1 3

Verilog incorporates the concept of a time step to model the propagation delay,
as discussed in Section 8.5.7. Many activities can take place within a time step.
The $strobe task is similar to the Sdisplay task. Instead of being executed im-
mediately, the Sstrobe task is executed at the end of the current simulation time
step. It avoids mismatched data display due to the race condition.

The $monitor task is a very versatile command. Whereas the $display, $ write,
or Sstrobe task displays the text once every time it is executed, the $ monitor task
displays text when an argument changes its value. The Smonitor task provides a
simple and flexible way to keep track of the simulation. For example, we can add
the following segment to the testbench in Listing 2.7:

i n i t i a l
b e g i n

$ d i s p l a y (" t ime t e s t _ i n O t e s t _ i . n l t e s t _ o u t ") ;
$moni tor ('7 .d 7,b */.b '/.b",

$time, test.inO, test.inl , test.out);
end

The textual simulation result is displayed in the control console panel:

time test_inO t e s t _ i n l t e s t_ou t
0

200
400
600
800
1000
1200

00
01
01
10
10
11
11

00
00
11
10
00
11
01

1
0
0
1
0
1
0

File I/O system functions and tasks Verilog provides a set of functions and tasks
to access external data files. A file can be opened and closed by the Sfopen and
$fclose functions. The simplified syntax of using Sfopen is

[mcd_name] ■ $fopen(" [file.name]");

The $fopen function returns a 32-bit multichannel descriptor associated with the
file. The descriptor can be thought of as a 32-bit flag, in which each bit represents
a file (i.e., a channel). The LSB is reserved for the standard output (i.e., the
console). When the function is called and the file is opened successfully, it returns
a descriptor value with one bit asserted. For example, 0 . . . 0010 is returned for the
first opened file, 0 . . . 0100 is returned for the second opened file, and so on. The
function returns all 0's if the open operation fails.

Once a file is opened, we can write data to the file with four modified display
system tasks: Sfdisplay, $fwrite, $fstrobe, and Sfmonitor. These tasks are
similar to the original ones except that a multichannel descriptor is used as the
first argument, as in

Sfdisplay([mcd.name], [format.string], . . .) ;

A simple example segment is shown in Listing 8.13.

Listing 8.13 File write example
integer log.file, both.file;
localparam con_file=16'hOOOO.OOOl; / / console

www.it-ebooks.info

http://www.it-ebooks.info/

214 SELECTED TOPICS OF VERILOG

4 i n i t i a l
b e g i n

l o g . f i l e - $ f o p e n (" m y _ l o g ") ;
i f (l o g _ f i l e = = 0)

S d i s p l a y (" F a i l t o open l o g f i l e ") ; / / write console
9 b o t h . f i l e ■ l o g . f i l e I c o n . f i l e ;

/ / write to both console and log file
S f d i s p l a y (b o t h . f i l e , " S i m u l a t i o n s t a r t e d ") ;

i4 / / write to log file only
S f d i s p l a y (l o g . f i l e , . . .) ;

/ / write to both console and log file
S f d i s p l a y (b o t h . f i l e , " S i m u l a t i o n e n d e d ") ;

i9 S f c l o s e (l o g . f i l e) ;
end

Note that we can create a descriptor by performing a bitwise or operation over
the multichannel descriptors, as for the both-f i l e variable. When both-f i l e is
used, the text will be written to the console and the log file.

There are two simple system tasks to retrieve data from an external file: $read-
memb and $readmemh. These tasks assume that the external file stores the
content of a memory array and reads the content into a variable. The $read-
memb and Sreadmemh tasks further assume that the content is in the binary
and hexadecimal formats, respectively. The simplified syntax is

$ r e a d m e m b (" [f i l e . n a m e] " , [m e m . v a r i a b l e]) ;
$ r e a d m e m h (" [f i l e . n a m e] " , [m e m . v a r i a b l e]) ;

The following code segment illustrates the retrieval of an 8-by-4 memory array:
r e g [3 : 0] v_mem [0 : 7] ;

$ r e a d m e m b (" v e c t o r . t x t " , v . m e m) ;

The file should contain eight 4-bit binary data separated by white spaces.
With the file operation functions and tasks, it is possible to use external files to

specify the test patterns and to record the simulation result. Consider the testbench
in Listing 2.7. We can modify it using file operations, as shown in Listing 8.14.

Listing 8.14 Testbench based on file operation
i ' t i m e s c a l e 1 n s / 1 0 ps

module e q 2 _ f i l e _ t b ;
/ / signal declaration
reg [1 : 0] t e s t . i n O , t e s t . i n l ;

Ö w i r e t e s t . o u t ;
i n t e g e r l o g . f i l e , c o n s o l e . f i l e , o u t . f i l e ;
r eg [3 : 0] v.mem [0 : 7] ;
i n t e g e r i ;

li / / instantiate the circuit under test
eq2_sop uut

(. a (t e s t . i n O) , . b (t e s t _ i n l) , . a e q b (t e s t . o u t)) ;

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 2 1 5

i n i t i a l
i» b e g i n

/ / setup output file
l o g _ f i l e - $ f o p e n (" e q l o g . t x t ") ;
i f O l o g . f i l e)

S d i s p l a y (" C a n n o t open l o g f i l e ") ;
21 c o n s o l e . f i l e - 32'hOOOO.OOOl ;

o u t . f i l e - l o g _ f i l e I c o n s o l e . f l i e ;

/ / read test vector
SreadmembC v e c t o r . t x t " , v_aem);

26

/ / test generator iterating through 8 patterns
f o r (i - 0 ; i < 8 ; i - i + l)

b e g i n
{ t e s t . i n O , t e s t . i n l } » v _ m e m [i] ;

3i #200;
end

/ / stop simulation
$ f c l o s e (l o g _ f i l e) ;

36 $ s t o p ;
end

/ / text display
i n i t i a l

4i b e g i n
S f d i s p l a y (o u t . f i l e , " t ime t e s t . i n O t e s t . i n l t e s t . o u t ") ;
S f d i s p l a y (o u t . f i l e , " (a) (b) (aeqb) ") ;
$ f m o n i t o r (o u t _ f i l e , "7.10d Xb */.b '/Cb",

Stinte* t e s t . i n O , t e s t . i n l , t e s t . o u t) ;
46 end

endmodule

The test patterns are specified in 4-bit binary format and are stored in the
vec tor . t x t file. The content of the file is

0 0 . 0 0
0 1 . 0 0
0 1 . 1 1
1 0 . 1 0
1 0 . 0 0
1 1 . 1 1
1 1 . 0 1
0 0 . 1 0

The file is read into the two-dimensional v_mem variable. The test pattern generator
uses a for loop to iterate through the eight patterns. The simulated result is written
to the console and the log file, eq log . t x t . The content of the log file is

time t e s t . i n O t e s t _ i n l t e s t . o u t

0
200
400
600
800
1000

(a)
00
01
01
10
10
11

(b)
00
00
11
10
00
11

(aeqb)
1
0
0
1
0
1

www.it-ebooks.info

http://www.it-ebooks.info/

216 SELECTED TOPICS OF VERILOG

1200 11 01 0
1400 00 10 0

The log file is a regular text file and can be examined later by any text editor.

8.5.9 User-defined functions and tasks

A comprehensive testbench can be lengthy and involved. One way to manage the
complexity is to divide the code into smaller portions. The functions and tasks can
help us to achieve this. We discuss Verilog functions in Section 8.4. A function takes
input arguments and returns a single value. When called, a function is executed
immediately and thus no timing control construct is allowed within the function.

A task is more flexible and versatile. It can have input, output, and bidirectional
arguments and can incorporate timing control constructs. Multiple values can be
returned via the output and bidirectional arguments. As with a function, a task
must be declared within a module. The basic syntax of a task is

t a sk [t a s k . i d] ([a r g]) ;
begin

[s t a t e m e n t s] ;
end

end task

The [arg] term is the argument declaration. Its format is similar to the port
declaration of a module except that the default data type is reg and the wire data
type cannot be used. The example in Listing 8.15 shows the modeling of a 2-bit
equality comparator using a task.

Listing 8.15 Two-bit comparator using a task
module eq2_task

(
input wire [1:0] a, b ,
output reg aeqb
) ;

reg eO, e l ;

always 0*
begin

e q u _ t s k (2 , a [0] , b [0] , eO);
e q u _ t s k (2 , a [l] , b [l] , e l) ;
aeqb » eO & e l ;

end

/ / task definition
task e q u . t s k

(
input integer delay ,

i input iO, 11 ,
output eql

) ;
begin

»delay eql = C iO 4k * i l) I (iO fe i l) ;
> end

endtask
endmodule

26 b e g i

si en

36 r e s e

4i /

46 l o a

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 2 1 7

Note that the propagation delay of the operation is specified by #delay and its
value is passed into the task via the delay argument.

For comparison purposes, we rewrite the code using a function, as shown in
Listing 8.16.

Listing 8.16 Two-bit comparator using a function
module eq2_function

(
3 input wire [1:0] a, b,

output reg aeqb
) ;

reg eO, e l ;
8

always 0*
begin

#2 eO - equ_fnc(a [0] , b [0]) ;
#2 el = equ_fnc(a[l] , b [l]) ;

13 aeqb - eO k e l ;
end

/ / function definition
function equ.fnc (input iO, i l) ;

is begin
equ.fnc - ("iO & " i l) I (iO _ i l) ;

end
endfunction

endmodule

Note that a function cannot incorporate timing control. To achieve the same effect,
the delay must only be specified in the always block.

8.5.10 Example of a comprehensive testbench

After learning additional language constructs, we can develop a more sophisticated
testbench. Let us consider the testbench again for the universal binary counter
in Listing 5.12. The conceptual block diagram of a new testbench is shown in
Figure 8.3. There are three modules. In addition to the counter, the bin_gen
module generates the testing vector and the monitor module monitors the input
stimulus and the output responses.

Test vector generator module Generating test vectors directly, as in Listing 5.14, is
a lengthy and tedious process. A better alternative is to develop a set of abstract
procedures that correspond to various operations. This makes the code better
organized and easier to comprehend. An individual procedure can be done by a
task. For example, in the preceding testbench, we can define a task to perform the
counter's data load operation:

task l o a d . d a t a (i n p u t wire [N-1:0] d a t a . i n) ;
begin

®(negedge e l k) ; / / wait for failing edge
load = I ' M ;
d = data_i . i i ;
<a(negedge e l k) ;
l oad = 1'bO;

www.it-ebooks.info

http://www.it-ebooks.info/

218 SELECTED TOPICS OF VERILOG

bit_gen

test
procedure

tasks to
generate
vector

syn_clr q
load
up
en
d univ bin counter

>
reset

monitor

Figure 8.3 Block diagram of a comprehensive testbench.

end
end task

In the task, load is asserted for one clock cycle between two falling edges and the
data, da ta . in , is placed on d.

Several other tasks are defined in a similar way:
• clr_counter_async: clear the counter asynchronously by generating a short

r e s e t pulse.
• clr_counter_sync: clear the counter synchronously by activating the syn_clr

signal for one clock cycle.
• count: enable the counter to count up or down for a certain number of cycles.
• i n i t i a l i z e : set up the initial values for simulation and generate a r e s e t

pulse.
With these procedures, we can generate the test vector in a more abstract way:

i n i t i a l
begin

i n i t i a l i z e () ;
count (12 , 1) ;
c o u n t (6 , 0) ;
l o a d _ d a t a (3 ' b 0 1 1) ;
count (2 , 1) ;
c l r_coun te r_sync ()
count (3 , 1) ;
c l r_coun te r_async ()
c o u n t (5 , 1) ;
$ s top ;

end
/ / stop

//
/ /
/ /
/ /

; / /
/ /

) ; / /
/ /

count up 12 cycles
count down 6 cycles
load Oil
count up 2 cycles
clear counter synchronously
count up 3 cycles
clear counter asynchronously
count up 5 cycles

simulation

The complete code is shown in Listing 8.17.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 219

Listing 8.17 Test vector generator

module bin.gen
2 «(parameter N=8, T-20)

(
output reg elk, reset,
output reg syn_clr , load, en, up,
output reg [N-1:0] d

T) ;

/ / clock
// clock running forever
always

12 begin
elk - l 'bl;
#(T/2);
elk = 1'bO;
#(T/2);

i7 end

// test procedure
initial

22 begin
initialize();
count (12, 1);
count(6, 0);
load_data(3'b0il);

27 count (2 , 1) ;
clr_counter_sync ();
count(3, 1);
clr_counter_async();
count(5, 1) ;

32 Sstop;
end

/ /
/ / task definitions

37 / /
/ / assert reset between clock edges
task clr_counter_async () ;

begin
Q(negedge elk); / / wait for failing edge

42 reset - l 'bl;
#(T/4); / / assert 4/T
reset = 1'bO;

end
endtask

47

/ / system initialization
task in i t ia l ize() ;

begin
en = 0;

52 up » 0 ;
load » 0;
syn.clr - 0;
d - 3'bOOO;
clr_counter_async () ;

57 end
endtask

/ / count up 12 cycles
// count down 6 cycles
// count down 6 cycles
// count up 2 cycles

// count up 3 cycles

// count up 3 cycles
// stop simulation

// asset syn-dr one clock cycle

www.it-ebooks.info

http://www.it-ebooks.info/

220 SELECTED TOPICS OF VERILOG

task clr_counter_sync() ;
begin

/ / wait for failing edge
// assert clear

e(negedge elk)
syn_clr - l 'bl
QCnegedge elk)
syn.clr - 1'bO

end
endtask

/ / load register
task load_data(input wire [N-1:0] data.in);

begin
QCnegedge elk); / / wait for failing edge
load - l ' b l ;
d ■ data_in;
QCnegedge elk);
load - 1'bO;

end
endtask

/ / count up or down for C cycles
task count(input integer C, input integer UP.DOWN);

begin
QCnegedge elk); / / wait for failing edge
en - l 'b l ;
if CUP_D0WN=»1) / / count up if up-down is 1

up - l ' b l ;
repeat(C) QCnegedge elk);
en - 1'bO;
up - 1 * bO;

end
endtask

endmodule

Monitor module The monitor module monitors and records the activities of the
counter and verifies its operation. The complete code is shown in Listing 8.18.

Listing 8.18 Monitor
module bin.monitor

2 #(parameter N=3)
(
input wire elk , reset ,
input wire syn.clr , load, en, up,
input wire [N-1:0] d,

7 input wire max.tick, min.tick,
input wire [N-1:0] q

) ;

reg [N-1:0] q.old, d_old, gold;
12 reg syn_clr_old, en.old, load_old, up.old;

reg [39:0] err_msg; / / 5—letter message

in i t ia l / / head
Sdisplay (" time syn_clr/load/en/up q\n");

17

always QCposedge elk)
begin

/ / -old: the value sampled at the previous clock edge
syn_clr_old <= syn.clr;

22 en_old <= en;

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 2 2 1

load.old <= load;
up_old <- up;
q_old <= q;
d.old <=■ d;

27

/ / calculate the desired "gold" value
if (syn_clr_old)

gold » 0;
else if (load.old)

32 gold « d_old ;
else if (en_old It up_old)

gold - q_old + 1;
else if (en_old & ~up_old)

gold » q_old - 1;
37 else

gold = q_old;

/ / error message
if (q—gold)

42 err.msg » " "; / / result passes
else

err.msg = "ERROR"; / / result fails

//
$ d i s p l a y (" y . 5 d , ,/.b,/.bXb,/.b %d % s " ,

47 $time, syn.clr, load, en, up, q, err.msg);
end

endmodule

Since the counter is a synchronous sequential circuit, the monitor module fo-
cuses on the activities at the rising edge of the clock signal. The key is to check
the correctness of the counter operation. Since the circuit under test is a simple
counter, we can record the sampled input values and counter state from the previous
sampling edge and determine the new counter state. For example, if the previous
sampled value of syn_clr is 1, the counter is cleared and becomes 0 in the next
rising edge of the clock.

The main part of the code is an always block, which is activated at the rising
edge of the clock. There are three segments. The first segment uses nonblocking
statements to infer registers, which are designated with the .old suffix and store the
values sampled from the previous sampling edge. The second segment uses these
values to calculate the expected counter output, gold. The last segment compares
the expected counter output with the actual output and displays the values of the
sampled input signals and the counter output. If a mismatch occurs, an ERROR
message will be generated. Note that in Verilog a character is treated as an 8-bit
number and thus the five-character message, err_msg, is declared as reg [39:0] .

Top-level module The code of the top-level testbench module is shown in List-
ing 8.19, which follows the block diagram in Figure 8.3.

Listing 8.19 Top-level module of testbench
i 'timescale 1 ns/10 ps

module bin_counter_tb3 ();

/ / declaration
o localparam T=20; / / clock period

wire elk , reset;

www.it-ebooks.info

http://www.it-ebooks.info/

2 2 2 SELECTED TOPICS OF VERILOG

w i r e s y n . c l r , l o a d , e n , up;
w i r e [2 : 0] d;
w i r e m a x . t i c k , mi.n_ti.ck;

11 w i r e [2 : 0] q;

/ / uut instantiation
u n i v _ b i n _ c o u n t e r # (. N (3)) uut

(. c l k (c l k) , . r e s e t (r e s e t) , . s y n _ c l r (s y n . c l r) ,
IG . l o a d (l o a d) , . e n (e n) , . u p (u p) , . d (d) ,

. m a x _ t i c k (m a x _ t i c k) , . m i n _ t i c k (m i n _ t i c k) , . q (q)) ;

/ / test vector generator
b i n . g e n # (. N (3) , . T (2 0)) g e n . u n i t

2i (. c l k (c l k) , . r e s e t (r e s e t) , . s y n . c l r (s y n . c l r) ,
. l o a d (l o a d) , . e n (e n) , . u p (u p) , . d (d)) ;

/ / bin.monitor instantiation
b i n . m o n i t o r # (. N (3)) m o n . u n i t

2e (. c l k (c l k) , . r e s e t (r e s e t) , . s y n . c l r (s y n . c l r) ,
. l o a d (l o a d) , . e n (e n) , . u p (u p) , . d (d) ,
. m a x _ t i c k (m a x _ t i c k) , . m i n _ t i c k (m i n _ t i c k) , . q (q)) ; endmodule

In addition to the waveform, the testbench also generates textual output on the
console panel:

time syn_clr/load/en/up q

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520

0000
0000
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0000
0010
0010
0010
0010
0010
0010
0000
0100
0000
0011
0011
0000

X

0
0
1
2
3
4
5
6
7
0
1
2
3
4
4
3
2
1
0
7
6
6
3
3
4
5

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHIC NOTES 223

540
560
580
600
620
640
660
680
700
720
740
760

1000
0000
0011
0011
0011
0000
0000
0011
0011
0011
0011
0011

5
0
0
1
2
3
0
0
1
2
3
4

There are three ERROR messages. The messages at times 0 and 20 occur during
system initialization and are not real errors. The message at time 660 is due to
the clr_counter_async 0 operation, which generates a short asynchronous pulse
between the sampling edges of 640 and 660. Since the testbench monitors only
synchronous activities, it misses the asynchronous reset and reports it as an error.

8.6 BIBLIOGRAPHIC NOTES

Verilog HDL, 2nd edition, by S. Palnitkar and Starter's Guide to Verilog 2001
by M. D. Ciletti covers Verilog's syntax and constructs. IEEE Standard Verilog
Hardware Description Language, IEEE Std 1364-2001, gives the rules regarding
adjustment of an expression with mixed signed and unsigned data types. Writing
Testbenches: Functional Verification of HDL Models, 2nd edition, by J. Bergeron,
provides detailed discussion of testbench development. The article "Nonblocking
Assignments in Verilog Synthesis, Coding Styles That Kill!" by C. E. Cummings
gives guidelines for proper use of blocking and nonblocking assignments.

8.7 SUGGESTED EXPERIMENTS

8.7.1 Shift register with blocking and nonblocking assignments

The codes shown in Listing 8.20 are three attempts to describe a shift register.
Derive the inferred circuits by the three attempts and determine whether they infer
a shift register.

Listing 8.20 Code for Experiment 8.7.1
module expl

2 (

input wire elk ,
input wire xO , yO , ζθ ,
output reg x3, y3, z3

) ;
7

reg x l , x2 , y l , y2 , z l , z2;
/ / attempt 1
always Q(posedge e lk)
begin

www.it-ebooks.info

http://www.it-ebooks.info/

224 SELECTED TOPICS OF VERILOG

12 x l < - xO;
x2 <« x l ;
x3 <- x 2 ;

end

i7 / / attempt 2
a l w a y s <5(posedge e l k)
b e g i n

y l = yO;
y2 - y l ;

22 y3 - y 2 ;
end

/ / attempt 3
a l w a y s « (p o s e d g e e l k)

27 b e g i n
z l » zO;
z3 » z 2 ;
z2 « z l ;

end
32 endmodule

8.7.2 Alternative coding style for BCD counter

Rewrite the BCD counter in Listing 5.16 using the coding style discussed in Sec-
tion 8.2. Resynthesize the circuit and verify its operation.

8.7.3 Alternative coding style for FIFO buffer

Rewrite the FIFO buffer in Listing 5.19 using the coding style discussed in Sec-
tion 8.2. Resynthesize the circuit and verify its operation.

8.7.4 Alternative coding style for Fibonacci circuit

Repeat the Fibonacci circuit discussed in Section 7.3.1 using the coding style dis-
cussed in Section 8.2.

8.7.5 Dual-mode comparator

A dual-mode comparator takes the two 8-bit data inputs, a and b, as unsigned or
signed integers. A control signal, mode, indicates the desired mode. The circuit has
one output, agtb, which is asserted when the interpreted value of a is greater than
the interpreted value of b.

1. Assume that the signed data type is allowed. Design the circuit and derive
the code.

2. Synthesize the circuit and verify its operation.
3. Assume that the signed data type is not allowed in the code. Repeat steps 1

and 2.

8.7.6 Enhanced binary counter monitor

The monitor module in Section 8.5.10 is intended to monitor a synchronous sys-
tem and only checks the activities at the rising edges of the clock signal. The

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 225

asynchronous reset operation is reported as an error. Modify the monitor circuit
to take the asynchronous operation into consideration. Recreate the testbench and
perform simulation to verify its operation.

8.7.7 Testbench for FIFO buffer

Follow the example in Section 8.5.10 to design a compressive testbench to verify
operation of the FIFO buffer discussed in Section 5.6.2. The test vector generator
module should generate various combinations of write and read operations and
introduce the full and empty conditions. The monitor module should continuously
watch data written into and retrieved from the buffer and check the correctness of
the operations.

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

BASIC NIOS II SOFTWARE
DEVELOPMENT

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

NIOS II PROCESSOR OVERVIEW

Nios II is Altera's proprietary processor targeted for its FPGA devices. It is con-
figurable and can be trimmed to meet specific needs. In this chapter, we examine
its basic organization and key components. The emphasis is on the features that
may affect future software and I/O peripheral development.

9.1 INTRODUCTION

Nios II is a soft-core processor targeted for Altera's FPGA devices. As opposed to a
fixed prefabricated processor, a soft-core processor is described by HDL codes and
then mapped onto FPGA's generic logic cells. This approach offers more flexibility.
A soft-core processor can be configured and tuned by adding or removing features
on a system-by-system basis to meet performance or cost goals.

The Nios II processor follows the basic design principles of a RISC (reduced in-
struction set computer) architecture and uses a small, optimized set of instructions.
Its main characteristics are:

• Load-store architecture
• Fixed 32-bit instruction format
• 32-bit internal data path
• 32-bit address space
• Memory-mapped I/O space
• 32-level interrupt requests

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 229
Copyright © 2012 John Wiley &c Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

230 NIOS II PROCESSOR OVERVIEW

clot* |
npu_reselrequeEt

^ cpu resatlaf en

JTAG
interface

LQ softΛ ara
debugger

Niot II Protestor Cor«

JTAG

irq[31..Q|

eic port uai3[*U..U|

ac_pori_vaiid

Program
Contra üar

&
Address

GenemlJoh

Exception
. fjiMir,ll*r

\<4itiUA\

interrupt
Comruiltf

ExlemnJ
interrupt

Cortrott&r
lllk¡-,fc.»:

Ut'liif'Lii
PurpOSB
Regia Lent

Control

S h a t » *
Rental

Instruction
Cache

Instruction

Memory
Protection

Unit

Custom
I/O .

S»gnais

Custom
InetnjclHjn

Logic
AnOwwÉc

LOOK Unit

Memory
Management

Unit ■

n a n H t o n
Loowwid*

BllftDf

Data
Cache

TigfiUyCoupJifd
tnavuclion Memory

Tightly Coupled
Instruction Memory

i Instruction Bus

Dd tabus

Thghiiv Coupled
Data Memory

* •
Tigrlly Coupled
Data Memory

Key
Required

Module

Optional
Module

1

Figure 9.1 Block diagram of a Nios II processor (Courtesy of Altera Corp.).

• 32 general-purpose registers
The conceptual block diagram of a Nios II processor is shown in Figure 9.1. The

main blocks are:
• Register file (general purpose registers) and control registers
• ALU (arithmetic and logic unit)
• Exception and interrupt handler

Optional instruction cache and data cache -
Optional MMU (memory management unit)
Optional MPU (memory protection unit)
Optional JTAG debug module

There are three basic versions of Nios II:
• Nios Il/f: The fast core is designed for optimal performance. It has a 6-stage

pipeline, instruction cache, data cache, and dynamic branch prediction.
• Nios H/s: The standard core is designed for small size while maintaining good

performance. It has a 5-stage pipeline, instruction cache, and static branch
prediction.

• Nios Il/e: The economy core is designed for optimal size. It is not pipelined
and contains no cache.

These processors' key characteristics are summarized on the top of Table 9.1 and
their sizes and performances (which are based on the Cyclone II family) are listed
on the bottom.

www.it-ebooks.info

http://www.it-ebooks.info/

REGISTER FILE AND ALU 2 3 1

Table 9.1 Comparison of Nios II versions

Processor pipeline
Branch prediction
Multiplication
Shift
Instruction cache
Data cache
MMU/MPU

Circuit size
Max clock rate
Performance

Nios I l /e

1 stage
-
software
software
-
-
-

540 LEs
195 MHz
18 MIPS

Nios II/s

5 stages
static
3-cycle multiplier
3-cycle barrel shifter
0.5 KB to 64 KB
-
-

1030 LEs
110 MHz
55 MIPS

Nios Il /f

6 stages
dynamic
1-cycle multiplier
1-cycle barrel shifter
0.5 KB to 64 KB
0.5 KB to 64 KB
optional

1600 LEs
140 MHz
145 MIPS

Within each version, the processor can be further configured by including or
excluding certain features (such as the JTAG debugging unit) and adjusting the size
and performance of certain components (such as cache size). While the performance
and size are different, the three versions share the same instruction set. Thus, from
the software programmer's point of view, the three versions appear to be identical
and the software dose not needed to be modified for a particular core.

Although the Nios II processor is described by HDL codes, the file is encrypted
and a user cannot modify its internal organization via the codes. It should be
treated as a black box that executes the specified instructions. The main blocks
of the processor are examined briefly in the following sections. The emphasis is on
their impacts on applications rather than on their internal implementation.

9.2 REGISTER FILE AND ALU

9.2.1 Register file

A Nios II processor consists of thirty two 32-bit general-purpose registers. The
register 0 is hardwired and always returns the value zero and the register 31 is used
to hold the return address during a procedure call. The other registers are treated
identical by the processor but may be assigned for special meaning by an assembler
or compiler. The processor also has several control registers, which report the status
and specify certain processor behaviors. Since we use the C language for software
development in this book, these registers are not directly referenced in codes.

9.2.2 ALU

ALU operates on data stored in general-purpose registers. An ALU operation takes
one or two inputs from registers and stores a result back to a register. The relevant
instructions are:

www.it-ebooks.info

http://www.it-ebooks.info/

2 3 2 NIOS II PROCESSOR OVERVIEW

• Arithmetic operations: addition, subtraction, multiplication, and division.
• Logical operations: and, or, nor, and xor.
• Shift operations: logic shift right and left, arithmetic shift right and left, and

rotate right and left.
Ideally, the ALU should support all these operations. However, the implementa-
tion of multiplication, division, and variable-bit shifting operation is quite complex
and requires more hardware resources. A Nios II processor can be configured to
include or exclude these units. An instruction without hardware support is known
as an "unimplemented instruction" in Altera literature. When an unimplemented
instruction is issued, the processor generates an exception, which in turn initiates
an exception handling routine to emulate the operation in software.

9.3 MEMORY AND I/O ORGANIZATION

9.3.1 Nios II memory interface

A Nios II processor utilizes separate ports for instruction and data access. The
instruction master port fetches the instructions and performs only a read operation.
The data master port reads data from memory or a peripheral in a load instruction
and writes data to memory or a peripheral in a store instruction. The two master
ports can use two separate memory modules or share one memory module.

9.3.2 Overview of memory hierarchy

In an ideal scenario, a system should have a large, fast, and uniform memory, in
which data and instruction can be accessed at the speed of the processor. In reality,
this is hardly possible. Fast memory, such as the embedded memory modules within
an FPGA device, is usually small and expensive. On the other hand, large memory,
such as the external SDRAM (synchronous dynamic RAM) chip, is usually slow.
One way to overcome the problem is to organize the storage as a hierarchy and put
the small, fast memory component closer to the processor. Because the program
execution tends to access a small part of the memory space for a period of time
(known as locality of memory reference), we can put this portion in a small fast
storage. A typical memory hierarchy contains cache, main memory, and a hard
disk. A memory management technique known as virtual memory is used to make
the hard disk appear as part of the memory space.

A Nios II processor supports both cache and virtual memory and can also provide
memory protection and tightly coupled memory. The memory and I/O organization
of a fully featured configuration is shown in Figure 9.2.

9.3.3 Virtual memory

Virtual memory gives an application program the impression that the computer
system has a large contiguous working memory space, while in fact the actual
physical memory is only a fraction of the actual size and some data are stored in an
external hard disk. Implementing a virtual memory system requires a mechanism
to translate a virtual address to a physical address. The task is usually done jointly

www.it-ebooks.info

http://www.it-ebooks.info/

MEMORY AND I/O ORGANIZATION 2 3 3

Nio* l| Proc*itor Core

-
— MPU Instruction Rayons

Instruction
Cache

-£■

General
Purppve

U l I-,'

Cachi
Sypasa
Logic

UPU Dala Regens

I -gr-.iiy C-jupM-d

T^Htly Ccuptec!
ii ,1 ,,: r.. i.

Memory N

Avalon ¿syütitm
InlorconnecJ

Faene

~§

-oJ

£ Memory

«.

Tnjntly C
Data

Memory 1

"Ogirfy Coupled
Data

N

M I Avalan Master Port

Ξ Avalon Slave Pürt

Figure 9.2 Nios II memory and I/O organization (Courtesy of Altera Corp.).

by an operating system and special hardware. In a Nios Il/f processor, an optional
MMU (memory management unit) can be included for this purpose.

Utilizing MMU requires an operation system that supports the virtual memory.
Hardware alone will not serve any useful purpose.

9.3.4 Memory protection

Modern operation systems include protection mechanisms to restrict user appli-
cations to access critical system resource. For example, some operation systems
divide the program execution into kernel mode (without restriction) and user mode
(with restriction). Implementation of this scheme also requires special hardware
support. In a Nios Il/f processor, an optional MPU (memory protection unit) can
be included for this purpose. As in MMU, a proper operation system is needed to
utilize the MPU feature.

In a Nios II configuration, the use of MMU and MPU is mutually exclusive,
which means that only one of them can be included.

9.3.5 Cache memory

Cache memory is a small, fast memory between the processor and main memory, as
shown in Figure 9.2. In a Nios II processor, the cache is implemented by FPGA's
internal embedded memory modules and the main memory is usually composed

www.it-ebooks.info

http://www.it-ebooks.info/

234 NIOS II PROCESSOR OVERVIEW

of external SDRAM devices. As long as most memory accesses are within cached
locations, the average access time will be closer to the cache latency than to the
main memory latency.

The operation of cache memory can be explained by a simple example. Consider
the execution of a loop segment in a large program, which resides on the main
memory. The steps are:

• At the beginning, code and data are loaded from the main memory to the
cache.

• The loop segment is executed.
• When the execution is completed, the modified data are transferred back from

the cache to the main memory.
In this process, the access time at the beginning and end is similar to the main
memory latency and the access time for loop execution is similar to the cache
latency. Since a typical loop segment iterates through the body many times, the
average access time of this segment is closer to the cache latency.

A Nios II processor can be configured to include an instruction cache or both
instruction and data cache. The sizes of the caches can be adjusted as well. Unlike
MMU and MPU, no special operating system feature is needed to utilize the cache.
Cache simply speeds up the average memory access time and is almost transparent
to software.

9.3.6 Tightly coupled memory

Tightly coupled memory is somewhat unique to the embedded system. It is a small,
fast memory that provides guaranteed low-latency memory access for timing-critical
applications. One problem with a cache memory system is that its access time
may vary. While its average access time is improved significantly, the worst-case
access time can be really large (for example, the data are in SDRAM). Many tasks
in an embedded system are time-critical and cannot tolerate this kind of timing
uncertainty.

To overcome the problem, a Nios II configuration can add additional master
instruction and data ports for tightly coupled memory. While the cache is loaded
as needed and its content changes dynamically, tightly coupled memory is allocated
for a specific chunk of instruction or data. The assignment is done at the system
initialization. One common use of tightly coupled memory is for interrupt service
routines. The high-priority interrupts are frequently critical and must be processed
within a certain deadline. Putting the routines in a tightly coupled memory removes
the timing uncertainty and thus guarantees the response time.

9.3.7 I/O organization

The Nios II processor uses a memory-mapped I/O method to perform input and out-
put between the processor and peripheral devices. An I/O device usually contains a
collection of registers for command, status, and data. In the memory-mapped I/O
scheme, the processor uses the same address space to access memory and the reg-
isters of I/O devices. Thus, the load and store instructions used to access memory
can also be used to access I /O devices.

The inclusion of a data cache may cause a problem for this scheme because I/O
command and status should not be buffered in an intermediate storage between

www.it-ebooks.info

http://www.it-ebooks.info/

EXCEPTION AND INTERRUPT HANDLER 2 3 5

the processor and I/O devices. A bypass path is needed for this purpose, as imple-
mented by a two-to-one multiplexer in Figure 9.2. The Nios II processor introduces
an additional set of load and store instructions for this purpose. When an I/O load
or store instruction is issued, the operation bypasses the data cache and data are
retrieved from or send to the master port directly.

9.3.8 Interconnect structure

In a traditional system, the main memory module and I/O devices are connected to
a common, shared bus structure. Contention on bus sometimes becomes the bot-
tleneck of the system. The Nios II processor utilizes Altera's Avalon interconnect
structure. The interconnect is implemented by a collection of decoders, multiplex-
ers, and arbitrators and provides concurrent transfer paths. We discuss this in more
detail in Chapter 15.

9.4 EXCEPTION AND INTERRUPT HANDLER

The exception and interrupt handler processes the internal exceptions and external
interrupts. The Nios II processor supports up to 32 interrupts and has 32 level-
sensitive interrupt request inputs. When an exception or interrupt occurs, the
processor transfers the execution to a specific address. An interrupt service routine
at this address determines the cause and takes appropriate actions. We discuss the
detailed mechanism and software development in Chapter 13.

9.5 JTAG DEBUG MODULE

The debug module connects to the signals inside the processor and can take control
over the processor. A host PC can use the FPGA's JTAG port to communicate
with the debug module and perform a variety of debugging activities, such as down-
loading programs to memory, setting break points, examining registers and memory,
and collecting execution trace data. The debug module can be included or excluded
in the processor and its functionality can be configured. We can include it during
the development process and remove it from the final production.

9.6 BIBLIOGRAPHIC NOTES

The architecture and design of the Nios II processor closely resemble the 32-bit
MIPS processor. Computer Organization and Design: The Hardware/Software In-
terface by D. A. Patterson and J. L. Hennessy provides a comprehensive coverage of
this processor. Chapter 11, titled "Designing Soft-Core Processors for FPGAs" by
J. Ball, of Processor Design: System-on-Chip Computing for ASICs and FPGAs,
edited by J. Nurmi, discusses implementation issues that are unique to FPGA im-
plementation. Altera's Nios II Processor Reference Handbook gives the complete
description of the processor's architecture and instruction set.

www.it-ebooks.info

http://www.it-ebooks.info/

2 3 6 NIOS II PROCESSOR OVERVIEW

9.7 SUGGESTED PROJECTS

9.7.1 Comparison of Nios II and MIPS

The overall design and architecture of the Nios II processor and the MIPS processor
discussed in Computer Organization and Design are very similar. Compare the
following features of the two processors:

• Instruction set
• Pipeline structure
• Interrupt handling

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

NIOS II SYSTEM DERIVATION AND
LOW-LEVEL ACCESS

A Nios Il-based system consists of customized hardware and software. Altera's
SOPC Builder is used to configure the processor and I/O peripherals and its Nios II
EDS platform is used to develop software. In this chapter, we use a simple flashing-
LED system as a tutorial to demonstrate the process, with emphasis on the hard-
ware and software interface and basic coding techniques to access low-level I/O
peripherals.

10.1 DEVELOPMENT FLOW REVISITED

The basic Nios Il-based development process is discussed in Section 1.3.1 and the
flow is repeated in Figure 10.1.

10.1.1 Hardware development

We examine the hardware development (the left branch of the flow) in Part I
and discuss the design of various types of circuits. As the complexity of systems
grows, it becomes difficult and time consuming to construct everything from scratch.
One way to ease the problem is to use pre-designed modules, either from previous
projects or other parties. Since the modules are usually intellectual property of the
designing party, they are known as IP cores (intellectual property cores). An IP
core can be delivered in high-level HDL codes, which is known as a soft core, or in
a detailed transistor-level layout, which is known as a hard core.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 237
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

2 3 8 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

Z top-level /
HDL code /

synthesis
P&R

BSP
library

~TZ £
compile

link

/ soffile / / elf file /

device
programming load

/ file& /
/ data / process

/FPGAchip//
/ memory /

Altera
librar

test

Figure 10.1 Development flow of a system with Nios II.

www.it-ebooks.info

http://www.it-ebooks.info/

DEVELOPMENT FLOW REVISITED 2 3 9

To facilitate the embedded system design, Altera provides a suite of IP cores,
including the Nios II processor and a collection of commonly used I/O peripher-
als. They are delivered as soft cores. A full-fledged Nios II system may involve a
sophisticated bus structure and a variety of I /O peripherals. Altera uses a utility
program, known as SOPC Builder, to define the system and to generate HDL codes.
The codes then can be used as regular HDL components and instantiated in other
program. SOPC Builder saves the configuration in a file with an extension of .sope
and also exports the information to a file with an extension of .sopcinfo. The latter
is used by the software development.

Note that from software development's point of view, the hardware development
provides two key files—an .sof file and an .sopcinfo file. The former is used to
program the FPGA device and the latter provides information about the Nios II
system configuration.

10.1.2 Software development

The software development is represented by the right branch of Figure 10.1. A
platform, known as Nios II EDS (embedded design suite), is provided by Altera. It
is based on a GNU tool chain and customized for the Nios II processor environment.
The platform is composed of the following:

• GCC-based compiler with the GNU binary utilities
• Nios II processor-specific port of the newlib C library
• A simple device driver interface known as HAL (hardware abstraction layer)

These tools can be accessed by the SBT (software build tools) command-line in-
terface, by the SBT GUI, or by the IDE GUI. A simpler utility provided by the
Altera University Program, known as Altera Monitor Program, can also be used to
compile and debug C programs. In this book, we use the SBT GUI for software
development.

The SBT GUI is based on the Eclipse open development environment and cus-
tomized for the Nios II software development flow. It basically runs the tools and
scripts "behind the scenes" and supports creating, modifying, building, running,
and debugging programs targeted for a Nios II system.

A Nios II software projects contains two major parts: user applications and BSP
(board support package). The former is the user's programs and the latter is the
support codes for a specific Nios II configuration. Note that the BSP is based on
the information from the .sopcinfo file, as shown in Figure 10.1. The codes from
the two parts are compiled and linked into a single software image (i.e., an .elf file)
and loaded into the Nios II system's main memory.

10.1.3 Flashing-LED system

The overall development process of a Nios II-based system is quite involved. To
illustrate the process, we construct a simple flashing-LED system. It contains two
discrete LEDs that turn on and off alternatively and uses ten slide switches to con-
trol the on-and-off interval. The system contains a "vanilla" Nios II configuration
and a minimal amount of application software codes.

The main purpose of the flashing-LED system is to introduce the development
procedures and to get familiarized with the software platform. The key steps in the
development are:

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 0 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

1. Create a hardware project in Quartus II.
2. Create a Nios II system and generate HDL codes with SOPC Builder.
3. Create a top-level HDL file that instantiates the Nios II system.
4. Compile the top-level HDL code in Quartus II.
5. Program the FPGA device.
6. Create a BSP library.
7. If needed, configure the BSP library with BSP Editor.
8. Develop user application codes.
9. Build and run software.

The steps are demonstrated in two tutorials in the next two sections. The first
tutorial covers the hardware development (i.e., steps 1 to 5) with a focus on SOPC
Builder and the second tutorial covers the software development (i.e., steps 6 to 9)
with a focus on the SBT GUI. The tutorials are based on version 10.0 of the software
and some differences may exist in other versions.

10.2 NIOS II HARDWARE GENERATION TUTORIAL

10.2.1 Create a hardware project in Quartus II

This step is similar to that in Section 3.5.1 except that no HDL file is needed at
this point.

10.2.2 Create a Nios II system and generate HDL codes

We can use SOPC Builder to configure a Nios II system and then generate HDL
codes. There are several tasks in this step:

• Create a new SOPC system.
• Add and configure a Nios II processor.
• Add and configure memory modules.
• Specify the reset and exception vectors.
• Add and configure I/O modules.
• Add a system id module.
• Adjust the memory base address and interrupt.
• Generate HDL and information files.

Create a new SOPC system A new SOPC system can be created as follows:
1. In the Quartus II GUI, select Tools y SOPC Builder. The SOPC Builder

window starts and its Create New System dialog appears.
2. Enter nios_ledl in the System Name field to specify the name of the Nios II

system.
3. Click the Verilog button in the Target HDL field to generate Verilog codes

later.
4. Click OK button to return to the SOPC Builder window. The initial SOPC

Builder window appears and is in the System Contents tab page, as shown in
Figure 10.2. The left panel, labeled Component Library, lists the IP categories.
A category can be expanded to show the available IP cores. The middle right
panel displays the current system configuration.

5. In the Target panel, make sure that the Cyclone I I device family is used.
This selection matches the FPGA device on the DEI board.

www.it-ebooks.info

http://www.it-ebooks.info/

NIOS II HARDWARE GENERATION TUTORIAL 2 4 1

Ü Atleta SliPC Builder ■ í»s_ledl-»pc*(C;\Iinp\d«ni)\niiB_ledLiu|K)

> — > ' ■ ·,«..««««.

Prat««

JftNMHHVOAWt

Ufenrj

¿jj AsBfcn Vanncalwi S J *
4, Bmrjn* u d Mtapten

:Ü W i d F U * ™

;Tj L#flÉ£> CemCMirtcrtii

.fj UMWÍH AIM Memory C U T * D M
tl Pwpmria

i< P_l

i R¿ctu& AAláefi*

1 I ^ffl
J.SJJ
.H V É H I W I I l É f t t W H U ' l

.
π*π

Target

.dwnr.rti

'
1 ■* ' * Í."??"**·J ida*l f*rort<*

ΓϋΓΙ L ^ j <_«■: I - » ~] C

Figure 10.2 Initial SOPC Builder window.

6. In the Check Setting panel, rename clk.O to e lk under the Name column and
make sure that clock frequency is 50.0 under the MHz column. This selection
matches the oscillator frequency on the DEI board.

7. Select File >- Save to save the system in a file. The default name of the file
is nios.ledl.sopc. Note that the .sope extension is used to represent a SOPC
system configuration file.

Add and configure a Nios II processor The procedure to add and configure a Nios II
processor module is:

1. In Component Library panel, expand the Processors category and then select
Nios II Processor.

2. Click the Add button and the Nios II Processor dialog appears, as shown in
Figure 10.3.

3. There are several tabs in the dialog page. In the Core Nios II tab page, click
the Nios ll/e button to select the "economic core." The configuration process
requires to specify the reset and exception addresses in the Reset Vector and
Exception Vector fields. However, since no memory module is added at this
point, it cannot be done. The default setting can be used for other tab pages.
Note that a level-1 JTAG debug module is used in the default setting.

4. Click the Finish button to return to the SOPC Builder window. The processor
is added to the middle panel, as shown in Figure 10.4. Note that a warning
message is displayed in the bottom message panel regarding the reset and
exception vectors.

5. Click the Finish button to return to the SOPC Builder window.
6. Select cpu_0 item, right-click the mouse, and select Rename. Change cpu_0

to cpu.

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 2 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

U Nws U fTK«sor - cpu_0

SL
$$ Nios I I Processor

5«ΊΚΙ * mot ■ w *

Nios II

■ ^ 1 ' - ' ■ ^ ■ ■ ■ ■ i ' - ^ ^ ^ r

|®~N*M|IAÍP , QNIotKA ¡oNIo*! / . |

use hü-: Rit

men Ktwn Cacbe H n Am CeOv

rl« dw M« MuCyfu
M*i d * v i L>Hik
■■ΜΐΒΜΜ
BMBCMM

Im,,, r f'-πφ. in.-.

i öL\i ΓΜ LEI

^ Ι Ρ

■:ικ HUI -L»

.¿Tw*IMb»c«*i

* W " i u*.

T 0 * * <bU0

Jmy tiende Eh* LLUU wlwn w i g p < i (4 i « r { *>'itam ln«t eifizirp u

- * U 1LB Ue* EkCadWi U4£ltf W*ntW

r̂ ^ r̂̂ F^^^^^^^^^B

Vi*r,uig Beie) , H v jnd Fi,

jewäT] .ood l»«a>[lFaJi|

Figure 10.3 Nios II Processor dialog.

¡J JUleid SOPC BuMR ■ «osjeiiliüpc· mimpVkdlViBS.fcdliOpO

UMqi

i LEDBCH ΕΜΕ*ΜΙ«ΙΙ»

. r U*n*r** HU y i r w t CürWlIH
t.- ¿4f (Wia

1 - -.uro Hwj k"aee (Ί Dciurf

κ * ' ■ - ■ . . . ι ι . ■ ' "

i » I I - T ■ X ¡«Μ

Te De cpu_· he mtt »i
1 c. b D Epa · Na »iccflü ftJni H*i ΙΚΜ-Ί KMttíjd Éw ΉΙΒ ÍA l H u » [mrir«lirircrtt t K l[

LÜLI LJÍ-J < '■■■ I — * I I ° — i

Figure 10.4 Initial SOPC Builder window with Nios II processor added.

www.it-ebooks.info

http://www.it-ebooks.info/

NIOS II HARDWARE GENERATION TUTORIAL 2 4 3

Li On-Chip Memory (RAM of ROM) ■ orlchip_memory2_0

* * On-Chip Memory
Ä · (RAM or ROM)

■ral sétimos y Memoiy miiraÍLüitio

Uemüf> Type

Φ HAU i WrUEWif ' UÜW ^**d-cr,.yl

Π

Bttdt type

OONT.CAflE

A l i »
»1
-

y 1 tiiMtit nwHHy «rtent

1 from nac b p_ memory 2 _D hex

D t u * d u i Γ̂ 2~

Tot*(in«nofy ic# ¡20

UüFut memory W

T

X l U H p f L mty

S t í e J ·
n v K t l w l

tIV ,

Figure 10.5 On-Chip Memory dialog.

Add and configure memory modules A variety of memory modules can be incor-
porated into a Nios II system. Since the flashing-LED system is very simple, it
requires only a small amount of memory. The FPGA's internal memory module
can be used for this purpose. The procedure to add a 20 KB on-chip memory is:

1. In Component Library panel, expand the Memories and Memory Controllers
category, expand the On-Chip category, and then click On-Chip Memory (RAM
or ROM).

2. Click the Add button and the On-Chip Memory dialog appears, as shown in
Figure 10.5.

3. In the Block Type field, select Auto.
4. In the Total memory size field, enter 20 and select KBytes to specify a memory

size of 20 KB.
5. Click the Finish button to return to the SOPC Builder window.
6. Rename the memory module to onchip_mem.

Specify the reset and exception vectors After adding the memory module, we can
specify the reset and exception vectors. The procedure is:

1. In the working area, click the cpu item to bring up the previous Nios II Pro-
cessor dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 4 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

Figure 10.6 PIO dialog.

2. In Reset Vector, select onchip_mem in the Memory field.
3. In Exception Vector, select onchip_mem in the Memory field.
4. Click the Finish button to return to the SOPC Builder window.

Add and configure I/O modules The flashing-LED system accepts input from ten
slide switches and controls two LEDs. Altera provides an IP core, PIO (for parallel
I/O), as a general-purpose I/O port to receive input stimuli and drive output
signals. For the flashing-LED system, we can use a 10-bit input port for the switches
and a 2-bit output port to drive the LEDs. The procedure to add and configure
the two ports is:

1. In Component Library panel, expand the Peripherals category, expand the Mi-
crocontroller Peripherals category, and then click PIO (Parallel I/O).

2. Click the Add button and the PIO dialog appears, as shown in Figure 10.6.
3. Enter 10 in the Width field.
4. Click the Input ports only button in the Direction field to specify that this PIO

module is an input port.
5. Click the Finish button to return to the SOPC Builder window.
6. Rename the PIO module to switch.
7. Add another PIO instance and set its width to 2 and its direction to Output

ports only.
8. Rename the PIO module to led.

www.it-ebooks.info

http://www.it-ebooks.info/

NIOS II HARDWARE GENERATION TUTORIAL 245

Figure 10.7 Completed Nios II configuration.

Add system id module The system id IP core is a special-purpose peripheral used to
maintain the consistency between hardware configuration and BSP and is generally
transparent in the user's application program. Its purpose and usage is discussed
in Section 10.4. The procedure to add the module is:

1. In Component Library panel, expand the Peripherals category, expand the De-
bug and performance category, and then click System ID Peripheral.

2. Click the Add button and an information box appears.
3. Click the Finish button to return to the SOPC Builder window.
4. Rename the module to sysid.
The complete system is created and the configuration panel is shown in Fig-

ure 10.7.

Adjust memory base address and interrupt A Nios II processor uses the memory-
mapped-I/O scheme and assigns normal memory space to I /O ports. The memory
assignment is done automatically when a memory module or an I/O core is added
and the beginning and end of the memory block are shown under the Base and
End columns of the SOPC Builder window. For example, the base address of the led
module in Figure 10.7 is 0x00011010 and the block ends at OxOOOllOlf. The initial
memory assignment occasionally leads to conflicts. We can adjust the assignment in
SOPC Builder by selecting System in the menu and then Auto-Assign Base Addresses.
The addresses can also be manually modified if needed.

Some I/O modules may generate interrupt requests and we can adjust the request
priority as well. Since no I/O module in this Nios II system generates an interrupt,
no IRQ request is shown in Figure 10.7.

Generate HDL and information files After the Nos II system is created, the HDL
and information files can be generated. The procedure is:

1. Select the System Generation tab page in the SOPC Builder window, as shown
in Figure 10.8.

2. Click the Generation button on the bottom to start the process. The progress
is displayed in the middle message panel. After completion, the System gen-
eration was successful message appears.

3. Click the Exit button to close the SOPC Builder window.
SOPC Builder generates a collection of files. For our purposes, the following are of
interest (recall that the system name is nios_ledl) :

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 6 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

J Aitsra SOPC Build« - rno!_i«ll.iopc (CMmp\l«ll\nKis_l«lliopc) "ΞΜ
S>Mi(jnlMK| Sr«i-ii

Otatm

Η » Ι Τ « Μ

■ 20IQ 09 » U 5r 3fi f*i M í l * 0 i r t * * l u n ΜΛΛ »freiem .toff.. I t « * * *

»JDIOM ;3 lTSTr t fnU^Mr iH teQumuk ly f l in i lo f I « . ! . * « mD»_tall

#?fflO£H30 17 5 Γ » ι * ί S / M K H C ΓΠΚιΛΜ Inf t i r tW I trmr mcmlf (imU r.n r « d to rrgencijle

* » 1 0 0a 20 1Τ5Τ#Αι*Ν[^ΜΙΛίΕΪΛίϊ*ηίΜί)*ί1ί«ίί11-0Ηΐίί««1π1ΕΓ(Κ C

«7010D9 » 17 57 41 .*' Runrwiy « U p hin MU. u u k i u rmdakni

«Ztl lDAi 3B 17 S M I .'iCnirOAiagencriLnf. h* ΙγΜΗΠ n c i . r t l

(2CI0.M M 17 S M I f U M fOUCitWiC- SYSTEM F1EHS HAVE SOU CEÍJtflATiQ

5CPt ELMir ωΐ*ΛβΜ C Unrrffcll-'iti.tedl pH

ΞτΙίίΓΙι HDL ΜοΛΜ C ,in»i'eJ l.T.n». H ι . Ul

Sr*«nG«WtU>nStfCK C *T<lrtMlmí*_IMl_Btneíjl im_itrta

» Γ ΰ Ι Π Μ Η Ι Τ ί Μ Ι |*> SUCCESS SYSTEU GEhEfliTCh C DUft E TE3

0 n h S t K t T j<M."i!en I

4) Πΐΰ ÉWriUA Pti I I D U I tit 110C M U # i « J n Ltil ponen Uiufarnid Í U # I A l t « r » d Ε«πΠ0 PPUU Uung p i v l t o n

["■<■] I ^ I

Figure 10.8 System Generation tab page.

• niosJedl.sopc: It is the SOPC Builder design file that contains the system
configuration. It can be considered as the "source file" and can be used by
SOPC Builder to regenerate other files.

• niosJedl.sopcinfo: It contains relevant configuration information and is used
by Nios II EDS to generate BSP.

• niosJedl.v: It is the top-level Verilog file for the generated Nios II system.
• Other Verilog files: These are Verilog files for the I/O modules and Nios II

processor's subsystems. The onchipjnemory.v, switch.v, and led.v files are for
the memory and I/O modules of the Nios II system and their contents can be
examined in a text editor. On the other hand, the key codes for the Nios II
processor are encrypted.

10.2.3 Create a top-level HDL file that instantiates the Nios II system

Once the HDL files are generated by SOPC Builder, they can be used and processed
like regular HDL codes. We just need to instantiate the top-level Nios II system and
include the relevant files in a Quartus II project. The top-level module can be found
in the top-level HDL file, niosJedl.v, and the name of the module is nios_ledl.
The niosJedl.v contains multiple design units and is quite large. We can open the
file and use the keyword nios_ledl to search the module declaration.

In the flashing-LED system, the module declaration is
module n ios . l ed l

(
/ / global signals :
e l k ,

www.it-ebooks.info

http://www.it-ebooks.info/

NIOS II HARDWARE GENERATION TUTORIAL 2 4 7

r e s e t _ n ,
/ / the-led
o u t _ p o r t _ f r o m _ t h e _ l e d ,
/ / the.switch
i n _ p o r t _ t o _ t h e _ s w i t c h

) ;

i n p u t e l k ;
i n p u t r e s e t _ n ;
o u t p u t [1 : 0] o u t _ p o r t _ f r o m _ t h e _ l e d ;
i n p u t [9 : 0] i n _ p o r t _ t o _ t h e _ s w i t c h ;

It shows that the system, in addition to the clock and reset signals, contains a
10-bit input port and a 2-bit output port. The names of these ports are derived
from the module names defined in SOPC Builder. Note that the port declaration
follows Verilog-1995 style, as discussed in Section 2.5.1.

The Nios II system can be used and instantiated as a normal Verilog module and
integrated with other parts. Since our demonstration system contains no additional
logic, we just need to create a top-level module to wrap the Nios II system. The
HDL code is shown in Listing 10.1.

Listing 10.1 Top-level system
module n ios_ led l_ top

(
input wire elk ,
input wire [9:0] su ,

5 output wire [1:0] ledg
);

/ / body
// instantiate nios

io n ios_ led l cpu.unit
(. c l k (c l k) ,

. r e s e t _ n (l ' b l) ,

. in_port_to_the_swi tch(sw) ,

.out_port_from_the_led(ledg)
is) :

endmodule

The I/O ports of the Nios II system are mapped to ten slide switches and two green
LEDs on the DEI board. Since the system reset feature is not used, the active-low
reset_n signal is connected to Ί ' .

10.2.4 Compiling and programming

After the top-level wrapping file is created, the Nios II system can be processed as
a normal Quartus II project:

• Set the top-level entity.
• Add all previously generated HDL files to the project.
• Import a pin-assignment constraint file.
• If needed, set the timing constraint for the 50-MHz clock.
• Compile the project.
• Program the FPGA device.

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 8 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

File Edit Navigate Search Reject Run N'cs LI Window Help

•
65 " έ » ■ Ο Ί ^ ί β <r ■

S i l i-
S Í O U I I I K -

An outline is not

available.

■o

l!_ Prohlems £ Tasto Θ Cansóle KS* ~ Properties1

No consoles to display at this time.

0 Herns selected

Figure 10.9 Initial Eclipse SBT GUI window.

After compiling, a configuration image .sof file is generated. Since the Altera
Programmer software is a stand-alone utility, it can be called from Nios II EDS.
Thus, after obtaining the .sof and .sopcinfo files, we can develop software without
involving HDL files or Quartus II.

10.3 NIOS II SBT GUI TUTORIAL

We use the Nios II SBT GUI for software development, which involves steps 5 to 9
in Section 10.1.3.

10.3.1 Create BSP library

A complete Nios II EDS software project consists of a user application and a BSP
supporting library. A BSP library is based on a particular Niso II system con-
figuration. Once a BSP library is created, it can be used for subsequently user
applications. The procedure to create a BSP library is:

1. In the Windows Start menu, navigate to Nios II 10.0 Software Build Tools for
Eclipse to launch the program. The Eclipse initialization screen appears.

2. If the Workspace Launcher dialog appears, click OK to accept the default
workspace location.

3. The Eclipse SBT GUI window appears, as shown in Figure 10.9. Verify that
the Nios II perspective is selected on the top right corner.

4. Select File >- New >- Nios II Board Support Package. The dialog appears, as
shown in Figure 10.10.

www.it-ebooks.info

http://www.it-ebooks.info/

NIOS II SBT GUI TUTORIAL 2 4 9

Nios I I Board Support Package

ü edle ä new Nios U Software Build Tool* board support
package project

Project name; led 1 hsp

5QPC Information Fite name: C.vmpMedUrnosJedl sopcmla [^

B Use default location

Location: C\tmpMedl\üof twaíe^edÍ_í i ip

Type ¡ A I 1 W H M .

CPU cpu ~za
Additional a rgumen t

Command:

n t u ^ - b i p ha l . 7 . / --cpu-name cpu

• Use [elaliwe patli

® | hn»h | | " C ^

Figure 10.10 Nios II Board Support Package dialog.

5. In the Project name field, enter ledl_bsp to specify the name of the project.
The _bsp suffix indicates it is a project to construct a BSP library.

6. In the SOPC Information File Name field, navigate to the previous Quartus II
project directory and select the niosJedl.sopcinfo file.

7. The default directory can be used by checking the Use default location box.
In the Type field, keep Al te ra HAL. Since there is only one processor in the
design, the name of the Nios II module, cpu, appears in the CPU name field
automatically.

8. Click the Finish button to start the construction process and return to the
Eclipse window.

When the construction process completes, the BSP directory, ledl-bsp, is displayed
in the left panel, which is referred to as the Navigator or Project Explorer subwindow.

10.3.2 Configure the BSP using BSP Editor

Because of the simplicity of the flashing-LED system, the default BSP configuration
works fine and this step can be omitted. For a more sophisticated Nios II system,
we may need to modify the BSP configuration to adjust certain I /O charateristics
and fine-tune the software driver setting. The BSP Editor utility program can be
used to perform this task and the procedure is discussed in Section 12.2.3.

www.it-ebooks.info

http://www.it-ebooks.info/

2 5 0 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

N i os I I Application

Create a new Nios II Software Build Tool! application project

Project name: ledl„lest

BSP location: C:\tmp\led l\software\ledl.bsp

I Use default location

Locatran: C\tmp\ledlWiftware\ledl_test

Additional argument:..

| Create» _

Θ

Command;

y j Use relative path

® DE Cancel

Figure 10.11 Nios II Application Dialog.

10.3.3 Create user application directory and add application files

A user application is organized in a separate project directory. The procedure to
create the application directory is:

1. In Eclipse SBT GUI window, Select File >- New y Nios II Application. The
dialog appears, as shown in Figure 10.11.

2. In the Project name field, enter ledl . tes t to specify the name of the project.
3. In the BSP Location field, click the ... button and select the previously con-

structed ledl-bsp.
4. The default directory can be used by checking the Use default location box.
5. Click the Finish button to start the construction process and return to the

Eclipse window.
When the construction process completes, the application directory is displayed
in the left Navigator subwindow. The complete Navigator subwindow is shown in
Figure 10.12. The bottom ledl.test directory is for the user application and the top
ledl-bsp directory contains various supporting files of BSP.

Although the application structure is constructed, there is no user program file.
We can create new C files from scratch or add existing C files to the application
directory. The addition can be done by highlighting the application directory,
selecting File >- Import..., and then choosing General >- File System to navigate to
the designated location and files. It also can be done by using Windows Explorer to
drag the desired files to the application directory and then selecting File >- Refresh to
update the directory. There should be one C file that contains the main O routine.

The development of C codes is discussed in Sections 10.5, 10.6, and 10.8 and
subsequent chapters. For now, we just use the C code in Section 10.11, which can

www.it-ebooks.info

http://www.it-ebooks.info/

NIOS II SBT GUI TUTORIAL 2 5 1

■■■> <■ *t\ m % \ *

ai¿ledl_bsp

EÜI-& drivers

& H A L

js> Makefile

i_ setting s.bsp

@ alt_sys_¡n¡tc

.c project

UJ memory, gdb

[c¡ linker.h

[¿¡ system.h

j summary.html

- L i memjmt.mk

L i publie.mk

Lj .project

Ü linker.x

--Li Makefile

£ .cproject

0 .project

Figure 10.12 Navigator window.

be downloaded from the companion web site or manually created, and add the file
to the application directory.

10.3.4 Build and run software

Building and running the final software consists of the following tasks:
• Compile the C codes in BSP directory to object codes.
• Compile the C codes in user application directory to object codes.
• Link the relevant object files to form the final image, which is an .elf (for

extensible linking format) file.
• Load the .elf file to the designated memory modules.
• Let the processor start the execution (i.e., run the application program).

In the SBT GUI, a simple way to complete these tasks is to choose to run the
application software in the Nios II system. Appropriate utility routines and scripts
will be invoked automatically to complete the required tasks. The basic procedure
is:

• If needed, download the previous niosJedl.top.sof file to the FPGA device.
The Altera programmer program can be invoked in SBT GUI by selecting
Nios II >- Quartus II Programmer.

• Select the application directory, ledl.test, in the Navigator subwindow. Right-
click the mouse and select Run As >- Nios II Hardware. A Progress Information
box appears and displays the progress of the process. The relevant information
is also shown on the bottom Console tab page of the Eclipse window.

www.it-ebooks.info

http://www.it-ebooks.info/

2 5 2 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

| A i teu Nios II EDS 10-0 lqc<A{

Altera Niosi Command Shell [GCC H]

'Jei-iion 10 0 Build 213

ί°^ι

re/ledl_test/led1_test elf
text data tos dec hex filename
25G8 lt8t >*16 1108 1 I 38 C:/tmp/Ledl/softuare/ledl_test/led1_test el*

bash-3.1i

Figure 10.13 Screenshot of checking code size.

Since compiling and building the BSP library is quite complicated, it may take
some time when a project is first constructed and executed. Subsequent runs will
be much faster. After completion, we should be able to observe the two flashing
green LEDs and use the slide switches to set the flashing rate.

10.3.5 Check code size

An embedded system frequently has a limited amount of memory and thus knowing
the final code size (also known as footprint) is important. In Nios II EDS vlO, this
task can only be done in the command shell. The basic procedure is:

• In the Windows Start menu, navigate to Nios II 10.0 Command Shell to launch
the program. A command window appears.

• Typenios2-elf-size project.directory/project-name.elf. The screen-
shot for checking the ledl.test.elf file is shown in Figure 10.13.

• The total size is displayed under the dec column, which is 4408 bytes (i.e.,
4.4 KB).

Recall that a 20 KB on-chip memory is included in the flashing-LED system. About
15.6 KB is left for run-time stack and heap, which is sufficient for the application.

The 4.4 KB code size of ledl.test.elf is quite large for a such simple program.
This is due to the fact that certain housekeeping codes are added to the application
program to construct the final image. In Section 12.2.3, we discuss some methods
to decrease the code size. The resulting footprint of ledl.test.elf can be reduced to
0.9 KB.

10.4 SYSTEM ID CORE FOR HARDWARE-SOFTWARE CONSISTENCY

An embedded SOPC design consists of both custom hardware and software. When
an Nios II system is created, its configuration is stored in an .sope file and an
. sopcinfo file. For the hardware portion, the . sope file is used to generate HDL
files, which in turn are synthesized into an FPGA configuration file (i.e., .sop file).
For the software portion, the .sopcinfo file is used to generate the BSP library,
which in turn is linked and integrated into the final software image (i.e., .elf file).

During the development process, multiple Nios II systems can be generated for
exploration and testing purposes. Different versions of sopcinfo and .sop sometimes
get mixed. It is possible to use the FPGA configuration file of one design but use a

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM ID CORE FOR HARDWARE-SOFTWARE CONSISTENCY 2 5 3

Create, manage, and run configurations / \

O Μό Nios D target contraction pattis were located. Check connections and that a NIOS U .sof is downloaded

* r : ·

rype hlur ten

JLJ c/c* * Application

»» Launch Group

Λ MLOS P Hardware

SJ ledl.test Nios U Hardware coníiqtiranon

■ Niui U ModelSim

Fittet matched S Of 5 rlems

©

fume; fed 1 jest N ιοι Π Har dwd re configuration

U prgtect Λ T — i É # r n r i M r t i f » ^ Φ Detwoger V Source Π Common1

C B W B M H

ftTlfPMWK

1 CJtít D M t D H C 1 D WLfcrtrje D N H

* '

3, l r in ran D C M K :

GiMt DCYKE b w r D I n U r u ID rumr

QMUCTtM D C W * 'wtw

JTAG Dtbuggrg lnfan>iri*an f * n m .

Syslern IÜ checks

1 / ii^rdf* MfMEdhtd ifttHTl ID

k i t Ä j - Ä Ü ^ ¿ Η Ι . Μ Μ Ι

Download

V]oeriffMáHFtoKkaedawl*rHe» f

' U ►

Reven

Cl«r

Figure 10.14 Run Configurations error screen.

software image file based on a BSP library with another design. This type of errors
is very difficult to debug.

Altera introduces a special system id core to maintain the consistency between
the hardware configuration file and software image. The id is a unique 32-bit value
based on an SOPC design (like a signature or check-sum). The system id core is
simply a read-only register that stores this signature. When the core is added to
a Nios II system, the system has a "hard copy" of the signature. After synthesis,
the signature is embedded in the configuration .sof file. The same id value is also
stored in the .sopcinfo file. When the .sopcinfo file is processed during software
construction, the signature is passed to BSP and eventually integrated into the
software image .elf file. Thus, both the .sop and .elf files have the same signature.

While downloading a software image, Nios II EDS checks whether the signature
of the system id module in the FPGA device matches the signature embedded
within the software image and thus ensures the consistency between the hardware
and software. As long as there is no mismatch, this procedure is mostly transparent
to users.

If two signatures do not match or no system id IP module is used in the target
Nios II system, an error is reported in the Target Connection tab page, as shown in
Figure 10.14. If the mismatch is not harmful, we can override the default setting by
checking the Ignore mismatched system ID and Ignore mismatched system timestamp
boxes in the System ID checks row and run the configuration again.

www.it-ebooks.info

http://www.it-ebooks.info/

2 5 4 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

p t r · —

x y

1

ptr

/

8

ptr

: /

int x=1, y=5, z=8, *ptr; ptr = &x; y = *ptr;

(a) (b) (c)

Figure 10.15 Snapshots of pointer operation.

ptr

, /

8
« —

y

1

z

8

*ptr = z;

(d)

10.5 DIRECT LOW-LEVEL I /O ACCESS

One unique characteristic of embedded system development is that the software
program frequently needs to access and interact with low-level I /O devices directly.
We examine the general approach in this section and discuss more robust techniques
within the Nios II framework in Section 10.6

A Nios II processor uses a memory-mapped I/O method to access I /O ports. In
this scheme, the registers of an I/O device are mapped into the address space of the
main memory. In SOPC Builder, the address assignment is performed automati-
cally. When an I/O core is added, SOPC Builder checks the number of registers
within the core and then allocates a chunk of memory space accordingly. The
starting address, known as the base address, and the end address of the chunk, are
shown under the Base and End columns of SOPC Builder. For example, Figure 10.7
shows that the base addresses of the switch and led modules are 0x00011000 and
0x00011010, respectively. These addresses are treated as regular memory addresses
by processor and an application program can access the I/O devices by reading
from or writing to these addresses. In C, this can be done by using pointer.

10.5.1 Review of C pointer

In C, the pointer data type corresponds to a memory address. The concept of a
pointer can be explained by a simple code segment:

i n t x= l , y=5, z=8, *ptr;

p t r = ftx;
y = * p t r ;
*p t r ■ z ;

/ / ptr gets address of x
// content of y gets content pointed by ptr
// content pointed by ptr gets content of z

In C, a non-pointer variable can be thought as an abstract memory location iden-
tified by the name of the variable and a value is stored to the location in an assign-
ment. A pointer variable is designated with *, as in int *ptr , which indicates that
p t r is a pointer (i.e., a memory address), and it points to a location with the i n t
data type. A snapshot after the initial declaration and assignment of this segment
is shown in Figure 10.15(a). We use an arrow to indicate that p t r is a pointer vari-
able. It is pointed to nowhere (i.e., null) since it is unassigned initially. Two unary
operators, & and *, are associated with pointer operations. The & operator returns
the address of a variable and is known as the address-of operator. For example, in

www.it-ebooks.info

http://www.it-ebooks.info/

DIRECT LOW-LEVEL I/O ACCESS 2 5 5

statement ptr = &x, &x returns the address of x, which is then assigned to p t r . The
result is shown in Figure 10.15(b). The * operator returns the content pointed by
the pointer and is known as the dereference operator. For example, in statement
y = *ptr, content pointed by p t r is assigned to y and in statement *ptr = z, the
value of z is stored to the location pointed by p t r . The graphical representations
are shown in Figure 10.15(c) and (d).

The value of a pointer variable is usually manipulated implicitly, as illustrated by
the previous segment. The actual value of p t r is system dependent. In a desktop
programming environment, we usually do not and need not know the explicit value.

10.5.2 C pointer for I/O register

In the flashing-LED system, an I/O register is assigned with a memory address,
which can be thought as a value of a pointer. Unlike a normal desktop program
discussed in the previous subsection, we know the explicit value of the address and
must use this value to access the register. Recall that the base addresses of the
switch and led modules are 0x00011000 and 0x00011010. For example, we can read
the value from the switch module and write a pattern to the led module:

i n t sv ;
char pattern-OxOl;

sw = »(0x00011000);
»(0x00011010) = pattern;

The statements are primitive and difficult to comprehend. Several improvements
can be made. Let us consider the read statement. First, we can add a type cast,
(v o l a t i l e i n t *) , to describe the nature of this value:

sw = * (v o l a t i l e i n t *) (0x00011000);

The i n t * portion indicates that the constant value is a pointer that points to an
object with the i n t data type. The keyword v o l a t i l e gives the compiler the hint
that the value of the object may be modified without processor interaction and thus
certain optimizations should not be performed. Second, we can define a symbolic
constant to replace the hard literal:

« d e f i n e SWITCH.BASE 0x00011000

sw = * (v o l a t i l e i n t *) SWITCH.BASE;

To maintain modularity and enhance readability, we can define a macro to en-
capsulate the type casting and dereference operations. A macro to read an I/O
register can be defined as

»define SWITCH.BASE 0x00011000
»define demo.iord(addr) (»(volatile int *)(addr))

sw = demo_iord(SWITCH_BASE);

A similar macro can also be used to write an I/O register and the complete segment
becomes

i n t sw;
char pattern-OxOl;

www.it-ebooks.info

http://www.it-ebooks.info/

2 5 6 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

«define SWITCH.BASE 0x00011000
«define LED.BASE 0x00011010
«define demo.iord(addr) (»(volatile int *)(addr))
«define demo_iowr(addr, data) (*(int *)(addr) = (data))

sw » demo_iord(SWITCH_BASE);
demo.iowr(LED.BASE, (int) pattern);

Like the names indicate, the two macros are only for demonstration purposes. While
this approach works most of the time, it suffers from several subtle problems. Altera
provides three simple modules to assist the low-level I/O access and to make the
code more robust. This alternative is discussed in the next section.

10.6 ROBUST LOW-LEVEL I/O ACCESS

When a BSP library is constructed, several header files are created. Three impor-
tant files and their functionalities are:

• system.h: provides automatically generated base addresses.
• alt.types.h: provides explicitly defined low-level data types.
• io . h: provides enhanced I/O register read and write macros.

Using the data type and macros defined in these files make the low-level I/O access
more robust.

10.6.1 system, h

We can determine the base addresses of each I/O device by examining the Base
column of SOPC Builder and define them as constant, as described in the previous
section. Since the base addresses are automatically assigned in SOPC Builder, we
need to examine and update these addresses for each new Nios II system and any
subsequent revision. This is a tedious and error-prone process.

To solve the problem, the Nios II EDS framework automates this process. During
the BSP library construction, the BSP Builder examines the .sopcinfo file, extracts
information on each module, and creates a file, system.h, to record the information.
Note that this file is listed under the ledl-bsp directory in Figure 10.12.

In system.h, each I/O device is identified by the symbolic name given in the
Module Name column of SOPC Builder and suffixes are used to represent the cor-
responding properties. For example, the entry for the switch module is

« d e f i n e ALT_M0DULE_CLASS_switch a l t e r a _ a v a l o n _ p i o
« d e f i n e SWITCH.BASE 0x11000
« d e f i n e SWITCH_BIT_CLEARING_EDGE_REGISTER 0
« d e f i n e SWITCH_BIT_M0DIFYING_0UTPUT_REGISTER 0
« d e f i n e SWITCH.CAPTURE 0
« d e f i n e SWITCH_DATA_WIDTH 10

Note that the constants are always in uppercase in the file. The system.h file is
regenerated automatically when the . sopcinfo file is updated and thus should not
be edited manually. The base address of an instantiated module is specified as
JASE in system.h, as in

www.it-ebooks.info

http://www.it-ebooks.info/

ROBUST LOW-LEVEL I/O ACCESS 2 5 7

«def ine SWITCH.BASE 0x11000

After including this file, we don't need to define the base address manually.

10.6.2 a l t _ t y p e s . h

C has many predefined data types, such as short , i n t , long, etc. The width (i.e.,
number of bits) of each data type is left to the compiler and implementation. While
interacting with low-level device activities, it is often important to know the exact
width and format of registers and data. To facilitate this, Altera provides a simple
header file, a l t_ types .h , which explicitly specifies the width and format of each
data type. The new data types are:

• al t_8: signed 8-bit integer.
• a l t . u8 : unsigned 8-bit integer.
• alt_16: signed 16-bit integer.
• a l t_ul6: unsigned 16-bit integer.
• alt_32: signed 32-bit integer.
• alt_u32: unsigned 32-bit integer.
• alt_64: signed 64-bit integer.
• alt_u64: unsigned 64-bit integer.

It is good practice to use these data types for low-level coding.

10.6.3 i o . h

The I/O read and write macros discussed in Section 10.5.2 are common techniques
used in embedded system programming. However, these may cause a subtle error
for a system with data cache, which can be found in today's high-performance em-
bedded processors, such as the Nios Il/f configuration. Since a processor considers
an I/O register as regular memory, the relevant data may be temporarily stored in
the data cache and can only be written to the I/O register when the corresponding
block is deallocated from the cache.

There is no easy way to fix this in C code. However, the Nios II processor contains
separate load and store instructions for I /O access. When these instructions are
used, read and write operations bypass the cache, as discussed in Section 9.3.7. In
the i o .h file, Altera provides two macros for I/O access:

• IORDOase, o f f s e t) : read an I/O register with the specified base address
and offse t .

• I0WR(base, o f f s e t , da ta) : write da ta into an I/O register with the spec-
ified base address and of fse t .

These macros are implemented by using the proper machine instructions and thus
bypass the data cache. The previous I/O access statements

sw = demo.iord(SWITCH.BASE);
demo.iowr(LED.BASE, p a t t e r n) ;

can be written as

sw = I0RD(SWITCH.BASE, 0) ;
I0WR(LED_BASE, 0 , p a t t e r n) ;

Note that an offset value is also needed for the two new macros.

www.it-ebooks.info

http://www.it-ebooks.info/

2 5 8 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

10.7 SOME C TECHNIQUES FOR LOW-LEVEL I/O OPERATIONS

Because an embedded program interacts with low-level I/O devices, it frequently
needs to manipulate a bit or a field of a data object. We briefly examine some
relevant techniques in the following subsections.

10.7.1 Bit manipulation

C has several bitwise operators, including " (not), & (and), I (or), and " (xor),
which operate on one or two operands at bit levels.

The ~ operator inverts all individual bits. For example, if d is 0xb3 (i.e.,
1011.0011), "d becomes 0x8c (i.e., 0100.1100). The statement max = ~0 inverts
all bits from 0's to l's and max becomes the all-one pattern, which corresponds to
the largest number in any unsigned data type.

The &, I, and " operators can be used to manipulate a bit or a group of bits in
a data object. The operation involves a data operand and a mask operand, which
specifies the bits to be modified. The operations are shown in the following C
segment:

a l t _u8 mask=0x60; / / 0110.0000; mask; bits 6 and 5 asserted
a l t_u8 d=0xb3; / / 1011.0011; data
a l t_u8 a 0 , a l , a 2 , a 3 ;

aO = d & mask; / / 0010.0000; isolate bits 6 and 5 from d
al = d & "mask; / / 1001.0011; clear bits 6 and 5 of d to 0
a2 = d I mask; / / 1111.0011; set bits 6 and 5 of d to 1
a3 » d " mask; / / 1101.0011; toggle bits 6 and 5 of d

In the example, we assume that d is an 8-bit data and bits 6 and 5 represent a
special 2-bit field. The mask variable identifies this field by asserting bits 6 and 5.
We can isolate this field from d (i.e., clear all other bits to 0) by applying the
and operation with the mask, as in d&mask. Conversely, we can clear this field
and keep the remaining bits intact by using the inverted mask, as in d&'mask.
Similarly, we can set this field to 11 and keep the remaining bits intact by applying
the or operation with the mask, as in d I mask.

The toggle operation is based on the observation that for any 1-bit Boolean
variable ι , ι φ 0 = ι and χ φ 1 = χ'. We can toggle the desired field by applying
the xor operation with the mask, as in d " mask.

10.7.2 Packing and unpacking

To save address space, an I/O register frequently contains multiple fields. These
fields are extracted and separated (i.e., unpacked) after an application program
reads the I/O register. Conversely, these fields needed to be packed into one object
when they are written to the I/O register. The unpacking and packing processes
can be done by using the bitwise manipulation and shift operation.

For example, assume that a 32-bit I /O register contains a 16-bit field (for an
integer) and two 8-bit fields (for two characters), as shown in Figure 10.16. The
code segment to unpack a retrieved I/O word is:

alt_u32 iodata;

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE DEVELOPMENT 259

31 · · · 16 15 · · · 8 7 · · · 0

num ch1 chO

Figure 10.16 An I/O register with three fields.

i n t num;
char chl , chO;

i oda t a = IORD (. . .) ;
num = (i n t) ((i o d a t a & OxffffOOOO) >> 16);
chl = (cha r) ((i o d a t a & OxOOOOffOO) » 8) ;
chO = (cha r) ((i o d a t a k OxOOOOOOff));

We first apply an and mask, such as OxffffOOOO, to clear the the irrelevant bits, and
then shift a proper amount to remove trailing O's. In this process, the interpretation
of a field changes from "a collection of bits" to a specific data type, such as i n t or
char. It is good practice to use type casting to indicate the change of interpretation
and data type of the extracted field.

The code segment to pack three fields to an I/O word reverses the previous
operation:

a l t_u32 i o d a t a ;
i n t num;
char c h l , chO;

i oda t a = (a l t _u32) (num) ; / / num in bits 15:0
i oda t a ■ (iodata<<8) I (a l t_u32) c h l ; / / num in bits 23:8
i oda t a = (iodata<<8) I (a l t_u32) chO; / / num in bits 31:16
I0WR(. . . , i o d a t a) ;

The first statement puts num between bit 15 and bit 0. The second statement first
shifts num to the left by 8 bits, which makes the 8 LSBs all O's, and then uses the
bitwise or operation to fill the 8 LSBs with the value of chl. The same process is
repeated to append the chO field. Again, proper type casting should be used in the
process.

10.8 SOFTWARE DEVELOPMENT

10.8.1 Basic embedded program architecture

An embedded application consists of a collection tasks, implemented by hardware
accelerators, software routines, or both. Unlike a normal desktop application, an
embedded program may run continuously and does not terminate. The top-level
program (main program) schedules, coordinates, and manages these tasks. The
simplest control architecture is an infinite "super loop," in which the tasks are
executed sequentially. The pseudo code for a super-loop architecture is

www.it-ebooks.info

http://www.it-ebooks.info/

2 6 0 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

main () {
s y s _ i n i t () ;
w h i l e U H

task_l () ;
t a s k _ 2 () ;

task .n () ;
}

}

The system runs the sys_ in i t () function once to perform initialization and then
enters the infinite loop and invokes the task functions in turn. A task function
handles certain I/O activities. Some tasks may have timing constraints and must
be processed within the given time limits. This scheme works properly if the overall
loop execution time is small and the processor can respond to each task in a timely
manner. Additional control architectures and scheduling issues are discussed in
Section 13.3.

10.8.2 Main program and task routines

The flashing-LED system turns on and off two LEDs alternatively according to the
interval specified by the ten sliding switches. The two main tasks are reading the
interval value from the switches and toggling the two LEDs after a specific amount
of time. The top-level program of this LED-flashing system is shown in Listing 10.2.
It follows the basic program architecture discussed in Section 10.8.1 and consists of
two major routines.

Listing 10.2
«include "io.h"
«include "alt.types.h"
«include "system.h"

int main(){
int prd;

whileUH
sw_get_command_vO(SWITCH_BASE, feprd);
led_flash_vO(LED_BASE, prd);

}
}

The sw_get_command_v0() function reads the value of the switch and the code
is shown in Listing 10.3. Since the same functionality is repeated in the subsequent
chapters with modified codes, the _v0 (for version 0) suffix is added.

Listing 10.3
void sw_get_command_v0(alt_u32 sw.base, int *prd)
{

*prd = I0RD(sw.base, 0) & 0x000003ff; / / read flashing period
}

Since the switch is 10 bits wide, we use a mask 0x000003ff to clear the unrelated
bits to 0's.

The led-f lash_v0() function waits for the specified interval and toggles two
discrete LEDs. The code is shown in Listing 10.4.

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHIC NOTES 2 6 1

Listing 10.4
void led_fIash_v0(alt_u32 died base, int prd)
{

s t a t i c alt_u8 led .pa t te rn = 0x01; / / initial pattern
unsigned long i , i t r ;

led .pat tern *- 0x03; / / toggle 2 LEDs (2 LSBs)
I0WR(dled_base , 0, l ed .pa t t e rn) ; / / write LEDs
i t r - prd » 2500;
for (i"0; i < i t r ; i ++){} / / dummy loop for delay

y

Since 8-bit data are the smallest unit in C, we use an 8-bit variable, led_pattern,
to store the LED pattern. It is declared as a static variable so that its value can
be kept between function calls. The two LSBs are toggled by xoring with the 0x03
mask when this function is executed. The delay is achieved by a dummy for loop.
We assume that each loop iteration takes two instructions, each instruction takes
10 clock cycles in a Nios I l /e (economic) configuration, and the system clock is
50 MHz (i.e., 20-ns period). Each iteration will take 400 ns (2 * 10 * 20 ns) and it
requires 2500 iterations for a l-ms delay. Delay obtained by this method is just a
rough estimation and is not very accurate.

Note that we do not use any global variable or constant in the two task functions
and module-dependent constants, such as LED JASE and SWITCH JASE, are confined
in the main program. Thus, only a top-level program needs to be revised if an I/O
module is modified.

10.9 BIBLIOGRAPHIC NOTES

SOPC Builder is part of the Quartus II package and its detailed description can
be found in Volume 4: SOPC Builder of Quartus II Handbook Version 10.0.
Nios II EDS is documented in Altera's Nios II Software Developer's Handbook.
Chapter 1 of the handbook, titled Overview, provides a general overview of the
EDS framework and Chapter 2 of the handbook, titled Getting Started with the
Graphical User Interface, gives a general introduction to the SBT GUI environ-
ment.

10.10 SUGGESTED EXPERIMENTS

10.10.1 Chasing LED circuit

There are 18 discrete LEDs on a DEI board. A chasing LED circuit turns on one
LED at a time sequentially and thus the lit LED appears to move (i.e., chase) along
the strip. The detailed specification is:

1. The 16 discrete LEDs are used as output, one lit at a time.
2. The lit LED moves sequentially in either direction. It changes direction when

reaching the rightmost or leftmost position.
3. The pushbutton switch 0 (labeled keyO) on the DEI board is used to "initial-

ize" the process. When it is pressed, the lit LED is moved to the rightmost
position.

www.it-ebooks.info

http://www.it-ebooks.info/

2 6 2 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

4. The lower five slide switches are used to control the chasing speed of the LED.
The highest speed should be slow enough for visual inspection.

Derive and synthesize a Nios II system, develop software, and verify the system
operation.

10.10.2 Collision LED circuit

A collision LED circuit is similar to the chasing LED circuit in Section 10.10.1
but turns on two LEDs at a time. The two LEDs move independently and change
direction when reaching the rightmost or leftmost position or "colliding" in the
middle. The detailed specification is:

1. The 16 discrete LEDs are used as output, two lit at a time.
2. The lit LEDs move sequentially in either direction. They changes direction

when reaching the rightmost or leftmost position or "colliding" in the middle.
3. The pushbutton switch 0 (labeled keyO) is used to "initialize" the first lit

LED. When it is pressed, the first lit LED is moved to the rightmost position.
4. The pushbutton switch 1 (labeled keyl) is used to "initialize" the second lit

LED. When it is pressed, the second lit LED is moved to the leftmost position.
5. The lower five slide switches are used to control the chasing speed of the first

LED and the upper five slide switches are used to control the chasing speed
of the second LED. The two chasing speeds are independent.

Derive and synthesize a Nios II system, develop software, and verify the system
operation.

10.10.3 Pulse width modulation circuit

A PWM circuit is described in Section 5.9.2. Instead of using custom hardware, we
can use an embedded system to perform this task as well. Derive and synthesize a
Nios II system, develop software, and verify the system operation.

10.10.4 Rotating square circuit

A rotating square circuit is described in Section 5.9.3. Instead of using custom
hardware, we can use an embedded system to perform this task as well. Derive and
synthesize a Nios II system, develop software, and verify the system operation.

10.10.5 Heartbeat circuit

A heartbeat circuit is described in Section 5.9.4. Instead of using custom hardware,
we can use an embedded system to perform this task as well. Derive and synthesize
a Nios II system, develop software, and verify the system operation.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 2 6 3

10.11 COMPLETE PROGRAM LISTING

Listing 10.5 chu-mainJedl-adhoc.c
y*»»*»**************»***»»»**,*,,»*»*»**»»»*****,******,*****»********»»
*
* Module: Simple flashing-LED system
* File: chu-main-ledl.adhoc . c
* Purpose: Flash two LEDs alternatively
* and use 10 slide switches to set the flashing period
*

«inc lude " i o . b "
« inc lude " a l t . t y p e s . h "
« inc lude " sys tem.b"

/a»****»»*******************,*,»*******»»**»***,»,****»****,****,**,****
* function : sw.get-command.vO()
* purpose: get flashing period from switches
* argument :
* sw.base: base address of switch PIO
* prd: pointer to period
* return :
* updated prd
* note:
«*,************»*»**»»*,»*»***»»,***»*»***»************»*»,***»*»»*****/
void sv_get_command_v0(alt_u32 sw.base , i n t *prd)
{

*prd - I0RD(sw_base, 0) k 0x000003ff; / / read flashing period
}

/******„»*»,**«**„*,*********»*******»***************,»»*****»*»»*****
* function: led.flash.vO ()
* purpose: toggle 2 LEDs according to the given period
* argument :
* led.base: base address of discrete LED PIO
* prd: flashing period in ms
* return:
* note:
* — The delay is done by estimating execution time of a dummy for loop
* - Assumption: 400 ns per loop iteration (2500 iterations per ms)
* —2 instructions per loop iteration
* —10 clock cycles per instruction
* - 20 ns per clock cycle (50-MHz clock)

void I e d _ f l a s h _ v 0 (a l t _ u 3 2 l e d . b a s e , i n t prd)
{

s t a t i c a l t_u8 l e d . p a t t e r n - 0x01; / / initial pattern
unsigned long i , i t r ;

l e d . p a t t e r n " - 0x03; / / toggle 2 LEDs (2 LSBs)
IOWRded.base , 0 , l e d . p a t t e r n) ; / / write LEDs
i t r = prd * 2500;
for (i=0 ; i < i t r ; i ++){} / / dummy loop for delay

}

www.it-ebooks.info

http://www.it-ebooks.info/

2 6 4 NIOS II SYSTEM DERIVATION AND LOW-LEVEL ACCESS

A**
* function: main()
* purpose: top—level program
* note:

i n t m a i n () {
i n t prd;

v h i l e U H
sw_get_command_vO(SWITCH_BASE , t p r d) ;
led_f lash_vO(LED_BASE, p r d) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

PREDESIGNED NIOS II I/O PERIPHERALS

The I/O peripherals of Nios II are soft cores and can be incorporated into a Nios II
system and eventually synthesized into the same FPGA chip. Altera provides a set
of commonly used I/O peripherals that can be easily configured and integrated in
SOPC Builder. In this chapter, we examine the structure and use of three periph-
erals for general input and output interface, serial communication, and timing, and
use them to construct a more sophisticated Nios II system.

Software complexity grows as I/O devices become more involved. A common
approach to alleviate the problem is to confine the low-level I/O transactions in a
collection of routines, sometimes know as device drivers, and shield the details from
application programs. In this chapter, we use an enhanced flashing-LED system to
demonstrate the use of new I/O cores and the development of ad hoc drivers. We
intentionally avoid Altera's predesigned HAL-compliant drivers and postpone the
coverage to Chapter 12.

11.1 OVERVIEWS

Like the Nios II processor, its I/O peripherals are usually described by HDL codes
and implemented as soft cores. For a commonly used I/O function, a predesigned
core is usually available and we just need to instantiate it when a Nios II system
is constructed. For a specialized I/O peripheral, we may need to design it from

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 265
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

2 6 6 PREDESIGNED NIOS II I/O PERIPHERALS

scratch and then integrate the circuit with the processor. Altera provides a set of
I /O cores for commonly used I/O functionalities.

When we select and use a predesigned I/O core, we must pay attention to the
following:

• Function description. We need to study the functionality carefully and un-
derstand the capability and limitation of the core and then decide whether
the core matches our need.

• Configurability. Because of the programmability of FPGA, many I/O cores
can be configured. The configuration is done when a core is instantiated in
SOPC Builder. We can include or exclude certain features, such as interrupt
capability, or specify the size of certain components, such the size of a FIFO
buffer.

• Register map. Recall that the Nios II processor utilizes the memory-mapped
I/O scheme. From the viewpoint of a processor and application software, an
I/O core is represented by a collection of registers. The processor accesses
the I/O core by reading or writing the proper bit or field of a register. The
register map provides detailed information about these bits and fields.

• Device driver. Device driver is a collection of software routines used to access
an I/O core. We can construct the routines from scratch or utilize a pre-
designed software library. The development of a generic driver is discussed in
Section 11.7 and the use of Altera's library is covered in Chapter 12.

Altera supplies more than two dozen I/O cores for its SOPC platform. We select
three most common peripherals, PIO, JTAG UART, and Timer, and study them
in more detail in the subsequent sections. We discuss the use of SDRAM controller
and PLL cores in Chapter 16.

11.2 PIO CORE

A PIO (parallel input/output) core provides a memory-mapped interface between
a port of the Avalon interconnect and a general-purpose I/O port. We use it as
simple input port and output port in Chapter 10. A full-featured PIO core is more
sophisticated and its conceptual diagram is shown in Figure 11.1. The I/O port
connects either to on-chip user logic or to off-chip external devices via FPGA's I /O
pins.

11.2.1 Configuration

The configuration of a PIO core is done in several steps. When a PIO core is
instantiated in SOPC Builder, the Basic Settings tab page appears, as shown in
Figure 11.2(a). There are four fields in this page:

• Width. This field specifies the number of bits in the I/O port.
• Direction. This field indicates the direction of signal flow and one of the four

modes can be selected.
• Output Port Reset Value. If the previous mode consists of an output port, this

field specifies the reset value of the output port.
• Output Register. If the previous mode consists of an output port, the Enable

individual bit setting/clearing option can be turned on to set or clear individual

www.it-ebooks.info

http://www.it-ebooks.info/

PÍO CORE 2 6 7

1F ? O 4

address — ►

data -4—►

control V

Interrupt
control
circuit

:n
I* L Interrupt mask register

edge capture register

data register (input)

data register (output)

direction

Γ̂̂
—v>^ T

1

bidirectional
i/o port

Figure 11.1 Conceptual diagram of a full-featured PIO core.

1 PIO ¡Parallel I/O] - bin

%| PIO (Parallel I /O)

hi 1-1? M I . 4

Director

9 *Η*Ί pert* DftrV

ftorh tipul i n t Diitprf p o m

' Output pürt* V4f

Output Pad R Biet Value

H * M I V«kH ■ 0 ϊ 0

Output R t a i s l w

[JEni

-

(a) Basic Setting page

U MO (Parallel I/O) -bin

3 * PIO (Parallel I /O)

| H .i i :

hltrriwi CPU wh*n*rty urVn*«4d kO prt * t o * VlMJ

« H i t

*

(b) Input Options page

Figure 11.2 Instantiation pages of the PIO core.

www.it-ebooks.info

http://www.it-ebooks.info/

268 PREDESIGNED NIOS II I/O PERIPHERALS

address
data · ·

control
data register (input) input i/o port

address
data 4

control
* output i/o port

data register {input)

data register (output)

input i/o port

*■ output i/o port

address

data ·*-

control —

data register (input)

data register (output) — >

direction

bidirectional i/o
port

Figure 11.3 Four direction modes of a PIO core.

bits of the output port. Two additional registers, outset and outclear, are
included in the implementation.

There are four possible modes in the Direction field:
• Input ports only. In this mode, the PIO port can capture input only.
• Output ports only. In this mode, the PIO port can drive output only.
• Both input and output ports. In this mode, the PIO port can capture input and

drive output simultaneously. Note that there are two separate unidirectional
buses, one for input and one for output.

• Bidirectional (tristate) ports. In this mode, the PIO port utilizes the tristate
buffers of FPGA's I/O pins. The individual bit can either capture input or
drive output. Note that there is only one bidirectional bus. The direction of
each bit is controlled by a separate register.

The conceptual diagram of the four modes is shown in Figure 11.3. Note that in
the last two modes the read and write data are stored in two separate registers.

If a PIO port consists of an input port, we need to continue to the Input Options
tab page, as shown in Figure 11.2(b), for additional settings. There are two main
fields:

• Edge Capture Register We can turn on the Synchronously capture option to
introduce an additional register to capture the transition edge of an input
signal. The corresponding bit is set to 1 when an edge is detected in the
input signal. The processor can later clear the bit to 0 by writing 1 to the

www.it-ebooks.info

http://www.it-ebooks.info/

PÍO CORE 2 6 9

(n-1)

data

direction

interrupt mask

edge capture

outset

outciear

0

1

2

3

4

5

input or output data

direction of bidirectional port bits

Interrupt mask bits

edge detection bits

output port setting bits

output port clearing bits

Figure 11.4 Register map of a PIO core.

same register. After turning on the option, we need to specify the following
features:

- Select the type of edge to detect, which can be Rising Edge, Falling Edge,
or Either Edge.

- Specify whether to turn on Enable bit-clearing for edge capture register to
clear individual bits in the edge capture register.

• Interrupt. We can turn on the Generate IRQ option to include an interrupt
circuit. An interrupt request signal is added and it is asserted when a specified
event occurs on the input port. We must further specify whether the event
is triggered by the input level or by the capturé of an edge. An additional
interrupt mask register is included in implementation to indicate whether the
request from the corresponding bit is enabled.

If desired, we can continue to the Simulation tab page to include additional testbench
features and specify the values of the input ports during simulation.

11.2.2 Register map

The processor controls and communicates with a PIO core via a set of registers.
The address, name, and fields are summarized in the register map in Figure 11.4.

Address offset 0 is for the input and output data. The PIO core implementation
actually consists of two separate registers for this purpose, as shown in the bottom
two configurations of Figure 11.3. Although the two registers share the same address
offset, they operate independently. Writing to this address stores the value to the
output data register and has no effect on the content of the input data register.

The other registers are optional and are inferred according to the configuration.
Address offset 1 is for the direction register, which is inferred if the PIO core is
configured as a bidirectional mode. If a bit in the direction register is 1, the tristate
buffer is enabled and the corresponding I/O pin functions as an output pin. If the
bit is 0, the tristate buffer is disabled and the pin functions as an input pin.

Address offset 2 is for the interrupt mask register, which is inferred if the PIO
core is configured to include the interrupt circuit. Setting a bit in the register
to 1 enables the interrupt request for the corresponding bit of the PIO input port.
Address offset 3 is for the edge capture register, which is inferred if this feature is
included during configuration. A bit is set to 1 when an edge is detected in the

www.it-ebooks.info

http://www.it-ebooks.info/

270 PREDESIGNED NIOS II I/O PERIPHERALS

JTAG port

FPGAchip

Γ
I
1
1 IRQ « —

1 address —►
data *—►■

1 control — »

i
1

JTAG UART core

us

>-

ar visible registers

data

control

I

1

r*—
1

write FIFO

read FIFO

JTAG
hub

interface

j .

' r

JTAG
controller

JTAG hub

Figure 11.5 Conceptual diagram of the JTAG UART core.

corresponding bit of the PIO input port. Writing 1 to the register clears its content
toO.

Address offsets 4 and 5 are for the output-set and output-clear registers. Setting
a bit in these registers sets or clears the corresponding bit in the output port.

11.2.3 Visible register

In an Altera's I/O core, a register of a register map implies a "user-visible register"
and uses only one port address. In the actual implementation, it is possible that
two physical registers are associated with that port address, as in the data register
of the PIO core. This kind of arrangement is quite common in Altera SOPC's I/O
cores. In the remaining of the book, we just follow the convention used in Altera
documentation and treat the two physical registers as one visible register.

11.3 JTAG UART CORE

UART stands for universal asynchronous receiver and transmitter. It contains two
serial lines for data communication, one for receiving and one for transmitting.
Parallel data (usually 8 bits) are sent bit by bit via the serial lines between two
systems. A UART is commonly used in conjunction with the EIA RS-232 interface
to form the serial port of a PC or an embedded system.

Altera's JTAG UART core is similar to a serial port. Instead of using an RS-232
interface, the data are received and transmitted via FPGA's JTAG controller and
JTAG port. This eliminates the need of a separate serial connection between a
host PC and the prototyping board. The core handles the internal JTAG interface
and control. From the processor and application program's point of view, it can be
treated as a regular serial port and used to communicate the serial character stream
between the PC and the board. The conceptual diagram is shown in Figure 11.5.

11.3.1 Configuration

To increase the performance and regulate data transmission, a write FIFO buffer
and a read FIFO buffer are included in the JTAG UART core. The configura-

www.it-ebooks.info

http://www.it-ebooks.info/

JTAG UART CORE 271

■A'HleflFLUDataltDmAraJonU JT*Cr

FtfrJd J-im iL-ata tiDm JTAG ID Avalen I

BuEfer ocotn 1 tylei i &.

liw» Heul*

Figure 11.6 Instantiation page of a JTAG UART core.

data

control

0

1

31 16

ravail

wspace

15

IV

. . . 11 10 9 8

ac wl ri

7 1 0

data

we re

Figure 11.7 Register map of the JTAG UART core.

tion mainly specifies the characteristics of the two buffers. When a JTAG UART
core is instantiated in SOPC Builder, the Configuration page appears, as shown in
Figure 11.6. There are three fields for each buffer:

• Buffer Depth. This field specifies the number of bytes in the FIFO buffer.
• IRQ Threshold. This field specifies the interrupt condition. The interrupt

request signal is asserted when the number of data bytes in the FIFO buffer
reaches the specified threshold.

• Construct using registers instead of memory blocks. Turning on this option
forces the synthesis software to use the logic elements to implement the buffer.

11.3.2 Register map

The user-visible interface to the JTAG UART core consists of two 32-bit registers,
one for data and one for control, as shown in the register map in Figure 11.7. The
data register contains the following fields:

• data. This field contains the byte to transfer to or from the JTAG core.
During the write operation, it holds a character to be written to the write
FIFO buffer. During the read operation, it holds a character read from the
read FIFO buffer.

www.it-ebooks.info

http://www.it-ebooks.info/

272 PREDESIGNED NIOS II I/O PERIPHERALS

• rv. The bit is 1 if the data field is valid.
• ravail. This field contains the number of characters remaining in the read

FIFO buffer (after the current read).
The control register contains the following fields:

• re. This bit needs to be set to 1 to enable the read interrupt request.
• we. This bit needs to be set to 1 to enable the write interrupt request.
• ri. This bit indicates whether the read interrupt request is pending.
• wi. This bit indicates whether the write interrupt request is pending.
• ac. This bit indicates whether there has been JTAG activity since the bit was

cleared.
• wspace. This field contains the number of spaces available in the write FIFO

buffer.

11.4 INTERNAL TIMER CORE

The internal timer core supports various timing needs, such as measuring the in-
terval between events and generating periodic pulses. The key part of the core is a
counter that counts down from a specific value to 0. The value is known as timeout
period and stored in the timeout period registers. When the counter reaches 0, a
specific bit is set, the optional interrupt request is asserted, and an optional output
pulse can be generated as well. After reaching 0, the counter can pause and stay
there (in the count-down-once mode) or reload with values from the period registers
and restart the counting (in the continuous mode). Optional control signals can be
used to stop, start, or reset the counter operation.

The counter is driven by the system clock and each count corresponds to one
clock period. The elapsed time thus is equal to number of counts * clock period.

11.4.1 Configuration

The timer core is versatile and can be configured to fit different timing needs. When
a timer core is instantiated in SOPC Builder, the Parameter Settings page appears,
as shown in Figure 11.8. There are several fields:

• Timeout period. This field specifies the timeout period and determines the
initial value of the timeout period register. It can be specified in terms of a
time unit (e.g., ms) rather than the number of clocks. In the former, SOPC
Builder will use the system clock information to convert it from a time unit
to the number of clocks.

• Timer counter size. This field specifies the number of bits in the counter, which
can be either 32 or 64. In a system with a 50-MHz clock, a 32-bit counter
can count up to 85.9 seconds (i.e., 232 * 20 ns) and a 64-bit counter can count
up to more than 10,000 years (i.e., 264 * 20 ns)

• Hardware options. This field specifies which optional features should be in-
cluded and contains several subfields:

- Presets. This subfield lists several predefined configurations, including
Simple periodic interrupt, Full-featured, Watchdog, and Custom.

- Registers. This subfield specifies whether certain features should be
instantiated, including whether allowing the processor to update (i.e.,

www.it-ebooks.info

http://www.it-ebooks.info/

INTERNAL TIMER CORE 2 7 3

J Interval Tirner - usr_timef

t i . Interval Timer
[About! üotumtfitatun ■

Timeout period

Timer count« £ua

HV4*3ri options

futlHtUlMl

r M l M f V d d

[̂ 1 BMoelneinip»hor

T r m u ! g U t [] c b d n d f i

| ~ i SytttmrM« HI [maul [ttjtctriogj

CjtruiH ' Finish

Figure 11.8 Instantiation page of the timer core.

write) timeout period counter, to read the current count from the snap-
shot registers, and to pause and resume counting.

- Output signals. This field indicates whether to include the optional time-
out pulse output or watchdog timer reset output.

11.4.2 Register map

The user-visible register of a 32-bit timer core consists of up to six 16-bit registers,
as shown in the register map in Figure 11.9. The status register contains two fields:

• to. The to (for "time out") bit is set to 1 when the counter reaches zero. It
stays set until a processor writes 0 to this bit to clear it.

• run. This bit reads as 1 when the counter is running.
The control register contains four fields:

• ¡to. This bit indicates whether the interrupt is enabled.
• cont. This bit specifies whether the timer operates in the continuous mode or

count-once mode.
• start. Writing 1 to this bit starts the counter running (counting down).
• stop. Writing 1 to this bit stops the counter.

The periodi and periodh registers store the lower 16 bits and upper 16 bits of the
32-bit timeout period value. The snapl and snaph registers are used to take a

www.it-ebooks.info

http://www.it-ebooks.info/

274 PREDESIGNED NIOS II I/O PERIPHERALS

status

control

periodl

periodh

snapl

snaph

0

1

2

3

4

5

16 . . . 4 3 2

stop start

1

run

cont

0

to

¡to

timeout period [15:0]

timeout period [31:16]

counter snapshot [15:0]

counter snapshot [31:16]

Figure 11.9 Register map of the timer core.

"snapshot" of the current counter. When a processor issues a write instruction
(write data are ignored), the current 32-bit value of the counter is copied to the
two 16-bit snapshot registers.

The register map for a 64-bit timer core is similar except that four 16-bit registers
are used to store the timeout period and to take a snapshot.

11.5 ENHANCED FLASHING-LED NIOS II SYSTEM

To demonstrate the I/O core usage and the software development, we construct a
more sophisticated Nios II system. The main features of this system are:

• A 512-KB external SRAM device for the main memory.
• A JATG UART to establish a serial link to a console.
• Two full-feature timers, one for the system tasks and one for user application.
• An input port for ten slide switches.
• An input port for four pushbutton switches with edge capture.
• Two output ports for the discreet green and red LEDs.
• An output port for the four seven-segment LED displays.

The conceptual top-level block diagram is shown in Figure 11.10. This Nios II
system consists of the general I/O cores and utilizes all simple I/O peripherals (i.e.,
switches and LEDs) of the DEI board. It is used in this chapter and Chapters 12
and 13.

We can follow the tutorial in Section 10.2 to construct and synthesize the new
Nios II system. The following subsections discuss the creation of the SOPC design
and top-level HDL file.

11.5.1 SOPC design

The procedure of generating a simple flashing-LED system is discussed in Sec-
tion 10.2.2. Several additional steps are needed for the enhanced Nios II system.
The detailed tasks are:

• Create a new SOPC system.
• Add and configure a Nios II processor.
• Add the SRAM controller module.
• Specify the reset and exception vectors.

www.it-ebooks.info

http://www.it-ebooks.info/

ENHANCED FLASHING-LED NIOS II SYSTEM 2 7 5

Has! PC

software
dnver

J~
debugging ulility

JTAG console

DEI board
USB cable

USB interface

FPGAchip

JTAG
controller

JTAG hub

JTAG
debug
module

'Jl·.-.!, II

processor

Avalon ¡nlerconneel fabric

JTAG
UART

SRAM
controller

i

user
timer

sys
timer

ledr
[JIO

7-S&3
led
pto

switch
pICJ

bullón
ρια

SRAM
chip

Figure 11.10 Block diagram of an enhanced flashing-LED system.

www.it-ebooks.info

http://www.it-ebooks.info/

276 PREDESIGNED NIOS II I/O PERIPHERALS

• Add and configure PIO modules.
• Add and configure two timer modules.
• Add and configure a JTAG UART module.
• Add a system id module.
• Adjust memory base address and interrupt.
• Generate HDL and information files.

Create a new SOPC system This task is similar to that in Section 10.2.2 except we
name this system nios_led2.

Add and configure a Nios II processor This task is similar to that in Section 10.2.2.

Add the external SRAM memory module The available memory options on the DEI
board are discussed in Section 5.7.1. The EP2C20 device of the DEI board has
26-KB internal memory. This memory is used to implement the registers and cache
of the Nios II processor well as the buffers and lookup tables in I /O cores and user
logic. The remaining portion can also be used as the Nios II processor's memory
module.

In Chapter 10, we use 20-KB internal memory to create an on-chip memory
module in the simple fiashing-LED system. However, because of its limited ca-
pacity, the memory module can only accommodate simple software programs. In
the enhance fiashing-LED system, we replace it with the external 512-KB SRAM
device.

A Nios II processor accesses the external memory device via a memory controller.
Altera provides several SRAM controller IP cores in SOPC Builder. However, since
their configurations do not match the characteristics of the DEI board's SRAM
chip, they cannot be used. A custom SRAM controller core is developed for this
purpose and its construction is discussed in Chapter 16. For now, we just use it as
an existing IP core.

To instantiate the core, we must make it core visible in SOPC Builder's Library
panel. The procedure to include our custom cores in SOPC Builder is:

1. Create a directory, say, chu_ip, in hard disk.
2. Copy the SRAM controller directory chu_avalon_sram and its content, which

include the chu_avalon_sram.hw.tcl and chu_avalon_sram.v files, to the
chu_ip directory.

3. In SOPC Builder window, select Tools >- Options.... The Options dialog ap-
pears.

4. In dialog, select the IP Search Path page.
5. Click the Add... button, navigate to the chu_ip directory, and click the Open

button to add the directory to search path. The resulting page is shown
Figure 11.11.

6. Click the Finish button. SOPC Builder searches the paths and adds the found
IP cores to the left Library panel.

7. In the Block Type field, select Auto.
8. A new category, chuJp, appears. Expand the category and the chu_avalon_sram

core should be listed under this category.
Once included, the core can be used like other normal IP cores. We add it to the
enhanced flashing-LED system and rename the module sram.

www.it-ebooks.info

http://www.it-ebooks.info/

ENHANCED FLASHING-LED NI0S II SYSTEM 2 7 7

ii Options

Category P Search Path Options

HDL Simulator „ „ . _ _

rrmtsmm P S " * ™ *
Beta

U^J'

i_ K:/code/nioi<chu_ip/*7*

l_¡¡ AM... | Remove

3

■

■

Γ ■'"&■'>

Figure 11.11 IP Search Path page of SOPC Builder Options dialog.

Specify the reset and exception vectors This task is similar to that in Section 10.2.2
except that the sram module must be used in the Memory field.

Add and configure PIO modules We use PIO cores for the switches and LEDs on
the DEI board. The procedure is:

1. For the eight discrete green LEDs, add a PIO module, configure it as an 8-bit
output port, and rename it ledg.

2. For the ten discrete red LEDs, add a PIO module, configure it as a 10-bit
output port, and rename it ledr .

3. For the four seven-segment LED displays, add a PIO module, configure it
as a 32-bit output port, and rename it sseg. To accommodate the software
program development, we allocate 8 bits (i.e., a byte) for each display. Since
there are only seven segments on a display, the MSB of the byte is not used.

4. For the ten slide switches, add a PIO module, configure it as a 10-bit input
port, and rename it switch.

5. For the four pushbutton switches, add a PIO module, configure it as a 4-bit
input port in the Basic Settings tab page, set up the edge capture and interrupt
in the Input Options tab page, as shown in Figure 11.2(b), and rename it btn.
The setting infers an edge capture register in the module to capture the 1-
to-0 transitions in the input signal and an interrupt circuit to generate an
interrupt request.

Add and configure two timer modules We include two timer cores, one for the
system-level housekeeping function and one for the user application. The core can
be found in the Peripherals >- Microcontroller Peripherals category and the configura-
tion page is shown in Figure 11.8. The default setting can be used for our purposes.
After creating two timers, we rename the two modules sys_timer and usr_timer.

Add and configure a JTAG UART We include a JTAG UART core as a communi-
cation link between the host PC and the prototyping board. The core can be found
in the Interface Protocols >- Serial category and the configuration page is shown in

www.it-ebooks.info

http://www.it-ebooks.info/

278 PREDESIGNED NIOS II I/O PERIPHERALS

T v p t

OenKFmWy CydoHl

ü}Ct,ältl l(| l

U M Cam Uodufe Wame

B

B

m
a
0

a
B

m
B
CJ

B

f—t

-̂*
-.

■ - T .

■ —

■ - >

-—
—
—*

V (

B cpu

aatj_Tifiiiaf

G Vim
cpu^etrl

Q iw(cfi
11

E Wn

»1

6 Ma
11

B todr
11

B 4»*g
11

Q lysjmef
11

B wjama
■1

i i . ; . ι ^
ayaBn.jtag.itflve

B ayid
conroLkkve

DeicrjriDn

HeaiPrbCHSor
ΑϊΙΒίΙ UMUV Hlppod » U W
Au Hbn U c mcry U apperJ Utulrr

A v » n M w y U4pp*d Stave
triu_»vik>n_sram
AvÜHl U c m&Ty M apped ¿ii vr
PO tParaim/Oj
Λνΐϋπ U«nwy Hipped Slav·
no iP*/4it¿/0i
AvUL?n Uemorv Mapped State
ROiPwaWkCj
Avafeti Uemory Üapped Stave
RO iPajaJcl /Oi
Avacn hJcmory Mapped Stave
P»{PKlUrQ)
Avftbn Werner y Mapped Stave
tnlarval tme
Avlbri Memory Uapped State
h(trv»l Τττ*.
Avtbfl Umsry Uappad Stava

JTAG UAPT
Avalen UWTKHY uiooed Slav*
System € Pefprtf el
Λνϋοη ueswy Ufpped Slave

Clock

{ *

eft

eft

eft

eft

eft

eft

eft

eft

eft

Sue End i no

IRQ 0
• OxCO10OBOH

. θΜθΰϋβύΰΟΰ

. GiOOlOlQIC

■ αζθοιοιατα

. OMdOLOLOBO

■ OlOOlOlOfO

1 o.no'.oiOBC

■ ΰχΰύΐαιαΐΰ

UKDÚlfllOÜO

a 0χύΰ10103β

Cxüaiuiúao

IAO 31
C*CUlOO£ff

OJÍJOCÍ £ί £ϊ

oxotuoiotc

OxOQlQlGTr

üxOOlOlObf

CxDOlOlOif

οχοαια ιβΜ

üi ' jui 31 J Í Í

UxOUlÚLUAf

OaoOlGloSf

fl*0Glulü97

'-'

-H

-B
I ¡-É

—E

Figure 11.12 Completed SOPC Builder window.

Figure 11.6. The default setting can be used for our purposes.
module jtag.uart.

We rename the

Add systenj id module This task is identical to that in Section 10.2.2.

Adjust memory base address and interrupt request After all the modules are added,
we can adjust its memory base addresses, similar to that in Section 10.2.2. In this
system, several modules generate interrupt requests and these requests are displayed
under the IRQ column, as shown in Figure 11.12. For our purposes, the request
priority should be assigned in a specific order: sys.timer, usr_timer, jtag_uart, and
btn. We can manually edit the priority number under the IRQ column as needed.
Note that the request with the smallest number has the highest priority.

The completed system is shown in Figure 11.12 and the configuration and infor-
mation are stored in nios.led2. sope and nios_led2. sope info files, respectively.
We can generate the HDL files accordingly.

11.5.2 Top-level HDL file

To synthesize the Nios II system, we need to create a Quartus II project and include
a top-level HDL file to instantiate the Nios II system, as discussed in Section 10.2.3.
Since our demonstration system contains no additional logic, we just need to cre-
ate a top-level module to wrap the Nios II system. The HDL code is shown in
Listing 11.1.

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE DEVELOPMENT OF ENHANCED FLASHING-LED SYSTEM 2 7 9

Listing 11.1 Top-level system

module nios_led2_top
(

3 input wire elk ,
input wire [9:0] sw,
input wire [3:0] key,
output wire [7:0] ledg,
output wire [9:0] ledr,

8 output wire [6:0] bex3 , hex2 , hexl, hexO ,
output wire [17:0] sram.addr,
inout [15:0] sram.dq,
output sram_ce_n, sram_oe_n, sram_we_n ,
output sram_lb_n , sram_ub_n

i3) ;

/ / signal declaration
wire [31:0] sseg;

is / / body
// instantiate nios
nios_led2 nios_cpu_unit

(.clk(clk) ,
.reset_n(i 'bl) ,

23 . in_port_to_the_switch(sw),
.in_port_to_the_btn(key),
.out_port_from_the_ledg(ledg),
.out.port_from_the.ledr(ledr),
.out.port_from.the_sseg(sseg),

28 .sram.addr.from_the_sram(sram.addr),
.sram_ce_n.from.the.sram(sram.ce.n),
.sram_dq_to_and_from_the_sram(sram_dq),
.sram_lb_n_from.the.sram(sram_lb_n),
.sram.oe.n.from_the_sram(sram_oe_n),

33 .sram_ub_n_from_the_sram(sram_ub_n),
.sram_we_n_from_the_sram(sram_we_n)

);
/ / output assignment
assign hex3 - sseg[30:24];

38 assign hex2 - sseg [22:16];
assign hexl = sseg [14:8];
assign hexO - sseg [6:0];

endmodule

Note that the 32-bit sseg PIO port is mapped to the sseg4 signal and its interval
fields are assigned to four seven-segment LED displays, hexO, hexl, hex2, and hex3.

We can create a project, add the top-level module and relevant HDL files, and
compile the project to obtain the FPGA configuration file, nios2_led2_top.sof.

11.6 SOFTWARE DEVELOPMENT OF ENHANCED FLASHING-LED
SYSTEM

The enhanced flashing-LED system includes several commonly used I/O peripher-
als. We use it to introduce the concept of device driver and illustrate the process
of embedded software development.

www.it-ebooks.info

http://www.it-ebooks.info/

280 PREDESIGNED NIOS II I/O PERIPHERALS

11.6.1 Introduction to device driver

Unlike a desktop application program, an embedded application program involves
more I/O interactions and has direct access to I/O devices. The main task of
an embedded program sometimes is just to monitor and coordinate the operation
of I /O peripherals. As an I/O device becomes more sophisticated, controlling its
operation requires more effort. For example, the data and control registers of
the JTAG UART core contain nine fields, each having a unique functionality and
read/write access mode. Controlling the UART requires to check status, issue
command, retrieve data, and write data from or to the proper fields of the registers.
It is a tedious and error-prone process. The software complexity multiplies when
multiple I/O devices are used in a system.

A common approach to alleviate the problem is to confine the low-level I /O
transactions in a collection of routines, sometimes known as device drivers. A
higher-level application program does not interact with the I/O devices directly.
Instead, it calls a device driver routine to perform the desired operation and thus
is shielded from the low-level detail. When an I/O device is modified, only the
corresponding driver routines need to be revised and thus the impact is localized.
We demonstrate the development and use of a set of ad hoc device drivers via the
enhanced flashing-LED system in this section.

Altera provides a collection of device drivers for its SOPC I/O cores and inte-
grates them into the HAL (hardware abstraction layer) platform. We intentionally
avoid this platform in this section and postpone the discussion in Chapter 12.

11.6.2 Program structure of the enhanced flashing-LED system

The enhanced flashing-LED system operates as follows:
• The desired flashing time interval is specified by the ten slide switches. The

value is loaded to the system when pushbutton switch 1 (labeled keyl on the
DEI board) is pressed.

• The flashing can be temporarily stopped. Pressing pushbutton switch 0
pauses and resumes the operation alternatively.

• The four seven-segment LED displays show the current status of the system.
The left-most display shows a 'P ' pattern if the flashing is paused and the
next three displays shown the value of the flashing interval in milliseconds.

• The host console displays a message whenever a new interval value is set.
This message is transmitted via the JTAG UART module.

• The timer module keeps track of flashing interval and turns on and off the
two discrete LEDs alternatively.

We follow the basic program template discussed in Section 10.8.1 and divide the
main program into five tasks. The skeleton of the main program is

initialize system;
whileUH
get commands from slide and pushbutton switches;
display interval value on console (via JTAG UART);
display status on seven-segment LED displays;
toggle two LEDs after the specified interval;

}

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE DEVELOPMENT OF ENHANCED FLASHING-LED SYSTEM 2 8 1

Since this system is more complex, we use a modular approach and utilize three
levels of hierarchy:

• Top level: main program.
• Second level: routines for the five tasks.
• Third level: routines for the device drivers.

11.6.3 Main program

The main program and portion of the header are shown in Listing 11.2.

Listing 11.2 Flash LED with generic device driver

»include "system.h"

typedef s truct f lash.cmdi
int pause;
int prd;

} cmd.type;

int main O {
cmd_type sw_cmd={0,100}; / / initial value: not pause, 100 ms interval

f lashsys . init .v i (BTN.BASE , USR.TIMER.BASE);
v h i l e (l H

sw.get.command.vl(BTN.BASE, SWITCH.BASE, fcsv.cmd);
jtaguart.disp.msg.vl(JTAG.UART.BASE, sw.cmd);
sseg_disp.msg.vl(SSEG.BASE, sw.cmd);
led.flash.vKLEDG.BASE, USR.TIMER.BASE, sw.cmd);

} '
}

We define a structure type, cmd_type, that encapsulates the "command," which
consists of the pause status and the flashing interval. The program consists of five
functions, each corresponding to a task. The implementation of these functions is
discussed in Section 11.8.

As discussed in Section 10.6.1, the base address of each instantiated I/O device
is defined as a constant with suffix JASE, such as USR_TIMER_BASE, in system.h
and its name is derived from the name given in SOPC Builder. These names change
when the underlying Nios II system configuration is modified. To limit its impact,
it is good practice to use the constant names only in the main program.

11.6.4 Function naming convention

In this book, we generally name the I/O routines in the following convention:

<device.name>_<act ion>_<object >

The <action> term is like a verb and specifies the function to be performed.
The <object> term is optional and, if it exists, specifies the type of object to
be performed on. For example, t imer_ in i t () means that the timer is initial-
ized and vga_disp_ch() means that the VGA monitor displays a character, and
vga_disp_str() means that the VGA monitor displays a string.

www.it-ebooks.info

http://www.it-ebooks.info/

282 PREDESIGNED NIOS II I/O PERIPHERALS

11.7 DEVICE DRIVER ROUTINES

The "device driver" here means the software routines accessing I/O devices. The
term is used loosely and a more detailed treatment is covered in Section 12.4. We
only include routines that are needed for this particular flashing-LED program and
most routines are just for demonstration purposes.

11.7.1 Driver for PIO peripherals

The PIO core provides a simple interface to access an I/O port. The system's slide
switches, pushbutton switches, discrete LEDS, and seven-segment LED displays
use this core.

Register map The PIO core may infer up to six registers, as shown in Figure 11.4.
A register can be accessed by adding the proper offset value to the base address.
The read and write functions in Altera's i o . h take the base address and the offset
as two arguments and perform the address computation:

I0RD(base, o f f s e t)
I0WR(base, o f f s e t , data)

For example, we can use I0RD(MYPI0_BASE,3) to read data from the edge capture
register of a PIO module named MYPIO. Using a hard literal like 3 makes the code
difficult to understand and error-prone. One way to alleviate the problem is to
show the register map as a set of constant definitions, as in

»def ine PI0_DATA_REG_0FT 0 / / data register addr offset
«define PI0_DIRT_REG_0FT 1 / / direction reg addr offset
»def ine PI0_INTM_REG_0FT 2 / / interrupt mask reg addr offset
»def ine PI0_EDGE_REG_0FT 3 / / edge capture reg addr offset

The previous statement becomes I0RD(MYPI0_BASE,PI0_EDGEJIEG_0FT), which is
more expressive.

Basic data access Although the I ORDO and IOWRO functions can be used to access
the I/O registers directly, as in Listing 10.11, we can use macros to make the
functions more descriptive. Two macros are define to access the data register of a
PIO core:

«def ine p i o . r e a d (b a s e) IORD(base,PI0_DATA_REG_0FT)
«def ine p i o . w r i t e (b a s e . d a t a) IOWR(base,PI0_DATA_REG_0FT,data)

The two routines can be used to read data from switches and write data to discrete
LEDs.

Seven-segment LED display The DEI board has four seven-segment displays. The
segment naming convention and hexadecimal digit patterns of Figure 4.6 are re-
peated in Figure 11.13. Recall that the LED segments are configured as active low,
which means that a segment is lit if the corresponding control signal is 0.

In a C program, we can use a byte to represent the display pattern and ignore
the MSB of the byte. For example, we use 0x40 (i.e., "01000000" pattern), which
turns off the g segment and turns on all others, to display the 0 digit. One easy
way to generate the hexadecimal value is to store the patterns in a 16-element array
and use it as a lookup table. The function is shown in Listing 11.3.

www.it-ebooks.info

http://www.it-ebooks.info/

DEVICE DRIVER ROUTINES 2 8 3

a

O dp

(a) Diagram of a seven-segment LED display

QOQQQOOQQOOQQOQQ
ouoouuuoouuoouoo

(b) Hexadecimal digit patterns

Figure 11.13 Seven-segment LED display and hexadecimal patterns.

Listing 11.3
alt_u8 sseg_conv_hex(int hex)
{

/ * active—low hex digit 7—seg patterns (0—9,a—f); MSB ignored */
stat ic const alt_u8 SSEG_HEX_TABLE[16] - {

0x40, 0x79, 0x24, 0x30, 0x19, 0x92, 0x02, 0x78, 0x00, 0x10, / / 0-9
0x88, 0x03, 0x46, 0x21, 0x06, OxOE}; / / a-f

alt_u8 ptn;

if (hex < 16)
ptn - SSEG_HEX_TABLE[hex] ;

else
ptn - Oxff; //blank

return (ptn);

To reduce the number of instantiated PIO cores, we group the four displays
together and create a 32-bit SSEG PIO module when the Nios II system is con-
structed. Since a pattern is represented as a byte in a program, we must pack four
patterns into a 32-bit word and then output it to the module. A driver routine is
constructed for this purpose and is shown in Listing 11.4. The argument ptn points
to the head of a four-element array. The routine packs four patterns of the array
to a 32-bit word and outputs it to the display port.

Listing 11.4
void sseg_disp_ptn(alt_u32 base, alt_u8 *ptn){
alt_u32 sseg.data;
int i;

/* form a 32—bit data */
for (i-0; i<4; i++){
sseg.data « (sseg.data << 8) I *ptn;
ptn++;

}
pio.write(base, sseg.data);

www.it-ebooks.info

http://www.it-ebooks.info/

284 PREDESIGNED NIOS II I/O PERIPHERALS

For example, we can use the following code segment to show "12EF" on the displays:

alt_u8 msg[4];

msg [0] = sseg_conv_hex (1) ; / / 1
msg[l] = sseg_conv_hex(2); / / 2
msg [2] = sseg_conv_hex (14); / / E
msg [3] ■ sseg_conv_hex (15); / / F
sseg_disp_ptn(SSEG_BASE, msg);

Pushbutton switch In this flashing-LED system, the pushbutton switches are used
to load the interval value from the slide switches and to pause and resume the
flashing operation. We want to use the transition edge, rather than the level, of the
input signal to control the operation and include the edge capture register when
configuring the btn PIO module.

A bit of the edge capture register is set to 1 when the designated transition edge
of the corresponding input signal is detected. It remains as 1 until the processor
performs a write operation to clear the register to 0. We define two macros to read
and clear the edge register of the btn module:

#define btn .read(base) I0RD(base, PI0_EDGE_REG_0FT)
«define b t n . c l e a r (b a s e) I0WR(base, PI0_EDGE_REG_0FT, Oxf)

Note that the I0WRO operation does not write 1 to the edge capture register but
clears the corresponding bits in the register.

File organization For each I/O core, we put the relevant driver materials together
into two files. One is a header file that includes constant declarations, macros,
and function definitions and the other file contains the codes for function pro-
totypes. The complete code listing of the PIO core driver is stored in the files
chu-avalon-gpio.h and chu_avalon_gpio.c, as shown in Listings 11.12 and 11.13 of
Section 11.12. This driver is used in the subsequent chapters as well.

11.7.2 JTAG UART

From the application program's point of view, accessing the JTAG UART mod-
ule involves reading the receiving FIFO buffer and writing the transmitting FIFO
buffer. Since the task routine just needs to display the message on the console, we
only discuss the driver routines for writing.

Register map The JTAG UART core contains two registers, as shown in Fig-
ure 11.7. For clarity, the offsets are defined as

»define JUART_DATA_REG_OFT 0 // data register addr offset
#define JUART_CTRL_REG_OFT 1 // control register addr offset

Both data and control registers are composed of multiple fields. A field can be
isolated and extracted by masking proper bits and shifting a proper amount, as
discussed in Section 10.7.2. For example, assume that creg is the data retrieved
from the control register. We can extract the WSPACE field, which occupies bits 16
to 31, as follows:

wspace = (creg & OxffffOOOO) >> 16;

www.it-ebooks.info

http://www.it-ebooks.info/

DEVICE DRIVER ROUTINES 2 8 5

As for the symbolic register offset, symbolic constants can be used for the masks
and bit offsets. For example, we can define the mask and bit offset as

»def ine JUART_WSPA_MSK OxffffOOOO / / mask
»def ine JUART_WSPA_BIT_OFT 16 / / bit offset

and the previous statement becomes

wspace = (creg ft JUART_WSPA_MSK) » JUART_WSPA_BIT_OFT;

This method is preferred if these fields are used in multiple places. Since our drivers
are relatively simple, we do not use symbolic constants for masks or bit offsets in
this book.

Basic I/O access For this particular flashing-LED application, we need to write a
string to the transmitting FIFO buffer of the JTAG UART module. This operation
requires to check the available buffer space and write data to the FIFO buffer. We
define two macros for these two activities:

/* check # slots available in FIFO buffer */
»def ine j t a g u a r t _ r d _ w s p a c e (b a s e) \

((I0RD(base , JUART_CTRL_REG_OFT) ft OxffffOOOO) » 16)
/* write an 8—bit char * /
»def ine j t a g u a r t _ w r _ c h (b a s e , d a t a) \

I0WR(base, JUART_DATA_REG_OFT, da ta ft OxOOOOOOff)

Driver routine The driver routine transmits a string through the JTAG UART
module and is shown in Listing 11.5. The argument msg points to the head of a
string. Within the loop, we check whether a space is available in FIFO and write a
character accordingly. The loop continues until the end of string (i.e., 0) is reached.

Listing 11.5
void jtaguart_ur_str(alt_u32 jtag_base, char* msg)
{
alt_u32 data32;

while OmsgM
data32 = (a l t_u32) *msg;
i f (j taguar t_rd_wspace (j tag .base) !=0) {

j taguart_wr_ch(jtag.base , data32);
msg++;

} / / end if
} / / end while

}

This routine uses a simple "busy-waiting" strategy; i.e., it continues looping until
a buffer space is available. The routine may halt the program execution if the size
of the string exceeds the capacity of the FIFO buffer. Since the message is short
and sparse in the flashing-LED system, the strategy does not lead to any serious
problem.

11.7.3 Timer

The Altera timer core is very flexible and can be configured to perform a variety of
functions. To count the flashing interval in this system, we use the core as follows:

/ / buffer space available
// send a char

www.it-ebooks.info

http://www.it-ebooks.info/

286 PREDESIGNED NIOS II I/O PERIPHERALS

• During initialization, set the timer to count 1 ms continuously.
• During normal operation, keep track of the number of 1-ms ticks and toggle

the LEDs as needed.
We implement the driver routines to perform this operation.

Register map The 32-bit timer core contains up to six 16-bit registers, as shown in
Figure 11.9. Only the first four registers are used in the routines and their offsets
are defined as

» d e f i n e TIMER_STAT_REG_OFT 0 / / status register addr offset
» d e f i n e TIMER_CTRL_REG_OFT 1 / / control reg addr offset
» d e f i n e TIMER_PRDL_REG_OFT 2 / / period low reg addr offset
» d e f i n e TIMER_PRDH_REG_OFT 3 / / period high reg addr offset

Basic I/O access The to (timeout) field of the status register is set to 1 when the
counter reaches 0 and it remains 1 until the processor writes 0 to this field. This
field can be treated as a "tick" that is asserted periodically. We define two macros
to check and clear the to field:

» d e f i n e t i m e r _ r e a d _ t i c k (b a s e) \
(I 0 R D (b a s e , TIMER_STAT_REG_OFT) & 0x01)

» d e f i n e t i m e r _ c l e a r _ t i c k (b a s e) \
I0WR(base, TIMER_STAT_REG_OFT, 0)

Driver routine The driver routine sets up the countdown period and activates the
counting. The code is shown in Listing 11.6. The 32-bit argument prd indicates
the timeout period in terms of the number of clock cycles. It is split into two
16-bit data and written to the two period registers. The last statement sets the
counter in "continuous" mode, starts the counter operation, and enables interrupt
by writing l's to the cont, start, and ¡to fields of the control register. The interrupt
feature is ignored in this chapter but used in Chapter 12.

Listing 11.6
void t imer_wr_prd(a l t_u32 t i m e r . b a s e , a l t_u32 p rd){

a l t _ u l 6 h igh , low;

/ * unpack 32—bit timeout period into two 16—bit half words */
high - (a l t _ u i 6) (prd>>16);
low » (a l t _ u l 6) (prd k OxOOOOffff);
/ * write timeout period */
IOWR(timer_base, TIMER_PRDH_REG_OFT, h i g h) ;
IOWR(timer_base, TIMER_PRDL_REG_OFT, low);
/ * configure timer to start , continuous mode, enabling interrupt */
IOWR(timer_base, TIMER_CTRL_REG_OFT, 0x0007);

}

11.8 TASK ROUTINES

After completing the driver routines, we can drive the five task functions discussed
in Listing 11.2. Note that a global variable with the data type of cmd_type is used
among the routines to pass the current command. The suffix _vl is used to indicate
the version of these functions.

www.it-ebooks.info

http://www.it-ebooks.info/

TASK ROUTINES 287

11.8.1 The f l a s h s y s _ i n i t _ v l () function

The system initialization function is shown in Listing 11.7. It clears the btn
module's edge capture register and sets up the timer for 1 ms. Note that the
Nios II system runs at 50 MHz and thus the 1-ms interval requires 50,000 clocks
(i.e.,1 ms = 50000 * 20 ns).

Listing 11.7

void flashsys_init_vl(alt u32 btn base, alt_u32 timer base)
{

b t n . c l e a r (b t n . b a s e) ; / / clear button edge—capture reg
timer_wr_prd(timer_base, 50000); / / set 1—ms timeout period

}

11.8.2 The sw_get_command_vl() function

The sw.get_command.vl () function is shown in Listing 11.8. It processes the push-
button switch and slide switch inputs and gets the command. We examine the btn
module's edge capture register and update the pause and prd fields of cmd if an
activity is detected. The register is cleared in the end to capture future activities.

Listing 11.8
void sw_get_command_vl(alt u32 btn base, alt_u32 sw.base, cmd.type *cmd)
{
alt_u8 btn;

btn = (a l t_u8) b tn .read(btn .base) k Oxf; / / read 4 pushbuttons
i f (btn!»0){ / / a button pressed

i f (btn k 0x01) / / button 0 pressed
cmd->pause » cmd->pause * 1; / / toggle pause bit

if (btn k 0x02) / / button 1 pressed
cmd->prd = p io . read(sw.base) k 0x03ff ; / / load new interval

b t n . c l e a r (b t n . b a s e) ; / / clear edge—capture reg

11.8.3 The j t a g u a r t _ d i s p _ m s g _ v l () function

The jtaguart_disp_msg_vl() function is shown in Listing 11.9. When a new in-
terval is detected, it sends a message of " In t e rva l : dddd ms" to the console, where
dddd is the decimal value of interval.

A static variable, current , is used to save the current interval. It is compared
with the prd field of the new command to determine whether the interval is changed.

The message is stored in a string variable, msg. The size of the array is implicitly
defined by the initial value, " I n t e r v a l : 0000 ms\n". The four elements occupied
by 0000 are modified according to the value of a new interval. The corresponding
digits are obtained by simple division and modulo operations and then converted
to the proper ASCII code by adding the ASCII value of character ' 0 ' .

www.it-ebooks.info

http://www.it-ebooks.info/

288 PREDESIGNED NIOS II I/O PERIPHERALS

Listing 11.9
void j taguart_disp_msg_vi(al t_u32 j tag_base , cmd.type cmd)
{

s t a t i c int current-O; / / current interval
char msg[] - " I n t e r v a l : 0000 ms\n";

i f (cmd.prd¡-currentH / / new interval detected
msg [13] - cmd. prd'/. 10 + 'Ο'; / / ascii code for 0 digit
msg[12] - (cmd.prd/10)%10 + 'Ο'; / / ascii code for 10 digit
msg [11] - (cmd.prd/100)*/.10 + 'Ο'; / / ascii code for 100 digit
msg [10] » cmd.prd/1000 + 'Ο'; / / ascii code for 1000 digit
j t a g u a r t _ w r _ s t r (j t a g . b a s e , msg); / / send string to console
current » cmd.prd; / / update current interval

The process of constructing the message string is quite tedious. If the stdio
library is available, the integer-to-string conversion can be done by calling the
fprintf () function. This issue is discussed in Chapter 12.

11.8.4 The sseg_disp_msg_vl() function

The sseg_disp_msg_vl () function shows the current command on the four-digit
seven-segment LED display. The most significant digit indicates whether the flash-
ing is paused (a P pattern or blank) and the other three digits show the value of
the flashing interval. The three-digit display can accommodate up to 999 and stays
at the maximum if the value exceeds 999. The function is shown in Listing 11.10.
The LED patterns are stored in a four-element array. Three digits are obtained
by division and modulo operations and their corresponding patterns are obtained
by calling the sseg_conv_hex() function. Since the table only defines patterns for
a hexadecimal number, the 'P' and blank patterns of the leftmost seven-segment
display are specified explicitly in code.

Listing 11.10

void sseg_disp_msg_vl(alt_u32 s s e g . b a s e , cmd.type cmd)
{

int pd;
alt_u8 hex, msg [4] ;

if (cmd.prd > 999) / / 999 is max # to be displayed
pd - 999;

e l s e
pd - cmd . prd ;

hex - pd'/,10; / / 0 digit
msg [3] - sseg_conv_hex(hex);
hex - (p d / i o m o ; / / 10 digit
msg [2] - sseg_conv_hex(hex);
hex - pd/100; / / 100 digit
msg[l] - sseg_conv_hex(hex);
/* specify pattern for the most significant digit */
i f (cmd.pause)

msg [0] « 0x0c; / / P pattern
e l s e

msg [0] = Oxf f ; / / Blank
sseg_disp_ptn(sseg_base , msg); / / display the whole pattern

}

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE CONSTRUCTION AND TESTING 2 8 9

11.8.5 The l e d _ f l a s h _ v l () function

The led-f lash_vl() function toggles the two discrete LEDs according to the spec-
ified interval and the code is shown in Listing 11.11. If the pause field is not
asserted, the routine toggles the LED pattern and enters the while loop. The loop
body checks the 1-ms tick continuously and increments the count, n t ick , when the
tick is asserted. The loop exits when n t i ck reaches the designated value.

Listing 11.11

void led_flash.vi(alt_u32 led.base, alt_u32 timer_base, cmd.type cmd)
{

static alt_u8 led.pattern = 0x01;
int ntick'O;

if (cmd.pause) / / no toggle if pause asserted
return;

led.pattern "- 0x03; / / toggle 2 LSBs of LEDs
pio.write(led.base , led.pattern); / / write LEDs
while (ntick < cmd.prdH

if (timer.read.tick(timer.base)«»1){
timer.clear.tick(timer.base) ;
ntick++;

} / / end if
} / / end while

}

The new timing loop uses the hardware timer and is much more accurate than
the dummy-loop scheme used in Listing 10.8. Since the timer runs continuously,
the first tick counted in the loop includes the time spent on the three functions,
sw^et_conimand_vl(), jtaguart_disp_msg_vlO, and sseg_dispjnsg_vl 0 , of the
main loop. The execution time of the three functions is likely smaller than the
flashing interval and thus has no impact on the timing.

Note that the timing loop of the function uses a "busy-waiting" strategy. The
pushbutton switch can only be examined after each flashing interval and some
activities may be missed if the interval is extremely long.

11.9 SOFTWARE CONSTRUCTION AND TESTING

We can follow the tutorial in Section 10.3 to build and run the software in the
enhanced Nios II system. The main steps are:

• Create a BSP library using the n ios . l ed2 . sopcinf o file generated by SOPC
Builder. We name the library nios. led2.bsp.

• Create an application directory nios_led2.adhoc (the suffix .adhoc is for the
ad hoc device drivers) and add the C files to this directory.

• Program the FPGA device on the DEI board using the nios_led2_top. sof
file obtained from synthesis.

• Build and run the software image in the Nios II system.
After the successful implementation, the two LEDs system should flash at the
default 100-ms rate. We can use switches to change its rate or pause its operation
and verify the operation of the physical system.

With the default BSP setting, the code size of the software image file is about
18 KB, which can be easily accommodated by the 512-KB external SRAM chip.

www.it-ebooks.info

http://www.it-ebooks.info/

2 9 0 PREDESIGNED NIOS II I/O PERIPHERALS

11.10 BIBLIOGRAPHIC NOTES

Developing a robust and versatile driver is quite involved. Programming Embedded
Systems in C and C + + by M. Barr introduces the basic concept and illustrates
the construction of simple device drivers. Altera's Embedded PeripheraL· IP User
Guide lists the available IP cores and provides detailed information about the PIO,
timer, and JTAG UART cores.

11.11 SUGGESTED EXPERIMENTS

11.11.1 "Uptime" feature in flashing-LED system

"Uptime" time keeps track of how long the flashing-LED system is running. It is
reset to 0 when the system is initialized and then counts continuously. This feature
operates as follows:

1. The system sends a "Flashing-LED system has run for MM minutes" mes-
sage to the console every minute, where MM is uptime in minutes.

2. The uptime is shown on four seven-segment LED displays in "MMSS" format,
where "MM" is minutes and "SS" is seconds.

3. Pushbutton switch 2 is used toggle between the uptime and flashing interval
on the seven-segment LED displays.

Develop software without using C library or HAL API functions and verify its
operation.

11.11.2 Counting with different tinier mode

The "continuous" mode of the timer core is used in the flashing-LED system's
software development. The same task can also be achieved by using the "count-
once" mode. Modify the driver and task functions and verify the operation.

11.11.3 JTAG UART input

For the enhanced flashing circuit, we want to use the host to obtain the flashing
interval. This feature operates as follows:

1. When pushbutton switch 2 is pressed, the host console displays a "New in-
terval: " message.

2. The user should enter three digits.
3. The program should check the correctness of the input, convert the three

characters to an integer, and set the interval accordingly.
Develop software without using C library or HAL API functions and verify its
operation.

11.11.4 Enhanced collision LED circuit

A collision LED circuit is discussed in Section 10.10.2, in which two LEDs move
independently and change direction when reaching the rightmost or leftmost posi-
tion or "colliding" in the middle. An enhanced version can be constructed with the
new I/O modules. It operates as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 291

1. The 16 discrete LEDs are used as the output, two lit at a time.
2. The lit LEDs move sequentially in either direction. They changes direction

when reaching the rightmost or leftmost position or "colliding" in the middle.
3. Each LED can travel at 99 different speeds.
4. The speed of the first lit LED is read from the slide switches when pushbutton

switch 1 is pressed.
5. The speed of the second lit LED is read from the slide switches when push-

button switch 2 is pressed.
6. The LED movements pause when pushbutton switch 0 is pressed and resume

when it is released.
7. The speed of the first lit LED is shown on the right two seven-segment LED

displays and the speed of the second lit LED is shown on the left two seven-
segment LED displays.

8. The host console displays the new speed when it is first set.
Develop software without using C library or HAL API functions and verify its
operation.

11.11.5 Rotating LED banner circuit

A rotating LED banner circuit is described in Section 5.9.5. Instead of using custom
hardware, we can use an embedded system to perform this task. Develop software
without using C library or HAL API functions and verify its operation.

11.11.6 Enhanced stopwatch

A stopwatch circuit is described in Section 5.9.6. Instead of using custom hardware,
we can use an embedded system to perform this task. Develop software without
using C library or HAL API functions and verify its operation.

11.11.7 Parking lot occupancy counter

A parking lot occupancy counter circuit is described in Section 6.5.3. Instead of
using custom hardware, we can use an embedded system to perform this task.
Develop software without using C library or HAL API functions and verify its
operation.

11.11.8 Reaction timer with pushbutton switch control

A reaction timer circuit is described in Section 7.5.6. Instead of using custom
hardware, we can use an embedded system to perform this task. Develop software
without using C library or HAL API functions and verify its operation.

11.11.9 Reaction tinier with keyboard control

For the reaction timer in Section 11.11.8, we want to use the host's keyboard (via
the JTAG UART module) to replace the pushbutton switches to control the system
operation. The key input is used as follows:

• C key: used as the c l ea r signal.

www.it-ebooks.info

http://www.it-ebooks.info/

2 9 2 PREDESIGNED NIOS II I/O PERIPHERALS

• S key: used as the s t a r t signal.
• P key: used as the stop signal.
• All other key activities will be ignored.

Develop software without using C library or HAL API functions and verify its
operation.

11.11.10 Communication with serial port

A DEI board has a serial port and the Altera IP library provides a UART core.
We can replace the JTAG UART with a normal UART and use the serial port to
communicate with the host computer. Develop this system as follows:

1. Create a new Nios II system that replaces the JTAG UART module with a
normal UART module.

2. Develop the top-level HDL code and synthesize the circuit.
3. Study the UART core manual and develop driver functions.
4. Develop application software and verify the system operation.

Note that this experiment requires a computer equipped with a serial port and
a terminal program that displays the serial port data stream (such as Window's
HyperTerminal) and a regular serial cable.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 2 9 3

11.12 COMPLETE PROGRAM LISTING

Listing 11.12 chu_avalon_gpio.h

*
* Module: General—purpose I/O driver header
* File: chu.avalon.gpio.h
* Purpose: Routines to access switches and LEDs
*

/ * file inclusion */
«inc lude " a l t . t y p e s . h "
« inc lude " i o . h "

* constant definitions
»»»*****************»,*»,*»»»**»**»,**„*»*****»»*********,»*»**,«»/
«def ine PI0_DATA_REG_0FT 0 / / data register address offset
«def ine PI0.DIRT_REG.0FT 1 / / direction register address offset
«def ine PI0.INTM.REG.0FT 2 / / interrupt mask register address offset
«def ine PI0.EDGE.REG.0FT 3 / / edge capture register address offset

/,,».,···.,······,·,·*··,·.··,······»·„^^
* macro definitions
· · · · · · * * * · · , * · · « . * · · , · . . · · * . · · · · · · · * · · · · . · , * · · · · · · · , · · · . · . * · · * . · · /
/* read/write PIO data register */
«define p i o . r e a d (b a s e) I0RD(base, PI0.DATA_REG.0FT)
«define p i o . w r i t e (b a s e , da t a) I0WR(base, PI0_DATA.REG.0FT, d a t a)
/* read/clear pushbutton edge capture register */
/* must write Oxf if the write-individual bit option is used in SOPC */
«define b t n . r e a d (b a s e) I0RD(base, PI0_EDGE.REG.0FT)
«def ine b t n . c l e a r (b a s e) I0WR(base, PI0.EDGE_REG.0FT, Oxf)
«def ine b t n . i s . p r e s s e d (b a s e) (I0RD(base, PI0_EDGE.REG.0FT)!-O)

/···**···*··*·····*···»··*·„···„··«*··*,*«····«···*··**,·····.**······
* function prototypes
».*****,»****»».*».*»,...».**..****....*,*.»*»»*».***.»»**.**.»»*/
alt_u8 sseg_conv_hex(int hex);
void sseg_disp_ptn(alt_u32 base, alt_u8 »ptn);

www.it-ebooks.info

http://www.it-ebooks.info/

294 PREDESIGNED NIOS II I/O PERIPHERALS

Listing 11.13 chu.avalon.gpio.c

*
* Module: General-purpose I/O driver function prototype
* File: chu-avalon-gpio.c
* Purpose: Routines to access switches and LEDs
*

/ * file inclusion */
«include "chu_avalon_gpio.h"

A,»»··»,,,·,,**···,»»,··,·»»··,,,, · ·»··»·*·.··, , · · , , , , · ·»»»»,,,»,··»,·,
* function: sseg.conv-hex ()
* purpose: convert a hex digit to 7—segment pattern
* argument:
* hex: hex digit (0 - 15)
* return: 7-segment LED display pattern
* note:
* - blank pattern returned if hex > 15

alt_u8 sseg_conv_hex(int hex)
{

/ * active-low hex digit 7-seg patterns (0-9,a-f); MSB ignored */
static const alt_u8 SSEG.HEX.TABLE[16] » {

0x40, 0x79, 0x24, 0x30, 0x19, 0x92, 0x02, 0x78, 0x00, 0x10, / / 0-9
0x88, 0x03, 0x46, 0x21, 0x06, OxOE}; / / a-f

alt_u8 ptn;

if (hex < 16)
ptn - SSEG_HEX_TABLE[hex];

else
ptn - Oxff;

return (ptn);
}

* function: sseg.disp.ptn()
* purpose: display pattern in four 7-segment LED display
* argument:
* base: base address of 7—segment display
* ptn: pointer to a 4~element pattern
* return:
* note:

void sseg_disp_ptn(alt_u32 base, alt_u8 *ptn){
alt_u32 sseg.data;
int i;

/* form a 32- bit data */
for (i»0; i<4; i++){
sseg_data = (sseg.data << 8) I »ptn;
ptn++;

}
pio.write(base, sseg.data);

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 2 9 5

Listing 11.14 chu_uart_drv.h
/**,»*******»****,*,*,*»**************,********„*******„*******,****»*
*
* Module: Demo JTAG UART driver header
* File: chu.uart.drv.h
*
*********»******»**»*****************»**************,*,*********„****,/
/* file inclusion */
«include "alt.types.h"
»include "io.h"

y**
* constant definitions
*************»*»******»»***»**»/
«define JUART.DATA.REG.OFT 0 / / data register address offset
»define JUART_CTRL_REG_OFT 1 / / control register addr offset

/* check # slots available in FIFO buffer */
»define jtaguart_rd_wspace(base) \

((I0RD(base, JUART_CTRL_REG_OFT) k OxffffOOOO) >> 16)
/* write an 8-bit char * /
»define j taguar t .wr . ch (base , data) \

I0WR(base, JUART.DATA.REG.OFT, data k OxOOOOOOff)

A»** * * * * * * * * * * * ,»» , *»* * * , * , * * * * , *
* function prototypes
,*»****************»*******„*»*******,**********,*****************/
void jtaguart.wr.str(alt_u32 jtag.base, char* msg);

www.it-ebooks.info

http://www.it-ebooks.info/

296 PREDESIGNED NIOS II I/O PERIPHERALS

Listing 11.15 chu-uart-drv.c

*
* Module: Demo JTAG UART driver functions
* File : chu.uart.drv . c
* Purpose: Function to transmit a string
*

/* file inclusion */
»include "chu_uart_drv.h"

/*»,»***„***»*»»********»»**»»***»»»***»***,»**********»**********«»»»,
* function: jtaguart-wr.str ()
* purpose: write (transmit) a string to JTAG UART
* argument :
* jtag.base: base address of JTAG UART
* msg: pointer to a string message
* return:
* note:

void j taguart_wr_str(alt_u32 j t ag .base , char* msg)
{

alt_u32 data32;

while(*msg){
data32 » (alt_u32) *msg;
i f (j taguar t_rd_vspace(j tag.base)!-0){ / / buffer space available

j taguart_wr_ch(jtag.base, data32); / / send a char
msg++;

} / / end if
} // end while

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 2 9 7

L i s t i n g 1 1 . 1 6 chu-timer.drv.h

y*»»»******»**»***»****»»**«**»»****»»»*****,*******»»*,»*»»*»*»*»*»***,
*
* Module: Demo timer driver header
* File: chu.timer.drv.h
*

/ * file inclusion */
» i n c l u d e " a l t . t y p e s . h "
» i n c l u d e " i o . h "

A»»»»»»**»*******»»»******»*,**»»»»,*»*»»»*»,,»»,»»,***»*,********»**»*
* constant definitions
»*»»*********»**»***************«»»*****,****»»»***„»***,*******»*/
» d e f i n e TIMER.STAT.REG.OFT 0 / / status register address offset
» d e f i n e TIHER_CTRL_REG_OFT 1 / / control register address offset
» d e f i n e TIMER.PRDL.REG.OFT 2 / / period reg (lower 16 bits) addr offset
» d e f i n e TIMER_PRDH_REG_OFT 3 / / period reg (upper 16 bits) addr offset

A**
* macro definitions
,„**»»***»*,**»*****************»*»****,»***»**»*****»********»»/
/ * check "to" field for ms tick */
» d e f i n e t i m e r . r e a d . t i c k (b a s e) (I 0 R D (b a s e , TIMER.STAT.REG.OFT) k 0x01)
/ * clear "to" field */
»define timer_clear_tick(base) I0WR(base, TIMER.STAT.REG.OFT, 0)

A*********************»**,*»***»**»*********,»******»»************»»»**
* function prototypes
****»**»»»****»****»*****************,»**»,****»,***»,»*»**********»*»*/
void timer_wr_prd(alt_u32 timer.base, alt_u32 prd);

www.it-ebooks.info

http://www.it-ebooks.info/

298 PREDESIGNED NIOS II I/O PERIPHERALS

Listing 11.17 chu-timer.drv.c

*
* Module: Demo timer driver functions
* File: chu.timer.drv . c
* Purpose: Functions to set up timer
*

/ * file inclusion */
«inc lude " c h u . t i m e r . d r v . h "

/***»»»*****»**,***»»*************,»,*»*»»»»»»»»»»****»**»**********»***
* function: timer.wr.prd ()
* purpose: write timer timeout period and configure/start timer
* argument:
* timer-base: base address of time—stamp timer
* prd: timeout period value
* return:
* note:
*****»*****»*„**»***************,**»****,»„*,**,*»,»,*»*»**„*,»,*,»,/
void timer_ur_prd(alt_u32 timer.base, alt_u32 prd)
{
alt_ul6 high, low;

/ * unpack 32-bit timeout period into two 16-bit half words */
high = (a l t _ u l 6) (prd>>16);
low - (a l t _ u l 6) (prd & OxOOOOffff);
/ * write timeout period */
IOWR(timer_base, TIMER_PRDH_REG_OFT, h i g h) ;
IOUR(timer_base, TIMER.PRDL_REG.OFT, low);
/ * configure timer to start , continuous mode; enable interrupt */
IOWRCtimer.base, TIMER_CTRL.REG.OFT, 0x0007);

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 2 9 9

Listing 11.18 chu_mainJed2-adhoc.c

*
* Module: Advanced flashing—LED system using ad hoc driver
* File: chu.main.ledü-adhoc . c
* Purpose: Task routines and main program
*

/* file inclusion */
«include "system.h"
«include "chu_avalon_gpio.h"
«include "chu.uart.drv.h"
«include "chu.timer.drv.h"

A»**»»»*»****»,»,**,*»,»*»,»»**»*****»***»***»*»********»,**»»*»»*»»*»*
* data type definitions
, ,* , ,»*****»**»******,***»**»»**»»»******»*,»»»*»»»***»*,»»»,** »*»/
typedef s t r u c t flash_cmd{

i n t pause ;
i n t prd;

} cmd.type;

A**»*»»***»*,***»,,*»*******************»»**»**,**»***»»*»***»»*****»**
* function: flashsys.init.vl()
* purpose: system initialization
* argument:
* btn.base: base address of pushbutton PIO
* timer-base: base address of user timer
* return:
* note:
»******»*******»***»»******»»»**********»*****««*****»*****»*»*********/
void flashsys_init_vl(alt_u32 btn.base, alt_u32 timer.base)
{

b t n . c l e a r (b t n . b a s e) ; / / clear button edge—capture reg
t imer_wr_prd (t imer_base , 50000); / / set 1-ms timeout period

}

* function: sw-get-command.vl ()
* purpose: get command from pushbuttons and switches
* argument:
* btn.base: base address of pushbutton PIO
* sw.base: base address of switch PIO
* and: pointer to command
* return:
* updated cmd
* note:
„»,»*******************************»»»»»»*****»»»*»****»»**»******/
void su_get_command_vl(alt_u32 btn.base, alt_u32 sw.base, cmd.type *cmd)
{

alt_u8 btn;

btn - (a l t _ u 8) b t n . r e a d (b t n . b a s e) ft Oxf; / / read 4 pushbuttons
if (b t n ! - 0) { / / o button pressed

i f (btn k 0x01) / / button 0 pressed
cmd->pause » cmd->pause " 1; / / toggle pause bit

if (btn ft 0x02) / / button 1 pressed
cmd->prd = p io_ read (sw .base) ft 0x03ff; / / load new interval

b t n . c l e a r (b t n . b a s e) ; / / clear edge—capture reg
}

}

www.it-ebooks.info

http://www.it-ebooks.info/

3 0 0 PREDESIGNED NIOS II I/O PERIPHERALS

/***
* function: jtag.uart.disp.msg.vl ()
* purpose: display the interval when it is changed
* argument:
* jtag.base : base address of JTAG UART
* cmd: command
* return:
* note:
***/
void jtaguart_disp_msg vl(alt u32 jtag.base, cmd.type cmd)
{

s t a t i c int current-0; / / current interval
char msg [] - " I n t e r v a l : 0000 ms\n";

i f (cmd.prd¡»currentH / / new interval detected
msg [13] - cmd. prd'/.10 + 'Ο'; / / ascii code for 0 digit
msg [12] - (cmd.prd/10)*/.10 + 'Ο'; / / ascii code for 10 digit
msgf l l] » (cmd.prd/100)'/.i0 + Ό ' ; / / ascii code for 100 digit
msg[10] » cmd.prd/1000 + 'Ο'; / / ascii code for 1000 digit
j t a g u a r t . w r . s t r (j t a g . b a s e , msg); / / send string to console
cu r r en t - cmd.prd; / / update current interval

}
}

/***
* function: sseg.disp.msg.vl ()
* purpose: display current pause status and interval on 4—digit 7—seg LED
* argument:
* sseg.base: base address of seven—segment LED display PIO
* cmd: command
* return :
* note:
***/
void s s e g . d i s p . m s g . v l (a l t _ u 3 2 s s e g . b a s e , cmd.type cmd)
{

int pd;
alt_u8 hex, msg [4] ;

if (cmd.prd > 999) / / 999 is max # to be displayed
pd = 999;

e l s e
pd - cmd . prd ;

hex - pdJUO; / / 0 digit
msg [3] » sseg_conv_hex(hex);
hex = (pd/10)'/.10; / / 10 digit
msg [2] » s s eg . conv .hex (hex) ;
hex - pd/100; / / 100 digit
msg[l] - s s eg . conv .hex (hex) ;
/ * specify pattern for the most significant digit */
if (cmd.pause)

msg [0] - 0x0c; / / P pattern
e l s e

msg [0] » Oxf f ; / / Blank
sseg_disp_ptn(sseg_base , msg); / / display the whole pattern

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 3 0 1

A»*»***»»»*******»***,*** ,***************»***»*«»**»****,*****»********
* function: led.flash.v 1 ()
* purpose: toggle 2 LEDs according to the given interval
* argument:
* led.base: base address of discrete LED PIO
* timer.base: base address of user timer

* return:
* note:
* The delay is done by continuously checking 1 ms tick

void l e d _ f l a s h _ v l (a l t _ u 3 2 l e d . b a s e , alt_u32 t imer .base , cmd.type and)
{

s t a t i c alt_u8 l ed .pa t t ern - 0x01;
int ntick=0;

if (cmd.pause) / / no toggle if pause asserted
return;

l ed .pa t t ern "- 0x03; / / toggle 2 LSBs of LEDs
p i o . v r i t e (l e d . b a s e , l e d . p a t t e r n) ; / / write LEDs
while (nt ick < cmd.prdH

if (t i m e r _ r e a d _ t i c k (t i m e r _ b a s e) ~ l) {
t imer_c lear_t i ck(t imer_base) ;
ntick++;

} / / end if
} // end while

}

* function : main()
* purpose: advanced flashing-LED system using ad hoc driver
* note:
* * » » * * » n * * * * * t * * * * * t t t * * » * t » t * * * * * * * * t * * » t * * * * * * * * * * * * * * t t t t * * * * » * * * * · /

i n t main O {
cmd.type sw_cmd»{0,100}; / / initial value: not pause, 100 ms interval

f lashsys . in i t .v l (BTN.BASE, USR.TIMER.BASE);
w h i l e U M

sw.get.command.vl(BTN.BASE, SWITCH.BASE, tsH.cmd);
jtaguart.disp.msg.vl(JTAG.UART.BASE, sw.cmd);
sseg.disp.msg.vl(SSEG.BASE, sw.cmd);
led.flash.vKLEDG.BASE, USR.TIMER.BASE, sw.cmd);

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

PREDESIGNED NIOS II I/O DRIVERS AND
HAL API

Along with the set of commonly used I/O cores, Altera also provides predesigned
device drivers and software libraries to access the underlying hardware. These
drivers and libraries are integrated under the HAL (hardware abstraction layer)
framework. HAL presents as a coherent interface and shields low-level details from
application programs. In this chapter, we examine the basic concepts of HAL,
discuss the software development process within this framework, and rewrite the
flashing-LED program in Chapter 11 to illustrate its use.

12.1 OVERVIEW OF HAL

In Chapter 11, we demonstrate the derivation of simple ad hoc device drivers that
match the specific requirements of the enhanced flashing-LED system. These device
drivers need to be modified for each new application and will require a lot of time
and effort. For many commonly used I/O peripherals, a better alternative is to
develop a set of flexible and robust device drivers that can be shared by multiple
applications. Altera provides a framework, known as HAL, for this purpose.

The role of HAL is somewhat murky since it does not fit any traditional paradigms.
Altera literature vaguely refers to HAL as a lightweight run-time environment. To
explain its role, we first examine two better understood paradigms and then point
out the tasks performed by HAL.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 303
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

304 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

Application

Libraries
program

OS

| Í 1 I 1
T3

Processor and \iQ devices

(a)

Application program

Φ

> Έ
Ό

m
" O

*
■D

&
Ό

in
■f=
T J

Processor and I/O devices

Application program

Processor and I/O devices

(b)

Figure 12.1 Software hierarchy.

(c)

12.1.1 Desktop-like and barebone embedded systems

Let us consider a desktop-like embedded system and a barebone embedded system,
two paradigms representing the extremes of the spectrum. We focus on two aspects
of the systems: the software hierarchy (when the program is developed) and the
initialization process (when the program is executed).

Software hierarchy The simplified software hierarchy of a desktop-like system is
shown in Figure 12.1(a). It contains a full-fledged OS (operating system), such as
uClinux, that controls and coordinates the hardware through the device drivers.
The OS is the critical part of the software hierarchy. An application program can
only access the underlying hardware via the OS and the drivers must comply with
the requirements imposed by the OS.

A barebone system here means a simple microcontroller-based system. Because
of its simplicity, it does not utilize any layered software model and does not include
pre-implemented libraries. The application software controls the hardware directly
and is responsible to develop codes to access I/O peripherals. The software hier-
archy is shown in Figure 12.1(c). The simple flashing-LED code in Chapter 10 is
somewhat like this. To achieve modularity, ad hoc device drivers may be developed
as subprograms of the application program, as shown in Figure 12.1(b). Unlike
the drivers under the OS, these ad hoc device drivers lack coordination and run
independently. The flashing-LED code in Chapter 11 is somewhat like this.

Initialization process Before running a program, we must set up the hardware, such
as flushing the cache and configuring the system stack, and set up software, such as
starting device drivers and enabling interrupts. The initialization process is handled
differently in a desktop-like system and a barebone system.

In a desktop-like system, the OS is always running. It controls the hardware and
schedules and coordinates the application program execution. Starting an applica-
tion program corresponds to the OS "calling" the corresponding mainO program.
Before calling, the OS prepares the run-time environment, which includes allocating
necessary resources and initializing system services. The framework constitutes a
hosted environment for a C application program. This means that the application
program can assume that all libraries and I/O services are ready to use and no

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF HAL 305

Application program

C standard
library HAL API

Processor and I/O devices

Figure 12.2 HAL-based software hierarchy.

additional work is needed. In this environment, we can simply write a statement
like printf ("Hello") without knowing any low-level detail.

In a barebone system, the loader usually adds a simple start-up code to initialize
the processor. An application program is responsible for the other tasks and must
prepare the run-time environment by itself. We need to add codes to initialize each
I/O device, set up the interrupt service, and coordinate their operations. This is
known as a standing-alone environment for a C application program. To display
the Hello message on a console, the program must set up the corresponding I/O
device (e.g., an UART) and include an I/O routine to transmit a string.

12.1.2 HAL paradigm

The HAL paradigm lies between a desktop-like system and a barebone system. It
provides some features similar to those in a desktop-like system but is without the
OS layer.

Software hierarchy The layer model of a HAL-based software hierarchy is shown
in Figure 12.2. It consists of the following components:

• Device drivers: basic routines to interact with I/O devices.
• API (application programming interface): a set of functions to invoke HAL

services, such as timing facilities and interrupt handling, and a collection of
Unix-style system functions.

• C standard library: ANSI C library functions, such as printf (), fopenO,
etc.

HAL integrates the underlying device drivers to present a coherent interface and
provides a shell to shield the complexity of the underlying hardware. For some
common I/O functions, an application program can use generic API functions or
C library functions without explicitly interacting with the I/O devices.

The appearance of the HAL software hierarchy is somewhat like that in a desktop-
like system. However, the HAL interface does not impose rigid complex require-
ments as an OS does and using the HAL framework is not mandatory. An appli-
cation program can use functions from HAL API, call the routines from an I/O
device driver, or access the I/O registers directly. Similarly, an I/O device can be
incorporated into a Nios II system with a HAL-compliant device driver, with an

www.it-ebooks.info

http://www.it-ebooks.info/

3 0 6 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

ad hoc driver, or with no driver at all. HAL-compliant device drivers are discussed
in more detail in Section 12.1.4.

Initialization process Unlike an OS, no explicit "HAL process" is presented in mem-
ory when the system is running. HAL thus cannot prepare the environment dy-
namically and call the mainO program. However, HAL provides a framework to
automatically collect hardware information and construct the routines to perform
the initialization process. These routines are executed first and set up the run-time
environment for the application program. The detailed initialization process is dis-
cussed in Section 12.1.6. If all device drivers are compliant with the HAL interface,
an application program does not need to perform any explicit initialization task
and we can think the development is done in a hosted environment.

12.1.3 Device classes

Although the nature and complexities of I/O devices vary, some devices exhibit
certain common characteristics and can be described by a generic model. From the
HAL API's point of view, devices can be divided into two types:

• Generic devices.
• Non-generic devices.

A device is called a generic device if it can fit into a predefined HAL model and a
non-generic device otherwise.

Generic device HAL provides a model for the following classes of devices:
• Character-mode devices are peripherals that send and receive a character

stream serially, such as the JTAG UART core.
• Timer devices are peripherals that count clock ticks and can generate periodic

interrupt requests, such as the timer core.
• Flash memory devices are nonvolatile memory that uses a special protocol to

store data.
• DMA devices are peripherals that transfer bulk data between a source and a

destination, such as the DMA controller core.
• Ethernet devices are peripherals that provide access to an Ethernet connection

for a networking stack.
• File subsystems provide a mechanism for accessing files stored within physical

devices, such as the Altera host-based file system and the Altera zip read-only
file system.

For each class, a set of high-level functions is defined in HAL API. An applica-
tion program can use these functions consistently without worrying the underly-
ing implementation of the device hardware. For example, the p r i n t f () function
is available for a character-mode device. We can use it to send a message to a
character-mode device, regardless of whether the device is a JTAG UART, a serial
port, or an LCD display.

HAL imposes specific requirements for each class and a device driver must satisfy
these requirements to be integrated into the HAL framework.

Non-generic device A non-generic device has hardware-specific features with usage
requirements that do not map well to any class of HAL's generic device models. Its
driver usually supplies special routines to perform the desired functionalities. We
need to refer to the device's documentation for these,features.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF HAL 3 0 7

12.1.4 HAL-compliant device drivers

The term "device driver" is used loosely in this book for any software routines that
access I /O devices. The drivers used in Chapter 11 have a limited scope and just
perform certain specific tasks. They run independently and we call them ad hoc
drivers.

In the HAL environment, a device driver is part of a larger software framework
and must comply with requirements and guidelines imposed by this framework.
With a compliant device driver, an I/O device becomes accessible to application
programs through the C standard library and HAL API functions. In this more
rigorous setting, a device driver is defined as a collection of software routines used
to interact with a specific I /O peripheral. A HAL-compliant device driver consists
of several components:

1. A set of macros to access I /O registers.
2. A set of variables to keep track of the current state of the instantiated device.
3. A routine to initialize the device.
4. A set of routines to control and communicate with the device.
5. A routine to provide interrupt service.
6. A script to direct the BSP integration.

Only the first component is mandatory and the inclusion of the others depends on
the nature of an I/O device.

12.1.5 The .regs.h file

The structure and development of a HAL-compliant driver are quite involved and
beyond the scope of the book. We only examine the mechanism to access a device's
I/O registers. To avoid accidental memory access, HAL defines unique read and
write macros for each I/O device and for each register. Their basic format are

I0RD_dev_reg(base.address)
I0WR_dev_reg(base.address, data)

where dev and reg are the names of an I/O device and a register.
These macros are stored in a header file labeled dev.regs.h. For example, the

altera_avalon_pio.regs.h file contains the macros for the PIO core. Recall that there
are six addressable registers, as discussed in Section 11.2. Part of this file is shown
in Listing 12.1.

Listing 12.1
»include <io.h>

«define I0RD_ALTERA_AVAL0N_PI0_DATA(base) I0RD(base, 0)
»define I0WR_ALTERA_AVAL0N_PI0_DATA(base, data) I0WR(base,0,data)

«define I0RD_ALTERA_AVAL0N_PI0_DIRECTI0N(base) IORD(base, l)
»define I0WR_ALTERA_AVAL0N_PI0_DIRECTI0N(base, data) I0WR(base,1,data)

»define I0RD_ALTERA_AVAL0N_PI0_IRQ_MASK(base) I0RD(base, 2)
»define IOWR_ALTERA_AVALON_PIO_IRQ_MASK(base, data) IOWR(base,2,data)

»define I0RD_ALTERA_AVAL0N_PI0_EDGE_CAP(base) I0RD(base, 3)
»define I0WR_ALTERA_AVAL0M_PI0_EDGE_CAP(base, data) I0UR(base,3,data)

www.it-ebooks.info

http://www.it-ebooks.info/

3 0 8 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

«define I0RD_ALTERA_AVAL0N_PI0_SET_BITS(base) I0RD(base, 4)
«define I0WR_ALTERA_AVAL0N.PI0_SET_BITS(base, data) I0WR(base, 4, data)

«define I0RD_ALTERA_AVAL0N_PI0_CLEAR_BITS(base) I0RD(base, 5)
«define I0WR.ALTERA_AVALON_PIO_CLEAR.BITS(base,data) I0WR(base, 5, data)

For a register with multiple fields, HAL defines constants for bit-field masks and
offsets. For example, in altera_avalon.jtag_uart.regs.h, the code segment for data
register of the JTAG UART core is
«define IOWR.ALTERA_AVALON_JTAG_UART.DATA(base, data) I0WR(base,0,data)
«define I0RD_ALTERA_AVAL0N_JTAG_UART.DATA(base) IORD(base.O)

«define ALTERA_AVALON_JTAG_UART_DATA_DATA_MSK (OxOOOOOOFF)
«define ALTERA_AVAL0N_JTAG_UART_DATA.DATA.0FST (0)
«define ALTERA_AVALON_JTAG_UART_DATA_RVALID_MSK (0x00008000)
«define ALTERA_AVAL0N_JTAG_UART_DATA_RVALID_0FST (15)
«define ALTERA_AVALON_JTAG_UART_DATA_RAVAIL_MSK (OxFFFFOOOO)
«define ALTERA.AVAL0N_JTAG_UART_DATA_RAVAIL.0FST (16)

We can extract a field by using these constants to perform mask and shift opera-
tions, as discussed in Section 10.7.2. For example, we can extract the rvalid by
«include "altera_avalon_jtag_uart_regs.h"

d.reg - I0RD_ALTERA_AVAL0N.JTAG.UART_DATA(UART_BASE);
rvalid - (d.reg _ ALTERA_AVALON_JTAG_UART_DATA_RVALID_MSK) \

> ALTERA.AVALON.JTAG_UART_DATA_RVALID_OFST;

Note that we must include the proper header file to use the macros and constants.

12.1.6 HAL-based initialization sequence

One of the key functionalities of the HAL framework is to set up the run-time
environment for main(). The initialization process first executes the crtO.S file. It
contains simple assembly codes and its main task is to set the processor to a known
state. The basic steps are:

• Flush the instruction and data cache.
• Configure the stack pointer register.
• Configure the global pointer register.
• Fill the BSS regions with zeros.
• Copy relevant data sections to the designated memory module.
• Call a l t j n a i n O .

The alt_mai]_0 function continues to set up the run-time environment. The basic
steps included in the default implementation are:

• Initialize the interrupt controller and enable interrupts.
• Call the a l t_sys_ in i t () function, which initializes all device drivers of the

instantiated I/O modules.
• Redirect the C standard I/O channels (s tdin, s tdout , and s tde r r) to use

the appropriate devices.
• Process C + + constructors.
• Call main O.
• Call e x i t () .

We discuss the hosted and stand-alone environments in Section 12.1.1. The
alt_main() function behaves like a host program that prepares the run-time en-

www.it-ebooks.info

http://www.it-ebooks.info/

BSP 309

vironment and calls main(). The main0 function does not need to do general
I/O initialization and thus runs in a hosted environment. From a different point of
view, a l t .main 0 can be considered as the main program running in the stand-alone
environment.

12.2 BSP

12.2.1 Overview

An embedded system is built around a specific application and its I/O peripherals
are tailored to support the application. When a program is developed, we must
examine the I/O configuration and then include the proper drivers accordingly. One
way to accomplish this task is to create a "start-up" software library according
to the I/O configuration. It is known as a BSP (board support package) since a
traditional embedded system is usually realized by a custom printed circuit board.

In the HAL environment, a BSP provides a run-time software library customized
for an individual Nios II system. During the software construction, the files from the
user application and the supporting files from the BSP library are linked together
to form the final image. When a Nios II system is created, SOPC Builder records
the system configuration in the .sopcinfo file. In the Altera EDS framework, we can
specify the name of this file and invoke the script to generate the BSP library, as
illustrated in Section 10.3.1.

12.2.2 BSP file structure

It is helpful to understand the basic BSP library structure. In Chapter 11, a BSP,
named nios_led2.bsp, is generated for the enhanced flashing-LED system. The
top-level structure of the BSP library is shown in Figure 12.3(a). It consists of
three directories and a collection of system-level files. The three directories are:

• drivers: contains the source codes and headers for the instantiated I/O cores.
• HAL: contains the source codes and headers for the HAL API functions.
• obj: contains the compiled object files.

Two of the system-level files are of our interest. The system.h file is a header
file that maintains a relevant Nios II system in terms of constant definitions, as ex-
plained in Section 10.6.1. The alt_sys_init.c file contains the customized initialization
code, as discussed in Section 12.1.6.

The expanded structure of the drivers directory and a portion of the HAL direc-
tory are shown in Figure 12.3(b). Note that the driver directory contains the header
files and source codes for the instantiated PIO, JTAG UART, timer, and system
id cores, and the HAL directory contains the a It-types, h and io.h files discussed in
Section 10.6.

12.2.3 BSP configuration

The BSP library involves the device drivers and system initialization. Some aspects
of the library can be adjusted and fine-tuned to fit the requirement of an individual
system. The BSP Editor utility program can be used to configure the BSP library.

www.it-ebooks.info

http://www.it-ebooks.info/

3 1 0 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

fe. Navigator ΐΐ

i iéé led2_adhoc

£i \¿ Ied2_bsp

It i=> driven

i t Λ HAL

. οιη

, * Makefile

•a libhal_bsp.a

. settings.bsp

El alt_5ys_initc

.cp reject

H memory.gdb

E linker, h

El system, ri

•é summary.html

LÍÍ memjniLmk

i ¿- pubticmk

Ü .project

U linkerj(

ιϊι \ώ Ied2_hai

ill leí Ied2jsr

* [B % | V C: Navigator Ά £ | B Ί ϊ1 if ' = B)

Gil lc? led2_adhoc

a 0 Ied2_bsp

¿1 L=» drivers

; 0 6* inc

b

L

E altera.avalonjtag_uart_fd.h

El altera.avalonjlag_uart_fegs.h

El a1tera_avalonjtag_uart.h

El altera_avalon_pio_regsri

El altera_avalon_sysidjegs.h

iii altera_avalon_sysid.h

9 altera_avalori_timer_regsh

¡ä altera_avalon_timer.h

B tes rc

El alterajvalonjtag.uartjdc

El altera_avalonjtag_uartjnitc

Ltí altera_avalon_jtag_uart_ioctl,c

El altera _ava Ion Jtag_uart_read.c

El aitera_ava lonjtag_uart.wri tec

El altera_avalon_sysid.c

1st altera.avalon_timer,scc

Ei alter3_avalon_timer_tS-C

Eä altera_avalon_timer_vars.c

K » HAL

ß t * inc

!
É

L

iM¿» OS

tl is· priv

üi¿*sys

El alt.types.h

El altera_mos2_irq h

E) ui.li

El nios2.h

Silc>SfC

] 9» obj

L* Makefile

,.ιι tibhai.bsp.a T

(a) Top-level structure (b) Expanded structure

Figure 12.3 BSP library structure.

www.it-ebooks.info

http://www.it-ebooks.info/

BSP 311

Fie tai loot; Help

"*»ι bsftiMre P K U g a [DTIMTI ¡ L n a lüTpt I Endite He Gerea lmj j^eetaspürea i i ry

. \ . V**_l*d2,*o(ionfo

CPU name: cpu

Operating systtm: Alteia HAL

BSP target atectery: Λ

3 5ettngs

ö
■ B h i i

eriible_gpfnf
enabre_reduced_device_dnvers
enable_sin_apmiiK
enable_5ma l_c_bta raí y
■MUT
Sfdh
stdout
iy5_dt_tmer
tiras&rrrp_tirner

j M M
β ITBrX«

bsp_cfog&_debLjg
b5p_ctap5_optiTvatictn

Θ Advanced
lirhil

; J enable_flpríjí

|] enable_reduced_device_drtrtrs

I ' eirawe_sim_oplimiifi

i : eí>abie_srn&ii_cjitKBTir

■Uwe
jtagjjari »1

stdin

jug_uirt "

stdout

jug_u«l TJ

SYS_akJmer.

Srt_»m«f -

bn»3tam(i_iin«f:

none T j

[nfrjrma Bon ft orjems [fto

O Mapped secton " iodata" to ipemofyregnn Vam",

Q Mapped secDon '.rwdali' tomemcry regen V * n " .

*U) Mapped section ' . D M * to memory repon Vam".

4jt Maprped setiwn '.heap* lo memory region Van".

O *»apped section VstacV' to memory repon 'srarn*.

0 Fineried beding BSP section mappngä from settings fle.
Ά I n l r i n l l i t m ftp-mntmaH* r-mw|

Figure 12.4 Nios II BSP Editor snapshot 1.

For our purposes, we use BSP Editor to set up standard C I/O channels, select
full- or reduced-sized device drivers and C library, and configure the initialization
code. The procedure to perform these tasks is:

1. In Eclipse SBT GUI window, Select Nios II >- BSP Editor. A dialog appears.
2. Select the previously constructed Ied2_bsp library and click the Ok button.

The Nios II BSP Editor window appears.
3. Select the main tab page, and expand Common >~ hal. The snapshot is shown

in Figure 12.4.
4. In the middle of the hal box, there are fields labeled stderr, stdin, and stdout,

which indicate the I/O modules that act as standard error, standard input,
and standard output channels in C. Select jtag-uart module for all three fields.

5. In the middle of the hal box, there are fields labeled sys_clk_timer and time-
stamp.timer, which indicate the timer modules used for the general system

www.it-ebooks.info

http://www.it-ebooks.info/

3 1 2 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

Ht t_ t Tools Η φ

I " ■ " | l o f c w e P i d ^ i g g | & w e f i | L r « g S g i i t r E n J] t e l ^ 6 p i p » t o « [T » ^ l b ^ C r < t t o f i

SOPC Infornaoon fit: . .V-'oe.l i iJJ.mxiifa

CPU name: mu

CVrrateia jyitem: AI » a HAL

BS> Ura t t i -K t t r r : Λ

3 se t tns í

Lti Cwnmon

£i Advanced

alEI
n,stom_n e wto.flsgs
t?n3b« c P»JS plus
enaWe_ciean_e)tit
enaöfejaxJt
ertsbie _m 5Cíuctjon_f e lated^exce ptcns_afl
en.abte__ghtwe njht_d evice__] r ve r _ a pi
enab¡e_rnd_d ιν_β mu hton
enable_iuntime_statk_ch fick^o
enabte_sopt_iyiaJ_ch eck

ta&jbp
log pott
rrax_fie_i.esi:r(]tor5

Li, rrake

custo m_newi._jjte._lS'

nons I

¿ *fiei»e_c_plija_plus

V e n aal &_cl.¿n_ exit

/ tn jL l t_e* . :

£ n M e jnslr i jdi tu i _ i e i ¿1 e d e x ce piiQ ns. api

en a &l E J I ghtw*i flhl_ctóMce_df iver_api

e n a PI β_πΓΜΐ_αητ„ emulaban

[■ «nanle_njnbine_aldük_[Jieckpng

V en_jp.e_s a p t s y s i ___.£<*

Jog_n*¡ja

loa_Pört

max_hte_(Jfl5qnptafS

4 ! II M II

information

-> ΜφρηΙ

^Mapped

40 Mapped

JÉ Ét I rijn~brvi

α [Processing

-Kuan Pódala* Ic mernof > regton *—am'-

BKÜDfl Vrurddta' la mefnor y regnn Vam".

setüoii *.be* lo memory regen Vain*.

5Klun*.h«p'ti>nKmorir' regen Vat i* .

secL»fl Vilact^tomemcfif reijon Vam*.

lOddng BSP 5 « ÜQfi rnapptngs fron. se .Ungí nie-

L DC

Figure 12.5 Nios II BSP Editor snapshot 2.

timing and time stamp API routines. Select the sys_timer module for the
sys_cjk_t¡mer field and leave the timestamp-timer field blank (since we are not
using the time stamp function).
In the top of the hal box, there are several optional items. If needed, we can
check enable_reduced-device.drivers to select smaller but slower drivers and can
check enable_small_c_library to select the smaller "watered-down" C library
functions.
In the main tab page, expand Advanced >- hal. The snapshot is shown in
Figure 12.5.
In the top of the hal box, there are several optional items, which are en-
able_c.plus.plus, enable.clean.exit, enable.exit, enable.lightweight.device.driver.api.
Check these items as needed.

3 1 2 PREDESIGNE

3 1 2 PREDESIGNE

3 1 2 PREDESIGNE

www.it-ebooks.info

http://www.it-ebooks.info/

HAL-BASED FLASHING-LEO PROGRAM 313

9. In the bottom of the hal box, there is a field labeled max_file_descriptors, which
specifies that the maximal number of files can be used. Enter the desired
number. It must be at least 4 for proper HAL API operation.

10. Click the bottom Generate button to generate the BSP library.
11. Click the Exit button to close the program.
For our purposes, the default BSP setting works fine as long as a Nios II sys-

tem has adequate main memory. We just need to verify the stderr, stdin, stdout,
sys_clk_timer, and timestamp_timer fields to ensure that the proper I/O modules are
selected.

Sometimes we may need to reduce the code footprint to accommodate a small
memory module. To do this, we can enable the reduced device drivers, use the
small C library, disable C + + support if not used, remove the exit feature if the
application program never exits, and use a minimal number of file descriptors. For
example, the code size of the flashing-LED program of Chapter 10 is about 18 KB.
It can be reduced to about 8 KB if these options are used.

12.3 HAL-BASED FLASHING-LED PROGRAM

With the availability of HAL, we can rewrite the codes in Chapter 11 by using
functions from the C standard library and HAL API. These functions can be di-
vided according to the generic or non-generic types of I/O devices defined in Sec-
tion 12.1.3.

A generic device is usually set up when the BSP library is generated and generic
high-level functions, such as those in C library, are constructed based on these
devices. An application program can call these functions without worrying under-
lying low-level details. A non-generic device is more specialized and thus no generic
function is available. We need to use the routines or register-access macros defined
in the I/O device driver.

In this enhanced flashing-LED system, the JTAG UART and timer modules
are generic devices and thus we can use the generic API and library functions for
the two devices. The PIO modules are non-generic devices and we must use the
proper driver routines to access the I/O registers. The ad hoc driver routines and
task functions of Chapter 11 can be modified to take advantages of HAL API.
The revisions of these routines are discussed in the following subsections. If a new
version is needed, we add a suffix _v2 to distinguish them from the earlier versions.

12.3.1 Functions using generic I/O devices

Function using the JTAG UART core The JTAG UART core is a character-mode
device that can send or receive a serial character stream. In the HAL framework,
the device driver of this type of device is integrated with the C standard library
and thus the functions in the stdio library, including p r i n t f () and scanf () , can
be used. Recall that the instantiated jtag_uart module is selected as the C stan-
dard I/O channels when the nios.led2.bsp BSP library is generated, as discussed in
Section 12.2.3. In this system, we can use the p r i n t f () function in C library to
display a message. No low-level information, such as the name and base address
of the instantiated I/O device, the I/O registers, or the device driver routines, is

www.it-ebooks.info

http://www.it-ebooks.info/

314 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

needed. Similarly, only the generic high-level header files, such as s td io .h , are
included in the code.

In the flashing-LED codes, the jtag_uart module is used to send a message of
" In t e rva l : dddd ms" to the host console when a new interval is detected, as dis-
cussed in Section 11.8.3. After directing C's s tdout channel to jtag_uart, we can
use the print functions in C's stdio library to write to the console directly. The
modified function, jtaguart_disp_msg_v2(), is shown in Listing 12.2.

Listing 12.2
«include <stdio.h>

void jtag uart disp_msg_v2(cmd.type cmd)
{

static int old"0;

if (cmd.prd!=oldH
printf (" Interval : 7.03u ms \n" , cmd.prd);
old = cmd.prd;

}
}

Note that the integer-to-string conversion is automatically performed within the
p r in t f () function.

Function using the timer core The HAL framework provides a collection of high-
level timing related functions in its API. Three useful functions are:

• usleep (unsigned i n t t) : it forces the system execution to halt for t mi-
croseconds.

• a l t - n t i c k s () : it returns the number of elapsed system clock ticks since reset.
• alt_ticks_per_second(): it returns the number of system clock ticks per

second.
Implementing this function requires a timer core. Recall that the instantiated
sys-timer module is selected for this purpose when the niosJed2_bsp library is gen-
erated, as discussed in Section 12.2.3. After specifying the proper system timer
module in BSP, we can use the API timing functions without worrying about low-
level details.

In Chapter 11, we use the usr.timer module and write low-level codes to wait
a specific amount of time before toggling the two discrete LEDs, as discussed in
Section 11.8.5. With HAL API, the same task can be done with the us leep()
function. The modified function, led_flash_v20, is shown in Listing 12.3.

Listing 12.3
»include <unistd.h> / / header file for usleep()

void led_fIash_v2(al t_u32 l e d . b a s e , cmd.type cmd)
{

s t a t i c alt_u8 l ed .pa t t ern » 0x01;

i f (cmd.pause) / / no toggle if pause asserted
return;

l ed .pat tern *- 0x03; / / toggle 2 LSBs of LEDs
pio_wri te (led_base , l e d . p a t t e r n) ; / / write LEDs
usleep(1000*cmd.prd); / / delay for cmd.prd ms

}

www.it-ebooks.info

http://www.it-ebooks.info/

HAL-BASED FLASHING-LED PROGRAM 315

The led_flash_v2() function follows the design principle of led_flash_vl() in
Chapter 11 and waits for a specific amount of time (i.e., flashing interval). During
the waiting period, the program execution is suspended and the processor is largely
idle. Instead of the "busy-waiting" scheme, a better alternative is to use a function
to check the elapsed time and toggle the LEDs as needed. This can be done by using
HAL API's a l t - n t i c k s O and alt_ticks_per_second() functions. The modified
flashing function, led_flash_v3(), is shown in Listing 12.4.

Listing 12.4
»include <sys/alt_alarm.h> / / header file for alt.nticks() and

// alt-ticks-per.second ()

void led_flash_v3(alt_u32 led_base, cmd_type cmd)
{
static alt_u8 led_pattern » 0x01;
static int last'O;
int now;

if (cmd.pause) // no toggle if pause asserted
return;

now = (int) (alt.nticks() * alt_ticks_per_second() / 1000);
if ((now - last)<cmd.prd) // interval not reached
return;

last = now;
led.pattern "= 0x03; / / toggle 2 LSBs of LEDs
pio.write(led base, led pattern); / / write LEDs

y

The function uses a static variable, l a s t , to record the last time when the LEDs
toggle and calculates the current time, now, with alt_ticks_per_second() and
a l t _ n t i c k s () . When the elapsed time reaches the designated interval, the LEDs
toggle and l a s t is updated. Both l a s t and now are represented in terms of mil-
liseconds.

12.3.2 Functions using non-generic I/O devices

The LED and switch modules of the enhanced flashing-LED system are PIO cores.
Since the PIO core is a non-generic devices, we need to use core-specific driver
routines to control and communicate with these cores.

The PIO core is fairly simple and the key function of the driver is to read
and write the core's I/O registers. In Chapter 11, we define several macros to
read data from switches and write data to LEDs. The corresponding segment in
chu.avalon_gpio.h is shown in Listing 12.5.

Listing 12.5
»include "io.h"

»define PI0_DATA_REG_0FT 0 / / data register addr offset
«define PI0_EDGE_REG_0FT 3 / / edge capture register addr offset
/* read/write PIO data register */
»define pio_read(base) IORDCbase, PIO.DATA.REG.OFT)
«define pio.write(base, data) I0WR(base, PI0_DATA_REG_0FT, data)
/ * read/clear pushbutton edge capture register */
«define btn.read(base) I0RD(base, PI0_EDGE_REG_0FT)
«define btn.clear(base) I0WR(base, PI0_EDGE_REG_0FT , Oxf)

www.it-ebooks.info

http://www.it-ebooks.info/

3 1 6 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

The code uses symbolic constants and the basic IORDO and IOWRO functions.
In the HAL framework, direct I/O register access is performed by low-level

macros in the header file, as discussed in Section 12.1.5. We can use the macros
defined in altera_avalon_pio_regs.h, which is shown in Listing 12.1, to access the des-
ignated PIO register. The revision of the previous segment is shown in Listing 12.6.

Listing 12.6
#include "altera_avalon_pio_regs.h"

/* read/write PIO data register */
«define pio.read(base) IORD.ALTERA_AVALON_PI0.DATA(base)
»define pio.iirite (base , data) I0WR_ALTERA_AVAL0N_PI0_DATA(base, data)
/* read/clear pushbutton edge capture register */
«define btn.read(base) I0RD_ALTERA_AVAL0N_PI0_EDGE_CAP(base)
«define btn.clear(base) I0WR_ALTERA_AVAL0N_PI0_EDGE_CAP(base, Oxf)

Note that these I0RD_ALTERA_AVAL0N_PI0... macros are based on the I0RDO and
I0WRO functions as well. This approach is somewhat "wordy" and we do not use
this type of macro definitions in this book.

The sw_get_command_vl() and sseg_disp_msg_vl() functions of Chapter 11
only use the macros defined in chu_avalon_gpio.il to access I/O ports and thus can
be kept without modification.

12.3.3 Initialization routine and main program

Initialization routine An embedded application usually includes a system initial-
ization routine. It is executed in the beginning to set up I/O peripherals to the
desired condition. For example, the f lashsys_init_vl() function in Section 11.8
clears the btn module's edge capture register and sets up the usr.timer module for
a 1-ms interval.

The HAL framework initializes the Nios II system and prepares the run-time
environment for the application's main O program, as discussed in Section 12.1.6.
One step in the initialization process is to call the alt_sys_init() function to set
up the I/O modules- This function basically assembles the initialization routines
supplied by the instantiated device drivers when the BSP library is constructed.

The alt_sys_init.c file can be found in the BSP directory. For the enhanced
enhanced flashing-LED Nios II system, the function is

v o i d a l t _ s y s _ i n i t (v o i d)
{

ALTERA_AVALON_TIMER_INIT(SYS_TIMER, s y s . t i m e r) ;
ALTERA_AVALON_TIMER_INIT(USR.TIMER, u s r . t i m e r) ;
ALTERA_AVALON_JTAG_UART_INIT(JTAG.UART, j t a g . u a r t) ;
ALTERA.AVALON.SYSID.INIT(SYSID, s y s i d) ;

>

An application program generally does not need to repeat the initialization pro-
cess for peripherals with HAL-compliant device drivers. However, if a device is
not used in a "normal" way or the driver is not HAL-compliant, the application
program may need to add additional initialization code to configure the device.

In the enhanced flashing-LED program, the JTAG UART and timer cores supply
proper device drivers. Their initialization is handled by the HAL framework and
is transparent to the application program. On the other hand, the device driver

www.it-ebooks.info

http://www.it-ebooks.info/

HAL-BASED FLASHING-LED PROGRAM 317

of the PIO core contains only the register-access macros and has no initialization
routine. To clear the pushbutton's edge capture register in the beginning, we must
do it manually within the main O program. The modified initialization routine is
shown in Listing 12.7.

Listing 12.7
void flashsys_init_v2(alt_u32 btn.base)
{

btn.clear(btn.base) ; / / clear button edge—capture reg
y

Main program The revised top-level mainO program is shown in Listing 12.8.
Either the led_f lash_v2() or led_f lash_v3() function can be used to perform the
flashing-LED task.

Listing 12.8
int main(){

cmd.type sw_cmd={0 ,100}; / / not pause; 100 ms interval

flashsys_init_v2(BTN.BASE);
whi le i lH

sw.get_command.vl(BTN.BASE, SWITCH.BASE, ftsw.cmd);
jtag_uart_disp_msg_v2(sw_cmd);
sseg.disp.msg.vl(SSEG.BASE, sv.cmd);
led.flash_v2(LEDG_BASE,su.cmd);

}
}

Its basic organization is similar to that in Section 11.6.3 but the task functions are
modified to take advantage of the HAL framework. The suffix _v2 indicates that a
new version of the function is used.

Note that no SYS_TIMER_BASE or JTAG_UART_BASE is shown in the code. The
operation of these modules is embedded in the HAL API functions and thus is
transparent to the user application program.

12.3.4 Software construction and testing

We can follow the tutorial in Section 10.3 to build and run the software in the
enhanced Nios II system. The main steps are:

• If continued from Chapter 11, the BSP library, nios. led2.bsp, should already
be constructed. If not, create a BSP library using the nios_led2. sopcinf o
file generated in Chapter 11.

• Invoke the BSP Editor to verify that the jtag.uart module is assigned to stdout
and the sys.timer module is assigned to system.timer.

• Create a user directory nios_led2_hal (the suffix _hal for HAL API) and
add the C files to this directory.

• Program the FPGA device on the DEI board using the nios_led2_top. sof
file obtained from Chapter 11.

• Build and run the software image in the Nios II system.
After the successful implementation, the two LEDs system should flash at the
default 100-ms rate. We can use switches to change its rate or pause its operation
and verify the operation of the physical system.

www.it-ebooks.info

http://www.it-ebooks.info/

3 1 8 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

With the default BSP setting, the code size of the image file is about 57 KB,
which can be easily accommodated by the 512-KB external SRAM chip. In com-
parison, the image file of Chapter 11 is about 18 KB. The difference is due to the
complexity of the HAL driver routines and API functions. The code size can be
decreased by selecting proper options in BSP editor, as discussed in 12.2.3. The
reduced sizes are 11 KB and 8 KB, respectively.

12.4 DEVICE DRIVER CONSIDERATION

We compare the software hierarchy of the HAL framework and a desktop-like system
in Section 12.1.2. One main difference is that the HAL framework is not as rigid as
an OS. Using a HAL-compliant device driver is not mandatory and an application
program can access the I/O device without going through the API. We examine
and compare various methods in this section.

12.4.1 I/O access methods

For our discussion purposes, we can divide the I/O access into several methods:
• Method 1: via standard library functions.
• Method 2: via generic API functions.
• Method 3: via device-specific HAL-compliant driver functions.
• Method 4: via device-specific ad hoc driver functions.
• Method 5: via direct I /O register read and write.

Method 1 is the most general and most abstract. The HAL framework initializes
the device and "hooks up" the driver routines with the functions in C's standard
stdio and Unix-style unistd library. This method can be used for generic character
mode devices and file systems. The use of the p r i n t f () function in Listing 12.2 is a
representative example. The following are several observations about this method:

• Standard C functions, such as p r i n t f () , are called in the application pro-
gram.

• Generic C header files, such as stdio.h, are included in the application pro-
gram.

• The system-dependent device base addresses, such as JTAG_UART_BASE, are
never referenced in the application program.

• No manual device initialization is needed in the application program.
This method thus completely shields the low-level I/O details. From the application
program's point of view, it is running under a generic computer platform. The codes
can be developed, ported, and implemented in any system.

Method 2 is used for other generic I /O devices. A collection of functions is
defined in HAL API. For example, the alt_dma_txchan-send() function posts a
transmit request to a DMA transmit channel. The following are the properties of
this method:

• API functions are called in the application program.
• Relevant Altera API header files, such as <sys/alt_dma.h>, are included in

the application program.
• The system-dependent device base addresses are usually not referenced in the

application program.
• No manual device initialization is needed in the application program.

www.it-ebooks.info

http://www.it-ebooks.info/

DEVICE DRIVER CONSIDERATION 3 1 9

These API functions are associated with the Altera Nios II HAL framework and
thus the corresponding codes cannot be ported to the other platform.

Method 3 is used for I /O devices that do not map well into HAL's generic models.
The HAL framework initializes the device and provides proper driver routines to
perform the specific functions. For example, Altera's SPI core implements the stan-
dard SPI serial interface protocols. It provides a function, alt_avalon_spi_command(),
to issue a control sequence on the SPI bus. The following are the properties of this
method:

• Device-specific functions are called in the application program.
• Device-specific header files, such as al tera_avalon_spi . h, are included in

the application program.
• The system-dependent base addresses are usually required in the functions.
• No manual device initialization is needed in the application program.

The first three methods use HAL-compliant device drivers and they are inte-
grated within the HAL framework. Note that the compliance is not mandatory.
Method 4 uses routines from ad hoc non-HAL-compliant device drivers. One main
difference between methods 3 and 4 is that in the latter the application program
must set up the device and perform initialization, as in the standalone environment.
The drivers discussed in Chapter 11 fall into this category.

Method 5 accesses and manipulates the I/O device directly. The codes discussed
in Chapter 10 use this method. Except for simplistic I /O devices, a device driver
should be developed and this method should be avoided.

12.4.2 Comparisons

The benefits and drawbacks of these methods can be examined from different per-
spectives.

Application programmer's perspective An application programmer is concerned with
the overall functionality of a system. A more abstract method handles more low-
level details and presents a better and more consistent interface. This will shorten
the development time and make the codes less error-prone, easier to maintain, and
more portable. From this perspective, an application programmer usually likes to
have the most abstract method implemented whenever possible.

One drawback of using the abstract method is the potential code size and timing
issues. An abstract high-level function must be general, flexible, and robust and
needs to accommodate various scenarios and error conditions. This leads to a larger
code size. For example, the p r in t f () function consists of sophisticated codes to
convert various data types, such as floating point, to a formatted string. The
compiled code size is about 50 KB, which exceeds the capacity of Cyclone 2C20
device's internal memory. If we just use this function to send a one-line message,
as in the flashing-LED example in Section 12.3, most functionalities is left unused.
The simple jtaguart_disp_msg2() routine in Section 11.8 can perform the same
task but requires only few hundred bytes.

Using a high-level function may also have an impact on timing. In many em-
bedded applications, a system must respond in a specific amount of time and we
need to know the timing characteristics of individual routines. These types of infor-
mation may not be available from a predesigned high-level function. Furthermore,

www.it-ebooks.info

http://www.it-ebooks.info/

3 2 0 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

these functions may contain additional polling loops or interrupt service routines
that may complicate the overall timing.

In general, the benefits of an abstract method outweigh its drawbacks. Unless
there is a compelling size or timing constraint, the most abstract method is pre-
ferred. We can also adjust certain BSP parameters to reduce the code footprint
and to fine tune character-mode device drivers and the standard library. These can
be tried before we switch to a less abstract method.

Device driver developer's perspective A device driver developer derives the software
routines used in methods 2, 3, and 4 and is concerned with the complexity of var-
ious methods. Clearly, a more abstract method demands more time and efforts.
Developing a flexible and robust device driver is by no means a simple task. We
must have comprehensive knowledge of the HAL specification and the low-level
characteristics of the I/O device and consider various operation scenarios and pos-
sible error conditions. On the other hand, it is relatively simpler to develop a set
of ad hoc non-HAL compliant driver functions used in method 4.

In general, if the I/O device is to be used repeatedly and widely, it is worthwhile
to invest more resources to develop a comprehensive driver. The subsequent savings
will offset the high initial cost.

Embedded SOPC system designer's perspective In a desktop system environment,
the application program and device driver are usually developed by separate groups.
The former is done by users and the latter is provided by OS or device manufac-
turers. This is also the case for a traditional embedded system. Since the I/O
peripherals of a processor is fixed, the manufacturer can afford to develop a com-
prehensive set of device drivers and libraries, similar to those used in methods 1,
2, and 3, and users only need to develop application programs.

An embedded SOPC system presents a different scenario. This platform allows
us to integrate custom I/O peripherals and hardware accelerators into a system. A
designer is now responsible for the development of hardware as well as the software
device driver and application program and can distribute the functionalities between
the driver and application program. We need to weigh the software complexity
and the potential of future reuse and determine the type and completeness of the
driver. For example, a simple ad hoc device driver should be satisfactory for a
special-purpose I/O peripheral that is used only in one specific system. On the
other hand, a more comprehensive driver should be developed for a peripheral used
in multiple projects.

Note that an application program can use different access methods at the same
time, including both HAL-compliant and non-HAL compliant drivers. For exam-
ple, we can use Method 1 to send a message to a console but use Method 4 to
control a special hardware accelerator. The general conceptual diagram is shown
in Figure 12.6.

12.4.3 Device drivers in this book

Deriving HAL-compliant device drivers requires a significant amount of time and
effort. Since the focus of this book is on the development and integration of cus-
tom hardware, we use the ad hoc drivers (method 4) for the I/O peripherals and
hardware accelerators designed later in this book. Information for HAL-compliant
drivers can be found in the bibliographic section.

www.it-ebooks.info

http://www.it-ebooks.info/

o
c

standard
library

HAL

1

"o.
E

¡
<
X
I/O

device
t

Θ

API

S
Έ
Ό

m
"Ξ.
E

<
X

I/O
device

\

Application Program

O
S

■c
Ό

S i
ε
8
<
X

I/O
device

\

\

O
N

on
-

H
A

L-
co

m
pl

ia
nt

dr

iv
er

I/O
device

\

O
I/O

device

\ U

BIBLIOGRAPHIC NOTES

any device

generic character mode devices and file systems

321

Figure 12.6 All-inclusive software hierarchy.

12.5 BIBLIOGRAPHIC NOTES

Chapters 5, 6, and 7 of Altera's Nios II Software Developer's Handbook, titled
"Overview of the Hardware Abstraction Layer," "Developing Programs Using the
Hardware Abstraction Layer," and "Developing Device Drivers for the Hardware
Abstraction Layer," provide a comprehensive review of the HAL framework. Chap-
ter 14, titled "HAL API Reference," documents the available functions of HAL API.
The application note AN459, titled "Guidelines for Developing a Nios II HAL De-
vice Driver," uses the UART as an example to explain the process of developing and
debugging a HAL-compliant device driver. The source codes of HAL API functions
and drivers are available in the HAL and drivers directories of the BSP library.

12.6 SUGGESTED EXPERIMENTS

12.6.1 "Uptime" feature in flashing-LED system

The "uptime" feature is described in Section 11.11.1. Instead of using low-level
routines, we can use HAL API functions to perform this task. Develop software
and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

3 2 2 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

12.6.2 Enhanced collision LED circuit

The enhanced collision LED circuit is discussed in Section 11.11.4. Instead of using
low-level routines, we can use HAL API functions to perform this task. Develop
software and verify its operation.

12.6.3 Parking lot occupancy counter

A parking lot occupancy counter circuit is described in Section 6.5.3. Instead of
using custom hardware, we can use an embedded system to perform this task.
Develop software with HAL API functions and verify its operation.

12.6.4 Reaction timer with keyboard control

A reaction timer with host keyboard control is described in Section 11.11.9. Develop
software with C library and HAL API functions and verify its operation.

12.6.5 Digital alarm clock

We want to design a digital alarm clock. The time is displayed on the seven-segment
and discrete LEDs and its control is done by the host's keyboard (via JTAG UART).
It operates as follows:

1. The minute and second of the clock are shown on four seven-segment LED
displays in "MMSS" format, where "MM" is minutes and "SS" is seconds.

2. The hour of the clock are shown by four discrete red LEDs in hexadecimal
format.

3. When the designated alarm time is reached, the discrete green LEDs flash.
4. The S key (for setup) is used to set up the current time. When it is pressed,

the user is asked to enter the current time via host's console.
5. The A key (for alarm) is used to set up the alarm time. When it is pressed,

the user is asked to enter the alarm time via host's console.
6. The C key (for clear) is used to clear the alarm. If the alarm is on (i.e., the

green LEDs flash), it will be turned off (i.e., the green LEDs stop flashing)
when the C key is pressed.

7. All other key activities will be ignored.
Develop software and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 3 2 3

12.7 COMPLETE PROGRAM LISTING

Listing 12.9 chu-mainJed2_hal.c
A***»«*,»,* ,»»***»******»****»****»*************** ,»*** ,*****»*********
*
* Module: Advanced flashing-LED system using Altera HAL/C stdlib
* File: chu.main.ledB.hal.c
* Purpose: Task routines and main program
*

/* include section */
/* General C library */
»include <stdio.h>
»include <unistd.h>
/* Altera —specific library */
»include "a l t . t ypes .h"
»include "system.h"
/* Module-specific library */
»include "chu.avalon.gpio.h"

A**************»*»******»,**** , ,»******»*»************»****»***»»******
* data type definitions

typedef s t ruct flash_cmd{
int pause ;
int prd;

} cmd.type;

A****»***»*»**»*»**,**»,»»,***»»,*»»*****»»*»»»*****»*»*,»****»********
* function: flashsys.init.v2 ()
* purpose: system initialization
* argument :
* btn.base: base address of pushbutton PIO
* return:
* note:
,*„„»*»**»********»*»„»„****,*******************,*,*****„*********/
void flashsys_init_v2(alt_u32 btn.base)
{

btn_clear(btn .base) ; / / clear button edge—capture reg
y

* function: jtag-uart.disp.msg.v2 ()
* purpose: display the interval when it is changed
* argument :

* return:
* note :

void jtag_uart_disp_msg_v2(cmd.type cmd)
{
static int old=0;

if (cmd.prd! = oldH
printf ("Interval: */.03u ms \n" , cmd. prd);
old » cmd.prd;

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

324 PREDESIGNED NIOS II I/O DRIVERS AND HAL API

A**»»,, ,* ,»********«*,»***»»****»»»»,»***,* , ,*»**,»*»*»****************
* function: led.flash.v2 ()
* purpose:
* argument:
* cmd: command
* return:
* note:
* The delay is done by continuously checking 1—ms tick
*****»**»**»*********»»*»*»**********»*,»,»,*»*****»»*»**»»,*******,***/
void Ied_flash_v2(alt_u32 led.base, cmd.type cmd)
{

static alt_u8 led.pattern - 0x01;

if (cmd.pause) / / no toggle if pause asserted
return;

led.pattern *- 0x03; / / toggle 2 LSBs of LEDs
pio.vrite(led.base, led.pattern); / / write LEDs
usleep(1000*cmd.prd); / / delay for cmd.prd ms

}

A*********»*»,*»*»***** ,*********»**********»,***»**»**,****»*»***»**»*
* function: sw.get.command.vl ()
* same 'as the one in Listing 10.18
,»*»**»***»***,*,»*»*****»****»***,****,***»****,»**,»»****»*»***»»****/

y*»*****»*»**»****************»**,**»»»****»**»*»****»**,»**»*»*********
* function: sseg.disp.msg.vl ()
* same as the one in Listing 10.18
,******,*»»*»*************»»»»****»,,***»*******,,,»,,***,*,**»****/

A***,*»****,***********»**»*************«*»»»******»**»»»******»***»***
* function: main()
* purpose: advanced flashing-LED system using HAL
* note:
»*,*,»»*»****,»»***»*,*************»»»**»*»,*»*»*,****,***»******,*/
int main(M

cmd.type su_cmd-{0,100}; / / not pause; 100 ms interval

flashsys_init_v2(BTN_BASE);
vhi ledH
sw.get.command.vl(BTN.BASE, SWITCH.BASE, fesv.cmd);
jtag_uart_disp_msg_v2(sw_cmd);
sseg.disp.msg.vl(SSEG.BASE, su.cmd);
led.flash.v2(LEDG_BASE,sw.cmd);

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

INTERRUPT AND ISR

An interrupt is an important external I/O event. When an interrupt occurs, the
processor suspends normal program execution and temporarily transfers control
to the designated ISR (interrupt service routine). The HAL framework utilizes a
single top-level exception handling routine to oversee and coordinate all interrupt
activities. In this chapter, we examine the basic concepts of interrupt-driven design
and modify the flashing-LED program of Chapter 12 to illustrate the construction
of an ISR.

13.1 INTERRUPT PROCESSING IN THE HAL FRAMEWORK

An exception is a special condition that requires a processor's immediate attention.
An exception can be raised by an abnormal internal event, such as division by
zero or an unimplemented instruction, or by an important external event that has
priority over normal program execution. The latter is referred to as a hardware
interrupt. Since the book focuses on the I/O interface, our discussion is primarily
on the hardware interrupt.

Processing an interrupt involves three basic tasks:
1. Suspend current program execution and save the current system state.
2. Transfer control to a special routine to handle the exception.
3. Restore the system state and resume the normal program execution.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 325
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

326 INTERRUPT AND ISR

In the HAL framework, these tasks are divided between hardware and software and
are accomplished by a coordinated effort.

13.1.1 Overview

The interrupt processing in the HAL framework consists of three elements:
• Nios II processor.
• A collection of ISRs, each processing an individual hardware interrupt.
• A top-level exception handler routine, which saves and restores the system

state and dispatches the proper ISR.
The detailed procedure is:

1. The processor completes the current instruction.
2. The processor disables further interrupts, saves the content of the status reg-

ister, and saves the content of the program counter, which is the next address
of normal program execution.

3. The processor transfers execution to the top-level exception handler by load-
ing the program counter with the predetermined exception address.

4. The exception handler saves the contents of the processor's registers.
5. The exception handler determines the cause of the interrupt.
6. The exception handler calls the proper ISR according to the cause.
7. The ISR clears the associated interrupt condition.
8. The ISR performs the designated device-specific function and then returns

the control to the exception handler.
9. The exception handler restores the contents of the processor's registers and

enables future interrupts.
10. The exception handler exits by issuing the eret (exception return) instruction.
11. The processor executes the eret instruction, which restores the status register

and loads the previous saved return address to the program counter.
12. The processor resumes the normal program execution from the interrupted

point.
Note that the software portion (i.e., exception handler and ISRs) is imposed by
the HAL framework. It can be replaced if the system is constructed in a different
software developing platform.

13.1.2 Interrupt controller of the Nios II processor

The Nios II processor provides a simple, non-vectored interrupt controller. It follows
the RISC design principle, which keeps the hardware small and fast, and delegates
most processing to software. During the interrupt process, the processor only saves
and restores the contents of the status register and program counter.

The Nios II interrupt controller supports up to 32 external hardware interrupts.
Each interrupt has a unique level-sensitive interrupt request (IRQ) input signal.
The processor can enable and disable an individual interrupt or all interrupts by
writing proper control registers. The Nios II processor's exceptions and interrupts
are not vectored, which means that, when an interrupt occurs, the execution is
transferred to the same exception address for all types of interrupts. The addresses
are specified in SOPC Builder at system generation time. The Nios II processor

www.it-ebooks.info

http://www.it-ebooks.info/

INTERRUPT PROCESSING IN THE HAL FRAMEWORK 3 2 7

does not impose any inherent priority over the interrupt requests. The priority is
established by the software exception handler.

13.1.3 Top-level exception handler

The HAL framework uses a single routine to oversee all interrupt activities and
perform the needed housekeeping tasks. It is known as top-level exception handler
or simply exception handler. The routine's starting address corresponds to the
exception address and the execution is transferred to this routine when an interrupt
occurs. The exception handler has three major functions:

• Save the content of the registers at the beginning of the interrupt processing.
• Restore the original content of the registers at the end of the interrupt pro-

cessing.
• Determine the cause of the interrupt, resolve multiple requests according to

the established priorities, and dispatch the proper ISR.
The exception handler is automatically included in the HAL's initialization routine.

Priority and dispatch table In the HAL framework, an interrupt request is assigned
a number between 0 and 31 and the priority corresponds inversely to the IRQ
number, which means that the request 0 represents the highest priority interrupt
and the request 31 is the lowest. When a system is constructed, the interrupt
request number can be assigned within SOPC Builder. For example, the enhanced
flashing-LED system constructed in Section 11.5 consists of four interrupt requests,
which are generated from the btn module, the jtag_uart module, and two timer
modules. These requests are shown under the IRQ column in Figure 11.12. The
desired priorities for I /O modules can be assigned by editing the corresponding
interrupt request numbers, as discussed in Section 11.5.1. The assigned number
will be recorded in the .sopcinfo file and later transferred to the system.h file. HAL's
exception handler uses this information to sort the requests' priorities.

The exception handler uses a lookup table to record the requests in a particular
system configuration and the starting addresses of the corresponding ISRs. To be
included in the table, we must explicitly register the IRQ of the I/O module. The
registration process is done by calling an API function:

int a l t _ i r q _ r e g i s t e r (alt_u32 i d ,
void* context ,
void (* i s r) (v o i d * , a l t _ u 3 2)) ;

The id argument is the assigned interrupt request number of the I/O module. The
i s r argument is the name of the corresponding function to be called in response
to this interrupt request number. Note that it is actually a pointer pointing to the
starting address of the function. The context argument is a pointer used to pass
context-specific information to the ISR. It is opaque to the exception handler and
provided entirely for the benefit of the user-defined ISR.

HAL API functions The exception handler is invoked when an interrupt occurs and
thus cannot be explicitly called from a program. However, there are several relevant
functions defined in HAL API to manage interrupt requests:

a l t _ i r q _ r e g i s t e r ()
a l t _ i r q _ d i s a b l e ()

www.it-ebooks.info

http://www.it-ebooks.info/

328 INTERRUPT AND ISR

a l t .
a l t .
a l t .
a l t .
a l t .
a l t .

. i rq .enable()

. i rq_disable_al l ()

. i rq_enable_al l()

. i rq_ in te r rup t ib le ()

. i rq_non_interrupt ible()

.irq_enabled()
Except for the alt_irq_register() function,
disable a specific or all interrupt requests.

these functions are used to enable or

13.1.4 Interrupt service routines

An ISR (interrupt service routine) is a software routine that handles an individ-
ual hardware interrupt. In the HAL framework, the top-level exception handler
performs general housekeeping, and an ISR is responsible only for clearing the as-
sociated devices interrupt condition and running the device-specific function. The
procedure for clearing an interrupt condition usually involves resetting a specific flag
or status register or clearing the corresponding counter. The device's corresponding
IRQ signal will be deasserted accordingly.

ISR prototype To be properly registered by the a l t _ i rq_ reg i s t e r () function, an
ISR must match the prototype defined in HAL framework. The prototype function
is in the form of

void i s r (v o i d * context , alt_u32 id)

The context and id arguments are the same as for the a l t _ i rq_ reg i s t e r () func-
tion. Two examples are illustrated in the following section.

Restriction on ISR Since the HAL framework is intended for embedded systems,
its exception handling process is not as robust and complete as that in a desktop
operation system. An ISR runs in a "restricted environment," which prevents
the use of many HAL API functions. By default, the top-level exception handler
disables further interrupts while processing the current exception. If an ISR calls
a function that involves other ISRs and waits for another interrupt, the execution
becomes deadlocked.

The Nios II architecture actually supports a nested interrupt (i.e., an inter-
rupt occurring an ISR) and technically we can enable further interrupts by calling
the proper HAL API interrupt enable functions. This approach complicates the
software development and is not recommended. The ISRs usually involve critical
system operation. It is good practice to keep the code simple and fast. This prac-
tice can simplify the software development and the timing analysis, as discussed in
Section 13.3.

13.2 INTERRUPT-BASED FLASHING-LED PROGRAM

Because the top-level exception handler processes most housekeeping tasks, devel-
oping an ISR in HAL framework is not very involved. It consists of the following
steps:

1. In SOPC Builder, instantiate the I/O module with the proper interrupt fea-
ture.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERRUPT-BASED FLASHING-LED PROGRAM 329

2. In SOPC Builder, assign the desired IRQ priorities in the REQ column. Recall
that IRQ 0 has the highest priority.

3. Derive the ISR for the device, including codes to clear the interrupt condition.
4. Register the ISR during the system initialization.

To demonstrate the use of interrupt and the development of an ISR, we rewrite
the enhanced flashing-LED program with a custom interrupt-driven timer routine.
Two versions are discussed in the following subsections.

13.2.1 Interrupt of timer core

The timer core is discussed in Section 11.4. Its interrupt operation involves two
bits:

• The ¡to bit of the control register. This bit indicates whether interrupt is
enabled.

• The to (for "timeout") bit of the status register. This bit is set to 1 when
the counter reaches zero and stays set until a processor writes 0 to this bit to
clear it. It is used as timer's interrupt request signal.

We instantiate two timer modules when constructing the enhanced LED-flashing
Nios II system in Section 11.5. The sys_timer module is configured in BSP as a
system timer, as discussed in Section 12.3. We use the usr_timer module for the
demonstration. Note that in SOPC Builder the usr.timer module is configured to
include interrupt capability and an IRQ number is assigned in the IRQ column, as
shown in Figure 11.12.

13.2.2 Driver of timer core

An embedded system frequently includes various timing tasks and requires a real-
time system-wide clock tick. One method is to use a timer to generate a periodic
interrupt tick. For the Altera timer core, this can be achieved by configuring it
in continuous mode, in which the counter automatically reloads the predetermined
value when reaching zero. Since the to bit is set to 1 as counter reaches zero, the
interrupt request is asserted periodically.

Two routines are required to facilitate the timer ISR construction:
• An initialization routine to set up the timer to generate the interrupt request

at the designated interval.
• A routine to clear the current interrupt request.

We develop a simple driver in Section 11.7.3 and the timer_wr_prd() function and
the t imer_clear_t ick() macro can be used for this purpose.

The timer_wr_prd() function is shown in Listing 11.6. In addition to write the
desired interval to two period registers, note that the last statement

IOWR(timer_base, TIMER_CTRL_REG_OFT, 0 x 0 0 0 7) ;

sets the counter in "continuous" mode, starts the counter operation, and enables
interrupt by writing l's to the cont, start, and ito fields of the control register.
Although the interrupt request of the usr.timer module is enabled, we do not register
it in the code of previous chapters and thus the interrupt has no effect.

The t imer_clear_t ick() macro is defined as
I0WR(base, TIMER_STAT_REG_OFT, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

3 3 0 INTERRUPT AND ISR

It resets the to field of the status register to 0. Since the to field is also used as
an interrupt request, resetting the to field clears the current request and enables
future interrupts.

13.2.3 ISR version 1

We discuss the software developments of the enhanced flashing-LED system in HAL
framework in Chapters 11 and 12 and the top-level main program is

f l a s h _ l e d _ i n i t () ;
while (1H

sw_get_command();
j tag_uart_disp_msg();
sseg_disp_msg();
l e d _ f l a s h () ;

}

In this scheme, the tasks are executed in a round-robin manner. Since the main
purpose of the system is to flash LEDs, the led_f l a s h O function should be given
higher priority. This can be accomplished with the availability of timer interrupt.

In the first version of the ISR, we make the entire led_f l a s h O function "inter-
rupt driven" and implement all the functionalities in an ISR. The main program
becomes

f l a s h _ l e d _ i n i t () ;
a l t _ i r q _ r e g i s t e r (. . . , f l a s h . l e d _ i s r _ v l ()) ;
while (1H

sw_get_command();
jtag_uart_disp_msg();
sseg_disp_msg ();

>

Note that the ISR is invoked when the IRQ signal is asserted but not called by the
main program.

A HAL ISR can communicate with other functions using the context argument
or global variables. We use the former in this version of the ISR. Because the ISR
replaces the entire led_f l a s h O function, it needs the command variable as well
as the base addresses of the LED PIO module and timer module. The information
constitutes the "context" for this ISR. A structure can be defined for this purpose:

typedef s truct c t x t l {
cmd.type *cmd_ptr;
alt_u32 t imer .base;
alt_u32 l e d . b a s e ;

} c t x t l _ t y p e ;

Note that a pointer type is used for the command because the content of the
command can be updated by the sw.get_command() function. A pointer to this
structure can be passed to the ISR function.

In this design, we use the 1-ms tick to assert the interrupt request. When the
ISR is invoked, it updates the elapsed time and toggles the LEDs as needed. The
code is shown in Listing 13.1.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERRUPT-BASED FLASHING-LED PROGRAM 331

Listing 13.1

s t a t i c void f l a s h . l e d . l s r (v o i d * context , alt_u32 id)
{

c t x t l . t y p e * c t x t ;
cmd.type *cmd;
s t a t i c int ntick = 0;
s t a t i c unsigned char l e d . p a t t e m » 0x01;

/* type casting */
ctxt = (c t x t l _ t y p e *) context;
cmd ■» ctxt->cmd_ptr ;
/* clear "to" flag; also enable future interrupt */
t imer_c l ear_ t i ck (c tx t -> t imer_base) ;
if (cmd~>pause)

return;
if (nt ick < cmd->prd)

ntick++;
e l s e {

ntick = 0;
l ed .pa t t ern "- 0x03; / / invert 2 LSBs
pio_wri te (c tx t -> led_base , l e d . p a t t e r n) ;

}

The ISR gets the base address and command via the context argument, which is
recast to the c t x t l . t y p e type. Various parameters are extracted accordingly. The
n t i ck variable is used to keep track of elapsed time. Invoking the ISR corresponds
to the progress of 1 ms. If the system is not paused, n t i ck is incremented each
time. When n t i c k reaches the designated flashing period, it is then reset to 0 and
the LED pattern is toggled as well.

The main program is shown in Listing 13.2.

Listing 13.2

typedef struct flash_cmd{
int pause;
int prd;

} cmd.type;

typedef struct ctxtl{
cmd.type *cmd_ptr;
alt_u32 timer.base;
alt_u32 led.base;

int main(){
cmd.type su_cmd={0,100}; / / not pause; 100 ms interval
c t x t l . t y p e c t x t l ;

/ * initialization */
f lash . led . in i t .v l (BTN.BASE , USR.TIMER.BASE);
/* construct the "context" structure */
c t x t l . l e d . b a s e - LEDG.BASE;
c t x t l . t i m e r . b a s e - USR.TIMER.BASE;
c tx t l . cmd.ptr - ftsu.cmd;
/* register ISR */
alt. irq.register(USR.TIMER.IRQ, (void *) fectxtl , f l a s h . l e d . i s r) ;
/ * main loop */
v h i l e C l H

sw.get.command.vl(BTN.BASE, SWITCH.BASE, fcsw.cmd);

www.it-ebooks.info

http://www.it-ebooks.info/

332 INTERRUPT AND ISR

j tag_uar t_disp_msg_v2(sw_cmd);
sseg_disp_msg_vl(SSEG.BASE, sw.cmd);

}
}

The program first calls the f lash_led_init_vl() function to initialize the usr.timer
module and clear the edge capture register of the btn module. Since the required
setup is identical to that in Chapter 11, the same function in Listing 11.7 is used
again. It then constructs the context structure, c t x t l , and registers the ISR using
the HAL's a l t _ i r q _ r e g i s t e r O function. Note that USR_TIMER_IRQ corresponds to
the interrupt request number assigned to the usr_timer module in SOPC Builder. It
is a constant defined in the system.h file when the BSP library is generated. The
routines in the main loop are identical to those in Section 12.3.

13.2.4 ISR version 2

A general principle of designing an ISR is to keep it simple and fast and to include
only the most essential operation within the ISR. The second version of the timer
ISR follows this principle. We construct the ISR to establish a real-time clock with
a millisecond tick and then utilize this information in the main program to handle
the flashing interval.

In this version, we use global variables to exchange information between the ISR
and other functions. Two variables are defined in the file:

a l t _ u 3 2 i s r _ t i m e r _ b a s e ; / / base address of the timer module
a l t _ u 3 2 s y s _ m s _ t i c k ; / / elapsed ms ticks

The new ISR is shown in Listing 13.3.

Listing 13.3
s t a t i c void ms_c lock_ i s r (vo id* c o n t e x t , a l t_u32 id)
{

/ * clear "to" flag; also enable future interrupt */
t i m e r _ c l e a r _ t i c k (i s r _ t i m e r _ b a s e) ;
/ * increment ms tick */
sys_ms_tick++;

}

The ISR simply clears the timer's interrupt condition and increments sysjns . t ick.
Since the ISR is invoked every millisecond, sys_ms_tick keeps tracks of elapsed
time in terms of milliseconds. Since sys_ms_tick is defined as a 32-bit unsigned
data type, this real-time clock can count up to 232 ms (about 50 days). Because
sys_ms_tick is a global variable, its value can be accessed by any function in the
file.

The new LED flashing routine, led_flash_v4(), is shown in Listing 13.4.

Listing 13.4
void led_flash_v4(alt_u32 led.base, cmd_type cmd)
{
static alt_u8 led.pattern » 0x01;
static alt_u32 last-0;

if (cmd.pause)
return;

// no toggle if pause asserted

www.it-ebooks.info

http://www.it-ebooks.info/

INTERRUPT AND SCHEDULING 3 3 3

if ((sys_ms_tick - last)<cmd.prd) / / interval not reached
return;

l a s t - sys_ms_tick;
l ed .pat tern *- 0x03; / / toggle 2 LSBs of LEDs
pi.o_wri.te (led_base , l e d . p a t t e r n) ; / / write LEDs

The led_f lash_v4() function is almost identical to lecLf lash_v3() of Listing 12.4
except that the now variable (obtained by the alt_nticks() function) is replaced
by the sysjns.tick millisecond tick generated by a user-defined ISR.

The main program is shown in Listing 13.5.

Listing 13.5
int main O {

cmd.type sw_cmd={0,100}; / / not pause; 100 ms interval

flash_led_init_vl(BTN.BASE, USR_TIMER_BASE);
/* assign initial values to global variables */
isr_timer_base - USR_TIMER_BASE;
sys_ms_tick = 0;
/* register ISR */
alt_irq_register(USR_TIMER_IRQ, NULL, ms_clock_isr) ;
/ * main loop */
w h i l e Q H

sw_get_command_vl(BTN.BASE, SUITCH.BASE, ¿sw.cmd);
jtag_uart_disp_msg_v2(sw.cmd);
sseg_disp_msg_vl(SSEG.BASE, sw_cmd);
led_flash_v4(LEDG BASE, sw.cmd);

}
}

The other routines remain unchanged. Note that since the context is not used, the
NULL pointer is used in alt_irq_register() function.

13.3 INTERRUPT AND SCHEDULING

13.3.1 Scheduling

An embedded system continuously executes a collection of individual tasks. Schedul-
ing is the method by which tasks are given access to the processor. The simplest
scheduling scheme is the super-loop architecture discussed in Section 10.8.1:

main () {
sys_init () ;
while U H
task.K) ;
task_2();

task.n();
}

>

In this scheme, each task is polled and, if needed, executed in a round-robin manner.
To ensure proper operation, the overall loop execution time must be relatively small
so that the processor can respond to each task in a timely manner.

www.it-ebooks.info

http://www.it-ebooks.info/

334 INTERRUPT AND ISR

An embedded system may contain some special conditions that need immediate
attention and the corresponding tasks should be invoked within a small interval.
Since there is no preferential treatment in the super loop, these tasks must wait to
be polled. Unless the overall loop time is very short, the super-loop architecture
may not be able to meet the imposed timing constraints and some critical tasks
may miss the deadlines.

One way to alleviate the problem is to use the interrupt mechanism to bypass
the normal polling order. For a critical task, we can include an interrupt circuit in
the I/O module, assign a high-priority interrupt request to the module, and move
its functionalities to the corresponding ISR. When its interrupt is asserted (i.e.,
the task needs to be executed), the processor suspends the normal execution of the
polling loop and transfers control to the exception handler, which in turn invokes
the ISR. This interrupt mechanism essentially works as a scheduler that gives pref-
erential treatment to the critical task and postpones the execution of other tasks
in the polling loop. The example in Section 13.2.3 uses this scheme. The original
led_f l a sh 0 function is moved to an ISR and thus has higher priority than other
tasks. It is executed immediately when the 1-ms tick interrupt request is asserted.
This idea can be extended to multiple interrupts. Recall that the HAL framework
supports up to 32 prioritized interrupts. It is possible to include interrupt requests
for several I/O devices, assign priorities according to the importance of the cor-
responding tasks, and implement the desired functionalities in their ISRs. The
interrupt mechanism and the exception handler now implicitly establish priorities
among the tasks and perform scheduling accordingly.

Despite its simplistic appearance, scheduling with an interrupt can be very in-
volved and may complicate the software development. First, ISRs are the most
error-prone portion in embedded software. Since an ISR can be invoked any time
during program execution, it is difficult to develop, debug, test, and maintain.
Second, ISRs complicate the timing analysis of the main polling loop. We must
consider the frequency of occurrence and duration of the ISRs to ensure that normal
tasks within the polling loop can be executed in a timely manner. When multi-
ple interrupts are used, an ISR may effect and interfere with other ISRs and the
complexity multiplies. To ease the problem, it is good practice to keep ISRs simple
and fast. We should use an ISR to perform the most essential functionalities, such
as setting event flags, updating counters, sending a message to a queue, etc., and
leave the non-critical computation to a task within the main polling loop. This
simplifies the ISR development and timing analysis. The example in Section 13.2.4
follows this principle. The ISR only increments the sys jns . t ick variable and the
led_f lash_v4() function in the main polling loop examines the variable and per-
forms the remaining computation.

A super-loop plus simple-and-fast ISRs can satisfy the scheduling requirement
of many simple embedded systems. However, as an application becomes more
complex, the number of critical tasks and timing constraints grows. The interrupt
structure becomes involved and difficult to handle. An alternative is to use a real-
time OS to coordinate the operation. A real-time OS contains a scheduler that
monitors the overall system status, suspends and activates tasks according to the
predefined prioritizing schemes, and allocates the system resource and processor to
the selected tasks. A real-time OS, MicroC/OS-II, is ported to the Nios II processor
by Altera and is integrated into the HAL framework. The detailed discussion is

www.it-ebooks.info

http://www.it-ebooks.info/

INTERRUPT AND SCHEDULING 3 3 5

Table 13.1 Exception handler timing data

Core Latency Response t ime Recovery time

NiosII/f 10 105 62
NiosII/s 10 128 130
NiosII/e 15 485 222

beyond the scope of this book and the reference materials can be found in the
bibliographic section.

13.3.2 Performance

Since the interrupt has a significant impact on scheduling and timing, its perfor-
mance plays a critical role on the design of an embedded system. The performance
is effected by the system's memory organization, the top-level exception handler,
and the ISRs.

Memory residence The top-level exception handler and each ISR executes a certain
number of instructions. The execution time of an instruction partially depends on
where the instructions and the corresponding data reside. An Nios II system can
incorporate various types of memory, including on-chip memory, external SRAM
and external DRAM, and their memory access times are different. The inclusion
cache organization further complicates the picture. Since the access can occur
either in a fast internal cache or in slow external memory, the exact execution time
becomes indeterministic.

To alleviate the problem, the Nios II configuration allows us to include an op-
tional tightly coupled memory, as discussed in Section 9.3.6. It is a small in-chip
memory providing guaranteed low-latency memory access. We can place the ex-
ception handler and ISRs in this region to obtain the best performance.

Timing of top-level exception handler The top-level exception handler timing in-
cludes three parts:

• Hardware interrupt latency: from the time when an interrupt is asserted to
the time when the processor executes the instruction at the exception address.

• Response time: from the time when an interrupt is asserted to the time when
the processor executes the first instruction in the ISR. It includes the time for
the exception handler to determine the cause of the interrupt and save the
content of register file.

• Recovery time: the time taken from the last instruction in the ISR to return
to normal processing.

The number of clock cycles for each part is shown in Table 13.1 (assume that code
and data are stored in on-chip memory). Note that only the interrupt latency is
intrinsic to the Nios II processor. The response time and recover time are associated
with the exception handler, which is part of the HAL framework. It is possible to
replace the exception handler for better performance. For example, if a system only
has a simple timer interrupt, we can customize the exception handler not to check
the cause of the interrupt and to save only the affected registers. In fact, we can

www.it-ebooks.info

http://www.it-ebooks.info/

336 INTERRUPT AND ISR

just discard the exception handler and add code to the ISR to save and restore the
affected registers.

ISR performance enhancement Keeping ISRs simple and fast is one of the most
important design principles in embedded software development. Traditionally, this
is done by moving the non-critical computation out of the interrupt context, as
discussed in Section 13.3.1. With the availability of programmable logic, the SOPC
platform provides an alternative to enhance ISR performance. We can invest addi-
tional hardware resource to reduce the software processing time. Some techniques
are:

• Adjust the buffer size or implement advanced features, such as double buffer-
ing.

• Utilize DMA (direct memory access) controllers to transfer data between
memory modules.

• Implement custom hardware accelerator to perform computation intensive
processing.

The SOPC platform introduces a new dimension of flexibility. We can examine
the performance criteria and design complexity and find the best trade-off between
software and hardware resources.

13.4 BIBLIOGRAPHIC NOTES

Chapter 8 of Altera's Nios II Software Developer's Handbook, titled "Exception
Handling," explains the construction and use of HAL's top-level exception handler
and ISRs. Programming Embedded Systems in C and C ++ by M. Barr introduces
the basic concept of real-time OS. MicroC/OS II: The Real Time Kernel by J. J.
Labrosse describes the implementation of the MicroC/OS, illustrates its usage, and
provides detailed documentation on the data structure and function calls.

13.5 SUGGESTED EXPERIMENTS

13.5.1 Flashing-LED system with pushbutton switch ISR

The btn PIO module for the pushbutton switches is configured to include the edge
capture register. The register asserts an interrupt request when the designated edge
is detected. We can replace the sw_get_command_vlO function with an ISR. Derive
the ISR, modify other task functions and main program as needed, and verify its
operation.

13.5.2 ISR-driven flashing-LED system

In the enhanced flashing-LED system, it is possible to use ISRs to replace all task
functions in the main loop. Derive the ISRs, modify the main program, and verify
the operation. Note that the p r i n t f () function should be avoided in an ISR.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 337

13.5.3 "Uptime" feature in flashing-LED system

The "uptime" feature is described in Section 11.11.1. Redevelop the software using
the timer ISR of this chapter and verify its operation.

13.5.4 Reaction timer with keyboard control

A reaction timer with host keyboard control is described in Section 11.11.9. Develop
ISRs for the timer and JTAG UART. Redevelop the software with these ISRs (and
without C library or HAL API function) and verify its operation.

13.5.5 Digital alarm clock

A digital alarm clock is described in Section 12.6.5. Develop ISRs for the timer and
JTAG UART. Redevelop the software with these ISRs (and without C library or
HAL API function) and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

338 INTERRUPT AND ISR

13.6 COMPLETE PROGRAM LISTING

Listing 13.6 chu_mainJed2Jsr_vl.c

Module: Advanced flashing—LED system using ISR with "context" argument
File: chu-main-led2-isr-vl . c
Purpose: Task routines and main program

/* include section */
/* General C library */
»include <stdio.h>
/* Altera —specific library * /
»include " a l t . t y p e s . h "
»include < s y s / a l t _ i r q . h >
»include "system.h"
/* Module—specif ic library */
»include "chu_avalon_gpio.h"
»include "chu_timer_drv.h"

int pause;
int prd;

} cmd_type ;

typedef s truct c t x t l {
cmd_type *cmd_ptr;
alt_u32 timer_base;
alt_u32 led .base ;

} c t x t l _ t y p e ;

typedef s truct flash_cmd{
int pause;
int prd;

data type definitions

function: flash-led-init-v 1 ()
same as the one in Listing 10.18

function: sw.get-command-vl ()
same as the one in Listing 10.18

function : jtag.uart-disp-msg-v2 ()
same as the one in Listing 11.9

function: sseg-disp-msg-v 1 ()
same as the one in Listing 10.18

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 3 3 9

A******»****»**»*»,»*»**,***,,**»*********,***»*»******,*****«*,***,,**
* function: flash, led. isr ()
* purpose: isr for flash led
* argument:
* context: pointer to context
* id:
* return:
* note :
* — cmd passed within context

s t a t i c void f l a s h _ l e d _ i s r (v o i d * context , alt_u32 id)
{

c t x t l . t y p e * c t x t ;
cmd.type »cmd;
s t a t i c int ntick ■ 0;
s t a t i c unsigned char l ed .pa t t ern ■ 0x01;

/ * type casting */
ctxt = (c t x t l . t y p e *) context ;
cmd - ctxt->cmd_ptr;
/* clear "to" flag; also enable future interrupt */
t i m e r _ c l e a r _ t i c k (c t x t - > t i m e r . b a s e) ;
i f (cmd->pause)
return;

if (ntick < cmd->prd)
ntick++;

else {
ntick - 0;
led.pattern *- 0x03; // invert 2 LSBs
pio_write(ctxt->led_base , led.pattern);

}
}

* function: main()
* purpose: advanced ¡lashing—LED system using ISR with "context" argument
* note:

int main(){
cmd.type sw_cmd={0,100}; // not pause; 100 ms interval
ctxtl.type ctxtl;

flash_led_init_vl(BTN.BASE, USR.TIMER.BASE);
ctxtl.led.base = LEDG.BASE;
ctxtl.timer.base = USR.TIMER.BASE;
ctxtl.cmd.ptr ■ ftsv.cmd;
alt_irq_register(USR_TIMER_IRQ, (void *) fcctxtl, flash.led.isr);
whileUH
sH.get.command.vl(BTN.BASE, SWITCH.BASE, tsw.cmd);
jtag_uart_disp_msg_v2(sw.cmd);
sseg.disp.msg.vl(SSEG.BASE, sw.cmd);

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

3 4 0 INTERRUPT AND ISR

Listing 13.7 chü_mainJed2Jsr_v2.c

Module: Advanced flashing—LED system using ISR with global variables
File: chu.main-led2-isr.v2 . c
Purpose: Task routines and main program

/* include section */
/* General C library */
#include <stdio.h>
/* Alt era—specific library */
#include "al t_types .h"
#include < s y s / a l t _ i r q . h >
#include "system.h"
/* Module—specific library * /
#include "chu_avalon_gpio.h"
#include "chu.t imer.drv.h"

data type definitions

typedef s truct flash_cmd{
int pause;
int prd;

} cmd_type ;

global variables

alt_u32 isr_t imer_base; / / base address of the timer module
alt_u32 sys_ms_tick; / / elapsed ms ticks

* function: flash-led-init.vl()
* same as the one in Listing 10.18

function: sw-get-command-vl ()
same as the one in Listing 10.18

function : jtag.uart-disp-msg.v2 ()
same as the one in Listing 11.9

function: sseg-disp.msg-v 1 ()
same as the one in Listing 10.18

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 3 4 1

* function: ms.clock.isr ()
* purpose: isr for ms clock tick
* argument:
* context:
* id:
* return:

s t a t i c void ms_clock_isr(void* context , alt_u32 id)
{

/ * clear "to" flag; also enable future interrupt */
t im er _c l e ar_ t i ck (i s r_ t imer_base) ;
/ * increment ms tick */
sys_ms_tick++;

}

A***»**»*** ,***** ,******»*****»***********«**»****»»***********»*******
* function: led.flash.v4 ()
* purpose: toggle 2 LEDs according to the given interval
* argument:
* led.base: base address of discrete LED PIO
* timer.base: base address of user timer

* return:

void Ied_flash_v4(alt_u32 led.base, cmd.type cmd)
{
static alt_u8 led.pattern = 0x01;
static alt_u32 last=0;

if (cmd.pause)
return;

i f ((sys_ms_tick - last)<cmd.prd)
return;

l a s t = sys_ms_tick;
l ed .pat tern "= 0x03;
p i o . w r i t e (l e d . b a s e , l ed_pat tern) ;

/ / no toggle if pause asserted

// interval not reached

// toggle 2 LSBs of LEDs
// write LEDs

* function: main()
* purpose: advanced flashing—LED system using ISR with global variables
* note :

int main(){
cmd.type sw_cmd={0,100}; // not pause; 100 ms interval

flash_led_init_vl(BTN.BASE, USR.TIMER.BASE);
/* assign initial values to global variables */
isr_timer_base = USR.TIMER.BASE;
sys.ms.tick ■ 0;
/* register ISR */
alt. irq.register(USR.TIMER.IRQ, NULL, m s . c l o c k . i s r) ;
/ * main loop */
v h i l e U H

sw.get.command.vl(BTN.BASE, SUITCH.BASE, fesv.cmd);
jtag_uart_disp_msg_v2(sw_cmd);
sseg.disp.msg.vl(SSEG.BASE, sw.cmd);
led.flash_v4(LEDG_BASE, sw.cmd);

}

www.it-ebooks.info

http://www.it-ebooks.info/

PART III

CUSTOM I/O PERIPHERAL
DEVELOPMENT

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

CUSTOM I/O PERIPHERAL WITH PIO
CORES

The Altera SOPC platform includes a sophisticated structure to create custom
I/O interfaces to integrate I/O peripherals into Nios II systems. The process is
somewhat tedious. For an I/O peripheral with just a few ports and simple timing
requirement, it is possible to utilize multiple PIO cores to function as I/O buffers
rather than creating a new core. In this chapter, we demonstrate this scheme by
interfacing the previous division circuit with a Nios II processor.

14.1 INTRODUCTION

A Nios II processor utilizes a memory-mapped I/O scheme to access I/O peripher-
als. The simplest interface between a processor and an I/O peripheral is a collection
of registers. The processor treats these registers as memory locations and reads
and writes data accordingly. For example, the JTAG UART core in Section 11.3
contains two interface registers and the timer core in Section 11.4 contains six inter-
face registers. Altera SOPC platform includes a sophisticated structure, known as
Avalon interconnect, to create custom I/O interfaces to accommodate the buffering
and timing requirements of I/O peripherals and hardware accelerators. The Avalon
interconnect is discussed and used in the remaining chapters of Part III and the
chapters of Part IV.

Creating a new IP core in the SOPC platform is a somewhat tedious procedure.
An alternative is to utilize the existing PIO cores as interface registers and instan-
tiate a PIO module for each I/O port. Since each individual port requires a PIO

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 345
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

346 CUSTOM I/O PERIPHERAL WITH PIÓ CORES

module and timing cannot be adjusted, this approach is only feasible for an I/O
peripheral with just a few ports and simple timing requirement. In the following
sections, we use the previous division circuit to demonstrate this scheme.

14.2 INTEGRATION OF DIVISION CIRCUIT TO A NIOS II SYSTEM

A division circuit is discussed in Section 7.3.2. We can add a 32-bit division circuit
to a Nios II system and use it as an accelerator to speed up the division operation.
This is just for demonstration purposes since a dedicated division hardware unit
can be included in a Nios II processor when configured.

The division circuit has two input data ports (dvnd and dvsr), two output data
ports (quo and rmd), one control signal (s t a r t) , and two status signals (ready and
done.t ick). The ready signal is 1 when the circuit is ready to take new input
data (i.e., is not in use). The external master circuit should place the dividend
and divisor data in dvnd and dvsr ports and assert the s t a r t signal for one clock
cycle to initiate the operation. When the calculation is completed, the quotient and
remainder are sent to the quo and rmd ports and the done. t ick signal is asserted
for one clock cycle.

14.2.1 PIO modules

We can instantiate an individual PIO module for each I/O port of the division
circuit and give it a similar name. The following modules are needed:

• dvnd module: configured as a 32-bit output-only port.
• dvsr module: configured as a 32-bit output-only port.
• s t a r t module: configured as a 1-bit output-only port.
• quo module: configured as a 32-bit input-only port.
• rmd module: configured as a 32-bit input-only port.
• ready module: configured as a 1-bit input-only port.
• done. t ick module: configured as a 1-bit input-only port with an edge capture

register.
The first six modules are configured as simple one-direction registers that drive
output or capture input.

The nature of the done. t ick signal is somewhat different from the division cir-
cuit's other output signals. It is asserted for one clock cycle when the division
operation is completed. We add an additional edge capture register for the cor-
responding module. The register will be set to 1 when the 0-to-l transition of
the done. t ick signal is detected. The register can be used as a "flag" between
the processor and the division circuit. The division circuit sets this flag to inform
the processor that the computation is complete. After retrieving the results, the
processor then can clear the flag to 0 by writing dummy data to this module. Fur-
thermore, the interrupt request signal associated with the edge capture register can
be treated as the interrupt request from the division circuit.

For clarity, we use separate PIO modules for an individual I/O port. If desired,
we can reduce the number of PIO modules by packing some signals (e.g., ready
and done.t ick signals) into one module and configure the PIO core to include both
input and output registers.

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING 347

14.2.2 Integration

Tp integrate a division circuit to a Nios II system, we need to instantiate seven PIO
modules specified in the previous subsection. It is a somewhat tedious process. It
will become more involved and error-prone when multiple instances are needed.

14.3 TESTING

To illustrate the use of the division circuit, we construct a Nios II system that in-
cludes the PIO modules and develop software to verify its operation. The procedure
is:

1. Create a Nios II system that contains the seven PIO modules and supporting
peripherals.

2. Create a top-level HDL file that instantiates the Nios II system and the divi-
sion circuit.

3. Develop testing software.
4. Build and run software.

Nios II system The testing Nios II system contains the following parts:
• A Nios Il /e processor.
• Seven PIO modules associated with the division circuit.
• An SRAM controller core to utilize the external SRAM device.
• A JTAG UART core to obtain input operands and display the division results.
• A PIO core to interface the four seven-segment LED displays.
• A system id core.

It can be constructed following the procedure in Section 11.5.1 and the completed
SOPC configuration is shown in Figure 14.1.

Top-level HDL file After the HDL files are generated by SOPC Builder, we can
create a top-level module. The module incorporates the Nios II system and the
division circuit and its code is shown in Listing 14.1.

Listing 14.1 Top-level system

module n ios_div l_ top
(

input wire elk ,
output wire [7:0] l edg ,
output wire [6:0] hex3 , hex2 , hexl , hexO ,
output wire [17:0] sram.addr,
inout [15:0] sram.dq,
output sram_ce_n, sram_oe_n, sram_ue_n,
output sram_lb_n, sram_ub_n

) ;

/ / signal declaration
i wire [31:0] dvnd, dvsr , quo, rmd;

wire [31:0] sseg;
wire s t a r t , ready, done . t i ck;

/ / body
i / / instantiate nios

n i o s . d i v l cpu_unit

i wir

i /

www.it-ebooks.info

http://www.it-ebooks.info/

348 CUSTOM I/O PERIPHERAL WITH PIO CORES

U M Conn Module Hem*

•

m
m
W
B
(3
S3
Ξ
'
v

S
'

'—

^»

I 1

■ — ,

■ - —

^—t

^ - 1

—
^
— t

--t

n*uijcl]en_rnea-ter

dala_mule*

fa g_defc4jg_ module

B ira/n

cpu_dri

B * » g

■ 1

B |t*g _ua Π

avaxwjstl_aievfl

B *urt
n

B dvm>

s i

B oVnd

■ 1

B done j ick

■ 1

B raadr

• 1

B quo

s i

Ξ mid

11

El *ν»κΐ
COfllroi_alöve

Descplcn

Na» 1 Processor

Avekin Memory Mapped Master

Avabn Memory Mapped Uaaler

Avalen Memory Mapped S I · »

ehu_evalon_sram

Avalen Memory Mapped Sieve

PIO ;ParalelLrü>

Avalen Memory Mapped Slave

JTAG UART

Avalen Memory Mapped Stave
PIO iPereeel HO)

Avalen Memory Mapped Salve

POiPeuesllrOi

Avalen Memory Mapped Sieve

PIO ^Parase! I/O)

Avalen Memory Mapped Slave
PIO tParaeel I/O i

Avalan Memory Mapped Slave

PIO [ParaM HOI

Avalen Memory Mapped Sieve

PIO (Paraael N 1

Avalen Memory Mapped Slave

PC (Parale! ιθι
Avalen Memory Mapped Salve

System 0 Perajherai

Avalen Memory uapped Slave

Clock

e l k

e l k

e l k

e l k

e l k

t l k

a *

e l k

e l k

e l k

e l k

e l k

Bau End

ISO 0
OxOOiooaoo

0*00060000

0x00101070

. 0x00101060

0x00tO1010

0x00101010

0x00101020

0x00101030

Ü*DÜ1Ú1Ü40

OxOO101050

Ο.ΡΟΙϋΙΰΙ,Ο

ΟχΟΟΙΟΙΟββ

I M 3 1

0 * 0 0 1 0 0 1 «

0x000 £ i f £ f

0x0010107*"

0x00101007

OxOOlOlOOf

oxooioioie

OxOOlOlOIf

0x00101031"

0x0010104£

Οχ0010105Γ

0 * 0 0 1 0 1 0 «

OxOOlOlOOf

« 0

«—s

T

^ a

Figure 14.1 The completed SOPC window.

(. e l k (e l k) ,
. r e s e t _ n (l ' b l) ,
.out_port_from_the_sseg(sseg) ,
. ou t_por t_ from_the_s tar t (s tar t) ,
.out_port_from_the_dvnd(dvnd),
.out_port_from_the_dvsr(dvsr) ,
. in_port_to_the_quo(quo) ,
. in_port_to_the_rmd(rmd),
. in_port_to_the_ready(ready) ,
. in_port_to_the_done_t ick(done_t ick) ,
.sram_addr_from_the_sram(sram_addr),
. sram_ce_n_irom_the_sram(sram_ce_n) ,
.sram_dq_to_and_from_the_sram(sram_dq),
. sram_lb_n_from_the_sram(sram_lb_n),
.sram_oe_n_from_the_sram(sram_oe_n),
.sram_ub_n_from_the_sram(sram_ub_n),
. sram_we_n_f rom_the_sram(sram_we_n)

) ;
/ / instantiate division circuit
div # (. U (3 2) , .CBIT(6)) d.unit

(. c l k (c l k) , . r e s e t (1 ' b O) , . s t a r t (s t a r t) ,
. d v s r (d v s r) , .dvnd(dvnd), .quo(quo), .rmd(rmd),
. ready(ready) , . d o n e . t i c k (d o n e . t i c k)) ;

/ / output assignment
assign hex3 - s s e g [3 0 : 2 4] ;
ass ign hex2 - s s e g [2 2 : 1 6] ;
ass ign hexl = s s e g [1 4 : 8] ;
ass ign hexO - s s e g [6 : 0] ;
ass ign ledg = rmd [7 : 0] ;

endmodule

i wir

i /

i wir

i /

i wir

i /

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING 349

Note that the seven I/O ports of the division circuit are shown as the I/O ports
of the Nios II processor and connected to the division unit via the internal signals.
We can compile this system to obtain the configuration (i.e., .sof) file.

Application program After the creation of a new I/O peripheral, the driver routines
should be developed to access and communicate with the peripheral. However, since
this division circuit is only used for demonstration purposes, we just put all low-level
access codes in the main program. The complete program is shown Listing 14.2.

Listing 14.2
»include <stdio.h>
»include "system.h"
•include "chu_avalon_gpio.h"

int main O
{

alt_u32 a, b, q, r, ready, done;
alt_u8 dil.msg[4]»{sseg_conv_hex(13),0xfb,Oxff,sseg_conv_hex(1)};

sseg_disp_ptn(SSEG_BASE, dil.msg); // display "di 1"
printf("Division accelerator test #1: \n\n");
while (1){

printf("Perform division a / b · q remainder r\n");
printf("Enter a: ") ;
scanf("5Cd", fta);
printf("Enter b: ") ;
scanf("7.d", Jtb);
/ * send data to division accelerator */
pio_urite(DVND_BASE, a);
pio_write(DVSR_BASE, b);
/ * wait until the division accelerator is ready */
w h i l e (1) {

ready - pio_read(READY_BASE)ft 0x00000001;
if (ready==l)

break;
}
/ * generate a start pulse */
p r i n t f (" S t a r t . . . \ n ") ;
pio_write(START_BASE, 1) ;
pio_write(START_BASE , 0) ;
/ * wait for completion */
w h i l e (1) {

done » I0RD(D0NE_TICK_BASE, PI0_EDGE_REG_0FT) k 0 x 0 0 0 0 0 0 0 1 ;
i f (d o n e - » l)

break;
}
/ * clear done-tick register */
pio_write(D0NE_TICK_BASE, 1) ;
/ * retrieve results ¡rom division accelerator */
q - pio_read(QUO_BASE);
r = pio_read(RMD_BASE);
p r i n t f (" H a r d w a r e : 5Cu / %u ■ %u remainder Xu\n" , a , b , q , r) ;
/ * compare results with built—in C operators */
p r i n t f (" S o f t w a r e : */.u / '/.u = */.u remainder "/.u\n\n\n" , a , b , a / b , a"/.b);

} / / end while

The main loop of the program prompts a user to enter the dividend and divisor via
the console, sends data to the division core, retrieves the quotient and remainder,

www.it-ebooks.info

http://www.it-ebooks.info/

350 CUSTOM I/O PERIPHERAL WITH PIO CORES

and displays them on the console. To verify the correctness of the circuit, the same
operation is also performed with C's built-in operators (i.e., a/b, a'/,b) in the last
statement.

The code includes two busy-waiting loops to check whether the division circuit
is available and to check whether the calculation is completed. Other mechanisms,
such as an interrupt or timer, can be used to coordinate the hardware accelerator's
operation as well. In this particular example, the division core takes about 35 clock
cycles to complete the execution, which is much faster than the execution time of
the scanf () and p r i n t f () functions. Thus, these waiting loops are not actually
needed and are included just for demonstration purposes.

14.4 SUGGESTED EXPERIMENTS

14.4.1 Division core ISR

Utilize the interrupt capability of the done. t ick module of the interface to develop
an ISR routine for the division circuit and verify its operation.

14.4.2 Division core with eight-bit data

Assume that only 8-bit data are needed for the division circuit. Since the data
width of a Nios II processor is 32 bits, we can pack the data and status signals
into a single word. Redesign the interface circuit with a minimal number of PIO
modules, derive a Nios II system, develop testing software, and verify its operation.

14.4.3 Division core with 64-bit data

We want to increase the data width of the division circuit to 64 bits. Since the data
width of Nios II processor is 32 bits, two words are needed to access an input and
output data. Redesign the interface circuit with adequate PIO modules, derive a
Nios II system, develop testing software, and verify its operation.

14.4.4 Fibonacci number circuit

The Fibonacci number circuit is discussed in Section 7.3.1. We can modify the cir-
cuit to accommodate a 64-bit result (i.e., the output f port is increased to 64 bits
wide). Based on this circuit, design the interface circuit with adequate PIO mod-
ules, derive a Nios II system, develop testing software, and verify its operation.

14.4.5 Period counter

An accurate low-frequency counter is discussed in Section 7.3.5. In addition to the
division circuit, it consists of the binary-to-BCD conversion circuit in Section 7.3.3
and the period counter in Section 7.3.4. Create two new interface circuits with
adequate PIO modules for the conversion circuit and the period counter, reconstruct
the accurate low-frequency counter in Section 7.3.5 with these PIO modules, derive
a Nios II system, develop testing software, and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

AVALON INTERCONNECT AND SOPC
COMPONENT

The Altera SOPC platform utilizes the Avalon interconnect structure to connect the
processor and various IP core modules. For a custom I/O peripheral or hardware
accelerator, we can add a wrapping circuit that complies with the Avalon specifi-
cation and convert it into an SOPC component using Altera's SOPC Editor utility
program. The component then can be used as a normal IP core and integrated into
a Nios II system. In this chapter, we provide an overview of Avalon interconnect,
discuss the design of the wrapping circuit, and use the previous division circuit to
demonstrate the creation and use of an SOPC component.

15.1 INTRODUCTION

An embedded system consists of a processor, memory modules, general I/O pe-
ripherals, and hardware accelerators. In a traditional embedded system, the data
transfer is designed around the processor and the system usually uses a shared bus,
which is a collection of wires conveying address, data, and control signals, to con-
nect the processor with other components. Since the bus is a centralized resource,
it becomes a bottleneck as the amount of data transfer increases. The degradation
is more serious for a memory-mapped I/O architecture since the memory modules
and I/O peripherals share the same bus.

The Altera SOPC platform uses a different approach. It defines a set of stan-
dardized interfaces, known as Avalon interfaces, to accommodate various commu-
nication needs and to connect components within an FPGA chip. After we map

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 351
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

352 AVALON INTERCONNECT AND SOPC COMPONENT

Nios II
processor

1

'

Avalon interconnect fabric

-
'

1 "
F

SRAM
controller

1

'

I

r

SRAM
chip

+
JTAG
UART

''

timer

"

LED
PIO

1

Figure 15.1 Conceptual block diagram of a Nios II system.

an I/O peripheral's ports to the interface signals and set the timing properties, it
can be integrated into an Avalon-based system. These interfaces are then realized
by interconnect fabric, which consists of decoding, multiplexing, arbitration, and
timing logic. Although the fabric is usually depicted as a shared entity in the di-
agram, as in Figure 15.1, the logic and routing structures takes advantage of the
FPGA's programmability and are constructed in a distributive fashion. The inter-
connect fabric is automatically generated by the SOPC Builder software tool and
customized to match the individual system configuration. This approach eliminates
the contention for a centralized resource and improves the performance and scala-
bility of the system. The conceptual implementation of the previous interconnect
fabric is shown in Figure 15.2.

The Avalon standard consists of following types of interfaces:
• Avalon memory mapped interface (Avalon MM): This interface defines an

address-based master-slave connection. An Avalon MM master uses an ad-
dress to identify an Avalon MM slave and can read data from or write data
to the slave.

• Avalon streaming interface (Avalon-ST): This interface defines a dedicated
unidirectional link between two components. An Avalon-ST source transmits
data to an Avalon-ST sink continuously.

• Avalon memory mapped tristate slave interface: This interface can be con-
sidered a special Avalon MM slave and is used to drive off-chip tristate buses
and peripherals.

• Avalon clock: This interface defines the clock and reset signals used by a
component. An Avalon clock output interface generates the clock signal and
an Avalon clock input interface receives the clock signal.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 3 5 3

clock
source

Co elk

Γ
\ arbiter/

r+ CI

L
SRAM

controller

Cond

cih

SRAM
chip

elk

p3 Nlos II
processor

instruction data

IrqO

¡rq1

/ m u x \

JTAG
UART

■* Ci timer Is —ι Ci

elk i r q l elk irqO elk

Z]
■4 read data

write data and

Avalan MM masi&í

S I Avalún MM slave

LED
PIO

Cond

Is Interrupt sercrjer

Ir I Interrupt receiver

Clock input Cond I Conduit

control signals Co Clock outprji

Figure 15.2 Conceptual implementation of Avalon interconnect fabric.

www.it-ebooks.info

http://www.it-ebooks.info/

3 5 4 AVALON INTERCONNECT AND SOPC COMPONENT

Printed Circuit Board SRAM I l.ir,n

ft ft
Altera FPGA

IRQ4

I l iOJ Mm n

5 IRQ2 _

Avalen MM I

DDR ConítrTjJteí

Ethemel
conirailer

í̂ 53
Scalier
Gather
DMA

Scalier
Gainer
DMA

HtTCMt
PLL

Figure 15.3 A representative Avalon-based system (Courtesy of Altera Corp.).

• Avalon interrupt: This interface allows slave components to signal events to
master components. An Avalon interrupt sender interface generates the inter-
rupt request and an Avalon interrupt receiver interface accepts and processes
the requests.

• Avalon conduit: This interface groups and exports signals to the outside of
an SOPC Builder system.

A single component can include any number of these interfaces and can also include
multiple instances of the same interface type.

A representative system is shown in Figure 15.3. The Avalon MM interface is
the main structure. The Nios II processor uses it to access the control and status
registers of on-chip components. The two "scatter gather DMAs" also function as
masters and establish direct data transfer between the Ethernet data stream and
external memory devices. The Avalon-ST interfaces provide dedicated links be-
tween the DMAs and Ethernet controller and thus offload the traffic from the main
Avalon MM interface. The interrupt interfaces are included in several components.
Four peripheral components generate the requests, which are connected to and ser-
viced by the Nios II processor. The clock interfaces are included in all components.

www.it-ebooks.info

http://www.it-ebooks.info/

AVALON MM INTERFACE 355

The two clock signals are generated by a PLL from an external reference clock and
then distributed to various components. Finally, an Avalon MM tristate interface
provides off-chip access to SRAM devices and flash memory devices, which share
the same I/O lines, and a conduit interface for off-chip DDR memory access.

The Avalon MM interface is the key interconnect for a Nios II system and its
characteristics and use are discussed in the subsequent sections.

15.2 AVALON MM INTERFACE

The Avalon MM interface basically defines a collection of interface signaL· and a
set of properties. The latter mainly specifies the timing characteristics of ports.
An Avalon MM master can initiate a transaction to read or write data and an
Avalon MM slave responds to the request from the master. In an embedded system,
a Nios II processor functions as a master and most I/O peripheral devices and
hardware accelerators are slaves. The interface standard is intended to support
a wide variety of components and includes many advanced features and options.
It can accommodate the slow slave device by stretching the enable signals and
utilizing flow-control protocols and can facilitate a high data rate with bursting
and pipelined transfers. These features and options are not mandatory and an
interface only needs to include the desired features. Our coverage focuses on a
subset that is relevant to our designs in Parts III and IV.

15.2.1 Avalon MM slave interface signals

The Avalon MM slave interface defines more than a dozen signals. The fundamental
signals are:

• read (read_n): it is a 1-bit signal asserted in a read transfer (i.e., a master
retrieves data from a slave). The _n version is used for the active-low signal;
i.e., read_n is asserted when it is 0.

• wr i te (write_n): it is a 1-bit signal asserted in a write transfer (i.e., a master
writes data to a slave). The _n version is used for the active-low signal.

• address: it is used to specify an offset in the slave address space. Each value
identifies a memory location in the slave address space. Its width can be
defined by the designer, which ranges from 1 to 32 bits.

• readdata: it is the data provided by a slave in a read operation. The width
can be 8, 16, 32, 64, 128, 256, 512, or 1024.

• wri tedata : it is the data written to a slave in a write operation. The width
selection is similar to that in readdata.

• byteenable (byteenable_n): it enables specific byte lane(s) during transfers.
For examples, a 4-bit byteenable signal can be used to select byte lanes of a
32-bit wr i t eda ta signal. The value 1111 writes full 32 bits, the values 1100
and 0011 write the upper and lower two bytes, respectively, and the values
1000, 0100, 0010, and 0001 write the byte 3, 2, 1, and 0, respectively.

• ch ipse lec t : it is a 1-bit signal asserted when the slave device is selected.
The ch ipse lec t signal is specified in an Avalon memory mapped tristate interface
but is frequently included in the Avalon MM slave design. The other unlisted
signals are mainly for flow control and pipelined and burst data transfers.

www.it-ebooks.info

http://www.it-ebooks.info/

3 5 6 AVALON INTERCONNECT AND SOPC COMPONENT

15.2.2 Avalon M M slave interface properties

The Avalon MM slave interface defines about a dozen of properties. Most of them
relate to timing of the interface's read and wr i t e signals. The key properties are:

• t imingUnits: it specifies whether to use nanoseconds or clock cycles in timing
specifications.

• readWaitTime: it controls the length of the read signal. It allows us to
prolong the read signal to accommodate a slow I/O device in a read operation.

• writeWaitTime: it controls the length of the wr i t e signal. It allows us to
prolong the wr i te signal to accommodate a slow I/O device in a write oper-
ation.

• setupTime: it specifies the time interval between the assertion of the address
and da ta signals and the assertion of the read or wr i te signal.

• holdTime: it specifies the time interval between the deassertion of the address
and data signals and the deassertion of the wr i te signal.

• readLatency: it specifies the time interval (i.e., latency) between the asser-
tion of the read signal and the availability of data.

The other unlisted properties are mainly for pipelined and burst data transfers.
The Avalon MM interface is a synchronous interface and all transactions are

performed on a clock-by-clock basis. When a parameter is specified in a nanosecond
unit, it will be converted to clock cycles during processing. For example, in a system
with a 20-ns clock, a parameter of 50 ns will be converted to 3 clock cycles.

15.2.3 Avalon M M slave timing

The transactions of an Avalon MM interface are controlled by a common clock
signal. The various properties can be modified to accommodate the timing charac-
teristics of an I/O device.

In the simplest timing scenario, the transaction is completed in one clock cycle.
In this scenario, the readWaitTime and writeWaitTime properties are set to zeros,
which means that there is no extra wait time for the read and wr i te signals and thus
their length is only one clock period. The setupTime, holdTime, and readLatency
properties are also set to zeros, which means that the read, wr i te , address, and
data signals are asserted and deasserted at the same time.

The timing diagram of this scenario is shown in Figure 15.4. A read operation is
shown on the left. At the rising edge of the e lk signal, ίχ, a master initiates a read
operation by placing the desired address value, addrO, on address and asserting the
read signal. After a small delay, the signals are settled at t-¿· After the designated
slave device detects the commands, it places the data, dataO, on readdata at Í3
and the master latches the data at the rising edge of the next clock, ¿4. The master
can issue the next read operation at Í4 if desired. This scenario imposes a tight
timing constraint on the slave device since the address and read signals are settled
after the first clock edge and the readdata signal must be available before the next
clock edge. The slave device must return data within the same clock period without
using the clock edge to sample address and read.

A write operation is shown on the right. At the rising edge, £5, a master initiates
a write operation by placing the desired address value, addrl , and data value,
da ta l , on address and wr i t eda ta and asserting the wr i te signal. After a small
delay, the signals are settled at te- It deactivates the signals at the next rising edge,

www.it-ebooks.info

http://www.it-ebooks.info/

AVALON MM INTERFACE 357

13 t4

elk

read

write

address

readdata

writedata

ad dru

datäO

addM

data i

readWaitT¡rr>e=0; writeWaitTtme=0;

Figure 15.4 Timing diagram with no wait state.

t1 t2

elk

read

write

address

readdata

writedata

readWaitTime=1: wr¡leWa¡ITime=2;

Figure 15.5 Timing diagram with one read wait states and two write wait states.

Ϊ * idrO

)(data

n_ I addr l X
Λ

data l X

¿7. Due to the propagation delays, these signals remain stable for a small interval.
The slave device usually uses the edge at Í7 to check write and latch the address
and data.

By adjusting the values of readWaitTime and writeWaitTime properties, we
can prolong the length of the read and write signals. For example, we can set
readWaitTime to 1 and set writeWaitTime to 2 to expand the read signal to two
clock cycles and expand the write signal to three clock cycles. The timing dia-
gram is shown in Figure 15.5. In the read operation, the address and read signals
remain activated for two clock cycles. The master waits one extra clock cycle and
retrieves the data at the clock edge labeled t2. The additional time allows the slave

www.it-ebooks.info

http://www.it-ebooks.info/

358 AVALON INTERCONNECT AND SOPC COMPONENT

neadWa¡tTime=Q, readLatency=2;

Figure 15.6 Timing diagram of pipelined read operation with a latency of 2.

elk

write

address

writedata

addrO

dataO

selupTime=2; holdTime=1;

Figure 15.7 Timing diagram of write operation with non-zero setup time and hold time.

to detect the read signal latch address at t\ and thus facilitates the synchronous
slave operation. In the write operation, the wr i te , address, and wr i t eda ta sig-
nals last for three clock periods. In addition to specifying a fixed number of wait
states, we can also include an additional slave-generated wai t request signal in the
Avalon MM interface to let the slave control the length of the wait time.

In some devices, the read operation can be done in a "pipelined" fashion, in which
the data are provided at a high rate but there is a latency between the activation
of the read signal and the availability of the data. We can adjust the readLatency
to accommodate this scenario. For example, we can set readLatency to 2 and
readWaitTime to 0 and a representative timing diagram is shown in Figure 15.6.
Three consecutive read operations are issued at ίχ, Í2, and Í3. The data become
available after two clock cycles, at £4, Í5, and ίβ, respectively. Note the difference
between this and the prolonged read signal in Figure 15.5. Despite the initial delay,
a master can issue a read operation every clock cycle in the pipelined operation.
On the other hand, a master can only issue a read operation every two clock cycles
in the prolonged read operation.

In some memory devices, the data and address must be stable before and after
the enabling read or wr i te signal. The intervals are defined as the setup time and
hold time in Avalon specification (note that these are not the same setup time and
hold time defined for an FF in Section 5.1.1). We can include the intervals by setting
the setupTime and holdTime properties. For example, we can set setupTime to 2
and holdTime to 1 and a representative timing diagram is shown in Figure 15.7.

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM INTERCONNECT FABRIC FOR AVALON INTERFACE 3 5 9

Use Corn.. Module Name

I

y\

m
m
HI

(

^

— ■

*-»
L—

n slru cuon_ master

d*ia.jTia5ier

Ξ *r*m

cpu_eir1

Ξ |Ug_u*rt

avafcin _f ao_aia v e

1 I l imi t

• 1

a KCJ

11

Description

Nios I Processor

Avalen Memory Mapped Nailer

Avalon Memory Mapped Muter

ctnj_Hvaion_srain

AvaJon Memory tapped Slav a

JTAG UART

Avalon Memory Mapped Slave

hlervslTmer

Avalon Memory Mapped Slav a

POfParam (Όι

Avalon Memory Mapped Slave

Cue*

elk

elk

elk

elk

elk

B t K End

I Í O 0

0x00100030

Οκοριαααοα

0x00100020

IRQ

0x00100037

QxOOlOODlf

OxOOlOOOif

HO

11

-¡1
-H

X * » X | Addfm leap... | | FEW..,. J Fur Avexw-WM

Figure 15.8 Screen capture with Avalon MM connection.

15.3 SYSTEM INTERCONNECT FABRIC FOR AVALON INTERFACE

When constructing an embedded system in the Avalon framework, we simply se-
lect the desired IP cores and connect the interface ports. The software tool, SOPC
Builder, will automatically generate the interconnect fabric according to the con-
figuration. In a typical Avalon MM-based system, the fabric usually consists of
logic to support address decoding, dynamic bus sizing, data multiplexing, multi-
master arbitration, wait state generation, burst and pipelined transfer control, and
interrupt processing.

The structure of the Avalon interconnect fabric can be explained by an example.
Consider a Nios II system with an external SRAM device, a JTAG UART, a timer,
and a PIO for LEDs. The conceptual top-level diagram is shown in Figure 15.1. It
is similar to the enhanced flashing-LED system discussed in Figure 11.10 but with
fewer I/O peripherals. We can derive the system following the procedure outlined
in Section 11.5.1. The completed Screenshot is shown in Figure 15.8.

The system consists of several IP cores: a Nios II processor (without the JTAG
debug module), an SRAM memory controller module, a JTAG UART module, a
timer module, a PIO module, and an implicit clock source. These cores follow the
Avalon specification and their I/O ports are defined through proper interfaces. The
following interfaces are used:

• Clock source: clock output.
• Nios II processor: two Avalon MM masters (one for instruction and one for

data), interrupt receiver, and clock input.
• SRAM controller module: Avalon MM slave, conduit, and clock input.
• JTAG UART module: Avalon MM slave, interrupt sender, and clock input.
• Timer module: Avalon MM slave, interrupt sender, and clock input.
• LED PIO module: Avalon MM slave, conduit, and clock input.

The detailed connections among the interfaces are shown in Figure 15.2. Note that
a multiplexing circuit, labeled mux, is used to select and route the designated read
data to the data port of Nios II, and an arbitration circuit, labeled arbiter, is used
to coordinate the SRAM access from two Avalon MM masters.

In the SOPC Builder environment, the system connection is represented in table
format, as in Figure 15.8. The Description column shows the names and interfaces

www.it-ebooks.info

http://www.it-ebooks.info/

3 6 0 AVALON INTERCONNECT AND SOPC COMPONENT

f K,

* <

* :
r «

f 1

■ ►

^ ' fr

L, ,

s *
L. ζ

*> fr

*
^ ΐ

A 'etet

Cwcnpten
Ctrct Sfturce

ClDCt Output

Reset Output

H a i I Pioceawjf

Cuck Inpul

A v i b n Homcry Ut|>u«d U i a l «

Α,-Hftfi Memory Mapped nuief
rierru.p< Reader
Cull [im kifiTLicüun Uuiff

Ctocimpui

cpu_öri

• valQA.jcag i * v t

E ted

Avalen Utmory Uftppad S*v*

JTAG UART

Clock Input

Avalen Μητηητ Mapped SUve
htefrupT 3βΛ*Γ
uterval Tmer
CbcLhpuL

Avaton Memory Mapped Sfevt
tttenu pt Sender
P lO iPara le l iO l

Cbck JnpuE

Avabn Memory Mapped Slave

BSÍC

» 0 0

OxDDOaCDOD

□lOQlQCQlQ

OxOO100000

0x00100070

M.fl

I3Ü 3l·

OxOOQfffCf

0Μ0Π1ΠιΉ3~7

0x0UlU0O1f

0 x 0 0 1 0 0 0 2 f

RQ

r

>-i

X * - X WD

Figure 15.9 Screen capture with detailed connection.

of the IP cores. The connection between the interfaces is depicted under the Con-
nections (or Conn...) column. By default, it just displays connections of the Avalon
MM interface. We can include the connections of other interface types by clicking
on the bottom Filter... button and selecting the desired types. The column in Fig-
ure 15.9 shows all connections, including the clock and interrupt interfaces. It is
similar to the diagram in Figure 15.2. To reduce the clutter in the Connections col-
umn, SOPC Builder includes separate columns for the clock interface, labeled clock
in the table, and for the interrupt interface, labeled IRQ. The IRQ column shows the
interrupt receiver and sender. A number is associated with each interrupt sender
to indicate the priority of the corresponding interrupt request.

The remaining two columns, Base and End, in Figure 15.8 show the address
assignment. Recall that the Nios II processor uses the memory-mapped I/O scheme,
which means the same 32-bit address space is assigned to both memory modules
and I/O peripherals. The two columns show the address space allocated to each
module. For example, the JTAG UART core has two 32-bit addressable registers
(totaling 8 bytes) and thus requires 8 address locations. The table shows that
the memory address space between 0x00100030 and 0x00100037 is assigned to this
module.

When we construct this Nios II system, the default interface connections, mem-
ory mapping, and interrupt priority are automatically generated when a component
is instantiated. The default setting is generally correct for a simple system. Mod-
ifying the setting is quite simple. To revise a connection, we can move the mouse
pointer over the Connections column to toggle any crossing point in the connection
matrix. Similarly, we can move the mouse pointer to the designated fields to select
a different clock signal, modify the address map, or assign a different interrupt
priority.

www.it-ebooks.info

http://www.it-ebooks.info/

SOPC I/O COMPONENT WRAPPING CIRCUIT 3 6 1

15.4 SOPC I/O COMPONENT WRAPPING CIRCUIT

A custom hardware accelerator or I /O peripheral is usually implemented using the
FSMD scheme. The circuit typically contains multiple input and output data ports
as well as various control and status signals. For example, the division circuit
discussed in Section 7.3.2 has two input data ports (dvnd and dvsr), two output
data ports (quo and rmd), one control signal (s t a r t) , and two status signals (ready
and done.t ick).

On the other hand, a Nios II processor utilizes the Avalon interconnect for data
transfer and control. To connect a custom circuit to a Nios II system, we need to
covert the circuit to an IP core (i.e., an SOPC component) with adequate Avalon
interfaces. This usually involves adding a wrapping circuit on top of the FSMD
circuit to make its I /O ports compatible with the Avalon specification. The wrap-
ping circuit usually consists of interface buffers, output decoding circuits, and input
multiplexing and decoding circuits.

15.4.1 Interface I/O buffer

In the memory-mapped I/O scheme, an I/O port is treated as a memory location
and the processor reads and writes the port directly. To achieve this, we can include
a register within the I/O port and make it function like one regular memory word.
The original FSMD circuit may or may not use registers with its I /O signals and
the wrapping circuit must provide buffers as needed.

There is a difference between a regular memory location and a register of an I/O
port. For a memory location, the processor performs both read and write operations
and thus always knows the data "validness" of this location. For a register of an I/O
port, on the other hand, the processor is only responsible for "half" of the access.
In a write port, the processor writes (i.e., produces) the data and the external I/O
circuit reads (i.e., consumes) the data. In a read port, the processor reads (i.e.,
consumes) the data and the external I /O circuit writes (i.e., produces) the data.

By the nature of the I/O data, an I/O port can be classified as a continuous-
access or one-time-access port. For a continuous-access port, the data are produced
and consumed continuously, such as the switch input and the LED output of Sec-
tion 10.2. On the other hand, the availability of data of a one-time-access port is
triggered by a single discrete event, such as receiving a character in a UART buffer.
After the data are consumed, it must be removed from the buffer to prevent the
same data from being processed again. Since the production rate and consumption
rate are different, the buffer needs a mechanism to signal the availability of new
data and to prevent the old data from being retrieved multiple times.

Two commonly used schemes can be used to coordinate the data production and
consumption:

• A flag FF and a one-word buffer
• A FIFO buffer

To facilitate these schemes, the producing subsystem will assert a status signal,
wr. t ick (similar to the done. t ick of the division circuit), for one clock cycle when
generating a new data and the consuming subsystem will assert a control signal,
c l r . t i c k , for one clock cycle after retrieving the data. For clarity, we ignore the

www.it-ebooks.info

http://www.it-ebooks.info/

3 6 2 AVALON INTERCONNECT AND SOPC COMPONENT

data, out

wr tick

Producing
subsystem

d q

Gil

■y data
register

setjag .
clrjag

> flagFF

datajn

Consuming
subsystem

status

cir^lick

(a) One-word buffer with a nag FF

data_out

wrjlck

Producing
subsystem

w.data r_dala

WÍ rd

full empty

FIFO

>

— ►

datajn

Consuming
subsystem

status

clr_tick

(b) FIFO buffer

Figure 15.10 Interface buffering circuit.

decoding and multiplexing logic for now and assume that the buffer is a dedicated
link between two subsystems.

Flag FF scheme This scheme uses a one-word buffer and a flag FF and its top-level
block diagram is shown in Figure 15.10(a). The flag FF keeps track of whether a
new data word is available. The FF has two input signals. One is set_f lag, which
sets the flag FF to 1, and the other is clr_f lag, which clears the flag FF to 0.
When the producing subsystem generates a new data word, it asserts the en signal
of the buffer to load the data and sets the flag FF to 1 to indicate that a new
data word is available. The consuming subsystem checks the output of the flag FF.
When the flag is 1, it retrieves the data and asserts the clr_flag signal to clear
the flag FF to 0 to indicate that the data have been processed. The code for this
scheme is shown in Listing 15.1.

Listing 15.1 Interface with a flag FF and buffer
module f lag.buf

(parameter W
(

8) / / # buffer bits

input wire e l k , r e s e t ,
input wire c l r _ f l a g , s e t _ f l a g ,
input wire [W-1:0] d in ,
output wire f l a g ,

www.it-ebooks.info

http://www.it-ebooks.info/

SOPC I/O COMPONENT WRAPPING CIRCUIT 3 6 3

o u t p u t w i r e [W-1:0] dout
») ;

/ / signal declaration
reg [W-1:0] b u f . r e g , b u f . n e x t ;
reg flag.reg, flag.next;

14

// body
// FF & register
a l w a y s e (p o s e d g e e l k , p o s e d g e r e s e t)

i f (r e s e t)
ig b e g i n

b u f . r e g <= 0;
f l a g . r e g <» 1'bO;

end
e l s e

24 b e g i n
b u f . r e g <■ b u f . n e x t ;
f l a g _ r e g <= f l a g . n e x t ;

end
/ / next—state logic

29 a l w a y s β*
b e g i n

b u f . n e x t = b u f . r e g ;
f l a g . n e x t - f l a g . r e g ;
i f (s e t . f l a g)

34 b e g i n
b u f . n e x t - d i n ;
f l a g . n e x t » i ' b l ;

end
e l s e i f (c l r . f l a g)

39 f l a g . n e x t = 1'bO;
end
/ / output logic
a s s i g n dout « b u f . r e g ;
a s s i g n f l a g ■ f l a g . r e g ;

44 endmodule

The buffer register can be omitted if the producing subsystem already contains an
output register.

FIFO scheme In the flag FF scheme, only one-word buffer space is provided. If the
producing subsystem generates a new data word before the consuming subsystem
processes the old data word (i.e., the flag FF is still asserted), the old word will be
overwritten, an error known as data overrun.

To provide some cushion, we can use a FIFO buffer discussed in Section 5.6.2.
The block diagram is shown in Figure 15.10(b). The wr. t ick signal of the producing
subsystem is connected to the wr signal of the FIFO. When a new data word is
generated, the wr signal is asserted one clock cycle and the corresponding data are
written to the FIFO. The consuming subsystem obtains the data from FIFO's read
port. The c l r . t i c k signal is connected to the rd signal of the FIFO. After retrieving
a word, it asserts the rd signal of the FIFO to remove the corresponding item. The
empty signal of the FIFO can be used to indicate whether any received data word is
available. The producing subsystem can continue the operation without destroying
the previous data. Data overrun will not occur as long as the consuming subsystem
retrieves the data word before the FIFO is full. We can adjust the size of the FIFO
to accommodate the processing condition of the two subsystems.

www.it-ebooks.info

http://www.it-ebooks.info/

364 AVALON INTERCONNECT AND SOPC COMPONENT

Note that the basic characteristics of the flag FF and FIFO schemes are quite
similar. The flag FF and one-word register function like a special one-word FIFO
buffer with a "full" status signal.

15.4.2 Memory alignment

Nios II is a 32-bit processor, which means that data are processed in a 32-bit
unit (commonly known as a word) within the processor. It also contains a 32-bit
address bus. However, Nios II's address space is represented in terms of bytes and
the 32-bit address bus implies an addressable space of 232 bytes. To accommodate
32-bit data, four bytes of memory are grouped together to form a word. Within the
main memory, the words are aligned (i.e., the address's two LSBs of the starting
byte in a word is always is 00) for easy access and a word can be accessed by
using 30 MSBs of the address. When needed, we use the term "word-address" for
the 30-bit word addressable space and the term "byte-address" for the 32-bit byte
addressable space.

Recall that the widths of the read and write data buses in Avalon MM interfaces
are not fixed. SOPC Builder adds additional circuits to accommodate the needed
alignment and conversion. For clarity, we assume that the I/O data widths are
32 bits and use the 30 bit "word-address" bus in the subsequent discussion.

15.4.3 Output decoding from an Avalon M M master

During a basic write operation, an Avalon MM master places the data and address
on the Avalon interface's writedata and address lines and activates the write signal.
A basic wrapping circuit consists of a collection of buffers and a decoding circuit.
Consider a custom I/O peripheral circuit with four 32-bit input ports. For simplic-
ity, we assume that these are continuous-access ports. The conceptual diagram is
shown in Figure 15.11. We also assume that the Avalon MM master has a 32-bit
data bus and a 30-bit word-address bus, similar to those used in a Nios II processor.
The key input signals to the wrapping circuits are:

• io_writedata: This is the 32-bit data to be written into a register.
• io .address: This is the 2-bit address used to identify which register is to be

written.
• io .ch ipse lec t : This is a 1-bit control signal used to enable (i.e., "select") the

I/O circuit. The operation of the I/O circuit is disabled if it is not asserted.
• io .wr i te : This is a 1-bit write enable signal. When it is asserted, the data

will be written into the designated register.
We choose names similar to those in the Avalon interface definition but add an io_
prefix in front. This eases the mapping later when an SOPC component is created.

The key part is the decoding circuit, whose function table is shown in Table 15.1.
It is basically a 2-to-22 decoder.

Note that the word-address width of a Nios II processor is 30 bits but the width
of the wrapping circuit is only 2 bits. Recall that when a Nios II processor is
constructed, SOPC Builder assigns a base address to each I/O module. If the
assigned base is 12001000ιβ (in 32-bit byte-address format), the addresses range for
this I/O peripheral becomes 12001000χ6 to 12001000f16 (i.e., 16 bytes or 4 words).
During the construction, the Avalon interconnect fabric automatically includes a
decoding circuit for this address space, as shown in Figure 15.11. The decoding

www.it-ebooks.info

http://www.it-ebooks.info/

SOPC I/O COMPONENT WRAPPING CIRCUIT 3 6 5

Avalen Interconnect fabric Avalon MM slave wrapping circuit

Figure 15.11 Output decoding in wrapping circuit.

Table 15.1 Functional table of a decoding circuit

io.chipselect

0

Input
io.write

0
1
1
1
1

io .address

-

00
01
10
11

Output
e

0000
0000
0001
0010
0100
1000

www.it-ebooks.info

http://www.it-ebooks.info/

3 6 6 AVALON INTERCONNECT AND SOPC COMPONENT

Avalon Interconnect fabric Avalon MM slave wrapping circuit

Avalon MM
master

word-address

readdata

>V
4—h

l'! ;n.1-.li;!.i

h
\[

q d
en

q d
en

q d

<

peripheral

Figure 15.12 Input multiplexing in wrapping circuit (with continuous-access ports).

circuit outputs 1 when the 28 MSBs of the 32-bit byte-address bus match the
28 MSBs of 12001000i6, which in turn activates the io_chipselect signal and
selects the I/O peripheral.

15.4.4 Input multiplexing to an Avalon M M master

During a basic read operation, an Avalon MM master places the address on the
Avalon interface's address line, activates the read signal, and retrieves data from
the readdata line. A basic wrapping circuit consists of a collection of buffers and
a multiplexing circuit. Consider a custom I/O peripheral circuit with four 32-bit
continuous-access output ports. The conceptual diagram is shown in Figure 15.12.
The key input signals of the wrapping circuits are:

• io_readdata: This is the 32-bit data to be read from a register.
• io_address: This is the 2-bit address used to identify which register is to be

read.
The multiplexing circuit is a standard 22-to-l multiplexer. The io_address

signal is used as the selection signal to route one of the inputs to output. Since
the word-address width of a Nios II processor is 30 bits, the four I /O registers only
occupy a small memory space. When a Nios II system is constructed, the Avalon
interconnect fabric automatically includes an additional multiplexing circuit, as
shown in Figure 15.12. The 28 MSBs from the Nios II processor byte-address
bus are used to construct the selection signal and determine whether to route this
peripheral's output to the processor.

www.it-ebooks.info

http://www.it-ebooks.info/

S0PC I/O COMPONENT WRAPPING CIRCUIT 3 6 7

Avalon Interconnect fabric Avalen MM slave wrapping circuit

■cad

Avalon MM

master

readda:a

30 u

decoding

circuit

- l · - *

M

decoding

circuí I

MJ
in

r(0)

i_data w_dala

id *r

FIFO <

rd)

r_data w_data

rd w

FIFO <

r(2]

r_dala w.data

rd *r *

FIFO <

r(3)

r_dala w_data

rd wr

FIFO <

I/O
peripheral

Figure 15.13 Input multiplexing in wrapping circuit (with one-time-access ports).

For a one-time access port, the processor must clear the FF flag or remove the
item from the FIFO buffer after reading. This can be achieved by using the Avalon
interface's read signal and a decoding circuit. The conceptual diagram of a custom
I/O peripheral circuit with four FIFO output ports is shown in Figure 15.13. The
input multiplexing circuit routes the selected input to the Avalon MM master, as
shown in Figure 15.12. The decoding circuit is identical to that in Figure 15.11
except that the write signal is replaced by the read signal. The decoded output can
be interpreted as a "removal" signal, which removes the previously retrieved data
when asserted.

Alternatively, we can include an additional input port in the wrapping circuit.
The port can be connected to a decoding circuit whose output controls the rd
signals of the FIFOs. A separate write instruction can be issued to assert the
designated rd signal to remove a data item from a FIFO.

15.4.5 Practical consideration

A real I/O peripheral contains input and output signals of different widths, access
characteristics, and timing constraints. We can add necessary buffers, decoding
circuits, and multiplexing circuits in the wrapping circuit to match the Avalon MM
slave interface specification.

www.it-ebooks.info

http://www.it-ebooks.info/

3 6 8 AVALON INTERCONNECT AND SOPC COMPONENT

Note that the registers for the write operation and read operation are usually
separated in the I /O wrapping circuit. The read port and the write port may have
the same address even if the two ports are unrelated.

15.5 SOPC COMPONENT CONSTRUCTION TUTORIAL

SOPC Builder basically automates the busing and interconnecting process. The
system interconnect fabric can connect any combination of components as long as
these components conform to the Avalon interface specification. The process of
developing an SOPC component consists of the following steps:

1. Design and develop the digital system.
2. Add wrapping logic and I/O signals to accommodate the Avalon interface

requirement.
3. Use SOPC Builder's Component Editor to create the component, which in-

volves the creation of interfaces and the specification of timing properties.
We use the division circuit discussed in Section 7.3.2 as an example to demon-

strate the process of constructing a new SOPC component. The circuit can be
considered as a hardware accelerator that speeds up the integer division. We can
add the necessary interface logic and convert the circuit to an SOPC component.
Note that since a Nios II processor can be configured to include a division unit,
this circuit is only used for the demonstration purposes.

The division circuit is designed in Section 7.3.2 and the code is shown in List-
ing 7.4. The following subsections illustrate the next two steps.

15.5.1 Avalon interfaces

The division circuit has two input data ports (dvnd and dvsr), two output data
ports (quo and rmd), one control signal (s t a r t) , and two status signals (ready and
done.t ick). The ready signal is 1 when the circuit is ready to take new input
data (i.e., is not in use). The external master circuit should place the dividend
and divisor data in dvnd and dvsr ports and assert the s t a r t signal for one clock
cycle to initiate the operation. When the calculation is completed, the quotient and
remainder are sent to the quo and rmd ports and the done.t ick signal is asserted
for one clock cycle.

In addition to the original outputs, we want to connect the eight LSBs of the
remainder to the eight green LEDs on the DEI board. This is an artificial require-
ment used to demonstrate the conduit interface.

To develop a wrapping circuit, we examine the characteristics of the I/O periph-
erals and determine the required Avalon interfaces. The following are needed for
the wrapping circuit for the division circuit:

• One clock input interface for the system clock.
• One Avalon MM slave interface for general data access.
• One interrupt sender interface to issue an interrupt request when the opera-

tion is done.
• One conduit interface for eight discreet LEDs.

Since the data width of Nios II is 32 bits, it is reasonable to make the division
circuit 32 bits wide as well. However, to demonstrate the use of parameters in an

www.it-ebooks.info

http://www.it-ebooks.info/

SOPC COMPONENT CONSTRUCTION TUTORIAL 3 6 9

SOPC component, we keep the W and CBIT generics of the division circuit in the
top-level wrapping circuit.

15.5.2 Register map

The main part of the design is the Avalon MM slave interface. We first determine
the register map, which defines the addresses for the relevant I /O ports. From the
perspective of a Nios II processor (i.e., an Avalon MM master), these addresses are
the offsets relative to the base address of the I/O module and thus we call it offset
in general. After determining the register map, we can add the necessary buffers,
decoding logic, and multiplexing logic accordingly.

There is no specific requirement to define the offsets. For clarity, we generally
use separate register offsets for individual signals. One possible assignment is shown
below. The registers, their address offsets, and fields are:

• Write addresses (data from cpu)
- offset 0 (dividend register)

* bits W-l to 0: dividend data
- offset 1 (divisor register)

* bits W-l to 0: divisor data
- offset 2 (start register)

* Dummy data used to generate an enable pulse
- offset 6 (done_tick register)

* Dummy data used to clear the done. t ick flag
• Read addresses (data to cpu)

- offset 3 (quotient register)
* bits W-l to 0: quotient data

- offset 4 (remainder register)
* bits W-l to 0: remainder data

- offset 5 (ready register)
* bit 0: ready status

- offset 6 (done.tick register)
* bit 0: done. t ick flag

The dividend and divisor registers store the input data and two actual registers are
required in the wrapping circuit. The start register is a "dummy" register, which
means that there is no physical register associated with this offset and the write data
are irrelevant. It is included to obtain a decoded write pulse, which is connected
to the s t a r t signal of the division circuit. When an Avalon MM master writes
this address, the decoded pulse is asserted and initiates the division operation. The
quotient, remainder, and ready registers store the output data and status signal.
Since the division circuit contains registers for the data and the ready signal does
not change until the next operation, no register is needed in the wrapping circuit.
The done_tick register is implemented as a flag register. It is set by the done.t ick
signal of the division circuit and cleared by the decoded write pulse. The Avalon
MM master can read this register to check whether the calculation is done and
write the register to clear it to 0 after retrieving the data. To match the data
width of Nios II processor, we usually treat these registers as 32-bit registers. The

www.it-ebooks.info

http://www.it-ebooks.info/

370 AVALON INTERCONNECT AND SOPC COMPONENT

unused bits will be removed automatically during synthesis and will not introduce
additional hardware.

An I/O register is usually used as an input register or an output register but not
both. Thus, it is possible for a read register to have the same offset of an irrelevant
write register. For example, the offset of quotient register can be assigned to 0.
For clarity, we don't use the same offset for the read and write registers unless the
operations are related (such as the done.tick register).

The output of the done.tick register is also used as an interrupt request signal. If
this feature is used, an ISR routine should clear the interrupt condition by writing
a dummy data to this address.

15.5.3 Wrapped division circuit

The HDL code of the wrapped division circuit, which includes an instantiated
division circuit and wrapping logic for buffering, decoding, and multiplexing, is
shown in Listing 15.2. The I/O ports use names similar to those in the Avalon
interfaces but include a div_ prefix.

Listing 15.2 Wrapped division circuit
i m o d u l e c h u _ a v a l o n _ d i v _ d e m o

#(
p a r a m e t e r W = 3 2 ,

CBIT - 6 / / CBIT=log2(W)+l
)

6 (

/ / to be connected to Avalon clock input interface
i n p u t w i r e e l k , r e s e t ,
/ / to be connected to Avalon MM slave interface
i n p u t w i r e [2 : 0] d i v . a d d r e s s ,

u i n p u t w i r e d i v . c h i p s e l e c t ,
i n p u t w i r e d i v . w r i t e ,
i n p u t w i r e [W-1:0] d i v . w r l t e d a t a ,
o u t p u t w i r e [W-1:0] d i v _ r e a d d a t a ,
/ / to be connected to interrupt sender interface

io o u t p u t w i r e di .v_i .rq ,
/ / to be connected to Avalon conduit interface
o u t p u t w i r e [7 : 0] d i v . l e d

);

2i / / signal declaration
w i r e d i v . s t a r t , d i v . r e a d y , s e t . d o n e . t i c k , c l r _ d o n e _ t i c k ;
r e g [W-1:0] d v n d . r e g , d v s r . r e g ;
r e g d o n e _ t i c k _ r e g ;
w i r e [W-1:0] q u o , r o d ;

2B w i r e u r . e n , wr.dvnd , w r _ d v s r ;

/ / body
// — — — — — — ·
/ / instantiate division circuit

31 / /
d i v # (.W(W), .CBIT(CBIT)) d . u n i t

(.clk(clk), .reset(1'b0), .start(div_start),
.dvsr(dvsr_reg), .dvnd(dvnd_reg), .quo(quo), .rmd(rmd),
.ready(div_ready), .done.tick(set.done.tick));

i wir

i /

www.it-ebooks.info

http://www.it-ebooks.info/

SOPC COMPONENT CONSTRUCTION TUTORIAL 3 7 1

/ /
/ / register , write decoding, and read multiplexing
//
// registers
always β(posedge e lk , posedge r e s e t)

i f (r e s e t)
begin

dvnd.reg <■ 0;
dvsr .reg <■ 0;
d o n e . t i c k . r e g <= 1'bO;

end
e l s e

begin
i f (wr.dvnd)

dvnd.reg <- d iv .wr i t edata ;
i f (wr.dvsr)

dvsr_reg <" div_writedata;
i f (s e t . d o n e . t i c k)

d o n e . t i c k . r e g <- I ' M ;
e l s e if (c l r . d o n e . t i c k)

d o n e . t i c k . r e g <- 1'bO;
end

/ / write decoding logic
assign wr.en * d iv .wr i t e ft d i v . c h i p s e l e c t ;
ass ign wr.dvnd - (div_address=-3'bOOO) ft wr.en;
ass ign wr.dvsr ■ (div_address«»3'bOOl) ft wr.en;
ass ign d i v . s t a r t ■ (div_address»»3'bOlO) ft wr.en;
ass ign c l r . d o n e . t i c k » (d iv .address—3'b l iO) ft wr.en;
/ / read multiplexing logic
assign div .readdata » (div_address-=3'bOll) ? quo :

(div.address—3'blOO) ? rmd :
(d iv_address«-3 'b l01) ? {31'bO, d iv .ready} :

{31'bO, d o n e . t i c k . r e g } ;
/ / conduit signals
ass ign d i v . l e d » rmd [7 : 0] ; / / assume that W> 7
// interrupt signals
assign d i v . i r q = d o n e . t i c k . r e g ;

endmodule

The code includes six main segments. The first segment is an instance of the
division circuit. The second segment is the registers for the input dividend and
divisor data and the done.tick flag.

The third segment is the write decoding logic. The logic consists of a common
wr.en signal and four individual write enable signals. The wr.en is asserted when
both d iv .wr i te and d iv .ch ipse lec t are asserted and the other enable signal is
asserted when wr.en is 1 and div_address matches the designated offset value.
The wr_dvnd and wr.dvsr signals enable the dividend and divisor registers, re-
spectively. The decoded d iv_s ta r t signal is connected to the s t a r t signal of the
division circuit and thus initiates the division operation when asserted. The de-
coded c l r .done . t i ck signal is used with the done.tick register and clears it to 0
when asserted.

The fourth segment is the read multiplexing logic. It uses div_address as the
selection signal and routes the designated data to the read data bus, div_readdata.
Note that the padding zeros are added as needed.

The fifth segment connects the eight LSBs of rem to the external div_led port
and the sixth segment connects done_tick_reg to an interrupt request.

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

www.it-ebooks.info

http://www.it-ebooks.info/

372 AVALON INTERCONNECT AND SOPC COMPONENT

15.5.4 SOPC component creation

An SOPC component can be created and configured by a software utility program
known as Component Editor, which can be invoked from SOPC Builder. The
procedure to create an SOPC component is:

1. Start Component Editor for a new SOPC component.
2. Specify the HDL files.
3. Create interfaces and map signals.
4. Configure interfaces.
5. Define HDL parameters.
6. Edit Library information.
7. Save the component file.

Start Component Editor Component Editor can be invoked as follows:
1. In Quartus II GUI, select Tool >- SOPC Builder. The SOPC Builder window

appears.
2. In SOPC Builder window, select File >- New Component.... The Component

Editor window appears. There are several tab pages in the window and the
default Introduction page is invoked first.

3. Click the Next button or select the HDL Files tab to go to the HDL Files page.

Specify the HDL files The initial HDL Files page is empty and we need to add the
relevant HDL files. Recall that the division circuit consists of two files, d iv . v and
chu-avalon_div_demo. v. The procedure to add files is:

1. Click the Add... button and navigate to the directory.
2. Select the two files.
3. Component Editor automatically analyzes the files and determines the top-

level file. The completed page is shown in Figure 15.14. Note that the
chu_avalon_div_demo. v is correctly identified as the top-level file.

4. Click the Next button or select the Signals tab to go to the Signals page.

Create and map signals When analyzing the HDL files, Component Editor guesses
the purposes of the I/O signals in the top-level module, creates the needed in-
terfaces, and maps the module's I/O signals to the interfaces' signals. The guess
may not always be correct and we must adjust the mapping and create additional
interfaces as needed. The mapping is listed in the Signals page.

The initial Signals page of the division circuit is shown in Figure 15.15. The
Name column lists the I/O signals of the chu_avalon_div_demo module. The Inter-
face and Signal Type columns show the interfaces assigned to the I/O signals and
the mappings between the I/O signals and interface's signals. For example, the
d iv .wr i te signal is assigned to the div interface (which is an Avalon MM slave
interface) and mapped to the div interface's wr i te signal.

Recall that we intend to include four Avalon interfaces in the top-level wrapping
circuit. Component Editor correctly identifies two of them, which are the clock
output interface, labeled clock_reset in the page, and the Avalon MM slave interface,
labeled div in the page. Since the HDL construction follows closely to the Avalon
specification and uses a similar naming convention, the signal mapping within the
two interfaces is correct.

On the other hand, Component Editor mistakenly maps the div_irq and div_led
signals to another Avalon MM slave interface, labeled avalon_slave_0. To correct the

www.it-ebooks.info

http://www.it-ebooks.info/

SOPC COMPONENT CONSTRUCTION TUTORIAL 3 7 3

l i Component Editor - chu_avalon.div.demo_tlw.tcl* B 3 I

Fte Tenpale*

tiirorju clir>n HDL Fie*; S g W t 1 nur I S M « 1 HOL I V H M n 1 LOrmry mfn!

• About HDL ftes

HOL F t »

FÉeli.me Syirlli SHI Top

efiu_ava_m_r_v demo v V Ρ_Ί j í ¿ '

■ 1 _g ^

Add... i Remove A T | Run·)) · . · HOL F - n |

Creett H

Top Level Uoduie ctu_ ..«o__v__=n>o -

¿jr Info div_cpu Poru Htti pawnMenzM w e n (<*v_re»mut», div_write_iu)

$£ hfo: No errors or wimAgs

| Hdp) <J ft» [MtA p | FiwlL.

Figure 15.14 The HDL Files page.

' _J Component Editor - chu_avaion_div_demo__hwHtd*
c-j J l

~H FM T i m I É l l

introducten | HOL F_n Sigrnn «awf jKe lHDLPí rmiwWra lL - r^ l r i loJ

p Aüout 54gne__

htime fcntrlice 5*jn_.i Type -iVnith

d h
M H)

,<_fv_addreftft
div_,thiptat*c1

diy_.wrri«

dn__wnteflii-i

dw_re*ÄUt*

drvjrq

drv led

clock r e t e l

clock re »el

t_v
(1ΙΪ

dte
«Ar

Orv

avslcin slave 0
¡ivaluri slave υ

elk
reier

* d d r » _

chip*elec1

write

w n l e d i u

re*ddj1_

re*da-l_v_lkt n

reAdr_i1_

Add Siannl [1 Remove Signal J

1

1
3

1

t

12

32

1

s

DvKtion

mpi.r

npul

npui

nput

mnul

input

output

autput

output

■

U>*J <t P w j N u t *> [FiB-A..

L

Figure 15.15 The initial Signals page.

www.it-ebooks.info

http://www.it-ebooks.info/

374 AVALON INTERCONNECT ANO SOPC COMPONENT

Comp

| hirafcidion] HOL F ü *

1 * About Sipuhi

Name

elk

, r t *e l

div *(Hlrcsi

div t tHp ie iec i
d«v. *n le

div_wii[edj[d

div_r£Addaii

dtv tod

1

Q Errar *v*lon_
1 A « · , . , — i

I H *

*

Signals Jnt#ffftc« | HOL P«r«mft*ri

fi le rta ce S ign ai Type

ctotk remel

ctock re te l

dfr

drv

c#w

m
drv

elk

re »el

« M r e i i

ch ip ie f cc t
™mr

w n n d i t i
".-.I'M.tl.l

¿.too. reset r * *ód*t*

dtv

ovfllon siavfi 0

ne»v ¿retan Merpor/ Mappcü

new Avaion Memory Mappeú

new Avaion Streaming Sotirc

new Αμβίΰπ SfríemíiTfl S r n *

« Ι Ϊ Ateion Wt/nor/ Mappen
new Ctoc* OüTp^jt

new Cíock Input

newConau/t

new interrupt Recm^vr

f i e *

DM

U M

^i / iT&m JnifrwcíJurt « B 5

^ uSiuffl JTOfrájCbürt Slav

Reset Output

Reset input

I L*f«fybio|

Width

1

1

3

1

1

32

32

S

Drecbon ?]

mpul

Mir.il

«vput
¡Ί[;ι,ι

input
ΗΊμυΙ

υυΙμυΓ

Output

lave Signal 1
_ J

HJI no read »*g

' ■ - ' " - — - -

J \ 4 **> M Ntt (·

■1

Frail

»

Figure 15.16 The Signals page with pull-down menu.

problems, we need to add an interrupt sender interface and a conduit interface and
reassign the two I/O signals. The procedure to add interfaces and adjust mapping
is:

1. Select the Interface field of the divJrq signal and click the right arrow to bring
the pull-down menu, which is shown in Figure 15.16. Note that the first three
items are the existing interfaces and the remaining new ... items are used to
add a new interface.

2. Select the new Interrupt Sender... item to add the new interface and assign
the divJrq signal to this interface.

3. Select the Signal Type field of the divJrq signal and click the right arrow to
bring the pull-down menu, which lists the available signals of the interrupt
sender interface.

4. Select the irq signal.
5. Repeat the two previous steps for the divJed signal to add a conduit interface

and map it to the export signal of the interface.
6. Click the Next button or select the Interfaces tab to go to the Interface page.

Configure interfaces The default setting is used when an interface is added. For
some interfaces, we may need to modify the setting to meet an individual sub-
system's requirement. In the Interfaces tab page, we can examine an interface's
property and adjust its parameters as needed. For our purposes, we must pay close

www.it-ebooks.info

http://www.it-ebooks.info/

S0PC COMPONENT CONSTRUCTION TUTORIAL 3 7 5

■

U Component Editor - chu_avaton_dw_demo_hw.tcl* ^g^g§

F I B TempWH

| JntrockidHHi | HOLFfc*] S«ufc] interface* | HQL Pvαπκϋπ | L i twyh fo i

k f-ΛοιΛ nitrfmcia

A.

i
N U B . £*K*_fM*l | MB j

Typ« Ltocktaput

[- Block D u f l u m

clock leset
elk [1 |

rw*tfl]

τ

4 III ►

| AatkHtrfect | | Rtirovt M e r i t e d WfrNcSipnafc ¡

1

| « * | ^ < ¡| Nut t ¡ tu«*

Figure 15.17 The initial Interfaces page.

attention to the timing properties of the Avalon MM slave interface to ensure the
correct data access between the processor and an I/O subsystem.

In the Interfaces page, each interface is encompassed in an individual entry. Var-
ious properties are listed under the entry. The Screenshot of the initial Interfaces
page of the division circuit is shown in Figure 15.17. It displays the clock input
interface entry.

There are four interfaces in the division components. The procedure to configure
these interfaces is:

1. Component Editor incorrectly includes the avalon_slave_0 interface in the pre-
vious step. It is empty (i.e., no signals connected) after the remapping of
the div_irq and div_led signals and is no longer needed. Click the Remove
Interfaces With No Signals button on the bottom to remove this interface.

2. The clock input interface clock_reset, as shown in Figure 15.17, is adequate
and can be kept unchanged.

3. Scroll the right scroll bar to reach the Avalon MM slave interface entry. Re-
name it to div_cpu (representing the connection between the division circuit
and the processor).

4. Enter 0 in the Read Wait box of the Timing field (the default is 1) since the
read data are readily available in the division circuit's registers and the read
operation requires no additional wait cycle. The completed entry is shown in
Figure 15.18.

5. Scroll the right scroll bar to reach the interrupt sender interface entry and
rename it divJntr.

6. Select div_cpu from the pull-down menu of the Associated addressable interface
field. The completed entry is shown in Figure 15.19.

www.it-ebooks.info

http://www.it-ebooks.info/

3 7 6 AVAtON INTERCONNECT AND SOPC COMPONENT

Figure 15.18 The Avalon MM slave entry in Interfaces page.

www.it-ebooks.info

http://www.it-ebooks.info/

S0PC COMPONENT CONSTRUCTION TUTORIAL 3 7 7

: ■■ * | a % | v

_-j u¿ ledl.bsp

G» drivers

L* Makefile

i_i setting s.bip

E alt_sys_initc

iji cproject

i memory.gdb

lii link« ii

iíj system.h

summary.html

memjnit.mk

public, mk

i I .project

0 linker*

u& Makefile

ü .cproject

Ü .project

Figure 15.19 The Avalon Interrupt Sender entry in Interfaces page.

7. Scroll the right scroll bar to reach the conduit interface entry and rename it
divJedg.

8. Click the Next button or select the HDL Parameters tab to go to the HDL
Parameters page.

If desired, we can return to the Signals page to verify the final mapping, as shown
in Figure 15.20.

Define HDL parameters The top-level HDL module may contain generics (i.e., pa-
rameters) and they can be configured in the HDL Parameters page. Recall that the
generics W and CBIT are included in the chu_avalon_div_demo module, as shown
in Listing 15.2. Component Editor extracts the generics and their default values
and the corresponding page is shown in Figure 15.21. Note that the Edit boxes
are checked. This allows the user to edit these parameters when the component is
instantiated in SOPC Builder.

Edit Library information We can enter relevant component information in the Li-
brary Info tab page, as shown in Figure 15.22. Recall that the SOPC cores are
organized in different categories. This can be done by entering a new group name
or selecting an existing group from the pull-down menu of the Groups: field. All the
SOPC components developed in this book are organized under the chuJp group.

www.it-ebooks.info

http://www.it-ebooks.info/

378 AVALON INTERCONNECT AND SOPC COMPONENT

y Component Editor - chu_

Ffc Terrón)«

introduction 1 HDL Ftful Signal [

iva lon_d i v_demo_h w, t... mmt^mmli

interfaces 1 HOL Par*meíer» 1 übrerylnfu-

* Aoout SJgnifc

[
Mame Intefface

an

r e t e t

dru_addres»

div_cftipselect

dw_wrrte

drv wri tedaL.

div icaddat i

div_«-q

d f v j e d

clock re »et

clock re »et

drv_cpu

div_cpu

drv_cpu

drv_cpu

div_cpu

<kv_ntt

drv_ledg

. II

SijmilType Width D r a f t . .

elk

reset

adidre*»

chipaekrtt

wr i te

wri t «data

readdata

Irq

export

1 Signal |

1

1

3

1

1

w

w

1

B

input

input

input

input

m^iil

input

output

output

output

¡ Η*Φ | 4 Piev [Una *> | Fuh.. 1

Figure 15.20 The final Signals page.

U Component Editor - chu avalon diw demo hw.tcl1

FM T l f l l l

¡*ttoouann|HDLFta»| S*m*»! martuul H K Pwiriauis Uxvvintol

■ About HDL Pui ailKlci i

PsTftmettr»

riime Defaul ... EM... Type Group Tootp

W J32 V integer 1

CBiT 6 | y . wieder ¡

Add Pojwnetar 1 Rerava Parameter

Pt«BWtt l*QUÍ. J

<l III | 1

[H a * « F t » [(tad » | TimH...]

■

Figure 15.21 The HDL Parameters page.

www.it-ebooks.info

http://www.it-ebooks.info/

S0PC COMPONENT CONSTRUCTION TUTORIAL 3 7 9

U Component Editof - chu_avalon_dw_demo_hwr1d* H U M

F ü T « n p »

! k*v*K*DQ [hQL Fta> 1 5«Mta | Mef l icesj HOL Pnrimateu | U K V Y hfo

* Aboul Lbf«v kito

|" P« anielcf«

Nt.· e

Oep i ty tan*

V n b K

Group:

* ¡ Description:

Created by

ton

Doaimertrtofl-

cfnj_iviton_d(v_flemD

ci>u_iv*ton_dw_öefTiDJ

l 0

cftujp »

Compelrient demo w(h divisen t r t u í

p cltu

II·
T « URL

!
1 4 1 ...- ΐίί.

Meip [4 Pm \ Next > [f«*n_..

U = ^ - »fc . ^ ^ - = J ^ Ä -

'Z^U
1 !

.— .. ,̂

Figure 15.22 The Library Info page.

Save the component file The description of an SOPC component is saved in a Tel
script file. The name of the file is similar to that of the top-level HDL file but
with an ending of .hw.tcl and the file is stored in the directory where the top-level
HDL file is located. For example, the top-level HDL file of the division circuit is
chu_avalon_div_demo.v and a Tel file named chu_avalon_div_demo_hw.tel will
be created for the SOPC component.

We can select File >- Save to save the file and then select File >- Exit to close
Component Editor. The chujp group and the newly created chu_avalon_div_demo
component appears on the left Component Library panel of the SOPC Builder, as
shown in Figure 15.23 (note that other components may or may not exist in the
chu_ip category).

It is good practice to keep the HDL files and the component Tel file in the
same directory. The entire directory can be moved to a new location or a different
computer. We can follow the procedure discussed in Section 11.5.1 to add the
component to the SOPC Builder library.

15.5.5 SOPC component instantiation

Once the chu_avalon_div_demo component is created and included in SOPC Builder's
library, it can be used and processed as a normal IP core. To include the core in
a Nios II system in SOPC Builder, we just select the core and then click the Add
button. The chu_avalon-div_demo dialog appears, as shown in Figure 15.24. The W
and CBIT fields are shown in the Parameters box and can be configured as needed.

An instantiated module, labeled div32, is shown in the working area of in Fig-
ure 15.23. Note that SOPC Builder automatically assigns its base address according
its address width and includes its interrupt request.

www.it-ebooks.info

http://www.it-ebooks.info/

3 8 0 AVALON INTERCONNECT AND SOPC COMPONENT

El AIIEra SOPC Build« - re«_ilw7»pci {ötmp\(lli<i\nios.ii*Z.sopO *|jslfcQÉ'

, ; W 1 U W . .
- jd i» p

- cnu jT ib i «

■ cmi.lriW. fcrtP
- (1Uj_*l #*-_«>*

* L3ki.Evitoo.YK:
- rt«.J.*MCi
■ Ehu.^iton.ta

- uk4^#*l**iJ*J
- um *ν**π *4
■ eh* I H Í T v m

■ Chi_*TlV_<rgÉ

■ Cn4_tVlfen_vg*_jHl
* υι»_1»«*π_»Β*_(·Ρΐ

* Clh_ irfctart_YTidl·
t i f w h t W K ·
;: !.■*■*■* Cunwn"*
j | UamrfHi trt Vvmrv l l « * u *

Ί , ',':.,..,

=

.

—

ESS as B

C«]

£ D J* i-: ■ ί ί |

i Moduli

BkflOLDlD» B H H U U

L..tnLiijLLjB , u : . : : :

f HÍTOK* I IJr X * * ! FAHl Ft»- L>PHl

1
^ - | ^ , m^ij [

Figure 15.23 The completed SOPC window.

£j chtj_avalon_div_deino - chu_avalon_div_d._

*
chu_avalon_div_demo
chu_Bvaion_ttv_den» ™LJ

chu avalon dw <temo 0
clack'

avalan'
interrupt ι
conduit<

clock_reset
div_cpu
divjntr
conduit_end

Pirunatara
W: J2

CBIT: 6

[Ctnctl | [f . iA i ■

Figure 15.24 The division component dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING 381

15.6 TESTING

To illustrate the use of the division component, we construct a Nios II system that
includes the core and develop software to verify its operation. The procedure is:

1. Create a Nios II system that contains the chu_avalon_div.demo core and sup-
porting peripherals.

2. Create a top-level HDL file that instantiates the Nios II system and compile
the design.

3. Develop testing software.
4. Build and run software.

Nios II system The Nios II system contains the division core and I/O peripherals
to facilitate the testing. Its main parts are:

• A Nios I l /e processor.
• The chu_avalon_div_demo core.
• An SRAM controller core to utilize the external SRAM device.
• A JTAG UART core to obtain input operands and display the division results.
• A PIO core to interface the four seven-segment LED displays.
• A PIO core for the eight discrete green LEDs to display the eight LSBs of the

remainder.
• A system id core.

It can be constructed following the procedure in Section 11.5.1 and the completed
SOPC configuration is shown in Figure 15.23.

Top-level HDL file After the HDL files are generated, we can create a top-level
module that incorporates the Nios II system. The HDL code is shown in List-
ing 15.3.

Listing 15.3 Top-level system

module nios_div2_top
(
input wire elk,

4 output wire [7:0] ledg ,
output wire [6:0] hex3 , hex2 , bexl , bexO ,
output wire [17:0] sram.addr,
inout wire [15:0] sram.dq,
output wire sram_ce_n , sram.-oe.n , sram_we_n ,

9 output wire sram_lb_n, sram_ub_n
) ;

/ / signal declaration
wire [31:0] sseg;

14
/ / body
// instantiate nios
nios_div2 cpu_unit

(.clk(clk) ,
19 . reset_n (1 ' bl) ,

.div_led_from_the_div32(ledg),

.out.port_from_the.sseg (sseg) ,

.sram.addr.from.the.sram(sram.addr),

.sram_ce_n_from.the.sram(sram.ce.n),
24 .sram.dq.to.and.from.the.sram(sram.dq),

.sram_lb_n.from.the.sram(sram_lb_n),

www.it-ebooks.info

http://www.it-ebooks.info/

3 8 2 AVALON INTERCONNECT AND SOPC COMPONENT

.sram_oe_n_from_the_sram(sram_oe_n),

.sram_ub_n_from_the_sram(sram_ub_n),

.sram_we_n_from_the_sram(sram_we_n)
);
/ / output assignment
a s s i g n hex3 - s s e g [3 0 : 2 4] ;
a s s i g n hex2
a s s i g n h e x l

i a s s i g n hexO
endmodule

s s e g [2 2 : 1 6] ;
s s e g [1 4 : 8] ;
s s e g [6 : 0] ;

Note that the I/O ports of the division circuit are connected to the Avalon in-
terconnect and thus are no longer visible. Only the signal from the conduit in-
terface of the chu.avalon_div.demo module, div_led, is shown as an output port,
div_led_f rom_the_div32, in the nios_div2 module. We can compile this system
to obtain the configuration (i.e., .sof) file.

Application program After the creation of a new I/O core, the driver routines
should be developed to access and communicate with the core. However, since the
chu_avalon_div.demo module is only used for demonstration purposes, we just put
all low-level access codes in the main program. The complete program is shown in
Listing 15.4.

Listing 15.4
»include <stdio.h>
«include "system.h"
»include "chu_avalon_gpio.h"

/* register offset definitions */
»define DVND_REG_OFT 0
«define DVSR.REG.OFT 1
«define STRT_REG_OFT 2
»define QUOT.REG.OFT 3
»define REMN.REG.OFT 4
»define REDY.REG.OFT 5
»define DONE.REG.OFT 6

· /

/ / dividend register address offset
// divisor register address offset
// start register address offset
// quotient register address offset
// remainder register address offset
// ready signal register address offset
// done—tick register address offset

/* main program
i n t m a i n O
{
alt_u32 a, b, q, r, ready, done;
alt_u8 dil.msg[4]«{sseg_conv_hex(13),0xfb,0xff,sseg_conv_hex(2)};

\ n \ n ») ;

·) ;

') ;

s seg_di sp_ptn(SSEG_BASE, d i l . m s g) ;
p r i n t f (" D i v i s i o n a c c e l e r a t o r t e s t #2
w h i l e (I M

p r i n t f (" P e r f o r m d i v i s i o n a / b ■ q remainder r \ n ") ;
p r i n t f (" E n t e r a
scanf ("'/.d" , <£a)
p r i n t f (" E n t e r b
scanf ("'/.d", fcb)
/ * send data to division accelerator */
I0WR(DIV32_BASE, DVND.REG.OFT , a) ;
I0WR(DIV32_BASE, DVSR.REG.OFT, b) ;
/ * wait until the division accelerator is ready */
w h i l e (1) {
ready - I0RD(DIV32_BASE , REDY.REG.OFT) ft 0x00000001;
if (ready=-l)
break;

// display "di 2"

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHIC NOTES 383

}
/ * generate a 1—pulse */
p r i n t f (" S t a r t . . . \ n ") ;
I0WR(DIV32_BASE, STRT.REG.OFT, 1) ;
/ * wait for completion */
w h i l e (1) {

done = I0RD(DIV32_BASE, DONE.REG.OFT) & 0 x 0 0 0 0 0 0 0 1 ;
i f (d o n e « l)

break;
}
/ * clear done-tick register */
I0«R(DIV32_BASE, DONE.REG.OFT , 1) ;
/ * retrieve results from division accelerator */
q - I0RD(DIV32_BASE, QUOT.REG.OFT);
r = I0RD(DIV32_BASE, REMN.REG.OFT);
p r i n t f ("Hardware: V.u / '/.u = */.u remainder %u\n" , a , b , q , r) ;
/ * compare results with built—in C operators */
p r i n t f (" S o f t w a r e : 7,u / */.u » 7,u remainder */ ,u\n\n\n" , a , b , a / b , a7.b);

} / / end while
y

The basic program structure is similar to that in Listing 14.2. Note that the previ-
ous seven symbolic base addresses associated with the division circuit are replaced
by one symbolic base address (DIV32.BASE) plus offsets (_0FT). Also, instead of
writing 1 then 0 to generate a s t a r t pulse, as in

pio_write(START_BASE, 1) ;
pio_write(START_BASE, 0) ;

we use the enable pulse associated with a write operation
I0WR(DIV32_BASE, STRT.REG.OFT, 1) ;

to activate the s t a r t signal for one clock cycle.

15.7 BIBLIOGRAPHIC NOTES

The detailed specification and definition of Avalon interfaces are documented in
Altera's Avalon Interface Specifications. The implementation and realization of the
Avalon MM interface are explained in Chapter 2 (titled System Interconnect Fabric
for Memory-Mapped Interfaces), Volume 4 (titled SOPC Builder) of Quartus II
Handbook. A detailed description of SOPC Component Editor and the Tel file
format can be found in Chapters 4, 6, and 7 of SOPC Builder.

15.8 SUGGESTED EXPERIMENTS

15.8.1 Division core ISR

Develop an ISR routine for the division core in Section 15.5 to verify the operation
of the interrupt interface.

15.8.2 Alternative buffering scheme for the division core

The division wrapping circuit in Section 15.5 includes a divisor register to store the
divisor data and a dummy start register to generate a pulse to initiate the division

www.it-ebooks.info

http://www.it-ebooks.info/

3 8 4 AVALON INTERCONNECT AND SOPC COMPONENT

operation. Closer examination shows that the division circuit already contains an
internal register, cLreg, to store the divisor data. Thus, the divisor register of the
wrapping circuit is not actually needed. We can revise the wrapping circuit to load
the divisor data directly to the division circuit and initiate the division operation
at the same time. Derive the modified codes for the wrapping circuit, create a new
component, derive a Nios II system, develop testing software, and verify the core's
operation.

15.8.3 Division core with eight-bit data

The data width of the division core in Section 15.5 can be configured. We want to
redesign the core with a fixed data width of eight bits. Since the data width of the
Nios II processor is 32 bits, we can pack the data and status signals into a single
word. Redesign the wrapping circuit with a minimal address space and buffering
circuits, create a new component, derive a Nios II system, develop testing software,
and verify the core's operation.

15.8.4 Division core with 64-bit data

The maximal data width of the division core in Section 15.5 is 32 bits. We want to
increase the data width to 64 bits. Since the data width of the Nios II processor
is 32 bits, two words are needed to access input and output data. Redesign the
wrapping circuit, create a new component, derive a Nios II system, develop testing
software, and verify the core's operation.

15.8.5 Fibonacci number circuit

The Fibonacci number circuit is discussed in Section 7.3.1. We can modify the
circuit to accommodate a 64-bit result (i.e., the output f port is increased to 64 bits
wide). Based on this circuit, design a wrapping circuit, create a new component,
derive a Nios II system, develop testing software, and verify the core's operation.

15.8.6 Period counter

An accurate low-frequency counter is discussed in Section 7.3.5. Based on the
binary-to-BCD conversion circuit in Section 7.3.3 and the period counter in Sec-
tion 7.3.4, two new components can be created. We can reconstruct the accurate
low-frequency counter in Section 7.3.5 by using the two new cores plus the division
core. Derive a Nios II system that includes these cores, develop testing software,
and verify the cores' operation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

SRAM AND SDRAM CONTROLLERS

While an FPGA device contains dedicated memory modules within the chip, its
capacity is relatively small. Separate external memory devices are needed to sup-
port the larger storage requirement. On the DEI board, there are an SRAM (static
random access memory) device and an SDRAM (synchronous dynamic random ac-
cess memory) device. In this chapter, we provide an overview of various types of
memory and discuss the design and use of a memory controller, which is the circuit
to read and write the external memory devices. Since the off-chip access introduces
new types of delays, we also provide a brief overview of timing issues and clock
management.

16.1 MEMORY RESOURCES OF DEI BOARD

The Altera EP2C20 FPGA device and DEI board provide several options for stor-
age elements:

• EP2C20's D FFs (for registers): about 20K bits embedded in logic cells (LEs).
• EP2C20's embedded RAM: about 200K bits, configured as 52 4K-bit modules.
• off-chip SRAM device: about 4,000K bits, arranged as a 256K-by-16 cell

array.
• off-chip SDRAM device: about 64,000K bits, arranged as a 4M-by-16 cell

array.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 385
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

3 8 6 SRAM AND SDRAM CONTROLLERS

These memory options exhibit a trade-off between cost and performance. A D FF
is the fastest and most versatile option but requires the most silicon area and thus
has the highest per-bit cost. It is only feasible for small, fast buffers. On the other
hand, an SDRAM cell occupies the smallest silicon area and has the lowest per-bit
cost but has the slowest access speed. Thus, it is feasible for a system that requires
massive storage but can tolerate relatively slower performance.

It is a good idea to keep in mind the capacities of these options and to select the
proper type that is most suitable for an application at hand.

16.2 BRIEF OVERVIEW OF TIMING AND CLOCK MANAGEMENT

As discussed in Section 5.1.2, the single most fundamental design principle is the
synchronous methodology, in which all registers are driven by a single global clock.
This methodology implicitly assumes that the rising edge of the clock signal can
arrive in all registers at the same time. In reality, this assumption is only true for
an intermediate-sized circuit within the FPGA device. Non-ideal clocking must be
taken into consideration in many designs, especially for a system with high-speed
off-chip access. In this section, we provide a brief overview of relevant timing issues
and clock management schemes.

16.2.1 Clock distribution network

In a digital gate, the output stage "drives" the input ports of connected components.
The number of input ports that can be driven is known as fan-out. A typical gate
can drive around half a dozen ports (i.e., a fan-out of 6). Since all registers are
connected to the same clock signal in a synchronous system, the fan-out of the clock
signal is the number of FFs in the system, which can reach thousands or even tens
of thousands in a large design.

To facilitate the requirement, an FPGA device contains special clock distribu-
tion networks to route the clock signal. A network is composed of multiple levels
of buffers to increase the driving capability and is carefully placed and routed to
balance and minimize the propagation delays. A conceptual three-level clock distri-
bution network is shown in Figure 16.1, in which the fan-out of an individual buffer
is four. To provide design flexibility, FPGA devices usually provide multiple clock
distribution networks. There are 16 distribution networks in the EP2C20 device.
A distribution network reaches all resources within the device and can be used for
a global clock as well as control signals, such as a clear or enable signal.

In a real system, the clock's sampling edge may reach FFs at different times and
the difference between the arrival times is known as clock skew. Because of the
propagation delay of buffers, the clock skew between the clock source and a leaf FF
can be quite large. However, the skews between the leaf FFs are small since the FFs
experience, similar delays. Thus, for a synchronous system implemented completely
within an FPGA chip (i.e., not considering off-chip signals), we can assume that it
is driven by the ideal clock source.

www.it-ebooks.info

http://www.it-ebooks.info/

BRIEF OVERVIEW OF TIMING AND CLOCK MANAGEMENT 3 8 7

clock source

to clock of up to 4 FFs

Figure 16.1 Conceptual clock distribution network.

16.2.2 Timing consideration of off-chip access

The timing analysis for off-chip signals is more complicated because it involves
an I/O buffer delay, an I/O pad delay, and additional routing delays and can be
effected by the external load and PCB (printed circuit board) routing.

One important timing parameter of a synchronous system is tco, which defines
the clock-to-output delay (i.e., the time required to obtain a stable output signal
after the clock's sampling edge), and we use this to illustrate off-chip timing issues.
The simplified timing path to determine the device-level clock-to-output delay is
shown in Figure 16.2.

The system within the FPGA chip can be considered an ideal synchronous sys-
tem. Its clock-to-output delay is labeled tco in Figure 16.2 and its value is equal
to tcQ plus touTPUT, as discussed in Section 5.5. On the other hand, the clock-to-
output delay in the device level is the delay from the clock pin to the output pin.
It is labeled tcox in Figure 16.2. tcoi involves additional propagation delays:

• I/O input delay of the clock signal: the delays of pad, package pin routing,
and I/O buffer.

• clock routing delay of the clock signal: the delay of the clock distribution
network.

• logic array to 10 buffer delay of the output signal: the routing delay from an
logic element to the I/O buffer.

• I/O output delay of the output signal: the delays of pad, package pin routing,
and I/O buffer.

The I/O output delay is affected by the load of the pin. During the timing analysis,
Quartus Timing Analyzer uses a default value to estimate the value. For more

www.it-ebooks.info

http://www.it-ebooks.info/

388 SRAM AND SDRAM CONTROLLERS

clock

PCB wiring delay

I/O output delay

logic array to I/O buffer delay

Figure 16.2 Conceptual diagram of off-chip delay.

flN + N fREF

fFB PFD charge
pump

■ +M

loop
filter

PS U

VCO
fvco

PS

PS

PS

+ Co

- C l

+ C2

foUTO

foun

ÍOUT2

Figure 16.3 Conceptual diagram of Cyclone II PLL.

accurate computation, we need to consider the actual PCB wiring and even the
effect of the transmission line. It is labeled tco2 in Figure 16.2.

16.2.3 PLL

To further facilitate clock and timing management, Cyclone II devices also contain
PLL (phase-locked loop) circuits. The simplified block diagram of a Cyclone II PLL
circuit is shown in Figure 16.3. It consists of a PFD (phase-frequency detector),
a charge pump, a loop filter, a VCO (voltage controlled oscillator), and several
frequency dividers and PS (phase selection) circuits. The key part of a PLL is
the closed feedback loop. The PFD compares the phases of the reference input
clock and feedback clock and outputs their difference. The charge pump and loop
filter convert the difference to a voltage level. Based on the voltage level, the VCO
oscillates at a higher or lower frequency, which affects the phase and frequency of the
feedback clock. The negative feedback mechanism eventually forces the feedback

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF SRAM 3 8 9

clock and the reference input clock to have the same frequency and phase, which is
said to be phase locked.

There are several frequency dividers in PLL and we can perform frequency
synthesis by adjusting the values of these dividers. Because of the PLL loop,
ÍREF = ÍFB- Since fuEF = ¿ψ and fFB = , £ 5xp, we have

fvco - JjfiM

In a Cyclone II PLL, the VCO output is fed to three separate frequency dividers and
phase selection circuits to obtain three output clocks. For example, the frequency
of the output clock 0 is

, fvco M t
JOUTO = —^— = -TT-FTJIN Co JV * Co

We can also adjust the PS circuit to adjust the phase for the output clocks (i.e., to
make the sampling edge of the output clock ahead or behind the sampling edge of
the input clock).

The output of a Cyclone II PLL can be connected to a clock distribution network
or an output pin. The PLL can be used to change the system clock rate with a
fixed external oscillator and drive different subsystems with different clock rates.
It can also be used to reduce clock skew and adjust the arrival time of a clock's
sampling edge to meet special timing requirements. There are four PLLs in an
EP2C20 device.

16.3 OVERVIEW OF SRAM

SRAM (static random access memory) is a type of semiconductor memory. The
term "static" indicates that the data are retained as long as power is being supplied
and thus not changed "dynamically."

16.3.1 SRAM cell

The basic organization of an SRAM cell is shown on the top right corner of Fig-
ure 16.4. The two invertors form a latch that stores one bit of information and the
two pass transistors function like switches that can be either "closed" (i.e., short
circuit) or "open" (i.e. open circuit). The two pass transistors are controlled by a
signal commonly referred to as word line. When the word line signal is high, the cell
is enabled for access and the latch is connected to the data lines, labeled bit line
and bit line. As the label indicated, bit line always carries the complemented value
of bit line. Although the bit line line is not strictly needed, it is used to improve the
noise margins and thus increase the reliability. The bit line and bit line are shown
as a single line in the cell array in Figure 16.4. In a read operation, the stored data
are connected to the two bit lines and passed to a sense amplifier to generate the
final value. In a write operation, the desired value and its complement are placed
on bit line and bit line to set the latch to the desired value.

www.it-ebooks.info

http://www.it-ebooks.info/

3 9 0 SRAM AND SDRAM CONTROLLERS

addr · 4¿-

word line

row addr

bit line

K^L col addr

cs_n
we_n
oe_n

.. Control
circuit

column sense amplifier/
multiplexer/decoder

I/O
buffer -► dq

■■*■ control signal

Figure 16.4 Conceptual diagram of a 256-by-l SRAM.

16.3.2 Basic organization

The memory cells on a memory device are usually arranged as a rectangular matrix
and use two-dimensional decoding and multiplexing to access the designated cell.
The conceptual diagram of a 256-by-l SRAM (i.e., 256 (28) address locations with
one bit in each location) is shown in Figure 16.4. The SRAM cells are arranged
as a 16-by-16-array. The address bus, addr, is split into two parts. The 4 MSBs
are connected to the row decoder and the 4 LSBs are connected to the column
multiplexer and decoder. The row decoder is a 4-to-24 binary decoder and enables
a single row of the cell array. In a read operation, the row's 16 bits of data are
retrieved and passed to the 16-by-l column multiplexer. The desired bit is selected
according to the 4 LSBs of addr and routed to the I/O buffer. The column decoder
is also a 4-to-24 binary decoder. In a write operation, it enables a single cell from
the selected row and the data are stored into that cell. The cell array and column
multiplexer and decoder can be duplicated multiple times to support a wider data
width.

To save I/O pins from a chip, the read data and write data usually share the
same physical pins. An I/O buffer is associated with each pin. It contains tristate
buffers and control logic to coordinate the bidirectional operation.

In addition to the address and data buses, a typical SRAM chip contains at least
three control signals. These signal are:

• ce_n (chip enable or chip select): disables or enables the chip

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF SRAM 3 9 1

Table 16.1 Functional table of SRAM control signals

Opera t ion

chip disabled
output disabled
read
write

ce_n

1
0
0
0

we_n

1
1
0

oe_n

1
0

dq

Z
Z

data out
data in

• we_n (write enable): disables or enables the write operation
• oe_n (output enable): disables or enables the output

All these signals are active low and the _n suffix is used to emphasize this prop-
erty. The functional table is shown in Table 16.1. The ce_n signal can be used to
accommodate memory expansion, and the we_n and oe_n signals are used for write
and read operations.

16.3.3 Timing

Our discussion in Part I focuses on the synchronous system, in which the registers
are driven by the same clock signals and the input signals are sampled at the rising
edge of the clock. A system will function correctly and reliably as long as the
data are stable around the sampling edge. An SRAM device, on the other hand, is
asynchronous. It does not contain a clock signal and its operation is based on the
duration and level of the address, data, and control signals. An SRAM device thus
is sometimes referred to as asynchronous SRAM.

The timing characteristics of an asynchronous SRAM are quite complex and
involve more than two dozen parameters. We concentrate on only a few key pa-
rameters that are relevant to our design.

The simplified timing diagrams for two types of read operations are shown in
Figure 16.5(a) and (b). The relevant timing parameters are:

• tac'· read cycle time, the minimal elapsed time between two read operations.
It is about the same as ÍAA for SRAM.

• ÍAA'· address access time, the time required to obtain stable output data after
an address change.

• to HA'· output hold time, the time that the output data remains valid after
the address changes. This should not be confused with the hold time of an
edge-triggered FF, which is a constraint for the d input.

• tooE- output enable access time, the time required to obtain valid data after
oe_n is activated.

• tnzoE'· output enable to high-Z time, the time for the tristate buffer to enter
the high-impedance state after oe_n is deactivated.

• tLZOE' output enable to low-Z time, the time for the tristate buffer to leave
the high-impedance state after oe_n is activated. Note that even when the
output is no longer in the high-impedance state, the data are still invalid.

www.it-ebooks.info

http://www.it-ebooks.info/

392 SRAM AND SDRAM CONTROLLERS

we_n=1,oe_n=0

atid!

dq invalid data out

mil.: i

-toHA

Ui

(a) Timing diagram of an address-controlled read cycle

we_n=1

toHA

dq Of
LzOE

b»E—*■

(b) T i m i n g diagram of an oe_n-controlled read cycle

data out

—» 1H20É

* parameter

tRC

tAA

toHA
ÍDOE

tHZOE

tLZOE

read cycle time
address access time
output hold time
output enable access time
output enable to high-Z time
output enable to low-Z time

min

10
-
2
-
-
0

m a x

-
10
-
4
4
-

(c) ISSI IS61LV25616AL timing parameters (in ns)

Figure 16.5 Timing diagrams and parameters of a read operation.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF SRAM 3 9 3

addr

we_n

dq

-twc-

- t S Ä -

-tpWEI-

datain

-tHA-

"tHD

(a) Timing diagram of a write cycle

Parameter Min Max

twc
tsA
ÍHA

tpWEl
tSD

ÍHD

write cycle time
address setup time
address hold time
we_n pulse width
data setup time
data hold time

10
0
0
8
6
0

-
-
-
-
-
-

(b) ISSI IS61LV25616AL timing parameters (in ns)

Figure 16.6 Timing diagram and parameters of a write operation.

The simplified timing diagram for a we_n-controlled write operation is shown in
Figure 16.6(a). The relevant timing parameters are:

• twc'· write cycle time, the minimal elapsed time between two write opera-
tions.

• tsA- address setup time, the minimal time that the address must be stable
before we_n is activated.

• tu A'· address hold time, the minimal time that the address must be stable
after we_n is deactivated.

• tpwEi- we_n pulse width, the minimal time that we_n must be asserted.
• tsD' data setup time, the minimal time that data must be stable before the

latching edge (the edge in which we_n moves from 0 to 1).
• tj{D· data hold time, the minimal time that data must be stable after the

latching edge.

16.3.4 IS61LV25616AL SRAM device

The DEI board has an IS61LV25616AL device, which is a 256K-by-16 SRAM mod-
ule manufactured by Integrated Silicon Solution, Inc. (ISSI). This device has an

www.it-ebooks.info

http://www.it-ebooks.info/

394 SRAM AND SDRAM CONTROLLERS

Table 16.2 Functional table of IS61LV25616AL control signals

Operation

disabled

read

write

ce_n

1
0
0

0
0
0

0
0
0

we_n

-
1
-

1
1
1

0
0
0

oe_n

-
1
-

0
0
0

-
-
-

lb_n

.
-
1

0
1
0

0
1
0

ub_n

.
-
1

1
0
0

1
0
0

dq (lower)

Z
Z
Z

data out
Z

data out

data in
Z

data in

dq (upper)

Z
Z
Z

Z
data out
data out

Z
data in
data in

18-bit address bus, addr, a 16-bit bidirectional data bus, dq, and five control sig-
nals. The data bus is divided into upper and lower bytes, which can be accessed
individually. In addition to ce_n, we_n, and oe_n, it includes two signals to facilitate
the byte-oriented configuration:

• lb_n (lower byte enable): disables or enables the lower byte of the data bus
• ubji (upper byte enable): disables or enables the upper byte of the data bus

The extended functional table is shown in Table 16.2.
The values of relevant parameters for the read and write operations are shown

in Figures 16.5(c) and 16.6(b).

16.4 SRAM CONTROLLER IP CORE

An SRAM controller is a circuit used to access the external SRAM chip. It generates
proper control signals, issues the address, and places and retrieves data according
to the device's timing specification.

16.4.1 Avaion interfaces

In the Avaion framework, an SRAM controller can be configured as an SOPC com-
ponent with an Avaion MM slave interface or Avaion MM tristate slave interface.
We use the former to illustrate finer timing issues. In addition to the Avaion MM
slave interface, the controller contains an clock input interface for the system clock
and a conduit interface to connect the SRAM device's I/O pins.

Avaion MM slave signal mapping By examining the specification of the SRAM
functional table, we can relate the SRAM's signals with the Avalon MM slave
interface signals:

• SRAM's oe_n: read_n
• SRAM's we_n: wri tejn

www.it-ebooks.info

http://www.it-ebooks.info/

SRAM CONTROLLER IP CORE 395

• SRAM's ce_n: chipselect_n
• SRAM's ub_n and lb_n: byteenable_n (two bits)
• SRAM's addr: address (18 bits)
• SRAM's dq: readdata (16 bits) and wr i teda ta (16 bits)

Note that SRAM's dq signal (data bus) is bidirectional and thus carries both read
and write data. We can use a tristate buffer in the SRAM controller to resolve the
situation. The corresponding HDL segment looks like:

/ / port
wire [7:0] dq,

a s s ign dq = (~we_n) ? w r i t e d a t a : 8 ' b z ; / / write
ass ign r e a d d a t a = dq; / / read

Basic timing analysis A main task of designing an SRAM controller is to generate a
properly timed control signals. In the Avalon framework, the first step is to adjust
the timing properties of Avalon MM slave interface's read_n and write_n signals
according to the device's specification. We assume that the 50-MHz (i.e., 20-ns)
clock signal is used for the Nios II system.

Let us first consider the read operation. In a read cycle, an Avalon MM master
issues the address and asserts the read_n signal at the same time. The SRAM
device returns the valid data after 10-ns ÍAA- Since the clock period is 20 ns, the
Avalon MM master can sample and retrieve the data from readdata at the rising
edge of the next clock. No extra wait state is needed.

The timing diagram of SRAM write operation in Figure 16.6(a) suggests that
the write_n signal should include a setup time to accommodate the SRAM's ÍSA
requirement and a hold time to accommodate SRAM's tu A and ÍHD requirements.
However, since IS61LV25616AL is a newer chip and all three parameters are zero,
it is feasible to issue the address and data and assert write_n at the same clock
cycle. The 20-ns clock period is larger than 10-ns tpwE\ and thus no extra wait
state is needed.

Additional timing consideration The previous timing analysis is based on a some-
what ideal scenario. There are several subtle issues in practice. First, the Avalon
MM interface is a synchronous protocol and only assures the signals are stable
around the clock edge. It does not specify or guarantee the clock-to-output delay
or interval of these signals. Thus, the generated signals can be short or may contain
glitches. On the other hand, the SRAM timing specification requires the signals to
be stable for a specific amount of time (e.g., the 10-ns tpwEi interval). Second,
the propagation delays of signals may vary and the variance can be significant be-
cause accessing an external device involves various types of I/O propagation delays
discussed in Section 16.2.2. The variance can complicate the timing of read since
it involves a "round-trip" operation, (i.e., first transmitting address to SRAM and
then retrieving data from SRAM). Third, the delay variance may also jeopardize the
write operation since it is possible that the data are removed before the deassertion
of the we_n signal.

One way to mitigate the problem is to use registers to buffer the incoming and
outgoing signals and place these registers within the I/O buffers. The registered
output signals are glitch-free and stable for one clock period and thus resolve the

www.it-ebooks.info

http://www.it-ebooks.info/

396 SRAM AND SDRAM CONTROLLERS

first issue. Utilizing the registers in I/O buffers eliminates the logic-array-to-I/O-
buffer delay and reduces the main variance in calculating the propagation delays.
Due to the relatively large 10-ns slack in read operation (i.e., 20-ns period minus
10-ns ÍAA), this approach should resolve the timing difficulty in read operation.

Simultaneous data removal and we_n deassertion can still pose a problem because
of the potential variance of external wiring delays. To be really safe, we can prolong
the data and address for one clock cycle by setting the Avalon MM slave interface's
holdtime property to 1. This degrades the performance of the write operation
from one clock cycle to two clock cycles. An alternative is to use PLL to generate
a slightly leading clock signal to drive the we_n register so that it deasserts slightly
before the removal of the data and address signals. However, our test program
in Section 16.8 shows that the controller works fine with the original design. It
implies that the printed circuit board is designed properly and these features are
not needed.

While the registers resolve some timing issues, they introduce latency for data
access. In a read operation, it takes one clock cycle to register the outgoing address
and oe_n and another clock cycle to register the incoming data. Thus, an Avalon
MM master experiences a latency of two clock cycles. Note that the Avalon MM
master can still issue read in every clock cycle and the data are returned in a
pipelined fashion. In a write operation, an Avalon MM master issues address, data,
and write_n in the original way. However, because of the buffering registers, the
actual SRAM write is delayed by one clock cycle.

16.4.2 Controller circuit

The SRAM controller just consists of registers for the outgoing and incoming signals
and a tristate buffer for the bidirectional data bus. Its code is shown in Listing 16.1.

Listing 16.1 SRAM controller
module chu_avalon_sram

(
input wire e lk , r e s e t ,

4 / / Avalon-MM slave interface
input wire [17:0] address ,
input wire c h i p s e l e c t . n , read.n , wri te .n ,
input wire [1:0] byteenable.n ,
input wire [15:0] wri tedata ,

9 output wire [15:0] readdata,
/ / conduit to/from SRAM
output wire [17:0] sram.addr,
inout [15:0] sram.dq,
output sram_ce_n, sram_oe_n, sram_we_n,

14 output sram_lb_n, sram_ub_n
) ;

/ / s igna/ declaration
reg [17:0] addr.reg;

i» reg [15:0] rda ta . reg , wdata.reg;
reg ce_n_reg, lb_n_reg , ub_n_reg, oe_n_reg, we_n_reg;

/ / body
// registers

24 always <5(posedge e lk , posedge r e s e t)
i f (r e s e t)

www.it-ebooks.info

http://www.it-ebooks.info/

SRAM CONTROLLER IP CORE 397

begin
addr.reg <- 18'bO;
rdata.reg <« 16'bO;
udata.reg <» 16'bO;
ce_n_reg <- l ' b l
lb_n_reg <» l ' b l
ub_n_reg <= l ' b l
oe_n_reg <- l ' b l
we_n_reg <= l ' b l

end
e l s e
begin

addr.reg <» address;
rdata .reg <- sram.dq;
wdata.reg <■ writedata
ce_n_reg <» c h i p s e l e c t .
lb_n_reg <■ byteenable.
ub_n_reg <» byteenable.
oe_n_reg <» read.n;
we_n_reg <■ w r i t e . n ;

end
/ / to Avalon interface
assign readdata » rdata .reg;
/ / to SRAM
assign sram.addr = addr.reg;
ass ign sram_ce_n - ce_n_reg;
assign sram_lb_n ■ l b . n . r e g ;
assign sram_ub_n » ub_n_reg;
ass ign sram_oe_n ■ oe_n_reg;
ass ign sram_we_n = we_n_reg;
/ / SRAM tristate data bus
assign sram.dq » Cwe_n_reg)

endmodule

. n ;

.n [0] ;

. n [l] ;

? wdata. .reg 16'bz;

During synthesis, we can set the Fast Input Register and Fast Output Register options
in Quartus to ensure that the registers are placed in I /O buffers. However, software
usually can detect the off-chip signals and perform this task automatically.

16.4.3 SOPC component creation

With the HDL file, we can follow the procedure outlined in Section 15.5.4 and
create a component in SOPC Builder. The component consists an Avalon MM
slave interface (named cpu_ctrl), a clock interface (named clock_reset), and a conduit
interface for the SRAM signals (named ctrl_sram). Note that the active-low version
of the control signals (i.e., with the _n suffix) should be used. The complete signal
mapping is shown in Figure 16.7.

The Avalon MM slave interface needs to be configured to match the timing
characteristics of the SRAM controller. Both Read Wait and Write Wait fields should
be 0 and the Read latency field should be 2 to accommodate the two-clock delay
introduced by the input and output registers. Furthermore, we need to expand
the Deprecated segment and check the Memory device box to indicate that the
interface is a general-purpose memory module. The finished screen shot is shown
in Figure 16.8.

Since the SRAM controller core is used earlier in Section 11.5, it may already be
included in the SOPC Builder's library.

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

www.it-ebooks.info

http://www.it-ebooks.info/

398 SRAM AND SDRAM CONTROLLERS

: Production ¡| HDL Files [Signals

> About Signals

... Name

■ ^

a
&
u
■

■ ¡2
■&

VÍ

■ iä
:,:-

reset
d h

W I H c 11

road n

byte enable n

ellipselect n

resddata

address

» ram « c n

« r i m oe n

* r * m _ u b _ n

ar*m_lb_n

s i i m c e n

■ram_dq

aram_addr

Interlaces |

Interface

doch rese t

doch rese t

cpu_ctrl

c p u c t r l

cpu_ctrl

cpu Ctrl

cpu_ctrl

cpu_ctrl

cpu_ctrl

ctxl_sr»m

ctrl_sram

ctrl_sram

ctr I si.iiri

Ctrl » ram

Ctrl s ram

ctil s i i m

Compone* Wizard j

Signal Type

reset

elk

write _n

read n

byteenible n

chip»elert_n

lead data

wirtedala

address

export

export

export

export

export

export

export

Width

1

1

1

1

2

1

16

16

18

1

1

t

1

1

16

18

Direction

npul

Input

nput

Input

Input

input

output

nput

Input

output

output

output

outpii

output

ill· ill

outpii

Figure 16.7 Signal mapping of SRAM controller.

16.5 OVERVIEW OF DRAM

DRAM (dynamic random access memory) stores a bit of data in a capacitor within
an integrated circuit. Because of the charge leakage, the memory cell needs to be
refreshed periodically. A DRAM cell is very simple and thus a DRAM chip can
reach very high density. It is the "main memory" used in today's computer system.

16.5.1 DRAM cell

The basic organization of a DRAM cell is shown on the top right corner of Fig-
ure 16.9. The data bit is stored in the capacitor. Its voltage level, which can be
close to 0 V (ground) or VDD (supplied voltage), indicates whether the bit is 0 or 1.
The pass transistor functions like a switch and can be turned on or off by the word
line signal.

The procedure to write a value to a DRAM cell is:
1. Activate word line to turn on the pass transistor.
2. Set bit line 0 V or VDD to store 0 or 1.
3. Deactivate word line to turn off the pass transistor.

The procedure to read a bit from a DRAM cell is:
1. Precharge bit line to ^ 2 ·
2. Activate word line to turn on the pass transistor.
3. Use a sense amplifier to detect the voltage swing.
4. Restore (i.e., rewrite) the data back to the capacitor cell (since the original

charge content has been destroyed).
5. Deactivate word line to turn off the pass transistor.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF DRAM

- -CJ>u_ctrr {Alton Hervor, lUgpcd Savi I

1 « *

Atiocalwl CtocL dacKJwmM

m

fMSJBJT

Htta.'.u

WrteWal

F > f c * ^

Burn on bufU

Lncwrep bun □

chipE4lect_n \ _

DrtesniDie)T*

DC»

Nún-voMÉc Menge

Cen recave tUout/fldwi

«tfvnory devca

SMVB «Mitsang,

□
□
a
DYHAMC

Figure 16.8 Avalon MM slave interface of SRAM controller.

www.it-ebooks.info

http://www.it-ebooks.info/

4 0 0 SRAM AND SDRAM CONTROLLERS

word line

addr */ t */ »
row
addr
latch

■¥-
col

addr
latch

column multiplxer/decoder/
sense amplifier/latch

cs_n
we_n '
cas_n
ras_n

I/O
buffer

Figure 16.9 Conceptual diagram of a 256-by-l DRAM.

Note that the precharge and restoration steps are needed to accommodate the
capacitive storage. In addition, since charges in the capacitor leak gradually, its
data must be refreshed (i.e., read and then written back) periodically.

16.5.2 Basic DRAM organization

The basic layout of a DRAM chip is similar to that of an SRAM chip. The con-
ceptual diagram of a 256-by-l DRAM is shown in Figure 16.9. The DRAM cells
are arranged as a 16-by-16-array and two-dimensional decoding is used to access
the designated cell. However, the DRAM addressing scheme is different. The row
address is issued first and stored into a latch (i.e., row address latch) and then the
column address issued afterward. This scheme reduces the address I/O pins by
half. Note that the width of the addr signal is only four bits, half of the size of the
SRAM chip. Two additional control signals, ras J I (row address strobe) and cas_n
(column address strobe), are used to indicate the type and validity of the addr bus.

The basic procedure to read a bit is listed below. We assume that the bit lines
have been already precharged.

1. The external controller places the row value on addr.
2. The DRAM stores the address in a row address latch and the row decoder

enables a row. The entire row of data is retrieved and stored in a data latch.
3. The external controller places the column value on addr.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF DRAM 4 0 1

4. The DRAM stores the address in a column address latch and the column
multiplexer routes the selected data bit to data bus, dq. The retrieved data
are also restored back to the original row.

5. The DRAM precharges the bit lines for the next operation.
The write procedure is identical except for step 4. During a write operation, the

column decoder enables the selected bit in data latch and the input value from dq
is written to that bit. The data latch with the updated bit is then written back to
the original row, effectively writing that bit to the cell array.

16.5.3 DRAM timing

The DRAM does not contain a clock signal and its operation is based on the
duration and level of the address, data, and control signals. Because of address
time multiplexing and the need of precharging and restoration, DRAM timing is
very involved. The simplified timing diagrams of read, write, and refreshing are
shown in Figure 16.10. A typical read operation is shown in Figure 16.10(a). The
external controller first places the row address on addr and then activates ras_n
(i.e., makes it 0). The DRAM latches the address at the falling edge and reads the
designated row. After an interval of ißcDi the r o w data are stored to the data latch,
the controller places the column address on addr and then activates cas_n. The
DRAM latches the address at the falling edge and the column multiplexer routes the
selected bit to dq. The controller then can deactivate cas_n and remove the data
from dq and deactivate ras_n after the row data are restored. After the restoration,
DRAM precharges the bit lines for next access. After precharging completes, the
controller can start the next access.

The key timing parameters are:

• tRC- read cycle time, the minimal elapsed time between two read operations.
• tüAs- ras_n pulse width, the time interval that r a s j i must be asserted.
• tcAS'· cas_n pulse width, the time interval that cas_n must be asserted.
• tftcD'· ras-n to cas_n delay time, the minimal delay between the assertion of

r a s j i and the assertion of cas_n. It represents the time to retrieve data from
a row.

• tcAC' cas_n access time, time required to obtain stable output data after
cas_n assertion.

• tjip: row precharge time, time required to precharge a row for another access.
A typical write operation is shown in Figure 16.10(b). The ras_n and cas-n

assertions and precharge interval are similar but we_n is activated to write data. In
addition to the read and write cycles, a DRAM chip also includes a refresh cycle,
as shown in Figure 16.10(c). In this cycle, a row of data is read and then stored
back. The external controller usually uses a counter and a timer to keep track of
the row number and launch refresh cycles periodically.

Accessing a data item in DRAM requires to read and restore an entire row and
to precharge all bit lines. These operations are time consuming and the speed of
DRAM is thus relatively slow. One way to improve the performance is to allow
multiple column accesses each time a row is retrieved, as in page-mode or burst-mode
operation.

www.it-ebooks.info

http://www.it-ebooks.info/

4 0 2 SRAM AND SDRAM CONTROLLERS

-bc-

■* tup »■

audi

ra$_n

eas_n

Y rovraddr IT JÍ col addr Y

dq

-IRAS-

- t cAE-

< Y dala out V-

-tcAfi-»

cas_n

dq

ras n

unused/undefined

(a) Timing diagram of a read cycle

addr)[row addr ^){ coladdr

-I data in V

(b) Timing diagram of a write cycle

addr jt row addr] Γ

(c) 'riming diagram oí ¡i refresh cycle

F i g u r e 1 6 . 1 0 Timing diagrams of D R A M operations.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF SDRAM 403

four banks
A

Λ

dqmji

Figure 16.11 SDRAM conceptual diagram.

16.6 OVERVIEW OF SDRAM

The DRAM timing is very involved and its operation is asynchronous. A signal must
be stable for a specific interval of time, not just around a clock edge. To simplify
the controller design, modern devices usually include a synchronous control circuit
wrapped around the DRAM. The circuit samples the address, data, and control
signals at the clock edges and then generates the needed DRAM signals. This type
of device is known as SDRAM (synchronous DRAM).

16.6.1 Basic SDRAM organization

The conceptual SDRAM diagram is shown in Figure 16.11. The major "syn-
chronous wrapping circuit" includes a clock generator, registers (blocks with clock
input triangle) for the data, address, and commands, and a control circuit that gen-
erates DRAM control signals. The data, address, and command signals are sampled
at the rising edge of the elk signal and the memory operation can be performed in
a pipelined fashion. The device also includes the dqm_n (for "dq mask") signal to
mask or enable the data access.

www.it-ebooks.info

http://www.it-ebooks.info/

404 SRAM AND SDRAM CONTROLLERS

Table 16.3 SDRAM commands

C o m m a n d

inhibit
no op
activate
read
write
precharge
refresh
set mode
burst stop

cs_n

1
0
0
0
0
0
0
0
0

ras_n

-
1
0
1
1
0
0
0
1

cas_n

-
1
1
0
0
1
0
0
1

we_n

-
1
1
1
0
0
1
0
0

Description

device deselected
no operation
activate row
load column and start read
load column and start write
deactivate row and precharge bit lines
enter auto refresh mode
load data into mode register
terminate burst operation

Current SDRAM devices utilize multiple banL·, each with its own row decoder
and column circuitry, to have several accesses operated in parallel and thus increase
overall throughput. The ba signal is used to select a bank.

SDRAM is more versatile than the previous DRAM or SRAM. Various param-
eters, such as the burst length and burst type (sequential or interleaved), can be
adjusted as needed and programmed into the mode register. It can perform a con-
current auto precharge and includes a refresh counter that automatically tracks
and increments the refreshing row address.

The SDRAM device keeps the original names of cs_n, ras j i , cas J I , and we_n but
groups them together as a 4-bit command. The commands are listed in Table 16.3.

16.6.2 SDRAM timing

Because of the modes and options, SDRAM timing covers many different scenarios.
We illustrate the basic concepts by a simple read operation and a simple write
operation, in which the burst length is set to 1, the CAS latency is set to 2, and
the auto precharge is disabled. The timing diagram of a read operation is shown
in Figure 16.12(a). Note that the command and address only need to be stable
around the rising edge of the clock. The basic sequence is:

1. At ίθ) the SDRAM controller issues an activate command and places the row
address on addr to initiate the operation. The SDRAM activates the row,
retrieves the entire row of data, and stores it to the data latch.

2. At ¿2, the SDRAM controller issues a read command and places the column
address on addr. The SDRAM enables the column multiplexer to route the
selected data to output.

3. At Í4, the data becomes available in dq and the SDRAM controller retrieves
data.

4. At Í5, the SDRAM controller issues a precharge command.
5. At ¿7, the precharge operation is completed and the SDRAM controller can

initiate a new operation at this point.
The key timing parameters are:

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF SDRAM 4 0 5

to ti 12 13 14 t5 t6 t7

elk

command X g Q g Q g O ^ ^

addi Y row

dq

-IRCD ·■

I
—CH""!

··—CAS latency--»-

— t w s

y
i rpw

- I R P -

CASIatency=2; burst length=1; with manual precharge

(a) Timing diagram of a read cycle

tO 11 12 13 t4 15 t6 (7

cii

command Χ ^ ^ Ο β ^ ^

addr

dq

"w f (Ol

Ydaa

-tRCD *"

Γ
3C

]BC
)S3C

- U R -

-fctAS-

- I R P -

burst length=l; with manual precharge

ib i Ί lining cjiagrii f ¡, w n (1 . cvi'lv

Figure 16.12 Timing diagrams of SDRAM operations.

www.it-ebooks.info

http://www.it-ebooks.info/

4 0 6 SRAM AND SDRAM CONTROLLERS

• tAC'· access time from the clock edge, time required to obtain stable output
data after the rising edge of clock.

• CAS latency: cas_n to output data delay, the delay, in terms of number of
clock cycles, between the assertion of a read command and the availability of
output data.

• tRAS'· ras-n pulse width, time interval that ras_n must be asserted.
• ÍRCD'· row to column command delay time, the minimal delay between the

assertion of an activate command (i.e., activate a row) and the assertion of a
read or write command (i.e., activate a column).

• ÍRP- precharge command period, time required to complete precharge opera-
tion after a precharge command is issued.

Note that the CAS latency is specified in terms of clock cycles. It is usually 2 or 3
and is programmed into the mode register in advance. All other parameters are
represented in terms of nanoseconds. While designing the controller, we need to
translates a time interval to a proper multiple of clock periods. For example, if
tRCD is 50 ns and the clock period is 20 ns, the controller must wait at least 3 clock
cycles (i.e., 60 ns) before issuing a read command.

The timing diagram of a write operation is shown in Figure 16.12(b). Its basic
sequence is:

1. At to, the SDRAM controller issues an activate command and places the row
address on addr to initiate the operation. The SDRAM activates the row,
retrieves the entire row of data, and stores it to the data latch.

2. At ¿2> the SDRAM controller issues a write command, places the column
address on addr, and places data on the dq bus. The SDRAM retrieves the
data, enables the column decoder, writes the selected locations in the data
latch, and then writes the entire row of data back to the designated row.

3. At Í5, the row has been updated and the SDRAM controller issues a precharge
command.

4. At ίγ, the precharge operation is completed and the SDRAM controller can
initiate a new operation at this point.

There is one new timing parameter:
• twR'· write recovery time, the time interval required between the end of the

write data burst and the start of a precharge command.

16.6.3 ICSI IS42S16400 SDRAM device

The DEI board has an IS42S16400 device, which is a 4M-by-16 SDRAM module
manufactured by Integrated Circuit Solution, Inc. The device is organized as four
banks, each containing a 220-by-16 memory array. It uses a 2-bit ba signal to
identify a bank and has a 12-bit address bus and a 16-bit bidirectional data bus.

16.7 SDRAM CONTROLLER AND PLL

16.7.1 Basic SDRAM controller

An SDRAM controller accepts a request from the main system (such as an Avalon-
MM master or a processor) and generates proper SDRAM control signals. It
consists of buffers, a timer that issues refreshing ticks, and an FSM that follows

www.it-ebooks.info

http://www.it-ebooks.info/

SDRAM CONTROLLER AND PLL 4 0 7

power on

Figure 16.13 Simplified FSM state diagram of an SDRAM controller.

the SDRAM timing specification and generates properly sequenced SDRAM com-
mands. The sketch of the FSM state diagram is shown in Figure 16.13. When the
power is first applied, the FSM goes through the SDRAM startup process, which
consists of a mandatory wait period and several refresh cycles, and then moves to
the id le state. Four possible actions can be taken. The main system can issue a
request to set the mode register, to read data from SDRAM, or to write data to
SDRAM and the timer can trigger the controller to initiate a refresh cycle. The
FSM examines the request and branches to the designated path and generates the
SDRAM command sequence accordingly.

Because of many possible modes and options of SDRAM, designing a compre-
hensive and robust SDRAM controller is an involved and tedious task. We use
Altera's SDRAM controller IP core for our purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

4 0 8 SRAM AND SDRAM CONTROLLERS

16.7.2 SDRAM controller IP core

Most of today's SDARM devices conform to the standard set by the JEDEC Solid-
State Technology Association. Although the bus width, capacity, and speed differ,
the devices utilize similar interfaces, commands, and protocols. It is possible to
construct a basic SDRAM controller "skeleton" and then adjust it to match to
the system clock speed and specification of a specific SDRAM device. This is the
approach used by Altera's SDRAM controller IP core.

An SDRAM controller IP core can be instantiated in SOPC Builder. The process
basically requires us to consult the data sheet of a given device and determine the
values of the relevant parameters. The timing parameters of IS42S16400 can be
found in the DEI board's accompanying data sheets. The steps of instantiating an
SDRAM controller core are:

1. In SOPC Builder, select the System Contents tab.
2. In Component Library panel, expand the Memories and Memory Controllers

category and then the SDRAM category and then select SDRAM Controller.
The SDRAM Controller subwindow appears. It is in Memory Profile tab page
as a default, as shown on the left of Figure 16.14.

3. In the Presets field, select Custom since there is no pre-configured setting for
the IS42S16400 device.

4. Enter the following for IS42S16400:
• Bits: 16
• Chip select: 1
• Banks: 4
• Row: 12
• Column: 8

The completed page is shown on the left of Figure 16.14.
5. Select the Timing tab page to enter relevant timing parameters. The page is

shown on the right of Figure 16.14.
6. Enter the following for the DEI board's SDRAM:

• CAS latency cycles: 3
• Initialization refresh cycles: 8
• Issue one refresh command every: 15.625 us
• Delay after power up, before initialization: 200 us
• Duration of refresh command (t_rfc): 70 ns
• Duration of precharge command (t_rp): 20 ns
• ACTIVE to READ or WRITE delay (t.rcd): 20 ns
• access time (t_ac): 6 ns
• Write recovery time (t_wr, no auto precharge): 14 ns

The completed page is shown on the right of Figure 16.14.
7. Click finish to complete the process.

16.7.3 SOPC PLL IP core

In a synchronous transaction, the relevant signals must be valid for a small window
of time, during which the clock signal must toggle to capture the correct values.
This condition translates to a time constraint on the maximal operating clock rate,
as discussed in Section 5.5. The analysis can be applied to a system within the

www.it-ebooks.info

http://www.it-ebooks.info/

SDRAM CONTROLLER AND PLL 4 0 9

o . _ , „ « . . ,

£r .» isu in i *1ä i» fUU Drittel

r j cartrtfc u w mitpiifchi ίθ HTM

ÍM

Í

mint nwnwfr muJ«b [tunu^lM'i ut-M

hCydt· j j

[»EonπΓpacTMífa convert 1.1 ,ιρι

ΑΓ.ΤΓΐ iu Rf AD CT * « ϊ ϊ te] Hjcdl Ä

A f l Í l l l f * (Ι,Είΐ

o» ®«

ί
15.&»

20ü

¿
>
»
■

I d

LA

-
<·
»
.

Figure 16.14 Screenshot of SOPC SDRAM controller.

FPGA chip since the internal clock skew is small. However, accessing SDRAM
involves additional issues. First, since the SDRAM controller and SDRAM reside
on two separate devices, the timing parameters, such as clock-to-q delay, setup time,
and hold time, are not identical. Second, as discussed in Section 16.2.2, off-chip
access introduces additional delays, and has a significant impact on the controller's
clock-to-output time. Finally, clock skew may also exist because the rising edge
may not be able to arrive at the SDRAM controller (within the FPGA chip) and
the SDRAM device at the same time.

On the DEI board, the clock signal of SDRAM is connected to an output pin
of the FPGA device. We can connect this pin directly to the external 50-MHz
clock, as shown in Figure 16.15(a). This clocking scheme does not work reliably
because of the timing issues. One way to mitigate the problem is to adjust the phase
between the controller's clock signal and the SDRAM's clock signal. The basic idea
is to determine a window of time, in which the data, address, and control signals
are valid at the SDRAM pins, and align the clock's sampling edge in the middle
of the window. The exact boundaries of the window depend on SDRAM device's
input hold time, setup time, and output hold time, FPGA register's hold time
and setup time, the controller's clock-to-output delay, and clock skew. A detailed
analysis procedure can be found in the reference of the bibliographic section. DEI
documentation suggests to use a —3 ns shift for the SDRAM clock (i.e., the rising
edge of the SDRAM clock is ahead of the rising edge of the controller by 3 ns).

The required SDRAM clock adjustment can be done by using FPGA's internal
PLL circuit. The improved clocking scheme is shown in Figure 16.15(b). The
external 50-MHz clock is fed to the PLL, which generates a clk_sys clock to drive
the FPGA's internal system and a clk_sdram clock, which leads by 3 ns, to drive
the external SDRAM device. Using PLL output (i.e., clk_sys) to drive the FPGA's

www.it-ebooks.info

http://www.it-ebooks.info/

4 1 0 SRAM AND SDRAM CONTROLLERS

SQMHz
oscillator

/ΤΤΓΪΪ
(TU1J

FPGA device

I

SDRAM
Controller

>

control/
addr/data

SDRAM device

elk

(a) Clocking without. PLL

50 MHz
oscillator

früh
quy

FPGAdeulce

PLL

elk sdram

n
elk svs

SDRAM
Controller

>

control/
addr/data

SDRAM device

elk

(b) Clocking with PLL

Figure 16.15 SDRAM clocking schemes.

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING SYSTEM 4 1 1

internal logic can reduce the clock skew within the FPGA. Furthermore, we can
adjust the system's clock frequency with the same 50-MHz external oscillator.

The PLL circuit can be treated as an SOPC Builder component and integrated
into a Nios II system or instantiated as a Quartus megafunction module. We use
the former for our system. The steps of instantiating a PLL core in SOPC Builder
are:

1. In SOPC Builder, select the System Contents tab.
2. In Component Library panel, expand PLL category and then select Avalon

ALTPLL. The MegaWizard Plug-In Manage window appears.
3. The window should display the General/Modes sub-page of the Parameter

Setting tab page. Enter 50.0 MHz in the What is the frequency of the inclockO
input? since the external 50-MHz oscillator is used for the PLL input.

4. Select the Output Clocks tab page. There are three sub-pages, labeled elk cO,
elk el , and elk c2, which represent three possible output clock signals discussed
in Figure 16.3. The tab page should display the elk cO sub-page. Its screen
capture is shown in Figure 16.16.

5. Check the Use t h i s clock box to activate this clock. Keep the default values
for the field. Since both Clock multiplication factor and Clock division factor
fields are 1, the clock frequency remains 50 MHz. This clock output is used
for the FPGA internal system clock, clk_sym.

6. Select the elk el sub-page to configure the second clock. Check the Use t h i s
clock box to activate this clock. Enter -3 ns in the Clock phase shift field.
This clock output is 50 MHz but with a —3 ns phase shift. It is used to drive
the SDRAM device's clock, clk_sdram.

7. Click the Finish button to save the configuration and close the MegaWizard
Plug-In Manage window.

16.8 TESTING SYSTEM

We create a simple Nios II system to verify the operation of memory modules. The
top-level diagram is shown in Figure 16.17. The system consists of a PLL core to
generate the clock signal, a JTAG UART core to display messages on the console,
and three memory cores, including an embedded on-chip memory, an SRAM con-
troller, and an SDRAM controller. The testing program is stored in the on-chip
memory. It first writes data to the SRAM and SDRAM modules and then reads it
back to check errors.

16.8.1 Testing hardware configuration

Nios II system We can create the testing Nios II system in SOPC Builder. The
procedure is:

1. Add and configure a Nios I l /e processor and rename it cpu.
2. Add an on-chip memory module of 16 KB and rename it onchipjnem.
3. Add the SRAM controller module and rename it sram.
4. Follow the procedure in Section 16.7 to add an SDRAM controller module

and rename it sdram.
5. Select the on-chip memory module for the reset and exception vectors.
6. Add and configure a JTAG UART module and rename it j t a g j i a r t .

www.it-ebooks.info

http://www.it-ebooks.info/

4 1 2 SRAM AND SDRAM CONTROLLERS

M>(iWU>r4 flu (-In H u . t L . 1 [p i n t a i l]

i.i i- lii-iii:i-i.i Ϊ ",ιΊ hill. J *

;-|K

.
■

■

'-

PI ;;■

S4 H

M [ft]

SOW

*.il \,l\

■zu - CüTB,tÄlBfriil ϋϋφυ! L tot*

¿ l . f U.. .Ml k-MM ■ 'lh· üa^k^LbJFU

^ I J * * ■ CEJO

C f c c k T *

fens* output cbefc itqjrcf.

I £ftUr o u t p u t t b L k p * j r r y t * | .

i.lock. rrnítplcatnr factor

' .L t . L>E LTi fact/

Cbrit 4 A CYHIH í %)

* * C (W ;

ECQHCO

f
μ

DUO

1

Tfiurj

Par £ b ü Fea&bilKy Indicator!;

co ti a

| L i t e | - I » . I I ·*>■"> | p H * I

Figure 16.16 Screen capture of MegaWizard ALTPLL megafunction.

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING SYSTEM 4 1 3

elk 50M

FPGA chip

JTAG
controller

JTAG hub

JTAG
debug
module

clk_sys

Nios II
processor L* PLL

clk_sys |
elk sdram j

Avalen interconnect fabric

cJk sys

JTAG
UART

on_cti¡p

r+l ^1"1
SDRAM
controller

SRAM
^ 1 controller

clk_sdram SDRAM
chip

SRAM
chip

Figure 16.17 Top-level diagram of memory testing system.

7. Add a system id module and rename it sysid.
8. Follow the procedure in Section 16.7 to add an ALTPLL module and rename

it p l l . The Clock Setting panel of the SOPC Builder is updated to include
two additional clocks, labeled pll .cO and p l l . c l , which are the two outputs
of the p l l module.

9. Rename the the external clock clk_50M and rename two PLL clocks clk_sys
and clk_sdram, as shown in the top of Figure 16.18.

10. In Clock column, verify that the external clk_50M clock is the clock source
for the p l l module and select clk_sys as the clock source for all other SOPC
modules.

11. Generate HDL and information files.
Although the basic steps are similar to those in Section 11.5.1, this procedure has
several unique features. First, there are three memory modules in the system. Since
we want to store a testing program in the on-chip memory module later, we must
select it for the reset and exception vectors in step 5.

Second, because of the inclusion of a PLL module, the system contains three
clock sources (one external clock and two PLL-generated clocks). If we click the
Clock column of a module, a pull-down menu with three clock sources appears.
Because we want to use the PLL-generated clk_sys to drive the Nios II system, we
must change the clock source for all modules, as in step 10. The screen capture of
the completed system is shown in Figure 16.18.

Finally, the economy core (i.e., Nios Il/e) must be selected for the testing system
because the data cache of fast core may interfere with the memory testing operation.

www.it-ebooks.info

http://www.it-ebooks.info/

4 1 4 SRAM AND SDRAM CONTROLLERS

Tvgtf

tXvtAfmmtr CycbAel

D M Com Module Name

E

B
IK
y

PI

m
•f

r*

—

^-

<-*
- *

B cpu
n struct ion_m*aiw

da i a muler

ODckSetnvt

Name Sour«

dkjm

elk i d f i m

bdhmal

pllcl

Deccnptioi

|4SL.d#bug_mHhJe

B oncJiJp_m*m
t 1

Ξ *r#m

cpu_ctn

B *****

El ji*a_ua n

avatorjig^jta^e
B ayaid

cailrDl JMUH

B p i
pi_ibvc

Avaam uatra» Mapped Mtaief

Auafcn M ctnory Mapped Muler

Awaam Hamory Mapped Stow*
On-Cut? M«mor> (RAM or ROUj

A* *ton Memory Happed Stave
Ciiu _a ̂ alrjn _ jrem

Avabr Metru* y Happed Slave

SDflAM Cofitrnitr

Arilon Memory Mapped Ξ Μ «
.HAG UART

AnaJon Memory Happed 5*TVC
System ü Penpfierai

Avabn Memory Uapped SlavA

A v a t o n A i m i
Avalan Memory Mapped Sieve

Cuds

elk _ay»

clk_iyi

clk_*y*

clk_iya

clk_50U

UHa

M J

sao

B B M End

iao o
□KDDDOQIQD

DKDOOa^QOt

OxOOC00020

0x00000020

0«00000030

I W 31
OxDOQOOfff

OnDOaOTEff

αχθΰοαοοίτ

oxDaooao2f

0*0000003*

| M]
Rer na»

D O

1 — · ■

Ή

Figure 16.18 Screen capture of SOPC Builder.

Top-level HDL file After the HDL files are generated by SOPC Builder, we can
create a top-level module that incorporates the Nios II system. The HDL code is
shown in Listing 16.2.

Listing 16.2 Top-level memory testing circuit
module mem.top

(
input wire elk ,
/ / to /from SRAM
output wire [17:0] sram_addr ,
output wire sram_ce_n, sram_oe_n, sram_we_n,
output wire sram_lb_n, sram_ub_n,
inout wire [15:0] sram.dq,
/ / to/from SDRAM side
output wire dram.clk,
output wire dram_cs_n, dram.cke, dram.ldqm, dram.udqm,
output wire dram_cas_n, dram_ras_n, dram_we_n,
output wire [11:0] dram.addr,
output wire dram_ba_0 , dram_ba_l ,
inout wire [15:0] dram.dq

) ;

/ / body
// instantiate nios
nios.ram cpu_unit

(.clk_50M(clk) ,
. c l k . s y s () ,
.clk_sdram(dram_clk),
. r e s e t _ n (l ' b l) ,
/ / SRAM
.sram_addr_from_the_sram(sram_addr),
.sram_ce_n_from_the_sram(sram_ce_n),
.sram_dq_to_and_from_the_sram(sram_dq),
.sram_lb_n_from_the_sram(sram_lb_n),

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING SYSTEM 4 1 5

. s r a m _ o e _ n _ f r o m _ t b e _ s r a m (s r a m _ o e _ n) ,

. sram_ub_n_f rom_the_sram(sram_ub_i i) ,

. s r a m _ w e _ n _ f r o m _ t h e _ s r a m (s r a m _ w e _ n) ,
/ / SDRAM
. zs_addr_from_the_sdram(dram_addr),
.zs_ba_from_the_sdram({dram_ba_l,dram_ba_0}),
.zs_cas_n_from_the_sdram(dram_cas_n),
. zs_cke_from_the_sdram(dram_cke),
. zs_cs_n_from_the_sdram(dram_cs_n),
. z s _ d q _ t o _ a n d _ f r o m _ t h e _ s d r a m (d r a m _ d q) ,
. z s_dqm_from_the_sdram({dram_udqm,dram_ldqm}) ,
. z s _ r a s _ n _ f r o m _ t h e _ s d r a m (d r a m _ r a s _ n) ,
. zs'_we_n_f rom_the_sdram (dram_we_n)

) ;
endmodule

The code performs mapping between the ports of the instantiated Nios II system
and the I/O signals on the DEI board. Note that one input clock and two out-
put clocks of the PLL module are also shown as explicit ports in the instantiated
Nios II system. The PLL's clk_50M clock is mapped to the elk port of the entity,
which is connected to DEI board's 50-MHz oscillator, and the PLL's clk_sdram
clock is mapped to the dram_clk port of the entity, which is connected to the ex-
ternal SDRAM device's clock input. The PLL's clk_sys clock is not used and thus
mapped to open. If the system inside the FPG A device contains other synchronous
subsystems, their clock signals should be connected to clk_sys.

16.8.2 Testing software

The testing program basically writes data to the SRAM and SDRAM modules and
then reads it back to check errors. Since the content of the SRAM and SDRAM
devices will be destroyed during the process, the testing program must be placed
in the on-chip memory module. The BSP configuration and the program code are
discussed in the following subsections.

BSP setting We must adjust the BSP setting to accommodate two special require-
ments of this application:

• The testing code must be located in the on-chip memory module.
• The code size must be small enough to be stored in the on-chip memory

module.
When the final software image (i.e., the .elf file) is generated, it is divided into

several sections (for code text, stack, heap, etc.). We can specify the locations of
these sections in BSP. The procedure is

1. Invoke Nios II BSP Editor.
2. Select the Linker Script tab page. The Linker Section Mappings panel is dis-

played on the top, as shown in Figure 16.19. Eight sections are included.
3. Select the .bss section (the first row). Click the Linker Region Name column

and a pull-down menu of three memory modules (i.e., onchip_mem, sram, and
sdram) appears. Select the onchip_mem module.

4. Repeat the process for the other sections.
5. Click the Generate button on the bottom.

This procedure puts the software image in the on-chip memory and frees the SRAM
and SDRAM modules for testing.

26 b e g i

si en

36 r e s e

www.it-ebooks.info

http://www.it-ebooks.info/

4 1 6 SRAM AND SDRAM CONTROLLERS

■- Nios II BSP Editor - settings, bsp

File Edit Tools Help

I Hi ra
Wan i Sclfrwe Packages |j Drivers | Linker Script jEnobte FteGereatton || Target fl5F Directory |

Linker Section Mappings

Linker Section N... - Linker Region Name

.bss

. e n t r y

■except ions

.heap

. r o d a t a

. s t a c k

. t e x t

Linker Memory Regjons

onch ip_ae*

reset.

onchip M »

onch ip_ae*

onchip Ken

Memory Device Name

onchip^aea

onch ip juea

onchip_LieiLi

onchip_aea

onchip aea
onchip mem

reset

snm
sdram

Inker de.. Address Bange · Memory D..

adran

s raa

anchip_mea

tesen

0x02000000 . . .
0x00100000 , . ,
0x00004020 . . .
0x00004000 . . .

onchip_nein

adran

¡I Add... _ |

Remove...

Restore Defaults...

See ...

sdram

aran

onchip_ae»

onchip ae»

8 3 8 . . .

524288

16352
32

Offset...

0

0

32
0 r

1

Add,..

Remove.

Restore DerauJt 5...

Add Memory Device...

. ■_■ r - i , , , j : ■■ D e

Memory Usage,,.

Memory Map... 1

Grayed out entries ara automatically created at generate time They are not editable or persisted In
the BSP settings file.

Information Problems [Processing, I

<£) Finished loading drivers from ensemble report.
Ü Finished loadmqSOPC Builder svstem info file "K:\code\nioslchu ip\chu avaton sramtappttesttnios ram.sc v

< I >

Generate Exit

Figure 16.19 BSP Editor Linker Script tab page.

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING SYSTEM 4 1 7

The 16-KB size of on-chip memory is fairly small. To accommodate its limited
capacity, we must reduce the footprint of the software image. This can be done
by enabling certain options in BSP Editor to use the smaller drivers and library
functions. The procedure is discussed in the end of Section 12.2.3. We can follow
the procedure in Section 10.3.5 to check the size of the software image and it shows
that the footprint of the testing program in Listing 16.4 is about 8 KB.

Testing program We can verify the operation of a memory module by first writ-
ing data to the module and then reading it back to check errors. A function,
checkjnemO, is constructed for this purpose. Its arguments are mem_base, min,
and max, which specify the base address of the memory module and the lower and
upper offsets of the intended test region. The function is shown in Listing 16.3.

Listing 16.3
int check_mem(alt_u32 mem.base , int min, int max)
{
int err, real.err;
alt_u32 «pbase; / / pointer to the base address
alt_u32 i ; / / index used to generated data
alt_u32 t_pattn=Oxfa30fa30; / / toggling pattern for data write

pbase - (a l t_u32 *)mem_base;
err = 0;
/* write entire test range */
pr int f ("wr i te s tarted . . . \ n ") ;
for (i -min; i<(max-3); i++){

pbase [i] - i * t . p a t t n ; / / invert certain bits
}
/ * inject 4 errors in the end */
for (i»max-3; i<=max; i++){

pbase [i] ■ i ;
}
/ * read back entire range */
printf ("read back s tarted . . . \ n ") ;
for (i=min; i<=max; i++){

i f (p b a s e [i] ! = (i " t _ p a t t n)) {
err+t;
/ / printf(" error at address %x: 0x%08x (0x%08x expected) \n",
// (int)i, (int)pbase[i], (int)i~t.pattn);

}
}
r e a l . e r r » err -4 ;
printf("completed with %d actual errors.\n", real.err);

return(real.err);
}

In the function, we treat the designated region as a 32-bit word array and cast the
pointer to the beginning of the array, pbase, to mem.base. The ¿th element of the
array is filled with iAt_pattn, where t_pattn is a 32-bit toggling pattern. If a bit
of t .pattn is 1, the corresponding bit of i is inverted after the xor operation. For
verification purposes, we also deliberately inject four errors in the end and these
errors should be detected while the array is read back.

The main program is shown in Listing 16.4. It calls the checkjnemO function
to check the entire memory range.

www.it-ebooks.info

http://www.it-ebooks.info/

4 1 8 SRAM AND SDRAM CONTROLLERS

Listing 16.4
int main()
{

pr intfCDEl external SRAM/SDRAM t e s t \ n \ n ") ;
printf(»SRAM t e s t : \ n ") ;
check_mem(SRAM_BASE, 0, OxOOOlffff); // 128K-word address space
printf("\n\nSDRAM test: \n");
check_mem(SDRAM_BASE, 0, OxOOlfffff); // 2M-word address space

}

Since the memory contents are overwritten during the memory test, the testing
program must reside on a separate memory module. We include an embedded
on-chip module in the Nios II system for this purpose.

16.9 BIBLIOGRAPHIC NOTES

The detailed specification of the DEI board's SRAM and SDRAM can be found
in the ISSIIS61LV25616 data sheet and ICSIIS42S16400 data sheet, which are
included in the DEI board distribution CD. The SDRAM data sheets from Micron
Technology provide a better explanation for the SDRAM operation and timing and
can be found on its website. A text, titled Memory Systems: Cache, DRAM, Disk
by B. Jacob et al., has a detailed discussion of the SRAM and SDRAM operation
and organization. The use of the SOPC's SDRAM controller core is covered in
Chapter 1, titled SDRAM Controller Core, of Embedded PeripheraL· IP User Guide.
An example is provided at the end of the chapter to demonstrate the calculation of
SDRAM clock's phase shift.

The general I/O timing consideration of Altera FPGA is discussed in Application
note 336, titled Understanding I/O Output Timing for Altera Devices. The use of
the SOPC's PLL core is covered in Chapter 36, titled PLL Cores, of Embedded
PeripheraL· IP User Guide. The configuration of PLL is documented separately in
Phase-Locked Loop (ALTPLL) Megafunction User Guide and the specification of
Cyclone II PLL is covered in Cyclone II Device Handbook.

16.10 SUGGESTED EXPERIMENTS

16.10.1 SRAM controller without I/O register

The SRAM controller designed in Section 16.4 includes registers to buffer all off-chip
signals. Redesign the controller by removing all registers and modify the Avalon
MM slave interface as needed. Resynthesize the circuit, run the testing program,
and examine the error rate.

16.10.2 SRAM controller speed test

We can change the system clock rate by adjusting the parameters of the PLL mod-
ule. Gradually increase the system clock rate from 50 MHz to the maximal allowable
clock rate, which can be found in the report of Quartus's Classic Timing Analy-
sis tool. Resynthesize the circuit, run the testing program, and examine the error
rate. Note that the output clock frequency of Cyclone II PLL cannot be modified

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 419

dynamically and thus the system must be resynthesized repeatedly. If a different
board is used and the board contains a newer device, a Megafunction known as
ALTPLL-RECONFIG can be included to facilitate real-time PLL reconfiguration.

16.10.3 SRAM controller with Avalon M M tristate interface

Redesign the SRAM controller using the Avalon MM tristate interface. Resynthe-
size the circuit, run the testing program, and verify its operation.

16.10.4 SDRAM controller clock skew test

For the SDRAM controller, we can change the phase of the SDRAM clock (i.e.,
the clk_sdram clock) by adjusting the parameters of the PLL module. Change the
phase from —10 ns to +10 ns at 1-ns increments. For each phase, resynthesize the
circuit, run the testing program, and examine the error rate.

16.10.5 Memory performance comparison

The HAL platform provides a time stamp utility. It can be used to keep track
of the execution time of a program segment. Its use is discussed in Section 21.4.
Reconstruct the testing system to include a timer module for time stamping. To
compare the performance of three memory modules, develop a testing program
that reads 10,000 words from the embedded on-chip memory, from SRAM, and
from SDRAM separately and records the execution times. Repeat the procedure
for the write operation.

16.10.6 Effect of cache memory

The HAL platform provides a time stamp utility. It can be used to keep track
of the execution time of a program segment. Its use is discussed in Section 21.4.
Reconstruct the testing system with a "performance" core (i.e., Nios Il/f), which
contains a data cache, and with a timer module for time stamping. The data
cache is used in normal data accesses, such as those in the C program, but can
be bypassed by using I0RDO and I0WRO functions. Develop a testing program
to perform 10,000 data accesses using the cache and 10,000 data accesses without
using cache. Observe the effect on data cache. Note that the access pattern can
have a significant impact on the hit ratio of the cache and thus effect the average
access time.

16.10.7 SDRAM controller from scratch

Instead of using the SOPC Builder's SDRAM controller IP core, design the SDRAM
controller from scratch and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

4 2 0 SRAM AND SDRAM CONTROLLERS

16.11 COMPLETE PROGRAM LISTING

Listing 16.5 chu_main_ram_test.c

Module: Off-chip SRAM and SDRAM test
File: chu- main-ram-test. c
purpose: Test external memory modules
IP core base addresses:

- SRAM-BASE: SRAM
- SDRAMBASE: SDRAM

/* file inclusion * /
/ * General C library * /
#include <stdio.h>
/* Altera —specific library */
#include <al t_types .h>
#include "system.h"

* function : check-mem ()
* purpose: check memory within specified region
* argument:
* mem-base: base address of memory
* min: lower boundary (address offset) of the test region
* max: upper boundary (address offset) of the test region
* return:
* # of errors
* note :
* — the routine is designed for 32—bit data
* — 4 artificial errors is ejected in the writing process

int check_mem(alt_u32 mem_base, int min, int max)
{

int err , r e a l . e r r ;
alt_u32 *pbase; / / pointer to the base address
al t_u32 i ; / / index used to generated data
alt_u32 t_pattn-0xfa30fa30; / / toggling pattern for data write

pbase * (alt_u32 *)mem_base;
err * 0;
/ * write entire test range */
print f ("wri te s tarted . . . \n M) ;
for (i=min; i<(max-3); i++M

pbase [i] s i * t . p a t t n ; / / invert certain bits
}
/* inject 4 errors in the end */
for (i=max-3; i<emax; i++){

pbase [i] = i ;
}
/* read back entire range */
printf("read back s tarted . . . \ n ") ;
for (i s min; i<*max; i++){

if (p b a s e [i] ! - (i ~ t _ p a t t n)) {
err++;
/ / printf(" error at address %x: 0x%08x (0x%08x expected) \n",
// (int)i, (int)pbase[i], (int)i Λ t . p a t t n) ;

}

y

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 4 2 1

real_err= err-4;
printf("completed with %d actual errors.\n", real_err);
return(real_err);

}

A***********,»******»,****»******,*»********»**»********»******,*******
* function: main()
* purpose: test entire ranges of off-chip and SRAM and SDRAM
* note:
* - BSP configuration
* — put code in on—chip memory in linker —script page
* — enable small—C lib / reduce device driver options

int mainO
{
printf("DEI external SRAH/SDRAM test \n\n»);
printf("SRAM test: \n");
check_mem(SRAM_BASE, 0, OxOOOlffff); // 128K word address space
printf("\n\nSDRAM test: \n");
check_mem(SDRAM_BASE, 0, OxOOlfffff); // 2M word address space

}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

PS2 KEYBOARD AND MOUSE

The PS2 port is an interface used by a mouse or a keyboard. The device's activities
are embedded in a stream of packets and transmitted to the host via two serial lines.
Integrating a PS2 device to a Nios II system requires a custom controller and a
proper software driver. In this chapter, we discuss the development of the hardware
and software. The hardware includes a PS2 controller to transmit and receive data
packets and an Avalon interface wrapping circuit. The software consists of driver
routines to process the packets and to decode the keyboard or mouse activities.

17.1 INTRODUCTION

The PS2 port was introduced in IBM's Personal System/2 personnel computers. It
is a widely supported interface for a keyboard or mouse to communicate with the
host. The PS2 port contains two wires for communication purposes. One wire is
for data, which is transmitted in a serial stream. The other wire is for the clock
information, which specifies when the data are valid and can be retrieved. Although
a host receives data from a device most of the time, it occasionally sends a command
to the keyboard or mouse to set certain parameters. Thus, the communication of
the PS2 port is bidirectional.

The information in a PS2 interface is transmitted as an 11-bit "packet" that
contains a start bit, 8 data bits, an odd parity bit, and a stop bit. Whereas the
basic format of the packet is identical for a keyboard and a mouse, the interpretation
for the data bits is different. A keyboard data stream contains the scan codes of keys

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 423
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

424 PS2 KEYBOARD AND MOUSE

data (ps2d)

clock (ps2c)

DSHExasem
LrumrLnLnJULTUU

parity bit
stop bit

Figure 17.1 PS2-device-to-host timing diagram of a PS2 port.

and a mouse data stream contains the movement information and button status.
Thus, separate software drivers are needed.

The DEI board has a PS2 port. Two FPGA I/O pins are connected to the data
and clock lines of the PS2 port. The Nios II system acts as a host. It needs to
transmit and receive data in PS2 packet format, control the device, and extract the
needed information. We use a custom PS2 controller to perform the first task and
a custom software driver to perform the other two tasks. The development involves
the following steps:

• Construct a PS2 receiving subsystem.
• Construct a PS2 transmitting subsystem.
• Integrate the two subsystems and buffer to construct a complete PS2 con-

troller.
• Construct the Avalon interface wrapping circuit for the controller and create

an SOPC component.
• Develop a software driver to interface with the PS2 controller.
• Develop a software driver to process the keyboard data stream.
• Develop a software driver to initiate a mouse and process its data stream.

These steps are discussed in the subsequent sections.

17.2 PS2 RECEIVING SUBSYSTEM

17.2.1 PS2-device-to-host communication protocol

A PS2 device and its host communicate via packets. The basic timing diagram of
transmitting a packet from a PS2 device to a host is shown in Figure 17.1, in which
the data and clock signals are labeled ps2d and ps2c, respectively.

The data are transmitted in a serial stream. Transmission begins with a start
bit, followed by 8 data bits and an odd parity bit, and ends with a stop bit. The
clock information is carried in a separate clock signal, ps2c. The falling edge of the
ps2c signal indicates that the corresponding bit in the ps2d line is valid and can
be retrieved. The clock period of the ps2c signal is between 60 and 100 μβ (i.e.,
10 kHz to 16.7 kHz), and the ps2d signal is stable at least 5 μβ before and after
the falling edge of the ps2c signal.

www.it-ebooks.info

http://www.it-ebooks.info/

PS2 RECEIVING SUBSYSTEM 425

17.2.2 Design and code

The basic design of the PS2 port receiving subsystem consists of a falling edge
detection circuit, which generates a one-clock-cycle tick at the falling edge of the
ps2c signal, and a shift circuit, which shifts in and assembles the serial bits. An
FSMD is used to coordinate the overall operation.

The edge detection circuit detects the falling edge and generates an enable tick.
Because of the potential noise and slow transition, a simple filtering circuit is added
to eliminate glitches. Its code is

/ / r e g i s t e r
always fi(posedge e lk , posedge r e s e t)

f i l t e r _ r e g <= f i l t e r _ n e x t ;

/ / 1—bit shifter
assign f i l t e r _ n e x t = {ps2c , f i l t e r _ r e g [7 :1]> ;
/ / "filter"
ass ign f_ps2c_next - (f i l t e r _ r e g = = 8 ' b l l l l l i l l) ? I ' M :

(f i l ter_reg==8'b00000000) ? 1'bO :
f_ps2c_reg;

The circuit is composed of an 8-bit shift register and returns a 1 or 0 when eight
consecutive l's or O's are received. Any glitch shorter than eight clock cycles will
be ignored (i.e., filtered out). The filtered output signal is then fed to the regular
falling-edge detection circuit.

The ASMD chart of the receiver is shown in Figure 17.2. The receiver is initially
in the id le state. It includes an additional control signal, rx.en, which is used to
enable or disable the receiving operation. The purpose of the signal is to coordinate
the receiving subsystem operation. After the first falling-edge tick and the rx_en
signal are asserted, the FSMD shifts in the start bit and moves to the dps state. In
the dps state, ten bits, which include eight data bits, one parity bit, and one stop
bit, are sampled at the falling edge of ps2c and the first nine bits are shifted into
the b register. The FSMD then moves to the load state, in which one extra clock
cycle is provided to complete the shifting of the stop bit.

There are two output signals. The rx_idle signal indicates whether the receiving
subsystem is idle. The rx_done_tick signal is asserted in the load state for one
clock cycle to indicate the completion of receiving a packet. The HDL code consists
of the filtering circuit and an FSMD, which follows the ASMD chart. It is shown
in Listing 17.1.

Listing 17.1 PS2 port receiver
module ps2_rx

(
input wire elk, r e se t ,

4 input wire ps2d , ps2c , n . e n ,
output reg r x . i d l e , rx_done_tick,
output wire [7:0] dout

) ;

9 / / symbolic state declaration
localparam [1:0]

idle = 2'b00,
dps » 2'bOl,
load = 2'blO;

www.it-ebooks.info

http://www.it-ebooks.info/

426 PS2 KEYBOARD AND MOUSE

idle

rxjdle <= 1

E
rx_«v
fall_edge=1

1 a n d \
Ö e = l /

T

/b ps2d&(b»1)\

dps

S^Jall_edge=lN

(b ps2d&(b»in

(■ *) X
load

rxjtonejick <= 1

Figure 17.2 ASMD chart of the PS2 port receiver.

www.it-ebooks.info

http://www.it-ebooks.info/

PS2 RECEIVING SUBSYSTEM 427

/ / signal declaration
reg [1:0] s t a t e . r e g , s t a t e . n e x t ;
reg [7:0] f i l t e r . r e g ;
wire [7:0] f i l t e r . n e x t ;
reg f_ps2c_reg;
wire f_ps2c_next;
reg [3:0] n_reg, n .next;
reg [10:0] b.reg , b_next;
wire f a l l _ e d g e ;

/ / body
//=
/ / filter and falling —edge tick generation for ps2c
//
always 0(posedge e lk , posedge r e s e t)
if (r e s e t)

begin
f i l t e r . r e g <= 0;
f_ps2c_reg <■ 0;

end
e l s e

begin
f i l t e r . r e g <= f i l t e r _ n e x t ;
f_ps2c_reg <= f_ps2c_next;

end

assign f i l t e r . n e x t = {ps2c , f i l t e r . r e g [7 : 1] } ;
ass ign f_ps2c_next = (f i l t e r _ r e g = = 8 ' b l l l l l l l l) ? l ' b l

(f i l ter_reg»»8'b00000000) ? 1'bO
f_ps2c_reg;

ass ign f a l l . e d g e ■ f_ps2c_reg fe "f_ps2c_next;
//=
/ / FSMD
//=
// state & data registers
always Q(posedge e lk , posedge r e s e t)

i f (r e s e t)
begin

s tate_reg <" i d l e ;
n_reg <» 0;
b.reg <- 0;

end
e l s e

begin
state_reg <= state_next;
n_reg <» n_next;
b_reg <= b.next;

end
// next—state logic
always Q*
begin

state.next ■ state.reg;
rx.idle = 1'bO;
rx_done_tick - 1'bO;
n.next = n_reg;
b.next = b_reg;
case (state.reg)

idle:
begin

rx.idle - l'bl;

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

ei s y n . c l

www.it-ebooks.info

http://www.it-ebooks.info/

4 2 8 PS2 KEYBOARD AND MOUSE

if (fall.edge & rx_en)
begin

/ / shift in start bit
b.next - {ps2d, b_reg [10:1]};

79 n_next - 4'blOOl;
state.next - dps;

end
end

dps: / / 8 data + 1 parity + 1 stop
84 if (fall.edge)

begin
b . n e x t " { p s 2 d , b _ r e g [1 0 : 1] } ;
i f (n _ r e g » » 0)

s t a t e . n e x t » l o a d ;
so else

n.next - n_reg - 1;
end

load: / / 1 extra clock to complete the last shift
begin

»4 state.next = idle;
rx_done_tick » l ' b l ;

end
endcase

end
90 / / output

assign dout = b_reg[8:l]; / / data bits
endmodule

There is no error detection circuit in the description. A more robust design
should check the correctness of the start, parity, and stop bits and include a watch-
dog timer to prevent the keyboard or mouse from being locked in an incorrect
state.

17.3 PS2 TRANSMITTING SUBSYSTEM

17.3.1 Host-to- PS2-device communication protocol

The host-to-PS2-device communication protocol involves bidirectional data ex-
change. The mouse's data and clock lines actually are open-collector circuits. For
our design purposes, we treat them as tristate lines. The basic timing diagram of
transmitting a packet from a host to a PS2 device is shown in Figure 17.3, in which
the data and clock signals are labeled ps2d and ps2c. For clarity, the diagram is
split into two parts to show which activities are generated by the host (i.e., the
FPGA-based controller) and which activities are generated by the device (e.g., a
mouse). The basic operation sequence is as follows:

1. The host forces the ps2c line to be 0 for at least 100 /zs to inhibit any mouse
activity. It can be considered that the host requests to send a packet.

2. The host forces the ps2d line to be 0 and disables the ps2c line (i.e., makes
it high impedance). This step can be interpreted as the host sending a start
bit.

3. The PS2 device now takes over the ps2c line and is responsible for future
PS2 clock signal generation. After sensing the starting bit, the PS2 device
generates a l-to-0 transition.

www.it-ebooks.info

http://www.it-ebooks.info/

PS2 TRANSMITTING SUBSYSTEM 4 2 9

- idle

start bit J
ps2d —

JPS2 device}

ps2c
(host)

ps2c
(PS2 device)

i 4 !■ 1 i h- -+ h 4

BD.] ms ;

| !··· ■ îruiuruu
state idle : rts : start : data : data : data ! data : data data I data : data ! data stop ' idle

parity ait

ack bit

Figure 17.3 Host-to-PS2-device timing diagram of a PS2 port.

ps2c

ps2d

·*-»·

■4-+

»
►

tri_c

Js\ 4 — ps2c_out

tri_d

Js\ +— ps2d out

^

ps2
transmitting

circuit

>

Figure 17.4 Tristate buffers of the PS2 transmission subsystem.

4. Once detecting the transition, the host shifts out the least significant data
bit over the ps2d line. It holds this value until the PS2 device generates a
l-to-0 transition in .the ps2c line, which essentially acknowledges retrieval of
the data bit.

5. Repeat step 4 for the remaining 7 data bits and 1 parity bit.
6. After sending the parity bit, the host disables the ps2d line (i.e., makes it high

impedance). The PS2 device now takes over the ps2d line and acknowledges
completion of the transmission by asserting the ps2d line to 0. If desired, the
host can check this value at the last l-to-0 transition in the ps2c line to verify
that the packet is transmitted successfully.

17.3.2 Design and code

Unlike the receiving subsystem, the ps2c and ps2d signals communicate in both
directions. A tristate buffer is needed for each signal. The tristate interface is
shown in Figure 17.4. The t r i . c and t r i . d signals are enable signals that control

www.it-ebooks.info

http://www.it-ebooks.info/

4 3 0 PS2 KEYBOARD AND MOUSE

the tristate buffers. When they are asserted, the corresponding ps2c_out and
ps2d_out signals will be routed to the output ports.

To design the transmitting subsystem, we can follow the sequence of the pre-
ceding protocol to create an ASMD chart, as shown in Figure 17.5. The FSMD
is initially in the i d l e state. To start the transmission, the main system (e.g., a
Nios II processor) asserts the wr_ps2 signal and places the data on the din bus. The
FSMD loads din, along with the parity bit, par to the shif t_reg register, loads
1· · 1 to c_reg, and moves to the wai t r (for "wait receiving") state. In this state,
it examines the rx_idle signal to determine whether any receiving operation is in
progress and waits there until the operation is completed. The FSMD then moves
to the r t s (for "request to send") state. In this state, the ps2c_out is set to 0
and the corresponding t r i . c is asserted to enable the corresponding tristate buffer.
The c_reg is used as a 13-bit counter to generate a 164-μβ delay. The FSMD then
moves to the s t a r t state, in which the PS2 clock line is disabled and the data line
is set to 1. The PS2 device now takes over and generates a clock signal over the
ps2c line. After detecting the falling edge of the ps2c signal through the fa l l -edge
signal, the FSMD goes to the data state and shifts 8 data bits and 1 parity bit.
The n register is used to keep track of the number of bits shifted. The FSMD then
moves to the s top state, in which the data line is disabled. It returns to the i d l e
state after sensing the last falling edge.

Similar to those of the receiving subsystem, the tx_idle signal indicates whether
the transmission subsystem is idle and the tx .done. t ick signal is asserted for one
clock cycle when transmission operation is completed. The code follows the ASMD
chart and is shown in Listing 17.2. A filtering circuit is also used to generate the
fa l l . edge signal.

Listing 17.2 PS2 port transmitter
module ps2_tx

(
input wire elk , r e s e t ,

4 input wire wr_ps2, r x . i d l e ,
input wire [7:0] d in ,
output reg t x . i d l e , t x . d o n e . t i c k ,
inout wire ps2d, ps2c

) ;
u

/ / symbolic state declaration
localparam [2:0]

i d l e - 3'bOOO,
wa i t r - 3*b00i ,

14 r t s - 3 'bOlO,
s t a r t - 3 ' b 0 1 i ,
da ta - 3 ' b l 0 0 ,
s top - 3 ' b l 0 1 ;

ID / / signal declaration
reg [2:0] s t a t e . r e g , s t a t e . n e x t ;
reg [7:0] f i l t e r . r e g ;
wire [7:0] f i l t e r . n e x t ;
reg f_ps2c_reg;

24 wire f_ps2c_next ;
reg [3:0] n_reg , n_next ;
reg [8:0] b_reg , b . n e x t ;
reg [12:0] c_reg , c . n e x t ;
wire par , f a l l . e d g e ;

www.it-ebooks.info

http://www.it-ebooks.info/

PS2 TRANSMITTING SUBSYSTEM 4 3 1

<^rx_idle=1 J >

ils

ps2c_out<=0
lri_c <=1
c c-1

< ^

start

ps2d_out<=0
tri_d <=1

-F-<fall. I_edge=1 ^

T

GZ)

default ps2c_out=1
ps2d_out=1
tri_c = 0
tri_d = 0

data ,,

ps2d_out<=b(0)
tri_d<=1

-<MalLedge=lS

T

(b 04(b»in

T

<j£>
(ΕΞ)

stop

<^faH_edge=l\

T

(tx_done_tick<=l)

Figure 17.5 ASMD chart of the PS2 transmitting subsystem.

www.it-ebooks.info

http://www.it-ebooks.info/

4 3 2 PS2 KEYBOARD AND MOUSE

reg ps2c_out, ps2d_out;
reg t r i _ c , t r i _ d ;

/ / body
//=

34 / / filter and falling —edge tick generation for psäc
//=
always OCposedge e lk , posedge r e s e t)
i f Creset)

begin
f i l t e r . r e g <- 0;
f_ps2c_reg <= 0;

end
e l s e

begin
filter.reg <- filter.next;
f_ps2c_reg <= f_ps2c_next;

end

5!)

<)U

74

assign f i l t e r . n e x t
ass ign f_ps2c_next

ass ign f a l l . e d g e
//=

» {ps2c, filter_reg[7:l]};
= Cfilter_reg--8*bllllllll)

Cf ilter.reg—8 ' bOOOOOOOO)
f_ps2c_reg;

f_ps2c_reg k "f_ps2c_next;

I ' M
1'bO

/ / FSMD
//=
/ / state & data registers
always OCposedge e lk , posedge r e s e t)

if Creset)
begin

s t a t e . r e g <= i d l e ;
c_reg <= 0;
n_reg <= 0;
b_reg <■ 0;

end
e l s e

begin
s t a t e . r e g <
c_reg <»
n_reg <»
b_reg <=

end
/ / odd parity bit
assign par = "C'din);
/ / next—state logic
always 0*
begin

s t a t e . n e x t
c_next » c
n_next
b_next

s t a t e . n e x t ;
c_next;
n .next;
b .next;

» state.reg;
reg;

n.reg;
b.reg;

tx_done_tick ■ 1'bO;
ps2c_out - l'bl;
ps2d_out - l*bl;
tri.c = 1'bO;
tri.d » 1'bO;
tx.idle - 1'bO;
case Cstate.reg)

idle:
begin

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PS2 SYSTEM

t x . i d l e = I ' M ;
if (wr_ps2)

begin
b_next ■ {par, d in} ;
c.next - 13 'h l f f f ; / / 2Ί3-1
s t a t e . n e x t = waitr;

end
end

waitr:
i f (r x . i d l e)

s t a t e . n e x t « r t s ;
r t s : / / request to send

begin
ps2c_out = 1'bO;
t r i . c » l ' b l ;
c.next = c_reg - 1;
if (c _ r e g « 0)

s t a t e . n e x t ■ s t a r t ;
end

s t a r t : / / assert start bit
begin

ps2d_out « 1'bO;
t r i . d ■ l ' b l ;
i f (f a l l . e d g e)

begin
n.next » 4'h8;
s t a t e . n e x t = data;

end
end

data: / / 8 data + 1 parity
begin

ps2d_out » b_reg [0] ;
t r i . d - l ' b l ;
if (f a l l . e d g e)

begin
b.next » {1'bO, b.reg [8 : 1] } ;
if (n .reg »» 0)

s t a t e . n e x t ■ stop;
e l s e

n.next = n.reg - 1;
end

end
s top: / / assume floating high for ps2d

i f (f a l l . e d g e)
begin

s t a t e . n e x t = i d l e ;
t x . d o n e . t i c k » l ' b l ;

end
endcase

end
/ / tri—state buffers
assign ps2c - (t r i . c) ? ps2c_out : l ' b z ;
ass ign ps2d · (t r i . d) ? ps2d_out : l ' b z ;

endmodule

As in the receiving subsystem, there is no error detection circuit in this code.

17.4 COMPLETE PS2 SYSTEM

The top-level diagram of a complete PS2 system is shown in Figure 17.6. It consists

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l26 b e g i

si en

36 r e s e

www.it-ebooks.info

http://www.it-ebooks.info/

4 3 4 PS2 KEYBOARD AND MOUSE

► ps2_rx_data
rd_ps2_packel
ps2 rx biif empty

*■ ps2_txjdle

Figure 17.6 Top-level block diagram of a complete PS2 system.

of the receiving subsystem, the transmitting subsystem, and a FIFO buffer. The
tx_idle, rx_idle, and rx_en signals are used to coordinate the transmitting and
receiving operations so that only one type of operation can be performed at a
time. The FIFO buffer is inserted after the receiving subsystem to provide some
cushion space since a PS2 device may send packets continuously as we move a
mouse or type on a keyboard. On the other hand, since the main system (e.g., a
Nios II processor) only issues commands occasionally and it can control the rate,
the transmitting subsystem does not need a buffer. The HDL code follows the block
diagram and is shown in Listing 17.3.

Listing 17.3 Complete PS2 system
module ps2_tx_rx_buf

«(parameter W.SIZE 2) / / # address bits in FIFO buffer
(
input wire e l k , r e s e t ,
input wire wr_ps2 , rd_ps2_packet ,
input wire [7:0] p s 2 _ t x _ d a t a ,
output wire [7:0] ps2_rx_data,
output wire p s 2 _ t x _ i d l e , ps2_rx_buf.empty,
inout wire ps2d, ps2c

) ;

/ / signal declaration
wire r x . i d l e , t x . i d l e , rx_done_ t i ck ;
wire [7:0] rx .data;

/ / body
// instantiate ps2 transmitter
ps2_tx ps2_tx_unit

(.clk(clk), .reset(reset), .wr_ps2(ur_ps2),

26 b e g i

si en

36 r e s e

4i /

www.it-ebooks.info

http://www.it-ebooks.info/

PS2 CONTROLLER IP CORE DEVELOPMENT 4 3 5

. rx . id le(rx . id le) , .din(ps2_tx_data), .ps2d(ps2d), .ps2c(ps2c),

. tx_idle(tx_idle) , .tx_done_tick());
22 / / instantiate ps2 receiver

ps2_rx ps2_rx_unit
(.clk(clk), .reset(reset) , .rx_en(tx_idle),

.ps2d(ps2d), .ps2c(ps2c), . rx . id le(rx . id le) ,

.rx_done_tick(rx_done_tick), .dout(rx_data));
27 / / instantiate FIFO buffer

fifo #(.DATA_WIDTH(8), .ADDR.WIDTH(W.SIZE)) fifo.unit
(.c lk(clk) , .reset(reset) , .rd(rd_ps2_packet),

.ur(rx_done_tick), .w.data(rx.data), .empty(ps2_rx_buf.empty),

. f u l l O , .r_data(ps2_rx_data));
32 //output

assign ps2_tx_idle » tx . idle;
endmodule

17.5 PS2 CONTROLLER IP CORE DEVELOPMENT

17.5.1 Avalon interfaces

We can follow the procedure in Section 15.5 to add a wrapping circuit for the PS2
system and create an SOPC component. In this design, we include an Avalon MM
slave interface to interact with the Nios II processor, a clock input interface for the
system clock, and a conduit interface for PS2 port's clock and data lines.

17.5.2 Register map

A Nios II processor is the Avalon MM master and interacts with the PS2 system
as follows:

• receive (i.e., read) an 8-bit data packet from the PS2 controller's receiving
FIFO buffer.

• generate (i.e., write) a pulse to remove a packet from the receiving FIFO
buffer.

• issue (i.e., write) an 8-bit command to a PS2 device.
• check (i.e., read) the ps2_rx_buf .empty signal to determine whether a packet

is in the receiving FIFO buffer.
• check (i.e., read) the ps2_tx_idle signal to determine whether the transmit-

ting subsystem is available.
Based on these interactions, we can define the register map of the Avalon MM

slave interface. It is possible to pack all the information to a 32-bit word and to
treat the word as a single register address. For clarity, we separate it into three
registers, one for reading a packet, one for reading status, and one for writing a
packet. The registers, their address offsets, and fields are:

• Read addresses (data to cpu)
- offset 0 (read data register)

* bits 7 to 0: 8-bit PS2 packet
— offset 1 (status register)

* bit 1: asserted (i.e., 1) when the PS2 transmitting subsystem is idle
* bit 0: asserted (i.e., 1) when the PS2 receiving FIFO is empty

www.it-ebooks.info

http://www.it-ebooks.info/

4 3 6 PS2 KEYBOARD AND MOUSE

• Write addresses (data from cpu)
— offset 0 (read data register)

* Dummy data used to generate a pulse to remove a packet from the
receiving FIFO buffer

- offset 2 (write data register)
* bits 7 to 0: 8-bit PS2 command data

To match the data width of a Nios II processor, we treat these registers as 32-bit
registers. The unused bits will be removed automatically during synthesis and will
not introduce additional hardware.

17.5.3 Wrapped PS2 system

The HDL code of the wrapped PS2 system is shown in Listing 17.4. The I/O ports
use names similar to those in the Avalon MM interface but include a ps2_ prefix.

Listing 17.4 Wrapped PS2 system

i module chu_avalon_ps2
«(parameter W.SIZE - 2) / / # address bits in FIFO buffer
(
input wire elk , reset ,
/ / avalon-MM slave interface

(i input wire [1:0] ps2_address,
input wire ps2_chipselect, ps2_write,
input wire [31:0] ps2_vrltedata,
output wire [31:0] ps2_readdata,
/ / conduit to/from PSZ port

u inout ps2d, ps2c
);

/ / signal declaration
wire [7:0] ps2_rx_data;

16 wire rd_fifo, ps2_rx_buf_empty;
wire wr_ps2, ps2_tx_idle;

/ / body
//

2i / / instantiate PS2 controller

//
ps2_tx_rx_buf #(.W_SIZE(W_SIZE)) ps2_unit

(.clk(clk), . reset(reset) , .wr_ps2(wr_ps2),
.rd_ps2_packet(rd_fifo), .ps2_tx_data(ps2_writedata[7:0]),

20 .ps2_rx_data(ps2_rx_data), .ps2_tx_idle(ps2_tx_idle),
. ps2_rx_buf.empty(ps2_rx_buf.empty) ,
.ps2d(ps2d), .ps2c(ps2c));

/ /
/ / decoding and read multiplexing

31 / /
/ / remove an item from FIFO
assign rd.fifo « ps2_chlpselect k (ps2_address»»2'bOO) ft ps2_write;
/ / write data to PS2 transmitting subsystem
assign vr_ps2 = ps2_chipselect k (ps2_address--2'ΜΟ) k ps2_write;

3β / / read data multiplexing
assign ps2_readdata - (ps2_address"»2'b00) ?

{24'bO, ps2_rx_data}:
{30*b0, ps2_tx_idle, ps2_rx_buf_empty};

endmodule

www.it-ebooks.info

http://www.it-ebooks.info/

PS2 CONTROLLER IP CORE DEVELOPMENT 437

-omponenl Editor - chu_avaÍQn_ps2_hw.tcl*

Introduction H3L Fies , Signéis Inief teces Copponent VMtzsrd

¡> AtwlSigrieei

ilk

| reset

ώpkJ iddremm

I p*?_chip>elcc1

dock re«(H

clock, reset

cpn p i J

cpu_pa3

SWTOl Typs

dh

Midreme

chipíele el

pHljHTlEBdjÉl C£U_p*?
p*¿_je*ddetj cpu_pi?

ií^ejj<ir¡t« cpujnl
p«?d i.-.,' p.ii,

u i * i T > ^ * ITnmve

| Heik. j ! ^ Pre» "I \ Hea r ~ | F,-u.h

Figure 17.7 Component Editor Signals page.

The codes for read multiplexing and write decoding logic are similar to those in
Listing 15.2. However, the PS2 system contains a receiving FIFO buffer and its
characteristic is somewhat different. When reading a data item from the FIFO
buffer, we can either remove the item or keep it intact. The latter approach provides
more flexibility for software development but requires a separate instruction to
perform the removal operation. We use this approach in the design. The statement

a ss ign r d . f i f o =
p s 2 _ c h i p s e l e c t ft (ps2_address==2 'bOO) ft p s 2 _ w r i t e ;

generates a one-clock pulse, which in turn removes an item from the FIFO buffer.
The rd_f i f o signal is asserted when the address is "00" and the ps2_write signal
is 1. This can be done by writing a dummy data to the address "00" since the
Avalon MM master asserts the corresponding wr i t e signal during a write operation.
If we replace the ps2_write signal with the ps2_read signal, the data item will be
automatically removed during a read operation and no separate write instruction
is needed.

17.5.4 SOPC component creation

After developing the wrapping circuit, we can convert the wrapped PS2 controller
to an SOPC component following the procedure discussed in Section 15.5.4. We
name the clock input, Avalon MM slave, and conduit interfaces clock_reset, cpu.ps2,
and ps2_phy, respectively. The signal mapping is shown in Figure 17.7.

One key task in the procedure is to adjust the timing property of the Avalon
MM slave interface to match the timing characteristic of the FIFO buffer. When
the FIFO is not empty, the data are available and thus a Nios II processor can
retrieve the data in a one-clock read cycle. It requires no wait states or setup or
hold time and thus the corresponding fields in the Avalon MM slave interface should
be cleared to 0's, just like these in Figure 15.18.

www.it-ebooks.info

http://www.it-ebooks.info/

4 3 8 PS2 KEYBOARD AND MOUSE

After the SOPC component is created, it is listed in the chuJp category of SOPC
Builder, as shown in the left panel of Figure 17.9. It can be instantiated as a normal
IP core and integrated into a Nios II system.

17.6 PS2 DRIVER

The PS2 driver consists of a collection of routines that perform low-level I/O opera-
tions, including routines to process the "write" operations (i.e., issuing commands)
and routines to process the "read" operations (i.e., retrieving and managing re-
ceiving FIFO). In addition, the ps2_reset_device() function resets a PS2 device
to its initial state. It is mainly used with mouse operation and discussed in Sec-
tion 17.8.3. The keyboard and mouse drivers are built on top of the PS2 driver and
are discussed in Sections 17.7 and 17.8.

17.6.1 Register map

The register map of the PS2 driver is specified in Section 17.5.2. To make the code
clear, we define the address offsets as symbolic register names in the header file:
»define CHU_PS2_DATA_REG 0
»define CHU_PS2_C0NTR0L_REG 1
«define CHU_PS2_WR_DATA_REG 2

17.6.2 Write routines

There are two functions related to issuing a command packet to a PS2 device:
• ps2_tx_is_idle(): check whether the PS2 transmitting subsystem is idle.
• ps2_wr_cmd(): issue (i.e., write) a command packet.

The two routines are shown in Listing 17.5.

Listing 17.5
int p s 2 _ t x _ i s _ i d l e (a l t _ u 3 2 ps2_base)
{

alt_u32 c t r l . r e g ;
int i d l e . b i t ;

c t r l . r e g - I0RD(ps2_base, CHU.PS2_C0NTR0L_REG);
i d l e . b i t - (c t r l . r e g & 0x00000002) >> 1;
return i d l e . b i t ;

}

void ps2_ur_cmd(alt_u32 ps2_base , alt_u8 cmd)
{

I0WR(ps2_base , CHU_PS2_WR_DATA.REG , (a l t _ u 3 2) cmd);
}

Although the two routines are very simple and can be defined as macros, we choose
the function format to make the code easier to understand. Since the functions
involves low-level interaction, the predefined data types in alt_types.h are used to
specify the data widths explicitly.

www.it-ebooks.info

http://www.it-ebooks.info/

PS2 DRIVER 439

17.6.3 Read routines

There are several functions to manipulate the FIFO and retrieve the received pack-
ets:

• ps2_is_empty(): check whether the receiving FIFO is empty.
• ps2_read_f i f o () : read data from the receiving FIFO.
• ps2_get_pkt 0 : check whether the FIFO is empty and read data.
• ps2_rm_pkt(): remove a packet from the head of the receiving FIFO.
• ps2_flush_fifo(): flush all packets from the receiving FIFO.

These functions are shown in Listing 17.6.
Listing 17.6

int ps2_is_empty(alt_u32 ps2_base)
{

alt_u32 c t r l . r e g ;
int empty.bit;

ctrl.reg - I0RD(ps2_base, CHU_PS2_C0NTR0L_REG);
empty.bit = ctrl.reg ft 0x00000001;
return empty_bit;

}

alt_u8 ps2_read_fifo(alt_u32 ps2_base)
{
alt_u32 data.reg;
alt_u8 packet;

data.reg = I0RD(ps2_base, CHU_PS2_DATA_REG);
packet » (alt_u8) (data.reg ft OxOOOOOOff);
return packet;

}

int ps2_get_pkt(alt_u32 ps2_base, alt_u8 »byte)
{
if (!ps2_is_empty(ps2_base)) {
»byte ■ ps2_read_fifo(ps2_base);
return 1; // got data

}
return 0; //no data

}

void ps2_rm_pkt(alt_u32 ps2_base)
{
I0WR(ps2_base, CHU_PS2_DATA_REG, 0x00000000); // write a dummy data

}

void ps2_flush.fifo(alt_u32 ps2_base)
{
while (!ps2_is_empty(ps2_base)) {
ps2_rm_pkt(ps2_base);

}
}

Both ps2_read_fifo() and ps2^get_pkt() functions retrieve data from FIFO.
Since there is no special data pattern to mark an empty FIFO, the ps2_read_f if o O
function returns invalid data if the FIFO is empty. The ps2_get_pkt() function
reads the FIFO and indicates whether the data are valid. The ps2_rm_pkt() func-
tion removes a packet from FIFO by writing the PS2 controller's data register, as

www.it-ebooks.info

http://www.it-ebooks.info/

4 4 0 PS2 KEYBOARD AND MOUSE

ESC
76

(Μ Ί Γ Μ Ί

UL 2«
1e 26

4 Í 5%

2B

F5
03

Ft
Ob

^ J

F10

as
F11
7B

F12
07

+ = I I Backtpace
55 JI 66

Tab

H

' E '

. 2 4 ,
ΠΓ ' τ '

. 3c J Í . t iJ Í W J ^iULJí-J
Caps Lock

58

nnmmm
o GDC

. j j L¿_J UU UU ÜÜ LsJ L
Enter

6a

Shift
59

Space
29 J

AH
eO 11

Ctrl
•0«

Figure 17.8 Scan code of the PS2 keyboard.

discussed in Section 17.5.3. The ps2_f lush_f if o() function removes all data from
the receiving FIFO buffer.

17.7 KEYBOARD DRIVER

17.7.1 Overview of the scan code

A keyboard consists of a matrix of keys and an embedded microcontroller that
monitors (i.e., scans) the activities of the keys and sends the scan code accordingly.
Three types of key activities are observed:

• When a key is pressed, the make code of the key is transmitted.
• When a key is held down continuously, a condition known as typematic, the

make code is transmitted repeatedly at a specific rate. By default, a PS2
keyboard transmits the make code about every 100 ms after a key has been
held down for 0.5 second.

• When a key is released, the break code of the key is transmitted.
The make code of the main part of a PS2 keyboard is shown in Figure 17.8. It is

normally 1 byte wide and represented by two hexadecimal numbers. For example,
the make code of the A key is Oxlc. This code can be conveyed by one packet
when transmitted. The make codes of a handful of special-purpose keys, which are
known as the extended keys, can have 2 to 4 bytes. A few of these keys are shown
in Figure 17.8. For example, the make code of the right control key (labeled Ctrl)
is OxeO 0x14. Multiple packets are needed for the transmission. The break codes of
the regular keys consist of OxfO followed by the make code of the key. For example,
the break code of the A key is OxfO Oxlc.

A PS2 keyboard transmits a sequence of codes according to the key activities.
For example, when we press and release the A key, the keyboard first transmits its
make code and then the break code:

Oxlc OxfO Oxlc

If we hold the key down for awhile before releasing it, the make code will be trans-
mitted multiple times:

Oxlc Oxlc Oxlc ... Oxlc OxfO Oxlc

www.it-ebooks.info

http://www.it-ebooks.info/

KEYBOARD DRIVER 441

Multiple keys can be pressed at the same time. For example, we can first press the
sh i f t key (whose make code is 0x12) and then the A key, and release the A key and
then release the s h i f t key. The transmitted code sequence follows the make and
break codes of the two keys:

0x12 Oxlc OxfO Oxlc OxfO 0x12

The previous sequence is how we normally obtain an uppercase A. Note that there
is no special code to distinguish the lowercase and uppercase keys. It is the respon-
sibility of the host device to keep track of whether the shift key is pressed and to
determine the case accordingly.

17.7.2 Interaction with host

A PS2 keyboard has an internal controller, which monitors the key's activities and
generates the scan codes. At power-on, it automatically resets the parameters,
performs a diagnostic self-test, and transmits a Oxaa packet to a host after passing
the test. A host can send a command to the keyboard controller to inquire the status
and set certain parameters, such as the typematic rate. The commands are in the
form of 8-bit packets. After receiving the command, the keyboard controller first
transmits a Oxfa acknowledge packet and then performs the designated operation.

The power-on default setting works properly for most applications and thus
we can use the keyboard without ever sending any command. However, several
commands may be useful for driver development:

• The host can reset the keyboard by sending a Oxff packet. The keyboard
acknowledges with a Oxfa packet and then performs the diagnostic self-test.
The Oxaa packet is sent to the host after a successful test.

• The host can obtain the PS2 device id by sending a 0xf2 packet. The keyboard
acknowledges with a Oxfa packet and then responds with a two-packet pattern
of Oxab 0x83. This can be used to verify the existence of a PS2 keyboard.

• The host can control the three keyboard LEDs (for Caps Lock, Num Lock,
and Scroll Lock) by sending two 8-bit packets. The first packet is Oxed. The
second 8-bit packet is in the form of OOOOOcns. The c, n, and s are three bits
representing the Caps Lock, Num Lock, and Scroll Lock LEDs, respectively.
The value of 1 turns on the corresponding LED. The keyboard acknowledges
with a Oxfa packet.

Additional commands can be found in the references of the bibliographic section.

17.7.3 Driver routines

A keyboard is primarily used to obtain character inputs. The main task of a driver
routine is to convert the scan codes to proper characters. Our development ignores
the extended scan codes and assumes that these keys are not used.

In C, a character is represented by the 8-bit char data type. The representations
are based on ASCII codes, which are 7 bits and consist of 128 code words (0x00
to 0x7f). The complete characters and their code words are shown in Table 17.1.
There is no clear relationship between the scan codes and ASCII codes. A simple
way to do the conversion is to define the mapping in a lookup table. In C, the
lookup table can be defined as a one-dimensional constant array with the scan code
as the index. The table for the lowercase characters is:

www.it-ebooks.info

http://www.it-ebooks.info/

4 4 2 PS2 KEYBOARD AND MOUSE

Table 17.1 ASCII codes

Code

00
01
02
03
04
05
06
07
08
09
0a
0b
0c
Od
Oe
Of
10
11
12
13
14
15
16
17
18
19
la
lb
lc
Id
le
If

Char

(nul)
(soh)
(stx)
(etx)
(eot)
(enq)
(ack)
(bel)
(bs)
(fat)
(nl)
(vt)
(np)
(cr)
(so)
(si)
(die)
(del)
(dc2)
(dc3)
(dc4)
(nak)
(syn)
(etb)
(can)
(em)
(sub)
(esc)
(fs)
(gs)
(rs)
(us)

Code

20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3f

Char

(sp)
!
»

$
%
&
Ϊ

(
)
*

+
>
-

/
0
1
2
3
4
5
6
7
8
9

5

i
=

I
?

Code

40
41
42
43
44
45
46
47
48
49
4a
4b
4c
4d
4e
4f
50
51
52
53
54
55
56
57
58
59
5a
5b
5c
5d
5e
5f

Char

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
u
V
w
X
Y
z
[
\
]
*

_

Code

60
61
62
63
64
65
66
67
68
69
6a
6b
6c
6d
6e
6f
70
71
72
73
74
75
76
77
78
79
7a
7b
7c
7d
7e
7f

Char
i

a
b
c
d
e
f
g
h
i
j
k
1
m
n
o
P
q
r
s
t
u
V

w
X

y
z
{

}
~
(del)

www.it-ebooks.info

http://www.it-ebooks.info/

KEYBOARD DRIVER 443

c o n s t char SCAN2ASCII_L0_TABLE [1 2 8] = {

o,
o,
o,
o,
0,
o,
o,
o,
0,
o,
o,
CAPS,

o,
o,
0,
Fll,

F9,
FIO,
0,
0,
•c>,
> >

» 'η',

0,
> i

9 1

> > • »
0,
R_SFT ,
0,
Ί ' ,
) i

>
' + ',

0,
F8,
L_SFT ,
' ζ ' ,

'Χ',
'ν',
•b\
>m> ,
'k',
'/',
*\",
ENTER ,
0.
0,
'2',
'3',

F5,
F6,
0,
's«,
'd>,
'f',
'η',

' j ' .
'i',
Ί',
0,

'] ' .
0,
'4',
'5',
1 _ >

>

F3,
F4,
L_CTR ,
'a',
'θ',
•t»,

'g'.
'u',
Ό',
> . í

t t

' [' ,
0,
0,
'7',
'6',
'*' »

Fl,
TAB,
'q'.
'V,
'4',
'r',
'y'.
'7',
*0',
'Ρ'.

>
BKSL,
0,
0,
'8',
'9',

F2,
} < t

•i*.
'2',
*3',
'5',
'6',
'8',
'9',
» _ 1

0,
0,
BKSP,
0,
ESC,
0,

F12,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
NUM,
0

//oo
//08
//10
//18
//ZO
//28
//30
//S8
//40
//48
//50
f/58
f/60
//68
//70
//78

For example, we can use the expression SCAN2ASCII_L0_TABLE[21] to obtain the
corresponding character of scan code 21, which is the letter c. In addition to the
normal single-quoted characters, the table also contains O's, which correspond to
undefined scan codes, and uppercase constants, which are special ASCII characters
and unmapped keys. The special C characters consist of

»define
»define
»define
»define
»define

TAB
BKSP
ENTER
ESC
BKSL

0x09
0x08
OxOd
0x1b
0x5c

//
//
//
//
//

tab
backspace
enter (new line)
escape
backslash

The other uppercase constants correspond to the keys that don't map to ASCII
characters, such as function keys (Fl, · · ·, F12), control key (Ctrl), etc. We can
assign unused 8-bit values (0x80 to OxfF) to these keys and use them for special
purposes. For example, we can display the help message when the Fl key is pressed.
The complete constant assignments are shown in Listing 17.16 at the end of the
chapter.

A similar table is needed for the uppercase characters as well:

nst
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
CAPS
0,
0,

char SCAN2ASCII
F9,
F10,
0,
0,
•c,
*\ '.
'N' ,
0,
'<',
>.
0,

, R.SFT,
0,
Ί*.

0,
F8,
L.SFT ,
'Z',
'X',

•v.
'B',
'M',
'K',
' ? ' ,

'V" ,
ENTER ,
0,
0,

_UP_TABLE[128] =
F5 , F3 ,
F6 , F4 ,
0, L.CTR,
'S>, »A»,
'D' , Έ» ,
>F>> > T >)

'Η', 'G',
'J', 'ϋ',
Ί'. Ό',
'L', ' : · ,
0, '{',
'}', o,
0, 0,
'4', 'T ,

Fl.
TAB
'Q'
'W
'$ >
'R'
,y»
'*>
') '
.p>
'+'

Ί'
o,
0,

{
F2,
y ~ >

' ! '

»a>
'#>
"/.'
> * >
'*>
'C
Í 1

, o,
, o,

BKSI
0,

F12,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,

', o,
0,

//oo
//08
//10
//18
//SO
//28
//SO
//SB
//40
//48
//so
//58
//60
//68

www.it-ebooks.info

http://www.it-ebooks.info/

4 4 4 PS2 KEYBOARD AND MOUSE

o,
F l l ,

>;

> > • >
' + ' ,

' 2 ' ,
' 3 ' ,

' 5 ' ,
*

' 6 ' ,
' * ' .

' 8 ' ,
' 9 * ,

ESC,
0 ,

NUM.
0

//70
//78

With the lookup tables, we can construct a driver routine to read a character
from a keyboard. Because a PS keyboard contains many special-purpose keys and
the keys can be pressed and released in an arbitrary combination (such as Ctrl-D,
Ctrl-Alt-Del, etc.), developing a robust, comprehensive routine is quite involved
and beyond the scope of this book. For our purposes, we use the keyboard to
obtain "printable" ASCII characters and digits and develop a routine accordingly.
Except for the shift keys, no other special-purpose key is processed. The code of
this function, kb_get_ch(), is shown in Listing 17.7.

Listing 17.7
int kb.get.ch (alt_u32 ps2_base, char *ch){
// special characters
#deiine TAB 0x09 // tab
«define BKSP 0x08 // backspace
»define ENTER OxOd // enter (new line)
»define ESC 0x1b // escape
»define BKSL 0x5c // backslash
»define SFT.L 0x59 // left shift
»define SFT.R 0x12 // right shift

»define CAPS 0x80
»define NUH 0x81
»define CTR.L 0x82
»define Fl OxfO
»define F2 Oxfl

// keyboard scan code to ascii (lower case)
const char SCAN2ASCII_L0_TABLE[128] = {...}
// keyboard scan code to ascii (upper case)
const char SCAN2ASCII_UP_TABLE[128] = {...};

static int sft.on - 0;
alt_u8 scode;

while (1){
if (! ps2_get_pkt(ps2_base , fescode)) // no packet
return(0);

ps2_rm_pkt(ps2_base);
switch (scodeH
case OxfO: // break code
while (!ps2_get_pkt(ps2_base, fescode)); // get next
ps2_rm_pkt(ps2_base);
if (scode-«SFT_L I I scode=»SFT_R)

s f t . o n » 0;
b reak ;

case SFT.L: / / shift key make code
case SFT_R:

s f t . o n » 1;
b reak ;

d e f a u l t : / / normal make code: use lookup table
if (s f t . o n)

*ch - SCAN2ASCII.UP.TABLE[scode];
e l s e

*ch = SCAN2ASCII.L0.TABLE[scode] ;

www.it-ebooks.info

http://www.it-ebooks.info/

MOUSE DRIVER 445

return (1) ;
} / / end switch

} // end while
y

The routine treats the two shift keys as special cases. It keeps track of whether a
shift key is pressed and then uses the lowercase or uppercase lookup table accord-
ingly. A static variable, sf t .on, is used for tracking. The routine processes the
received packets as follows:

• If it is the break code (i.e., beginning with a OxfiO packet), remove two packets.
If the code is for the shift key, clear sf t .on to 0.

• If it is the make code of the shift key, set sf t .on to 1.
• If it is the make code of the other key, obtain the character value from the

proper lookup table and return the character.
Note that this routine does not process other special keys but just returns their
designated codes.

Based on kb_get_ch(), we can develop a routine, kb^get_line(), to read a
sequence of characters and convert them to a string. It keeps reading characters
until the Enter key is pressed or the designated maximal limit, lim, is reached. The
code is shown in Listing 17.8.

Listing 17.8
int k b . g e t . l i n e (a l t _ u 3 2 ps2_base, char * s , int lim)
{

char ch;
int i ;

i - 0 ;
while (1){

whi le(!kb_get_ch(ps2_base , ftch));
i f ((c h - - ' \ n ') l (i = = (l i m - 1)))

break;
e l s e

s [i++] » ch;
} / / end while
s [i] » ' \0>;
return i ;

}

Once obtaining a string, we can use stdio library's sscanf () function, which is
similar to scanf () but gets its input from a string argument, to parse and process
the string and convert it to the desired data formats.

17.8 MOUSE DRIVER

17.8.1 Overview of PS2 mouse protocol

A computer mouse is designed to detect two-dimensional motion on a surface. Its
internal circuit measures the relative distance of movement. A standard PS2 mouse
reports the x-axis (right/left) and y-axis (up/down) movement and the status of
the left button, middle button, and right button. The amount of each movement
is recorded in a mouse's internal counter. When the data are transmitted to the
host, the counter is cleared to zero and restarts the counting. The content of the

www.it-ebooks.info

http://www.it-ebooks.info/

4 4 6 PS2 KEYBOARD AND MOUSE

Table 17.2 Mouse data packet format

by te 1 yv xv y8 x$ 1 m r I
b y t e 2 x 7 XQ X 5 X 4 X3 x<¡. x\ xo
b y t e 3 y7 y6 2/5 2/4 2/3 2/2 2/1 2/0

counter represents a 9-bit signed integer in which a positive number indicates the
right or up movement and a negative number indicates the left or down movement.

The relationship between the physical distances is defined by the mouse's res-
olution parameter . The default value of resolution is four counts per millimeter.
When a mouse moves continuously, the da t a are t ransmit ted in a regular ra te . The
ra te is defined by the mouse's sampling rate parameter . The default value of the
sampling ra te is 100 samples per second. If a mouse moves too fast, t he amount
of the movement during the sampling period may exceed the maximal range of
the counter. The counter is set to the maximum magnitude in the appropriate
direction. Two overflow bits are used to indicate the conditions.

The mouse reports the movement and button activities in 3 bytes, which are
embedded in three PS2 packets. The detailed format of the 3-byte data are shown
in Table 17.2. It contains the following information:

• X8, . . . , xo: x-axis movement in 2's-complement format
• x„: x-axis movement overflow
• 2/8, · · ·, 2/0: y-axis movement in 2's-complement format
• yv: y-axis movement overflow
• l: left button status, which is 1 when the left button is pressed
• r: right button status, which is 1 when the right button is pressed
• m: optional middle button status, which is 1 when the middle button is

pressed
During transmission, the byte 1 packet is sent first and the byte 3 packet is sent
last.

A mouse has several different operation modes. The most commonly used one
is the stream mode, in which a mouse sends the movement data when it detects
movement or button activity. If the movement is continuous, the data are generated
at the designated sampling rate.

17.8.2 Interaction with host

Similar to a PS2 keyboard, a mouse has an internal controller. At power-on, the
controller automatically resets the parameters and performs a diagnostic self-test.
If the test is successful, it transmits two packets, Oxaa and then 0x00, to a host. A
host can send a command to inquire the status and set certain parameters. After
receiving the command, the mouse controller first transmits a Oxfa acknowledge
packet and then performs the designated operation.

Two commands are involved in driver development:
• The host can reset the mouse by sending a Oxff packet. The mouse acknowl-

edges with a Oxfa packet and then performs the diagnostic self-test. The Oxaa
and 0x00 packets are sent to the host after a successful test.

www.it-ebooks.info

http://www.it-ebooks.info/

MOUSE DRIVER 447

• The host can enable the stream mode by sending a 0xf4 packet. The mouse
acknowledges with a Oxfa packet.

Additional commands can be found in the references of the bibliographic section.

17.8.3 Driver routines

The driver consists of a mouse initialization routine to enable the stream mode
and a routine to obtain the mouse movements and button activities. A PS2 driver
routine, ps2_reset_device(), is used to initialize a PS2 device and is discussed in
this subsection as well.

The ps2_reset_device() function sends a command to reset a PS2 device and
determines the type of the device, which can be a keyboard, mouse, or unknown,
based on the response. The code is shown in Listing 17.9.

Listing 17.9
int ps2_reset_device(alt_u32 ps2_base)
{
alt_u8 packet;

p s 2 _ f l u s h . f i f o (p s 2 _ b a s e) ;
/ * send reset Oxff */
ps2_wr_cmd(ps2_base, Oxff);
usleep(1000000); // wait
/* check Oxfa Oxaa */
if (ps2_get_pkt(ps2_base, ftpacket)==0 || packet!=0xfa)

return (0) ; / / no response or wrong response
ps2_rm_pkt(ps2_base) ;
i f (ps2_get_pkt(ps2_base , kpacket)»»0 II packet!=0xaa)

return (0) ; / / no response or wrong response
ps2_rm_pkt(ps2_base);
/ * check whether 0x00 is received */
if (ps2_get_pkt (ps2_base , ¿packet)«=0)

return (1) ; / / fifo has no more packet, device is keyboard
ps2_rm_pkt(ps2_base);
if (packet'»»0x00)

return (2) ; / / mouse id
e l s e

return (0) ; / / unknown device id
}

The routine flushes the FIFO buffer, issues a reset command, and examines the
responses. The device is a keyboard if the received response packets are Oxfa Oxaa
and a mouse if the packets are Oxfa Oxaa 0x00. Otherwise, it is an unknown device
or nothing is connected to the port.

The mouse_init () function sets a mouse to the desired initial state. It first resets
the mouse and then issues a command to enable the stream mode. The function
returns 1 if the initialization is successful. The code is shown in Listing 17.10.

Listing 17.10

int mouse . in i t (a l t_u32 ps2_base)
{

alt_u8 packet;

if (p s2_rese t .dev i ce (ps2_base) !»2)
return (0) ;

www.it-ebooks.info

http://www.it-ebooks.info/

4 4 8 PS2 KEYBOARD AND MOUSE

/ * send stream mode command 0xf4 * /
ps2_wr_cmd(ps2_base, 0xf4);
usleep(1000000) ; // wait
/* cheek Oxfa (acknowledge) */
if (ps2_get_pkt(ps2_base, fcpacket)--0 II packet!-Oxfa)

return (0); // no response or wrong response
/* everything is ok */
ps2_rm_pkt(ps2_base) ;
return(1) ;

The main mouse driver routine obtains the movement and button activities. We
define a record for the received data:

typedef struct mouse.move

{
int lbtn;
int rbtn;
int xmov;
int ymov;

/ / left button
// right button
// x—axis movement
// x—axis movement

} mouse_mv_type;

The code is shown in Listing 17.11.

Listing 17.11
int mouse_get_activity(alt_u32 ps2_base, mouse_mv_type *mv)
{

alt_u8 bl, b2, b3;

alt_u32 tmp;

/ * check an
if (!ps2_ge

return (0
ps2_rm_pkt (
/ * wait and
while (!ps2
ps2_rm_pkt(
/ * wait and
while (!ps2
ps2_rm_pkt (
/ * extract
mv->lbtn =
mv->rbtn ■
/ * extract
tmp " (alt_
if (bl k Ox

tmp · tmp
mv->xmov »
/ * extract
tmp » (alt_
if (bl k Ox

tmp » tmp
mv->ymov =
/ * success
return(l);

d retrieve 1st byte */
t.pkt(ps2_base, fcbl))
);
ps2_base);

retrieve 2nd byte
_get_pkt(ps2_base,
ps2_base);

retrieve 3rd byte
_get_pkt(ps2_base,
ps2_base) ;
button info * /
(int) (bl it 0x01);
(int) (bl k 0χ02)>>1;
x movement; manually c
u32) b2;
10) / /

I OxffffffOO; / /
(int) tmp; / /
y movement; manually c
u32) b3;
20) / /

I OxffffffOO; / /
(int) tmp; / /

*/

/ / no data in rx fifo buffer
// remove 1st byte

*/
ftb2)); / / get 2nd byte

*/
tb3)) ; / / get 3rd byte

// extract bit 0
// extract bit 1

onvert 9—bit 2's comp to int */

check MSB (sign bit) of x movement
manual sign —extension if negative
data conversion
onvert 9—bit 2's comp to int */

check MSB (sign bit) of y movement
manual sign —extension if negative
data conversion

The routine obtains three packets, extracts the information, and stores them to
the proper fields. The sign extension is performed manually to extend the 9-bit

www.it-ebooks.info

http://www.it-ebooks.info/

TEST 449

movement data to the 32-bit integer data type. It is done by setting 24 MSBs
to l 's if the movement is negative (i.e., MSB of the 9-bit data is 1).

A mouse is usually used in conjunction with a graphic display. An extended
graphic driver routine is discussed in Section 18.7.

17.9 TEST

To simplify the testing process, we construct a comprehensive Nios II system that
incorporates major IP cores designed in Parts III and IV of this book. The deriva-
tion is discussed in Section 17.10. This system can be used to verify the operation
of the PS2 controller IP core.

We develop a simple test program to examine the low-level functionalities of the
PS2 controller and verify the operation of the keyboard and mouse driver routines.
The program performs the following tests:

• Reset a PS2 device.
• Initialize a mouse.
• Send a command to a PS2 device.
• Display the PS2 input stream continuously.
• Display the decoded keyboard character stream continuously.
• Display the decoded mouse data stream continuously.

The complete program is shown in Listing 17.12.
Listing 17.12

int main(void){
alt_u8 cmd, packet;
int sw, btn, id;
mouse_mv_type mv;
char cb;
alt_u8 ps2_msg[4]={0xff ,0x0c,sseg_conv_hex(5) , sseg_conv_hex (2) } ;

sseg_disp_ptn(SSEG_BASE, ps2_msg); / / display " PS2"
printf("PS2 t e s t : \ n ") ;
btn.clear(BTN.BASE);
while (1H

while (!btn_is_pressed(BTN_BASE)H } ; / / wait for button
btn«btn_read(BTN_BASE); / / read button
if (btn k 0x02H / / keyl pressed

sw"pio_read(SWITCH_BASE); / / read switch
printf ("key/sw: 7.d/*/.d\n" , btn, sw);

}
btn.clear(BTN.BASE);
switch (sw){
case 0: // reset
id»ps2_reset_device(PS2.BASE);
printf ("PS2 device type: */.d (0 / 1 / 2 : unknown/keyboard/mouse) \n" , i d) ;
break;

case i : / / initialize mouse to stream mode
id=mouse_init(PS2_BASE);
printf ("Mouse i n i t i a l i z a t i o n s t a t u s : '/,d (0 / 1 : f a i l / s u c c e e d) \ n " , i d) ;
break;

case 2: / / ¿«sue a ps2 command
printf("Enter ps2 command in 2 - d i g i t hex format: \n");
scant ("*/.x" , fecmd);
ps2_wr_cmd(PS2_BASE , cmd);
printf ("PS2 command 0x'/,02x issued. \n" , cmd);

www.it-ebooks.info

http://www.it-ebooks.info/

4 5 0 PS2 KEYBOARD AND MOUSE

usleep(500000); / / wait for 200 ms
printf("PS2 response: ") ;
while (ps2_get_pkt (PS2.BASE , &packet)){ / / get all packets

printf ("0x*/.02x ", packet) ;
•ps2_rm_pkt(PS2.BASE);

}
p r i n t f (" \ n ") ;
break;

case 3: / / display ps2 stream
printf("PS2 packet s tream:\n");
while (!btn_is_pressed(BTN_BASE)H

if (ps2_get_pkt(PS2_BASE, &packet)){ / / get one packet
printf("0x7.02x ", packet) ;
ps2_rm.pkt(PS2.BASE);

}
}
p r i n t f (" \ n ") ;
break;

case 4: / / display decoded keyboard input stream
printf("Keyboard char stream: \ n ") ;
while (!btn_is_pressed(BTN_BASE)){

i f (kb_get_ch(PS2_BASE, t e n))
printf (n,/.cn , ch);

}
p r i n t f (" \ n ") ;
break;

case 5: / / display decoded mouse data stream
printf("Mouse data stream: (l e f t button, r ight button, "

"x-axis move, y -ax i s move)\n");
while (!btn_is_pressed(BTN_BASE)H

if (mouse_get_activity(PS2_BASE, *mv)){
printf (" (*/.d,7,d ,%d ,%d) ", mv. lbtn , mv. rbtn , mv.xmov, mv.ymov);
mouse_led(LED_BASE, &mv);

}
}
p r i n t f (" \ n ") ;
break;

} //end switch
} // end while

}

The main part of the program is an infinite loop. To perform a test, we use the
slide switches to select one of the five tests and press the pushbutton switch 1
(labeled keyl on the DEI board) to start the operation. The last three tests run
continuously until a pushbutton switch is pressed again. Either a mouse or a
keyboard can be connected to the DEI board's PS2 port.

There is a function, mouse_led(), used in test 5. It turns on one LED of the
discrete LED array according to the horizontal movement of the mouse. The code
is shown in Listing 17.13.

Listing 17.13

void mouse_led(alt_u32 led_base , mouse_mv_type *mv){
s t a t i c int count=0;
int pos;
alt_u32 l ed .p tn ;

i f (mv->lbtn)
count = 0;

e l s e if (mv->rbtn)

www.it-ebooks.info

http://www.it-ebooks.info/

USE OF BOOK'S CUSTOM IP CORES 4 5 1

count = 255;
e l s e {

count » count + mv->xmov;
i f (count>255)

count » 255;
i f (count<0)

count » 0;
}
pos - (count >> 5) ;
l ed .ptn - (0x00000080) >> pos;
p io_wri te (l ed_base , l ed_ptn);

The graphic mouse test routine is discussed in Section 18.8.
The names of the base addresses, such as BTNJJASE, are based on the names of

instantiated modules of a particular Nios II configuration. The module names of
the comprehensive Nios II system are shown in Figure 17.9. These names may not
be the same for a different system. It is good practice to include base addresses
as arguments for functions and use the constant base names only in the top-level
main program.

Since our driver routines are developed in an ad hoc manner and are not HAL-
compliant, as discussed in Section 12.4, the relevant header and program files need
to be added to the test program's project directory manually.

17.10 USE OF BOOK'S CUSTOM IP CORES

A collection of IP cores, similar to the PS2 controller IP core discussed in this
chapter, are constructed in the remaining chapters of the book. They can be used
as normal SOPC IP cores and instantiated in a Nios II system. The file structure,
library integration, and the construction of a comprehensive Nios II testing system
are discussed in the following subsections.

17.10.1 File organization

For convenience, all relevant files used in this book are gathered in a compressed file,
chu-sopc_vlog-all.zip, which can be downloaded from the companion website. The
zip file contains the code listing, SOPC component files, C files, DE2 amendment
files, and hardware and software image files. The main directories are:

• chapter.lisitng directory: it contains the listings of HDL codes and C codes.
The files are organized in a chronological order.

• chuJp.vlog directory: it contains the Verilog files (.v) and SOPC component
files (.tcl) of IP cores in Parts III and IV. Each subdirectory contains the
files for one core. The chu~avalon.fifo directory contains no IP core but in-
cludes the FIFO files of Chapter 5, which are used by the chu.avalon.ps2 and
chu.avalon_audio cores.

• chuJp-drv directory: it contains the C driver (.c and .h) files of IP cores in
Parts III and IV.

The zip file also includes files of the modified codes for the DE2 board as well as
FPGA configuration files and software image files for quick demonstration.

/ / get 3 MSBs
// Obi0000000

www.it-ebooks.info

http://www.it-ebooks.info/

4 5 2 PS2 KEYBOARD AND MOUSE

17.10.2 SOPC library integration

The IP cores developed in Parts III and IV can be used as predesigned compo-
nents and instantiated in a Nios II system. The relevant files are gathered in the
chuJp.vlog and chu_ip_drv directories.

The hardware IP core files can be integrated into the SOPC Builder's library.
The procedure is:

1. Copy the chuJp.vlog directory and all its files to the desired location.
2. Rename the directory, say chu_ip, on the hard disk.
3. In the SOPC Builder window, select Tools >- Options... to invoke the Options

dialog.
4. In the dialog, select the IP Search Path page, click the Add... button, navigate

to the chu_ip directory, and click the Open button to add the directory to
search path. The resulting page is shown Figure 11.11.

5. Click the Finish button and SOPC Builder searches the paths and adds the
found IP cores to the left Library panel.

6. In the Block Type field, select Auto.
7. A new category, chu_ip, should appear. Expand the category and the IP cores

should be listed under this category, as shown in the left panel of Figure 17.9.
After integration, a core can be added to the Nios II system, just like other normal
IP cores.

Since the software drivers are constructed in an ad hoc fashion and are not HAL
compliant, they need to be manually copied to the software application directory
as needed.

17.10.3 Comprehensive Nios II testing system

Nios II system A collection of IP cores similar to the PS2 controller is introduced
in the remaining chapters of the book. Instead of creating a Nios II testing system
repetitively for each individual core, we construct a comprehensive testing system
that incorporates all the main IP cores. The generated FPGA configuration file
(i.e., .sop file) can be used in the remaining chapters of the book. The system
uses SDRAM for the main memory and contains I/O cores to exercise most I/O
peripherals on the DEI board.

The procedure to create this testing system is:
1. Follow the procedure from the previous subsection to integrate the IP cores

into the SOPC Builder's library.
2. Follow the procedure in Section 16.7 to add an ALTPLL module and rename

it p l l . Rename the the external clock clk_50M and rename two PLL clocks
clk_sys and clk_sdram. Use clk_sys as the clock source for all other SOPC
modules.

3. Add a Nios Il/f processor, configure it with 4-KB instruction cache and 4-KB
data cache, and rename it cpu_f. The fast processor is needed to accommo-
date several computation intensive applications.

4. Follow the procedure in Section 16.7 to add an SDRAM controller module
and rename it sdram.

5. Select the sdram module for Nios IPs reset and exception vectors.
6. Add and configure a JTAG UART module and rename it j tag_uart .

www.it-ebooks.info

http://www.it-ebooks.info/

USE OF BOOK'S CUSTOM IP CORES 4 5 3

7. Add a PIO module, configure it as a 10-bit input port, and rename it switch.
This is for the ten slide switches

8. Add a PIO module, configure it as a 4-bit input port, follow the procedure in
Section 11.5.1 to enable the edge capture and interrupt request, and rename
it btn. This is for the four pushbutton switches.

9. Add a PIO module, configure it as a 18-bit output port, and rename it led.
This is for the discrete red and green LEDs on the DEI board.

10. Add a PIO module, configure it as a 32-bit output port, and rename it sseg.
This is for the four seven-segment LED displays on the DEI board.

11. Add two timer modules, and rename them sys_timer and stamp_timer. As their
names indicate, one timer is used to facilitate system function and the other
is used to maintain a "time stamp."

12. Add a system id module and rename it sysid.
13. Add a chu_avalon_ps2 module from the chuJp category, set VLSZIE to 2, and

rename it ps2. This is a PS2 controller with a 4-byte FIFO buffer.
14. Add a chu_avalon_vga module from the chuJp category and rename it vram.

This is an SRAM-based VGA video controller discussed in Chapter 18.
15. Add a chu_ava!on_audio module from the chuJp category, set FIFO-SIZE to 3,

and rename it audio. This is an audio codec controller with 8-byte FIFO
buffers discussed in Chapter 19.

16. Add a chu_avalon_sd module from the chuJp category and rename it sdc. This
is an SD card controller discussed in Chapter 20.

17. Add a chu_avalon_gcd module from the chuJp category and rename it g.engine.
This is a GCD (greatest common divisor) hardware accelerator discussed in
Chapter 21.

18. Add a chu_avalon_frac module from the chuJp category and rename it f .engine.
This is a Mandelbrot set fractal hardware accelerator discussed in Chapter 22.

19. Add a chu_avalon_ddfs module from the chuJp category and rename it d_engine.
This is a DDFS (direct digital frequency synthesis) hardware accelerator dis-
cussed in Chapter 23.

20. Adjust interrupt request priorities in the IRQ column.
21. Generate HDL and information files.

The completed configuration screen is shown in Figure 17.9.

Top-level HDL file After the HDL files are generated, we can create a top-level
module that incorporates the Nios II system. The HDL code is shown in List-
ing 17.14.

Listing 17.14 Top-level comprehensive Nios II testing circuit
module top_p34

(
input wire elk ,
/ / switch and LED

5 input wire [9:0] sw,
input wire [3:0] key,
output wire [7:0] ledg ,
output wire [9:0] l e d r ,
output wire [6:0] hex3 , hex2, hexl , hexO,

io / / PS2
inout ps2c, ps2d,
/ / VGA
output wire vsync, hsync,

www.it-ebooks.info

http://www.it-ebooks.info/

4 5 4 PS2 KEYBOARD AND MOUSE

M H U I V D

üici tc iyca

j j o - j i t i f í i
üiaüittttt
a*01tülJ]-i

α*01401Η(

f l i ü l i Q l l j f

a*üi*aia&í

o>oi4ai4ir
. . ΐ - L V . - L . * i

aiai taiBcr

OMOI1011ΓΕ

Figure 17.9 Nios II configuration for Parts III and IV.

output wire [11:0] rgb ,
/ / audio codec
output wire m_clk, b_c lk ,
output wire d a c d a t ,
input wire adcdat ,
output wire i2c_sc lk ,
inout wire i2c_sda t ,
/ / SD card
output wire sd_c lk , s d _ d i , sd_cs ,
input wire sd do ,
/ / SRAM
output wire [17:0] s r am.addr ,
inout wire [15:0] sram.dq,
output wire sram_ce_n , sram_oe_n,
output wire sram_lb_n
/ / SDRAM
output wire dram_clk ,
output wire dram_cs_n,
output wire dram_cas_n,
output wire [11:0] d ram.addr ,
output wire dram_ba_0, dram_ba_l,
inout wire [15:0] dram.dq

) ;

d a c _ l r _ c l k , a d c _ l r _ c l k ,

sram_we_n,
sram_ub_n,

dram.cke , dram_ldqm, dram.udqm,
dram_ras_n, dram_we_n,

/ / signal declaration
wire [18:0] l e d ;
wire [31:0] s s eg ;
wire [15:0] d d f s . d a t a ;
wire d a c _ l o a d _ t i c k ;

/ / body
// instantiate

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

www.it-ebooks.info

http://www.it-ebooks.info/

USE OF BOOKS CUSTOM IP CORES 4 5 5

nios_p34 cpu.unit
(.clk_50M(clk) ,

. c l k _ s y s () ,

.clk_sdram(dram_clk) ,

. reset_n(key [3]) ,
/ / switch and LED
.in_port_to_the_bt_({l'bO,key[2:0]}),
. in_port_to_the_swi tch(sw) ,
.out_port_from_the_led(led) ,
.out_port_from_the_sseg(sseg) ,
/ / PS2
.ps2c_to_and_from_the_ps2(ps2c),
.ps2d_to_and_from_the_ps2(ps2d),
/ / VGA monitor
.hsync.from_the_vram(hsync),
.vsync.from_the_vram(vsy_c),
.rgb_from.the.vram(rgb),
/ / VGA SRAM
.sram_addr_from.the.vram(sram.addr),
.sram_ce_n_from_the_vram(sram_ce__),
.sram_dq_to_and_from.the.vram(sram.dq),
.sram_lb_n_from_the_vram(sram_lb_n),
.sram.oe.n.from.the.vram(sram.oe.n),
.sram.ub.n.from.the.vram(sram.ub.n),
.sram.we.n.from_the_vram(sram_we_n),
// audio codec
.b_clk_from_the_audio(b_clk),
.m_clk_from_the_audio(m_clk),
.dac_lr_clk_from_the_audio(dac_lr_clk),
.adc_lr_clk_from_the_audio(adc_lr_clk),
.dacdat.from_the_audio(dacdat),
.adcdat_to_the_audio(adcdat),
.i2c_sclk_from.the.audio(i2c_sclk),
.i2c_sdat_to_and_from.the.audio(i2c_sdat),
.codec.adc.data.out.from.the.audio(),
.codec_adc_rd_to_the_audio(dac_load_tick),
.codec_dac_data_in_to_the_audio({ddfs_data, ddfs_data}),
.codec_dac_wr_to_the_audio(dac_load_tick),
.codec_sample_tick_from.the.audio(dac_load_tick),
// SD card
. sd.clk.from.the.sdc(sd.clk),
.sd_do_to_the_sdc(sd.do),
.sd.di.from.the.sdc(sd.di),
.sd.cs.from.the.sdc(sd.cs),
// DDFS
. ddfs_data_out_from.the.d.engine(ddfs.data),
// SDRAM
. zs.addr.from_the_sdram(dram_addr),
.zs.ba.from_the_sdram({dram_ba_l, dram.ba.O}),
.zs.cas.n.from_the_sdram(dram_cas_n),
.zs.cke.from_the_sdram(dram_cke),
.zs.cs.n_from_the_sdram(dram_cs_n),
. z s .dq . to .and. from.the . sdram(dram.dq) ,
.zs.dqm.from.the.sdram({dram.udqm, dram.ldqm}),
. z s . ra s .n . f rom. the . sdram(dram.ras .n) ,
.zs .we.n.from.the.sdram(dram.we.n)

) ;
/ / output assignment
assign hex3 - sseg [30 :24] ;
ass ign hex2 - sseg [22 :16] ;
ass ign hexl - sseg [1 4 : 8] ;

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

26 b e g i

si en

36 r e s e

4i /

www.it-ebooks.info

http://www.it-ebooks.info/

4 5 6 PS2 KEYBOARD AND MOUSE

ass ign hexO - s s e g [6 : 0] ;
ass ign ledr « - l ed [1 7 : 8] ;
ass ign ledg = led [7 : 0] ;

no endmodule

We can follow the previous procedure to synthesize the HDL file and program
the FPGA device. There are two caveats about this system. First, the DEI board
uses a dual-purpose I/O pin of the EP2C20 device for SD card's sd_do signal. The
pin needs to be configured as a "normal I/O pin," as discussed in Section 3.5.1.
Second, the Quartus II Web edition only provides a "time-limited license" for the
Nios H/f core. To use the core, the Quartus Programmer window must be remained
open and the USB cable must be kept connected all the time.

The synthesis report indicates that the system uses about 7000 LEs (37% of the
EP2C20 device), 27 M4K internal memory modules (52% of the EP2C20 device),
and 15 18-bit multipliers (58% of the EP2C20 device).

BSP Based on the .sopcinfo file, we can follow the previous procedure to create
a BSP package and name it p34_bsp (for BSP of Parts III and IV). To facilitate
subsequent testing application programs, we need to make two adjustments. First,
in the Main tab page of BSP Editor, select sys_timer in the systm_clk_timer field and
select stamp_timer in the timestamp.timer field, as shown in Figure 17.10. Second,
in the Software Packages tab page of BSP Editor, check the altera_hostfs field, as
shown in Figure 17.11. This enables the "host-based file system," which is used in
Chapters 18 and 19.

17.11 BIBLIOGRAPHIC NOTES

Three articles, "PS/2 Mouse/Keyboard Protocol," "PS/2 Keyboard Interface," and
"PS/2 Mouse Interface," by Adam Chapweske, provide detailed information on the
PS2 keyboard and mouse interface. They can be found at the http://www.computer-
engineering.org site. Rapid Prototyping of Digital Systems: Quartus II Edition by
James O. Hamblen et al. also contains a chapter on the PS2 port and the keyboard
and mouse protocols. Altera University Program IP cores consist of an alternative
PS2 design. Its driver routines are more comprehensive and are integrated to the
HAL framework.

17.12 SUGGESTED EXPERIMENTS

The mouse is used mainly with a graphic video interface, which is discussed in
Chapter 18. Many additional experiments and projects can be found in that chap-
ter.

17.12.1 PS2 receiving subsystem with watchdog timer

There is no error-handling capability in the PS2 receiving subsystem in Section 17.2.
The potential noise and glitches in the ps2c signal may cause the FSMD to be stuck
in an incorrect state. One way to deal with this problem is to add a watchdog timer.
The timer is initiated every time the f all.edge.tick signal is asserted in the dps

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 457

NiosljeSPÍ

11 M^TJ Software PaÖJQO j Ornes \ LJ*g Sow* | &.ibfefT*c Ugigibon | T fy tBf iF frttto r j

SOPClnfornatonfr: . Λ - V*™_p34-vpenfo

CPU neme: cpu_f

BSP tarpttdrectory; Λ

■ S t t t t i n

Ghat
eFiable_gpraf
eíi 3i>le_re CJ « d „ d ewce_d(
er abte_sm_Q ptnnae

tjriable_siTBl_c_lbrfli v

attjtrr
stdn
stdout
sys_cfc_trrwr

■-) InJtei
e n ab le_e)tcepTiD n_s
e n ab Ie_nteírupt_sí3ck
exce ption_ítaí*_meíTK
exceptPon_itick_siie
fit errupt_5tack._mempr
nterrupt_stadt_sfle

!"J nuke

ftsp_cfiags_debug
bsp_tf 1dgs_dütiTiUUti n

ι+ι Advanced

III

[j *naw&_gprof

| j «nat>le_rtduced_d6Vice_drivers

[] enanle_biíTi_opttmi¿e

[enat>le_smalLc_library

sldin

tÜJ_u3rt v

StUOLiI

jlaß_uart ▼

*yi_dkJirTi»r

tmestampj imer

siämp_iimer »

«
Intormaüon P r r t Í m | Proce—xj

¿JI Mapped «ebon J.rodatfl" to memory reptp B̂dram'n

Ó " W e d sector.".rédala* to memory rcjon 'sdrewT.

JJI Mapped «Kbon ".bss" tú memory regen "sdram",

- j j Mapped sector ".henfrtömemofjr regen "sdram".

Figure 17.10 Main tab page of BSP Editor.

■Jios 11 BSP Editor - setti,

Fie ent T O * Help

Software Package Name *
alce¿a_haatf3
altera_quul_KVEn_Kq
al tera Γ9 í i p í a

[junJ[ioÍt™¡|>**«KÍ'i a imt|Lr i i«5goi [EnaMtFfeSgietalKin I TaratiBJ-Drtctt» y i

10.0
10.0
10.0

Li i Advanced

Ί jfceri_ho5tf5

■ htjsrfs_nime

eiiera^hosrts

hosl ia .nam*

ImiiWiosI

Figure 17.11 Software Packages tab page of BSP Editor.

www.it-ebooks.info

http://www.it-ebooks.info/

4 5 8 PS2 KEYBOARD AND MOUSE

state. The time_out signal is asserted if no subsequent falling edge arrives in the
next 20 /¿s, and the FSMD returns to the i d l e state. Design the modified receiving
subsystem, derive a testbench, and use simulation to verify its operation.

17.12.2 Software receiving FIFO

In Section 17.4, a hardware FIFO buffer is attached to the receiving subsystem.
Instead of using a hardware FIFO, we can develop software to perform the desired
buffer functionality by using an array to mimic the operation of a FIFO buffer. One
possible method is to add an interrupt request signal to the receiving subsystem.
The corresponding ISR reads the packet and inserts it to the FIFO buffer each
time the interrupt is asserted. The driver routines retrieve data from this buffer.
Modify the PS2 top-level system and wrapping circuit, derive a new Nios II system,
develop the ISR and driver routines, and verify the operation.

17.12.3 Software PS2 controller

Since the PS2's ps2c and ps2d signals are slow, we can use software and the existing
timer to detect the change and to generate the desired transitions. In other words,
we can eliminate receiving and transmitting subsystems and connect the two signals
to a 2-bit bidirectional PIO core. Properly configure the PIO core, derive the new
Nios II system, develop the receiving and transmitting driver routines, and verify
the operation.

17.12.4 Keyboard-controlled LED flashing circuit

Consider the LED flashing circuit discussed in Chapter 12. Instead of switch and
buttons, we can use the keyboard to send commands:

• Use the P (for "pause") key to pause and resume the flashing operation.
• Use the following key sequence to enter the desired flashing period: Fl and

then three digit keys (i.e., 000 to 999).
• All other keys or illegal sequences will be ignored.

Derive the revised program, and verify the operation.

17.12.5 Enhanced keyboard driver routine I

The kb_get_ch() function in Section 17.7 processes only the shift keys. Many
additional functionalities can be added:

• Use the Caps Lock key to toggle between the lowercase or uppercase mode.
• Use the Caps Lock LED to indicate the status of the Caps Lock key.
• Use the Ctrl key for special functions (e.g., return a special Ctrl-C code when

both the Ctrl and C keys are pressed).
Derive the new driver function and verify the operation.

17.12.6 Enhanced keyboard driver routine II

The kb_get_ch() function in Section 17.7 covers only the standard scan codes.
A current keyboard usually contains extended scan codes for additional keys and

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 459

these codes can be found in the references of the bibliographic section. Derive a
new function to cover the extended scan codes and verify the operation.

17.12.7 Remote-mode mouse driver

An alternative to a mouse's stream mode is the remote mode, in which the mouse
only transmits data packets after receiving a read data command from the host.
More detailed information can be found in the references of the bibliographic sec-
tion. Derive new mouse driver routines using this mode and verify the operation.

17.12.8 Scroll-wheel mouse driver

In addition to the x- and y-axis activities, newer mice add a third dimension, which
corresponds to the movement of the scroll wheel. More detailed information can
be found in the references of the bibliographic section. Derive new mouse driver
routines for this type of mice and verify the operation.

www.it-ebooks.info

http://www.it-ebooks.info/

4 6 0 PS2 KEYBOARD AND MOUSE

17.13 COMPLETE PROGRAM LISTING

Listing 17.15 chu_a,valon_ps2.h
A*»»**»*,****»***»*»*»»*»*«*»**»***»****»**»*****»*»*******»********»**
*
* Module: PS2, keyboard, and mouse driver header
* File: chu.avalon.ps2.h
* Purpose: Routines to access PS2 port and get keyboard scan codes and
* mouse activities
*

* Register map

« Read (data to cpu):
* offset 0
* * bit 7-0: 8-bit ps2 packet
* offset 1
* * bit 0: ps2 receiving fifo empty
* * bit 1: ps2 transmitter idle
* Write (data from cpu):
* offset 0: dummy data, used to generate a pulse
* offset 2:
* * bit 7-0: 8-bit ps2 command data
*

/ * file inclusion */
»inc lude < a l t _ t y p e s . h >

* constant definitions
»»*,»»**»*,**»„**»**************,**,*»****„»*,»»*»,*»**»»»»**„*»/
»def ine CHU_PS2_DATA_REG 0
»def ine CHU_PS2_C0NTR0L_REG i
»def ine CHU_PS2_WR_DATA_REG 2

* Data type definitions
*******»*,„**»************„**»»,»*»,„*»»***»******»*»»****»*********/
/ * data type for mouse activities */
typedef s t r u c t mouse.move
<

i n t l b t n ; / / left button
i n t rbtn; / / right button
i n t xmov; / / x—axis movement
i n t ymov; / / x—axis movement

} mouse_mv_type;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 4 6 1

* Function prototypes
» » * * * » » » « » » » » » » * t i » » * * * * * t * * * « * » » * » » » » * * * « * * * * * * * * * t » t * * * * * * t * * * * * * * * * * /

/* PS2 functions */
int p s 2 _ t x _ i s _ i d l e (a l t _ u 3 2 ps2_base);
void ps2_wr_cnd(alt_u32 ps2_base, alt_u8 cmd);
int ps2_is_empty(alt_u32 ps2_base);
alt_u8 ps2_read_fifo(alt_u32 ps2_base);
void ps2_rm_pkt(alt_u32 ps2_base);
int ps2_get_pkt(alt_u32 ps2_base, alt_u8 »byte);
void ps2_flush.fifo(alt_u32 ps2_base);
int ps2_reset_device(alt_u32 ps2_base);

/ / * Keyboard functions */
int kb_get_ch (alt_u32 ps2_base, char *ch);
int kb_get_ l ine(a l t_u32 ps2_base, char * s , int l im);

/* Mouse functions */
int mouse . in i t (a l t_u32 ps2_base);
int mouse_get_act iv i ty (a l t_u32 ps2_base, mouse_mv_type *mv);

www.it-ebooks.info

http://www.it-ebooks.info/

4 6 2 PS2 KEYBOARD AND MOUSE

Listing 17.16 chu_avalon.ps2.c

/* **
*
* Module: PS2, keyboard, and mouse driver function prototypes
* File: chu.avalon.ps2. c
* Purpose: Routines to access PS2 port and get keyboard scan codes and
* mouse activities
*

/ * file inclusion */
• inc lude <io.h>
»include <unistd.h> / / to use usleep
«include "chu_avalon_ps2.h"

/*********»»*****,*********************,*********,*,»,************,*****
* PS2 functions

*
* Purpose: utility routines to read PS2 packets and send command
*
* Note:
* —a fifo is used in receiver but not in transmitter
* - reading (first item of) fifo and removing the first item are
* separated into two operations for flexibility
*
»*********»***,*,********************„****»»*************»******,***,*/

/****,****»****,****,****************,****************************,*****
* function: ps2.tx.is.idle ()
* purpose: check whether the ps2 transmitter is idle
* argument:
* ps2.base: base address of ps2 controller
* return: 1 if idle; 0 otherwise
* note:
***************»******,**,***/
int p s 2 _ t x _ i s _ i d l e (a l t _ u 3 2 ps2_base)
{

alt_u32 c t r l . r e g ;
int i d l e . b i t ;

c t r l . r e g = I0RD(ps2_base, CHU_PS2_C0NTR0L_REG);
i d l e . b i t - (c t r l . r e g k 0x00000002) >> 1;
return i d l e b i t ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING

/***
* function: ps2.wr.cmd()
* purpose: send an 8—bit command to ps2
* argument:
* ps2.base: base address of ps2 controller
* cmd: 8-bit command
* return:
* note:
* — the code does not check whether ps2 is busy;
* the calling function should not issue the command at a rapid rate
***/
void ps2_wr_cmd(alt_u32 ps2_base , a l t_u8 cmd)
{

I0WR(ps2_base, CHU_PS2_WR_DATA_REG, (a l t . u 3 2) cmd);
}

/***
* function: ps2.is.empty ()
* purpose: check whether the ps2 receiver fifo is empty
* argument:
* ps2.ba.se: base address of ps2 controller
* return: 1 if empty; 0 otherwise
* note:
***/
i n t ps2_ is_empty(a l t_u32 ps2_base)
{
alt_u32 ctrl.reg;
int empty.bit;

ctrl.reg » I0RD(ps2_base, CHU_PS2_C0NTR0L_REG) ;
empty.bit = ctrl.reg k 0x00000001;
return empty.bit;

}

/***
* function: ps2.read.fifo ()
* purpose: retrieve the data from the head of receiver fifo
* argument:
* ps2.base: base address of ps2 controller
* return: data from the head of fifo
* note:
* — the data remain in fifo after read
* - invalid data returned if fifo is empty
***/
a l t_u8 p s 2 . r e a d _ f i f o (a l t _ u 3 2 ps2_base)
{
alt_u32 data.reg;
alt_u8 packet;

data.reg - I0RD(ps2_base, CHU.PS2_DATA.REG);
packet - (alt_u8) (data.reg b OxOOOOOOff);
return packet;

www.it-ebooks.info

http://www.it-ebooks.info/

4 6 4 PS2 KEYBOARD AND MOUSE

function: ps2.rm-pkt ()
purpose: remove data from the head of receiver fifo
argument :

ps2~base: base address of ps2 controller
return:
note:

void ps2_rm_pkt(alt_u32 ps2_base)
{

I0WR(ps2_base , CHU_PS2_DATA_REG , 0x00000000); / / write a dummy data
}

function: ps2.get~pkt ()
purpose: check ps2 fifo and, if not empty, read data
argument:

ps2-base : base address of ps2 controller
byte: pointer to the retrieved data

return :
1 if data available; 0 otherwise
byte updated if data available

note :

int ps2_get_pkt(alt_u32 ps2_base, alt_u8 *byte)
{

if (!ps2_is_empty(ps2_base)) {
♦byte ■ ps2_read_fifo(ps2_base);
return 1; / / got data

}
return 0; //no data

}

function: ps2-flush-fifo()
purpose: flush all packets from fifo
argument:

ps2-base: base address of ps2 controller
return :
note :

void ps2_flush.fifo(alt_u32 ps2_base)
{

while (!ps2_is_empty(ps2_base)) {
ps2_rm_pkt(ps2_base);

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 4 6 5

/***
* function: ps2.reset.device()
* purpose: reset and identify the type of ps2 device (mouse or keyboard)
* argument:
* ps2-base: base address of ps2 controller
* return:
* 0: reset fails or unknown device; 1: keyboard; 2: mouse
* note:
* — procedure:
* 1. flush ps2 receiver fifo
* 2. host sends reset command Oxff
* 3. ps2 device acknowledges (Oxfa) and performs self—test
* 4- ps2 device responds Oxaa if test passes
* 5. mouse sends an extra id 0x00
ft**/

int ps2_rese t_dev ice (a l t_u32 ps2_base)
{

alt_u8 packet;

p s 2 _ f l u s h . f i f o (p s 2 _ b a s e) ;
/ * send reset Oxff */
ps2_wr_cmd(ps2_base, Oxff);
usleep(1000000); // wait for 200 ms
/* check Oxfa Oxaa */
if (ps2_get_pkt(ps2_base, Jtpacket)==0 II packet!»0xfa)

return (0) ; / / no response or wrong response
ps2_rm_pkt(ps2_base);
i f (ps2_get_pkt(ps2_base, fepacket)==0 I I packet!-0xaa)

return (0) ; / / no response or wrong response
ps2_rm_pkt(ps2_base) ;
/ * check whether 0x00 is received ·/
i f (ps2_get_pkt(ps2_base, t p a c k e t) - - 0)

return (1) ; / / fifo has no more packet, device is keyboard
ps2_rm_pkt(ps2_base);
i f (packet»»0x00)

return (2) ; / / mouse id
e l s e

r e t u r n (0) ; / / unknown device id

www.it-ebooks.info

http://www.it-ebooks.info/

4 6 6 PS2 KEYBOARD AND MOUSE

/**
* Keyboard functions

*
* Purpose: utility routines to process keyboard scan codes
* Note:
*
* 3 | (« 3 | C *

/* ***
* function: kb.get.ch ()
* purpose: get a character or special key code from keyboard
* argument:
* psZ-base: base address of ps2 controller
* ch: pointer to the scanned charater
* return:
* — 1 if there is a valid char; 0 otherwise
* — ch updated with character or special key code
* note:
* — cannot use extended scan codes

int kb_get_ch (alt_u32 ps2_base, char »ch)
{
// special characters
»define
«define
«define
«define
«define
«define
«define

«define
«define
«define
«define
«define
«define
«define
«define
«define
«define
«define
«define
«define
«define
«define

TAB
BKSP
ENTER
ESC
BKSL
SFT.L
SFT.R

CAPS
NUH
CTR.L
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FIO
Fll
F12

0x09
0x08
OxOd
Oxlb
0x5c
0x12
0x59

0x80
0x81
0x82
OxfO
Oxf 1
Oxf2
0xf3
0xf4
0xf5
0xf6
0xf7
0xf8
0xf9
Oxfa
Oxfb

// tab
// backspace
// enter (new line)
// escape
// backslash
// left shift
// right shift

// keyboard scan code to ascii (lowercase)
static const char SCAN2ASCII_L0_TABLE[128]-{

0,
0,
o,
0,
0.
o,
o.
o,
0,
o,
0,

F9,
FIO,
0,
0,
' C ,
t r

t
•a' ,
0,
3 > > »
» t

o,

o,
F8,
SFT.L ,
'z' ,
'x' .
'V,
'b' ,
'm' ,
'k',
'/',

'V.

F5,
F6,
0,
's·
>d'
'f '
•h'
'j'
>i'
Ί '
0,

F3,
F4,
CTR.
'a'
' β '

't'

'%'
'u'
'ο'
) . t

1

' ['

Fl,
TAB,

L, 'q',
'V,
'4*.
•r',
• y .
•7',
Ό ' ,
'Ρ'.
'-'.

F2,
I > i

Ί ' ,
'2',
'3',
'5',
'6',
'8',
'9',
t _ i

0,

F12,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,

//oo
//08
//10
//18
//20
//28
//30
//38
//40
//48
//50

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 4 6 7

CAPS,
0 ,
0 ,
0 ,
F U ,

// keyboard scan code to ascii (uppercase)
const char SCAN2ASCII_UP_TABLE[128]

SFT.R,
0,
Ί ' .
> »
* * ' ♦ ' »

ENTER ,
0.
0,
'2' ,
'3' ,

'] '
0,
.4,
•5'
> _ t

0,
o,
'T ,
'6',
'*'.

BKSL,
0,
0,
'8' ,
'9-,

0,
BKSP,
0,
ESC,
0,

0,
0,
0,
NUH,
0

//58
//60
//68
//Ί0
//78

static
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
CAPS,
0,
0,
0,
Fli ,

F9,
FIO,
0,
0,
•c>,
} >

>
'Ν' ,
0,
'<' .
0,

0,

0,
F8,

'Ζ'
'Χ'
'V
'Β'
'Μ'
'Κ'
»·?)

Λ"

0,
ο,
>2>
'3·

F5,
F6,

SFT.L, 0,

SFT.R, ENTER,

'S'
Ό '
>F>
Ή *
•J·
Ί '
'L'
0,
'}'
0,
*4'
•5'

F3,
F4,
CTR.L ,
Ά ' ,
'Ε' ,
•Τ',
Ό ' ,
'U',
Ό ' ,
> . >

ο,
ο,
'Τ >
'6',

F1,
TAB
>Q>
•V
'$'
'R'
,γ,

'k'
·) '
,ρ,

Ί'
0.
0,
'8'
'9'

F2

0,
0,
BKSP,
0,
ESC,
0,

F12,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
NUM.
0

//oo
//08
//10
//18
//20
//28
//so
//38
//40
//48
//so
//58
//60
//68
//70
//Ί8

static int sft_on ■ 0;
alt_u8 scode;

while (1){
ii (! ps2_get_pkt (ps2_base , Jtscode))

return(0);
ps2_rm_pkt(ps2_base);
switch (scode){

case OxfO: // break code
while (!ps2_get_pkt(ps2_base, ftscode));
ps2_rm_pkt(ps2_base);

if (scode»-SFT_L I I scode — SFT.R)
sft.on ■ 0;
break;

case SFT.L:
case SFT.R:
sft.on = 1;

break;
default:

if (sft.on)
*ch - SCAN2ASCII.UP.TABLE [s c o d e] ;

e l s e
*ch = SCAN2ASCII_L0_TABLE [s c o d e] ;

r e t u r n (1) ;
} / / end switch

} / / end while

// no packet·

// get next

// shift key make code

// normal make code

www.it-ebooks.info

http://www.it-ebooks.info/

4 6 8 PS2 KEYBOARD AND MOUSE

* function: kb.get.line ()
* purpose: get a line from keyboard
* psü.base: base address of ps2 controller
* s: pointer to the returned string
* lim: max number in the string
* return: number of chars in the string
* note:
* — procedure: read string until \n or max number reached

i n t k b _ g e t _ l i n e (a l t _ u 3 2 ps2_base , char * s , i n t l im)
{

char ch;
i n t i ;

i=0;
while (1){

wh i l e (!kb_ge t_ch (ps2_base , ftch));
if ((c h " ' \ n ') l (i - - (l i m - 1)))

break;
e l s e

s [i++] = ch;
} / / end while
s [i] - ' \ 0 ' ;
r e t u r n i ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 4 6 9

Mouse functions

Purpose: utility routines to process mouse command

Note:
— no timeout for error checking

function : mouse-init ()
purpose: initialize mouse in stream mode
argument:

ps2-base: base address of ps2 controller
return:

1 if successful; 0 otherwise
note :
— sequence:

1. reset mouse
3. host sends entering stream mode command 0xf4
4- mouse acknowledge with Oxfa

int mouse_init (a l t_u32 ps2_base)
{

alt_u8 packet;

if (ps2_rese t_dev ice (ps2_base) ! s 2)
return (0) ;

/ * send stream mode command 0xf4 */
ps2_wr_cmd(ps2_base, 0x f4) ;
usleep(1000000); / / wait
/* check Oxfa (acknowledge) */
if (ps2_get_pkt(ps2_base, &packet) s s0 II packet!=0xfa)

return (0) ; / / no response or wrong response
/* everything is ok */
ps2_rm_pkt(ps2_base);
return (1) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

4 7 0 PS2 KEYBOARD AND MOUSE

/* **
* function : mouse.get.activity ()
* purpose: retrieve 3 packets and decode mouse movement info
* argument:
* ps2.base: base address of ps2 controller
* mv: pointer to the mouse movement data
* return:
* * 1 if there is mouse activity; 0 otherwise
* * mv updated if there is mouse activity
* note:
* — ignore middle button
* — ignore x, y overflow
* — manually performing 9—bit signed to 32—bit integer
**
int mouse_ge t_ac t iv i ty (a l t u32 ps2 base , mouse_mv_type *mv)
{

alt_u8 b l , b2, b3;

alt_u32 tmp;

/ * check and retrieve 1st byte */
i f Ops2_get_pkt(ps2_base , kbl))

r e t u r n (0) ; / / no data in rx fifo buffer
ps2_rm_pkt(ps2_base); / / remove 1st byte
/* wait and retrieve 2nd byte */
while (!ps2_get_pkt(ps2_base , &b2));
ps2_rm_pkt(ps2_base) ;
/ * wait and retrieve 3rd byte */
while (!ps2_get_pkt(ps2_base , &b3));
ps2_rm_pkt(ps2_base);
/ * extract button info */
mv->lbtn - (i n t) (bl k 0x01); / / extract bit 0
mv->rbtn - (i n t) (bi it 0χ02)>>1; / / extract bit 1
/* extract x movement; manually convert 9—bit 2's comp to int */
tmp - (a l t_u32) b2;
if (bl k 0x10) / / check MSB (sign bit) of x movement

tmp ■ tmp I OxffffffOO; / / manual sign —extension if negative
mv->xmov - (i n t) tmp; / / data conversion
/* extract y movement; manually convert 9—bit 2's comp to int */
tmp » (a l t_u32) b3;
if (b l k 0x20) / / check MSB (sign bit) of y movement

tmp " tmp I OxffffffOO; / / manual sign —extension if negative
mv->ymov = (i n t) tmp; / / data conversion
/* success */
return (1) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 4 7 1

Listing 17.17 chu-main.ps2.test.c
/***
*
* Module: PS2, keyboard, and mouse test
* File: chu-main.ps2.test. c
* Purpose: Test PS2, keyboard and mouse driver routines
* IP core base addresses:
* - SWITCHMASE: slide switch
* - BTNJASE: pushbutton
* - LED JASE: discrete LEDs
* - SSEG-BASE: 7-segment LED
* - PS2.BASE: PS2 controller
*
***/
/ * file inclusion */
»inc lude <s td io .h>
» inc lude <un i s td .h>
» inc lude "sys tem.h"
» inc lude "chu_ava lon_gpio .h"
» inc lude "chu_avalon_ps2.h"

/* **
* function: mouse-led()
* purpose: use mouse x—axis movement to control 8 leds
* argument:
* led-base: base address of discrete LEDs
* mv: pointer to mouse movement data
* return:
* note:
***/
void mouse_led(alt_u32 led.base, mouse_mv_type *mv){
static int count-0;
int pos;
alt_u32 led.ptn;

if(mv->lbtn)
count ■ 0;

else if (mv->rbtn)
count ■ 255;

else{
count = count + mv->xmov;
if (count>255)
count = 255;

if (count <0)
count ■ 0;

}
pos » (count >> 5); // get 3 MSBs
led.ptn - (0x00000080) » pos; // OblOOOOOOO
pio.write(led.base, led.ptn);

}

www.it-ebooks.info

http://www.it-ebooks.info/

4 7 2 PS2 KEYBOARD AND MOUSE

/***
* function: main()
* purpose: test PS2, keyboard, and mouse operations
* note:
* — keyboard /mouse operation assumes that the fifo is empty initially;
* perform "display ps2 stream" first to flush the fifo buffer
******** *********************** **/
int main(void){

alt_u8 cmd, packet;
int sw, btn , id;
mouse_mv_type mv;
char ch;
alt_u8 ps2_msg [4]={0xf f ,0x0c , s seg_conv_hex(5) , s seg_conv_hex(2) } ;

sseg_disp_ptn(SSEG_BASE , ps2_msg); / / display " PS2"
printf("PS2 t e s t : \ n ") ;
btn.clear(BTN.BASE);
while (1){

while (! btn_is_pressed(BTN_BASE)H } ; / / wait for button
btn=btn_read(BTN_BASE); / / read button
i f (btn & 0x02){ / / keyl pressed

sw«pio_read(SWITCH_BASE); / / read switch
printf ("key/sw: •/.d/ÄdNn" , btn, sw);

}
btn.clear(BTN.BASE) ;
switch (sw){
case 0: // reset
id-ps2_reset_device(PS2.BASE);
printf("PS2 device type: 5Cd (0 / 1 / 2 : unknown/keyboard/mouse)\n", i d) ;
break;

case 1: / / initialize mouse to stream mode
id=mouse_init(PS2.BASE);
printf("Mouse i n i t i a l i z a t i o n s t a t u s : 7,d (0 / 1 : f a i l / s u c c e e d) \ n " , i d) ;
break;

case 2: / / i ssue a ps2 command
printf("Enter ps2 command in 2 - d i g i t hex format: \n");
scanf (n'/.x" , ft cmd);
ps"2_wr_cmd(PS2_BASE , cmd);
printf ("PS2 command 0x'/.02x i s s u e d . \ n " , cmd);
us leep(500000); / / wait
printf("PS2 response: ") ;
while (ps2_get_pkt(PS2.BASE, fcpacket)){ / / get all packets

printf ("0x7.02x ", packet) ;
ps2_rm_pkt(PS2.BASE);

}
p r i n t f (" \ n ") ;
break;

case 3: / / display ps2 stream
printf("PS2 packet s tream:\n");
while (!btn_is_pressed(BTN.BASE)){

i f (ps2_get_pkt(PS2_BASE, t p a c k e t)) { / / get one packet
printf("0x%02x ", packet) ;
ps2_rm_pkt(PS2.BASE);

}
}
p r i n t f (" \ n ") ;
break;

case 4: / / display decoded keyboard input stream
printf("Keyboard char stream: \ n ") ;
while (!btn_is_pressed(BTN_BASE)){

i f (kb_get_ch(PS2_BASE, fcch))

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 4 7 3

printf 07.C" , ch);
}
printf (" W) ;
break;

case 5: / / display decoded mouse data stream
printf("House data stream: (l e f t button, r ight button, "

"x-axis move, y - a x i s move)\n");
while (!btn_is_pressed(BTN_BASE)H

if (mouse_get_activity(PS2.BASE, *mv)){
printf (" (*/.d ,'/.d ,'/.d ,"/.d) ", mv. lbtn, mv . rbtn , mv . xmov , mv.ymov);
mouse_led(LED_BASE, fcmv);

}
}
p r i n t f (" \ n ") ;
break;

} //end switch
} / / end while

}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

VGA CONTROLLER

VGA (video graphics array) is a video display standard. A VGA controller gener-
ates the synchronization signals and outputs data pixels serially. In this chapter,
we discuss the development of a 640-by-480 resolution VGA controller and software
driver. The hardware portion includes a VGA synchronization circuit, an SRAM
based dual-port video memory controller, and an Avalon interface wrapping cir-
cuit. The software portion includes the driver routines to read and write the video
memory, to plot simple lines, and to display and erase texts and bitmap images as
well as basic routines to retrieve an image from a file in BMP format.

18.1 INTRODUCTION

VGA is a video display standard introduced in the late 1980s in IBM PCs and is
widely supported by PC graphics hardware and monitors. While it was designed
for CRT (cathode ray tube) monitors, most modern LCD (liquid crystal display)
monitors usually include a VGA port. Thus, the circuit developed in this chapter
can be used in conjunction with LCD monitors as well.

18.1.1 Basic operation of a CRT

The conceptual sketch of a monochrome CRT monitor is shown in Figure 18.1.
The electron gun (cathode) generates a focused electron beam, which traverses a
vacuum tube and eventually hits the phosphorescent screen. Light is emitted at
Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 475
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

476 VGA CONTROLLER

phosphor coated screen

electron beam

vertical deflection coil

horizontal deflection coil

electron gun

hsync

vsync
~ ί Π Π Γ

horizontal
oscillator and

amplifier

vertical
oscillator and

amplifier

ΛΛΛ

Figure 18.1 Conceptual diagram of a CRT monitor.

the instant that electrons hit a phosphor dot on the screen. The intensity of the
electron beam and the brightness of the dot are determined by the voltage level of
the external video input signal, labeled mono in Figure 18.1. The mono signal is an
analog signal whose voltage level is between 0 and 0.7 V.

A vertical deflection coil and a horizontal deflection coil outside the tube produce
magnetic fields to control how the electron beam travels and to determine where
on the screen the electrons hit. In today's monitors, the electron beam traverses
(i.e., scans) the screen systematically in a fixed pattern, from left to right and from
top to bottom, as shown in Figure 18.2.

The monitor's internal oscillators and amplifiers generate sawtooth waveforms
to control the two deflection coils. For example, the electron beam moves from
the left edge to the right edge as the voltage applied to the horizontal deflection
coil gradually increases. After reaching the right edge, the beam returns rapidly
to the left edge (i.e., retraces) when the voltage changes to 0. The relationship
between the sawtooth waveform and the scan is shown in Figure 18.4. Two exter-
nal synchronization signals, hsync and vsync, control generation of the sawtooth
waveforms. These signals are digital signals. The relationship between the hsync
signal and the horizontal sawtooth is also shown in Figure 18.4. Note that the " 1"
and "0" periods of the hsync signal correspond to the rising and falling ramps of
the sawtooth waveform.

The basic operation of a color CRT is similar except that it has three electron
beams, which are projected to the red, green, and blue phosphor dots on the screen.
The three dots are combined to form a pixel. We can adjust the voltage levels of
the three video input signals to obtain the desired pixel color.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 477

horizontal retrace

horizontal scan

Figure 18.2 CRT scanning pattern.

Table 18.1 Three-bit VGA color combinations

Red Green Blue Resulting color

0000
0000
0000
0000
1111
1111
1111
1111

0000
0000
1111
1111
0000
0000
1111
1111

0000
1111
0000
1111
0000
1111
0000
1111

black
blue
green
cyan
red

magenta
yellow
white

18.1.2 VGA port of the DEI board

The VGA port has five active signals, including the horizontal and vertical syn-
chronization signals, hsync and vsync, and three video signals for the red, green,
and blue beams. It is physically connected to a 15-pin D-subminiature connector.
A video signal is an analog signal and the video controller uses a digital-to-analog
converter to convert the digital output to the desired analog level. If a video signal
is represented by an ΑΓ-bit word, it can be converted to 2^ analog levels. The three
video signals can generate 23N different colors. This is also known as 3N-bit color
or color depth of 3N since a pixel is defined by ZN bits. In the DEI board, a 4-bit
word is used for each beam, and thus the board can support 12-bit color, which
leads to 4096 (i.e., 212) possible colors. The primary color combinations are shown
in Table 18.1.

www.it-ebooks.info

http://www.it-ebooks.info/

478 VGA CONTROLLER

external
data/control

elk —

pixeLx |—I
pixeLy

videoon

hsync
vsync

vga_sync

rgb _.

pixel generation
circuit

VGA controller

Figure 18.3 Simplified block diagram of a VGA controller.

18.1.3 Video controller

A video controller generates the synchronization signals and outputs data pixels
serially. A simplified block diagram of a VGA controller is shown in Figure 18.3. It
contains a synchronization circuit, labeled vga_sync, and a pixel generation circuit.

Synchronization circuit The vga_sync circuit generates the timing and synchro-
nization signals. The hsync and vsync signals are connected to the VGA port
to control the horizontal and vertical scans of the monitor. The two signals are
decoded from the internal counters, whose outputs are the pixel_x and p ixe l .y
signals. The pixel_x and p ixe l .y signals indicate the relative positions of the scans
and essentially specify the location of the current pixel. The vga_sync circuit also
generates the video.on signal to indicate whether to enable or disable the display.
The design of this circuit is discussed in Section 18.2.

Pixel generation circuit The pixel generation circuit generates the three video sig-
nals, which are collectively referred to as the rgb signal. A color value is obtained
according to the current coordinates of the pixel (the p ixe l JC and pixel_y signals)
and the external control and data signals. In the Nios II framework, these signals
are connected to the Avalon interconnect and the video controller is treated as an
I/O device by the processor.

Generating 12-bit color demands a large amount of hardware resources and these
many colors may not be necessary for many applications. The pixel generation
circuit can use fewer bits internally and then map the signal to the desired 12-
bit pattern. For example, we can use three bits internally and map the eight
possible combinations to the patterns in Table 18.1. This leads to a 3-bit color
video. Similarly, we can use one bit internally and map the two possible values to
000000000000 and 111111111111. This makes the monitor function as a black-and-
white monochrome monitor.

www.it-ebooks.info

http://www.it-ebooks.info/

VGA SYNCHRONIZATION 4 7 9

For our discussion purposes, we divided this circuit into three broad categories:
• Bit-mapped scheme
• Tile-mapped scheme
• Object-mapped scheme

In a bit-mapped scheme, a video memory is used to store the data to be displayed
on the screen. Each pixel of the screen is mapped directly to a memory word, and
the pixel_x and p ixe l .y signals form the address. A graphics processing circuit
continuously updates the screen and writes relevant data to the video memory.
A retrieval circuit continuously reads the video memory and routes the data to
the rgb signal. This is the scheme used in today's high-performance video con-
trollers. For 640-by-480 resolution, there are about 310 k (i.e., 640*480) pixels on
a screen. This translates to 38.4-kB (i.e., 640*480*1/8) memory for a monochrome
display, 310-kB memory (i.e., 640*480*8/8) for a 8-bit color display, and 461-kB
(i.e., 640*480*12/8) memory for a 12-bit color display.

To reduce the memory requirement, one alternative is to use a tile-mapped
scheme. In this scheme, we group a collection of bits to form a tile and treat
each tile as a display unit. For example, we can define an 8-by-8 square of pixels
(i.e., 64 pixels) as a tile. The 640-by-480 pixel-oriented screen becomes an 80-by-60
tile-oriented screen. Only 4800 (i.e., 80*60) words are needed for the tile memory.
The number of bits in a word depends on the number of tile patterns. For example,
if there are 256 tile patterns, each word should contain 8 bits, and the size of the tile
memory is about 4.8 kB (i.e., 4800*8/8). The tile-mapped scheme usually requires
a ROM to store the tile patterns. We call it pattern memory. Assume that 8-bit
color patterns are used in the previous example. Each 8-by-8 tile pattern requires
64 bytes and the entire 256 patterns need 16 kB. The overall memory requirement
is about 21 kB, which is much smaller than the 310 kB of the bit-mapped scheme.

For some applications, the video display can be very simple and contains only
a few objects. Instead of wasting memory to store a mostly blank screen, we can
generate these objects using simple object generation circuits. We call this approach
an object-mapped scheme.

The three schemes can be mixed together to generate a full screen. For example,
we can use a bit-mapped scheme to generate the background and use an object-
mapped scheme to produce the main objects. We can also use a bit-mapped scheme
for one portion of a screen and tile-mapped text for another portion of the screen.

We discuss a graphic display based on the bit-mapped scheme in this chapter.
References for two other schemes can be found in the bibliographic section.

18.2 VGA SYNCHRONIZATION

The video synchronization circuit generates the hsync signal, which specifies the
required time to traverse (scan) a row, and the vsync signal, which specifies the
required time to traverse (scan) the entire screen. Subsequent discussions are based
on a 640-by-480 VGA screen with a 25-MHz pixel rate, which means that 25M pixels
are processed in a second. Note that this resolution is also known as the VGA mode.

The screen of a CRT monitor usually includes a small black border, as shown at
the top of Figure 18.4. The middle rectangle is the visible portion. Note that the
coordinate of the vertical axis increases downward. The coordinates of the top-left
and bottom-right corners are (0,0) and (639,479), respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

4 8 0 VGA CONTROLLER

pixel (0,0} pixel (639,0)

h_video_on

left border (4BH
right border (16)_
front porch

retrace [96}—'

one horizontal scan (800)

j lett border (48)
[back pofch

Figure 18.4 Timing diagram of a horizontal scan.

18.2.1 Horizontal synchronization

A detailed timing diagram of one horizontal scan is shown in Figure 18.4. A period
of the hsync signal contains 800 pixels and can be divided into four regions:

• Display: region where the pixels are actually displayed on the screen. The
length of this region is 640 pixels.

• Retrace: region in which the electron beams return to the left edge. The
video signal should be disabled (i.e., black), and the length of this region is
96 pixels.

• Right border: region that forms the right border of the display region. It is
also known as the front porch (i.e., porch before retrace). The video signal
should be disabled, and the length of this region is 16 pixels.

• Left border: region that forms the left border of the display region. It is also
known as the back porch (i.e., porch after retrace). The video signal should
be disabled, and the length of this region is 48 pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

VGA SYNCHRONIZATION 4 8 1

r
v.video. _on

line count

vsync u
top border (33)-1

480 horizontal scan lines

J^.
Λ

479 489,

-display (480)

491

rr
bottom border (10) |
front porch

retrace (2)—'

524

top border (33)
back porch

-one vertical scan (525)-

Figure 18.5 Timing diagram of a vertical scan.

Note that the lengths of the right and left borders may vary for different brands of
monitors.

The hsync signal can be obtained by a special mod-800 counter and a decoding
circuit. The counts are marked on the top of the hsync signal in Figure 18.4. We
intentionally start the counting from the beginning of the display region. This allows
us to use the counter output as the horizontal (x-axis) coordinate. This output
constitutes the pixel_x signal. The hsync signal goes low when the counter's
output is between 656 and 751.

Note that the CRT monitor should be black in the right and left borders and
during retrace. We use the h_video_on signal to indicate whether the current
horizontal coordinate is in the displayable region. It is asserted only when the pixel
count is smaller than 640.

18.2.2 Vertical synchronization

During the vertical scan, the electron beams move gradually from top to bottom
and then return to the top. This corresponds to the time required to refresh the
entire screen. The format of the vsync signal is similar to that of the hsync signal,
as shown in Figure 18.5. The time unit of the movement is represented in terms of
horizontal scan lines. A period of the vsync signal is 525 lines and can be divided
into four regions:

• Display: region where the horizontal lines are actually displayed on the screen.
The length of this region is 480 lines.

• Retrace: region that the electron beams return to the top of the screen. The
video signal should be disabled, and the length of this region is 2 lines.

• Bottom border: region that forms the bottom border of the display region. It
is also known as the front porch (i.e., porch before retrace). The video signal
should be disabled, and the length of this region is 10 lines.

www.it-ebooks.info

http://www.it-ebooks.info/

482 VGA CONTROLLER

• Top border: region that forms the top border of the display region. It is also
known as the back porch (i.e., porch after retrace). The video signal should
be disabled, and the length of this region is 33 lines.

As in the horizontal scan, the lengths of the top and bottom borders may vary for
different brands of monitors.

The vsync signal can be obtained by a special mod-525 counter and a decoding
circuit. Again, we intentionally start counting from the beginning of the display
region. This allows us to use the counter output as the vertical (y-axis) coordinate.
This output constitutes the p ixe l .y signal. The vsync signal goes low when the
line count is 490 or 491.

As in the horizontal scan, we use the v.video.on signal to indicate whether the
current vertical coordinate is in the displayable region. It is asserted only when the
line count is smaller than 480.

18.2.3 Timing calculation of VGA synchronization signals

As mentioned earlier, we assume that the pixel rate is 25 MHz. It is determined by
three parameters:

• p: the number of pixels in a horizontal scan line. For 640-by-480 resolution,
it is

line
• I: the number of lines in a screen (i.e., a vertical scan). For 640-by-480

resolution, it is
lines

I = 525
screen

• s: the number of screens per second. For flicker-free operation, we can set it
to

„„ screens
s = 60

second
The s parameter specifies how fast the screen should be refreshed. For a human
eye, the refresh rate must be at least 30 screens per second to make the motion
appear to be continuous. To reduce flickering, the monitor usually has a much
higher rate, such as the 60 screens per second specification above. The pixel rate
can be calculated by the three parameters:

. , , «,-, r pixels
pixel rate = p * I * s « 25M ;

second
The pixel rate for other resolutions and refresh rates can be calculated in a similar
fashion. Clearly, the rate increases as the resolution and refresh rate grow.

18.2.4 HDL implementation

The function of the vga_sync circuit is discussed in Section 18.1.3. Ideally the
clock rate of a synchronization circuit should be the same as the pixel rate, which
is 25 MHz for a VGA monitor with 640-by-480 resolution. If this is the case, the
synchronization circuit can be implemented by two special counters: a mod-800
counter to keep track of the horizontal scan and a mod-525 counter to keep track
of the vertical scan.

www.it-ebooks.info

http://www.it-ebooks.info/

VGA SYNCHRONIZATION 4 8 3

If the system clock rate and pixel rate are different, we usually need to create a
separate clock domain for the video system. This can be done by using the PLL
circuit discussed in Section 16.2.2. Since our designs generally use the 50-MHz
oscillator of the prototyping board, the system clock rate is twice the pixel rate.
Instead of creating a separate 25-MHz clock domain, which complicates the timing,
we can generate a 25-MHz enable tick to enable or pause the counting. The tick is
also routed to the p . t i c k port as an output signal to coordinate operation of the
pixel generation circuit.

The HDL code is shown in Listing 18.1. It consists of a mod-2 counter to generate
the 25-MHz enable tick and two counters for the horizontal and vertical scans. We
use two status signals, h_end and v.end, to indicate completion of the horizontal
and vertical scans. The values of various regions of the horizontal and vertical scans
are defined as constants. They can be easily modified if a different resolution or
refresh rate is used. Since the video synchronization signals may be buffered with
additional registers when it is incorporated into the main system, we add suffix _i
(for internal) in these signals.

Listing 18.1 VGA synchronization circuit
module vga.sync

(
input wire elk , r e s e t ,
output wire h s y n c . i , v s y n c . i , v ideo_on_i ,
output wire [9:0] p i x e l . x , p i x e l . y

) ;

p . t i c k ,

/ / constant declaration
// VGA 640—by—480 sync parameters
localparam HD « 640;
localparam HF » 16 ;
localparam HB - 48 ;
localparam HR = 96 ;
localparam VD » 480;
localparam VF - 10;
localparam VB = 33;
localparam VR « 2;

/ / horizontal display area
// horizontal front porch
// horizontal back porch
// horizontal retrace
// vertical display area
// vertical front porch
// vertical back porch
// vertical retrace

// mod—2 counter
reg mod2_reg;
wire mod2_next;
/ / sync counters
reg [9:0] h_count_reg , h_count_next ;
reg [9:0] v_count_reg , v_count_next ;
/ / status signal
wire h.end , v . end , p i x e l . t i c k ;

/ / body
// registers
always Q(posedge elk

if (r e s e t)
begin

mod2_reg <= l 'bO
v_count_reg <= 0
h . c o u n t . r e g <» 0

end
e l s e

begin
mod2_reg <« mod2_next;

posedge reset)

www.it-ebooks.info

http://www.it-ebooks.info/

484 VGA CONTROLLER

v_count_reg <= v_count_next;
h_count_reg <= h_count_next;

end

/ / mod—2 circuit to generate 25 MHz enable tick
ass ign mod2_next » ~mod2_reg;
ass ign p i x e l . t i c k = mod2_reg;

/ / status signals
// end of horizontal counter (799)
assign h.end = (h_count_reg-=(HD+HF+HB+HR-l));
/ / end of vertical counter (524)
assign v_end - (v_count_reg"(vD+VF+VB+VR-l));

/ / next —state logic of mod—800 horizontal sync counter
always β*

if (p i x e l . t i c k) / / 25 MHz pulse
i f (h.end)

h_count_next = 0;
e l s e

h_count_next ■ h_count_reg + 1;
e l s e

h_count_next ■ h_count_reg;

/ / next—state logic of mod—525 vertical sync counter
always 0*

if (pixel.tick & h_end)
if (v_end)

v_count_next » 0;
else

i v_count_next ■ v_count_reg + 1;
else

v_count_next ■ v_count_reg;

/ / hsync
assign hsync . i » h_count_reg<(HD+HF) II h_count_reg>(HD+HF+HR-1);
/ / vhsync

asserted between 490 and 491
ass ign vsync . i » v_count_reg<(VD+VF) I I v_count_reg>(VD+VF+VR-1);

/ / video on/off
i ass ign video_on_i = (h_count_reg<HD) kk (v_count_reg<VD);

/ / output
assign p i x e l . x » h_count_reg;
ass ign p i x e l . y = v_count_reg;
ass ign p . t i c k ■= p i x e l _ t i c k ;

endmodule

18.3 SRAM-BASED VIDEO RAM CONTROLLER

18.3.1 Overview of video memory

In the bit-mapped scheme, each pixel of the screen is mapped directly to a memory
word and the pixel_x and p ixel .y signals form the address. The system consists
of a video memory and the conceptual diagram is shown in Figure 18.6. The video
memory has two ports. The "VGA port," labeled address2 and data2, is for the
VGA operation. It is read continuously. The address is derived from the pixel_x

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

www.it-ebooks.info

http://www.it-ebooks.info/

SRAM-BASED VIDEO RAM CONTROLLER 4 8 5

processor

pixel_x

pixeLy

p.tick

> vga.sync

Í address
translation

circuit

addressl

datal

dual-port
RAM

address2 data2 to monitor

Figure 18.6 Conceptual diagram of video RAM.

and p ixe l .y signals, which specify the current coordinate in the screen, and the
retrieved data is the color information of the corresponding pixel. The "CPU port,"
labeled addressl and datal, is connected to a processor. The processor writes the
pixel information to the memory and updates the displayed graphic. It may need
to perform a read operation occasionally when an overlay operation is involved.

The actual implementation of video memory depends on the type of physical
memory devices used in the system. We can either use real dual-port memory
chips or use single-port memory chips and a multiplexing circuit to mimic the dual-
port access. Because of the cost and availability of dual-port memory devices, most
systems utilize the latter approach.

In a single-port implementation, the VGA and CPU ports access the same ad-
dress and data lines of the memory chip. Additional multiplexing and routing
circuits are needed to coordinate the operation. To avoid glitches and noises on
the graphic display, the VGA port usually has the priority and the processor can
perform a write operation when the video display is off (i.e., when scanning is done
in the black border area and retrace). An alternative scheme is the double-buffering
scheme, in which two memory banks are used, one for the VGA port to retrieve
data and one for the processor to write data. The two banks operate concurrently
and switch their roles when a bank is filled with new data. This scheme essentially
doubles the memory bandwidth and acts like a true dual-port memory. Other ad
hoc methods can also be used to mimic the dual-port operation.

Another issue involved in the physical implementation is the mismatch between
the color depth and the memory's data width. For example, we may need to use a
physical memory with 8-bit data width to implement a 3-bit color video controller.
Additional routing circuits and buffers are needed to pack and unpack the pixel
data for memory access.

18.3.2 Memory consideration of D E I board

The design of video memory depends on the type and characteristics of physical
memory devices available. Recall that 39 kB and 310 kB are needed to support

www.it-ebooks.info

http://www.it-ebooks.info/

4 8 6 VGA CONTROLLER

1-bit and 8-bit colors in 640-by-480 resolution. On the DEI board, three types
of memory devices available: 26-KB FPGA on-chip memory, an external 512-KB
SRAM device, and an external 8-MB SDRAM device. The on-chip memory is easy
to use and supports dual-port operation but it is too small for this purpose. The
SDRAM has adequate capacity. However, it is used to store executable code in
our applications and its timing is more involved. Thus, the SRAM is the most
reasonable choice. For clarity, we assume that 8-bit color is used in the system.
Other color depths can be obtained by modifying the 8-bit color scheme.

18.3.3 Ad hoc SRAM controller

The SRAM chip on the DEI board is a single-port memory and additional circuitry
is needed to coordinate the dual-port access. One possibility is to follow the scheme
discussed in Section 18.3.1. However, based on the timing characteristics of the
SRAM and VGA, we can derive a more effective ad hoc design. The SRAM chip
on the DEI board is a fast device and the data sheet shows that both the read
cycle and write cycle are 10 ns. In comparison, the system clock used on the DEI
board is 50 MHz (i.e., 20-ns period) and the pixel generation rate of the video is
only 25 MHz (i.e., 40-ns period), which constitutes two system clock cycles. It is
possible to derive a "time-multiplexing" scheme to access the SRAM and to emulate
the dual-port operation. In this scheme, we can use one system cycle of the 40-ns
pixel generation period for the VGA port access and the other system cycle for the
CPU port access.

The p . t i ck signal in the synchronization circuit of Listing 18.2.4 is the output
of the mod-2 circuit and can be used for the multiplexing purpose. For clarity, we
rename it vga_cycle. The conceptual timing diagram is shown in the top three
signals of Figure 18.9(a). The SRAM access is allocated to the VGA port when
vga_cycle is 1 and to the CPU port when it is 0. The conceptual top-level diagram
is shown in Figure 18.7. Note that the SRAM is treated as a 512K-by-8 device. For
simplicity, we assume that 8-bit color is used in the system.

VGA port design and operation During the VGA cycle (i.e., when vga_cycle is 1),
the memory controller performs a read operation and uses the address obtained
from the current pixel coordinate to retrieve the color bits.

The signal paths are shown as thick gray lines in Figure 18.7 and the timing
diagram is shown in Figure 18.9(a). The vga_cycle signal controls the multiplexer
and routes the corresponding pixel address to the SRAM address bus, sram_addr.
The vga_cycle signal also enables the vga_rd_data register. At the rising edge of
the next clock cycle, the retrieved color data are stored into the register and the
register's output, vga_rd_data, is routed to the VGA display. The color data in
the register remains stable for two clock cycles (i.e., 40 ns) and is not affected by
the operation of the CPU cycle (i.e., when vga_cycle is 0).

The VGA's pixel location is represented by a two-dimensional coordinate, which
is specified by the pixel_x and p ixe l .y signals of the video synchronization circuit.
Since SRAM is constructed as a one-dimensional array, the two-dimensional coordi-
nate must be converted to a one-dimensional memory address. Let the coordinate
be (x, y). For the 640-by-480 resolution, one way to obtain the one-dimensional
offset is

offset = 640 * y + x

www.it-ebooks.info

http://www.it-ebooks.info/

SRAM-BASED VIDEO RAM CONTROLLER 4 8 7

cpu_mem_rd

cpu_mem_wr

vga_cycle —>

cpu_addr

cpu_wr_data

cpu_rd_data

pixel x [—'

pixel y

p tick

> vga_sync

en

>

cpu_addr_.reg

address
translation -

circuit

mem addr
sram_addr

d q

en

vga_ cycle

wr_data_reg

^n
q d

en

<]

bytó_from_sram

sram_dq

vga_cycle

vga_addr

1—|d q|— wja_rd_data

en

-*■ vga_cycle

Figure 18.7 Conceptual diagram of SRAM-based video RAM controller.

www.it-ebooks.info

http://www.it-ebooks.info/

4 8 8 VGA CONTROLLER

Despite its simplicity, the * operator implies an expensive hardware multiplier.
Closer examination shows that

offset = 640*j/ + a; = 512*i/ + 128*y + x = y < 9 + j / < 7 + x

where <C is the shift left operator (recall that in the binary system y <C n corre-
sponds to y * 2n). This indicates that the multiplier can be replaced by an adder
and two fixed-amount shifters. This implementation is much more efficient since
shifting a fixed amount just involves reconnection of the input and output wires.
The address translation circuit in Figure 18.7 performs this task.

CPU port design and operation During the CPU cycle (i.e., when vga_cycle is 0),
the memory controller performs a transaction between the processor and the SRAM
device. The processor mainly writes the memory to update the display graphics but
occasionally needs to read the memory for overlay operation (the overlay operation
is explained in Section 18.6.3).

During the CPU cycle, the SRAM is treated as a normal memory module. The
design of this type of controller is discussed in Section 16.3. The ad hoc video
memory controller performs similar functions except that these operations must be
done during the CPU cycle. Since the processor is not aware of the current phase
of operation, it can initiate a read or write operation either in a VGA cycle or CPU
cycle. The memory controller must take this into consideration and accommodate
both scenarios.

The conceptual block diagram is shown in Figure 18.7, which contains several
registers and an FSM. The FSM controls and coordinates the overall operation and
its ASMD chart is shown in Figure 18.8. In the i d l e state, the FSM checks the
read and write commands, cpujnemjrd and cpujoenunr, and determines the type of
operation. The cpujnemjrd and cpujnemjfr signals are later mapped to the read
and wr i te signals of the Avalon MM interface.

The assertion of cpujnenurd initiates the read operation. It can occur in either a
VGA cycle or CPU cycle. If the current cycle is a VGA cycle, the FSM moves to the
rd state and samples and stores data to a register in that state. The registered data
become available in the fe tch state and are sampled and retrieved by the Avalon
MM master. The timing diagram is shown in the first part of Figure 18.9(b). At
io, the FSM detects the assertion of cpujnemjrd and moves to the rd state. At
¿i, it samples and stores the data to the cpujrd_datajreg register. The register
data becomes available after a small delay. At ¿2> the Avalon MM master reads
the data and deactivates the cpujnemjrd signal. Since the data are available after
three clock cycles, the cpujnemjrd signal must remain active in this interval. When
creating the core in SOPC Component Editor, we must add a proper waiting time.
This can be achieved by setting the Read Wait field to 2.

If the assertion occurs in the VGA cycle, the FSM can simply read the data from
the SRAM data bus and store it to a register. To accommodate the previous Avalon
MM interface read timing constraint, we add a wait state, wai tr , to increase the
reading operation to three clock cycles. The timing diagram is shown in the second
part of Figure 18.9(b). Note that the Avalon MM master retrieves the data at Í3.

The assertion of cpujnem.wr initiates the write operation. The timing require-
ment for write is more stringent. As discussed in Section 16.3, the data and write
enable signals must be stable for a specific interval and the enable signal must be
deasserted properly to latch the data. To achieve this, we use a dedicated state,

www.it-ebooks.info

http://www.it-ebooks.info/

SRAM-BASED VIDEO RAM CONTROLLER 4 8 9

Default we_n<=1

idle

V fwi.dMa «—

■ T — v cpu_mem_w=1 p p

>

«- cpu.addr

cpu_wr_data taj

vga_cyde=1
>

^cpu_mem_fd=1 ^ -

T

1

waitw

• T - ^ vga_cyde=1 ^ - F —

(rw.M.«o <- byteJrom_sfam 1

waitr

tmM.M « - bytejrom_sfam

wr fetch

we_n <= 0

Figure 18.8 ASMD of ad hoc video SRAM controller.

www.it-ebooks.info

http://www.it-ebooks.info/

490 VGA CONTROLLER

SRAM data/addr ■■-o» Y ^ ; Y u>u Y v# \ Y q¡u Y ·.-&

vga_rd_data_reg X ÍX ' ' " ' ¡Λ

ΧΞ^ΞΧ ■,,;.ι)GDC][^3
ϋ PC

{a) VGA port read timing diagram

ft h fe

Clock

vga_cycle ;

SRAM data/addr

cpu_mem_rci

Í 2 J Y vga | ¥ CJKJ ¡ Y uga | ¥ epu Y iga Y cpu | Y vga Y cpu ■ Y yga Y cpu)

I I I ! !
j

FSM state

cpu_rd_data_reg

idle : V rd i Y feiert : Y idle i Y wain Y fetch i V iJe \

IX ' y | t [| | j-'¡ \

(b) CPU port read timing diagram

ft t,

SRAM data/addr

cpu_rnern,wr

CPU X^T

FSM state «κ

wr_data_reg/
cpu_addr_reg

v ΐΛι \ι \i \i
I cpu j .1 «ga I cpu I vga I cpu

ΧΞ

K ■«■ X »· pT^Tl »)

: Y wait* K wr Y idle)

EZi IX ; ")
(c) CPU port write timing diagram

Figure 18.9 Ad hoc video memory controller timing diagrams.

www.it-ebooks.info

http://www.it-ebooks.info/

SRAM-BASED VIDEO RAM CONTROLLER 4 9 1

wr, in FSM for this purpose. When cpu_mem_wr is asserted in the i d l e state, the
FSM stores the data and address to registers and then examines the type of current
cycle. If it is a VGA cycle, the FSM moves to the wr state, in which the write enable
signal is asserted, which turns on the tristate buffer to route the data to SRAM's
data bus and enables the SRAM's write enable signal, we_n. The timing diagram
is shown in the first part of Figure 18.9(c). At io> the FSM detects the assertion
of cpu_mem_wr and moves to the wr state. In this state, the registered data and
address are placed on the SRAM bus and weJI is asserted. At ίχ, the FSM returns
to the i d l e state. After a short delay, we_n is deasserted and the data are latched
to SRAM at t2.

If the assertion occurs at the VGA cycle, the FSM does not perform any write
operation so that potential glitches and timing complications can be avoided. It
moves to the waitw state to wait for one clock cycle (i.e., the VGA cycle) and then
moves to the wr state to write the SRAM. The write operation may take up to three
clock cycles. However, since the data and address are stored to the registers when
the write operation is initiated in the first clock cycle, there is no need to insert
additional wait time in the Avalon.MM interface. The write can be performed
properly as long as the processor does not issue another memory access within the
next three clock cycles.

18.3.4 HDL code

The HDL code follows the block diagram and the ASMD chart and is shown in
Listing 18.2.

Listing 18.2 SRAM-based video memory controller
module v r a m . c t r l

(
i n p u t w i r e e l k , r e s e t ,

4 / / from video sync
i n p u t w i r e [9 : 0] p i x e l . x , p i x e l . y ,
i n p u t w i r e p . t i c k ,
/ / memory interface to vga read
o u t p u t w i r e [7 : 0] v g a _ r d _ d a t a ,

a / / memory interface to cpu
i n p u t w i r e cpu_mem_wr, cpu_mem_rd,
i n p u t w i r e [1 8 : 0] c p u . a d d r ,
i n p u t w i r e [7 : 0] c p u _ w r _ d a t a ,
o u t p u t w i r e [7 : 0] c p u _ r d _ d a t a ,

i4 / / to/from SRAM
o u t p u t w i r e [1 7 : 0] s r a m . a d d r ,
i n o u t [1 5 : 0] s r a m . d q ,
o u t p u t s r a m _ c e _ n , s r a m . o e . n , sram_we_n ,
o u t p u t s r a m _ l b _ n , sram_ub_n

i«) ;

/ / symbolic state declaration
l o c a l p a r a m [2 : 0]

i d l e - 3 ' b 0 0 0 ,
24 w a i t r = 3 ' b 0 0 1 ,

rd - 3 'bOlO,
f e t c h - 3 ' b O l l ,
waitw » 3 'b lOO,
wr - 3 ' b l 0 1 ;

26 b e g i

si en

www.it-ebooks.info

http://www.it-ebooks.info/

492 VGA CONTROLLER

/ / signal declaration
reg [2:0] state.reg, state_next;
reg [7:0] vga_rd_data_reg;
reg [18:0] cpu_addr_reg, cpu.addr.next;
wire [18:0] mem.addr;
wire [18:0] y_offset, vga.addr;
reg [7:0] cpu_rd_data_reg , cpu_rd_data_next ;
reg [7:0] wr.data.reg, wr_data_next;
reg we_n_reg;
wire we.n.next;
wire [7:0] byte.f ron.sram ;
wire vga.cycle ;

/ / body
// p.tick asserted every 2 clock cycles;
assign vga.cycle - p.tick;

//=
/ / VGA port SRAM read operation
//=
// VGA port read SRAM continuousely
// read registers
always 0(posedge elk)

if (vga_cycle)
vga_rd_data_reg <» byte_from.sram;

/ / VGA port address offset = 640*y + x = 512*y + 128*y + x
assign y_offset » {1'bO, pixel.y[8:0], 9'bO} +

{3'bO, pixel.y[8:0] , 7'bO};
assign vga.addr = y.offset + pixel.x;
assign vga.rd.data » vga_rd_data_reg;
//=
/ / CPU port SRAM read/write operation
//=
assign cpu.rd.data- cpu.rd.data.reg;
/ / FSMD state & data registers

64 always 0(posedge elk, posedge reset)
if (reset)

begin
state.reg <= idle;
cpu.addr.reg <» 0;

e>» wr.data.reg <» 0;
cpu.rd.data.reg <» 0;

end
else

begin
74 state.reg <■ state.next;

cpu.addr.reg <» cpu.addr.next;
wr.data.reg <= ur.data.next;
cpu.rd.data.reg <■ cpu_rd.data.next;
we.n.reg <■ we.n.next;

7» end
/ / FSMD next—state logic
always 0*
begin

state.next ■ state.reg;
84 cpu.addr.next » cpu.addr.reg;

wr.data.next - wr.data.reg;
cpu.rd_data.next = cpu.rd.data.reg;
case (state.reg)

idle:
89 if (cpu.mem.wr)

begin

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

www.it-ebooks.info

http://www.it-ebooks.info/

SRAM-BASED VIDEO RAM CONTROLLER 4 9 3

cpu.addr.next = cpu_addr;
wr_data_next - cpu_wr_data;
if (vga.cycle)

state.next » wr;
else

state.next = wait«;
end

else if (cpu_mem_rd)
if (vga.cycle)

state.next « rd;
else

begin
cpu.rd.data.next - byte.from.sram;
state.next = waitr;

end
rd:

begin
cpu_rd_data_next = byte.from.sram;
state.next » fetch;

end
waitr:

state.next = fetch;
fetch:

state.next · idle;
uaitw:

state.next ■ wr;
wr:

state.next « idle;
endcase;

end
// look—ahead output
assign we.n.next ■ (state_next==wr) ? 1'bO : I'M;
//
/ / SRAM interface signals

//=
/ / configure SRAM as 512K-by-8
assign mem.addr * vga.cycle ? vga.addr :

("we.n.reg) ? cpu.addr.reg :
129 cpu.addr;

assign sram.addr - mem.addr [18:1];
assign sram.lb.n » ("mem.addr [0]) ? 1'bO : l ' b l ;
assign sram.ub.n ■ (mem.addr[0]) ? 1'bO : l ' b l ;
assign sram.ce.n - 1'bO;

134 assign sram.oe.n ■ 1'bO;
assign sram.we.n ■ we.n.reg;
assign sram.dq - ("we.n.reg) ? {wr.data.reg, wr.data.reg} : 16'bz;
/ / LSB control lb ub
assign byte.f rom.sram - mem.addr [0] ? sram.dq [15:8] : sram.dq [7:0] ;

139 endmodule

In addition to the basic FSMD, there are several subtle design issues in the code.
First, we use the register address, cpu_addr_reg, for the write operation but use
an unregistered address, cpu_addr, for the read operation, as in

ass ign mem.addr = vga . cyc l e ? vga .addr :
("we .n . r eg) ? c p u . a d d r . r e g

cpu .addr ;

This is due to the fact that cpu_mem_rd is asserted for three clocks and the address
in the Avalon MM interface is stable during this interval. On the other hand,

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

www.it-ebooks.info

http://www.it-ebooks.info/

4 9 4 VGA CONTROLLER

cpu_mem_wr is only asserted for one clock cycle and the address must be stored in
a register for later use.

Second, we use a special "lookahead buffer" for the we_n signal. The we_n signal
is asserted in the wr state and is usually coded as

a ss ign we_n = (s t a t e_ reg»=wr) ? 1 ' bO : I ' M ;

We can register we_n to make it fast and clean. To avoid the one-clock-cycle delay,
the decoding can be done by using the state's future value (i.e., s tate_next):

a s s ign we_n_next = (s t a t e_nex t==wr) ? 1'bO : l ' b l ;
always <2(posedge e l k , posedge r e s e t)

we_n_reg <= we_n_next;

Finally, the SRAM on the FPGA board is a 256K-by-16 (i.e., 218-by-16) device.
However, it has two additional control signals, lb_n and ub_n, to enable the lower
byte and upper byte individually. We can configure it as a 512K-by-8 (i.e., 219-by-8)
device by using the LSB to control these signals:

a s s ign sram_addr = mem.addr [1 8 : 1] ;
a s s ign sram_lb_n = ("mem_addr [0]) ? 1'bO : l ' b l ;
a s s ign s ram.ub.n = (mem.addr [0]) ? 1'bO : l ' b l ;

18.4 PALETTE CIRCUIT

Our design uses 8 bits to represent the color of a pixel, with 3 bits for the red
beam, 3 bits for the green beam, and 2 bits for the blue beam. Assume that the
data are d-jd% ■ · ■ dido. The red, green, and blue colors are the c^deds, (¿4(^2, and
d\do fields, respectively. The DEI board requires 4 bits for each color beam and
the three color beams constitute 12-bit color depth. We use a "palette circuit"
to convert the 8-bit color data to 12-bit color output. The simplest approach is
to treat the bits of the 8-bit color data as the MSBs of 12-bit color output and
duplicate the LSBs. The corresponding HDL code is shown in Listing 18.3.

Listing 18.3 Palette circuit
(

2 input wire [7:0] c o l o r . i n ,
output wire [11:0] c o l o r . o u t

) ;

/ / body
7 / / 3— bit red to 4—bit red, 3—bit green to 4—bit green

// 2-bit blue to 4-bit blue
ass ign c o l o r . o u t «

{ c o l o r . i n [7:5] , color_d.11 [5] ,
c o l o r . i n [4:2] , c o l o r . i n [2] ,

12 c o l o r . i n [1:0] , c o l o r _ i n [0] , e o l o r . i n [0] } ;
endmodule

The code converts 3-bit red to 4-bit red, 3-bit green to 4-bit green, and 2-bit blue
to 4-bit blue. We use this scheme in the chapter.

A more sophisticated alternative is to use a color lookup table. In this scheme,
the 8-bit input color data serves as the address of the table and each entry contains

www.it-ebooks.info

http://www.it-ebooks.info/

VIDEO CONTROLLER IP CORE DEVELOPMENT 495

to
Avalen MM.

interface

pixel.x
pixeLy
p jck

video_on_i
hsyncj
vsyncj

vga_sync

cpu_addr
cpu_rd_data
cpu_wr_data
cpu_mem_rd
cpu_mem_wr

vga_rd_data

vramcM

palette

d q
>

d q

>
d q
>

color

^ΊΓ

sram_addr
- sram_dq
• sram_we_n
- stamjb_n
- sfam_ub_n
- sram_oe_n
- sram_ce_n

to
SRAM

hsync

■ vsync

VGA

Figure 18.10 Block diagram video control system.

a 12-bit color. The 8-bit address leads to 256 (i.e., 28) entries in the table and
thus up to 256 12-bit colors can be displayed. In other words, we can use 12-bit
color in a graphic image but only 256 "simultaneous" colors from a total of 4096
(i.e., 212) possible colors can be used. The size of the lookup table is 256-by-12
(i.e., 3072) bits and can be accommodated by one internal M4K memory module of
the Cyclone II device. Many image file formats contain an internal palette lookup
table, which can be downloaded to the palette lookup table as needed.

18.5 VIDEO CONTROLLER IP CORE DEVELOPMENT

18.5.1 Complete video controller

The complete graphic video control system consists of the synchronization circuit,
video memory controller, and palette circuit. The block diagram is shown in Fig-
ure 18.10. The v s y n c i , h s y n c i , and video.on.i signals are buffered to match
the registered delay of memory access. In addition, the buffers can also remove
potential glitches.

18.5.2 Avalon interfaces

We can add a wrapping circuit for the video controller and create an SOPC com-
ponent. It includes an Avalon MM slave interface for the CPU port to interact
with the host, a clock input interface for system clock, and a conduit interface for
SRAM's I/O signals.

www.it-ebooks.info

http://www.it-ebooks.info/

496 VGA CONTROLLER

18.5.3 Register map

The VGA port of the video memory is transparent to the processor. From a Nios II
processor's point of view, the video RAM is simply a single-port 512K-by-8 memory
module and normal read and write is performed accordingly. To increase flexibility,
we increases the address space so that the values of horizontal and vertical counters
of the VGA synchronization circuit can be retrieved (i.e., read). The address offsets
and fields are:

• Read addresses (data to cpu)
- offset 0x0000 to 0x7fff (normal memory)

* bits 7 to 0: 8-bit data
- offset 0x8000 (horizontal and vertical counters)

* bits 19 to 10: value of vertical counter
* bits 9 to 0: value of horizontal counter

• Write addresses (data from cpu)
- offset 0x0000 to 0x7fff (normal memory)

* bits 7 to 0: 8-bit data

18.5.4 Wrapped video controller

The wrapped video controller includes additional logic to decode address, align
and multiplex data, and generate proper enable signals. The HDL code is shown
in Listing 18.4. It basically follows the block diagram in Figure 18.10 and adds
necessary segments for the wrapping circuit.

Listing 18.4 Wrapped video controller
module c h u _ a v a l o n _ v g a

2 (

i n p u t w i r e e l k , r e s e t ,
/ / Avalon MM interface
i n p u t w i r e [1 9 : 0] v g a . a d d r e s s ,
i n p u t w i r e v g a . c h i p s e l e c t , v g a _ w r i t e , v g a . r e a d ,

7 i n p u t w i r e [3 1 : 0] v g a . v r i t e d a t a ,
o u t p u t w i r e [3 1 : 0] v g a . r e a d d a t a ,
/ / conduit (to VGA monitor)
o u t p u t w i r e v s y n c , h s y n c ,
o u t p u t w i r e [1 1 : 0] r g b ,

i2 o u t p u t w i r e [1 7 : 0] sram.addr ,
/ / conduit (to/from SRAM)
i n o u t [1 5 : 0] s r a m . d q ,
o u t p u t s r a m _ c e _ n , sram_oe_n , sram_we_n ,
o u t p u t sram_lb_n , sram_ub_n

IT) ;

/ / signal declaration
reg v i d e o _ o n _ r e g , v s y n c . r e g , h s y n c . r e g ;
w i r e v s y n c . i , h s y n c . i , v i d e o _ o n _ i , p _ t i c k ;

22 w i r e [9 : 0] p i x e l _ x , p i x e l . y ;
w i r e wr .vram, r d . v r a m ;
w i r e [7 : 0] c p u _ r d _ d a t a , v g a _ r d _ d a t a ;
w i r e [1 1 : 0] c o l o r ;

27

www.it-ebooks.info

http://www.it-ebooks.info/

VIDEO CONTROLLER IP CORE DEVELOPMENT 4 9 7

/ / body

//
// instantiation

32 / /

/ / instantiate VGA sync circuit
vga.sync sync_unit

(.clk(clk), .reset(reset), .hsync_i(hsync.i), .vsync.i(vsync.i) ,
.video_on_i(video_on_i), .p.tick(p.tick),

37 .pixel.x(pixel.x), .pixel.y(pixel.y));
/ / instantiate video SRAM control
vram.ctrl vram_unit

(.clk(clk), .reset(reset),
/ / from video sync

42 .pixel_x(pixel_x), .pixel.y(pixel.y), .p.tick(p.tick),
/ / avalon bus interface
.vga_rd_data(vga_rd_data), .cpu_rd_data(cpu_rd_data),
.cpu_wr_data(vga_writedata[7:0]),
.cpu.addr(vga.address[18:0]) ,

47 .cpu.mem.wr(ur.vram), .cpu.mem.rd(rd.vram),
/ / to/from SRAM chip
.sram.addr(sram.addr), .sram.dq(sram.dq),
.sram_we_n(sram_ue_n), .sram_oe_n(sram_oe_n), .sram_ce_n(sram_ce_n),
.sram_ub_n(sram_ub_n), .sram_lb_n(sram_lb_n)

52) ;

/ / instantiate palette table (8—bit to 12—bit conversion)
palette palet.unit

(.color.in(vga_rd.data), .color_out(color));
/ /

57 / / registers , write decoding, and read multiplexing

//
// delay vga sync to accomodate memory access
always Q(posedge elk)

if (p.tick)
62 begin

vsync.reg <= vsync.i;
hsync.reg <» hsync.i;
video_on_reg <= video_on_i;

end
07 assign vsync ~ vsync_reg;

assign hsync <· hsync.reg;
/ / memory read/write decoding
assign ur.vram = vga.write k vga.chipselect & "vga.address[19];
assign rd.vram » vga.read IE vga.chipselect & "vga.address[19];

72 / / read data mux
assign vga.readdata » "vga.address[19] ? {24'bO, cpu.rd.data} :

{12'bO, pixel.y, pixel.x};
/ / video output
assign rgb = video.on.reg ? color : 12'bO;

77 endmodule

18.5.5 SOPC component creation

After developing the top-level design and an Avalon wrapping circuit, we can create
a new SOPC component in Component Editor following the procedure outlined in
Section 15.5.4. Recall that the memory controller requires three clock cycles to
complete a read operation, as discussed in Section 18.3.3. We must insert two extra
wait cycles in the memory interface. This can be done by setting the Read Wait
field to 2 in the Avalon MM slave interface of Component Editor.

www.it-ebooks.info

http://www.it-ebooks.info/

498 VGA CONTROLLER

18.6 VIDEO DRIVER

The basic function of a graphic video driver is to put and retrieve a pixel at the
designated coordinate. We then can add additional routines to generate and process
various types of graphic objects, which can be geometrical models, bitmap images,
or text. The following subsections discuss these routines.

We define two symbolic constants for the VGA resolution:

«define DISP_GRF_X_MAX 640 / / 640 columns (0 to 639)
«define DISP_GRF_Y_MAX 480 / / 480 rows (0 to 479)

18.6.1 Video memory access routines

The main function of video memory access routines is to read and write a pixel at
the designated location. The basic routines are shown in Listing 18.5.

Listing 18.5
alt_u32 vga calc.sram.addr(int x, int y)
{
alt_u32 addr;

addr = (alt_u32) (DISP_GRF_X_MAX*y + x);
return addr;

}

alt_u8 vga_rd_pix(alt_u32 vga.base, int x, int y)
{
alt_u32 offset;
alt_u8 color;

offset » vga.calc.sram.addr(x,y);
color - (alt_u8) IORD(vga.base, offset);
return color;

}

void vga_wr_pix(alt_u32 vga.base, int x, int y, alt_u8 color)
{
alt_u32 offset;

offset = vga_calc_sram_addr(x,y);
I0WR(vga_base, offset, color);
return;

}

void vga_rd_xy(alt_u32 vga.base, int »x, int *y)
{
alt_u32 data;
const alt_u32 XY_ADDR-0x00080000;

data » IORD(vga.base, XY.ADDR);
•x - 0x000003ff ft data;
*y - 0x000003ff ft (data >> 10);
return;

}

void vga_clr_screen(alt_u32 vga.base, alt_u8 color)
{

int x, y;

/ / form address offset
// read video memory

// form address offset
// write video SRAM

// read video SRAM
// 10 LSBs for horizontal counter
// next 10 LSBs for vertical counter

www.it-ebooks.info

http://www.it-ebooks.info/

VIDEO DRIVER 4 9 9

f o r (x - 0 ; x<DISP_GRF_X_MAX; x++)
f o r (y = 0 ; y<DISP_GRF_Y_MAX; y++)

v g a _ v r _ p i x (v g a _ b a s e , x , y , c o l o r) ;
}

The vga_calc_sram_addr() function calculates the corresponding SRAM offset
address for a pixel located at (x, y) by using the equation

offset = 640 * y + x

The calculation involves a multiplication operation. It is not a problem for the
Nios II/s and Nios ΙΙ/f configurations since their implementation includes a hard-
ware multiplier. For the Nios I l /e configuration, which uses a software routine
to perform multiplication and can be slow, we can follow the discussion in Sec-
tion 18.3.3 and substitute it with two shift operations:

addr = (a l t _ u 3 2) (y<<9 + y<<7 + x) ;

The vga_rd_pix() and vga_wr_pix() functions use this function to obtain the
SRAM address and then perform the read and write operations accordingly. If
better performance is desired, we can move the offset calculation to hardware.

The vga_rd-xy() function performs the read operation and retrieves the current
coordinate of the scan. It retrieves the data from the designated address and
unpacks the word to obtain the x-axis and y-axis coordinates. These numbers can
be used to determine whether the scan is in the retrace area (i.e., video is off) and
can be used as a 60-Hz clock tick (since the counters reset to zero every ^ second).
Note that the retrieved numbers may be off somewhat since the execution of the
routine may take several clock cycles.

The last function in this category, vga_clr_screen(), clears the screen by writing
the entire video memory with a designated color.

18.6.2 Geometrical model routine

A geometrical model is generated by the mathematical description of the object,
which sometimes is referred to as a vector graphic. For example, we can obtain a
line segment from two given points, (x\,yi) and (x2,j/2), by generating a series of
pixels based on the equation

y - y i 1/2 — y i

X — Xl X2 — X\

We can obtain the pixel coordinates by using the x as the independent variable
and then calculating y:

y = * (x - xi) + yi
X2 — Xl

However, for a steeper line (i.e., a line with a large slope), there are only a few dots
that can be plotted within the given range and the line appears to be disconnected.
It is better to use y as the independent variable to obtain more points:

x = *{y- vi) + xi
yz-yi

The basic line plotting function is shown in Listing 18.6.

www.it-ebooks.info

http://www.it-ebooks.info/

5 0 0 VGA CONTROLLER

Listing 18.6
void vga_p lo t_ l ine (a l t_u32 vga .base , int x l , int y l , int x2 , int y2,

alt_u8 color)
{

int horiz, step, x, y;
float slope;

i f ((yl«==y2) kk (x i - - x 2) H / / special case of xl=x2 and yl=y2
vga_wr_pix(vga_base, x l , y l , c o l o r) ;
return;

}
horiz - (a b s (x 2 - x l) > a b s (y 2 - y l)) ? 1 : 0;
if (horizM / / line is more horizontal and x2!=xl

s l o p e = (f l o a t) (y 2 - y l) / (f l o a t) (x 2 - x l) ;
step - ((x 2 - x l) > l) ? 1 : - 1 ;
for(x=xl ; x ! - x 2 ; x - x + s t e p H

y = s l o p e * (x - x l) + y l ;
vga_wr_pix(vga_base, x, y, c o l o r) ;

} / / end for
} e l s e { / / line is more vertical

s l o p e = (f l o a t) (x 2 - x l) / (f l o a t) (y 2 - y l) ;
step = ((y 2 - y l) > l) ? 1 : - 1 ;
f o r (y - y l ; y ! = y 2 ; y - y + s t e p) {

x - s l o p e » (y - y l) + x l ;
vga_wr_pix(vga_base, x, y, c o l o r) ;

} / / end for
}
return;

}

It first checks the type of slope by comparing the distances, |x2 - x i | and |¡/2 — J/i|»
and then selects the proper axis as the independent variable to generate the pixels.

The geometric model itself is a separate discipline and involves many sophisti-
cated techniques and algorithms. For example, because of the floating-point op-
erations, the previous vga_plot_line() function is not very efficient. A better
alternative is to use the Bresenham algorithm, which uses integer arithmetic ex-
clusively. Deriving even a simple set of driver routines is beyond the scope of the
book. The line plotting function just gives us a taste of this type of program and
additional information can be found in the bibliographic section.

18.6.3 Bitmap processing routines

Many graphic objects are not regular and cannot be described mathematically.
We can explicitly draw the graph in rectangular grid of pixels. It is known as
raster graphics or bitmap. The 12-by-20 bitmap of a mouse pointer is shown in
Figure 18.11. A bitmap is usually stored in a file or an internal data structure and
copied to the video memory when needed. A bitmap is frequently placed on top
of a larger existing graphic and becomes another layer of the graphics, which is
sometimes referred to as an overlay.

An overlay can be best explained by the operation of a mouse pointer over a
graphic. The mouse pointer bitmap is the top layer and the original graphic is
the bottom layer. When a mouse moves to a location, the pointer bitmap covers a
portion of'the original graphic and the pointer is shown on the display. However,
the content below the pointer bitmap remains intact and will be restored when the
mouse moves away. In the actual implementation, the original graphics are stored

www.it-ebooks.info

http://www.it-ebooks.info/

VIDEO DRIVER 501

«■■■■■■■«

Figure 18.11 Bitmap of mouse pointer.

in the video memory permanently and the bitmaps are copied to the memory as
needed. The below area may need to be retrieved to a temporary buffer so that
it can be restored later. Because of the overlay operation, both write and read
are needed for the CPU port of the video memory. In our program, we define a
structure data type for a bitmap:

typedef s truct tag_bmp
{

int width;
int he ight ;
alt_u8 *pdata; / /

} bmp_type;
pointer to pixel array

In the definition, width and height specify the width and height of the bitmap and
pdata is a pointer pointing to an array that stores the pixel data. The size of the
array should be at least width*height. The element's data type, alt_u8, reflects
the 8-bit color system. With this structure, the pointer bitmap of Figure 18.11 is
shown in Listing 18.7.

alt_u8

{

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

MOUSE.

0x00,

Oxf f ,

Oxf f ,

Oxf f ,

Oxf f ,
Oxf f ,

Oxf f ,

Oxf f ,

Oxff
Oxf f ,

Oxff ,

Oxff ,

Oxff

Oxff

Oxff

Oxff

0x00

0x00

0x00

DATA[]

0x00,

0x00,

0x6d,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,
0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x00,

0x00,

0x00,

0x00,

m

0x00,

0x00 ,

0x00,

0x6d,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x00,

0x00,

0x00,

0x00,

0x00,

Listing

0x00,

0x00,

0x00,

0x00,

0x6d,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x92,

0x6d,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,
0x6d,

0x92,

0x92

0x92

0x92

0x92

0x92

0x92

0x6d

0x6d

0x00

0x00

0x00

0x00

L8.7

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x6d,

0x92 ,

0x92,
0x92 ,

0x92,

0x6d,

0x92,

0x92 ,

0x92,

0x6d,

0x6d,

0x00,

0x00 ,

0x00,

0x00,

0x00,

0x00 ,

0x00,

0x00,

0x00,

0x6d,

0x92,

0x92,

0x92,

0x6d,

0x6d,

0x92,

0x92,

0x92,

0x92,

0x6d,

0x6d,

0x00 ,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x6d,

0x92,

0x92,

0x6d,

0x00,

0x6d,

0x6d,

0x92,

0x92,

0x92,

0x92,

0x00 ,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,
0x6d,

0x92,

0x6d,

0x00,

0x00,

0x00,

0x6d,

0x6d,

0x92,

0x92,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x6d,

0x6d,

0x00,

0x00,

0x00,

0x00,

0x00,

0x6d,

0x6d,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x6d,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

www.it-ebooks.info

http://www.it-ebooks.info/

502 VGA CONTROLLER

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6d, 0x6d, 0x00, 0x00
} ;

bmp.type M0USE_BMP={
12, / / width
20, / / height
MOUSE.DATA / / bitmap array

} ;

The video driver consists of three bitmap processing functions, which retrieve
(i.e., read) an area from the video memory, write a bitmap to the video memory,
and move a bitmap from one region of the video memory to another. The three
functions are shown in Listing 18.8.

Listing 18.8
void vga_rd_bitmap(alt_u32 vga .base , int x, int y, bmp.type *bmp)
{

int i , j ;
alt_u8 co lor;

for(j -0; j<bmp->height ; j++H
for(i»0; i<bmp->width;i++){

color ■ vga_rd_pix(vga_base, i+x , j+y) ;
bmp->pdata[(j*bmp->width) + i] " co lor;

} / / end for loop i
} // end for loop j

}

void vga_wr_bitmap(alt_u32 vga.base , int x, int y, bmp_type *bmp,
int tran)

{
int i , j ;
alt_u8 co lor;

for(j»0;j<bmp->height;j++){
for(i -0; i<bmp->width; i++H

color = bmp->pdata[(j»bmp->width) + i] ;
i f (tran==0 II color!=0)

vga_wr_pix(vga_base, i+x , j+y, c o l o r) ;
} / / end for loop i

} // end for loop j
y

void vga_move_bitmap(alt_u32 vga.base ,
int xold , int yo ld , bmp.type »below,
int xnew, int ynew, bmp.type *bmp)

{
/ * restore the hidden pixels at (xold, yold) */
vga_wr_bitmap(vga.base, xo ld , yold , below, 0) ;
/* read the hidden pixels at (xnew, ynew) */
vga_rd_bitmap(vga_base, xnew, ynew, below);
/* write the top bitmap at (xnew, ynew) */
vga_wr_bitmap(vga.base, xnew, ynew, bmp, 1);

The vga_rd_bitmap() function reads a rectangular area from the video memory.
The tip (top-left corner) of the area is specified by x and y and its size is obtained
from the width and height fields of bmp. The retrieved pixel data are stored to
the array pointed by the pdata field of bmp.

www.it-ebooks.info

http://www.it-ebooks.info/

VIDEO DRIVER 5 0 3

The vga_wr.bitmap () function writes a bitmap to the video memory. Its basic
program structure is similar to that of vga_rd_bitmap(). It includes one additional
argument, t rän , to indicate whether the "transparency" operation is desired. A
bitmap usually contains an irregular object and only this portion should be dis-
played when it is overlaid over a graphic. For example, only the arrow-shaped
object in the mouse pointer bitmap, rather than the entire rectangle, should be
displayed on a graphic. To achieve this, we can paint unused pixels with a spe-
cial color, such as black (i.e., 0x00), and treat them as "transparent" pixels, which
should not overwrite the corresponding underlying pixels when the bitmap is over-
laid over a graphic. The t r a n argument indicates whether the black pixels should
be treated as transparent pixels or normal black pixels.

The vga-move_bitmap() function moves a bitmap, pointed by bmp, from one
location to another and restores and archives underlying pixels. The below pointer
points to a buffer for the underlying pixels. This function can be best explained by
mouse pointer movement. The mouse pointer bitmap is stored in an array pointed
by bmp and the mouse is currently located at (xold, yold). The corresponding
pixels of the underlying graphics below the mouse bitmap are stored in the below
buffer. When we move the mouse pointer to a new location, (xnew, ynew), the
required operations are:

• restore the graphics at (xold, yold) by writing back the stored pixels in the
below buffer.

• read the area at (xnew, ynew) and store it to the below buffer.
• write the mouse pointer bitmap (pointed by bmp) at (xnew, ynew).

Note that the calling function must allocate memory for the below buffer.

18.6.4 Bit-mapped text routines

The graphic display frequently contains some texts. One way to handle text is
to design a collection of bitmaps for the character set. The bitmap patterns are
referred to as the font. The processing of a font bitmap is somewhat different from
regular bitmaps and two driver routines are developed for this purpose.

Since there is no need to have multiple colors within a single character, the font
bitmaps require one bit for each pixels (i.e., either "on" or "off"). We choose an
8-by-16 (i.e., 8-column-by-16-row) font similar to the one used in early IBM PCs.
In this font, each character is represented as an 8-by-16 pixel pattern. The pattern
for the letter "A" is shown in Figure 18.12(a). The original font set consists of
256 (28) patterns, including digits, uppercase and lowercase letters, punctuation
symbols, and many special-purpose graphic symbols. We implement only the first
half of the patterns, which correspond to the 128 (27) characters of the ASCII code,
listed in Table 17.1. Note that the first column of the table (ASCII codes 0x00
to Oxlf) consists of nonprintable control characters. The font uses these codes to
implement special graphic symbols. For example, the 0x16 code will generate a
spade pattern, 4t> on the screen. Note that the 0x00 code is reserved for a blank
tile. Since each pattern requires 16 (24) bytes, the entire font set can be stored in
a constant array of 2048 (i.e., 128 * 16) elements. The first few lines are:

www.it-ebooks.info

http://www.it-ebooks.info/

504 VGA CONTROLLER

I ASCII code
/ i row number

' • \ fonttablein
0x410 00000000 hinarv moresfintalion
0x411 00000000 oinary representaron

00010000
00111000
01101100
11000110
11000110
11111110
11000110
11000110
11000110
11000110
00000000
00000000

0x41 e 00000000
0x41 f 00000000

•
array [*
index

(b) Font table content

const alt_u8 FONT[]={
// 0x00 blank
OxOO, //
OxOO, //
OxOO , //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
OxOO, //
// 0x01 smiley face
OxOO, //
OxOO, //
0x7E, // ******
0x81, // * *
0xA5, // * * * *
0x81, // * *
0x81, // * *
OxBD, // * **** *
0x99, // * ** *
0x81 , // * *

(a) Pixel pattern

Figure 18.12 Font pattern for the letter A.

www.it-ebooks.info

http://www.it-ebooks.info/

VIDEO DRIVER 5 0 5

0x81 , / / * *
0χ7Ε , / / ******
0x00 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /

The complete definition has 2048 rows and is stored in chu_avalon_vga_f ont-table. h.
Because of the 1-bit color depth, a new bitmap process function is needed. The

basic code to display character ch at location (x, y) is
f o r (j = 0 ; j < 1 6 ; j + + H

c h _ l i n e _ a d d r = 16*ch + j ; / / char base address + offset
row = F O N T [c h _ l i n e _ a d d r] ;
f o r (i « 0 ; i < 8 ; i + + H

b i t - row & (0x80 >> i) ;
i f (b i t ! = 0)

v g a _ w r _ p i x (v g a . b a s e , x + i , y + j , c o l o r) ;
}

>

The FONT [] array contains the bitmaps of 128 characters and the "base address" for
character ch is 16*ch. The outer loop iterates through the 16 rows of the bitmap,
starting with row 16*ch. The inner loop iterates through the row and extracts the
individual bit. Note that 0x80 is 10000000 in binary format and can be treated
with a 1-bit mask and the expression 0x80»i shifts the enable bit to position i. If
the corresponding bit is 1, the designated color is written to the pixel. The actual
routine, vga_wr_bit_ch(), is shown in Listing 18.9.

Listing 18.9
void vga_wr_bit_ch(alt_u32 vga.base, int x, int y, char ch, int color,

int zoom)
{

i n t i , j , c h _ l i n e _ a d d r , b i t ;
a l t_u8 row;

f o r (j = 0 ; j<16*zoom; j++){
/ * get a row from font table */
ch_l ine_addr « 16*ch + j / zoom; / / char base address + offset
row » F0NT[ch_l ine_addr] ;
/ * process bit */
fo r (i»0 ; i<8*zoom; i++){

b i t - row k (0x80 » (i / z o o m)) ;
if (b i t ! - 0)

vga_wr_pix(vga .base , x + i , y + j , c o l o r) ;
} / / end for loop i

} / / end for loop j
}

The routine has an additional argument, zoom, which specifies the "magnification
factor" of a character. For example, if zoom is 2, the font size is increased from
8-by-16 to 16-by-32. Since the resolution of the bitmap remains unchanged, the
magnified fonts may have jagged edges. Note that we use ASCII code 0x7f for a

www.it-ebooks.info

http://www.it-ebooks.info/

5 0 6 VGA CONTROLLER

special solid rectangle pattern. If we select the background color for the color
argument, it can be used to erase the current character.

A relevant driver routine, vga_wr_bit_str(), writes a string from the specified
coordinate. The code is shown in Listing 18.10.

Listing 18.10
void v g a _ w r _ b i t _ s t r (a l t _ u 3 2 vga.base , i n t x, i n t y , char * s ,

i n t color , i n t zoom)
{

i n t ex, cy; / / current x, y

ex =* x ;
cy - y;
while (*s) {

if (* s - - ' \ n ') { / / new line
ex - x;
cy » cy + 16*zoom;
s++;

}
e l s e {

vga_wr_bi t_ch(vga_base , ex, cy, * s , c o l o r , zoom);
s++;
ex » ex + 8«zoom;

} / / end else
} // end while

}

The code loops through the characters until ' \ 0 ' is reached. It treats the newline
code (i.e., ' \ n ') as a special character and starts a new line. This function can
be used in conjunction with C's sp r in t f (s , . . .) function, which is similar to
p r i n t (. . .) but stores the results in a string s, to display a formatted string, as
demonstrated by the following code segment:

char s [1 1] ;

/ * s store "Index is ddd", where ddd is S decimal digits */
s p r i n t f (s , "Index i s */.3d" , n) ;
v g a _ w r _ b i t _ s t r (v g a _ b a s e , 2 0 0 , 100 , s , 0 x 0 3 , 1) ;

18.7 MOUSE PROCESSING ROUTINES

A mouse is frequently used in conjunction with the graphic interface as a pointing
device. The pointer bitmap, as shown in Figure 18.11, moves along with the mouse
and indicates the current location on the screen. With the availability of a PS2
mouse driver and a VGA video driver, we can create two functions to support this
operation. The vga_init_mouse_ptr function initializes the pointer bitmap and the
vga_move-mouse_ptr function moves the pointer according to the mouse activities.
The bitmap MOUSEJBMP defined in Section 18.6.3 is used for the mouse pointer and
the two functions are shown in Listing 18.11.

Listing 18.11

»include "chu_avalon_ps2.h"
» include "chu_avalon_vga.h"

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 5 0 7

void v g a . i n i t . m o u s e . p t r (a l t _ u 3 2 vga .base , alt_u32 ps2_base,
int x, int y, bmp_type «mouse, bmp_type «below)

{
/ * read hidden pixels */
vga_rd_bitmap(vga.base, x, y, below);
/ * draw initial pointer */
vga.wr.bitmap(vga.base, x, y, mouse, 1);

}

int vga.move.mouse.ptr(alt_u32 vga .base , alt_u32 ps2_base,
int xold , int yold , bmp.type «below, int «xnew, int «ynew,
bmp.type «mouse, mouse.mv.type »mv)

{
i f (m o u s e . g e t . a c t i v i t y (p s 2 _ b a s e , mv)==0) / / no movement

return(0) ;
/* calculate new mouse pointer position */
«xnew = xold + mv->xmov;
i f («xnew > (639 - mouse->width))

«xnew ■ 639- mouse->width;
i f (*xnew<0)

*xnew=0;
«ynew = yold - mv->ymov; / / VGA y—axis goes downward
if (*ynew>(479 - mouse->height))

»ynew ■ 479 - mouse->height;
i f (*ynew<0)

*ynew=0;
/* draw the updated mouse pointer, restore "underlying" area */
vga.move.bitmap(vga.base, xo ld , yold , below, «xnew, «ynew, mouse);
r e t u r n (l) ;

}

The vga_init-mouse_ptr() function performs the initialization. It should be called
when a mouse pointer is first placed on a graphic screen. The function first reads
pixels below the designated location and stores it in a buffer and then writes the
mouse pointer bitmap at this location. Note that the calling function must allocate
memory for the buffer.

The vga_move_mouse_ptr () retrieves data movement information from the mouse,
calculates the new coordinates, and moves the pointer bitmap to the new location.
It utilizes vga-move_bitmap() to move the bitmap and includes the below buffer to
store and restore the underlying pixels. The function also returns the new pointer
coordinates and mouse activities data to the calling function for further processing
and therefore can be treated as an extended mouse driver routine.

We can remove the pointer from the screen by writing the buffered underlying
pixels to the current mouse location:

v g a . w r . b i t m a p (v g a . b a s e , x , y , febelow, 0) ;

and thus there is no need for a separate driver routine for this task.
Note that the two functions are not a part of the video driver and are included

in the main testing program.

18.8 TESTING PROGRAM

The VGA controller core can be instantiated and integrated to a Nios II system like
a normal IP core. The system derived in Section 17.10 includes the VGA controller

www.it-ebooks.info

http://www.it-ebooks.info/

508 VGA CONTROLLER

core and can be used for testing. We construct a program to demonstrate and
verify the driver routines. The program consists of the following tests:

• Clear the screen.
• Plot a color chart that shows all colors.
• Plot random pixels.
• Plot random lines.
• Plot several functions.
• Swap two vertical strips on screen.
• Demonstrate the use of a mouse pointer.
• Display bit-mapped text.

The main program is shown in Listing 18.12.

Listing 18.12

int main(voidM
int sw, btn;
alt_u8 d i sp .msg[4]«{sseg .conv .hex (13) , sseg_conv_hex (1) ,

sseg_conv_hex(5) , 0x0c};

sseg_disp_ptn(SSEG_BASE, disp.msg); / / show "dISP" for display
vga_clr_screen(VRAM_BASE,0); / / clear screen
printfCVGA video contro l l er t e s t : \ n \ n ") ;
btn.clear(BTN.BASE);
while (1){

while (!btn_is_pressed(BTN_BASE)M } ; / / wait for button
btn=btn_read(BTN_BASE); / / read button
if (btn & 0x02){ / / keyl pressed

sw=pio_read(SWITCH_BASE); / / read switch
printf ("key/sw: 7,d/'/.d\a" , btn, sw);

}
btn.clear(BTN.BASE);
switch (sw){

case 0: / / clear screen
vga_clr_screen(VRAM_BASE,0);
break;

case 1: / / plot color chart
plot.color.chart(VRAM.BASE);
break;

case 2: / / plot random pixels
plot.random.pix(VRAM.BASE);
break;

case 3 : / / plot random lines
plot.random.line(VRAM.BASE);
break;

case 4: / / plot several functions
plot.function(VRAM.BASE);

break;
case 5: / / swap two vertical strips on screen

plot.swap(VRAM.BASE);
break;

case 6: / / test mouse pointer
plot.mouse(VRAM.BASE,PS2.BASE,BTN.BASE);
break;

case 7: / / display bit—mapped text
plot.text(VRAM.BASE);
break;

} //end switch
} / / end while

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 5 0 9

The program's basic structure is similar to that in Listing 17.12. We use the slide
switches to specify the desired test and use the pushbutton switch 1 (labeled keyl on
the board) to initiate the test. The relevant functions are discussed in the following
subsections. Note that only the first two tests write the entire screen and thus
erase the previous image. Other tests impose some new graphics over the previous
image.

18.8.1 Chart plotting routine

The chart plotting routine is shown in Listing 18.13.

Listing 18.13
void plot_color_chart(alt_u32 vga.base)
{
int x, y;
alt_u8 i;
alt_u8 color.r, color_g , color.b, color.rgb;

for(x-0; x<DISP.GRF_X_MAX; x++){
for(y=0; y<DISP_GRF_Y_MAX; y++){
if (x<240) {
/* x < 240 */
color.r - (alt_u8)(x/30);
if (y<240){ // region 0
color.g = (alt_u8)(y/30);
color_b = 0x00;

} else {
color.g - (alt_u8)((y-240)/30);
color.b » 0x02;

}
} else if (x<480) {

/* 240 <= x < 480 */
color.r = (alt_u8)((x-240)/30) ;
if (y<240){ / / region 2

color.g = (alt_u8)(y/30);
color.b » 0x01;

} else { // region 2
color.g = (alt_u8)((y-240)/30);
color.b = 0x03;

}
} else {
/* 480 <= x < 640 */
/* 3—bit color test strips */
i - (x - 480)/20;
if (i k 0x04)
color.r - 0x07;

else
color.r » 0x00;

if (i k 0x02)
color.g = 0x07;

else
color.g ■ 0x00;

if (i k 0x01)
color.b » 0x03;

else
color.b » 0x00;

} // end outer if
color.rgb - (color_r<<5) + (color_g<<2) + color.b;
vga.wr.pix(vga.base, x, y, color.rgb);

www.it-ebooks.info

http://www.it-ebooks.info/

510 VGA CONTROLLER

} / / end y loop
} // end x loop

}

We divide the screen into five regions. The first four regions are 240-by-240 squares,
each containing 64 (i.e., 8-by-8) smaller 30-by-30 squares. Within a region, the
intensities of red and green colors increase from 0 to 7 along the x-axis and y-axis,
respectively. The four regions are assigned with blue color intensities of 0, 1, 2,
and 3. The last region is a 160-by-480 rectangular that shows the strips of eight
primary colors.

18.8.2 General plotting functions

The main program includes three routines that plots random pixels, random line
segments, and a series of functions. These routines are shown in Listing 18.14.

Listing 18.14
void plot_random_pix(alt_u32 vga.base)
{

int i , x, y;
alt_u8 co lor;

f o r (i - 0 ; i < 3 0 0 0 0 ; i + +) {
x«rand (HDISP.GRF.X.MAX;
y-rand(r/.DISP_GRF_Y_MAX;
color-rand () 7.256;
vga_wr_p ix (vga .base ,x ,y , co lor) ;

}
}

void plot_random_line(alt_u32 vga.base)
{

int i , x, y;
alt_u8 co lor;

/* test for a white dot */
v g a . p l o t . l i n e (v g a . b a s e , 1 0 , 1 0 , 1 0 , 1 0 , 0 x f f) ;
/ * a blue vertical line */
vga.plot_line(vga.base,600,0,600,DISP_GRF_Y_MAX-1,0x03);
/ * a green horizontal line */
vga.plot.line(vga.base,0,400,DISP.GRF_X.MAX-1,400,0xlc);
/ * 30 random lines from center */
f o r (i - 0 ; i < 3 0 ; i + +) {

x-rand OXDISP.GRF.X.MAX;
y-rand OXDISP.GRF.Y.MAX;
color»rand()%256;
vga.plot.line(vga.base,DISP_GRF_X_MAX/2,DISP_GRF_Y_MAX/2,x,y,color);

} / / end for
}

void p l o t . f u n c t i o n (a l t _ u 3 2 vga.baseM
const f loa t XMAX = 10.0; / / moat range of x—axis
const f loat YMAX-10.0; / / moat range of y-axis
f loa t x, y, s t ep;
int i , j ;

step = XMAX / (float)(DISP.GRF.X.MAX);
/* red line with small slope y=0.1*x * /

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM

x = 0 . 0 ;
f o r (i - l ; i < D I S P _ G R F _ X _ M A X ; i + + H

x ■ x + s t e p ;
y - 0 . 1 * x;
i f (y < YMAXH / / plot if only y is in range

j - DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a _ b a s e , i , j , OxeO);

} / / end if
} // end for
/* blue line with 45 degree slope y=x */
x - 0 . 0 ;
for (i= l ; i<DISP_GRF_X_MAX;i++H

x ■ x + s t e p ;
y - χ ;
i f (y < YMAXH / / plot if only y is in range

j - DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a _ b a s e , i , j , 0 x 0 0 3) ;

} / / end if
y // end for
/* green steep line y=10*x */
x = 0 . 0 ;
for(i -1; i<DISP_GRF_X.MAX; i + + H

x = x + s t e p ;
y « 10 * x;
i f (y < YMAXH / / plot if only y is in range

j = DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a . b a s e , i , j , 0 x 0 1 c) ;

} / / end if
} // end for
/ * y=0.2*x*x */
x = 0 . 0 ;
f o r (i - l ; i < D I S P _ G R F _ X _ M A X ; i + + H

x » x + s t e p ;
y » 0 . 2 * x*x;
i f (y < YMAXH / / plot if only y is in range

j - DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a . b a s e , i , j , O x l f) ;

} / / end if
} // end for
/* y = 5.0 + (5.0* sin (4-0*x) — 3.0*cos (4-0*x))* exp(—0.5*x) */
x = 0 . 0 ;
for (i= l ; i<DISP_GRF_X_MAX;i++){

x ■ x + s t e p ;
y - 5 . 0 + (5 . 0 * s i n (4 . 0 * x) - 3 . 0 * c o s (4 . 0 * x)) * e x p (- 0 . 5 * x) ;
i f (y < YMAXH / / plot if only y is in range

j - DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a . b a s e , i , j , O x f f) ;

} / / end if
y // end for

y

The plot_random.pix() routine plots 3000 pixels with random colors at random lo-
cations. The randO function, which returns a random number each time it is called,
is used to generate the color and x- and y-axis coordinates. The plot-random-line 0
routine is used to test vga .p lo t_ l ine() . It plots a white dot, a vertical line, a hor-
izontal line, and 30 random segments originating from the center of the screen.
The p lo t - funct ion() routine treats the display as the first quadrant of a two-
dimensional plan with a range of 0 to 10 in both axes and plots the following

www.it-ebooks.info

http://www.it-ebooks.info/

512 VGA CONTROLLER

functions:

y = O.lx
y = x

y = 10x
y = 0.2x2

y = 5 + (5 sin(4x) - 3 cos(4x))e~°"

18.8.3 Strip swapping routine

The strip swapping routine treats the screen as eight 80-pixel-by-480-pixel vertical
strips and randomly swaps two strips. The purpose of the routine is to test the read
and write operations on a large display area. The routine is shown in Listing 18.15.

Listing 18.15
void p lot . swap(a l t_u32 vga.base)
{

alt_u8 buf[80*480];
alt_u8 co lor;
int x , y , xl , x2;

xl » rand()/C8;
x2 = rand()%8;
if (x l -»x2)

x2 = (χ1 + 1)·/.8;
xl = 80*xl;
x2 - 80*x2;
/* copy area 1 from video SRAM to buffer */
for (y»0; y<480; y++)

for (x»0; x<80; x++)
bu'f [80*y+x]-vga_rd_pix(vga_base , x+xl , y) ;

/* copy area á to area 1 */
for (y -0; y<480; y++)

for (x»0; x<80; x++M
color=vga_rd_pix(vga.base, x+x2, y) ;
vga_ur_pix(vga.base , x+xl , y, c o l o r) ;

}
/ * copy buffer (area 1) to area 2 of SRAM */
for (y=0; y<480; y++)

for (x=0; x<80; x++)
vga_ur_pix(vga_base, x+x2, y, buf [80*y+x]);

}

18.8.4 Mouse demonstration routine

The mouse demonstration routine tests the mouse driver routines and indirectly
verifies the operation of bitmap processing routines. Its code is shown in List-
ing 18.16.

Listing 18.16
void plot .mouse(al t_u32 vga .base , alt_u32 ps2_base, alt_u32 btn.base)
{

mouse_mv_type mv;
int xold , yold , xnew , ynew , act ;

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 5 1 3

s t a t i c a l t _ u 8 b d a t a [2 0 * 1 2] ;
bmp.type b e l o w ~ { 1 2 , 2 0 , b d a t a } ;

i f (! m o u s e . i n i t (p s 2 _ b a s e) H
p r i n t f (" M o u s e i n i t i a l i z a t i o n f a i l e d . \ n ") ;
r e t u r n ;

}
xo ld ■ 320;
y o l d = 240;
v g a _ i n i t . m o u s e . p t r (v g a . b a s e , p s 2 _ b a s e , x o l d , y o l d , feM0USE.BMP, ¿ b e l o w) ;
/ * continue until a button is pressed */
w h i l e (! b t n _ i s _ p r e s s e d (b t n _ b a s e)) {

a c t » v g a _ m o v e _ m o u s e _ p t r (v g a . b a s e , p s 2 _ b a s e ,
x o l d , y o l d , ¿below , ftxnew , 4: y new , tM0USE.BMP, tmv) ;

i f (a c t = = l) {
i f (m v . l b t n)

p r i n t f (" \ n c u r r e n t mouse l o c a t i o n : 7.d "/,d" , xnew , ynew) ;
x o l d » xnew;
y o l d - ynew;

} //end if
} // end while
v g a _ w r _ b i t m a p (v g a . b a s e , x o l d , y o l d , ¿ b e l o w , 0) ;
p r i n t f (" \ n ") ;

This function keeps track of the mouse activities and displays its movements on the
screen. The mouse pointer bitmap is stored in a predefined MOUSE_BMP constant in
Section 18.6.3 and a static pixel array, bdata [20*12], is used to provide storage for
the below buffer. In addition, the function checks the button status and displays
the current mouse pointer coordinates on the console when the mouse's left button
is pressed.

18.8.5 Bit-mapped text routine

The bit-mapped text demonstration function illustrates the use of bit-mapped text
driver routines and is shown in Listing 18.17.

Listing 18.17
v o i d p l o t . t e x t (a l t _ u 3 2 v g a _ b a s e) {

i n t x , y;
char b u f f e r [5 0] ;
char m s g _ b o x [] » / / o 30—by—5 message

" · * · * * * * * * * * * * * · * * * · · * * * * * · * * * · \ η "
"* * \ n "
"* H e l l o World * \ n "
»« * \ n "

/ * display four single characters at four corners */
v g a _ w r _ b i t _ c h (v g a . b a s e , 0 , 0 , ' a ' , Oxff , 1) ;
v g a _ w r _ b i t _ c h (v g a . b a s e , DISP_GRF_X_MAX-8, 0 , ' b ' , OxeO, 1) ;
v g a _ w r _ b i t _ c h (v g a . b a s e , 0 , DISP_GRF_Y_MAX-16, ' c > , 0 x 1 c , 1) ;
v g a _ w r _ b i t _ c h (v g a . b a s e , DISP_GRF_X_MAX-8, DISP.GRF_Y.MAX-16,

' d ' , 0 x 0 3 , 1) ;
/ * display a single string in three zoom factors */
v g a . w r . b i t . s t r (v g a . b a s e , 3 4 » 8 , 3 * 1 6 , " H e l l o World", 0 x 1 c , 1) ;
v g a _ w r _ b i t _ s t r (v g a _ b a s e , 2 8 * 8 , 5 * 1 6 , "He l lo World", 0 x 1 c , 2) ;

www.it-ebooks.info

http://www.it-ebooks.info/

5 1 4 VGA CONTROLLER

vga_wr_bit_str(vga .base , 23*8, 8*16, "Hello World", Oxlc, 3) ;
/ * display a string with multiple lines (string with \n) */
vga_wr_bit_str(vga .base , 25*8, 16*16, msg.box, Oxlc, 1);
/ * get a formatted string by sprintf () */
vga_rd_xy(vga.base, &x, fty);
sprintf (buff er , "current p ixe l (x , y) : C/.3d, '/,3d) " , x, y) ;
vga_wr_bit_str(vga .base , 24*8, 24*16, buffer , 0x03, 1);

}

The routine writes a, b, c, and d in four corners and writes the Hello World string
in various formats. It also invokes the vga_rd_xy() function and shows the use of
s p r i n t () function by displaying the formatted scan counter values on screen.

18.9 BITMAP FILE PROCESSING

Although technically a bitmap image can be specified as an array in C, as the mouse
pointer demonstrated in Section 18.6.3, it is too cumbersome for practical purposes.
A better alternative is to draw the images in a graphic program, save them in a file,
and then retrieve the bitmaps as needed. In this section, we introduce a minimal
procedure to perform this task. The procedure is not comprehensive or efficient
but just helps us get started.

18.9.1 BMP format overview

There are many image file formats and some involve complex color translation and
data compression schemes, which are beyond the scope of this book. The BMP
format is widely use in Windows. It supports various color depths and can be
either compressed or uncompressed. We choose the 24-bit BMP file format since it
is simple and uncompressed. A typical BMP file contains four blocks:

• BMP file header, which stores general information.
• Bitmap information, which stores information about the bitmap image.
• Color palette, which stores color definition used for indexed color bitmaps.
• Bitmap data.

The fields of the first two blocks are summarized in Table 18.2. Each row shows
the address offset, the size (in terms of bytes), purpose, and the value used in a
24-bit color scheme.

The color palette block is an index table that converts color depths and its
purpose is similar to that of the palette lookup table in Section 18.4. It is not used
in 24-bit color BMP files.

Since there is no color palette block, the bitmap data starts at offset 0x36. The
pixels are arranged from left to right and from bottom to top. This implies that
the first pixel is from the bottom left corner of the bitmap. A pixel in a 24-bit color
scheme requires three bytes, representing the intensities of the red, green, and blue
colors, respectively. The pixel data of the same row are packed together and the
combined width must be a multiple of 32 bits (i.e., 4 bytes). Extra padding zeros
may be needed to satisfy this constraint. For example, assume that a bitmap's
width is 2 bits. A row requires 6 bytes in the 24-bit color scheme. At the end of
each row, two "padding" bytes must added (to make the total width of 8 bytes) to
satisfy the constraint.

www.it-ebooks.info

http://www.it-ebooks.info/

BITMAP FILE PROCESSING 5 1 5

Table 18.2 24-bit BMP file header and bitmap information

Offset Size Purpose Value

0x00 2 magic number used to identify the BMP file 'B' 'M'
0x02 4 size of file in bytes
0x06 4 reserved
0x0a 4 starting address of the bitmap data 54
OxOe 4 size of the bitmap information block 40
0x12 4 bitmap width in pixels (signed integer)
0x16 4 bitmap height in pixels (signed integer)
0x1 a 2 number of color planes used 1
0x1c 2 color depth (number of bits per pixel) 24
Oxle 4 compression method being used 0 (no compression)
0x22 4 bitmap data size
0x26 4 horizontal resolution of the image
0x2a 4 vertical resolution of the image
0x2e 4 number of colors in the color palette 0 (all used)
0x32 4 number of important colors used 0 (all important)

18.9.2 Generation of BMP file

There are many graphic programs that create and edit bitmap images in a 24-bit
BMP format. The Paint program distributed with Windows OS can be used to
perform this task. The basic procedure in Windows 7's Paint program is:

• Start the Paint program.
• Select the View tab page and turn on Rulers, Gridlines, and Status bar boxes.
• Drag the right bottom corner of the image to expand it to the desired size.
• Zoom in the image to show the individual pixels.
• Create a new image or copy an existing image and edit it.
• When completed, select the File menu and then Save As.... A subwindow

appears. Specify the file name and select 24-bit Bitmap (*.bmp,*dib) in the
Save as type: field.

A new file with an extension .bmp should be created. Because the file is uncom-
pressed, its size can be much larger than a normal image file. The Screenshot for
the mouse pointer image is shown in Figure 18.13.

18.9.3 Sprite-based design

One common way to construct a two-dimensional scene is to first load a back-
ground bitmap and then overlay it with bitmaps of smaller objects. The latter are
commonly known as sprites. Sprite-based designs are widely used in simple two-
dimensional video games. The images of various objects are first constructed and
grouped in a few "sprite sheets" and then used in the program. The sprite sheet
of a game entitled 1945 is shown in Figure 18.14. It is an airplane shooting game
and thus the sprites consists of various images of airplanes, ships, explosions, etc.
A sample game screen capture is shown in Figure 18.15.

www.it-ebooks.info

http://www.it-ebooks.info/

516 VGA CONTROLLER

Figure 18.13 Paint Screenshot.

An object sometimes can have multiple frames to describe the various phases
of action. We can create an animation effect by redrawing the frames or moving
the object at a proper rate. For example, nine frames of the Earth are shown in
Figure 18.16, each representing a specific view. If we load the frames in a sequential
order, one at a time, in a specific interval, the Earth appears to rotate at a constant
rate.

The sprite concept can be used in other applications. For example, we can create
a virtual instrument panel with different types of meters, displays, switches, knobs,
etc. The sprite can be used for these components as well as simple animation (such
as flashing LEDs and rotating knobs).

18.9.4 BMP file access

The DEI board does not have an inherent file system. However, there are several
ad hoc methods to extract and import the bitmap images:

1. C constant array
2. SD card
3. Flash-based read-only zip file
4. GDB host-based file system

The first method is to use a separate program that reads the BMP file, reformats
the pixel data as a C constant array, and writes to a text file. The content of
the text file looks like that of Listing 18.7. We can copy the text to a header file
and include it in a C program. This method avoids file access in the C program

www.it-ebooks.info

http://www.it-ebooks.info/

BITMAP FILE PROCESSING 5 1 7

Figure 18.14 Sample sprite page (Courtesy of Ari Feldman).

and works fine with small images. The second method uses the board's SD card
interface and reads the files from an SD card, which is discussed in Chapter 20.

The next two methods are integrated within the HAL framework. The third
method groups the relevant files and converts them into a single zip file. The zip
file is then downloaded to the board's flash memory and can be read by C's standard
file access function. The fourth method utilizes GDB (GNU project debugger) to
access the host computer's file system. This allows the Nios II system to use C's
standard I/O functions to manipulate files in the PC. However, this can only be
done in the debugging mode and thus is only feasible in the developing process.
Furthermore, the access is done via the board's JTAG link and is slow. Since the
file access in this section is only for demonstration purposes, we use the last method.

18.9.5 Host-based file system

When we create the BSP package of the comprehensive Nios II testing system in
Section 17.10.3, we enable and include the host-based file system in the Software
Packages tab page, as shown in Figure 17.11, and thus this feature can be used
with this BSP. Note that the page contains a Mount-point field, which specifies the
symbolic path name, and its default name, /mnt/host, is kept. While constructing
an application based on this BSP, we can access the files on a PC with normal C
file I/O functions. The mount point corresponds to the physical directory where

www.it-ebooks.info

http://www.it-ebooks.info/

518 VGA CONTROLLER

Figure 18.15 Game Screenshot.

t f^f^i^ ^
Figure 18.16 Bitmap of Earth.

www.it-ebooks.info

http://www.it-ebooks.info/

BITMAP FILE PROCESSING 5 1 9

the main program resides. For example, if a file named myfi le .dat resides on the
directory of the main program, it can be open by using

fp = f o p e n (" / m n t / h o s t / m y i i l e . d a t " , . . .) ;
In order to use the host-based file system, we must use the "debug mode" when

creating and downloading the software image. The procedure is:
1. Create an application project with a proper BSP.
2. Right-click the project and select Debug As and then Nios II Hardware.
3. After linking and downloading, Eclipse GUI switches to the Debug perspective.

The execution is paused in the first line of the main program. Select the Run
menu and then Resume to resume the normal execution.

18.9.6 Bitmap file retrieval routines

Basic file processing routines Although all C's standard file processing functions
are available, we just use the simple fge t cO function. This approach allows us
to access other types of medias without recreating the entire C library. A set of
routines based on fge t cO are created to skip and retrieve 8-, 16- or 32-bit data,
as shown in Listing 18.18.

Listing 18.18

void fskipCFILE »fp, i n t nbyte)
{

i n t i ;
for (i - 0 ; i < n b y t e ; i++)

f g e t c (f p) ;
}

a l t_u8 fget8(FILE *fp)
{

returnC (a l t u 8) f g e t c (f p)) ;
}

a l t _ u i 6 fge t l6 (FILE *fp)
{

a l t _ u l 6 bO, b l , r ;

bO = (a l t _ u l 6) f g e t c (f p) ;
b l - (a l t _ u l 6) f g e t c (f p) ;
r - (bl << 8) + bO;
r e t u r n (r) ;

}

alt_u32 fget32(FILE *fp)
{
alt_u32 bO, bl, b2, b3, r;

bO = (alt_u32) fgetc(fp);
bl= (alt_u32) fgetc(fp);
b2= (alt_u32) fgetc(fp);
b3» (alt_u32) fgetc(fp);
r - (b3<<24) + (b2<<16) + (bl<<8) + bO;
return(r);

}

The header and code of these functions are stored in files named chu_avalon_f i l e . h
and chu_avalon_file.c.

www.it-ebooks.info

http://www.it-ebooks.info/

520 VGA CONTROLLER

Bitmap retrieval function We can retrieve the bitmap image by using the previous
file access routines. The function reads the input file, verifies the file type, extracts
the pixel data, and stores the data to a buffer. The code is shown in Listing 18.19.

Listing 18.19
int read_bmp_file(char * f i l e .name, bmp.type *buf)
{

FILE *fp;
int color.bit, x, y, slack;
alt_u8 pixr, pixg, pixb , pix;

/* open the file */
fp = fopen(file.name,"rb");
if (fp==NULL){

printf ("Error: '/,s f a i l s to open. \n" , f i l e . n a m e) ;
r e t u r n (- l) ;

}
/ * check "magic number"; should be BM */
i f (f g e t c (f p) ! - * B ' II f g e t c (f p) ! - ' M ' H

printf ("Error: 5Cs i s not a .bmp f i l e . \ n " , f i l e . n a m e) ;
f c l o s e (f p) ;
r e t u r n (- 1) ;

}
f s k i p (f p , 1 6) ;
/ * get height and width */
buf->width - (i n t) f g e t 3 2 (f p) ;
buf->height » (i n t) f g e t 3 2 (f p) ;
f sk ip(fp , 2) ;
/ * check color depth; should be 24
c o l o r . b i t = (i n t) f g e t l 6 (f p) ;
i f (c o l o r . b i t !« 24H

f c l o s e (f p) ;
printf("Error: color depth is not 24. \n");
return(-2);

}
/ * 24—bit BMP file format confirmed */
printf ("File opened. Bitmap width: '/.d, he ight: '/.d\n" ,

buf->vidth , buf ->he ight) ;
f s k i p (f p , 2 4) ; / / offset 30
printf("Reading in progress: \ n ") ;
/ * loop through pixel data, starting with the bottom row */
for (y - b u f - > h e i g h t - l ; y >- 0; y — H / / offset 54

p r i n t f (" . ") ;
for (x=0; x< buf->width; x++) {

/* get 24—bit color */
pixb » (a l t_u8) f g e t c (f p) ;
pixg = (a l t_u8) f g e t c (f p) ;
pixr - (a l t_u8) f g e t c (f p) ;
/ * construct 8—bit color using MSBs */
pix - (pixr k OxeO) + ((p ixg k 0xe0)>>3) + ((pixb it OxcO)>>6);
buf->pdata[y*(buf->width)+x]»pix;

> //end for x
/* skip padding bytes , if exist */
slack - (buf->width * 3) */. 4;
if (s lack!=0)
fskip(fp,4-slack);

} //end for y
fclose(fp);
printf("\nFile loaded.\n");
return(0);

/ /

/ /
/ /
/ /

· / / /

offset

offs e t
offset
offset

offs e t

2

18
22
26

28

www.it-ebooks.info

http://www.it-ebooks.info/

BITMAP FILE PROCESSING 5 2 1

The first portion of the code goes through the fields of the BMP file header and
bitmap information. It extracts the height and width of the bitmap and checks the
"magic number," which should be BM, and the color depth, which should be 24, to
confirm that the file is in 24-bit BMP format.

The second part reads the pixel data and stores them to a buffer. The calling
routine should allocate the buffer space and pass the buffer's pointer. Since the
BMP file's pixel data format is different from that of the bmp.type data type,
several tasks must be performed during the retrieval process. First, the BMP file
arranges the pixels from the bottom row to the top row of the image but the
bmp.type data type stores its pixels from the top row to the bottom row (recall
that the y-axis of the VGA display increases downward). This can be compensated
for by decrementing the outer loop:

f o r (y = b u f - > h e i g h t - l ; y >= 0; y - -) {

>

Second, padding 0's of the BMP file must be removed. Recall that each row must be
a multiple of 32 bits (i.e., 4 bytes) and each pixel in a 24-bit color scheme requires
3 bytes. The following statements check the condition and skip padding bytes:

s l a c k = (b u f - > w i d t h * 3) */. 4 ;
i f (s l a c k ! = 0)

f s k l p (f p , 4 - s l a c k) ;

Finally, the color depth must be reduced from 24 bits to 8 bits. This is done by
extracting the first three MSBs of the red and green colors and the first two MSBs
of the blue color. The reduction may lead to loss of subtle detail and sudden shifts
of some colors.

Testing program We construct a simple program to test the bitmap retrieval func-
tion and demonstrate the concept of sprite and animation. The bitmap of nine
frames of the Earth is shown in Figure 18.16. The size of each frame is 100 pixels
by 100 pixels and the size of the overall bitmap is 900 pixels by 100 pixels. The
name of the file is earth.bmp and it is stored in the same directory of the main
program. The code is shown in Listing 18.20.

Listing 18.20
«define BMP_FILE_NAME "/mnt/host/earth9.bmp"
»define NF 9
«define NW 100
«define NH 100

int main(void)
{

alt_u8 iarray[NF«NH«NU]; / / pixel data array for file buffer
alt_u8 farray[NF][NH*NW]; / / pixel data array for frames
bmp.type img-{NF*NW, NH, iarray} ;
bmp.type frame[NF];
int SH, s t a t u s ;
int f, x, y;

printfCBMP f i l e r e t r i e v a l t e s t . \ n \ n ") ;

/ / path and file name
// # of frames
// width of a frame
// height of a frame

www.it-ebooks.info

http://www.it-ebooks.info/

522 VGA CONTROLLER

vga_clr_screen(VRAM_BASE, 0x08);
s ta tus » read_bmp_file(BMP_FILE_NAME, t img);
i f (s ta tus ! - 0 H
printfCBMP file fails to load. Exit program. \n");
exit(l);

}
/ * split bitmaps to 9 frames */
for (f - 0 ; f<NF; f++H

frame[f] .he ight - NH;
frame[f] .width - NW;
frame[f] .pdata = f a r r a y [f] ;
for (y -0 ; y<NH; y++) {

for (x -0; x<NW; x++) {
frame[f].pdata[y»NW+x]-img.pdata[y*NW*NF+f*NW+x];

} / / end x loop
} / / end y loop

y //end f loop

/* display individual frames in two rows */
for (f - 0 ; f<5; f++)

vga_er_bitmap(VRAM_BASE, 30+f*(20+NW), 10, kirame[f], 1);
for (f - 5 ; f<9; f++)

vga_wr_bitmap(VRAM_BASE, 80+(f-S)*(20+NW), 120, t f r a m e [f] , 1);

/ * animation of rotating earth */
v h i l e U H

for (f - 0 ; f<NF; f++H
sw - pio_read(SWITCH_BASE); ;

i f (su!=0){ / / freeze if sw=0
usleep (1000000/sw); / / sw frames per second
vga_vr_bitmap(VRAM_BASE, 270, 250, itf rame [f] , 1) ;

} / / end if
} / / end for

} // end while
y

The function retrieves the bitmap from the file, splits it into nine frames (which are
smaller bitmaps), and displays these frames on the VGA monitor. The display is
divided into two parts. The top part shows the nine frames statically in two rows.
The bottom part loads the frames dynamically at a fixed interval and the Earth
appears animated and rotating toward the east. The interval is -^¡ second, where
sw is the value obtained from the switches. It corresponds to a rate of sw frames
per second. Since the frames are loaded at the same locations, the underlying
region can be overwritten. If the frames are loaded to different locations (such as
a running dog), we can use vga_move_bitmap() to replace vga_wr_bitmap() and
achieve animated movement.

18.10 BIBLIOGRAPHIC NOTES

The VGA standard is quite old. Its original specification can be found on the
Wikipedia website (by searching the keyword "VGA"). Altera University Program
IP cores consist of an alternative video system design, which utilizes a frame buffer
and Avalon's stream interface. The author's other book, FPGA Prototyping by
Verilog Examples, contains examples for the tile-mapped and objected-mapped
schemes.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 523

A wide variety of references are available in the areas of computer graphics and
games. These books are either based on an existing API (such as OpenGL or
DirectX) or primitive routines. PundamentaL· of Computer Graphics, 2nd ed. by
P. Shirley and S. Marschner provides a comprehensive coverage of general computer
graphics and Designing Arcade Computer Game Graphics by Ari Feldman discusses
the development of a two-dimensional video game. The latter is out of print but
an electronic version (along with sprite sheets) is available on line. The BMP file
format has many options. More detailed descriptions can be found on the Wikipedia
web site (searching by the keyword "bmp").

18.11 SUGGESTED EXPERIMENTS

18.11.1 PLL-based VGA controller

Our VGA controller must use a 50-MHz system clock. A more flexible alternative
is to construct a subsystem based on the native 25-MHz video subsystem and use a
PLL circuit to obtain the 25-MHz clock signal from the system clock. Reconstruct
the VGA controller using this approach and verify its operation.

18.11.2 VGA controller with 16-bit memory configuration

The SRAM device in our VGA implementation is configured as a 512K-by-8 mem-
ory. Alternatively, we can use its native 256K-by-16 configuration and access and
manipulate two pixel data at the time. Reconstruct the VGA controller using this
approach and verify its operation. Compare the performance of the two approaches.

18.11.3 VGA controller with 3-bit color depth

Three-bit color displays the eight primary colors shown in Table 18.1. To simplify
the design process, it can be aligned to a 4-bit boundary. The SRAM device can be
configured as a 256K-by-16 memory and stores four pixels per word. Reconstruct
the VGA controller using this approach and modify the driver routines and test
program to verify its operation.

18.11.4 VGA controller with 1-bit color depth

Repeat experiment 18.11.3 for 1-bit color.

18.11.5 VGA controller with double buffering

For the 3-bit color scheme discussed in experiment 18.11.3, the 512-KB SRAM is
large enough to accommodate two VGA screens. Implement the double buffering
scheme discussed in Section 18.3.1 and verify its operation.

18.11.6 VGA controller with 320-by-240 resolution

Our VGA controller has 640-by-480 resolution and 8-bit color depth. The imple-
mentation can be modified to support a configuration with 320-by-240 resolution

www.it-ebooks.info

http://www.it-ebooks.info/

524 VGA CONTROLLER

and 12-bit color depth. Reconstruct the VGA controller for this configuration and
modify the driver routines and testing program to verify its operation.

18.11.7 VGA controller with vertical mode operation

Some applications are better suited to a "vertical" screen. This can be done by
turning the VGA monitor 90 degrees and treating it as a 480-by-640 display. Modify
the driver routines and testing program to verify its operation.

18.11.8 Geometrical model functions

In Section 18.6.2, only one simple line plotting function is provided. Many addi-
tional geometrical model routines can be added:

• Function to plot a line by using the Bresenham algorithm.
• Function to draw a square or rectangle.
• Function to draw a polygon.
• Function to draw a circle or oval.
• Function to fill a closed shape with a specific color.

Derive these functions.

18.11.9 Bitmap manipulation functions

The basic bitmap processing functions are provided in Section 18.6.3. Several ad-
ditional routines will be useful:

• Function to scale (i.e., enlarge or reduce) a bitmap.
• Function to obtain a horizontal or vertical mirror image.
• Function to rotate a bitmap to a specific degree.

Derive these functions.

18.11.10 Simulated "Etch A Sketch" toy

We can implement a simulated "Etch A Sketch" toy with a mouse and VGA mon-
itor. It functions as follows:

• The mouse pointer can be moved to the desired location.
• Whenever the left button is pressed, the system records the mouse movement

and shows the trace on the monitor.
• When the right button is pressed, the system erases the screen.

Derive the code and verify its operation.

18.11.11 Palette lookup table circuit

The BMP file format has an option for 8-bit color depth. In this depth, a palette
indexing table is included in the file. One way to handle this is to implement
a lookup table in the palette circuit, as discussed in Section 18.4, and load the
palette information from the BMP file. Modify the VGA controller and the bitmap
retrieval function to include this feature and verify its operation.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED PROJECTS 525

18.11.12 Virtual LED flashing system panel

For the flashing system discussed in Part II, we can use a virtual graphic panel
that mirrors the condition of the FPGA board. The panel should consist of ten
slide switches, one pushbutton switch, two discrete LEDs, and four seven-segment
LED displays. The positions of the switches and the states of LEDs should be the
same as those on the board. Design the graphic panel and integrate the codes to
the previous LED flashing routines.

18.11.13 Virtual analog wall clock

We wish to implement an analog wall clock on the VGA monitor. The clock should
have rotating hour, minute, and second hands. Derive the code and verify its
operation.

18.12 SUGGESTED PROJECTS

18.12.1 Configurable VGA controller

To increase flexibility, we can make the VGA controller configurable. The new
design should support the following features:

• Selection of resolutions of 640-by-480 and 320-by-240.
• Selection of color depths of 1 bit, 3 bits, 8 bits, and 12 bits (320-by-240 only).
• Selection of horizontal or vertical mode.
• Double buffering when feasible.

Design the hardware and software driver and verify the operation.

18.12.2 VGA controller using system SDRAM

Our VGA controller utilizes a dedicated SRAM device as the video memory. An
alternative is to allocate part of the system's SDRAM as the frame buffer and let the
VGA controller obtain the pixel data from the SDRAM device. We can use two line
buffers, each storing pixel data of a single row, in the video controller, and perform
the double buffering scheme on a row-by-row basis. This scheme imposes a tight
timing constraint and special hardware, such as a DMA controller and a stream
interface, may be needed to facilitate the data transfer between the SDRAM device
and the video controller. Design the new video controller and verify its operation.

18.12.3 Paint program

We can design a graphic editing program similar to Windows's Paint. It should
include the following features:

• Selection of an array of colors.
• Selection of line thickness.
• Drawing of line segment.
• Drawing of rectangle.
• Drawing of polygon.
• Drawing of circle and oval.

www.it-ebooks.info

http://www.it-ebooks.info/

526 VGA CONTROLLER

• Filling of a closed object with a specific color.
• Erasing.

Derive the code and verify its operation.

18.12.4 Video game

With the VGA and PS2 controllers, a variety of video games can be constructed.
The reference in the bibliographic section serves as a good starting point for this
project.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 2 7

18.13 COMPLETE PROGRAM LISTING

Lis t ing 18 .21 chu.avalon.vgaJont- table .h

/ i *
*
* Module: Font bitmaps
* File: chu-avalon.vga.font-table.h
* Purpose: 16—by—8 128 character font bitmaps
*
***/
/ * 16— row— by—8—column 128—char 1— bit —color font table * /
c o n s t a l t _ u 8 F 0 N T [] - {
/ / 0x00
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0x00 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0x00 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0x00 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /
/ / 0x01
0 x 0 0 , / /
0 x 0 0 , / /
0x7E , / / ******
0x81> / / * *
0xA5, / / * * * *
0 x 8 1 , / / * *
0 x 8 1 , / / * *
OxBD, / / * **** *
0x99 , / / * ** *
0 x 8 1 , / / * *
0x81> / / * *
0x7E , / / ******
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /
0 x 0 0 , / /
/ / 0x02
0 x 0 0 , / /
0 x 0 0 , / /
0x7E , / / ******
OxFF, / / ********
OxDB, / / * * * * * *
OxFF, / / ********
OxFF, / / ********
0 x C 3 , / / ** **
0 x E 7 , / / *** ***
OxFF, / / ********
OxFF, / / ********
0x7E, / / ******
0 x 0 0 , / /

www.it-ebooks.info

http://www.it-ebooks.info/

528 VGA CONTROLLER

0x00, //
0x00, //
0x00, //

// 0z7e
0x00 , //
0x00 , //
0x76, // *** **
OxDC, // ** ***
0x00, //
0x00 , //
0x00 , //
0x00 , //
0x00 , //
0x00 , //
0x00 , //
0x00 , //
0x00, //
0x00 , //
0x00, //
0x00, //
// 0x7/
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
Oxff, // ********
};

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 2 9

Listing 18.22 chu.avalon.vga.h
/***
*
* Module: VGA video driver header
* File: chu.avalon.vga.h
* Purpose: Routines to access video SRAM and display bit-mapped graphics
* and text
*

* Register map

* Read (data to cpu):
* offset 0x00000 to Oxlffff
* * bit 7-0: 8-bit color
* offset 0x80000
* * bit 9-0: VGA scan 's current x (horizontal) position
* * bit 19-10: VGA scan 's current y (vertical) position
* Write (data from cpu):
* offset 0x00000 to OxTffff
* * bit 7-0: 8-bit color
***/
/* file inclusion */
»inc lude < a l t _ t y p e s . h >

/***
* Data type definitions
***/
/* data type for a bitmap */
typedef s t r u c t tag.bmp
{

i n t width;
in t h e i g h t ;
a l t_u8 »pda ta ; / / pointer to pixel array

} bmp.type;

/***
* constant definitions
***/
»def ine DISP_GRF_X_MAX 640 / / 6J,0 columns (0 to 639)
»def ine DISP_GRF_Y_MAX 480 / / 480 rows (0 to 479)

www.it-ebooks.info

http://www.it-ebooks.info/

530 VGA CONTROLLER

* Function prototypes
««««««·««»*««««»«·«««·»«*«««·*<·«« · (««**««*·> · ·* · ·**«*«>»«*»«»»««**«**· /
/ * Video memory access */
alt_u32 vga .ca lc . sram.addr(in t x, int y) ;
alt_u8 vga_rd_pix(alt_u32 vga .base , int x, int y) ;
void vga_rd_xy(alt_u32 vga .base , int *x, int »y) ;
void vga_ur_pix(alt_u32 vga .base , int x, int y, alt_u8 c o l o r) ;
/ * Plotting and clear */
void vga_p lo t_ l ine (a l t_u32 vga .base , int x l , int y l ,

int x2 , int y2 , alt_u8 c o l o r) ;
void vga_clr_screen(al t_u32 vga .base , alt_u8 c o l o r) ;
/ * Bitmap processing */
void vga_wr_bitmap(alt_u32 vga .base , int x, int y,

bmp.type *bmp, int t ran) ;
void vga.rd.bitmap(alt_u32 vga .base , int x, int y, bmp.type *bmp);
void vga_move_bitmap(alt_u32 vga .base ,

int xo ld , int yold , bmp.type «below,
int xnev, int ynew, bmp.type *bmp);

/ * Bit—mapped text */
void vga_wr_bit_ch(alt_u32 vga .base , int x, int y,

char ch, int co lor , int zoom);
void v g a . w r . b i t . s t r (a l t _ u 3 2 vga .base , int x, int y,

char * s , int co lor , int zoom);

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 3 1

Listing 18.23 chu-avalon_vga.c

*
* Module: VGA video driver function prototypes
* File: chu.avalon.vga. c
* Purpose: Routines to access video SRAM and display bit—mapped graphics
* and text
*

/* file inclusion */
«include <stdlib.h> // to use abs()
»include <io.h>
«include "chu.avalon.vga.h"
«include "chu_avalon_vga_font.table.h"

/**»»****»»»»***»,»,**»*»***,*,******»*********,,***»*»*»**»**»,*»*»**»»
* function : vga.calc.sram-addr ()
* purpose: calculate the video SRAM address offset for location (x, y)
* argument:
* x: x—axis coordinate , 10 LSBs used
* y: y—axis coordinate , 9 LSBs used
* return:
* address
* note:
* — for a Nios II configuration without hardware multiplier , use shift:
* offset= 640*y + x = 512*y + 128*y + x = y«9 + y«7 +x
,*„*»»***,»»*„»***»********»********»*»»»,**,»«**„»**,»**,»*»»,»/
al t_u32 vga_ca lc_s ram_addr (in t x , i n t y)
{

a l t_u32 addr;

addr - (a l t _u32) (DISP_GRF_X_MAX*y + x) ;
r e t u r n addr;

}

* function: vga.rd-pix()
* purpose: read a pixel from location (x,y)
* argument:
* vga-base: base address of video SRAM
* x: x-axis coordinate, 10 LSBs used
* y: y—axis coordinate , 9 LSBs used
* return:
* 8-bit color at (x,y)
* note :

alt_u8 vga_rd_pix(alt_u32 vga.base, int x, int y)
{
alt_u32 offset;
alt_u8 color;

o f f s e t - vga_ca l c_s ram_addr (x ,y) ; / / form address offset
color » (a l t _ u 8) I0RD(vga.base, o f f s e t) ; / / read video memory
r e t u r n c o l o r ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

532 VGA CONTROLLER

function: vga.rd-xy ()
purpose: get current scan coordinate (x,y)
argument:

vga-base: base address of video SRAM
x: pointer to current value of VGA sync horizontal counter
y: pointer to current value of VGA sync vertical counter

return :
updated x, y

note :

void vga_rd_xy (alt_u32 vga_base , int *x, int *y)
{

alt_u32 data;
const alt_u32 XY_ADDR=0x00080000;

data - IORD(vga_base, XY_ADDR); / / read video SRAM
*x ■ 0x000003ff & data; / / 10 LSBs for horizontal counter
*y ■ 0x000003ff k (data >> 10); / / next 10 LSBs for vertical counter
return;

}

: function: vga.wr-pix ()
purpose: write a pixel to location (x,y)

■ argument:
vga-base: base address of video SRAM
x: x—axis coordinate , 10 LSBs used

< y: y—axis coordinate , 9 LSBs used
<■ color : 8—bit color
« return :

void vga_wr_pix(alt_u32 vga.base , int x, int y, alt_u8 color)
{

alt_u32 o f f s e t ;

o f f s e t = vga_calc_sram_addr(x , y) ; / / form address offset
IQWR(vga_base, o f f s e t , c o l o r) ; / / write video SRAM
return;

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 3 3

A«****»***»****,**************,»**,* ,*»**,»,»*******»***»**»***»*»*»**»
* function: vga.plot.line ()
* purpose: draw a line from (xl,yl) to (x2,y2)
* argument:
* vga.base: base address of video SHAM
* xl, yl: starting point
* x2, y2: end point
* color: 8—bit color
* return:
* note:
* - plot increments via x—axis for "horizontal" line
* and via y—axis for "vertical line" (steep line)
* - not optimized (need floating-point multiplication for each point)

void vga_plo t_ l ine (a l t_u32 vga .base , int x l , int y l , int x2, int y2 ,
alt_u8 co lor)

{
int horiz, step, x, y;
float slope;

i f ((y l= -y2) fcfe (x i - - x 2)) { / / special case of xl=x2 and yl=y2
vga_wr_pix(vga.base, x l , y l , c o l o r) ;
return;

}
horiz - (a b s (x 2 - x l) > a b s (y 2 - y l)) ? 1 : 0;
if (h o r i z H / / line is more horizontal and x2!=xl

s l o p e = (f l o a t) (y 2 - y l) / (f l o a t) (x 2 - x l) ;
step - ((x 2 - x l) > l) ? 1 : - 1 ;
f or (x"x l ;x ! -x2 ;x=x+s tep) {

y - s l o p e * (x - x l) + y l ;
vga_wr_pix(vga.base, x, y, c o l o r) ;

} / / end for
} e l s e { / / line is more vertical

s l o p e - (f l o a t) (x 2 - x l) / (f l o a t) (y 2 - y l) ;
step - ((y 2 - y l) > l) ? 1 : - 1 ;
f o r (y - y l ; y ! » y 2 ; y - y + s t e p) {

x » s l o p e * (y - y l) + x l ;
vga_wr_pix(vga.base, x, y, c o l o r) ;

} / / end for
}

return;
}

* function: vga.clr.screen ()
* purpose: clear the screen to a background color
* argument:
* vga-base: base address of video SRAM
* color: background color
* return:
,*«»»»»**»*»*»***,**„„»**»***********,******»,**»***»**»»»**»******»*/
void vga_clr_screen(alt_u32 vga.base, alt_u8 color)
{

int x, y;

for(x«0; x<DISP_GRF_X_MAX; x++)
for(y-0; y<DISP_GRF_Y_MAX; y++)

vga_wr_pix(vga_base, x, y, c o l o r) ; / / write black
y

www.it-ebooks.info

http://www.it-ebooks.info/

534 VGA CONTROLLER

/***
* function: vga.wr.bitmap ()
* purpose: write a bitmap to video SRAM starting at (x,y)
* argument:
* vga.base: base address of video SRAM
* x: x—axis coordinate , 10 LSBs used
* y: y—axis coordinate , 9 LSBs used
* bmp: pointer to the bitmap structure
* tran: whether to draw transparent background
* 0: draw black pixels in the background bitmap
* 1: not draw black pixels in the background bitmap
* return:
* note:
***/
void vga_wr_bitmap(alt_u32 vga.base, int x, int y, bmp.type »bmp,

int tran)
{

i n t i , j ;
a l t_u8 c o l o r ;

f o r (j = 0 ; j<bmp->he igh t ; j++){
f o r (i - 0 ; i < b m p - > w i d t h ; i + +) {

co lo r - bmp->pdata[(j*bmp->width) + i] ;
if (t r a n ~ 0 II co lo r !=0)

vga_wr_pix(vga .base , i+x , j+y , c o l o r) ;
} / / end for loop i

} / / end for loop j
}

/***
* function: vga~rd-bitmap ()
* purpose: read a bitmap from video SRAM starting at (x,y)
* argument:
* vga.base: base address of video SRAM
* x: x—axis coordinate , 10 LSBs used
* y: y—axis coordinate , 9 LSBs used
* bmp: pointer to the returned bitmap structure
* return: updated bmp structure
* note: the calling function must allocate memory for the retrieved
* "bmp" bitmap structure
***/
void vga_rd_bi tmap(a l t_u32 v g a . b a s e , i n t x, i n t y , bmp.type *bmp)
{

int i.j;
alt_u8 color;

for(j=0;j<bmp->height;j++){
for(i»0;i<bmp->width;i++){

color = vga.rd.pix(vga.base, i+x, j+y);
bmp->pdata[(j*bmp->width) + i] ■ color;

} // end for loop i
} // end for loop j

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING

/**
* function: vga.move.bitmap ()
* purpose: move on overlay bitmap from (xold , y old) to (xnew, ynew)
* argument:
* vga.base: base address of video SRAM
* xold: current x—axis coordinate, 10 LSBs used
* yold: current y—axis coordinate , 9 LSBs used
* below: pointer to the buffer that stores the pixels below bmp
* xnew: new x—axis coordinate , 10 LSBs used
* ynew: ηβω y—axis coordinate , 9 LSBs used
* bmp: pointer to bitmap
* return:
* underlying pixels at (xnew,ynew) are stored into bellow buffer
* note:
* — underlying pixels at (xold , yold) were stored in below buffer
* before the function is called
* — the calling functioning must allocate memory for below buffer

void vga .move .b i tmap(a l t_u32 v g a . b a s e ,

i n t xold , i n t yold , bmp_type »below ,
i n t xnew, i n t ynew, bmp.type *bmp)

{
/* restore the hidden pixels at (xold, yold) * /
vga_wr_bitmap(vga_base, xo ld , yo ld , below, 0) ;
/* read the hidden pixels at (xnew, ynew) * /
vga_rd_bi tmap(vga_base , xnew, ynew, below);
/ * write the top bitmap at (xnew, ynew) */
vga_wr_bi tmap(vga.base , xnew, ynew, bmp, 1) ;

COMPLETE PROGRAM LISTING 5 3 3

www.it-ebooks.info

http://www.it-ebooks.info/

536 VGA CONTROLLER

/**********»*******»*****„»„**,*»»„**»**„*********************,*****
* function: vga.wr.bit-ch ()
* purpose: write a char to video SRAM at (x,y); use 0x7f to erase
* argument:
* vga.base: base address of video SRAM
* x: x-axis coordinate , 9 LSBs used
* y: y—axis coordinate , 8 LSBs used
* cA: ascii character (only 7 LSBs used)
* color: character color
* zoom: zoom factor (usually 1 to 3)
* return :
* note:
* - the font is 8 pixels wide and 16 pixels tall
* — zoom only magnifies 1—by—l pixel to 2—by—2 or 3—by—3 pixels and
* char shows jagged edge
* - 0x7/ fills tile with solid color and
* can be used to erase a char by using background color
» » » » * ♦ * * , * * « * * * , * , » * * » * * * , » » * * * , * , * , * * * * * * * , * » » * , * /
void vga_wr_bit_ch(alt_u32 vga.base , int x, int y, char ch, int co lor ,

{
int zoom)

int i , j , ch_line_addr , b i t ;
alt_u8 row;

f o r (j - 0 ; j<16*zoom; j++H
/ * get a row from font table * /
ch_line_addr ■ 16*ch + j/zoom; / / cAar base address + offset
row - FONT [ch_line_addr] ;
/ * process bit */
for(i=0; i<8*zoom;i++){

b i t = row & (0x80 >> (i / zoom)) ;
if (b i t ! - 0)

vga_ur_pix(vga.base, x+ i , y+ j , c o l o r) ;
} / / end for loop i

} // end for loop j

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 3 7

A»*******»,*»*,***»*****»*»»*****»»**»******»,*»*,**,*»**»*************
* function: vga.wr-bit-string ()
* purpose: write a string to video SRAM at (x,y);
* argument:
* vga.base: base address of video SRAM
* x: x—axis coordinate , 9 LSBs used
* y: y—axis coordinate , 8 LSBs used
* s: pointer to the string
* color: character color
* zoom: zoom factor (usually 1 to 3)
* return:
* note:

void vga_wr_bit_str(alt_u32 vga.base, int x, int y, char *s,
int color , int zoom)

{
int ex, cy; // current x, y

ex = x;
cy - y;
while (*s) {

if (*s-='\n') { // new line
ex = x;
cy " cy + 16*zoom;
s++;

}
else {

vga_wr_bit_ch(vga.base, ex, cy, *s, color, zoom);
s++;
ex = ex + 8*zoom;

} // end else
} // end while

}

www.it-ebooks.info

http://www.it-ebooks.info/

538 VGA CONTROLLER

Listing 18.24 chujnain.vga-test.c

*
* Module: VGA graphic test
* File: chu.main-vga.test. c
* Purpose: Test VGA graphic driver routines
* IP core base addresses:
* - SWITCH-BASE: slide switch
* - BTNJASE: pushbutton
* - LEDJBASE: discrete LEDs
* - SSEGJASE: 7-segment LED
* - PS2.BASE: PS2 controller
* - VRAM-BASE: video SRAM

/ * file inclusion */
«include <stdio.h>
«include <s td l ib .h> / / use
«include <math.h> / / use
«include <unistd.h>
«include <io.h>
«include "system.h"
«include "chu_avalon_gpio.h"
«include "chu_avalon_ps2.h"
«include "chu_avalon_vga.h"

rand ()
exp () , sin () , cos () ,

/* constant
/* 12—row—by
alt_u8 MOUSE

{
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
};

definition */
-20-column 8— bit — color mouse pointer bitmap array */
_DATA[]-

0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x6d,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,

, 0x00,
, Oxff ,
, Oxff,
, Oxff,
, Oxff ,
, Oxff ,
, Oxf f ,
, Oxff,
, Oxff ,
, Oxff ,
, Oxff ,
, Oxff ,
, Oxff ,
, Oxf f ,
, Oxff,
, Oxff ,
, 0x00,
, 0x00,
, 0x00.
, 0x00,

0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x00,
0x00,
0x00,
0x00,
0x00,

0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,

0x00
0x00
0x00
0x00
0x00
0x6d
0x92
0x92
0x92
0x92
0x92
0x92
0x92
0x6d
0x6d
0x00
0x00
0x00
0x00
0x00

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x6d,
0x92,
0x92,
0x92,
0x6d,
0x6d,
0x00,
0x00,
0x00,

0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x6d
0x92
0x92
0x92
0x6d
0x6d
0x92
0x92
0x92
0x92
0x6d
0x6d
0x00

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x6d,
0x00,
0x6d,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x6d,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x6d,
0x00,
0x00,
0x00,
0x6d,
0x6d,
0x92,
0x92,
0x6d,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x6d,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x6d,
0x00,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

/ * 12—row—by—20-column 8— bit — color mouse pointer bitmap data structure */
bmp.type M0USE_BMP«{

12, / / width
20, / / height
MOUSE.DATA / / bitmap array

} ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 3 9

* / u n c t i o n : vga.init-mouse.ptr ()
* purpose: initialize the mouse pointer by writing pointer bitmap
* at (x,y) and saving the underlying pixels in below buffer
* argument:
* vga.base: base address of video SHAM
* ps2~base: base address of PS2 device
* x: x—axis coordinate , 10 LSBs used
* y: y—axis coordinate , 9 LSBs used
* mouse: pointer to mouse pointer bitmap
* below: pointer to the buffer storing pixels below mouse pointer
* return:
* underlying pixels at (x,y) are stored into bellow buffer
* note:
* — the calling function must allocate memory for below buffer

void vga_ in i t_mouse_p t r (a l t _u32 v g a . b a s e , a l t_u32 ps2_base ,
i n t x , i n t y , bmp.type »mouse, bmp.type »below)

{
/ * read hidden pixels */
vga_rd_bitmap(vga.base, x, y, below);
/ * draw initial pointer */
vga_wr_bi tmap(vga.base , x , y , mouse, 1) ;

www.it-ebooks.info

http://www.it-ebooks.info/

540 VGA CONTROLLER

/ t *

* function : vga-move-mouse.ptr ()
* purpose: move mouse pointer on VGA according to mouse movement
* argument:
* vga.base: base address of video SBAM
* psS.base: base address of PS2 device
* xold: current x—axis coordinate , 10 LSBs used
* yold: current y—axis coordinate , 9 LSBs used
* below: pointer to the buffer storing pixels below mouse pointer
* xnew: pointer to new x—axis coordinate , 10 LSBs used
* ynew: pointer to new y—axis coordinate , 9 LSBs used
* mouse: pointer to mouse pointer bitmap
* mv: pointer to mouse activity data
* return:
* — 1 if mouse has activities ; 0 otherwise
* — updated new mouse pointer coordinates (xnew, ynew)
* — updated mouse activity data
* — underlying pixels at (xnew,ynew) are stored into below buffer
* note:
* — the calling function must allocate memory for below buffer
************** * * * * * * * * * * * * * * t * * * * * * * * * * ^ * /
int vga_move_mouse_ptr(alt_u32 vga_base, alt_u32 ps2_base,

int xo ld , int yold , bmp_type »below, int «xnew, int »ynew,
bmp type »mouse, mouse mv_type *mv)

{
i f (mouse_get_act ivity(ps2_base , mv)«»0) / / no movement

re turn(0) ;
/ * calculate neti) mouse pointer position */
»xnew » xold + mv->xmov;
i f (»xnew > (639 - mouse->width))

»xnew = 639- mouse->width;
i f (*xnew<0)

*xnew-0;
»ynew = yold - mv->ymov; / / VGA y—axis goes downward
if (*ynew>(479 - mouse->height))

•ynew = 479 - mouse->height;
if (*ynew<0)

»ynew-0;
/ * draw the updated mouse pointer, restore below area * /
vga_move_bitmap(vga.base, xold , yo ld , below, »xnew, »ynew, mouse);
r e t u r n (l) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 4 1

* function: plot-color.chart()
* purpose: show all 2'8 colors in a chart
* argument:
* vga-base: base address of video SRAM
* return:
* note:
* — main area includes 4 regions
* — each region has 2"3—by — 2~3 squares for red/green
* — blue is 0, 1, 2, 3 in each region
t » t t t « » * * * t » t » í * t » t t * * * * * t » t * t * t * * * t t * » * * « * * * * * t » * t « t » * * * t » * * * * t * * » * * t * /
void p lo t_co lor_chart (a l t_u32 vga.base)
{

int x, y;
alt_u8 i ;
alt_u8 c o l o r . r , c o l o r . g , c o l o r . b , co lor . rgb;

for(x=0; x<DISP_GRF_X_MAX; x++M
f o r (y - 0 ; y<DISP_GRF_Y_MAX; y++){

if (x<240) {
/* x < 24O */
c o l o r . r = (a l t _ u 8) (x / 3 0) ;
i f (y<240){ / / region 0

co lor .g = (a l t _ u 8) (y / 3 0) ;
co lor .b ■ 0x00;

} e l s e {
co lor .g - (a l t _ u 8) ((y - 2 4 0) / 3 0) ;
co lor .b » 0x02;

}
} e l s e i f (x<480) {

/ * 24O <= x < 48O */
c o l o r . r » (a l t _ u 8) ((x - 2 4 0) / 3 0) ;
i f (y<240H / / region 2

co lor .g = (a l t _ u 8) (y / 3 0) ;
co lor .b » 0x01;

} e l s e { / / region 2
co lor .g = (a l t _ u 8) ((y - 2 4 0) / 3 0) ;
co lor .b = 0x03;

}
} e l s e {

/* 480 <= x < 640 */
/* 3—bit color test strips */
i = (x - 480)/20;
if (i t 0x04)
color.r - 0x07;

else
color.r » 0x00;

if (i k 0x02)
color.g = 0x07;

else
color.g » 0x00;

if (i & 0x01)
color.b » 0x03;

else
color.b = 0x00;

} // end outer if
color.rgb » (color_r<<5) + (color_g<<2) + color.b;
vga_wr_pix(vga_base, x, y, color.rgb);
} // end y loop

y // end x loop
y

www.it-ebooks.info

http://www.it-ebooks.info/

542 VGA CONTROLLER

* function: plot.random.pix()
* purpose: plot 30k pixels randomly
* argument:
* vga.base: base address of video SRAM
* return:
* note:
*,********»****,»**«,»**»*****************,**********»*****************/
void plot .random.pix(a l t_u32 vga.base)
{

int i , x, y;
alt_u8 co lor;

f o r (i - 0 ; K30000; i + + H
x-rand()y.DISP_GRF_X_MAX;
y=rand (HDISP.GRF.Y.MAX ;
color-rand ()'/.256;
v g a _ u r _ p i x (v g a . b a s e , x , y , c o l o r) ;

}
}

y**************,**,***,************************,************,,, *********
* function: plot.random.line ()
* purpose: plot 30 random line segments from center
* argument:
* vga.base: base address of video SRAM
* return:
* note:
************»**,„«******,***/
void plot_random_line(alt_u32 vga.base)
{

int i , x, y;
alt_u8 color;

/ * test for a white dot */
v g a _ p l o t _ l i n e (v g a . b a s e , 1 0 , 1 0 , 1 0 , 1 0 , O x f f) ;
/ * a blue vertical line */
vga.plot . l ine(vga.base,600,0,600,DISP.GRF_Y.MAX-1,0x03);
/ * a green horizontal line */
vga.plot . l ine(vga.base ,0 ,400,DISP.GRF.X.MAX-1,400,0xlc) ;
/ * 30 random lines from center */
f o r (i - 0 ; i < 3 0 ; i + +) {

x-rand()%DISP_GRF_X_MAX;
y-rand()%DISP_GRF_Y_MAX;
color-rand()„256;
vga.plot.l ine(vga.base,DISP.GRF.X.MAX/2,DISP.GRF.Y.MAX/2,x,y,color);

} / / end for

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 4 3

/***
* function: plot.function ()
* purpose: plot several functions in the first quadrant
* argument:
* vga.base: base address of video SRAM
* return:
* note:
***/
v o i d p l o t _ f u n c t i o n (a l t _ u 3 2 v g a . b a s e H

c o n s t f l o a t XMAX=10.0; / / max range of x—axis
c o n s t f l o a t YMAX-10.0; / / max range of y—axis
f l o a t x , y , s t e p ;
i n t i , j ;

s t e p - XMAX / (f loat)(DISP_GRF_X_MAX);
/ * red line with small slope y=0.1*x */
x - 0 . 0 ;
for (i= l ; i<DISP_GRF_X_MAX;i++){

x = x + step;
y ■ 0 . 1 * x;
i f (y < ΥΜΛΧΜ / / plot if only y is in range

j = DISP.GRF_Y.MAX-(y/YMAX)*DISP_GRF_Y_HAX;
v g a _ w r _ p i x (v g a _ b a s e , i , j , OxeO);

} / / end if
} // end for
/* blue line with 45 degree slope y=x */
x = 0 . 0 ;
f or (i - l ; i<DISP_GRF_X_MAX; i++) {

x ■ x + s t e p ;
y = x;
i f (y < YMAXH / / plot if only y is in range

j » DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a _ b a s e , i , j , 0 x 0 0 3) ;

} / / end if
} // end for
/* green steep line y=10*x */
x = 0 . 0 ;
for (i= l ; i<DISP_GRF_X_MAX;i++H

x = x + s t e p ;
y « 10 * x;
i f (y < YMAXH / / plot if only y is in range

j - DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a _ b a s e , i , j , OxOlc) ;

} / / end if
} / / end for
/* y=0.2*x*x */
x = 0 . 0 ;
for (i= l ; i<DISP_GRF_X_MAX;i++H

x = x + s t e p ;
y » 0 . 2 * x*x;
i f (y < YMAXH / / plot if only y is in range

j - DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
v g a _ w r _ p i x (v g a _ b a s e , i , j , O x l f) ;

} / / end if
} / / end for
/* y = 5.0 + (5.0* sin (4-0*x) — 3.0* cos (4-0*x))* exp(—0.5*x) */
x = 0 . 0 ;
for (i= l ; i<DISP_GRF_X_MAX;i++H

x » x + s t e p ;
y = 5 . 0 + (5 . 0 * s i n (4 . 0 * x) - 3 . 0 * c o s (4 . 0 * x)) * e x p (- 0 . 5 * x) ;
i f (y < YMAXH / / plot if only y is in range

www.it-ebooks.info

http://www.it-ebooks.info/

544 VGA CONTROLLER

j - DISP_GRF_Y_MAX-(y/YMAX)*DISP_GRF_Y_MAX;
vga_wr_pix(vga_base, i , j , Oxff);

} / / end if
} // end for

y

/***
* function: plot, swap ()
* purpose: swap two 80—bit wide vertical strips
* argument:
* vga-base: base address of video SRAM
* return:
* note:
* — test SRAM read operation
* — can be done pixel—by—pixel basis; buffer is for demo purposes
***/
void plot_swap(alt_u32 vga.base)
{

alt_u8 buf[80*480];
alt_u8 co lor;
int x, y, x l , x2;

xl = rand () 7.8;
x2 = rand()*/.8;
i f (xl==x2)

x2 - (x l + l)5C8;
xl - 80*xl;
x2 - 80*x2;
/ * copy area 1 from video SRAM to buffer */
for (y=0; y<480; y++)

for (x -0; x<80; x++)
buf[80*y+x]=vga_rd_pix(vga_base, x+xl , y) ;

/ * copy area 2 to area 1 */
for (y«0; y<480; y++)

for (x -0; x<80; x++H
color»vga_rd_pix(vga.base , x+x2, y) ;
vga_wr_pix(vga_base, x+xl , y, c o l o r) ;

}
/ * copy buffer (area 1) to area 2 of SRAM */
for (y -0 ; y<480; y++)

for (x -0 ; x<80; x++)
vga_vr_pix(vga_base, x+x2, y, buf [80*y+x]);

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 4 5

* function: plot-mouse ()
* purpose: plot mouse pointer movement
* argument:
* vga.base: base address of video SRAM
* ps2-base: base address of PS2 controller
* btn.base: base address of pushbutton switch
* return:
* note :
* — the 12—by—20 MOUSELBMP bitmap is used for mouse pointer

void plot .mouse(al t_u32 vga .base , alt_u32 ps2_base, alt_u32 btn.base)
{

mouse.mv.type mv;
int xold , yold , xnev , yneu , ac t ;
s t a t i c alt_u8 bdata[20*12];
bmp.type b e l o w { 1 2 , 20, bdata};

i f (!mouse . in i t (ps2_base)) {
printf("Mouse i n i t i a l i z a t i o n f a i l e d . \ n ") ;
return;

}
xold - 320;
yold - 240;
v g a . i n i t . m o u s e . p t r (v g a . b a s e , ps2_base, xo ld , yold , &M0USE.BMP, itbelow);
/ * continue until a button is pressed */
while (! b t n . i s . p r e s s e d (b t n . b a s e)) {

act » vga_move_mouse_ptr(vga.base, ps2_base,
xo ld , yold , fcbelov, &xneu, ftynew, &M0USE.BMP, femv);

i f (ac t== l) {
i f (mv . lb tn)

printf ("\ncurrent mouse l o c a t i o n : '/.d */.d" , xnev, yneu);
xold » xnev;
yold = yneu;

} //end if
} // end while
vga.vr.bitmap (vga.base , xo ld , yold , Itbelow, 0) ;
p r i n t f (" \ n ") ;

www.it-ebooks.info

http://www.it-ebooks.info/

546 VGA CONTROLLER

/ » » » « » » » » t « * * · » » « * » « · * * * » * * * * * * * * * * * * * * * * » » » * » * » « » · * * » * * » « » « · * * * * * * * * · · ·

* function: plot-text ()
* purpose: test bit—mapped fonts for text
* argument:
* vga.base: base address of video SRAM
* return:
* note: pixel (x,y) changes each time and
* new patterns overlay over old patterns
i * » * * * * * * * * * * * * » * » * /

void p l o t . t e x t (a l t _ u 3 2 vga .baseH

int x, y;
char buffer [50] ;
char msg.box []= / / a 30—by—5 message

"******************************\a"
"* *\n"
"* Hello World *\n"
"* *\n"
"»»•»»»»a · * * * * * * * * * * * * * * * * * *»»*»" ;

/ * display four single characters at four corners */
v g a . w r . b i t . c h (v g a . b a s e , 0, 0, ' a ' , Oxff, 1) ;
vga . i rr .b i t . ch (vga .base , DISP.GRF.X.MAX-8, 0, ' b ' , OxeO, 1);
vga_wr_blt_ch(vga_base , 0, DISP.GRF_Y.HAX-16, 'c>, Oxlc, 1);
vga_wr_bit_ch(vga_base, DISP.GRF.X.MAX-8, DISP.GRF.Y.MAX-16,

' d ' , 0x03, 1);
/ * display a single string in three zoom factors */
v g a . w r _ b i t . s t r (v g a . b a s e , 34*8, 3*16, "Hello World", Oxlc, 1)
v g a . w r . b i t . s t r (v g a . b a s e , 28*8, 5*16, "Hello World", Oxlc, 2)
v g a . w r . b i t . s t r (v g a . b a s e , 23*8, 8*16, "Hello World", Oxlc, 3)
/ * display a string with multiple lines (string with \n) */
v g a . w r _ b i t . s t r (v g a . b a s e , 25*8, 16*16, msg.box, Oxlc, 1) ;
/ * get a formatted string by sprintf() */
vga.rd.xy(vga.base , _x, _ y) ;
sprintf (buffer , "current p ixe l (x , y) : (7.3d, 7.3d)", x, y) ;
v g a . w r . b i t . s t r (v g a . b a s e , 24*8, 24*16, buffer , 0x03, 1);

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 4 7

* function: main()
* purpose: test video SRAM access, mouse and bit—mapped font
* note :
* » » » * * * * * t t * t t * * * t t * * t t « * * » * t * * t * * * * t * * » » * » » * * » * * t * * * * * * t t t * * * * * » » * * » * * /

i n t main(vo id) {
int sw, btn;
alt_u8 disp.msg [4]={sseg_conv_hex(13) , sseg_conv_hex (1) ,

sseg_conv_hex(5) , 0x0c};

sseg_disp_ptn(SSEG_BASE, disp.msg); / / show "dISP" for display
vga_clr_screen(VRAM_BASE,0); / / clear screen
printfC'VGA video contro l l er t e s t : \ n \ n ") ;
btn.clear(BTN.BASE);
while (1){

while (!btn_is_pressed(BTN_BASE)H } ; / / wait for button
btn»btn_read(BTN.BASE); / / read button
i f (btn k 0x02){ / / keyl pressed

sw»pio_read(SWITCH_BASE); / / read switch
printf ("key/sw: Xd/y,d\n" , btn, sw);

}
btn.clear(BTN.BASE);
switch (sw){

case 0: / / clear screen
vga_clr_screen(VRAH_BASE,0);
break;

case 1: / / plot color chart
plot_color_chart(VRAM.BASE);
break;

case 2: / / plot random pixels
plot.random.pix(VRAM.BASE);
break;

case 3 : / / plot random lines
plot_random_line(VRAM.BASE);
break;

case 4: / / plot several functions
plot_function(VRAM.BASE);

break;
case 5: / / swap two vertical strips on screen

plot.swap(VRAH.BASE);
break;

case 6: / / test mouse pointer
plot.mouse(VRAM.BASE,PS2.BASE,BTN.BASE);
break;

case 7: / / display bit—mapped text
plot.text(VRAM.BASE);
break;

} //end switch
} / / end while

}

www.it-ebooks.info

http://www.it-ebooks.info/

5 4 8 VGA CONTROLLER

Listing 18.25 chu_avalon_file.h

Module: File retrieval header
File: chu-aval on-file .h
Purpose: Simple file access routines

/* file inclusion */
#inc lude < a l t _ t y p e s . h >
inc lude < s t d l i b . h >
inc lude <io.h>

Function prototypes

/* basic file access routines */
void fskip(FILE *fp , i n t n b y t e) ;
a l t_u8 fget8(FILE * fp) ;
a l t _ u l 6 fge t l6 (FILE * fp) ;
a l t_u32 fget32(FILE * fp) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 4 9

Lis t ing 18 .26 chu_avalon_file.c

Module: File retrieval function prototypes
File: chu-avalon-file . c
Purpose: Routines to retrieve bitmap from BMP file

Note: must use debug mode to use host—based file system

/ * file inclusion * /
i n c l u d e < s t d i o . h >
i n c l u d e " c h u _ a v a l o n _ f i l e . h "

* function: fskip()
* purpose: skip a specific number of bytes in a file
* argument:
* fP: file pointer
* nbyte: # bytes to skip
* return:
* note :

v o i d f s k i p (F I L E * f p , i n t n b y t e)
{

i n t i ;
f o r (i = 0 ; i < n b y t e ; i++)

f g e t c (f p) ;
}

function: fget8()
purpose: get 8 bits (one byte) from a file
argument:

fp: file pointer
return: a byte in alt-u8 format
note :

a l t _ u 8 f g e t 8 (F I L E * f p)
{

r e t u r n ((a l t _ u 8) f g e t c (f p)) ;
}

function: fgetl6()
purpose: get 16 bits (half word) from a file
argument:

fp: file pointer
return: a half word in alt-ul6 format
note: "little endian" byte ordering

a l t _ u l 6 f g e t l 6 (F I L E * fp)
{

a l t _ u l 6 bO, b l , r ;

bO = (a l t _ u l 6) f g e t c (f p) ;
b l= (a l t _ u l 6) f g e t c (f p) ;
r = (b l « 8) + bO;
r e t u r n (r) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

550 VGA CONTROLLER

A**** . . *»*** * *»*** * * * *»***«*** * * * *»*** . * * * * *«*** * * *
* function: fget32()
* purpose: get 32 bits (a word) from a file
* argument:
* fp: file pointer
* return: a word in alt.u32 data type
* note: "little endian" byte ordering
»***********»»**,***»***»**»**************»*»********»****»************/
alt_u32 fget32(FILE *fp)
{

alt_u32 bO, b l , b2. b3, r;

bO = (al t_u32) f g e t c (f p) ;
b l - (a l t_u32) f g e t c (f p) ;
b2= (al t_u32) f g e t c (f p) ;
b3- (a l t_u32) f g e t c (f p) ;
r = (b3<<24) + (b2<<16) + (bl<<8) + bO;
re turn(r) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 5 1

Listing 18.27 chu-mainJt>mp_file.test.c
/***
*
* Module: BMP file retrieval test
* File: chu.main.bmp-file-test. c
* Purpose: Test BMP (.bmp) file access and demonstrate simple animation
* IP core base addresses:
* - SWITCKBASB: slide switch
* - VRAM-BASE: video SRAM
*
********************** S l i * « ! * * * * * * * * * /

/* file inclusion */
«include <stdio.h>
»include <unistd.h>
»include "system.h"
»include "chu_avalon_gpio.h"
»include "chu_avalon_vga.h"
»include "chu_avalon_file.h"

/ * constants */
»def ine BMP_FILE_NAME "/mnt/host/earth9 .bmp" / / path and file name
»def ine NF 9 / / # of frames
»def ine NW 100 / / width of a frame
»def ine NH 100 / / height of a frame

/***
* function: read-bmp-file ()
* purpose: read bitmap from BMP file and store it in a buffer
* argument:
* filename: name of the BMP file
* buf: pointer to bitmap buffer
* return: 0 if successful
* note:
* — calling function must allocate buffer space
* — only 24—bit BMP file is supported
* — 24—bit color is converted to 8— bit color
***/
i n t read_bmp_f i le (char * f i l e . n a m e , bmp.type *buf)
{

FILE *fp;
int color.bit , x, y, slack;
alt_u8 pixr, pixg. pixb, pix ;

/* open the file */
fp ■ fopen(file.name,"rb");
if (fp«-NULLH

printf ("Error: 'is fails to open. \n", f ile.name);
return(-1);

}
/* check "magic number"; should be BM */
if (fgetc(fp)!-'B' II fgetc(fp)!=*M'H

printf ("Error: %s is not a .bmp fileAn", f ile.name);
fclose(fp);
return(-l);

}
f s k i p (f p , 1 6) ; / / offset 2
/* get height and width */
buf->width - (i n t) f g e t 3 2 (f p) ; / / offset 18
buf->height - (i n t) f g e t 3 2 (f p) ; / / offset 22
f s k i p (f p , 2) ; / / offset 26

www.it-ebooks.info

http://www.it-ebooks.info/

552 VGA CONTROLLER

/ * check color depth; should be 24 */
c o l o r . b i t = (i n t) f g e t l 6 (f p) ; / / offset 28
if (c o l o r . b i t != 24){

f c l o s e (f p) ;
pr intf ("Error: color depth i s not 24. \ n ") ;
r e t u r n (- 2) ;

}
/* 24—bit BMP file format confirmed */
printf ("File opened. Bitmap width: 7.d, he ight: 7,d\n" ,

buf->width, buf ->he ight) ;
f s k i p (f p , 2 4) ; / / offset 30
printf("Reading in progress: \ n ") ;
/* loop through pixel data, starting with the bottom row
for (y - b u f - > h e i g h t - l ; y >- 0; y — H / / offset 54

p r i n t f (" . ") ;
for (x -0 ; x< buf->width; x++) {

/* get 24—bit color */
pixb ■= (a l t_u8) f g e t c (f p) ;
pixg - (a l t_u8) f g e t c (f p) ;
pixr ■ (a l t_u8) f g e t c (f p) ;
/* construct 8—bit color using MSBs */
pix ■ (pixr k OxeO) + ((p ixg k 0xe0)>>3) + ((pixb k
buf->pdata[y*(buf->width)+x]»pix;

} //end for x
/* skip padding bytes , if exist */
slack = (buf->width * 3) % 4;
i f (s l a c k ! - 0)

f s k i p (f p , 4 - s l a c k) ;
} //end for y
f c l o s e (f p) ;
p r i n t f (" \ n F i l e l oaded . \n") ;
re turn(0) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 5 3

* function: main()
* purpose: Read a bitmap file and demonstrate simple animation
* note:
* — the host —based file system must be enabled in BSP editor
* — the earth9.bmp bitmap file should be in the project directory
* — build/load the program with "Debug As => JVios / / Hardware"
* » * * * * * » » » * * * * » * * * * » * * * * * * » * » * * » « * * * * * * * * * * * * » * * * » * * * * * * * » « » * » » » ♦ » * » * » * /
int main(void)
{

a l t_u8 iarray[NF*NH*NW]; / / pixel data array for file buffer
alt_u8 farray[NF][NH*NW]; / / pixel data array for frames
bmp.type img-{NF*NW, NH, iarray} ;
bmp.type frame[NF];
int sw, s ta tus ;
int f, x, y;

printfCBMP f i l e r e t r i e v a l t e s t . \ n \ n ") ;
vga_clr_screen(VRAM_BASE, 0x08);
s ta tus = read.bmp.file(BMP_FILE_NAME, t img);
i f (s t a t u s ! = 0) {

printfCBMP f i l e f a i l s to load. Exit program. \ n ") ;
e x i t (1) ;

}
/ * split bitmaps to 9 frames */
for (f - 0 ; f<NF; f++){

frame[f] .he ight - NH;
frame[f] .width - NW;
frame[f] .pdata - f a r r a y [f] ;
for (y-0; y<NH; y++) {

for (x -0 ; x<NW; x++) {
frame[f].pdata[y*NW+x]»img.pdata[y*NW*NF+f*NW+x];

} / / end x loop
} / / end y loop

} //end f loop

/* display individual frames in two rows */
for (f - 0 ; f<5; f++)

vga.wr.bitmap(VRAM.BASE, 30+f*(20+NW), 10, t f r a m e [f] , 1);
for (f - 5 ; f<9; f++)

vga_wr_bitmap(VRAM_BASE, 80+(f-5)*(20+NW), 120, tírame [f] , 1);

/ * animation of rotating earth */
w h i l e U H

for (f - 0 ; f<NF; f++){
sw - pio_read(SWITCH_BASE); ;

i f (sw!«0){ / / freeze if sw=0
usleep (1000000/sw); / / sw frames per second
vga_wr_bitmap(VRAM_BASE, 270, 250, ftframe[f],1);

} / / end if
} // end for

} / / end while

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

AUDIO CODEC CONTROLLER

An audio codec device can digitize an analog audio signal and convert the digitized
signal back to analog format. The DEI board contains a Wolfson WM8731 codec
device. In this chapter, we discuss the interface circuit for WM8731 and the software
driver. The hardware portion includes an I2C controller for device configuration
and a data access control circuit to process incoming and outgoing audio data
streams. The software portion includes the driver routines to send an I2C packet,
set up WM8731, and to transmit and receive audio data as well as basic routines
to process an audio file in an uncompressed WAV format.

19.1 INTRODUCTION

Audio signals are in a continuous analog format. To take advantage of the capability
of a digital system, an analog signal must be converted to discrete digital numbers.
The digitized data then can be stored and processed by a digital system. During
playback, the data are converted back to an analog signal. A specific device, known
as an audio codec, is designed for this purpose. The DEI board contains a codec
device, WM8731, from Wolfson Microelectronics.

19.1.1 Overview of codec

An audio codec device converts (i.e., code) analog signals into digital data and
converts (i.e., decode) the data back to analog signals. It is essentially an inter-

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 555
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

5 5 6 AUDIO CODEC CONTROLLER

face from and to the analog domain. A codec contains an ADC {analog-to-digital
converter) and a DAC {digital-to-analog converter). An ADC converts an input
analog voltage to a discrete digital number proportional to the value of the voltage.
A DAC performs the reversed operation and converts a digital number to an analog
voltage level.

Two important parameters of ADC and DAC specifications are the resolution
and sampling rate. The resolution of a converter specifies the number of discrete
values produced over the range of input voltage. It is represented in terms of bits
in the discrete values. For example, a resolution of 16 bits indicates that an input
voltage can be converted to one of the possible 216 levels. Higher resolution can
reduce quantization error. The sampling rate of a convertor specifies the number
of analog values sampled per second. The Nyquist—Shannon sampling theorem
indicates that to reconstruct a signal, it must be sampled at least at Nyquist rate,
which is two times the bandwidth of an input signal. For example, the frequency
range of an audio signal is between 20 Hz and 20 kHz and thus the minimal sampling
frequency should be 40 kHz. Higher sampling rates sometimes are used to facilitate
the filter design and reduce noise.

Note that the codec term is also used as compressor and decompressor, which
concerns the data compression algorithm and is not related to an audio codec device.

19.1.2 Overview of WM8731 device

The Wolfson WM8731 device is a stereo codec device. It contains two pairs of
ADCs and DACs to accommodate both the left and right channels of stereo audio.
The converters support 24-bit resolution and up to a 96-kHz sampling rate. In
addition to ADCs and DACs, the device also contains digital filters, analog multi-
plexing and mixing circuits, input gain control circuits, and headphone amplifiers.
Some features of WM8731, such as the headphone volume and sampling rate, are
"programmable." We can configure the device and select the desired options by
issuing commands to its internal configuration registers.

The simplified top-level diagram is shown in Figure 19.1. It illustrates the main
data flow and the key I/O signals. The I/O signals can be divided into three
groups. The first group is the analog signals. It consists of Hinein and Hinein (for
"right-channel line input" and "left-channel line input"), micin ("for microphone
input"), and rhpout and Ihpout (for "right-channel headphone output" and "left-
channel headphone output"). The second group is the digitalized data signals and
clocks used in the digital audio interface. It consists of dacdat (for "data to DAC"),
adcdat (for "data from ADC"), mclk (for "master clock"), bclk (for "bit clock"),
dad re (for "DAC left-right channel clock"), and add re (for "ADC left-right channel
clock"). The last group is signals for the control interface and includes sdin (for
"serial data in") and sclk (for "serial clock").

The main ADC data flow is shown as a thick gray line in Figure 19.1. The major
components of the path are:

• Amplification circuits: adjust the input voltage level (gain and mute).
• Two ADCs: digitize the analog left- and right-channel line input signals.
• Digital filter: perform decimation (reduction of the number of samples).
• Digital audio interface: output two sampled data through a 1-bit serial data

line.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 5 5 7

sdlt'i SClk

J L
cor Ira I interface/

configuration registers

τ τ τ τ τ τ τ ΐ internal control signals

rtlneln

i ¡nein

analog
amp/mux { ADC

analog
amp/mux

-J ADC -♦

digital
filter

f t f

n

digital
fillei

¡ -*■ DAC V-J

Π
c gital audio interface

I f

DAC Vi analog
amp/mix

analog
amp/mix

rtipout

I h pout

mclk bclk add re daclrc ad cd at dacdat

Figure 19.1 Conceptual diagram of WM8731 codec.

The microphone input can also be routed to the ADC via the analog multiplexers.
The main DAC data flow is shown as a dashed gray line in Figure 19.1. It mirrors
the ADC flow but in the reversed order.

Some features of WM8731 can be configured by writing the desired values to
its configuration registers via the control interface. The output of these registers
in turn controls various internal components, as indicated by the dotted lines in
Figure 19.1.

19.1.3 Registers of WM8731 device

WM8731 has 11 configuration registers. Each register contains 9 bits of data and is
identified by 7 bits of address. During a write operation, the address and data bits
are grouped together to form a 16-bit word and transmitted serially via the control
interface. There are more than three dozen fields within these registers and the
register map is shown in Figure 19.2. The complete definitions and explanations of
these fields can be found in the WM8731 manual. Some key features are summarized
in the following paragraphs.

Registers RO and Rl mainly control the gains of the left and right line inputs.
The fields of RO are:

• LINVOL (for "left line input volume"): It controls the amplifier gain from
the left line input. The gain is logarithmically adjustable from +12 dB to
-34.5 dB in 1.5-dB steps. The default value is 10111 (defined as 0 dB).

• LINMUTE (for "left line input mute"): When it is asserted (i.e., 1), the left line
input to ADC is muted.

• LRINBOTH (for "left line input controlling both channels"): When it is asserted
(i.e., 1), the left line gain and mute values will be loaded to the corresponding
fields of the right channel simultaneously.

www.it-ebooks.info

http://www.it-ebooks.info/

558 AUDIO CODEC CONTROLLER

register

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R15

address

B15-B9

000000

000001

000010

000011

000100

000101

000110

000111

001000

001001

001111

data

B8

LRIN
BOTH

RUN
BOTH

LRHP
BOTH

RLHP
BOTH

0

0

0

0

0

0

B7

LIN
MUTE

RIN
MUTE

LZCEN

RZCEN

B6

0

0

B5

0

0

B4 B3 B2 B1 B0

UNVOL

RINVOL

LHPVOL

RHPVOL

SIDEATT

0

PPW
OFF

BCLK
INV

CLKO
DIV2

0

0

CLK
OUTPO

MS

CLKI
DIV2

0

SIDE
TONE

0

OSCPD

LR
SWAP

DAC
SEL

HPOR

OUTPO

LRP

BYPASS

DACMU

DACPD

INSEL
MUTE
MIC

DEEMPH

ADCPD

IWL

SR

0 0 0 0

MICPD

MIC
BOOST

ADC
HPD

LININPD

FORMAT

BOSR

0

USB/
NORM

ACTIVE

RESET

Figure 19.2 WM8731 register map.

The fields of Rl mirror those in RO, but for the right channel.
Registers R2 and R3 mainly control the volumes of the left and right headphone

outputs. The fields of R2 are:
• LHPVOL (for "left headphone volume"): It controls the volume of the left

headphone output. The gain is logarithmically adjustable from +6 dB to
- 7 3 dB in 1-dB steps. The default value is 1111001 (defined as 0 dB). The
0110000 value corresponds to —73 dB and any value smaller mutes the output.

• LZCEN (for "left zero cross detect enable"): It indicates whether to enable the
zero-crossing detection circuit, which can reduce certain click noises.

• LRHPBOTH (for "left headphone controlling both channels"): When it is as-
serted, the left headphone volume and zero-crossing values will be loaded to
the corresponding fields of the right channel simultaneously.

The fields of R3 mirror those in R2, but for the right channel.
Register R4 sets up the analog path and controls the microphone input. The

ADC's input source can either from the line input or microphone input and is
specified by the following field:

• INSEL (for "input select"): It is 1 for the line input and 0 for the microphone
input.

The headphone amplifier has three input sources, which are DAC's output, line
input (without passing through ADC), and microphone input (without passing

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 5 5 9

through ADC). These sources can be summed together and fed to the amplifier.
Three fields specify whether a specific source is included:

• BYPASS (for "bypass ADC"): If it is 1, the line input is included.
• DACSEL (for "DAC select"): If it is 1, the DAC output is included.
• SIDETONE (for "side tone select"): If it is 1, the microphone input (i.e., which

is known as "side tone") is included.
The remaining fields control the microphone operation:

• MICBOOST (for "microphone boost"): When it is asserted, the microphone
input signal is passed through a second amplifier with a fixed 20-dB gain.

• MUTEMIC (for "mute microphone"): When it is asserted, the microphone input
to ADC is muted.

• SIDEATT (for "side tone attenuation"): When the microphone input is in-
cluded for the headphone amplifier, it specifies whether to apply some atten-
uation (between —6 dB and —15 dB) to the signal.

Register R5 sets up options relevant to digital audio processing. The fields are:
• ADCHPD (for "ADC high-pass filter disabled"): It specifies whether to disable

or enable the ADC's high-pass filter.
• DEEMP (for "de-emphasis control"): It sets up the DAC's de-emphasis filter.
• DACMU (for "DAC mute"): When it is asserted, the DAC is "digitally muted."
• HPOR (for "high-pass filter offset ") : It indicates whether to store or clear the

DC offset value when the DAC's high-pass filter is disabled.
Register R6 controls the power down of various circuit blocks. Since power

conservation is not a concern in our application, all fields are set to O's (i.e., power
up for all circuits).

Registers R7 and R8 set up the digital audio interface and sampling rates. We
design a control circuit to access the codec's data in Section 19.3. The design is
based on a fixed set of parameters and the fields of R7 and R8 must be configured
accordingly. The fields and the desired values in R7 are listed below and additional
explanations can be found in Section 19.3.

• FORMAT (for "audio data format select"): It specifies the basic format of serial
data stream and must be 01 (for "left-adjust format").

• IWL (for "input data width select"): It specifies the resolution (i.e., number
of bits per sample) and must be 00 (for 16 bits).

• LRP (for "left right phase control"): WM8731 uses a signal, dac l rc , to indicate
the current channel (i.e., left or right) of the DAC data stream. This field
indicates the "phase" interpretation of this signal. It must be 0, which means
that the left channel data are transmitted when dac l rc is high.

• LRSWAP (for "left right clock swap"): It should be 0 (i.e., no swap).
• MS (for "master slave mode"): WM8731 can be configured as a "master" and

generates the relevant clock signals or can be configured as a "slave" and lets
the external device generate clock signals. This field must be 0 (for the "slave
mode").

• BCLKINV (for "bit clock invert"): It specifies whether to invert the bit clock
signal and must be 0 (for "no invertion").

Register R8 specifies the codec's master clock frequency and audio data sampling
rate, which are 12.288 MHz and 48 K samples per second in our design. We can
achieve this by configuring R8's fields as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

5 6 0 AUDIO CODEC CONTROLLER

• USB/NORMAL (for "USB or normal mode select"): It must be set to 0 to select
the normal mode.

• BOSR (for "base over-sampling rate"): It must be set to 0.
• SR (for "sampling rate control"): It must be set to 0000. This value in

conjunction with the previous BOSR setting specifies the sampling rate of ADC
and DAC to be 48 K samples per second.

• CLKIDIV2 (for "core clock divided-by-2 select"): It must be set to 0 for not
using the divided-by-2 master clock (mclk) for the system core clock.

• CLK0DIV2 (for "clock out divided-by-2 select"): It must be set to 0 for not
using the divided-by-2 system core clock for the codec's clockout signal.

Register R9 contains only one field, ACTIVE. It must be set to 1 to activate the
digital audio interface. Register R15 is used to facilitate the device reset operation.
It does not contain any field. The operation is done by writing a dummy data to
the 001111 address.

19.2 l2C CONTROLLER

The WM8731 device can be configured via the control interface, which supports
both 2- and 3-wire serial bus protocols. The DEI board is constructed to support
a 2-wire I2C (inter-integrated circuit) bus protocol.

19.2.1 Overview of l2C interface

The PC protocol is a low-speed serial bus for efficient communication between
devices. Its standard mode supports a data rate up to 100 K bits per second. The
I2C bus consists of two bidirectional lines, sda (for "serial data") and s c l (for
"serial clock"), for data and clock, respectively. The two lines are connected to
the sdin and sc lk pins of WM8731. Each device on the I2C bus has a unique
address and can operate as either a transmitter or receiver. During the operation,
one device on the bus functions as the master and other devices function as slaves.
The master generates the clock on the s c l signal and also initiates and terminates
the data transfer. The master and the designated slave place data on or retrieve
data from the sda signal.

Electrical characteristics The physical connection of the I2C bus is shown in Fig-
ure 19.3. It uses open-drain technology, which means that the output stage of a
device must have an open-drain structure. Both sda and s c l lines are connected
to the voltage source (VDD) via pull-up resistors and are high when the bus is idle.
A line becomes low as soon as one device's output turns to low. It thus performs
the wired-and function.

Basic timing The basic timing diagram of a typical data transfer is shown in Fig-
ure 19.4. Both lines are high when the bus is idle. The master initiates a transfer by
creating the start (S) condition, in which sda changes from high to low while s c l is
high. It then generates the clock signal on s c l . Based on the type of transaction,
either the master or the designated slave places data on sda. The data must be
stable when s c l is high and thus the change can only occur when s c l is low. The
definitions ensure that the start and stop conditions will never be confused as data.

www.it-ebooks.info

http://www.it-ebooks.info/

I2C CONTROLLER 5 6 1

sda_out

scl_out

Device 1

sda.out

sdajn

scl_out

Device 2

+Voo

sda

set

Figure 19.3 Conceptual diagram of I C bus.

start condition 8 data bits

bus turnaround time

stop condition

acknowledge bit

* T L U 3 B B K 3 B B ^
- ̂ m_a^u"man_™v · · ̂ m

/

Y
first byte +

acknowledge

J L
Y

additional bytes +
acknowledges

Figure 19.4 Basic timing diagram of I2C data transfer.

www.it-ebooks.info

http://www.it-ebooks.info/

562 AUDIO CODEC CONTROLLER

s slave addr w a data byte 1 data byte 2 a p

s slave addr r a data byte 1 a data byte 2 a P

; from master to slave From slave to master

s: start condition p: stop condition w: write (0) f. read (1)

a: acknowledge (0) ä: not acknowledge (1)

Figure 19.5 Complete sequence of reading and writing two bytes of data.

The transfer is done on a byte-by-byte basis with MSB first. Each byte is followed
by an acknowledge bit in the ninth clock cycle. The number of bytes in a transfer
is unrestricted. After completion, the master terminates a transfer by creating the
stop (P) condition, in which sda changes from low to high while scl is high. After
the transaction is done, the devices on the bus must wait for a small turnaround
time before initiating another transaction.

Bus protocol When the bus is idle, a device can initiate a data transfer and become
the master. A typical data transfer is composed of several parts: start, slave address
plus direction bit, data, and stop. The master initiates the start condition and then
sends the slave's 7-bit address (i.e., device id) plus a direction bit. The address
selects the desired device on the bus and the direction bit indicates the direction of
data flow, in which a 1 is for the read operation (i.e., from slave to master) and a 0
is for the write operation (i.e., from master to slave). The master then releases the
sda line and the slave with the matched address should acknowledge by pulling sda
low during the ninth clock cycle. The data transfer then can proceed byte-by-byte
as specified by the direction bit. The receiving device acknowledges in the ninth
clock cycle. After completion, the master generates a stop condition and frees the
bus. The complete sequences of writing and reading two bytes of data are shown
in Figure 19.5. Note that the master should generate a "not acknowledge" (i.e., 1)
in the ninth cycle of the read operation after it receives the last data byte.

The I2C protocol also incorporates clock synchronization and arbitration mecha-
nisms to support a slow slave device and accommodate multiple masters. Additional
information can be found in the bibliographic section.

19.2.2 HDL implementation

The DEI board uses I2C as the interface to configure the codec device. The bus
organization is very simple. It contains only two devices, the FPGA chip, which acts
as a master, and the WM8731 chip, which acts as a slave. Only a write operation
is performed.

Configuring a WM8731's internal register requires to send a 7-bit register id
(i.e., register address) and a 9-bit register data value. The two fields are combined
to form two bytes of information. Although there is only one slave on the bus,
the slave address (i.e., the designated id of WM8731) and direction bit (always 0

www.it-ebooks.info

http://www.it-ebooks.info/

I2C CONTROLLER 5 6 3

Figure 19.6 Sketch of I2C controller FSM.

for writing) are still needed. The complete transmitting sequence is similar to the
writing sequence in Figure 19.5.

A custom I2C controller can be constructed for this purpose. It acts as a master
and transmits three bytes of information to the designated codec slave. The con-
troller is basically an FSMD that generates proper s c l and sda signals according
to the timing sequence in Figure 19.5. The sketch of the control FSM is shown in
Figure 19.6. The s t a r t , stop, and t u r n states represent the I2C's start condition,
stop condition, and required turnaround time between two transactions. The data
and ack states are for one-bit transfer and acknowledge. Two counters, b i t and
byte, are used to keep track of the numbers of bits and bytes processed so far.
The FSM circulates in the da ta state eight times to transfer eight bits of data and
then moves to the ack state. If the proper acknowledge bit is received, the process
repeats three times to transfer three bytes of information.

In the actual implementation, we need to divide certain "sketch states" to two
or three states to meet the timing requirement. For example, the original da ta
state is divided into da t a l , data2, and data3 states. The division of the data
state is shown in detail in Figure 19.7(a) and the complete division is shown in
Figure 19.7(b). Note that two states, scl_begin and scl.end, are inserted to
generate adequate times for the low interval.

We can derive the HDL code based on the FSM. The main input, din, is 24-bit
(i.e., 3 bytes) information to be transferred. The two main outputs, i2c_sclk and
i2c_sdat, are connected to the bidirectional s c l and sda lines. In addition, the
controller includes an input command, wr_i2c, which initiates the data transfer,

www.it-ebooks.info

http://www.it-ebooks.info/

564 AUDIO CODEC CONTROLLER

I I I I

sda_out I j I
i i i
■ i i

scLout i i 1 i 1 I 1 ■
i datai data2 data3 >

(a) Division of the da ta state

slave ack slave acK
slot slot

sda.out ~~i i g j b7 ; i i be~n Ç*LJ^T_ 7 ~ L _ n
i—i i—ill—ii'"i—i i—i •" I—I I I—'—!

**-«* i U u f u J L J L - J U l
State l t , e ¡ s ö r t ! / /1 i 111 ! 11 I ¡ stop turn ¡ idle

"datai ' ¡ ¡ I a * , / / / ack3 '
dala2 ' I ack2 ' I sd.end '
data3 1 I «*3 '
datai 1
data2 '
data3 '

(b) Division of all states

F i g u r e 19 .7 S ta te division of I 2 C transactions.

and three status signals, i2c_idle, i2c_f a i l , and i2c_done_tick. The HDL code
is shown in Listing 19.1.

Listing 19.1 I2C controller
i module i2c

(
i n p u t w i r e e l k , r e s e t ,
i n p u t w i r e [2 3 : 0] d i n ,
i n p u t w i r e w r _ i 2 c ,

o o u t p u t w i r e i 2 c _ s c l k , i 2 c _ i d l e , i 2 c _ f a i l , i 2 c _ d o n e _ t i c k ,
i n o u t w i r e i 2 c _ s d a t

) ;

/ / symbolic constants
u l o c a l p a r a m HALF - 249 ; / / 10us/20ns/2 = 250

l o c a l p a r a m QUTR = 125 ; / / 10us/20ns/4 = 125
// symbolic state declaration
l o c a l p a r a m [3 : 0]

i d l e - 4 * d l ,
16 s t a r t = 4 ' d 2 ,

s c l . b e g i n - 4 ' d 3 ,
d a t a i - 4 ' d 4 ,
d a t a 2 - 4 ' d 5 ,
d a t a 3 - 4 ' d 6 ,

2i a c k l - 4 ' d 7 ,
ack2 - 4 ' d 8 ,
a c k 3 = 4 ' d 9 ,
s c l _ e n d = 4 ' d l O ,
s t o p - 4 ' d l l ,

2e t u r n - 4 ' d l 2 ;

/ / signal declaration

www.it-ebooks.info

http://www.it-ebooks.info/

I2C CONTROLLER

reg [3:0] s t a t e . r e g , s t a t e . n e x t ;
reg [7:0] c_reg , c .next ;
reg [23:0] data_reg , data .next ;
reg [2:0] b i t . r e g , b i t . n e x t ;
reg [1:0] byte_reg, byte .next ;
reg sdat_out , s d a t . r e g , sc lk .out , s c l k . r e g ;
reg ack.reg , ack_next;
reg i 2 c _ i d l e _ i , i2c_done_t ick_i ;

//body
//=
// output buffer
//=
/ / buffer for sda and scl lines
always Q(posedge e lk , posedge r e s e t)
if (r e s e t)

begin
sdat .reg <- l ' b l ;
s c l k . r e g <= l ' b l ;

end
e l se

begin
sdat_reg <» sdat_out;
s c l k . r e g <- sc lk_out;

end
/ / only master drives scl line
ass ign 12c_sclk = s c l k . r e g ;
/ / iSc.sdat are with pull—up resistors
// and becomes high when not driven
ass ign i2c_sdat ■ sdat_reg ? l 'bz : 1'bO;
/ / codec fails to acknowledge properly
ass ign i 2 c _ f a i l - ack.reg;
ass ign i 2 c _ i d l e » i 2 c _ i d l e _ i ;
ass ign i2c_done_tick " i2c_done_t ick_i ;
//=
/ / fsmd for transmitting three bytes
//=
always β(posedge e lk , posedge r e s e t)

i f (r e s e t)
begin

s t a t e . r e g <» i d l e ;
c .reg <» 0;
b i t . r e g <= 0;
byte .reg <» 0;
data .reg <« 0;
ack.reg <■ 1'bl ;

end
e l s e

begin
state.reg <= state.next;
c.reg <= c.next;
bit.reg <» bit.next;
byte.reg <« byte.next;
data.reg <» data.next;
ack.reg <· ack.next;

end
// next—state logic
always 0 *
begin

state.next « state.reg;
sclk.out ■ l'bl;

I2C CONTROLLER 5 6 5

r e g [3 : 0] s t a t e . r e g , s t a t e . n e x t ;
r e g [7 : 0] c _ r e g , c . n e x t ;

ai r e g [2 3 : 0] d a t a _ r e g , d a t a . n e x t ;
r e g [2 : 0] b i t . r e g , b i t . n e x t ;
reg [1:0] byte_reg, byte.next;
reg sdat.out, sdat.reg, sclk.out , sclk.reg;
reg ack.reg, ack_next;

se reg i2c_idle_i , i2c_done_tick_i;

//body

//
// output buffer

41 / /
/ / buffer for sda and scl lines
a l w a y s Q (p o s e d g e e l k , p o s e d g e r e s e t)
i f (r e s e t)

b e g i n
46 s d a t . r e g <- l ' b l ;

s c l k . r e g <= l ' b l ;
end

e l s e
b e g i n

oi s d a t . r e g <» s d a t _ o u t ;
s c l k . r e g <- s c l k _ o u t ;

end
/ / only master drives scl line
a s s i g n i 2 c _ s c l k = s c l k . r e g ;

¡se / / iSc.sdat are with pull—up resistors
// and becomes high when not driven
a s s i g n i 2 c _ s d a t ■ s d a t . r e g ? l ' b z : 1'bO;
/ / codec fails to acknowledge properly
a s s i g n i 2 c _ f a i l - a c k . r e g ;

ei a s s i g n i 2 c _ i d l e » i 2 c _ i d l e _ i ;
a s s i g n i 2 c _ d o n e _ t i c k - i 2 c _ d o n e _ t i c k _ i ;
/ /
/ / fsmd for transmitting three bytes
//

66 a l w a y s 8 (p o s e d g e e l k , p o s e d g e r e s e t)
i f (r e s e t)

b e g i n
s t a t e . r e g <» i d l e ;
c . r e g <» 0;

7i b i t . r e g <= 0;
b y t e . r e g <» 0;
d a t a . r e g <« 0;
a c k . r e g <■ 1 ' b l ;

end
76 e l s e

b e g i n
s t a t e . r e g <= s t a t e . n e x t ;
c . r e g <= c . n e x t ;
b i t . r e g <» b i t . n e x t ;

si b y t e . r e g <«= b y t e . n e x t ;
d a t a . r e g <» d a t a . n e x t ;
a c k . r e g <• a c k . n e x t ;

end
/ / next—state logic

86 a l w a y s 0 *
b e g i n

s t a t e . n e x t « s t a t e . r e g ;
s c l k . o u t ■ l ' b l ;

www.it-ebooks.info

http://www.it-ebooks.info/

566 AUDIO CODEC CONTROLLER

sdat_out = l 'b l ;
c.next = c_reg + 1; / / timer counts continuously
bit.next = bit.reg;
byte_next = byte.reg;
data.next - data.reg;
ack.next « ack_reg;
i2c_done_tick_i =l'bO;
i2c_idle_i -1'bO;
case (state.reg)

idle:
begin

i2c_idle_i = l 'b l ;
if (wr_i2c)

begin
data_next = din;
bit_next » 0;
byte.next = 0;
c_next = 0;
state.next - s tar t ;

end
end

start: / / start condition
begin

sdat.out = 1'bO;
if (c_reg==HALF)

begin
c.next = 0;
state.next » scl_begin;

end
end

scl.begin: / / 1st half of scl=0
begin

sclk.out « 1'bO;
if (c_reg=«QUTR)

begin
c_next " 0;
state.next ■ datal;

end
end

datal:
begin

sdat.out - data.reg [23];
sclk.out » 1'bO;
if (c.reg — QUTR)

begin
c_next - 0;
state.next - data2 ;

end
end

data2:
begin

sdat.out ■ data_reg [23];
if (c.reg — HALF)

begin
c_next " 0;
state.next · data3;

end
end

data3:
begin

sdat_out - data_reg [23];

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

I2C CONTROLLER

sc lk .out = l'bO;
if (c_reg=-QUTR)

begin
c.next » 0;
if (b i t_reg»-7) / / done with 8 bits

s t a t e . n e x t - ackl;
e l s e

begin
data.next » {data.reg[22:0], l'bO};
bit.next » bit.reg + 1;
state.next - datal;

end
end

end
ackl :

begin
sclk.out - l'bO;
if (c_reg==QUTR)

begin
c.next ■ 0;
state.next - ack2;

end
end

ack2 :
if (c_reg--HALF)

begin
c_next = 0;
s t a t e . n e x t » ack3;
ack.next « i2c_sdat; / / read ack from slave

end
ack3:

begin
sc lk .out - l'bO;
if (c . r eg —QUTR)

begin
c_next = 0;
i f (ack .reg) / / slave fails to ack

s t a t e . n e x t » s c l . e n d ;
e l s e

i f (byte_reg==2) / / done with 3 bytes
s t a t e . n e x t = s c l . e n d ;

e l s e
begin

b i t . n e x t » 0;
byte .next = byte .reg + 1;
data.next - {data . reg [22:0] , l 'bO};
s t a t e . n e x t · data l ;

end
end

end
s c l . e n d : / / 2nd half of scl=0

begin
sc lk .out - l'bO;
sdat .out » l'bO;
if (c_reg«qUTR)

begin
c .next = 0;
s t a t e . n e x t » s top;

end
end

s top: / / stop condition

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

568 AUDIO CODEC CONTROLLER

begin
sdat.out = 1'bO;
if (c.reg — HALF)

begin
216 c_next ■ 0;

state.next = turn;
end

end
turn: / / turnaround time

221 if (c_reg-=HALF)
begin

state.next = idle;
i2c_done_tick_i » l 'bl;

end
226 endcase

end
endmodule

The FSMD basically follows the sequence outlined in Figure 19.6. There are several
registers in the FSMD. The data_reg stores the 24-bit input data and shifts out
the MSB sequentially in the data3 or ack3 state. The bi t_reg and byte_reg keep
track of the numbers of bits and bytes processed, respectively.

We design the I2C controller to transfer data at a rate of 100 K bits per second,
which translates to 10 microseconds per bit. A state in the FSMD usually lasts a
half of the interval (i.e., 5 microseconds) or a quarter of the interval (i.e., 2.5 mi-
croseconds). Since the 50-MHz (i.e., a period of 0.02 microseconds) system clock
is much faster, we use the c_reg register as a timer to keep track of the amount of
time spent in each state. Two constants, HALF and QUTR, are used to represent the
number of system clock cycles for half and quarter of 10-microsecond intervals. The
c_reg register counts continuously and is cleared to zero when the FSM exits the
previous state. The FSMD can only move out from the current state when c_reg
reaches the designated value.

The output from the FSMD, sclk_out and sdat .out , are passed to two buffers
to remove any potential glitches and the buffered outputs are used to control the
s c l and sda lines, which are labeled i2c_sclk and i2c .sdat in code. Since the
slave needs to send an acknowledge bit to the master, the data transfer in sda
line is bidirectional. The two-way communication is achieved by the wired-and
operation of the open-drain bus structure. Although not supported directly, the
wired-and operation can be implemented by FPGA I/O pin's tristate buffer. The
corresponding HDL statement is

assign i2c_sdat » sdat.reg ? 1'bz : i'bO;

In this scheme, the FPGA device turns off the tristate buffer (i.e., make the output
in a high-impedance state) when a desired bus line level is 1. Since a bus line is
connected to VDD via a pull resister, it is driven to 1 implicitly when all devices
output 1 or are in high-impedance state.

19.3 CODEC DATA ACCESS CONTROLLER

19.3.1 Overview of digital audio interface

The digital audio interface of WM8731 receives and transmits the digitized data.
To save the physical I /O pins, the data transfer is performed serially via two pins.

www.it-ebooks.info

http://www.it-ebooks.info/

CODEC DATA ACCESS CONTROLLER 569

[* 1/fs see ■>

adclrc

- JXnJT-"TJlJTJlJT"-irLrL
·*** Ζ)Θ^···](Ζ1(ΞΧϊΕΘ[·"ΙΧΞΪΞ]Ε

left channel right channel

Figure 19.8 Timing diagram of ADC output in left justified mode.

The adcdat pin transmits the ADC output from codec to FPGA and the dacdat pin
receives the DAC input from FPGA to codec. The clock signals, bclk, dacl rc , and
adclrc, indicate the validity of data bits and distinguish the left and right channels.
WM8731 and the data access controller (within FPGA device) must perform the
needed parallel-to-serial conversion and serial-to-parallel conversion.

WM8731 can be operated in either one of the four audio interface modes, which
specify the timing relationship between the clock signals and serial data. Our data
access controller uses the left justified mode and a fixed 16-bit resolution. The
timing diagram of the 16-bit ADC output in this mode is shown in Figure 19.8.
The bclk signal functions as a bit clock and a new data bit is transmitted out in
the adcdat line at every high-to-low edge. The adclrc signal is an alignment clock
that indicates whether the left- or right-channel data are presented in the adcdat
line. The MSB is transmitted first. For a sampling rate of fs, there are fs samples
per second and each sampled data must be transferred in the interval of 4- second.
The interval becomes the clock period of adc l rc , as shown in Figure 19.8.

The timing diagram of DAC output is similar except that the data are transmit-
ted from the FPGA to the codec via the dacdat line and dac l rc is used for the
alignment clock.

WM8731 can be configured either to generate or to receive the bclk, adcl rc , and
dac l rc signals, which are known as the master clocking mode and slave clocking
mode, respectively. In addition to bclk, adcl rc , and dacl rc , WM8731 also needs
a master reference clock, mclk, for its internal operation.

19.3.2 HDL implementation

WM8731 is a versatile device and many features are configurable. Our data access
controller is oriented to a fixed configuration. The selected parameters are:

• Left-justified mode
• Slave clocking scheme (i.e., clock signals provided by FPGA)
• Master clock rate of 12.288 MHz
• Resolution of 16 bits
• Sampling rate of 48 K samples per second

The main tasks of the data access controller are to generate various clocking
signals, perform a serial-to-parallel conversion of the incoming ADC data, and

J~

www.it-ebooks.info

http://www.it-ebooks.info/

5 7 0 AUDIO CODEC CONTROLLER

perform a parallel-to-serial conversion of the outgoing DAC data. The HDL code
is shown in Listing 19.2.

Listing 19.2 Codec data access controller
module a d c . d a c

(
i n p u t w i r e e l k , r e s e t ,

4 i n p u t w i r e [3 1 : 0] d a c _ d a t a _ i n ,
o u t p u t w i r e [3 1 : 0] a d c _ d a t a _ o u t ,
o u t p u t w i r e m_clk , b _ c l k , d a c _ l r _ c l k , a d c _ l r _ c l k ,
o u t p u t w i r e dacdat ,
i n p u t w i r e adedat ,

9 o u t p u t w i r e l o a d . d o n e . t i c k
) ;

/ / symbolic constants
l o c a l p a r a m M.DVSR - 2;

i4 l o c a l p a r a m B.DVSR - 3 ;
l o c a l p a r a m LR.DVSR - 5;

/ / signal declaration
r e g [M.DVSR-1:0] m . r e g ;

i» w i r e [M_DVSR-1:0] m . n e x t ;
reg [B_DVSR-1:0] b . r e g ;
w i r e [B.DVSR-1:0] b . n e x t ;
reg [LR.DVSR-1:0] l r . r e g ;
w i r e [LR.DVSR-1:0] l r . n e x t ;

24 reg [3 1 : 0] d a c . b u f . r e g , a d c . b u f . r e g ;
w i r e [3 1 : 0] d a c . b u f . n e x t , a d c . b u f . n e x t ;
r e g l r . d e l a y e d . r e g , b . d e l a y e d . r e g ;
w i r e m_12_5m_tick, l o a d . t i c k , b . n e g . t i c k , b . p o s . t i c k ;

29 / / body
// = ^ = ^ = _ ^ = ^ ^ = = _
/ / clock signals for codec digital audio interface

// — =
/ / registers

34 a l w a y s Q (p o s e d g e e l k , p o s e d g e r e s e t)
i f (r e s e t)

b e g i n
m.reg <» 0;
b . r e g <- 0;

39 l r . r e g <■ 0 ;
d a c . b u f . r e g <- 0;
a d c . b u f . r e g <» 0;
b . d e l a y e d . r e g <» 1'bO;
l r . d e l a y e d . r e g <= 1'bO;

44 end
e l s e

b e g i n
m.reg <= m . n e x t ;
b . r e g <- b . n e x t ;

49 l r . r e g <■ l r . n e x t ;
d a c . b u f . r e g <= d a c . b u f . n e x t ;
a d c . b u f . r e g <» a d c . b u f . n e x t ;
b . d e l a y e d . r e g <= b . r e g [B . D V S R - 1] ;
l r . d e l a y e d . r e g <= l r . r e g [L R . D V S R - 1] ;

54 end
/ / codec 12.5 MHz m.clk (master clock)
// ideally should be 12.288 MHz
a s s i g n m.next - m.reg + 1 ; / / mod—4 counter

www.it-ebooks.info

http://www.it-ebooks.info/

CODEC DATA ACCESS CONTROLLER 571

a s s i g n m_clk = m_reg[M_DVSR-1];
59 assign m_12_5m_tick » (m_reg-»0) ? l'bl : 1'bO;

/ / b.clk (m.clk / 8 = 32*48 KHz)
assign b_next = m_12_5m_tick ? b_reg + 1 : b.reg; / / mod—8 counter
assign b.clk - b.reg[B.DVSR-1];
/ / neg edge of b.clk

64 assign b.neg.tick ■ b.delayed.reg & "b.reg[B.DVSR-1];
/ / pos edge of b.clk
assign b.pos.tick = "b.delayed.reg & b.reg[B_DVSR-1];
/ / adc./dac.lr.clk (dac.lr.clk / 32 = 48 KHz)
assign lr.next = b.negjtick ? lr.reg + 1 : lr.reg; / / mod—32 counter

«a assign dac.lr.clk - lr.reg[LR.DVSR-1];
assign adc.lr.clk = lr.reg[LR.DVSR-1];
/ / load DAC tick at the O—to — 1 transition of dac.lr.clk
assign load.tick « "lr.delayed.reg & lr.reg [LR.DVSR-1];
assign load.done.tick » load tick;

74 / / = = —
/ / DAC buffer to shift out data
// data shifted out at b.clk 1—to—O edge

//
assign dac.buf.next » load.tick ? dac.data.in :

7<J b.neg.tick ? {dac.buf _reg [30:0] , 1'bO} :
dac.buf_reg;

assign dacdat - dac.buf_reg [31];

/ /
/ / ADC buffer to shift in data

84 / / data shifted out at the b.clk l—to—0 edge from ADC
// use 0—to — l edge to latch in ADC data

// = — — — = '
assign adc.buf.next » b.pos.tick ? {adc.buf_reg[30:0], adcdat} :

adc.buf_reg;
89 assign adc.data.out » adc.buf_reg;

endmodule

The first part of the code is to generate the mclk, bclk, adc l rc , and dac l rc
clocks, which are labeled m.clk, b.clk, adc_lr_clk, and dac . l r . c lk . The speci-
fication indicates that mclk frequency should be 12.288 MHz. Since DEI board's
system clock is 50 MHz, we can construct a 2-bit (i.e., mod-4) binary counter to
obtain a 12.5-MHz signal (with a tolerable 1.7% error) and use the MSB of the
counter for m.clk. With the dual-channel, 16-bit resolution and 48-K sampling
rate configuration, 1.536 M bits (i.e., 2*16*48K bits) are transmitted per second
and thus the bclk frequency should be 1.536 MHz. Note that this frequency is
one eighth of the designated mclk frequency and thus we can construct a 3-bit (i.e.,
mod-8) binary counter to obtain b .c lk from the m_clk counter. There are 32 bits in
each stereo sample and we can use a 5-bit (i.e., mod-32) binary counter, lr_reg, to
obtain the alignment clock. The MSB of lr_reg output is then fed to adc . l r . c lk
and dac . l r . c lk .

Several status signals are created to facilitate the data processing. The b_neg_tick
and b .pos . t ick signals are asserted for one clock cycle when there is a high-to-low
transition and low-to-high transition in b.clk. The load- t ick signal is asserted for
one clock cycle when there is a low-to-high transition in lr_reg. It indicates the
completion of the processing of one stereo data sample.

The incoming serial ADC data are stored in a 32-bit shifting register, adcbuf _reg.
Recall that the codec puts a new bit of data at the falling edge of bclk. We shift in
the bit at the rising edge in which the data bit should be stable. The code segment
is

www.it-ebooks.info

http://www.it-ebooks.info/

572 AUDIO CODEC CONTROLLER

ass ign adc_buf_next =
b_pos_t ick ? { a d c . b u f _ r e g [3 0 : 0] , adcda t} : adc_buf_reg;

This shifting operation performs continuously. The rising edge of the alignment
clock, represented by load-t ick, marks the completion of transmitting current
data sample. It is connected to load_done_tick as an output status signal to
inform the external circuit that a 32-bit data is ready.

The outgoing DAC data are shifted out via the 32-bit shift register, dac.buf _reg.
The code segment is

a s s ign dac .buf„nex t =
l o a d _ t i c k ? dac_da ta_ in :
b_neg_t ick ? {dac .buf_reg [30:0] , 1'bO} :

dac_buf_reg;
a s s ign dacdat = dac .buf_reg [31] ;

The load- t ick signal can be interpreted as the beginning of the new data transfer
and the 32-bit input data, dac_data_in, is loaded to the register. It is then shifted
to the left by one position at the falling edge of bclk, as required by WM8731
specification. The MSB is connected to the serial out line, dacdat.

19.4 AUDIO CODEC CONTROLLER IP CORE DEVELOPMENT

19.4.1 Complete audio codec controller

The top-level diagram of a complete audio codec controller is shown in Figure 19.9.
It consists of the I2C controller, data access controller, and two FIFO buffers. The
FIFO buffers provide cushion space for the ADC and DAC data, which are received
and transmitted at a constant rate. The load_done_tick is used to write new 32-
bit data to the ADC FIFO and load (and remove) new 32-bit data from the DAC
FIFO. The HDL code follows the block diagram and is shown in Listing 19.3.

Listing 19.3 Audio codec controller
module codec.top

«(parameter FIFO.SIZE - 3)
(
input wire e lk , reset ,

5 //to WM8731
output wire m_clk, b_clk, dac_lr_c lk , adc_lr_c lk ,
output wire dacdat,
input wire adcdat ,
output wire i 2 c _ s c l k ,

iu ¡nout wire 12c_sdat ,
/ / to main system
input wire ur_i2c ,
input wire [23:0] 12c_packet,
output wire 12c_ ld l e ,

is input wire rd_adc_f i f o ,
output wire [31:0] adc_f i f o_out ,
output wire adc_fifo.empty ,
input wire wr_dac_fifo ,
input wire [31:0] dac_ f i fo_ in ,

2o output wire dac_f i fo_ fu l l ,
output wire sample t i c k

) ;

www.it-ebooks.info

http://www.it-ebooks.info/

AUDIO CODEC CONTROLLER IP CORE DEVELOPMENT 5 7 3

i2c_sclk ·*-

¡2c_sdal —

¡2c_sdk

¡2c_sdal

din

wr ¡2c

i2c_idle

I2C Controller

— ¡2c_packet

— wrJ2c

-*■ ¡2c ¡die

adcdat

daedal

ade fifo oul

rd_adc..fifo
p- adc_ifo_empty

dac_ffo_¡n

wr dac fifo

* dac_fifo_full

Figure 19.9 Top-level block diagram of audio codec interface.

/ / signal declaration
wire [31:0] dac_data_in,
wire dac_done_tick ;

adc_data_out;

.d in(i2c .packet) ,
i2c_id le(i2c_id le) ,

/ / body
assign sample.tick ■ dac_done_tick;
/ / instantiate i2c unit
i2c i2c_unit

(.clk(clk), .reset(reset) , .wr_i2c(wr_i2c),
.i2c_sclk(i2c_sclk) , .i2c_sdat(i2c_sdat),
.i2c_done_tick(), .i2c_fail());

// instantiate codec dac/adc
adc.dac a.unit

(.clk(clk), .reset(reset),
.dac_data_in(dac_data_in), .adc_data_out(adc_data_out),
.m_clk(m_clk), .b_clk(b_clk), .dac_lr_clk(dac_lr_clk),
.adc_lr_clk(adc_lr_clk), .load_done_tick(dac_done_tick),
.dacdat(dacdat), .adcdat(adcdat));

// instantiate adc fifo
fifo #(.DATA_WIDTH(32), .ADDR_WIDTH(FIFO_SIZE)) f_unit0

(.clk(clk), .reset(reset), .rd(rd_adc_fifo),
.wr(dac_done_tick), .w_data(adc_data_out),
. empty(adc_f if o_empty) , .fullO, . r_data(adc_f if o.out));

// instantiate dac fifo
fifo #(.DATA_WIDTH(32), .ADDR_WIDTH(FIFO_SIZE)) f.unitl

(.clk(clk), .reset(reset), .rd(dac_done_tick),

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

5 7 4 AUDIO CODEC CONTROLLER

rd_adc_fifo ·*-

adc_fifo_out

from processor

from external system

selection signal
from processor

- ^ to processor

- p . to external system

wr_dac_fifo ·*

dac_fifo_in

from processor

from external system

from processor

from external system

selection signal
from processor

Figure 19.10 Routing for the ADC and DAC data streams and control.

i .wr (wr_dac_ f i fo) , . w _ d a t a (d a c _ f i f o _ i n) ,
. emptyO, . f u l l (dac_f i f o_f u l l) , . r _ d a t a (d a c _ d a t a _ i n)) ;

endmodule

19.4.2 Avalon interfaces

The wrapping circuit for the audio codec controller should include an Avalon MM
slave interface to interact with the host, a clock input interface for the system clock,
and a conduit interface for the external signals. One design is to use the Nios II
processor to process and buffer the ADC and DAC data streams and assign the
signals on the right side of the diagram of Figure 19.9 to the Avalon MM interface.
However, since the ADC and DAC data streams tend to be continuous and at a
fairly high rate, it is possible that the data comes from or goes to an external
component rather than through the processor. For example, during the playback
of an audio file, the data may be routed directly from a flash card. To increase
flexibility, we add additional routing logic so that the codec controller's ADC and
DAC data streams can be connected to the processor (via the Avalon MM interface)
or external components. The conceptual diagram is shown in Figure 19.10. We
assume that the external component is connected via a conduit interface. We use
three 2-to-l multiplexers to select control signals and DAC data streams and route
the ADC data streams to both the Avalon MM interface and conduit interface.
Note that the selection signals of the multiplexers are assigned to the Avalon MM
interface so that the processor can specify the routing choice. This feature is used
in Chapter 23.

www.it-ebooks.info

http://www.it-ebooks.info/

AUDIO CODEC CONTROLLER IP CORE DEVELOPMENT 5 7 5

19.4.3 Register map

A Nios II processor interacts with the audio codec controller as follows:
• check (i.e., read) various status signals.
• receive (i.e., read) 32-bit audio data from the ADC FIFO buffer.
• issue (i.e., write) a command to a configuration register via the I2C bus.
• set up (i.e., write) the data stream selection register.
• transmit (i.e., write) 32-bit audio data to the DAC FIFO buffer.

The registers, their address offsets, and fields are:
• Read addresses (data to cpu)

- offset 1 (status register)
* bit 0: asserted (i.e., 1) when I2C controller is idle
* bit 1: asserted (i.e., 1) when DAC FIFO is full
* bit 2: asserted (i.e., 1) when ADC FIFO is empty

- offset 3 (ADC data register)
* bits 31 to 0: 31-bit audio data from ADC

• Write addresses (data from cpu)
- offset 0 (I2C data register)

* bits 23 to 0: 24-bit codec command packet to I2C bus
- offset 1 (codec data stream selection register)

* bit 0: select Avalon MM interface for codec DAC data stream when
it is 0 and select conduit interface when it is 1.

* bit 1: select Avalon MM interface for codec ADC data stream when
it is 0 and select conduit interface when it is 1.

- offset 2 (DAC data register)
* bits 31 to 0: 31-bit audio data to DAC

19.4.4 Wrapped audio codec controller

The HDL code of the wrapped audio codec controller is shown in Listing 19.4.

Listing 19.4 Wrapped audio codec controller
module chu_avalon_audio

»(parameter FIF0.SIZE - 3) / / 2'FIFO.SIZE words
3 (

input wire elk , r e s e t ,
/ / Avalon MM interface
input wire [1:0] a u d i o . a d d r e s s ,
input wire a u d i o . c h i p s e l e c t , a u d i o . w r i t e , a u d i o . r e a d ,

a input wire [31:0] a u d i o . v r i t e d a t a ,
output wire [31:0] a u d i o . r e a d d a t a ,
/ / conduit interface (to codec chip)
output wire m_clk, b . c l k , d a c _ l r _ c l k , a d c _ l r _ c l k ,
output wire d a c d a t ,

13 input wire adedat ,
output wire i2c_sc lk ,
inout wire 12c_sdat ,
/ / conduit interface (to other systems in FPGA)
i n p u t w i r e c o d e c _ a d c _ r d , c o d e c _ d a c _ u r ,

its o u t p u t w i r e c o d e c _ s a m p l e _ t l c k ,
i n p u t w i r e [3 1 : 0] c o d e c _ d a c _ d a t a _ i n ,

www.it-ebooks.info

http://www.it-ebooks.info/

576 AUDIO CODEC CONTROLLER

o u t p u t w i r e [3 1 : 0] c o d e c _ a d c _ d a t a _ o u t
) ;

23 / / signal declaration
r e g [1 : 0] d b u s _ s e l _ r e g ;
w i r e wr_en , w r _ i 2 c , i 2 c _ i d l e , w r _ s e l ;
w i r e [3 1 : 0] d a c _ f i f o _ i n , a d c _ f i f o _ o u t ;
w i r e w r _ d a c _ f i f o , c p u _ u r _ d a c _ f i f o , r d _ a d c _ f i f o , c p u _ r d _ a d c _ f i f o ;

28 w i r e adc_f i f o_empty , d a c . f i f o_f u l l ;

// body
// =
// instantiate codec controller

33 // = = —

codec.top #(.FIF0_SIZE(FIF0_SIZE)) codec.unit
(.clk(clk), .reset(reset),
.i2c_sclk(i2c_sclk), .i2c_sdat(i2c_sdat),
. m _ c l k (m _ c l k) , . b _ c l k (b _ c l k) , . d a c _ l r _ c l k (d a c _ l r _ c l k) ,

38 . a d c _ l r _ c l k (a d c _ l r _ c l k) , . d a c d a t (d a c d a t) , . a d c d a t (a d c d a t) ,
. w r _ i 2 c (w r _ i 2 c) , . i 2 c . i d l e (i 2 c . i d l e) ,
.i2c_packet(audio.writedata[23:0]),
.rd.adc.fifo(rd.adc.fifo), .adc.fifo.empty(adc.fifo.empty),
.adc.fifo.out(adc.fifo.out), .wr.dac.fifo(wr.dac.fifo),

43 .dac.fifo.full(dac.fifo.full), .dac.fifo.in(dac.fifo.in),
.sample_tick(codec_sample_tick));

/ / = ^ = = = = = ^ =
// registers , write decoding, and read multiplexing

48 / / =
/ / data stream selection register
a l w a y s <5(posedge e l k , p o s e d g e r e s e t)
i f (r e s e t)

d b u s . s e l . r e g <= 2'bO;
53 e l s e

i f (u r . s e l)
d b u s . s e l . r e g <= a u d i o . w r i t e d a t a [1 : 0] ;

/ / write decoding
o» a s s i g n w r . e n - a u d i o . u r i t e k a u d i o . c b i p s e l e c t ;

a s s i g n wr_ i2c = (a u d i o . a d d r e s s — 2 ' b O O) k w r . e n ;
a s s i g n w r . s e l = (a u d i o . a d d r e s s — 2 ' bOi) k w r . e n ;
a s s i g n c p u . w r . d a c . f i f o » (a u d i o _ a d d r e s s » - 2 ' b l O) k
a s s i g n c p u . r d . a d c . f i f o - (a u d i o _ a d d r e s s - - 2 ' M l) k

β3 a u d i o . c h i p s e l e c t ;
/ / read multiplexing
a s s i g n a u d i o . r e a d d a t a *

(a u d i o _ a d d r e s s ~ 2 ' b l l) ?
a d c . f i f o . o u t :

es { 2 9 ' b O , a d c . f i f o . e m p t y , d a c . f i f o . f u l l ,

/ / = ^ = =
/ / data stream routing & control
// = ^ =

73 a s s i g n w r . d a c . f i f o =
d b u s . s e l . r e g [0] ? c o d e c . d a c . w r : c p u . w r . d a c . f i f o ;

a s s i g n d a c . f i f o . i n -
d b u s . s e l . r e g [0] ? c o d e c . d a c _ d a t a . i n : a u d i o . w r i t e d a t a ;

a s s i g n r d . a d c . f i f o =
78 d b u s . s e l . r e g [1] ? c o d e c . a d c . r d : c p u . r d . a d c . f i f o ;

a s s i g n c o d e c . a d c _ d a t a . o u t « a d c . f i f o . o u t ;
endmodule

wr.en;
audio.read k

i2c_idle};

www.it-ebooks.info

http://www.it-ebooks.info/

CODEC DRIVER 577

The circuit includes a 2-bit register, dbus_sel_reg, for the codec data stream selec-
tion signal, write decoding logic, read multiplexing logic, and data stream routing
logic. The decoding logic and multiplexing logic are similar to those of the wrapped
PS2 controller discussed in Section 17.5.3 except for the read ADC FIFO opera-
tion. To accommodate a faster rate, we remove the data item from the FIFO buffer
during the read operation without using a separate removal operation. This is done
by decoding the read instruction for the FIFO read (i.e., removal) signal:

a s s ign cpu_rd_adc_fi fo =
(a u d i o _ a d d r e s s = = 2 ' M l) & a u d i o . r e a d & a u d i o . c h i p s e l e c t ;

The data stream selection is performed by the dbus_sel_reg register and the
routing circuit. The desired data stream is written to the register and its output
is used to select the control signals and DAC input data stream (the signals with
codec, prefix are designed for external connections):

a s s ign wr_dac_fifo =
dbus_se l_reg [0] ? codec_dac_wr cpu_wr_dac_fifo;

a s s ign dac_ f i fo_ in =
dbus_se l_reg [0] ? codec_dac_data_in : a u d i o _ w r i t e d a t a ;

a s s ign rd_adc_f i fo =
dbus_se l_reg [1] ? codec_adc_rd : cpu_rd_adc_f i fo ;

a s s ign codec_adc_data_out = adc_ f i fo_ou t ;

19.4.5 SOPC component creation

After constructing the wrapped audio codec controller, we can create a new SOPC
component in Component Editor following the procedure outlined in Section 15.5.4.
It then can be treated as a normal IP core and integrated into a Nios II system.
Note that the reading and writing FIFO buffer is done in one clock cycle and thus
the wait time fields in the Avalon MM interface must be cleared to 0's.

19.5 CODEC DRIVER

The audio codec driver consists of a collection of routines to configure the device,
retrieve ADC data, and transmit DAC data. To make the code clear, we define the
address offsets as symbolic register names in the header file:

»def ine CHU_AUD_I2C_DATA_REG 0
»def ine CHU_AUD_STATUS_REG 1
«def ine CHU_AUD_DBUS_SEL_REG 1
«def ine CHU_AUD_DAC_DATA_REG 2
»define CHU_AUD_ADC_DATA_REG 3

19.5.1 l2C command routines

There are two basic functions related to issuing a command packet:
• audio_i2c_is_idle(): check whether the I2C controller is idle.
• audio_i2c_wr_cmd(): issue (i.e., write) a 24-bit command packet.

The two routines are shown in Listing 19.5.

www.it-ebooks.info

http://www.it-ebooks.info/

578 AUDIO CODEC CONTROLLER

Listing 19.5

i n t a u d i o _ i 2 c _ i s _ i d l e (a l t _ u 3 2 a u d i o . b a s e)
{

al t_u32 s t a t u s . r e g ;
i n t i 2 c _ i d l e _ b i t ;

s t a t u s . r e g - IORD(audio_base, CHU.AUD.STATUS.REG);
i 2 c _ i d l e _ b i t - (i n t) (s t a t u s . r e g k 0x00000001);
r e t u r n i 2 c _ i d l e _ b i t ;

}

void audio_i2c_wr_cmd(al t_u32 a u d i o . b a s e , a l t u8 addr , a l t _ u l 6 cmd)
{

const a l t_32 i2c_ id = 0x00000034;
a l t_u32 p a c k e t ; / / data written to i2c; only 24 LSBs used

packet = i 2 c _ i d ;
packet » (packet << 7) + (addr k 0x07f) ; / / append 7—bit address
packet = (packet << 9) + (cmd k OxOlff); / / append 9—bit command
IOWR(audio_base, CHU_AUD_I2C_DATA_REG , (a l t _u32) p a c k e t) ;

}

The audio_i2c_is_idle 0 function extracts the idle bit from the status register.
The audio_i2c_wr_cmd() function assembles the data to a 24-bit packet and sends
it to the I2C controller. The packet consists of four major fields. The first field
is the 7-bit slave device id and the second field is the read/write bit. WM8731's
id is 0011010. Since there is only one slave device on the bus and the master
always performs a write operation, these fields do not change. The two fields are
concatenated to form the first byte, which is 0x34 (i.e., 00110100). The third and
fourth fields are a 7-bit configuration register address and 9-bit configuration data
passed from the calling function. These fields are concatenated to form the final
24-bit packet and written to the I2C controller. The configuration addresses and
data are summarized in Figure 19.2.

19.5.2 Data source select routine

The audio_wr_src_sel() function writes the data stream selection register. The
code is shown in Listing 19.6.

Listing 19.6
void audio.wr.src sel(alt_u32 audio base, int dac sel, int adc.sel)
{
alt_u32 sel.reg - 0x00000000;

if (dac_sel!-0)
sel.reg - sel.reg I 0x00000001; // set LSB to 1

if (adc.sel!-0)
sel.reg - sel.reg I 0x00000002; // set 2nd LSB to 1

I0WR(audio_base, CHU_AUD_DBUS_SEL_REG, sel.reg);
}

19.5.3 Device initialization routine

The aud ic in i t () function configures the WM8731 device to a desired initial state.
It is shown in Listing 19.7.

www.it-ebooks.info

http://www.it-ebooks.info/

CODEC DRIVER 579

Listing 19.7

void a u d i o _ i n i t (a l t _ u 3 2 audio_base)
{

/ * initial configuration values (registers RO to R9) */
const a l t _ u l 6 cmds[10]-{ / / only 9 LSBs used

0x0017, / / RO: left line in gain 0 dB
0x0017, / / Rl: right line in gain 0 dB
0x0079, / / R2: left headphone out volume 0 dB
0x0079, / / R3: right headphone out volume 0 dB
0x0010, / / R4: analog path select: line —in to adc, dac to line —out
0x0000, / / R5: digital audio: high—pass filter , no de—emphasis
0x0000, // R6: enable all power
0x0001, / / R7: digital interface: left— adjust , 16-bit resolution
0x0000, / / R8: 48K sampling rate with 12.288MHz master clock
0x0001 / / R9: activate

} ;
i n t i ;

while (! a u d i o _ i 2 c _ i s _ i d l e (a u d i o . b a s e)) { } ; / / wait until %2c idle
/* write a dummy data to R15 to reset the codec */
a u d i o _ i 2 c _ v r . c m d (a u d i o . b a s e , 15, 0) ;
/ * cycle through 10 commands */
for (i - 0 ; i<10; i++H

while (! a u d i o _ i 2 c _ i s _ i d l e (a u d i o . b a s e)) { } ; / / wait until i2c idle
audio_i2c_wr_cmd(audio_base, i , c m d s [i]) ; / / send a command packet

}
a u d i o _ w r _ s r c _ s e l (a u d i o . b a s e , 0 , 0) ; / / dac/adc to Avalon bus

}

A constant array, cmd[10], is used to define the data for configuration registers
R0 to R9. In the code, we first reset the codec device by writing a dummy packet
to R15 and then write configuration data to registers R0 to R9 sequentially and
then connect the codec data stream to the Avalon MM interface. Recall that the
register R7 and R8 define the digital interface format, resolution, and sampling
rate, and thus their contents should not be modified.

19.5.4 Audio data access routines

The data access routines check the statuses of FIFO buffers, retrieve audio data
from the ADC FIFO, and transmit audio data to the DAC FIFO. These functions
are shown in Listing 19.8.

Listing 19.8

int audio_dac_fifo_full(alt_u32 audio.base)
{
alt_u32 status.reg;
int dac_full_bit ;

status.reg - I0RD(audio.base, CHU_AUD_STAT0S_REG);
dac_full_bit = (int)((status.reg ft 0x00000002) » 1);
return dac.full.bit;

}

void audio_dac_wr_fifo(alt_u32 audio.base, alt_u32 data)
{
I0WR(audio_base, CHU AUD DAC DATA.REG , data);

}

www.it-ebooks.info

http://www.it-ebooks.info/

580 AUDIO CODEC CONTROLLER

int audio_adc_fifo_empty(alt u32 audio_base)
{

alt_u32 s ta tus_reg;
int adc_empty_bit;

s t a t u s . r e g = I0RD(audio_base, CHU_AUD_STATUS_REG);
adc_empty_bit = (i n t) ((s t a t u s . r e g k 0x00000004) >> 2) ;
return adc_empty_bit;

}

alt_u32 audio_adc_rd_fif o (a l t_u32 audio.base)

alt_u32 data .reg;

data.reg - I0RD(audio_base, CHU_AUD.ADC_DATA_REG);
return data.reg;

19.6 TESTING PROGRAM

The audio codec controller can be instantiated and integrated into a Nios II system
like a normal IP core. The system derived in Section 17.10.3 includes an audio codec
controller module and can be used for testing. We construct a simple program to
demonstrate and verify the driver routines. The program consists of the following
tests:

• Initialize audio codec.
• Record line input and store the data to a buffer.
• Record microphone input and store the data to a buffer.
• Generate a synthetic sinusoid wave and store the data to a buffer.
• Play the buffered data.
• Issue a command to a codec configuration register.
• Adjust the headphone volume.
• Display the buffered data on a VGA monitor.
• Clear the VGA screen.

The main program is shown in Listing 19.9.

Listing 19.9
int main(void)
{

const int SF-48000; / / sampling freq=48K
const int BUF_SIZE= 5*SF; / / 5 sec @ sampling frequency SF
alt_u32 but[BUF.SIZE];
int sw , btn , f req , vol , reg , cmd , i ;
alt_u8 disp.msg [4]={sseg_conv_hex(5) , 0x23, 0x2b, sseg_conv_hex(13)};

sseg_diap_ptn(SSEG_BASE , d isp .msg); / / show "Sond" for display
vga_clr_screen(VRAH_BASE,0); / / clear screen
audio.init(AUDIO.BASE);
btn_clear(BTN_BASE);
printf("Audio codec interface test \n\n");

while (1){
while (!btn_is_pressed(BTN_BASE)){ }; // wait for button
btn=btn_read(BTN_BASE) ; // read button

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 5 8 1

i f (btn & 0x02H / / keyl pressed
sw=pio_read(SWITCH_BASE); / / read switch
printf ("key/sw: */.d/%d\n" , btn, sw);

}
btn.clear(BTN.BASE);
switch (sw){

case 0: / / initialize codec controller
audio.init(AUDIO.BASE);
break;

case 1: / / record line input for 5 sec
audio_i2c_wr.cmd(AUDIO.BASE, 4, 0x0010); / / line—in to adc
for (i - 0 ; KBUF.SIZE; i++){

while(audio_adc_fifo.empty(AUDIO_BASE)){} / / wait if fifo empty
buf [i]-audio_adc_rd_fifo(AUDIO.BASE);

}
break;

case 2: / / record microphone input for 5 sec
audio_i2c_wr_cmd(AUDIO.BASE, 4 , 0x0015); / / mic to adc, boost
f o r (i » 0 ; i<BUF_SIZE; i++H

while(audio_adc_fifo.empty(AUDIO.BASE)){} / / wait if fifo empty
buf [i]»audio_adc_rd_fifo(AUDIO.BASE);

}
break;

case 3 : / / fill buffer with sinusoidal data
pr in t f ("enter frequency:");
scanf("7.d", fef req) ;
record_sin_wave(SF, freq , BUF.SIZE , buf);
p r i n t f (" s i n u s o i d a l wave recorded. \ n ") ;
break;

case 4: / / play buffered audio data repeatedly until a key pressed
while (!btn_is.pressed(BTN.BASE)){

f o r (i = 0 ; KBUF.SIZE; i++H
whi le(audio .dac . f i fo . ful l (AUDIO.BASE)){} / / wait if fifo full
audio.dac.wr.fifo(AUDIO_BASE , b u f [i]) ;

} / / end for
} / / end while
break;

case 5: / / i ssue codec command
pr in t f ("enter codec r e g i s t e r # :") ;
scanf ("*/.d" , ftreg);
pr in t f ("enter command (in h e x) : ") ;
scanf("%x", ftcmd);
audio_i2c_wr.cmd(AUDIO.BASE, (a l t _ u 8) r e g , (a l t_ul6)cmd);
printf ("send Ox'/.x to codec r e g i s t e r 7.d\n\n", cmd, reg) ;
break;

case 6: / / set volume
pr in t f ("enter volume (between 28 and 127) :") ;
scanf ("*/.d", fcvol);
set.volume(AUDIO.BASE, v o l) ;
printf("Volume s e t \ n ") ;
break;

case 7: / / plot buffered right— and left—channel data
plot.audio.buffer(VRAM.BASE, buf);
break;

case 8: / / clear screen
v g a . c l r . s c r e e n (VRAM.BASE ,0) ;
break;

} //end switch
} // end while

y

www.it-ebooks.info

http://www.it-ebooks.info/

5 8 2 AUDIO CODEC CONTROLLER

The program uses a one-dimensional array, buf [] , to store five seconds of audio
data. Since the sampling rate is 48 K samples per second, the size of the buffer is
5*48000. The audio data can be obtained from the line or microphone input via
ADC or manually synthesized, and then played back via DAC. We also implement
an auxiliary function to display the buffered data on the VGA screen. The pro-
gram's basic structure is similar to that in Listing 17.12. We use slide switches
to specified the desired test and use the pushbutton switch 1 (labeled keyl on the
board) to initiate the test. The relevant functions are discussed in the following
subsections.

Sinusoidal wave generation routine The record_sin_wave() function generates dig-
itized sinusoidal data points and stores them to a buffer. The function is shown in
Listing 19.10.

Listing 19.10
void record_sin_wave(int s f , int f req , int s i z e , alt_u32 *buf)
{

const f loa t PI«3.14159;
const f l o a t AMP.MAX- 32767.0; / / max amplitude (2Ί5-1)
f loa t amp;
int npoint , ncycle , i , j ;
alt_u32 l e f t , r i gh t ;

npoint = s f / f r e q ; / / # of steps in one period
/* construct 1st cycle */
for (i=0; Knpo in t ; i + +) {

amp " s i n ((f l o a t) i / (f l o a t) n p o i n t * 2.0 * PI) ;
l e f t = (a l t_u32) (amp * AMP.MAX); / / left channel; 16 LSBs used
amp = c o s ((f l o a t) i / (f l o a t) n p o i n t * 2.0 * PI) ;
right » (a l t_u32) (amp * AMP.MAX); / / right channel; 16 LSBs used
buf [i] = (l e f t << 16) + r i g h t ; / / combine two channels

y
/* duplicate the 1st cycle for the remaining ncycle—1 cycles */
/* no data for the last fractional cycle */
ncycle * s i z e / n p o i n t ;
for (j - 1 ; j<ncyc le ; j++){

for (i - 0 ; i<npoint; i++){
b u f [j » n p o i n t + i] = b u f [i] ;

} / / end for i
} // end for j

y

The input arguments are the sampling frequency sf, the desired sinusoidal fre-
quency freq, and the pointer to the buffer. The amplitude is set to the maximal
swing, which is defined by AMP.MAX. Since the audio data are defined as a 16-bit
signed number, the maximal amplitude is 215 — 1.

In the routine, we first calculate the number of data points in one cycle and
then create the audio data for the first cycle, using s i n () for the left channel and
cos() for the right channel. Since the s i n () and cos() functions involve many
floating-point operations and are time consuming, we fill the remaining buffer by
replicating the data from the first cycle.

Volume control routine We can adjust the headphone volume through WM8731
device's configuration register. The volume is controlled by the 7-bit LHPV0L and
RHPV0L fields. They are logarithmically adjustable from +6 dB to - 7 3 dB in 1-dB

www.it-ebooks.info

http://www.it-ebooks.info/

AUDIO FILE PROCESSING 583

steps. The value 121 (0x79) is defined to be 0 dB ("normal volume") and values 127
(0x7f) and 48 (0x30) correspond to +6 dB and - 7 3 dB. Any value smaller than 48
mutes the output. The set_volume() function is shown in Listing 19.11. It first
checks the maximal volume and then writes configuration registers R2 and R3.

Listing 19.11
void set .vo lume(al t_u32 audio.base , int vol)
{

int cmd;

i f (vol>0x7f) / / exceed maximal volume
cmd » 0x7f ;

while (! a u d i o . i 2 c _ i s _ i d l e (a u d i o . b a s e)) { } ;
audio_i2c_wr_cmd(audio_base, 2, (a l t _ u l 6) cmd);

while (! a u d i o . i 2 c _ i s _ i d l e (a u d i o . b a s e)) { } ;
audio_i2c_wr_cmd(audio_base, 3 , (a l t _ u l 6) cmd);

}

Buffer plotting routine The plot_audio_buf f e r () function displays the stored data
on the VGA screen. The range of the x-axis is from 0 to 4 ^ 0 second, which
correspond to the first 640 data points in the buffer, and the range of the y-axis
is adjusted to accommodate the maximal amplitude swing. The code is shown in
Listing 19.12.

Listing 19.12
void plot_audio_buffer(a l t_u32 vga .grf„base , alt_u32 *buf)
{

int i , j ;
alt_16 y_left, y.right;

f o r (i - l ; i<640; i++){
y . r ight - (a l t_16) (OxOOOOffff * b u f [i]) ;
y . l e f t = (a l t_16) (buf [i]>>16) ;
j=480 - ((i n t) y _ l e f t / 2 5 6 + 480 /2) ;
vgag_wr_pix(vga_grf_base, i , j , OxeO);
j»480 - ((i n t) y . r i g h t / 2 5 6 + 480 /2) ;
vgag_wr_pix(vga_grf_base, i , j , 0x03);

}
}

19.7 AUDIO FILE PROCESSING

A common application of an audio codec is to play pre-recorded audio files. In this
section, we introduce a minimal procedure to process audio files and retrieve data.
The procedure is not comprehensive or efficient but just helps us get started.

19.7.1 WAV format overview

There are many audio file formats and most of them involve sophisticated data
compression schemes, which are beyond the scope of this book. We consider the
simplest form of WAV format in this section. The WAV (or WAVE) file format
is a subset of RIFF (resource interchange file format) specification for storage of

/ / right channel data
// left channel data
// adjust y to -128/127
// plot left channel red
// adjust y to -128/127
// plot right channel blue

www.it-ebooks.info

http://www.it-ebooks.info/

584 AUDIO CODEC CONTROLLER

Table 19.1 WAV chunk and sub-chunk information

Offset

0x00
0x04
0x08

0x0c
0x10
0x14
0x16
0x18
0x1c
0x20
0x22

0x24
0x28
0x2c

Size

4
4
4

4
4
2
2
4
4
2
2

4
4
*

Purpose

chunk id
chunk size (bytes)
format

sub-chunk id
sub-chunk size (bytes)
audio format
number of channels
sampling rate
byte rate (bytes per second)
block alignment (bytes
resolution

sub-chunk id

in one sample)

sub-chunk size (number of bytes
audio data sample starting here

in data)

value

"RIFF"

"WAVE"

"fmt "
16 (for PCM)
1 (for PCM)
2
48000
192000 (48000*2,16)

4(ψ)
16

"data"

multimedia data. A simple WAV file frequently contains a single WAVE chunk. The
chunk consists of an fmt sub-chunk, which provides information on audio format,
and a data sub-chunk, which contains the actual audio data. For simplicity, we
assume that the WAV file has been pre-processed to conform to our audio codec
controller specification:

• Audio data format: not compressed, which is known as PCM (pulse coded
modulation) format.

• Number of channels: 2.
• Sampling rate: 48,000 samples per second.
• Resolution: 16 bits per data sample.

A typical WAV file contains an RIFF chunk descriptor, an fmt sub-chunk, and a
data sub-chunk. The fields are summarized in Table 19.1. Each row shows the
address offset, the size (in terms of bytes), purpose, and the value used in our
format specification.

19.7.2 Audio format conversion program

Since our demonstration code only accepts a specific format, an audio file usually
needs to be preprocessed in advance. A free utility program, SoX (for "Sound
eXchange"), can be used to perform this task. SoX is a versatile audio process-
ing command-line utility that can convert audio files from one format to another
format. The following statement converts a WAV file (input.wav) with arbitrary
parameters to a file (output .wav) with our desired format:

sox input.wav -r 48000 -b 16 -c 2 -e signed output.wav

The -r, -b, -c, and -e options represent sampling rate, bits per sample (resolution),
number of channels, and encoding scheme, respectively. The signed option means
that the encoding type is PCM and the data are stored in signed (two's complement)

www.it-ebooks.info

http://www.it-ebooks.info/

AUDIO FILE PROCESSING 585

format. The executable file and detailed documentation of SoX can be found in
http://sox.sourceforge.net/.

19.7.3 Audio data retrieval routine

The discussion and procedure used to process bitmap files in Section 18.9 can
be applied to the audio WAV file as well. A similar read_wav_file() can be
constructed and the code is shown in Listing 19.13.

Listing 19.13

i n t r ead_wav_f i l e (cha r * f i l e . n a m e , a l t_u32 *buf)
{

/* note that fget32 read in little endian, but id in big endian */
const a l t_u32 RIFF.ID - 0x46464952;
const a l t_u32 WAVE.ID - 0x45564157;
const a l t_u32 FMT.ID - 0x20746d66;
const a l t_u32 DATA.ID » 0x61746164;

//ascii for FFIR
//ascii for EVAW
//ascii for \btmf
//ascii for ATAD

FILE *fp;
alt_u32 r_id , w_id, f_id , d_id, srate , data.size;
alt_ul6 compression, channel, res;
int 1, s.size;

/* open the file */
fp = fopen(file.name,"rb");
if (ip==NULLH

printf("Error: cannot open file 5Cs.\n", file.name);
return(-l);

}
/* extract relevant chunk/subchunk info */
r_id = fget32(fp);
fskip(fp,4);
w_id - fget32(fp);
f_id - fget32(fp);
fskip(fp,4);
compression = fget 16(fp) ;
channel » f g e t l 6 (f p) ;
s r a t e » f g e t 3 2 (f p) ;
f s k i p (f p , 4) ;
f s k i p (f p , 2) ;
r e s » f g e t l 6 (f p) ;
d_id = f g e t 3 2 (f p) ;
d a t a . s i z e - f g e t 3 2 (f p) ;

/ / offset
// offset
// offset 8
// offset 12
// offset 16
// offset 20
// offset 22
// offset 24
// offset 28
// offset 32
// offset 34
// offset 36

"RIFF" chunk id
chunk size
"WAVE" chunk id
"fmt " subchunk id
subchunk size
1 for PCM
2 for stereo
48K sampling rate
byte rate
block size
16 bits resolution
"data" subchunk id
bytes of data subchunk // offset 40:

/* check chunck/'subchunk ids and paramters */
if ((r_id!-RIFF.ID) II (u_id!-WAVE_ID) II (f_id!=FMT_ID) II

(d_id!=DATA_ID) I I (compression!-1) II (channel!=2) II
(srate1-48000) II (res!-16)){

printf("Error: incorrect wave file format\n");
printf("Must be PCM, 2 channels, 48K rate, 16-bit resolution A n ") ;
printf C'RIFF/WAVE/fmt /data ids: y.08x/X08x/7.08x/7.08x\n" ,

r_id,w_id,f_id,d_id);
printf ("compression/channel/rate/res/data_szie : '/.d/Xd/*/,d/y.d/7,d\n" ,

compression, channel, srate, res, data.size);
fclose(fp);
return(-l);

}
s_size = data.size/4;
printfC'File opened.\n # audio data samples: %d\n", s.size);
for (i=0; i<s_size; i++) {

www.it-ebooks.info

http://www.it-ebooks.info/

5 8 6 AUDIO CODEC CONTROLLER

/ / get 32-bit data
b u f [i] - f g e t 3 2 (f p) ;
i f (iXlOOO — 0)

p r i n t f (" . ") ;
}
f c l o s e (f p) ;
printf("\nFile loaded.\n");
return(0);

}

The first part of the code extracts various chunk and sub-chunk fields and veri-
fies that the file conforms to our specific format. We use four constants, RIFF.ID,
WAVE-ID, FMT.ID, and DATA.ID, for the designated id string. Since fget32() con-
structs the 32-bit data in "little-endian" byte order, the order of the ASCII char-
acters in these constants are revered (for example, "RIFF" is defined as "FFIR" in
RIFF-ID). The second part reads the audio data and stores them to a buffer. The
calling routine should allocate the buffer space and pass the buffer's pointer.

We construct a simple program to test the audio retrieval function. A SoX
generated file, trumpet.wav, is read into the buffer and played repeatedly. The
code is shown in Listing 19.14.

Listing 19.14
/ * file inclusion */
»include <stdio.h>
»include <unistd.h>
»include "system.h"
»include "chu- f i l e .h"
»include "chu_avalon_audio.h"

/* constants */
»define WAV_FILE_NAME "/mnt/host/trumpet.wav" / / path and ¡He name
«define BUF.SIZE (6»48000) / / 6 sec of audio data

int main(void){
alt_u32 buf[BUF.SIZE];
int i ;

audio_init(AUDIO-BASE);
printf (".Wave file test \n\n");
if (read.wav.file(WAV.FILE-NAME, buf)!-0){
printf("\n Fail to load wav file. \n");
return (0);

}
//printf("\nWave File loaded \n");
v h i l e U H

for (i=0 ; KBUF.SIZE; i++){
Hhile(audio_dac_fifo_full(AUDIO_BASE)){} / / wait if dac fifo full

audio_dac_wr_fifo(AUDIO-BASE, buf [i]) ;
} / / end for

} / / end while

Because no data compression is used in the file, its size can be fairly large. Each
second of audio data requires a buffer space of 192 KB (i.e., 4 8 0 0 ^*3 2) . The calling
function must take this into consideration and allocate adequate buffer space. Since
the data transfer rate of the host-based file is really low, it is only feasible for testing
purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHIC NOTES 587

19.8 BIBLIOGRAPHIC NOTES

Detailed information on the I2C bus can be found in PC-Bus Specification and
User Manual published by NXP Semiconductor. It can be downloaded from the
company's web site. The WM8731 manual is included in the DEI board distribution
CD and can also be downloaded from Wolfson Microelectronics's web site. The
WAV file format has many options. More detailed descriptions can be found on the
Wikipedia web site (searching by the keyword "wav").

Audio signal processing is a branch of DSP (digital signal processing). Under-
standing Digital Signal Processing, 2nd ed. by R. Lyons gives a comprehensive
introduction to DSP and Digital Audio Signal Processing, 2nd ed. by U. Zolzer
provides in-depth coverage on the audio-related topics. Digital Signal Processing
with Field Programmable Gate Arrays by U. Meyer-Baese discusses the FPGA im-
plementation of key DSP functions.

19.9 SUGGESTED EXPERIMENTS

19.9.1 Software l2C controller

Instead of using custom hardware for the I2C controller, we can connect the sda and
s c l signals to a 2-bit PIO core and use software and the existing timer functions to
generate and process the transitions. Properly configure the PIO core, derive the
new Nios II system, develop the driver routines, and verify its operation.

19.9.2 Hardware data access controller using master clocking mode

The data access controller in Section 19.3 assumes that WM8731 is configured in
slave clocking mode, in which the bclk, adc l rc , and dac l rc signals are generated
by the controller (i.e., FPGA device). Redesign the data access controller using
WM8731's master clocking mode, in which the codec device generates the relevant
clocking signals, and verify its operation. Note that the MS field of configuration
register R7 must be set to 1 to reflect the change.

19.9.3 Software data access controller using slave clocking mode

Instead of using custom hardware for a data access controller, we can use software
plus a timer core and a PIO core to generate various clock signals and to process
serial data. We also want to use WM8731's slave clocking mode in this experiment.
Properly configure the timer core and PIO core, derive the new Nios II system,
develop the driver routines, and verify its operation. Interrupt may be needed to
accommodate the fast date rate.

19.9.4 Software data access controller using master clocking mode

Repeat Experiment 19.9.3 but use WM8731's master clocking mode.

www.it-ebooks.info

http://www.it-ebooks.info/

5 8 8 AUDIO CODEC CONTROLLER

19.9.5 Configurable data access controller

The data access controller in Section 19.3 is designed with a fixed sampling rate
(48 kHz) and a fixed resolution (16 bits). WM8731 actually supports a range of
sampling rates (8 to 96 kHz) and resolutions (16 to 32 bits). Redesign the controller
so that the sampling rate and resolution can be dynamically reconfigured, develop
the driver routines, and verify its operation.

19.9.6 Voice recorder

Use the codec to design a voice recorder, which can record input from the micro-
phone and play back the recorded data. The system should support the following
functions:

• Adjust the gain of microphone input.
• Adjust the volume of headphone.
• Play or pause the playback.
• Start and stop the recording.
• "Fast forward" and "rewind" the recorded data.

Use proper combinations of slide switches and pushbutton switches to specify the
desired function. Derive the code for the system and verify its operation.

19.9.7 Real-time sinusoidal wave generator

In Section 19.6, the sinusoidal wave is stored in a buffer and then played back. An
alternative is to generate the data points in real time; i.e., generate a data value
every 4 8¿0 0 second and write the value to the DAC FIFO. To reduce computation
time, we can create a 512-entry sinusoidal function lookup table in advance and
generate the desired data point by reading the table and interpolation rather than
calling the computation-intensive s i n () function. Derive the code and verify its
operation.

19.9.8 Real-time audio wave display

In Section 19.6, the plot_audio_buf f e r () function displays the first 640 data points
in the buffer on the VGA screen. Derive a more advanced function that can display
the audio waveform continuously and in real time. The waveform can be either
incoming data from ADC or outgoing data to DAC. Adjust the time scale (i.e., x-
axis) and amplitude scale (i.e., y-axis) properly to obtain an observable waveform.

19.9.9 Echo effect

An echo is a delayed reflection of sound. If the original signal is f(t), the echo can
be expressed as a * f(t — d), where a is attenuation (a < 1) and d is path delay,
and the combined signal becomes f(t) + a * f(t — d). We can digitally create an
artificial echo effect with a codec. This can be done by digitizing the line input
by ADC, and storing the needed delayed data in a buffer, adding the echo to the
current input signal, and converting the combined signal to analog format by DAC.
Derive the function and verify its operation. The a and d should be adjustable.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED PROJECTS 589

19.10 SUGGESTED PROJECTS

19.10.1 Full-fledged l2C controller

The I2C controller designed in Section 19.2 is customized as a master to write three
bytes to the designated codec device. A more general controller should contain the
following features:

• Function as either a master or a slave.
• Support standard mode (100 K bits per second) and fast mode (400 K bits

per second) data transfer.
• Perform both read and write operations.
• Read or write an arbitrary number of bytes.
• Support clock synchronization by allowing a slow device to stretch the clock.
• Support multiple masters and arbitration.

Refer to the I2C manual in the bibliographic section for detailed specifications.
Design the hardware and use simulation to verify its operation.

19.10.2 Digital equalizer

An equalizer is used to control the frequency response of an audio system. The
audible frequency spectrum is divided into several segments (usually 5 or 10). A
bandpass filter is designed for each segment to pass the designated frequency range
and to control the gain. The filtered results are then added together to form the
final waveform. We can create a digital equalizer by using a codec and a collection of
digital filters. Design the custom hardware, Avalon wrapping circuit, and software
driver, and verify its operation. The information about digital filters can be found
in the bibliographic section.

19.10.3 Digital audio oscilloscope

An oscilloscope can display the waveform of a signal and allow the user to adjust
the voltage level and time scale to obtain better visualization and measurement.
One way to design an oscilloscope is to use ADC to capture the input data and
then display the data on a monitor. Research the basic operation and layout of
an oscilloscope and use a codec and VGA controllers to design and implement a
digital oscilloscope. Note that because of the low sampling rate of an audio ADC,
the bandwidth is severely limited and thus this design can only be used to observe
low-frequency signals.

www.it-ebooks.info

http://www.it-ebooks.info/

!(esüq-oi:ptUä sen"»!«) οιτ j-pj-opB
_
oxpnB ζεη'ατ*

! (9seq
_
oxpiiB ζεη~αΐ<3)Ä}dme

-
oιτj

-
DpB

_
otpnB *πτ

/* suoi%ounf ορΌ */

!(BIBP sen"*!« 'esBq-οτρπΒ 2εη
_
*ΙΒ)oiTj-ja-Dep-oxpriü ρτοΛ

!(esBq-otpiiB ζεη-ιχΒ)χτηι-οιτι-0Βρ-οτρηΒ %ητ
/* suoijounf ovp */

:(ies"opB %nz ·xes"DBp %πτ ' eseq
-
OTptiB 5E«"*t«)Tes

_
3JS~j«

-
OTpnB ρτθΛ

/* UOl%09\3S OUlfnOJ, Ό)Όρ */

¡(eseq-oxpnB εεη'ατ«)ατπτ-οτρηΒ ρτοΛ
•(pmo 9ΤΙ»"»!« 'JPPB en"*!* *esBq

_
otpnB sen"!!«)Ρβ3"^«"3δΤ"οτρηΒ ρτοΛ

:(98Bq-otpne 2εη"ϊΙ
1
Β)βτΡΤ"8Τ"3δΤ"οτρηΒ απτ

/* SKoipun/ Qgj */
/»**,**»***,**»**,,»»***»*»*****************»,**************************

sadñioiodd uoifounj *

ε θ3Η"νΐ¥α"οαναην"ηΗθ βοτιβρ#
z θ3ϊ"¥χνα

_
ονα"αην"ηΗθ βπτιβρ#

ι oaa"ias"snaa"an¥"nHO βπτιβρ«
τ oaa"sni¥is"anv"nHO eotiep#
0 03ϊ"¥ΐνα"02Ι"αην"ηΗ0 en*jep#

SU0lflUl/9p %UO%SUOO *

^•sedíi-iXT!} βρηχ3πτ#
/* uotsnjoui ojif */

/·„„,··,·····»,„··»,„·····*„·*»··**··**·»·**·**·***·*,»·······**,··
(iy6%j. iiq-gj + ifo\ 1iq-9l) "jop oipnv oajaj? .·# oí jg siiq * *

g %9S¡fo *
100J3S 1U03JJS OfVp OpO :¡ % l <¡ * *
loojos uiOOdfS Ό%νρ ovp ,·0 1iq * *

l)3 s ¡jo *
snq ogi oí pumuuioo oopoo iiq-fn :o~SS «??? * *

0 ios ¡¡o *
:(ndo woj,f v%vp) ni¿A\ *

(iy6i¿ %%q-9i + ifoj liq-gi) vfvp otpnv oou.ois :o oí ig s%%q * *
S ios ¡¡o *

«jdiua o¡%¡ opv :g iiq * *
\\n¡ ofif oop :j iiq * *

9JP! ogt :o)i? * *
1 %3S¡j0 *

:(ndo oí Όΐυρ) pvoy *

dmu ¿oisi6oy *

*
OVO »i vivp púas *

puv 'oay uiodf υιυρ oa,3idi9j 'oopoo 9j.n6i.fuoo oí souiinoy :osodj.nj *
y ■ o?pnt>-uo;o(it>-nt/3 '■ 9]ij *

dopOoy i9ftup oopoo oipny :o\npo¡n¡ *
*

«»♦♦♦♦♦»,.♦♦,♦,♦♦..♦.♦♦♦♦♦♦,»»«»».♦«♦♦♦♦♦♦♦»♦♦♦♦♦♦♦♦««»»♦».»»««♦«»♦.,»,/

ψοιρτνβ-ιιορΒΛΒ-ηιρ ST*6I Sapsn

DNI±Sn WVdDOdd 3±31dWOD II61

aanoyiNOD Daaco οιαην 06S

www.it-ebooks.info

http://www.it-ebooks.info/

{
¡(leaped (2εη"*ΤΒ) '03Ή'νΐνα"0δΙ"αην'ηΗ0 'ββΒς-οτρη«)ΐΜ0Ι

puvuiuioo %iq-ß puaddv // :(ÍJTO*0 * P™3) + (6 >> »ajp«d) . aeipud
ss9¿ppv %iq-ü pu9ddO // :(j¿o*0 * *PP«) + {L » ae^ed) . reaped

!Ρΐ"3δΤ = iejp«d

pasn sggq fg HJUO '.QZl °% uajJM"* v%vp // ! césped sen"»t«
!>ε000000Χ0 = ντ'οζτ ζε'ατβ %enoo

y
(pino 9ϊΐι-*χΒ ' jppe en"*!* * esBq-οτρηβ ζεη"*!^) ραιο-^Λ-θζτ-οτρηβ ρτοΛ

/♦a*********,*»*********************************»*»**»***********,***»**
(f^OJ OOIO'JIOO --pauiqiuoo *

'■(imViNi ¿°f a??-»"» s/íofli;i>; o·'"/·
1
 -OlOllOO :IS¿8WM /° P? *

!cn/j, iiq-i + pt £)g/ JH~¿ «» 0 »J^«? - *
: 9)OU *

.-uinjaj *
paen sggq 6 Λ/tio .'aajstfia-i uotjDjníi/tioa oapoo o% v%vp pwouiuioo :puto *

pasn sggq ¿ ß/tto .'jajsißaj uoiiOj.n6i.fuoo οθροο ¡o ssajppv :ιρρυ *
J,3]]OJ.}UO3 oapoo oipnv ¡o ss9j,ppv 3svq : asvq-oipnv *

: %U9Utn6j.O *
«nq OZI °?

rt
 %3H0Od iiq-fá Ό púas :zsodj.nd *

puio-j.m.-ogi-oipnO : uoi%ounf *

{
ίϊτς-βχρτ-θζχ njinei

¡(TOOOOOOOXO V 8ej-sn*Bis) (*nt) . ατς-θΤΡΤ"32Τ
:(03H"SniVlS"anV"nH0 ' β8βς-οτριι«)αΗ0Ι = 8ea-sn«is

ίατς-βχρτ-θζτ ^πτ
:3ea~srnBas ζε

11
"»!«

}
(esBq-οτριΐΒ 28""*!«)βτΡΤ'βτ-θζτ-οχρη« }«t

: 3)ou *
3simj3vio o 'a?P? /? I -uanjaj *

J,3J¡OJ.)UOO oapoo οιρηυ ¡o ss9j,ppv asvq : osvq-oipnv *
.•juaiunfijo *

9jpt si d3j]Odfuoo 08j at/J jat/jat/"
1
 loauo :9S0dund *

91pi-s%-ogi-oipnv : uoiiounf *

*
puOuiuioo UOÍ)»ÍÍI6!/UO3 oapoo púas 0% Qg¡ 6uisn sautjnoa : suoi%oun¡ om *

*

„q-oipne-noiBAB-nqo,, βρηχοπτ#
<tloT> βριιχοπΐ»

/* uoisnioui z\i¡ */

*
OVO o% o»t»p pues *

puv 'QaV uioj,/ vfvp anatajaj 'ogpoo 9j.n6i¡uoo oj satujnoj/ .-gsodunj *
ooipnO-uojvaO-nyo :9jzj *

«9dfi.%o%oj,d uoipun/ jaaijp oapoo oipny :9jnpofy *
*

oOipmruoi'BAB-Tup 9X'6I Supsji

X6S ONiisn wvaDoad giaidwoD

www.it-ebooks.info

http://www.it-ebooks.info/

592 AUDIO CODEC CONTROLLER

* function: audio.init
* purpose: initialize codec by writing configuration registers with
* the pre—selected values
* argument :
* audio.base : base address of audio codec controller
* return:
* note:

void a u d i o . i n i t (a l t _ u 3 2 a u d i o . b a s e)
{

/ * initial configuration values (registers RO to R9) */
const a l t _ u l 6 cmds[10]={ / / only 9 LSBs used

0x0017, / / RO: left line in gain 0 dB
0x0017, / / Rl: right line in gain 0 dB
0x0079, / / R2: left headphone volume 0 dB
0x0079, / / R3: right headphone volume 0 dB
0x0010, / / Rj: analog path select: line —in to adc, dac to line —out
0x0000, / / R5: digital audio: high—pass filter , no de—emphasis
0x0000, / / R6: enable all power
0x0001, / / R7: digital interface : left—adjust , 16—bit resolution
0x0000, / / R8: J,8K sampling rate with 12.288MHz master clock
0x0001 / / R9: activate

} ;
int i ;

while (! a u d i o _ i 2 c _ i s _ i d l e (a u d i o . b a s e)) { } ; / / wait until I2C idle
/* write a dummy data to R15 to reset the codec */
audio_i2*c_wr_cmd(aud io .base , 15, 0) ;
/ * cycle through 10 commands */
f o r (i - 0 ; i < 1 0 ; i + +) {

while (! a u d i o _ i 2 c _ i s _ i d l e (a u d i o _ b a s e)) { } ; / / wait until I2C idle
audio_i2c_wr_cmd(audio_base, i , c m d s [i]) ; / / send a command packet

}
audio.wr s r c . s e l (a u d i o . b a s e , 0, 0) ; / / dac/adc to Avalon bus

>

* function: audio-wr.src-sel ()
* purpose: set up the bus connection to codec controller
* argument:
* audio.base: base address of audio codec controller
* dac.sel: 0 for Avalon MM interface
* adc.sel: 0 for Avalon MM interface
* return:
»**************/
void audio wr_src_sel(alt_u32 audio.base, int dac.sel, int adc.sel)
{
alt_u32 sel.reg ■ 0x00000000;

if (dac_sel!=0)
sel.reg = sel.reg I 0x00000001; // set LSB to 1

if (adc_sel!-0)
sel.reg » sel.reg I 0x00000002; // set 2nd LSB to 1

I0UR(audio_base, CHU_AUD_DBUS_SEL_REG, sel.reg);
}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING

*
* Digital audio interface functions:
* routines to read adc fifo and write dac fifo
*

* function: audio.dac.fifo.full()
* purpose: check whether the codec dac fifo is full
* argument:
* audio.base: base address of audio codec controller
* return: 1 if full; 0 otherwise
* note:
»*****»**»******„»*********,»»*****»,»,»*,**,»»*»***********»»****»*»*/
int audio_dac_fifo_full(alt_u32 audio.base)
{
alt_u32 status.reg;
int dac_full_bit;

status.reg - IORD(audio_base, CHU_AUD_STATOS_REG);
dac.full.bit - (int)((status.reg _ 0x00000002) >> 1);
return dac.full.bit;

}

/,*,*******,**»»»»»*,**,*****,**,****************»*»*****,**,**,********
* function: audio.dac.wr.fifo ()
* purpose: write data to the dac fifo
* argument:
* audio.base: base address of audio codec controller
* data: 32-bit audio data
* return:
„*,»*»,*»*»»„****»***,»**»******************,**,*»***********,*******/
void a u d i o . d a c . w r . f i f o (a l t _ u 3 2 a u d i o . b a s e , a l t_u32 da t a)
{

IOWR(audio.base, CHU.AUD_DAC_DATA.REG, d a t a) ;
}

/··,·····,,„··,.,···,·····,··*·.«*.·,*,····.······*········*···,„**·*·
* function: audio.adc.fifo. empty ()
* purpose: check whether the codec adc fifo is empty
* argument:
* audio.base: base address of audio codec controller
* return: 1 if empty; 0 otherwise
* note :
*****»*»**********»*********.***»******.**»»****»*****************..***/
int audio.adc.fifo.empty(alt_u32 audio.base)
{
alt_u32 status.reg;
int adc.empty.bit;
status.reg - IORD(audio_base, CHU.AUD.STATUS.REG);
adc.empty.bit = (int)((status.reg _ 0x00000004) » 2);
return adc.empty.bit;

}

www.it-ebooks.info

http://www.it-ebooks.info/

594 AUDIO CODEC CONTROLLER

A*»»»»***»»*********»********«*»****»****,*******»*********************
* function: audio.adc.rd.fifo ()
* purpose: retrieve data from the head of adc fifo
* argument:
* audio.base: base address of audio codec controller
* return: 32-bit adc data from the head of fifo
* note:
* — the data is removed from fifo after read
»*»,*»»*,***»*»****»**»**„»*»»*♦***»****,*****»*****»***»» /
alt_u32 audio_adc_rd_fifo(alt_u32 audio.base)
{
alt_u32 data_reg;

data.reg - IORD(audio_base, CHU_AUD_ADC_DATA_REG);
return data.reg;

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 9 5

Listing 19.17 chujnain-audio-test.c
A*»****** , *»*******»**»*»**»***
*
* Module: Audio codec test
* File: chu.main-audio-test. c
* Purpose: Test audio codec driver functions
* IP core base addresses:
* - SWITCH-BASE: slide switch
* - BTN-BASE: pushbutton
* - SSEG-BASE: 7-segment LED
* - VRAM-BASE: video SRAM
* - AUDIO-BASE: audio codec controller
*

/* file inclusion */
«inc lude <s td io .h>
» inc lude <math.h> / / for sin()
»inc lude <un i s td .h>
« inc lude "sys tem.h"
«include "chu_avalon_gpio.h"
«include "chu.avalon.audio.h"
«include "chu.avalon.vga.h"

A** * * * * * * *« * * * * * * * * * . *» *
* function: record-sin.wave ()
* purpose: generate sin wave and record data points in buffer
* argument:
* sf: sampling frequency
* freq: sin wave frequency
* size: size (# of data points) of the buffer
* buf: pointer to the buffer
* return: updated buf with sin/cos data
* note:
* — calling routine needs to allocate space for buffer

void r eco rd_s in_wave(in t sf , i n t f r e q , i n t s i z e , a l t_u32 *buf)
{

const f l o a t PI=3.14159;
const f l o a t AMP.MAX- 32767.0; / / max amplitude (2*15-1)
f l o a t amp;
i n t n p o i n t , n c y c l e , i , j ;
a l t . u 3 2 l e f t , r i g h t ;

npoint = s f / f r e q ; / / # of steps in one period
/* construct 1st cycle */
for (i - 0 ; i < n p o i n t ; i++){

amp - s i n ((f l o a t) i / (f l o a t) n p o i n t * 2.0 * P I) ;
l e f t - (a l t _u32) (amp * AMP.MAX); / / left channel; 16 LSBs used
amp ■ c o s ((f l o a t) i / (f l o a t) n p o i n t * 2.0 * P I) ;
r i g h t = (a l t _ u 3 2) (amp » AMP.MAX); / / right channel; 16 LSBs used
b u f f i] - (l e f t << 16) + r i g h t ; / / combine two channels

}
/ * duplicate the 1st cycle for the remaining ncycle — 1 cycles */
/* no data for the last fractional cycle */
ncycle » s i z e / n p o i n t ;
for (j - 1 ; j < n c y c l e ; j++){

for (i - 0 ; K n p o i n t ; i++){
b u f [j * n p o i n t + i] - b u f [i] ;

} / / end for i
} // end for j

www.it-ebooks.info

http://www.it-ebooks.info/

5 9 6 AUDIO CODEC CONTROLLER

y**
* function: set-volume
* purpose: set headphone volume
* argument:
* audio.base: base address of audio codec controller
* vol: volume
* return :
* note:
* — codec: 7—bit headphone volume control; 80 levels in 1—dB step
* 0x7f: +6 dB; 0x79: 0 dB; 0x30: -73 dB; <0x30: mute

void set .vo lume(al t_u32 audio base , int vo l)
{

a l t_u l6 and;

if (vol>0x7f) / / exceed maximal volume
cmd » 0x007f;

e l s e
cmd » (a l t _ u l 6) vo l ;

while (! a u d i o _ i 2 c _ i s _ i d l e (a u d i o . b a s e)) { } ;
audio_i2c_wr_cmd(audio_base, 2 , cmd); / / left headphone out

while (! a u d l o _ i 2 c _ i s _ i d l e (a u d i o _ b a s e)) { } ;
audio_i2c_wr_cmd(audio_base, 3 , cmd); / / right headphone out

}

/**
* function: plot, audio, buffer ()
* purpose: plot buffered audio data on screen
* argument:
* vga.base: base address of VGA video SRAM
* buf: pointer to the buffer
* return:
* note:
* — plot only the first 640 data points
* — magnitude range is from —128 to +127

void plot_audio_buffer(a l t_u32 vga.base , alt_u32 *buf)
{

int i , j ;
alt_16 y . l e f t , y . r i g h t ;

f o r (i = l ; i<640; i++){
y . r igh t - (a l t_16) (OxOOOOffff " b u f [i]) ; / / right channel data
y . l e f t = (a l t_16) (buf [i]>>16) ; / / left channel data
j=480 - ((i n t) y _ l e f t / 2 5 6 + 480 /2) ; / / adjust y to -128/127
vga_wr_pix(vga.base, i , j , OxeO); / / plot left channel red
j«480 - ((i n t) y _ r i g h t / 2 5 6 + 480 /2) ; / / adjust y to -128/127
vga_wr_pix(vga_base, i , j , 0x03); / / plot right channel blu

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 9 7

* function: main()
* purpose: test audio codec
* note:
* « « Ι Ι Ε * « « « « * /

int main(void)
{

const int SF-48000; / / sampling freq=48K
const int BUF.SIZE» 5*SF; / / 5 sec @ sampling frequency SF
alt_u32 buf[BUF.SIZE];
int su, btn, f req, vol , reg , cmd , i ;
alt_u8 d i sp .msg[4] - { s seg_conv_hex(5) , 0x23, 0x2b, sseg_conv_hex(13)};

sseg_disp_ptn(SSEG_BASE , d isp .msg); / / show "Sond" for display
vga_clr_screen(VRAM_BASE,0); / / clear screen
audio.init(AUDIO.BASE);
btn.clear(BTN.BASE);
printf("Audio codec in ter face t e s t \ n \ n ") ;

while (1){
while (!btn_is_pressed(BTN_BASE)H. } ; / / wait for button
btn»btn_read(BTN_BASE); / / read button
i f (btn ft 0x02){ / / keyl pressed

sw=pio_read(SWITCH_BASE); / / read switch
print f ("key/sw: 7,d/*/.d\n" , btn, sw);

}
btn.clear(BTN.BASE);
switch (sw){

case 0: / / initialize codec controller
audio.init(AUDIO.BASE);
break;

case 1: / / record line input for 5 sec
audio_i2c_wr_cmd(AUDI0_BASE, 4, 0x0010); / / line-in to adc
for (i - 0 ; i<BUF_SIZE; i++){

while(audio_adc_fifo.empty(AUDIO_BASE)){} / / wait if fifo empty
buf[i]=audio_adc_rd_fifo(AUDIO.BASE);

}
break;

case 2: / / record microphone input for 5 sec
audio_i2c_wr_cmd(AUDIO.BASE, 4, 0x0015); / / mic to adc, boost
f o r (i - 0 ; i<BUF.SIZE; i++){

while(audio_adc_fifo.empty(AUDIO.BASE)H} / / wait if fifo empty
buf[i]=audio_adc_rd_fifo(AUDIO.BASE);

}
break;

case 3: / / fill buffer with sinusoidal data
pr in t f ("enter frequency:");
scanf 07.d", fcfreq);
record_sin_wave(SF, freq , BUF.SIZE, buf);
p r i n t f (" s i n u s o i d a l wave recorded. \ n ") ;
break;

case 4: / / play buffered audio data repeatedly until a key pressed
while (Ibtn. is .pressed(BTN.BASE)H

f o r (i - 0 ; i<BUF_SIZE; i++){
while(audio_dac_fifo_full(AUDIO_BASE)){} / / wait if fifo full
audio.dac.wr.fifo(AUDIO.BASE, buf [i]) ;

} / / end for
} / / end while
break;

case 5: / / i ssue codec command
pr int f ("enter codec r e g i s t e r # :") ;

www.it-ebooks.info

http://www.it-ebooks.info/

598 AUDIO CODEC CONTROLLER

scanf("y.d", fcreg);
pr in t f ("enter command (in h e x) : ") ;
scanfCXx", ftcmd);
audio_i2c_wr_cmd(AUDI0_BASE, (a l t _ u 8) r e g , (a l t_ul6)cmd);
printf ("send 0x7.x to codec r e g i s t e r "/.d\n\n" , cmd, reg) ;
break;

case 6: / / set volume
pr in t f ("enter volume (between 28 and 127) :") ;
scanf ("'/.d", fcvol);
set_volume(AUDIO_BASE, v o l) ;
printf("Volume s e t \ n ") ;
break;

case 7: / / plot buffered right— and left—channel data
plot.audio.buffer(VRAM.BASE, buf);
break;

case 8: / / clear screen
vga_clr_screen(VRAM.BASE,0);
break;

} //'end switch
} // end while

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 5 9 9

Listing 19.18 chu-main.wavJile_test.c

A*»»*****»»**»»**»***»***»**»**************»******** ,***************** ,
* Module: WAV file retrieval test
* File: chu-main.wav-file-test. c
* Purpose: Test wave (.wav) file access
* IP core base addresses:
* - AUDIO-BASE: audio codec controller
» * » » * * * * » ♦ * * » * * » * * , * * * * * * * * * * * * * * , * * * * * * * * * * * * * » * /

/* file inclusion */
»inc lude <s td io .h>
« inc lude <un i s td .h>
» inc lude "sys tem.h"
» inc lude " c h u . a v a l o n . f i l e . h "
» inc lude " c h u . a v a l o n . a u d i o . h "

/ * constants */
»def ine WAV.FILE.NAME
»define BUF.SIZE

" / m n t / h o s t / t r u m p e t . w a v " / / path and file name
(6*48000) / / 6 sec of audio data

* function: read.wav-file ()
* purpose: read audio data from wave file and store it in a buffer
* argument :
* filename: name of the WAV file
* buf: pointer to bitmap buffer
* return:
* — 0: if successful
* — buf updated with audio data
* note:
* — calling function must allocate buffer space
* — only support the following format:
* — compression: 1 (PCM)
* — channel: 2
* — sampling rate: J[8K
* — resolution: 16 bits

i n t r e a d _ « a v _ f i l e (c h a r *f i le .name , a l t_u32 *buf)
{

/ * note that fget3Z read in little endian, but id in big endian */
const a l t_u32 RIFF.ID ■= 0x46464952; //ascii for FFIR
const a l t_u32 WAVE.ID = 0x45564157; //ascii for BVAW
const a l t_u32 FMT_ID « 0x20746d66; //ascii for \btmf
const a l t_u32 DATA.ID = 0x61746164; //ascii for ATAD

FILE *fp;
alt_u32 r_id, w_id, f_id, d_id, srate, data.size;
alt_ul6 compression, channel, res;
int i, s.size;

/* open the file */
fp - fopen(file.name,"rb");
if (fp»«NULLM
printf("Error: cannot open file %s.\n", file.name);
return(-1);

}
/* extract relevant chunk/sub chunk info */
r_ id - f g e t 3 2 (f p) ;
f s k i p (f p , 4) ;
w_id - f g e t 3 2 (f p) ;
f_id = f g e t 3 2 (f p) ;
f s k i p (f p , 4) ;

/ / offset 0
// offset 4
// offset 8
// offset 12
// offset 16

"RIFF" chunk id
chunk size
"WAVE" chunk id
"fmt " subchunk id
subchunk size

www.it-ebooks.info

http://www.it-ebooks.info/

600 AUDIO CODEC CONTROLLER

c o m p r e s s i o n - f g e t l 6 (f p) ; / / offset 20: 1 for PCM
channe l = f g e t l 6 (f p) ; / / offset 22: 2 for stereo
s r a t e » f g e t 3 2 (f p) ; / / offset 24: 48K sampling rate
f s k i p (f p , 4) ; / / offset 28: byte rate
f s k i p (f p , 2) ; / / offset 32: block size
r e s » f g e t l 6 (f p) ; / / offset 34: 16 bits resolution
d _ i d = f g e t 3 2 (f p) ; / / offset 36: "data" subchunk id
d a t a . s i z e = f g e t 3 2 (f p) ; / / offset 40: # bytes of data subchunk
/* check chunk/sub chunk ids and parameters */
i f ((r _ i d ! - R I F F _ I D) II (w_id!=WAVE_ID) II (f _ i d l - F M T . I D) II

(d_id!-DATA_ID) I I (c o m p r e s s i o n ! - 1) I I (c h a n n e l ! = 2) II
(s r a t e 1 - 4 8 0 0 0) II (r e s ! - 1 6)) {

p r i n t f (" E r r o r : i n c o r r e c t wave f i l e f o r m a t \ n ") ;
p r i n t f (" M u s t be PCM, 2 c h a n n e l s , 48K r a t e , 1 6 - b i t r e s o l u t i o n A n ") ;
p r i n t f (" R I F F / W A V E / f m t / d a t a i d s : %08χ/7.08χ/7 .08χ/7 .08χ\η" ,

r _ i d , w _ l d , f _ i d , d . i d) ;
p r i n t f (" c o m p r e s s i o n / c h a n n e l / s r a t e / r e s / d _ s z i e : 7,d/7.d/7.d/%d/7.d\n" ,

c o m p r e s s i o n , c h a n n e l , s r a t e , r e s , d a t a . s i z e) ;
f c l o s e (f p) ;
r e t u r n (- 1) ;

}
s . s i z e ■ d a t a _ s i z e / 4 ;
p r i n t f (" F i l e opened A n # audio da ta s a m p l e s : 7,d\n" , s . s i z e) ;
/*if (s.size > BUF.SIZE);

s.size = BUFSIZE; */
f o r (i = 0 ; i < s _ s i z e ; i + +) {

/ / get 32-bit data
b u f [i] - f g e t 3 2 (f p) ;
i f (Í7.1000 — 0)

p r i n t f (" . ") ;
}
f c l o s e (f p) ;
p r i n t f (" \ n F i l e l o a d e d A n ") ;
r e t u r n (0) ;

y********»**»**»»******»»»***»***,»»»**,»***»************»»»************
* function: main()
* purpose: Read a wave file and play it back
* note:
* - the host-based file system must be enabled in BSP editor
* — the trumpet.wav sound file should be in the project directory
* - build/load the program with "Debug As => Nios II Hardware"

i n t m a i n (v o i d) {
a l t _ u 3 2 b u f [B U F . S I Z E] ;
i n t i ;

a u d i o . i n i t (A U D I O . B A S E) ;
p r i n t f (" W a v e f i l e t e s t \ n \ n ") ;
i f (read_uav.f i le(WAV_FILE_NAME, b u f) ! - 0 H

p r i n t f (" \ n F a i l t o l o a d wav f i l e . \ n ") ;
r e t u r n (0) ;

}
w h i l e U H

f o r (i - 0 ; i<BUF_SIZE; i + +) {
w h i l e (a u d i o _ d a c _ f i f o _ f u l l (A U D I O _ B A S E)) { } / / wait if dac fifo full

audio_dac_wr_f i fo (AUDI0_BASE, b u f [i]) ;
} / / end for

} // end while

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

SD CARD CONTROLLER

A flash memory card can be used as massive storage for an embedded system. The
DEI board has a slot for an SD (secure digital) card. In this chapter, we develop
hardware and software routines to retrieve data from an SD card. The hardware
portion is an SPI (serial peripheral interface) controller, which sends commands and
transfers data between the SD card and processor. The software portion includes
the SPI driver routines to transmit and receive data over the SPI bus, the SD card
driver routines to send a command and read and write a sector, and basic routines
to read a file from a FAT16 file system.

20.1 OVERVIEW OF SD CARD

The FPGA's internal memory, external SRAM, and SDRAM discussed in Chap-
ter 16 are all volatile memory, which requires power to maintain stored data. Non-
volatile memory, on the other hand, can keep data after power-off. EEPROM (elec-
trically erasable programmable read-only memory) device is a type of non-volatile
memory. Its content can be electrically erased and written again. Flash memory
is a special type of EEPROM in which a large block of data is erased and written
at a time and costs much less than a byte-programmable device. To write a single
word, a flash memory device needs to read the entire block containing the word,
modify the specific word, erase the entire block, and then write the entire block
back. Because of the high overhead, it is more feasible to transfer a large amount

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 601
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

602 SD CARD CONTROLLER

master slave
1

SPIdock
generator

MSB

8-bit shift register
1 .

1 mosi 1

_ 1 miso j
MSB

8-bit shift register

,.

. sclk |

1 ss j

4

Figure 20.1 Conceptual diagram of SPI bus.

of data at a time. This behaves more like a hard disk and thus flash memory is
usually used for massive storage rather than "random-access" memory.

A flash memory card is a device that contains flash memory and a controller.
Because of flash memory's relative low per-byte cost, the memory card is frequently
used as an external massive storage for embedded applications. An SD (secure
digital) card is a widely used memory card format. The SD card format is the
successor to the MMC (multimedia card) format and is designed by the SD Card
Association. The card's form factor, electrical interface, and protocol are all part of
the specification. The capacity of a standard SD card ranges from a few megabytes
up to a maximum of two gigabytes. The SDHC (secure digital high capacity) card
is an extension of the SD card standard and supports storage capacity between
4 gigabytes and 32 gigabytes. SHDC cards have the same physical shape and form
factor but with slightly different protocols. In this chapter, we use the generic term
"SD card" to refer to both types of cards. When the distinction is important, we
use the more specific terms "standard capacity SD card" and "high capacity SDHC
card" to emphasize a particular type of card.

An SD card supports two operation modes, which are SD mode and SPI (serial
peripheral interface) mode. The SD mode is a proprietary format and uses four
lines for data transfer. SPI is an open standard for serial interfaces and is used
widely in embedded applications. The SD card socket on the DEI board is wired
to support the SPI mode and our discussion in this chapter is limited to this mode.

20.2 SPI CONTROLLER

20.2.1 Overview of SPI interface

Basic protocol The SPI (serial peripheral interface) bus is a synchronous serial
data link standard originally developed by Motorola. It uses three Unes for com-
munication, including one for the clock, one for serial data input, and one for serial
data output. An SPI bus contains one master device and one or more slave devices.
The master generates the clock signal and initiates the data transfer. The concep-
tual diagram of an SPI bus with two devices is shown in Figure 20.1. There are two
shift registers, one in the master and one in the slave. The two shift registers are
connected as a ring via the mosi (for "master-out-slave-in") and miso (for "master-
in-slave-out") lines and their operation is controlled by the same clock signal, sclk.
We assume that both registers are eight bits wide and data transfer is done on a

www.it-ebooks.info

http://www.it-ebooks.info/

SPI CONTROLLER 603

mosi/miso "~){ b7)(""ϋϊΓ)(b5](b4](b3)(w)fbi~)(bO)[

- ΓΙΠΙΙΠΙΙΠΙΙΙΙ_
Figure 20.2 Basic timing diagram of SPI mode 0 data transfer.

byte-by-byte basis. In the beginning of the operation, both master and slave load
data into the registers. During the data transfer, data in both registers is shifted
to the left by one bit in each sc lk cycle. After eight sclk cycles, eight data bits
are shifted and the master and slave have exchanged register values. The master
and slave then can processed the received data. This operation can be interpreted
that the master writes data to and reads data from the slave simultaneously, which
is known as full-duplex operation. In comparison, the I2C bus discussed in Sec-
tion 19.2 supports only half-duplex operation since data can be transferred only in
one direction at a time.

In addition to the mosi, miso, and sc lk lines, a slave device may also have an
active-low chip select input, s s (for "slave select"). This can be used for the master
to select the desired slave device if there are multiple slave devices on the bus.

Basic timing In SPI, the edges of the sc lk signal are used for shifting and latching
a data bit. The operation mode defines the polarity and phase of sc lk with respect
to the data bit. There are four modes. The master must know the mode of slave
devices in advance and generate proper polarity and phase accordingly. An SD card
uses mode 0, in which the base value of the clock is zero (i.e., polarity is 0) and
data are read at the rising edge and changed at the falling edge (i.e., phase is 0).
The conceptual timing diagram is shown in Figure 20.2. Basically, the data bits
are placed at the falling edge and retrieved at the rising edge of the sc lk signal.
This arrangement eases the timing constraint since the shifting and retrieval are
done at opposite edges.

20.2.2 HDL implementation

The DEI board uses an SPI interface to access the SD card and the FPGA chip
acts as a master. The data are grouped as an 8-bit packet and transferred. A
custom SPI controller can be constructed for this purpose. The design approach is
similar to that of the I2C controller in Section 19.2.2. The controller is basically an
FSMD that generates the sc lk signal, shifts a data bit into an input buffer at the
rising edge of sclk, and shifts a data bit out from an output buffer at the falling
edge of sclk. The sketch of the control FSM is shown in Figure 20.3. The sclkO
and s c l k l states represent the low and high portions of the sc lk signal. The FSM
circulates in these two states eight times to transfer eight bits of data. The HDL
code is shown in Listing 20.1.

Listing 20.1 SPI controller
module spi

(
input wire elk, reset ,
input wire [7:0] din, dvsr,

www.it-ebooks.info

http://www.it-ebooks.info/

604 SD CARD CONTROLLER

mosi/mlso I

sc|k |_

sdkO

idle

scIkO

sclkl

Figure 20.3 Sketch of SPI controller FSM.

input wire ur_sd ,
output wire [7:0] dout ,
output wire spi.clk, spi.mosi,
input wire spi_miso ,

a output wire spi_done_tick, spi_idle
);

/ / symbolic state declaration
localparam [1:0]

14 idle » 2'bOO,
sclkO - 2'b01 ,
sclkl - 2'blO;

/ / signal declaration
ía reg [1:0] state_reg , state.next;

reg [7:0] c_reg, c.next;
reg spi_clk_reg , spi_idle_i , spi.done;
wire spi_clk_next;
reg [2:0] bit.reg, bit_next;

24 reg [7:0] sin.reg , sin.next, sout_reg , sout_next ;

//body
// fsmd registers
always OCposedge elk, posedge reset)

2a if (reset)
begin

state.reg <■ idle;
c.reg <» 0;
bit.reg <■ 0;

34 sin.reg <« 0;
sout_reg <■ 0;
spi_clk_reg <- l'bO;

end
else

a« begin
state.reg <· state.next;
c_reg <»c_next;
bit_reg <= bit_next;
sin.reg <» sin.next;

44 sout_reg <= sout.next;
spi_clk_reg <« spi_clk_next;

end
/ / fsmd next—state logic

www.it-ebooks.info

http://www.it-ebooks.info/

SPI CONTROLLER 605

always β *
begin

s t a t e . n e x t « s t a t e . r e g ;
c .next ■ c .reg + 1; / / timer runs continuouisely
bit_next ■ b i t_reg ;
s in .nex t " s i n . r e g ;
sout .next - sou t . r eg ;
s p i _ i d l e _ i » 1'bO;
spi .done =1'bO;
case (s t a t e . r e g)

i d l e :
begin

s p i . i d l e . i = l ' b l ;
if (wr.sd)

begin
sout .next = din;
s t a t e . n e x t = sclkO;
b i t . n e x t = 0;
c .next = 8 ' b i ;

end
end

sclkO:
i f (c_reg-»dvsr) / / spi.clk 0—to—l

begin
s t a t e . n e x t = s c l k l ;
s in .nex t » { s i n . r e g [6 : 0] , s p i . m i s o } ;
c .next ~ 8 ' b l ;

end
s c l k l :

if (c_reg»=dvsr) / / spi-.clk l—to—0
if (b i t _ r e g = = 3 ' b l l l)

begin
spi .done = l ' b l ;
s t a t e . n e x t · i d l e ;

end
e l s e

begin
sout .next » { s o u t . r e g [6:0] , 1'bO};
s t a t e . n e x t = sclkO;
b i t . n e x t « b i t . r e g + 1;
c .next = 8 ' b l ;

end
endcase;

end
/ / lookahead output decoding
assign s p i . c l k . n e x t - (s t a t e _ n e x t - » s c l k l) ;
/ / output
assign dout = s i n . r e g ;
ass ign spi .mosi · sout .reg [7] ;
ass ign s p i . c l k ■ s p i . c l k . r e g ;
ass ign s p i . i d l e = s p i . i d l e . i ;

> ass ig
n s p i . d o n e . t i c k =■ spi .done;

en
d mod ule

The din port is the 8-bit input data to be transferred and the dout port is the
received data. The dvsr port specifies the clock divisor value, which in turn controls
the frequency of sclk. The sp i .c lk , spi.miso, and spi_mosi ports are connected
to the clock and data lines of the SPI bus. Note that the processing of the ss signal
is in another module and not part of the SPI controller. In addition, the controller

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

606 SD CARD CONTROLLER

includes an input command, wr_sd, which initiates the data transfer, and two status
signals, spi_idle and spi_done_tick.

There are several registers in the FSMD. The sin_reg and sout_reg registers
are shift registers storing the input and output data, respectively. The input data
from spiji i iso is sampled and shifted into sin_reg at the rising edge of sp i .c lk ,
which occurs when the FSM transits from the sclkO state to the s c l k l state. The
MSB of sout_reg is connected to sp i j i o s i . The old bit is shifted out at the falling
edge of sp i .c lk , which occurs when the FSM transits from the s c l k l state to the
sclkO state. The bi t_reg register keeps track of the numbers of bits processed.
The SPI clock signal is buffered via the spi_clk_reg to remove potential glitches.

The frequency of the sc lk clock, which controls the data transfer rate of the SPI
bus, may vary over a wide range. We use the c_reg register as a timer to keep track
of the number of clock cycles spent in sclkO and s c l k l states, which corresponds
to half of the sc lk period. It counts continuously and is cleared to 1 when the FSM
exits the current state. To make the design more flexible, an external input, dvsr
(for clock divisor), is used to set the upper boundary of the counter. If the value of
dvsr is N, the FSM spends N system clock cycles in each state and the frequency
of sc lk becomes jf*jy". Since the system clock of the DEI board is 50 MHz, sc lk
can run up to 25 MHz.

20.3 SPI CONTROLLER IP CORE DEVELOPMENT

20.3.1 Avalon interfaces

The wrapping circuit for the SPI controller should include an Avalon MM slave
interface to interact with the host, a clock input interface for the system clock, and
a conduit interface for the external signals.

20.3.2 Register map

A Nios II processor interacts with the SPI controller as follows:
• check (i.e., read) status signal.
• receive (i.e., read) 8-bit data via the SPI bus.
• set up (i.e., write) the s s (SD card chip select) signal.
• set up (i.e., write) the SPI clock divisor.
• transmit (i.e., write) 8-bit data via the SPI bus.

The registers, their address offsets, and fields are:
• Read addresses (data to cpu)

- offset 0 (read data register)
* bits 7 to 0: 8-bit data received from the SPI bus
* bit 8: asserted (i.e., 1) when the SPI controller is idle (i.e., ready)

• Write addresses (data from cpu)
- offset 1 (SD card chip select register)

* bit 0: 1-bit SD card chip select
- offset 2 (clock divisor register)

* bits 7 to 0: 8-bit sc lk clock divisor
- offset 3 (write data register)

www.it-ebooks.info

http://www.it-ebooks.info/

SPI CONTROLLER IP CORE DEVELOPMENT 6 0 7

* bits 7 to 0: 8-bit data to be transmitted via the SPI bus

20.3.3 Wrapped SPI controller

The HDL code of the wrapped SPI controller is shown in Listing 20.2.

Listing 20.2 Wrapped SPI controller
module chu_avalon_sd

(
input wire e lk , reset ,
/ / Avalon MM interface
input wire [1:0] sd.address ,
input wire s d . c h l p s e l e c t , s d . w r i t e ,
input wire [31:0] s d . v r i t e d a t a ,
output wire [31:0] sd .readdata ,
/ / conduit interface

> output wire sd_cs , sd_clk, sd_di ,
input wire sd.do

) ;

/ / signal declaration
wire ur_en , wr_sd , ur_cs , «r_dvsr , sd_ready;
reg c s . r e g ;
reg [7:0] dvsr_reg;
wire [7:0] sd_out;

i / / body
//
// instantiate SPI controller
// ====== = —
spl spi.unit

■· (.clk(clk), .reset (reset) ,
.din(sd.vritedata [7:0]), .dvsr(dvsr.reg), .dout(sd.out),
.wr_sd(wr_sd), .spi_clk(sd_clk), .spi_done_tick(),
. s p i . m o s i (s d _ d l) , . s p i . m i s o (s d _ d o) , . s p i . i d l e (s d . r e a d y)) ;

/ /
p / / registers , write decoding, and read

//
// registers
always 0(posedge e lk , posedge r e s e t)
if (r e s e t)

begin
cs_reg <" 0;
dvsr .reg <= 8'hff ;

end
e l s e

> begin
i f (wr_cs)

cs_reg <-sd_writedata [0] ;
i f (wr.dvsr)

dvsr .reg <-sd_writedata [7 : 0] ;
> end

/ / write decoding
assign wr_en - s d . u r i t e ft s d . c h i p s e l e c t ;
ass ign wr_cs ■ (sd_address»-2'bOD t wr_en;
ass ign wr.dvsr = (sd_address»«2'blO) ft wr_en;

> ass ign ur_sd = (sd_address==2'bl l) ft wr_en;
/ / read data
ass ign sd.readdata - {23'bO, sd.ready, sd_out};
/ / output

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

www.it-ebooks.info

http://www.it-ebooks.info/

6 0 8 SD CARD CONTROLLER

1 byte 4 bytes 1 byte ΰ - G bytes 1 byte

j . response
-commend f r a m e - - * | b " 1 L . " Ί

command response time '

Figure 20.4 Basic timing diagram of an SD card command with Rl response.

ass ign s d . c s = c s . r e g ;
ss endmodule

The code consists of two registers to store the sclk clock divisor and chip-select
values and write decoding logic. Note that mosi, miso, sclk, and ss are renamed
as sd_di, sd_do, sd_clk, and sd.cs to be consistent with the naming convention of
the DEI board.

20.3.4 SOPC component creation

After constructing the Avalon bus interface module, we can create a new SOPC
component in Component Editor following the procedure outlined in Section 15.5.4.
It then can be treated as a normal IP core and integrated into a Nios II system.

20.4 SD CARD PROTOCOL

On top of the SPI bus, an SD card communicates with an external device via its
specific protocols. The communication and data transfer are performed via a series
of commands. We provide a quick review of relevant commands, the initialization
procedure, and data access procedure in this section. For clarity, only relevant
commands and key procedures are examined. The complete command set and
protocols can be found in the SD card documentation in the bibliographic section.

20.4.1 SD card command and response formats

In SPI mode, an SD card acts as a slave device and the SPI controller issues the
commands. After receiving a command, the SD card responds with a response
frame. For read and write operations, it continues with data token and bulk data.

The timing diagram of an SD card command and response is shown in Fig-
ure 20.4. The basic sequence is:

• A host issues a command frame.
• An SD card processes the command within a certain amount of time (known

as command response time).
• An SD card responds with a response frame.

Although the SPI standard allows full-duplex operation, an SD card does not utilize
this capability. The protocol is based on a half-duplex operation and the card either

www.it-ebooks.info

http://www.it-ebooks.info/

SD CARD PROTOCOL 609

receives or transmits data but not both. The master and slave usually raise the
data line to 1 when it is not used. This corresponds to transmit and receive the
Oxff patterns. The unused portion is indicated by the gray regions of the timing
diagram.

A command frame consists of six bytes. The first byte is command, which is
started with 01, and then followed by the 6-bit command index. The next four
bytes are the argument field that can accommodate up to 32 bits of information.
The last byte consists of the 7-bit the CRC (cyclic redundancy check) code and a
final stop bit 1. The use of the CRC code is optional in SPI mode and is disabled by
default. We don't use this feature in our implementation. During the initialization
process, CRC codes are required on two occasions and the values can be calculated
and included manually. Even that the CRC feature is not used, the last byte is still
required to compose the 6-byte command frame.

The command response time provides time for a card to process the command.
During this interval, the master continues generating the sc lk clock and the slave
sends data bytes filled with all l 's (i.e., Oxff). The response time is between zero
and eight bytes.

The SD card then responds with a response frame. There are several formats
of response frames. The most common one is the Rl response, which contains one
byte. The MSB is always 0 and the seven LSBs indicate various conditions and
error status:

• bit 7: always 0
• bit 6: parameter error
• bit 5: address error
• bit 4: erase sequence error
• bit 3: command CRC error
• bit 2: illegal command
• bit 1: erase reset
• bit 0: in idle state

The expected response from most commands should be 0x00, which indicates that
no error occurs. In our implementation, we also use commands that respond with
the R3 and R7 formats. These formats contain five bytes, in which the first byte
is the same as Rl format and the remaining four bytes return certain status infor-
mation.

The 6-bit command index field defines 64 (i.e., 26) commands, which are rep-
resented as CMDxx in SD card documentation, where "xx" is the index number.
The SD card standard further extends the number of commands by defining an
additional set of application-specific commands. An application-specific command
is a sequence of two commands, in which a specific command follows the CMD55
command. These commands are represented as ACMDxx. For example, ACMD41
means the sequence of CMD55 and CMD41.

The commands used in our implementation are summarized in Table 20.1, which
lists the command index, argument usage, and response type and explains its basic
function. Note that one application specific command, ACMD41, is used for SD
card initialization.

www.it-ebooks.info

http://www.it-ebooks.info/

610 SD CARD CONTROLLER

Table 20.1 Basic SD card commands

Command
Index

CMDO
CMD8

CMD17
CMD24
CMD55
CMD58

ACMD41

Argument

[31:0]: stuff bits
[31:12]: reserved (0)
[11:8]: voltage
[7:0] check pattern
[31:0]: address
[31:0]: address
[31:0]: stuff bits
[31:0]: stuff bits

[30]: HCS
other: reserved (0)

Resp.
type

Rl
R7

Rl
Rl
Rl
R3

Rl

Description

reset SD card to idle state
send SD card interface condition

read a single block
write a single block
start an application command
read OCR register

send HCS bit and initialize card

20.4.2 Initialization and identification process

An SD card must be properly set in SPI mode and initiated before data transfer.
The basic steps of initialization and identification process are:

1. Power-on delay
2. SPI model selection
3. Interface condition check
4. SD card initialization
5. Card type check

Four types of cards can be used in an SD card slot, which are MMC card, standard
capacity SD card version 1, standard capacity SD card version 2 and higher, and
high capacity SDHC card, and their protocols are not identical. Since the former
two are mainly for backward compatibility, our discussion just covers the latter two.

Although the SPI bus can run at a high data rate for data transfer, the sc lk
line should be set to a relative low rate, between 100 kHz and 400 kHz, during the
initialization process.

Power-on delay After power-on or insertion, an SD card needs a small delay before
it can accept a command. The host should hold the mosi and ss lines high and
supply at least 74 cycles over the sc lk line. After this, the SD card enters the SD
mode and is in the idle state.

SPI mode selection By default, an SD card enters the SD mode after power-on.
We must force it to switch to the SPI mode. This is done by holding ss low and
sending the CMDO (reset) command. The SD card should respond with an Rl
response of 0x01, in which the bit 0 is asserted, an indication that the card is in
the idle state. Note that the CMDO command must be transmitted with a valid
CRC value, which is 0x95.

Interface condition check For an SD card version 2 or higher, the host must issue
the CMD8 command to verify that the SD card interface can operate within the
host's supplied voltage range. The command includes a 32-bit argument and its
fields are:

www.it-ebooks.info

http://www.it-ebooks.info/

SD CARD PROTOCOL 6 1 1

• bits 31 to 12: reserved. The field should be set to 0.
• bits 11 to 8: supply voltage. The field should be set to 0x1 for a voltage range

of 2.7 V to 3.6 V.
• bits 7 to 0: 8-bit check pattern. We use the Oxaa pattern.

The complete argument becomes OxOOOOOlaa. A valid CRC value is also needed for
this step, which is 0x87. The SD card should respond with a 5-byte R3 response.
The first byte should still be 0x01 since the card is still in the idle state and the
remaining four bytes should be OxOOOOOlaa, which means the card can work within
the voltage range and echoes the Oxaa check pattern. If the CMD8 command is
rejected, the card is an MMC card or an older SD card.

SD card initialization After verifying the working voltage range, the master can
issue the ACMD41 command (i.e., CMD55 and then CMD41) to send the host ca-
pacity support information and activate the card's initiation process. The command
uses bit 30 of the argument to indicate whether the host supports high capacity
SDHC cards. The other 31 bits are reserved and should be set to 0's. Thus, the ar-
gument should be either 0x00000000 or 0x40000000. The initialization process can
take up to several hundred milliseconds. After completion, the card will exit the
idle state and bit 0 of the Rl response will be cleared to 0, which means the value
of the Rl response changes from 0x01 to 0x00. The host should repeatedly issue
the ACMD41 command and check the response until the idle state bit is cleared
toO.

Card type check In the last step, the host checks whether the card is a standard SD
capacity card or a high capacity SDHC card. A card keeps this information in the
CCS (card capacity status) bit of its internal OCR (operation condition register)
register. The CCS bit is set to 1 in a high capacity SDHC card. The host can
use the CMD58 command to retrieve the contents of the OCR register. The card
responds with a 5-byte R3 response. The first byte is the Rl response and should
be 0x00 and the remaining four bytes are the contents of the OCR register. Bit 30
is the CCS bit.

20.4.3 Data read and write process

After successful initialization, we can read data from or write data to an SD card.
Unlike SRAM or DRAM memory, which usually accesses data by individual bytes
or words, SD cards transfer data in blocks. For simplicity, our discussion assumes
that the data are always accessed in properly aligned 512-byte blocks and only
one block is transferred at a time. This is the default length for the standard
capacity SD card and the mandatory length for the high capacity SDHC card. In
our discussion, we also refer to a 512-byte block as a sector.

The host starts data transfer by sending a block read or write command. After
the card responds with a valid Rl response, one or more data packets are transmit-
ted by the host or the SD card. The packet consists of a 1-byte data token (Oxfe),
the actual 512-byte data block, and a 2-byte CRC-16 code. The use of CRC is
optional in the SPI mode but the two bytes must be included in the data packet.
To increase performance, the SPI clock rate can be increased after initialization.
The maximal rate depends on the "speed class" of a card and the information can
be retrieved from the card's internal register. In our setup, the limiting factor is
the software driver and this issue is discussed in Section 20.8.

www.it-ebooks.info

http://www.it-ebooks.info/

6 1 2 SD CARD CONTROLLER

to card

from card

6 bytes 1 byte 1 byte

LZ

512 bytes 2 bytes

PI ζκ

p — data packet

waiting — '

Figure 20.5 Basic timing diagram of a single block read operation.

to card

from card

6 bytes 1 byte 1 byte

* i

™« Π -

512 bytes

1

daassctor

2 bytes 1 byte

* ir

CRC

F
data

response
busy

lokens

Figure 20.6 Basic timing diagram of a single block write operation.

Single block read process The CMD17 command is used to read a single data block
from an SD card. The 32-bit argument specifies the starting location of the data.
The location is represented as the byte address for the standard capacity SD card
and as the sector address for the high capacity SDHC card.

The basic timing diagram of a single block read operation is shown in Figure 20.5.
The host issues the CMD17 command. The card acknowledges it with a valid Rl
response (0x00) and then transmits the data packet. The card may require some
time to process the request and thus the packet will not be transmitted immediately.
The host should keep on generating the clock cycles and monitoring the input data
stream for the data token (Oxfe). After the token is detected, the 512-byte data
can be retrieved. If there is an error, the card will send an 8-bit data error token
in place of the data packet. The three MSBs of the error token are 0's and the
remaining five bits indicate the error conditions.

Single block write process The CMD24 command is used to write a single data
block to an SD card. The 32-bit argument specifies the starting location of the
data, similar to that of the CMD17 command.

The basic timing diagram of a single block write operation is shown in Fig-
ure 20.6. The host first issues the CMD24 command. After receiving a valid Rl
response (0x00), the host then transmits a data packet. The two CRC bytes can
be any value but must be included. The card acknowledges the packet with an
8-bit ciafa response token. If the data packet is accepted without errors, the five
LSBs should be "00101". The card then starts the write operation and issues a
continuous stream of 0x00 "busy" tokens (i.e., holds the output line low) when the
device programming is in progress. Upon completion, the card returns the output
line to high, which appears as Oxff data for the host.

www.it-ebooks.info

http://www.it-ebooks.info/

SPI AND SD CARD DRIVER 6 1 3

20.5 SPI AND SD CARD DRIVER

There are two layers of drivers to access raw SD card data. The lower layer is the
SPI driver consisting of routines to receive and transmit data over the SPI bus.
The SD card driver is built on top of the SPI driver and consists of routines to
initialize the card, read a sector from the card, and write a sector to the card.

20.5.1 SPI driver routines

The SPI controller has four addressable registers. To make the code clear, we define
the address offsets as symbolic register names in the header file:

«def ine CHU_SD_RD_DATA_REG 0
»def ine CHU_SD_CS_REG 1
«def ine CHU_SD_DVSR_REG 2
«define CHU_SD_WR_DATA_REG 3

There are five basic functions:
• sd_spi_is_ready(): check whether the SPI controller is ready.
• sd_spi_wr_cs(): set the SD card's ss (chip select) signal.
• sd_spi_wr_dvsr(): write the SPI clock divisor value.
• sd_spi_wr_byte(): transmit a byte via the SPI bus.
• sd_spi_rd_byte(): retrieve a byte from the SPI bus.

These functions are shown in Listing 20.3.

Listing 20.3
int sd_spi_ is_ready(a l t_u32 sd .base)
{

alt_u32 s p i . r e g ;
int spi_ready_bit;

spi.reg - I0RD(sd_base, CHU_SD_RD_DATA_REG);
spi_ready_bit = (int) ((spi.reg k 0x00000100) >> 8);
return spi_ready_bit;

}

void sd_spi_wr_cs(alt_u32 sd.base, int en.bit)
{
I0WR(sd_base, CHU_SD_CS_REG, (alt_u32) en.bit);

}

void sd_spi_ur_dvsr(alt_u32 sd.base, alt_u8 dvsr)
{
I0WR(sd_base, CHU_SD_DVSR_REG, (alt_u32) dvsr);

}

void sd_spi_wr_byte(alt_u32 sd .base , alt_u8 spi_data)
{

/ * wait until SPI is ready */
while (! s d _ s p i _ i s . r e a d y (s d . b a s e)) { } ;
/ * write a byte */
IOWR(sd_base, CHU.SD_WR_DATA.REG, (a l t_u32) s p i . d a t a) ;

}

alt_u8 s d . s p i . r d . b y t e (a l t _ u 3 2 sd .base)
{

www.it-ebooks.info

http://www.it-ebooks.info/

614 SD CARD CONTROLLER

alt_u32 spi_reg;
alt_u8 spi_data;

/* write a dummy byte and shift in data as well */
sd_spi_wr_byte(sd.base , Oxff);
spi_reg - IORD(sd_base, CHO_SD_RD_DATA_REG);
s p i . d a t a ■ (a l t_u8) (s p i . r e g & OxOOOOOOff);
return s p i . d a t a ;

The sd_spi-is_ready () function extracts the idle bit from the data register. The
sd_spi_wr_cs O function writes a bit to the SPI controller's 1-bit cs_reg register,
which is connected to the SD card's ss pin. Note that ss is active low and thus
writing 0 enables the card. The sd_spi_wr_dvsr() writes the SPI clock divisor
value to the register. The role of the divisor is discussed in Section 20.2.2. If the
value of dvsr is N, the frequency of sc lk becomes |*^T" ·

The SPI bus is a full-duplex system and the host writes data and reads data at
the same time. However, the SD card protocol is a half-duplex protocol and a card
transfers data only in one direction at a time. For clarity, we create two separate
functions. The sd_spi_wr_byte() function performs the write operation and trans-
mits a byte on the SPI bus. The received byte is ignored. The sd_spi_rd_byte()
function performs the read operation and receives a byte from the SPI bus. The
SPI controller actually performs a write operation at the same time. The stuffing
data bytes (Oxff) are transmitted by the host but are ignored by the SD card.

20.5.2 SD card driver routines

The SD card driver follows the protocol and consists of functions to send a com-
mand, initialize a card, and read and write a sector. To make the code clear, we
define the commands, two special data tokens, and timeout periods as symbolic
constants in the header file:

« d e f i n e SD
« d e f i n e SD
« d e f i n e
« d e f i n e
« d e f i n e

SD
SD
SD

«define SD
«define SD
/* SD card
«define SD
«define SD
/* SD card
«define SD
«define SD
«define SD

.CMDO.RESET

.CMD8_SEND_IF

.CMD17_READ

.CMD24.WRITE

.CMD55_APP

.CMD58_RD_0CR

.ACMD41_INIT_SD
token */
.TOKEN_DATA_START
.TOKEN_DATA_ACCEPT

timeout cycles */
.INIT_TIME_0UT
.READ_TIME_0UT
.WRITE_TIME_0UT

0
8

17
24
55
58
41

Oxfe
0x05

900 / / 0.50s w/ 200 kHz sclk
312500 / / 0.10s w/ 25 MHz sclk
781250 / / 0.25s w/ 25 MHz sclk

Sending command routine The sd_wr.cmd 0 function sends a command to an SD
card and retrieves the response. The code is shown in Listing 20.4.

www.it-ebooks.info

http://www.it-ebooks.info/

SPI AND SD CARD DRIVER 6 1 5

Listing 20.4

a l t_u8 sd_wr_cmd(alt_u32 s d . b a s e , a l t _u8 cmd, a l t_u32 a rgu , a l t_u32 *r3)
{

in t i ;
alt_u8 crc, rcode, byte;
alt_u32 ocr«0;

/* crc for CMDO and CMD8 */
if (cmd--SD_CMDO_RESET)
crc=0x95; // crc for CMDO(O)

else
crc -0x87; / / crc for CMD8(0xlaa)

/* send command */
s d _ s p i _ w r _ b y t e (s d . b a s e , cmd|0x40); //2 MSBs is 01
/ * send argument */
s d _ s p i _ w r _ b y t e (s d . b a s e , (a l t _ u 8) (a r g u > > 2 4)) ;
s d _ s p i _ w r _ b y t e (s d . b a s e , (a l t _ u 8) (a r g u > > 1 6)) ;
s d . s p i . w r . b y t e (s d . b a s e , (a l t _ u 8) (a r g u > > 8)) ;
s d . s p i _ w r . b y t e (s d . b a s e , (a l t _ u 8) a r g u) ;
/ * send crc; only valid for CMDO and CMD8 */
s d . s p i . w r . b y t e (s d . b a s e , c r c) ;
/ * wait for response , up to 8-byte delay */
f o r (i = 0 ; i < 8 ; i + + H
/ * read Rl response */
rcode = s d . s p i . r d . b y t e (s d . b a s e) ;
if (rcode != Oxff)

break;
}
/ * read 4 additional bytes for CMD8 and CMD58 response */
if (cmd==SD_CMD8_SEND_IF II c_.d--SD_CMDS8_RD.0CRH

f o r (i = 0 ; i<4; i++){
byte = s d . s p i . r d . b y t e (s d . b a s e) ;
ocr » (ocr <<8 I b y t e) ;

}
/ / printf("rocde, ocr: 0x%02x, 0x%08x\n", rcode, ocr);
*r3 » oc r ;

}
r e t u r n (r c o d e) ;

The function basically transmits a 6-byte command frame (1-byte command index,
4-byte argument, and 1-byte CRC) in sequence, waits for up to 8-byte delay, and
retrieves the response. For simplicity, we only consider the subset discussed in Ta-
ble 20.1. There are two caveats in the code. First, we choose not to use the 7-bit
CRC code and ignore this field in general. However, the CMDO and CMD8 com-
mands in the initialization process require valid CRC codes. We manually calculate
the CRC values for the two special cases and insert it into the command frame as
needed. Second, while most commands respond with a 1-byte Rl response, the
CMD8 and CMD58 commands respond with R7 and R3 responses, both consisting
of four additional bytes. We use an additional for loop to read four more bytes as
needed. The function returns the 1-byte Rl response. Its value is 0x00 most of the
time, which means that there is no error and the card is not in the idle state.

Device initialization routine The sd_ in i t () function determines the type of card
and initializes it in the SPI mode. The code is shown in Listing 20.5.

www.it-ebooks.info

http://www.it-ebooks.info/

616 SD CARD CONTROLLER

Listing 20.5

int sd.init(alt_u32 sd_base)
{

int i ;
alt_u8 rcode;
alt_u32 ocr;
int bcs;

/ * set SPI sclk clock to 200 kHz */
sd_api_wr_dvsr(sd_base, 125);
/* force the sd card to enter spi mode */
sd_spi_wr_cs(sd.base, 1); // set cs to 1
for(i»0; i<10; i++){ / / generate 80 sd-dk cycles

sd_spi_wr_byte(sd.base, Oxff); / / 8 cycles per write
}
sd_spi_wr_cs(sd_base, 0); / / set cs to 0 (enable)
/* send reset command */
rcode » sd_wr_cmd(sd_base, SD_CMDO_RESET , 0, fcocr) ;
if (rcode ! - OxOlM / / not entering idle state

printf ("CMDO command f a i l s : Rl»0x'/.02x \n" , rcode);
return (-1);

}
/ * send interface condition check command */
rcode » sd_wr_cmd(sd_base, SD_CMD8_SEND_IF , OxOOOOOlaa, fcocr);
if (rcode!=0x01 II ocr!»OxOOOOOlaaH
printf ("CHD8 command f a i l s : Rl/data-0x'/,02x Ox'/.x\n" , rcode, ocr);

return (-1);
}
/ * send sd card init command and wait for 0.3 sec */
for(i=0; i<SD_INIT_TIME_OUT; i++H
sd_wr.cmd (sd.base , SD_CMD55_APP, 0, tocr);
rcode - sd_wr.cmd(sd.base, SD_ACMD41_INIT_SD, 0x40000000, tocr);
if (rcode-=0x00) // correct response received
break;

}
if (rcode!»0x00){
printf ("ACMD41 command fails: Rl-0x*/.02x\n" , rcode);
return (-1);

}
/ * send read OCR register command * /
rcode - sd_wr_cmd(sd.base, SD_CMD58_RD_0CR, OxOOOOOlaa, fcocr);
if (rcode != OxOOH

printf("CMD58 command f a i l s : Rl>0x%02x \n", rcode);
return (-1);

}
/ * extract hcs bit (bit 30) */
hcs = (ocr k 0x40000000) » 30;
/ * set SPI clock to 1 MHz */
sd_spi_wr_dvsr(sd_base , 25);
return(hcs);

The code follows the procedure discussed in Section 20.4.2. The host issues a
sequence of commands and verifies the responses. The function returns -1 after
receiving an incorrect response. Otherwise, it returns 0 for a standard capacity SD
card and returns 1 for a high capacity SDHC card.

The ACMD41 command starts the SD card's internal initialization process and
may require a fraction of a second to complete. The host must keep on issuing the
command until a valid Rl response 0x00 (which indicates the card is no longer in

www.it-ebooks.info

http://www.it-ebooks.info/

SPI AND SD CARD DRIVER 6 1 7

idle state) is received or the timeout period is reached. We use a for loop for this
task:

f o r (i = 0 ; i<SD_INIT_TIME_OUT; i + + H
sd_wr_cmd(sd_base, SD_CMD55_APP, . . .) ;
rcode = sd_wr_cmd(sd.base , SD_ACMD41_INIT_SD, . . .) ;
if (rcode==OxOO) / / correct response received

break ;
>

The SD_INIT_TIME_OUT term is a symbolic constant defined in the header file and
used to impose the timeout period. We can estimate this value as follows. Sending
CMD55 and ACMD41 commands and receiving two R.1 responses require 14 bytes.
Since the SPI sc lk clock period is 5 us (i.e., 2 0 0 \ H z) , it takes about 0.56 ms (i.e.,
14*8*5 us) to loop through one iteration. SD_INIT_TIME_OUT is set to 900, which
provides a timeout period of 500 ms.

After successful initialization, we set the SPI sc lk clock to 1 MHz for future
data access. This value can be adjusted later to accommodate the actual system
requirement.

Single sector reading routine The sd_read_sector () function reads a 512-byte sec-
tor from an SD card and the code is shown in Listing 20.6.

Listing 20.6
int sd_read_sector(alt_u32 sd.base, int sdhc, alt_u32 sect, alt_u8 *buf)
{
int i;
alt_u8 rcode, token;
alt_u32 addr, ocr;

/* byte addr for SD card; sector # for SDHC card */
if (sdhc==0)
addr = (sect<<9);

else
addr » s e c t ;

/ * send sd card read single block command */
rcode = s d _ w r _ c m d (s d _ b a s e , SD_CMD17_READ, a d d r , & o c r) ;
i f (r c o d e ! - OxOOH

p r i n t f ("CMD17 command f a i l s : Rl=0x'/.02x \ n " , r c o d e) ;
r e t u r n (- 1) ;

}
/ * wait for data start token up to 100 ms */
f o r (i = 0 ; i<SD_READ_TIME_0UT; i + +) {

token = s d _ s p i _ r d _ b y t e (s d . b a s e) ;
if (token==SD_T0KEN_DATA_START) // correct response received
break;

}
if (token!-SD_T0KEN_DATA_STARTH //time-out
printf("No data start token: last token=0xX02x\n", token);
return (-1);

}
/* read one sector (512 bytes) */
for (i=0; i<512; i++)
buf[i] » sd_spi_rd_byte(sd.base);

/* read and discard two crc bytes */
sd_spi_rd_byte(sd.base);
sd_spi_rd_byte(sd.base) ;
return (0);

www.it-ebooks.info

http://www.it-ebooks.info/

618 SD CARD CONTROLLER

Note that the argument format of the CMD17 command is different for a standard
capacity SD card and a high capacity SDHC card. The latter is the sector number
and the former is the starting byte address of the sector. Since the sec t argument
of the sd_read_sector() function is the sector number, it must be converted to the
starting byte address for a standard capacity SD card. The starting byte address
of a 512-byte (i.e., 29 byte) sector can be obtained by concatenating the sector
number with nine zeros, as in the (s e c t « 9) expression.

The remaining code follows the read procedure discussed in Section 20.4.3. The
host first issues the CMD17 command. After the command is accepted, it polls the
input continuously until the data start token (Oxfe) is received and then reads the
512 bytes of data. The timeout period for the read process is 100 milliseconds. We
use a loop structure similar to that of sd_ in i t () :

for(i=0; i<SD_READ_TIME_OUT; i++H
token » sd_spi_rd_byte(sd.base);
i f (token==SD_TOKEN_DATA_START)

break;
>

The value of SD_READ_TIME_OUT depends on the SPI sc lk rate. The loop body
involves reading a byte from the SPI bus and thus needs eight sc lk cycles, which
takes j ^ — seconds. It requires 0.1/7-^— iterations to get a 100-ms timeout interval.
For simplicity, we define SD_READ_TIME_0UT as a constant and set its value to 312,500
to accommodate the highest possible 25-MHz sc lk clock rate.

Single sector write routine The sd_write_sector() function writes a 512-byte sec-
tor to an SD card and the code is shown in Listing 20.7.

Listing 20.7
int sd_write_sector(alt_u32 sd.base, int sdbc, alt_u32 sect, alt_u8 »buf)
{
int i;
alt_u8 rcode, token;
alt_u32 addr, dummy;

/* byte addr for SD card; sector # for SDHC card */
if (sdhc«=0)
addr - (sect<<9);

else
addr - sect;

/ * send $d card write single block command */
rcode - sd_wr_cmd(sd.base, SD_CMD24_WRITE, addr, tdummy);
if (rcode !« OxOOH / / error

printf("CMD24 command f a i l s : Rl-0x%02x \n" , rcode);
return (-1);

}
/ * initiate transfer by send data start token */
sd.spi .wr.byte(sd.base, SD_T0KEN_DATA_START);
/ * send 512 bytes */
for (i -0 ; i<512; i++){

sd_spi_wr_byte(sd_base, buf [i]) ;
}
/ * send two dummy crc bytes */
sd_spi_ur_byte(sd.base, Oxff);

www.it-ebooks.info

http://www.it-ebooks.info/

FILE ACCESS 619

sd_spi_wr_byte(sd.base, Oxff);
/ * wait for data acceptance token up to 0.25 sec */
for(i=0; i<SD_WRITE_TIME_OUT; i++){

token - sd_spi_rd_byte(sd.base);
token = token k Oxlf; // only 5 LSBs used
if (token-»SD_TOKEN_DATA_ACCEPT) // correct response received
break;

}
if (token!=SD_TOKEN_DATA_ACCEPT){
printfC'No data accept token: last token»0x%02x\n", token);
return (-1);

}
/ * wait for write completion */
for(i-0; i<SD_WRITE_TIME_OUT; i++){

token - sd_spi_rd_byte(sd_base);
if (token«Oxff) // correct response received
break ;

}
if (token !» OxffH
printf ("Write completion timeout: last token-0x'/.02x\n" , token);
return (-1);

}
return (0); // ok

y

The code follows the write procedure discussed in Section 20.4.3. The host first
issues the CMD24 command. After the command is accepted, it sends the data
packet, which consists of a 1-byte data start token, 512-byte data, and 2-byte
stuffing CRC code. After receiving the data packet, the card acknowledges by
sending the data accept token and then proceeds to perform the erasing and writing
operation. It holds the output line low (which is read as 0x00 by the host) during
the process. The timeout period for this process is 250 milliseconds. We use a
loop structure similar to that in sd_read_sector() and set RD_WRITE_TIME_0UT
to 781,250.

20.6 FILE ACCESS

A computer file is a collection of related information. Prom an application pro-
gram's point of view, a file is a linear contiguous storage space, in which data are
accessed sequentially. A file system specifies how to map a logical file to a physical
massive storage and organize multiple files in the storage. In a desktop computing
environment, file management is part of an OS. It contains a collection of routines
to create and delete directories, to create and delete files, and to read and write files.
The routines are organized in layers. The lower layer routines deal with the access
of physical I /O storage devices, similar to those discussed in Section 20.5.2. The
upper layer routines deal with the aspects of the logical file and are incorporated
into a special software module, such as the s t d i o library of C. A user application
can use the generic file access functions, such as fopenO, and avoid the low-level
details.

On the other hand, an embedded system sometimes does not include a full-
fledged OS and an application usually does not need the full range of service.
The file access is frequently handled in an ad hoc way, just implementing enough
functionalities to match the application's need.

www.it-ebooks.info

http://www.it-ebooks.info/

620 SD CARD CONTROLLER

The most widely used file system for SD cards is the FAT (file allocation table)
file system. It was first developed by Microsoft in the late 1970s and continued
to evolve to accommodate larger storage capacity and to incorporate advanced
features. Two commonly used versions for flash cards are FAT16 and FAT32, which
support storage sizes up to 4 GB and 2 TB, respectively. These file structures are
used in portable devices and recognized by almost all current desktop computers.

In this section, we provide an overview of the FAT16 file structure and derive
basic utility routines to open and read files from an SD card. File management
is a complex task and a detailed discussion is beyond the scope of the book. For
simplicity, we make the following assumptions about the file organization:

• The card must be preformatted in a FAT16 structure.
• The files must reside on the first partition.
• The files must be on the root directory (i.e., not in a subdirectory).
• The file names must be in 8.3 format, in which there are up to eight characters

for the file name and up to three characters for the file extension. The "long
file names" format should not be used.

The card and files must be prepared according to these constraints to be used
with the utility routines. Note that the high capacity SDHC cards are formatted
as FAT32 as the default. To be used with our implementation, they must be
reformatted with FAT16. Because of the limitation of the FAT16 structure, only
4 GB of the storage capacity can be used.

20.6.1 Overview of FAT16 structure

The simplified layout of a single-partition "fixed-disk" FAT16 system is shown in
Figure 20.7. It contains several key regions. The boot record (sometimes known
as partition boot record) contains the basic information of the file system, such as
the starting location and size of the file allocation table, root directory, and data
region. Root directory maintains information for files, such as file names and sizes,
and contains an entry for each individual file. The actual file data are stored in
the data region. The region is organized as fixed-sized physical clusters. A file can
occupy one or more clusters and this information is kept in a file allocation table.

As the storage capacity increases, a physical device can host multiple file systems,
which are known as partitions. Each partition has its own boot record, file allocation
table, etc. In such a system, the MBR {master boot record) uses a partition table
to maintain the relevant information. The FAT16 system can support up to four
partitions. When a device is formatted in a Microsoft operation system, a "fixed
disk," such as a hard disk, is usually formatted with an MBR and a "removable
disk," such as the old floppy diskette, is formatted without an MBR. An SD card
can be formatted either way and thus may or may not include the MBR. In the
latter case; the card normally contains a single partition.

For a massive storage device, the data are usually transferred in blocks. The
FAT16 system uses a 512-byte sector as the basic storage unit and the starting
locations and sizes of the regions are represented in term of sectors (i.e., along the
512-byte address boundary). A cluster usually contains multiple sectors.

MBR and boot record In computing, booting is the process to start the operating
systems. In the DOS and early Windows, the MBR and boot record contain the
basic file information and the starting-up code to load the main operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

FILE ACCESS 621

M&R

boot record

file allocation table

root directory

data region

Figure 20.7 Simplified layout of a FAT16 file system.

For non-bootable storage, we only need to extract key FAT16 file system parameters
from the MBR and boot record. The parameters are:

• Starting sector of the root directory
• Starting sector of the file allocation table
• Starting sector of the data region
• Number of file entries in the root directory
• Number of sectors per cluster
• Number of clusters in the data region

For an SD card formatted without the MBR, the boot record is located in sec-
tor 0. For an SD card formatted with the MBR, the MBR is located in sector 0
and the boot record is located in the first sector of the partition. The starting loca-
tion of the first partition can be found in the MBR's partition table. In summary,
obtaining FAT16 file system parameters from an SD card involves three basic steps:

1. Load the sector 0. If it is not the MBR (i.e., the sector is assumed to be the
boot record), go to step 3.

2. Determine the first partition's location and load its first sector (i.e., the boot
record).

3. Extract the relevant file system parameters from the boot record.
One way to distinguish between an MBR and a boot record is to examine the

first byte of the sector. In a boot record, the first three bytes should be "jump
code" and the first byte of the corresponding jump instructions is either Oxeb or

cluster 2: sector 0
cluster 2: sector 1
cluster 2: sector 2

cluster 2

cluster 3

cluster 4

cluster 5

cluster n

www.it-ebooks.info

http://www.it-ebooks.info/

622 SD CARD CONTROLLER

Offset Size

0xlc2 1
0xlc6 4
Oxlfe 2

Table 20.2 MBR key fields

Description Value

file system type of the first partition 0x04, 0x06,
starting sector of the first partition
MBR signature 0x55aa

or OxOe

Table 20.3 FAT16 boot record fields

Offset Size Description Value

0x000
0x003
0x00b *
OxOOd *
OxOOe *
0x010 *
0x011 *
0x013 *
0x015
0x016 *
0x018
0x01a
0x01c
0x020 *
0x024
0x026
0x027
0x02b
0x036
0x03c
Oxlfe *

3
8
2
1
2
1
2
2
1
2
2
2
4
4
2
1
4
4
8
448
2

jump code
optional manufacturer description
bytes per sector (almost always 512) 512
sectors per cluster
number of reserved sectors before file allocation table 1
copies of file allocation table 2
maximal number of file entries in root directory
total number of sectors in partition (0 if > 32 MB) 0
media descriptor
sectors per file allocation table
sectors per track
number of heads
number of hidden sectors preceding the partition 0
total number of sectors in partition
physical drive number (not used)
extended boot record signature
volume serial number
volume label
file system identifier
OS bootstrap code
boot sector signature 0x55aa

0xe9. We assume the sector is a boot record if the first byte matches one of the
patterns.

If the sector is an MBR, we need to retrieve information from the partition table.
For our purposes, only three fields are needed. Their offsets, widths, purposes, and
typical values are listed in Table 20.2. The boot record is located in the first sector
of a partition. The file system type indicates the type of file system and its value
should be 0x04, 0x06, or OxOe for a FAT16 file system. The signature field occupies
the last two bytes of the MBR and its value should be 0x55aa. This field can be
used to verify that a card is formatted as a FAT file system.

Step 3 retrieves actual file system parameters from the boot record. The offsets,
widths, purposes, and typical values of a boot record's fields are listed in Table 20.3.
Many fields are used to support the OS booting process or existed for historical
reasons. Only a few key fields are needed for our purposes, as indicated by the
* mark.

www.it-ebooks.info

http://www.it-ebooks.info/

FILE ACCESS 623

We first calculate the starting sectors of the root directory, file allocation table,
and data region. Let the starting sectors of boot record, root directory, file alloca-
tion table, and data region be brO, rdirO, fatO, and dataO, respectively. The brO is
obtained earlier from MBR and is 0 if MBR does not exist.

The OS sometimes needs additional sectors after the boot record and the reserved
number is stored in offset OxOOe. The file allocation table starts after this and the
first sector is

fatO = brO + # of reserved sectors

The size of the file allocation table (in terms of sectors) is specified in offset
0x016. Since it is the most critical part of the file system, OS sometimes maintains
duplicate copies. The number of copies is specified in offset 0x010. The root
directory region follows the file allocation tables and the first sector is

rdirO = fatO + (# of copies of file allocation table) * (sectors per table)

The number of file entries in the root directory is specified in offset 0x011. Since
each entry takes 32 bytes, the size of this region can be calculated accordingly. The
data region follows the root directory and the first sector is

(# of file entries) * 32
dataO = rdirO + ^- — -

512

Two other important parameters in the boot record are the number of sectors
per cluster and the number of sectors in the partition. The former is specified in
offset OxOOd. The latter is specified in offset 0x013 or 0x020. This field originally
consisted of two bytes in offset 0x013 and can support storage capacity up to 32 MB
(i.e., 216 * 512). A four-byte field in offset 0x020 was added later to accommodate
larger storage. A 0 in offset 0x013 indicates that the capacity is greater than 32 MB
and the information should be retrieved from offset 0x020. As in MBR, the boot
record uses a signature of 0x55aa in the end of the sector. This can be used to
verify the current sector is indeed a boot record.

File allocation table and data clusters The file data are stored in the data region.
The region is organized as a collection of clusters. The cluster is the basic unit
used in allocating storage space and a file can be mapped to one or more clusters.
The size of a cluster is fixed within a partition and its value is defined in the boot
record. A cluster usually contains multiple sectors and can be as large as 32 KB.

A large file can take many clusters. Instead of allocating the file to one large
consecutive chunk of storage space, the FAT16 file system uses a linked list to
thread the clusters together. A linked list consists of a chain of records such that in
each record there is a field that contains a reference (i.e., a link) to the next record
in the chain. For example, assume that the file myfi le .c is allocated to clusters
4, 5, 8, and 9. The conceptual linked list is shown in Figure 20.8. In the actual
implementation, the data cluster resides in the data region and the linked list is
realized separately by a lookup table, in which the index of the table represents the
current record and its content is the corresponding link. The content of the previous
example is shown in Figure 20.9. This table is referred to as the file allocation table
and the FAT file system is named after this table.

In a FAT16 file structure, the width of the table entry (i.e., link) is 16 bits and
thus the file system can accommodate up to 216 clusters. The 16-bit value in the

www.it-ebooks.info

http://www.it-ebooks.info/

624 SD CARD CONTROLLER

myfile.c entry · -

data data data data data

cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9

Figure 20.8 Conceptual file cluster chain.

0x0004

0x0005

0x0006

0x0007

0x0008

0x0009

•

0x0005

0x0008

0x0000

0x0000

0x0009

Oxffff

;

Figure 20.9 Portion of file allocation table.

entry usually represents the number of the next cluster in the chain. However,
several patterns are reserved for special use:

• 0x0000: free cluster.
• 0x0001: reserved.
• OxfffO to Oxfffó: reserved.
• 0xfff7: bad cluster.
• Oxfffó to Oxffff: last cluster in file.

Since the first two cluster numbers are for special use, no physical cluster exists.
The actual starting cluster in the data region is cluster 2, as shown in Figure 20.7.

Root directory The root directory contains individual file information on the root
level. Each file is represented by a 32-byte entry, which consists of fields for the
name, extension, attributes (archive, directory, hidden, read-only, system, and vol-
ume), the date and time of creation, the starting cluster of the file data, and the
size of the file. The offsets and widths of these fields are summarized in Table 20.4.
Our implementation requires the file name, file extension, starting cluster number,
and file size fields. The file name and extension fields are used to identify a spe-
cific file. The file name field contains eight bytes and thus can support up to eight
characters. The name starts with the first byte and the field is padded with space
characters if a file name is fewer than eight characters in length. The format of the
file extension field is similar except that it contains only three bytes. For example,
the file myfi le .c is represented as "MYFILE~JC„J' in these two fields.

www.it-ebooks.info

http://www.it-ebooks.info/

FILE ACCESS 625

Table 20.4 File entry fields

Offset Size Descr ipt ion

0x00
0x08
0x0b
0x0c
0x16
0x18
Oxla
Oxlc

8
3
1
10
2
2
2
4

file name
file extension
file attributes (directory, volume, read-only, etc.)
reserved
time created or last updated
date created or last updated
starting cluster number for file
file size in bytes

The first byte of the file name is also used to indicate the status of the entry.
Several special values are reserved for this purpose:

• 0x00: the entry is available and no subsequent entry is in use.
• 0x05: the first character of the filename is actually 0xe5.
• 0x2e: the entry is a special "dot" (i.e., "." or "..") directory entry.
• 0xe5: the entry has been deleted and is available.

In addition to a regular file, a file entry can also be used for the volume label,
subdirectory, etc.

20.6.2 Read-only FAT16 file access driver routines

File management is a complex task and developing a complete suite of file access
routines is beyond the scope of this book. In this subsection, we introduce the basic
concept with a simple set of routines to read a file from an SD card. The major
routines are:

• sd_f ile_mount(): initialize the FAT16 file system.
• sd_f i le_fopen(): open a file for read.
• sd_f i le_read_byte(): read a byte from an opened file.
• sd_f i l e_ fc lose () : close a file.

The last three routines are somewhat like the fopenO, f g e t c O , and f c lose()
functions used in Sections 18.9 and 19.7. Instead of relying on the host-based
file system, these routines allow us to read image and audio files from an SD card
directly. In our implementation, we make the data structures and procedure general
to accommodate file write operations as well. A similar sd_file_write_byte()
function can be developed if needed.

Auxiliary functions We define two auxiliary functions to facilitate the file process-
ing. The bge t l6 () and bget32() functions obtain two-byte and four-byte data
from a sector buffer, respectively. The code is shown in Listing 20.8.

Listing 20.8
alt_ul6 bgetl6(alt_u8 *buf, int pos)
{
alt_ul6 bO, bl, r;

bO = (alt_ul6) buf[pos];

www.it-ebooks.info

http://www.it-ebooks.info/

626 SD CARD CONTROLLER

bl = (a l t _ u l 6) b u f [p o s + l] ;
r = (bl<<8) + bO;
r e t u r n (r) ;

}

a l t_u32 b g e t 3 2 (a l t _ u 8 *buf, i n t pos)
{

a l t_u32 bO, b l , b2 , b3 , r ;

bO = (a l t _u32) b u f [p o s] ;
b l - (a l t _u32) bu f [pos+1] ;
b2 = (a l t _ u 3 2) b u f [p o s + 2] ;
b3 = (a l t _u32) bu f [pos+3] ;
r - (b3<<24) + (b2<<16) + (bl<<8) + bO;
r e t u r n (r) ;

The sd_f ile_conv_fname() function reads the input file name string and con-
verts it to an 11-element character array whose format matches the name and exten-
sion fields of the root directory file entry. For example, the input sting "myf i l e . c"
will be converted to "MYFILE~~C~J'. The code is shown in Listing 20.9.

Listing 20.9

void sd_file_conv_fname(char *si, char *f83)
{

int i , pos ;
char ch;

/ * blank by default */
for (i=0 ; i < l l ; i++)

f 8 3 [i] = ' ' ;
/ * file name */
pos=0;
for (i - 0 ; i<9; i + + H

c h = t o u p p e r (s i [p o s]) ;
pos++;
if (c h " " ' \ 0 ') / / end of string

retjurn;
if (c h - - · . ')

b reak ;
f 8 3 [i] - c h ;

}
/ * file extension */
for (i=8 ; i < l l ; i++){

c h - t o u p p e r (s i [p o s]) ;
pos++;
if (c h - - ' \ 0 ')

r e t u r n ;
f 8 3 [i] = c h ;

}

The sd_file_mount() function The sd-f ilejnount O function verifies the FAT16
file system structure of an SD card and extracts the relevant parameters. It es-
sentially initializes (i.e., "mounts") the FAT16 file system. We use a special data
structure to record the relevant parameters and it is defined as

www.it-ebooks.info

http://www.it-ebooks.info/

FILE ACCESS 627

typedef s t r u c t t a g

alt.
int
alt.
alt.
alt.
int
int
int

> fat.

.32 sd.base;
sdhc ;
.ul6 rdirO;
.ui6 fatO;
.ul6 dataO;
cls.size;
rdir.size;
data_size;
.para.type;

The basic procedure is:
1. Initialize the SD card.
2. Read sector 0.
3. Determine whether the sector is MBR. If not, skip the next three steps and

go to step 7.
4. Verify the MBR signature (0x55aa) and verify that the FAT file system type

is FAT16.
5. Extract the sector number of the first partition's boot record.
6. Read the boot record sector.
7. Verify the boot record signature (0x55aa).
8. Extract relevant FAT16 parameters.
9. Construct and return the FAT16 record.

The detailed code is shown in Listing 20.10.

Listing 20.10
int sd.file.mount(alt_u32 sd.base, fat_para_type *f)
{

alt_u8 buf[512]; / / buffer for a sector
alt_u32 brO; / / boot record sector number
alt_u8 sec_per_cls, fat_copy;
alt_ul6 reserved.sec, root_dir_s ize , sec .pe r .pa r t . smal l , sec_per_fat;
alt_u32 s e c . p e r . p a r t . l a r g e ;
int s t a tu s , sdhc, sec .pe r .pa r t ;

/* initialize SD card */
sdhc=sd_init(sd.base);
if (sdhc—=-l){

printfCSD card i n i t i a l i z a t i o n failed \ n ") ;
return (1);

}
f->sdhc - sdhc;
f->sd_base ■ sd.base;
/* fetch sector 0 */
status=sd_read_sector(sd.base, sdhc, 0, buf);
if (s ta tus! -0){

pr intf("Sector 0 read fa i l ed \n") ;
return (2);

}
br0«0;
/* check whether the sector is the MBR */
if (buf[0]!=0xeb kk buf[0]!=0xe9) { /* not boot record */

/* check MBR signature 0x55aa */
if ((buf[510]!=0x55) II (buf [511]!=0xaa)H

printf("MBR signature not match\n");

f a t

/ / base address of SPI controller
// type of SD card
// starting sector of root directory
// starting sector of FAT table
// starting sector of data region
// # sectors per cluster
// max # file entries in root directory
// max # clusters for data

www.it-ebooks.info

http://www.it-ebooks.info/

628 SD CARD CONTROLLER

return (3) ;
}
/ * check FAT16 file system type at 0xlc2 */
i f ((buf [0x lc2] ! -0x04) fcfc (buf [0x lc2] ! -0x06) kk (buf[0xlc2] ! -OxOe)){

printf("FAT16 i i l e type not match\n");
return (4) ;

}
/ * fetch boot record of first partition */
brO = bget32(buf, 0 x l c 6) ;
s ta tus=sd_read_sec tor (sd .base , sdhc, brO, buf);
i f (s t a t u s ! - 0) {
printf("Boot record read failed\n");
return (5);

}
} // end if
/* check boot record signature 0x55aa */
if (buf [510]!-0x55 II buf[511]!=0xaa){
printf("Boot record signature not match\n");
return (6);

}
/ * extract key FAT16 parameters */
sec_per_cls ■ buf[OxOd];
reserved .sec = bget l6(buf , OxOe);
fat .copy - buf [0x10];
root_d ir_s ize » bget l6(buf , O x l i) ;
sec_per_part_small » bget l6(buf , 0x13);
sec_per_fat » bget l6(buf , 0x16);
sec_per_part_large « bget32(buf, 0x20);
/* construct the FAT16 record */
if (sec_per_part_small!=0)

sec_per_part ■ (i n t) sec_per_part_small;
e l s e

sec_per_part « sec_per_part_large ;
f->fatO = brO + r e s e r v e d . s e c ;
f->rdirO = f->fatO + fat .copy * sec_per_fat;
f->dataO - f->rdirO + root_d ir_s ize*32 /512;
f - > c l s _ s i z e » (i n t) sec_per_c l s ;
f ->rd ir_s i ze - (i n t) r o o t _ d i r _ s i z e ;
f ->data_s ize » (sec_per_part - f ->dataO) / sec_per_c l s ;
re turn(0) ;

If the operation is successful, the function returns a status code 0 and updates the
FAT16 record pointed by f. Otherwise, it returns an error code and prints the error
condition on the console.

The "file descriptor" data structure Prom the application point of view, a file is
a linear contiguous storage space and the data are accessed sequentially. In the
actual physical storage, the data are mapped to a chain of clusters and the data
transfer is performed in blocks. To facilitate the implementation, we use a special
data structure, file descriptor, to maintain basic file information, to keep track of
the operation status, such as the current logical position and physical cluster, and
to provide buffering space. The data structure is defined as

typedef struct tag_file_descriptor
{

char name[11]; / / 11—bit file name+extension
i n t r d i r _ i n d e x ; / / entry index in root directory table
i n t s i z e ; / / size of file in byte

www.it-ebooks.info

http://www.it-ebooks.info/

FILE ACCESS 629

alt_ul6 clsO;
alt_ul6 clsi;
int sect;
int idx ;
int seek;
char dbuf[512];
int sf ;
char fbuf [512] ;
int open;

//
//
//
//
//
//
//
//
//

} f i l e_dp_ type ;

The first four fields, name [11], rdir_index, s i ze , and clsO, represent the 11-
character array of the file name and extension, the entry number in the root di-
rectory, the file size in bytes, and the file's starting cluster number. The seek
field keeps track of the current read position of the "logical file" viewed by the
application. The physical position of the byte is stored in the c l s i , sec t , and
idx fields, which are the current cluster number, current sector number, and the
position within the sector. The open field is a status indicating whether the file is
currently open.

The SD card data are retrieved one sector at a time and the individual byte is
read afterward. Instead of loading the same sector repetitively, it is more efficient
to store the 512 bytes of data in a buffer. The read process can continue until
the current buffer is exhausted. The dbuf [512] field provides the needed buffer
space. The file allocation table is also stored in the SD card and the cluster chain
is retrieved in a similar fashion. A large file contains a large number of clusters and
the table must be read repetitively. We can use another 512-byte buffer to store
the data of the retrieved sector. This can reduce the access time significantly if the
clusters are allocated in the adjacent area. The fbuf [512] field provides the file
allocation table buffer space and the sf field records the corresponding sector.

The sd_f ile_f open() function Opening a file involves searching the matched file
name on the root directory, retrieving the key parameters from the entry, and
initializing the relevant fields of the file descriptor. The function is defined as

int sd_file_fopen(fat_para_type *fat, char *fname,
file_dp_type *fd)

The calling function must call the sd_f ile_mount() function in advance to obtain
the FAT information and define a static variable for the file descriptor, which es-
sentially allocates the needed buffer space. The pointers to the two data structures,
along with the file name string, are passed to the sd_f i l e .openO function. The key
task of the function is to search a matched file in the root directory. The combined
file name and extension fields of entries of the directory are compared sequentially
until a match is found or until all the entries are exhausted. The starting sector
of the root directory and the number of file entries can be obtained from the f a t
data structure. Since the size of an entry is 32 bytes, 16 entries can be stored in a
512-byte sector. A new sector must be loaded after every 16 entries. The function
returns 0 if the file is found and returns an error code otherwise. The code is shown
in Listing 20.11.

starting cluster number
current data cluster number
current sector
current index in sector
current position in file
data sector buffer
current fat sector number
fat sector buffer
file is properly opened

www.it-ebooks.info

http://www.it-ebooks.info/

630 SD CARD CONTROLLER

Listing 20.11

i n t s d _ f i l e _ f o p e n (f a t _ p a r a _ t y p e * f a t , char »fname, f i l e_dp_ type *fd)
{

i n t index , s t a t u s , n;
i n t sec t , o f t ;
a l t _u8 *buf; / / pointer to a sector buffer
char f 8 3 [l l] ; / / file name in normalized 8.3 format

sd_fi le_conv_fname(fname, f 8 3) ;
fd->open = 0;
/ * use file descriptor 's data buffer as temp buffer */
buf = fd->dbuf;
/ * search entire root directory */
for (i n d e x - 0 ; i n d e x < f a t - > r d i r _ s i z e ; index++H

/* load a new sector after 16 file entries */
if (i n d e x y . l 6 « 0) {

sec t = f a t - > r d i r 0 + index /16 ;
s t a t u s » s d _ r e a d _ s e c t o r (f a t - > s d _ b a s e , f a t - > s d h c , s e c t , b u f) ;
if (s t a t u s ! » 0) {

p r in t fC 'SD read f a i l e d \ n ") ;
r e t u r n (2) ;

}
}
/* offset in current sector */
oft - 32 * (indexV.16);
/* 0x00 in first char of file name means no more entries */
if (buf [o f t] - - 0 x 0 0 H

p r i n t f (" F i l e not f o u n d \ n ") ;
r e t u r n (1) ; / / file not found

}
/* compare normalized 8.3 name—extension */
for (n=0; n < l l ; n++){

if (f83[n] ! - b u f [o f t + n])
b reak ;

}
/ * file entry matches; update file descriptor 's fields */
if (n—11H

f d - > r d i r _ i n d e x « index;
f d ->c l s0 - b g e t l 6 (b u f , o f t+Oxla) ;
f d - > s i z e - (i n t) bge t32(buf , o f t+Oxlc) ;
for (n«0; n<12; n++)

fd->name[n] » b u f [o f t + n] ;
/ * initialize file descriptor 's counters */
f d - > c l s i - f d - > c l s 0 ;
f d ->sec t - 0;
fd->idx = 0;
fd->seek - 0;
b reak ; / / success

} / / end if
} // end for
if (i n d e x = = f a t - > r d i r _ s i z e) { / / file not found

p r i n t f (" F i l e not f o u n d \ n ") ;
r e t u r n (1) ;

}
/ * load file 's 1st file allocation table sector to buffer */
sec t « f a t - > f a t 0 + f d - > c l s 0 / 2 5 6 ;
s t a t u s « s d _ r e a d _ s e c t o r (f a t - > s d _ b a s e , f a t - > s d h c , s e c t , f d - > f b u f) ;
if (s t a t u s ! » 0) {

p r i n t f (" F i l e a l l o c a t i o n t a b l e s e c t o r read f a i l e d \ n ") ;
r e t u r n (3) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

FILE ACCESS 631

fd->sf = sect;
/* update open status */
fd->open ■ 1;
return(0);

}

Note that the code uses the dbuf field of the file descriptor as a temporary buffer
to store the sector retrieved from the root directory and loads a new sector after
every 16 entries. After a matched file is found, the function updates the relevant
parameters and also loads the corresponding file allocation table sector (determined
by the starting cluster) to the fbuf buffer.

The sd_f ile_read_byte O function The sd_f i lejread_byte() function retrieves
a byte from an opened file. It traverses the file sequentially. When it is called, it
returns the current byte and advances the index one position. The file must be
properly opened before being read.

The data are retrieved one sector at a time and are stored in the 512-byte dbuf
buffer of the file descriptor structure. Most read operations obtain the byte for the
buffer and involve no I/O operations. When the buffer is exhausted, a new sector
will be loaded. It is usually the next sector. However, if the current sector is the
last one in the cluster, we must follow the cluster chain in the file allocation table
to obtain the new cluster and calculate the new sector number accordingly. The
basic procedure is:

• Check whether the current position is the end of the file.
• If the idx field points to the first byte of the buffer, load the new sector to

the data buffer.
• Read a byte from the data buffer pointed by the idx field.
• Update the idx and seek fields.
• If the byte is the last byte in the buffer, reset the idx field to 0 and increment

the sec t field.
• If the sector is the last sector in the cluster, reset the sec t field to 0 and

follow the cluster chain to retrieve the next cluster. A new file allocation
table sector will be loaded if necessary.

The function returns 0 if the operation is successful and returns an error code
otherwise. The code is shown in Listing 20.12.

Listing 20.12
int sd_f i le_read_byte(fat_para_type * f a t , f i le_dp_type * fd ,a l t_u8 *byte)
{

int s t a t u s ;
a l t_u l6 s;

/ * check end—of—file */
if (fd->seek >« f d - > s i z e)

re turn(1) ;
/ * must load a new sector at the beginning */
i f (f d - > i d x - - 0) {

s = fat->data0 + ((f d - > c l s i) - 2) * (f a t - > c l s _ s i z e) + fd ->sec t ;
status-sd_read_sector(fat->sd_base, fat->sdhc, s, fd->dbuf);
if (status!=0){
printfO'Data sector read failed\n");
return (2);

}

www.it-ebooks.info

http://www.it-ebooks.info/

632 SD CARD CONTROLLER

}
/ * read a byte */
»byte » f d - > d b u f [f d - > i d x] ;
/* update file descriptor counter */
fd->seek++;
fd->idx++;
/ * not reach end of buffer yet */
if (fd -> idx! -512)

r e t u r n (0) ; / / success
/* reach the end of buffer */
fd->idx - 0;
fd ->sec t++;
/ * not last sector in cluster */
if (fd ->sec t ! « f a t - > c l s _ s i z e)

r e t u r n (0) ; / / success
/* last sector in cluster; fetch next cluster from FAT table */
fd ->sec t - 0;
s - f a t - > f a t O + f d - > c l s i / 2 5 6 ; / / sector containing the cluster
/* file allocation table sector not in buffer; load new sector */
if (s != f d - > s f) {

s t a t u s " s d _ r e a d _ s e c t o r (f a t - > s d _ b a s e , f a t - > s d h c , s , f d -> fbu f) ;
if (s t a t u s ! = 0) {
printfC'File allocation table sector read failed\nn);
return (3);

}
fd->sf - s;
/ / printf("Debug: sector %d in FAT\n", s);

}
f d - > c l s i « bge t l 6 (fd -> fbu f , 2* (fd ->c l s i%256)) ;
r e t u r n (0) ; / / success

}

77jesd_file_close() function Thesd-f ile_close() function closes the file. Since
only the read function is implemented, this function only needs to reset the open
field of the file descriptor to 0, as shown in Listing 20.13. It is included for com-
pleteness. If the write operation is supported, this function must write back the
data stored in the two sector buffers.

Listing 20.13
void s d _ f i l e _ f c l o s e (f i l e _ d p _ t y p e »fd)
{

fd->open « 0;
r e t u r n ;

20.7 TESTING PROGRAM

The SPI controller can be instantiated and integrated to a Nios II system like a
normal IP core. The system derived in Section 17.10.3 includes the SPI controller
core and can be used for testing. We construct a simple program to demonstrate
and verify file access routines and the SD card driver routines. The program consists
of the following tests:

• Mount a FAT16 file system from an SD card and display the relevant param-
eters.

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 6 3 3

• Open a file in the root directory and display the relevant parameters.
• Read the opened file and display the first two sectors and the last two sectors

of the file.
• Read and display data from the designated sector.
• Write sample data to the designated sector.
• Initialize an SD card.
• Set the frequency divisor of SPI's sc lk clock.

The SD card must be formatted as a FAT16 file system. Because the write operation
may damage the file system, it is a good idea to use a spare card for testing.

The first three tests are the steps to read a file and need to be performed in
sequence. The other four tests exercise the low-level driver functionalities. The
fourth test reads data from a single sector and displays it in a table. This test
can be used as a tool to examine and study the structures of MBR, boot sector,
root directory, etc. The fifth test writes data to a single sector. We use a for loop
to generate data. For address offset i, eight LSBs of s + i (where s is the sector
number) are written to the location. Since the write operation permanently alters
the data on an SD card, it must be used with care. Writing to a wrong sector
can damage a file or even render the entire file system unusable. The sixth test
initializes an SD card and it should be performed after a new card is inserted. The
last test changes the rate of SPI's sc lk clock.

The main program is shown in Listing 20.14.

Listing 20.14

i n t main(void)
{

f a t_para_ type f a t ;
f i l e_dp_ type fd;
char fname [15] , y e s [3] ;
i n t sw, b tn ;
unsigned i n t num;
in t i , j , s , s t a t u s , sdhc ;
a l t_u32 s e c t ;
a l t_u8 ch, dvs r ;
a l t_u8 rbuf [512] , wbuf [512] ; / / read and write buffers
a l t_u8 disp .msg[4]»{sseg_conv_hex (5) , sseg_conv_hex(13) ,

Oxff, s seg_conv_hex(12)} ;

sseg_disp_ptn(SSEG.BASE, d i s p . m s g) ; / / show "Sd C" for display
pr in t fO 'SD card FAT16 f i l e system t e s t : \ n ") ;
sdhc«sd_init(SDC_BASE);
if (s d h c - = - l)

pr in t fO'SD card i n i t i a l i z a t i o n f a i l e d \ n ") ;
btn.clear(BTN.BASE) ;
while (1){

while (!btn_is_pressed(BTN_BASE)H };
btn-btn_read(BTN.BASE);
if (b tn k 0x02H

sw=pio_read(SWITCH_BASE);
/ / printf("key/sw: %d/%d\n",

}
btn.clear(BTN.BASE);
switch (sw){

case 0: / / mount FAT16 file system
status=sd_fi le .mount(SDC.BASE, fcfat)¡
sdhc ■ f a t . s d h c ;
i f (s t a t u s — 0) {

) H };

btn, sw);

// wait
// read
// keyl
// read

for button
button
pressed
switch

www.it-ebooks.info

http://www.it-ebooks.info/

634 SD CARD CONTROLLER

printf("FAT 16 mounted on SD card\n");
printf ("starting FAT table sector: '/.d\n" , fat.fatO);
printf("starting root dir sector: %d\n", fat.rdirO);
printf("starting data sector: %d\n", fat.dataO);
printf("sectors per cluster: %d\n", fat.cls.size);
printf("clusters in data segment: %d\n", fat.data.size);
printfC'file entries of root dir: */.d\n\n" , f at. rdir.size);

} else
printf("Mount failed: status-%d\n\n", status);
break;
case 1: // open a file
printf("Enter file name in 8.3 format: ") ;
scanf ("*/.s" , fname);
status»sd_file_fopen(¿fat, fname, *fd);
if (status--0) {
printf("\nFile open successful.\n");
printf ("file size (bytes): */.d\n" , fd.size);
printfC'root dir entry #: '/.d\n" , fd.rdir.index) ;
sect - fat.rdirO + fd.rdir_index/32;
printf("entry sector #: %d\n", (int)sect);
printf ("starting cluster«: 7,d\n", fd.clsO);
sect - fat.dataO + (fd.cls0-2)*fat.cls.size;
printf ("starting sector #: 7.d\n\n" , (int)sect);

} else
printf("\nFile open failed: status=%d\n\n", status);

break;
case 2: // read file and list first 2 and last 2 sectors
s = fd.size/512;
if ((fd. size'/.512) ! =0) // fraction of a segment

s++;
printf ("File size (bytes/sectors): */.d/7.d\n" , fd.size, s);
printfC'Data dump for first 2 and last 2 sectors:\n\n");
for (i-0; i<s; i++){
for (j=0; j<512; j++H
sd_file_read_byte(tfat, ftfd, fcch);
rbuf [j] = ch;

}
if (i<2 || i>s-3H
printf ("sector '/.d of file:\n", i);
print.sector(rbuf);

} else {
printf(".");

} // end if
} // end for i
break;

case 3: // read and print a 512 byte sector
printf("Enter sd card read sector number: ") ;
scanf ("*/,u" , &num);
sect = (alt_16)<num;
status-sd_read_sector(SDC.BASE, sdhc, sect, rbuf);
if (status!=0)
printf("read sd card failed\n\n");

else{
printf ("\nsector '/,d(0xy,x)\n", (int)sect, (int)sect);
print_sector(rbuf);

}
break;

case 4: // write a 512 byte sector
printf("Lou-level sector urite may corrupt file system.\n");
printf("Press Y to continue: ") ;
scanf("%s", yes);

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 635

if (yes[0]!='y* kt yes[0]!=Ύ·H
printf("Sector write abandoned.\n\n");
break;

}
printf("Enter sd card write sector number: ") ;
scanf ("*/.u" , Snum);
sect - (alt_16) num;
for (i-0; i<512; i++)
wbuf[i] = (alt_u8) (sect + i);

status=sd_write_sector(SDC.BASE, sdbc, sect, wbuf);
if (status!-0)
printf("Write sd card failed\n\n");

else
printf("write sd card completed\n\n");

break;
case S: // set frequency divisor of SPI clock
printf("Enter frequency divisor (1-255): ") ;
scanf ('"/,u", fenum);
dvsr - (alt_u8) num;
sd_spi_wr_dvsr(SDC.BASE, dvsr);
printf("SPI bus frequency set to 7.6.3f MHz.\n\n", 50.0/(2.0*dvsr));
break;

case 6: // reinitialize SD card
sdhc-sd_init(SDC.BASE);
if (sdhc —-1)
printf("SD card initialization failed.\n\n");

else
printf("SD card initialized (sdhc status-%d).\n\n", sdhc);

break;
} //end switch

} // end while
}

The main program includes an auxiliary function, print_sector(), which dis-
plays 512-byte data retrieved from a sector. The code is shown in Listing 20.15.

Listing 20.15

void p r i n t . s e c t o r (a l t u8 *buf)
{

i n t i , j ;
a l t_u8 ch;

for (j - 0 ; j<32; j++){
p r in t f ("0xX02x- " , j) ;
for (i - 0 ; i <16; i++)

p r i n t f Ο··/.02χ " , buf [j »16+i]) ;
p r i n t f (" ") ;
for (i - 0 ; i <16; i++){

ch - b u f [j * 1 6 + i] ;
if (ch>127 I I ch<32) / / non ascii

ch - ' . ' ;
p r i n t f (" X c " , c h) ;

} / / end for i
p r i n t f (" \ n ") ;

} //end for j
}

It arranges the data as two tables, one shown as two-digit hexadecimal numbers
and the other shown as ASCII characters (when printable). A sample screen is
shown in Figure 20.10. It is the result after we perform a writing test on sector 2.

www.it-ebooks.info

http://www.it-ebooks.info/

636 SD CARD CONTROLLER

sector 2(0x2)
0x00-
0x01-
0x02-
0x03-
0x04-
0x05-
0x06-
0x07-
0x08-
0x09-
0x0a-
0 x0b-
OxOc-
OxOd-
OxOe-
OxOf-
0x10-
Oxll-
0x12-
0x13-
0x14-
0x15-
0x16-
0x17-
0x18-
0x19-
Oxla-
Oxlb-
Oxlc-
Oxld-
Oxle-
Oxlf -

02
12
22
32
42
52
62
72
82
92
a2
b2
c2
d2
e2
f2
02
12
22
32
42
52
62
72
82
92
a2
b2
c2
d2
e2
f2

03
13
23
33
43
53
63
73
83
93
a3
b3
c3
d3
e3
f3
03
13
23
33
43
53
63
73
83
93
a3
b3
c3
d3
e3
f3

04
14
24
34
44
54
64
74
84
94
a4
b4
c4
d4
e4
f4
04
14
24
34
44
54
64
74
84
94
a4
b4
c4
d4
e4
f4

05
15
25
35
45
55
65
75
85
95
a5
b5
c5
d5
e5
f5
05
15
25
35
45
55
65
75
85
95
a5
b5
c5
d5
e5
f5

06
16
26
36
46
56
66
76
86
96
a6
b6
c6
d6
e6
f6
06
16
26
36
46
56
66
76
86
96
a6
b6
c6
d6
e6
f6

07
17
27
37
47
57
67
77
87
97
a7
b7
c7
d7
e7
f7
07
17
27
37
47
57
67
77
87
97
a7
b7
c7
d7
e7
f7

08
18
28
38
48
58
68
78
88
98
a8
b8
c8
d8
e8
f8
08
18
28
38
48
58
68
78
88
98
a8
b8
c8
d8
e8
f8

09
19
29
39
49
59
69
79
89
99
a9
b9
c9
d9
e9
f9
09
19
29
39
49
59
69
79
89
99
a9
b9
c9
d9
e9
f9

Oa
la
2a
3a
4a
5a
6a
7a
8a
9a
aa
ba
ca
da
ea
fa
Oa
la
2a
3a
4a
5a
6a
7a
8a
9a
aa
ba
ca
da
ea
fa

Ob
lb
2b
3b
4b
5b
6b
7b
8b
9b
ab
bb
cb
db
eb
fb
Ob
lb
2b
3b
4b
5b
6b
7b
8b
9b
ab
bb
cb
db
eb
fb

Oc
lc
2c
3c
4c
5c
6c
7c
8c
9c
ac
bc
cc
de
ec
fc
Oc
lc
2c
3c
4c
5c
6c
7c
8c
9c
ac
bc
cc
de
ec
fc

Od
ld
2d
3d
4d
5d
6d
7d
8d
9d
ad
bd
cd
dd
ed
fd
Od
ld
2d
3d
4d
5d
6d
7d
8d
9d
ad
bd
cd
dd
ed
fd

Oe
le
2e
3e
4e
5e
6e
7e
8e
9e
ae
be
ce
de
ee
fe
Oe
le
2e
3e
4e
5e
6e
7e
8e
9e
ae
be
ce
de
ee
fe

Of
If
2f
3f
4f
5f
6f
7f
8f
9f
af
bf
cf
df
ef
ff
Of
If
2f
3f
4f
5f
6f
7f
8f
9f
af
bf
cf
df
ef
ff

10
20
30
40
50
60
70
80
90
aO
bO
cO
dO
eO
fO
00
10
20
30
40
50
60
70
80
90
aO
bO
cO
dO
eO
fO
00

11
21
31
41
51
61
71
81
91
al
bl
cl
dl
el
fl
01
11
21
31
41
51
61
71
81
91
al
bl
cl
dl
el
fl
01

1

"#$·/*>()»+,-./Ol
23456789:;<->?βΑ
BCDEFGHIJKLMNOPQ
RSTUVWXYZ[\]-_'a
bcdefghijklmnopq
rstuvwxyzi1}"-..

1

"#$y.t'()*+,-./01
23456789: ; <->?βΑ
BCDEFGHIJKLHNOPQ
RSTUVWXYZ[\]-.'a
bcdefghijklmnopq
rstuvwxyz{1}"-..

Figure 20.10 Sample screen of the print-sector 0 function.

20.8 PERFORMANCE OF SD CARD DATA TRANSFER

An SD card is mainly used as a massive storage. An important design criterion is
to increase the data transfer rate between the card and the host. The rate depends
on the card, the SPI controller, the processor, and software driver. SD cards are
divided into different speed "classes" and their maximal transfer rates vary. Most
cards can support a 25-MHz SPI clock rate.

In our configuration, although the SPI controller can generate an SPI clock rate
up to 25 MHz (by setting the frequency divisor to 1), the processor and driver may
not be able to keep up with the rate. Recall that the system clock period is 20 ns
(i.e., 50 MHz). If the SPI clock period is s ns, transferring an 8-bit data takes
^ system clocks. The processor must be able to process the data within this time
slot. In an ideal setup, a fast Nios II processor (i.e., the Nios Il/f configuration) can
execute one instruction per system clock cycle in average and thus 4 ^ instructions
can be executed in the given time slot. For an SPI clock rate of 25 MHz, we can
use up to 16 instructions to process a byte of data. This appears possible since the
processing usually involves only simple indexing and loop operations. However, this
analysis is overly optimistic. An actual Nios II system usually involves a memory

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHIC NOTES 637

hierarchy of fast cache and slow DRAM and the execution may hold for many clock
cycles for a cache miss. The system may also have various interrupts, which can
preempt the normal execution any time and take at least several hundred cycles
to complete. Thus, errors can occur from time to time. We can decrease the SPI
clock rate to provide more time. For example, if the SPI clock rate is 1 MHz,
400 instructions can be used to process a byte of data. The large cushion can
reduce the number of expected errors. However, errors can still occur if complex
ISRs are used. To accommodate this type of errors, the SPI driver routines may
need to be modified to repeat the data access several times before reporting failure.
The situation becomes even worse when a slow Nios II processor (i.e., the Nios I l /e
configuration) is used.

To obtain reliable and robust high-speed transfer, we need to ensure that the
driver resides in fast memory (such as Nios IPs tightly coupled memory) and re-
design the interrupt structure to facilitate the SPI data stream processing. This
is by no means a simple task. A better alternative is to migrate certain needed
functionalities to hardware. We can construct a custom SD card controller that
can process an SD card command, read a single sector from a buffer, and write
a single sector to a buffer. The processor now only needs to transfer 512 bytes
between a buffer and its main memory and no tight timing constraint is imposed in
this operation. If desired, we can further reduce the processor's load by adding an
addition DMA (direct memory access) control circuit to automate the data transfer
process.

20.9 BIBLIOGRAPHIC NOTES

The SPI bus is a de facto standard and thus there is no official documentation.
More information can be found on the Wikipedia web site (by searching the keyword
"serial peripheral interface bus"). The SD card standard is set by the SD Card As-
sociation and the simplified version, titled SD Specifications Part 1: Physical Layer
Simplified Specification Version 2.00, can be found on its web site (www.sdcard.org).
The FAT file system is somewhat involved and the article on the Wikipedia web site
provides general information and links for the relevant documentation. Some open-
source generic FAT system libraries for small embedded applications are available.
One such implementation can be found at elm-chan.org.

20.10 SUGGESTED EXPERIMENTS

20.10.1 SO card data transfer performance test

We can determine the maximal data transfer rate of an SD card by gradually
increasing the sc lk clock rate of the SPI bus until the read or write errors occur.
Derive the function and perform the test.

20.10.2 Robust SD card driver routines

As we discussed in Section 20.8, certain occasional events, such as interrupts and
cache misses, may cause SD card access errors. One way to mitigate the problem
is to repeat the read or write operation for an interval longer than the durations

www.it-ebooks.info

http://www.it-ebooks.info/

638 SD CARD CONTROLLER

of these events. The routine reports errors after this interval. Modify the SD card
driver routines in Section 20.5 to include these changes and verify the operation.
Use the function in Experiment 20.10.1 to determine the maximal date transfer
rate.

20.10.3 Dedicated processor for SD card access

As we discussed in Section 20.8, certain occasional events, such as interrupts and
cache misses, may cause SD card access errors. One way to mitigate the problem
is to use a dedicated Nios II system to remove timing uncertainties. We can config-
ure the system by using FPGA's internal embedded memory modules for memory
and disable all interrupt requests. Derive the new Nios II system and verify its
operation..Use the function in Experiment 20.10.1 to determine the maximal date
transfer rate.

20.10.4 Hardware-based SD card read and write operation

One main design goal of an SD card controller is to increase the transfer rate.
Instead of tweaking with software and a processor, one alternative is to migrate the
functionalities from software to hardware. In other words, we can use dedicated
hardware to implement the sd_read_sector() and sd_write_sector() functions.
The controller should use an FSMD to realize the reading and writing procedure
and include a 512-byte FIFO buffer to store the temporary data. The processor only
needs to check the controller's status and read or write a sector of data accordingly.
Design the new SD card controller, incorporate it into a Nios II system, and verify
its operation. Use the function in Experiment 20.10.1 to determine the maximal
date transfer rate.

20.10.5 SD card information retrieval

An SD card has several internal registers. One of them is the CSD (card-specific
data) register, which maintains basic information about the card, such as the ca-
pacity, data transfer rate, etc. The contents of the CSD register can be retrieved
by the CMD9 command. Consult the SD card standard and derive a function to
determine the capacity and transfer rate of a card.

20.10.6 MMC card support

The sd_init() function in Section 20.5.2 assumes that the SD card is version 2.0
or later. Consult the SD card standard and the MMC card standards to extend
the function to support earlier version SD cards and MMC cards.

20.10.7 Multiple sector read and write operation

The SD card protocol has commands to read and write multiple sectors. Consult
the SD card standard and derive driver routines to read and write multiple sectors
and verify their operations.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED PROJECTS 639

20.10.8 SD card driver routines with CRC checking

We can utilize the SD card's CRC feature to increase the reliability of SD card
access. This can be done by issuing the CMD59 command to turn on this option
and adding proper codes to generate and check the CRC field. Modify the SD card
driver routines in Section 20.5 to include the CRC option.

20.10.9 Digital music player

A digital music player reads .wav files from an SD card and plays the sound by
sending the data to the audio codec. Design a user interface, derive the program,
and verify its operation.

20.10.10 Digital picture frame

A digital picture frame reads .bmp files from an SD card and displays the images
on the VGA monitor. Design a user interface, derive the program, and verify its
operation.

20.10.11 Additional FAT functionalities

The routines in Section 20.6 only support basic file read operations. Many addi-
tional functionalities and enhancements can be added to access the FAT file system.
These include:

• Support a subdirectory.
• Support long file names.
• Support both FAT16 and FAT32 file system structures.
• Delete a file from a directory.
• Create a new file in a directory.
• Read an arbitrary number of bytes from a file at a time.
• Write a byte to a file.
• Write an arbitrary number of bytes to a file at a time.
• Skip an arbitrary number of bytes.
• Format an SD card with the FAT16 structure.

Implement one or more of the features.

20.11 SUGGESTED PROJECTS

20.11.1 HAL API file access integration

Instead of using the ad hoc file access routines in Section 20.6, we can integrate
the functionalities into the Altera HAL API and C library and use generic C file
functions. Consult HAL documentation, develop a set of driver routines conforming
to the specification, and integrate the SD card file access into the HAL development
environment.

www.it-ebooks.info

http://www.it-ebooks.info/

640 SD CARD CONTROLLER

20.12 COMPLETE PROGRAM LISTING

Listing 20.16 chu.avaloii-sd.h
/* **
*
* Module: SPI, SD card and FAT16 driver header
* File: chu.avalonsd .h
* Purpose: Routines to initialize and read/write SD card and
* to read a file from FAT16 file system

* Register map

* Read (data to cpu):
* offset 0
* * bits 7-0: 8-bit read data
* * bit 8: SPI controller idle bit
* Write (data from cpu):
* offset 1
* * bit.O chip select (ss)
* offset 2
* * bits 7 to 0: sclk clock divisor
* offset 3
* * bits 7 to 0: 8-bit write data
******************»»*****»**,*****************»************************/
/ * file inclusion */
»inc lude < a l t _ t y p e s . h >

/» , * , * *»** , ***********************»*»**»** ,»»****** , * **»*»* , ************
* data type definitions
************************„*******************************„*****»******/
/ * data type for FAT parameters */
typedef s t r u c t t a g . f a t
{

/ / base address of SD card SPI controller
// type of SD card
// starting sector of root directory
// starting sector of FAT table
// starting sector of data region
// # sectors per cluster
// max # file entries in root directory
// max Φ clusters for data

a l t_32 s d . b a s e ;
i n t sdhc;
a l t _ u l 6 r d i r O ;
a l t _ u l 6 fa tO;
a l t _ u l 6 dataO;
i n t c l s . s i z e ;
i n t r d i r . s i z e ;
i n t d a t a . s i z e ;

} f a t _ p a r a _ t y p e ;

/ * data type for file parameters */
typedef s t r u c t t a g _ f i l e . d e s c r i p t o r

char name [11] ;
i n t r d i r . i n d e x ;
i n t s i z e ;
a l t _ u l 6 c lsO;
a l t _ u l 6 c l s i ;
i n t sec t ;
i n t i dx ;
i n t seek;
char dbuf [512] ;
i n t sf ;
char fbuf [512] ;
i n t open;

} f i l e_dp_ type ;

/ / 11—bit file name+ extension
// entry index in root directory table
// size of file in byte
// starting cluster number
// current data cluster number
// current sector
// current index in sector
// current position in file
// data sector buffer
// current fat sector number
// fat sector buffer
// file is properly opened

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 4 1

/***
* constant definitions
***/
/* SPI registers */
«define CHU.SD_RD_DATA.REG O
«define CHU.SD_CS.REG 1
»define CHU.SD.DVSR.REG 2
«define CHU_SD_WR_DATA_REG 3

/ * SD card commands */
» d e f i n e SD_CMDO_RESET 0
» d e f i n e SD_CMD1.INIT.MMC 1
» d e f i n e SD.CMD8_SEND.IF 8
» d e f i n e SD.CMD17.READ 17
» d e f i n e SD_CMD24_WRITE 24
» d e f i n e SD.CMD55.APP 55
» d e f i n e SD_CMD58_RD_0CR 58
» d e f i n e SD_ACMD41_INIT_SD 41
/ * SD card token */
» d e f i n e SD_TOKEN_DATA_START Oxfe
» d e f i n e SD_TOKEN_DATA_ACCEPT 0x05
/ * SD card timeout cycles * /
» d e f i n e SD_INIT_TIME_OUT 900
» d e f i n e SD_READ_TIME_OUT 312500
» d e f i n e SD_WRITE_TIME_OUT 781250

/ / not used for SD

// 0.50s w/ 200 kHz sclk
// 0.10s w/ 25 MHz sclk
// 0.25s w/ 25 MHz sclk

/* **
* Function prototypes
***/
/* SPI functions */
i n t s d _ s p i _ i s _ r e a d y (a l t _ u 3 2 s d . b a s e) ;
v o i d s d _ s p i _ w r . e s (a l t _ u 3 2 s d . b a s e , i n t e n . b i t) ;
v o i d s d _ s p i _ w r _ d v s r (a l t _ u 3 2 s d . b a s e , a l t _ u 8 d v s r) ;
v o i d s d . s p i . u r . b y t e (a l t _ u 3 2 s d . b a s e , a l t _ u 8 s p i . d a t a) ;
a l t _ u 8 s d _ s p i _ r d _ b y t e (a l t _ u 3 2 s d . b a s e) ;

/ * SD card functions */
a l t _ u 8 s d _ w r _ c m d (a l t _ u 3 2 s d . b a s e , a l t _ u 8 cmd, a l t _ u 3 2 argument , a l t _ u 3 2 * r 3) ;
i n t s d . i n i t (a l t _ u 3 2 s d . b a s e) ;
i n t s d . r e a d . s e c t o r (a l t _ u 3 2 s d . b a s e , i n t s d h c , a l t _ u 3 2 s e c t , a l t _ u 8 » b u f) ;
i n t s d _ w r i t e _ s e c t o r (a l t _ u 3 2 s d . b a s e , i n t s d h c , a l t _ u 3 2 s e c t , a l t _ u 8 » b u f) ;

/ * FAT16 functions */
i n t s d . f i l e . m o u n t (a l t _ u 3 2 s d . b a s e , f a t . p a r a . t y p e * f) ;
i n t s d . f i l e _ f o p e n (f a t . p a r a . t y p e » f a t , char »fname, f i l e . d p . t y p e * f d) ;
v o i d s d . f i l e . c o n v . f n a m e (c h a r » s i , char » s o) ;
i n t s d . f i l e . r e a d . b y t e (f a t . p a r a . t y p e » f a t , f i l e . d p . t y p e » f d , a l t _ u 8 » b y t e) ;
v o i d s d . f i l e . f c l o s e (f i l e . d p . t y p e » f d) ;

www.it-ebooks.info

http://www.it-ebooks.info/

{
!(ltq-UB (εει>"ϊτ*) ' 03H"S0"aS"nH0 ' esi?q-ps)HftOI

}
(axq

_
u9 aux 'eseq-ps εεη~*Χ*)SD

_
Jft

_
xds-ps ρχοΛ

/****** **

ajqvsip dof i .'ayqoua do¡ o :j»9~"
9
 *

35B/J3JU« pdVO QS S° SS9dppO 3SOq :9SOq~pS *
: %U9W.n6j.v *

¡OU6IS (ss) u~so stpj.OO (js 3\qvsip j,o 9jqwu3 :3sodj.nd *
() so-um-ids-ps : uoiiounf *

***/

i
! q.Tq"XpB9J"tds ujnq.9.1

!(8 << (00X00000*0 ? 8ej-Tds)) (*πχ) · axq
_
ApB9j-xds

:(03H"¥lVa"aH"aS"nH0 '9S«q-ps)aH0I - 89J-Tds

:ixq-XpB9J"xds *nx
:3ej"Tds ζε

η
"ιτΒ

}
(98«q-ps jen"»IB)XpB8J-ST-Tde-ps %ητ

/***
fi.pv9d %ou :o i äpv9d :χ :udn%9d *

3OVfj,9iut pdVO (js I
o
 ssdjppO 9svq :9SOq-ps *

: fU3tunßj.O *
J,9\\OJ.%UOO ¡js 5° /oußis ñpvdJ, yoayo :3soddnd *

() Upvad-si-ids-ps : uoifoun/ *
***/

/***
suotfoun; pajopj ¡JS *

***/

„q-ps-ttoiBAB-nq3„ θρηχοπχ#
uoiiounf ()d9ddnoi dof // <q-9dX»o> βρηχοπχ#

<qox> 9ρηχ3ΠΧ#
Oftuidd dof // <q-oxp*s> θρηχ3πχ#

/* UOl}09S SpnjDUl */
/***

*
wajs/!f? a;»/ 91XVJ «*

0
·*/

 a
7?/ » P»»·* °1 *

pUV pdOD aS 91l¿m/pV9d pUV 92»JI)t)»M» Of SatUjnOtf :9SOddnj *
o ■ ps-uojvav-nyo : 9jij *

S9dñiotodd uoifounf dzaxdp 9UVJ puv pdvo QS 'US -a/npo^v *
*

***/

ops-uoxeAv-ηψ ¿i0Z Supsii

yanoaiNOD QHVD as ZW

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 4 3

* function: sd.spi.wr.dvsr ()
* purpose: write SPI clock divisor register
* argument:
* sd.base: base address of SD card interface
* dvsr: dvsr value (between 1 and 2"8—l)
* return:
* note:
* — # system clocks in sclk period = 2*dvsr
* — sclk freq = system clock freq / (2* dvsr)
»,*»********************»****»***»******»***»»*„**,*»,„**»****»**»***/
void sd_spi_wr_dvsr(alt_u32 sd .base , alt_u8 dvsr)
{

IOWRCsd.base, CHU.SD.DVSR.REG, (alt_u32) dvsr);
}

/*»»*»*»*»»»»»„*,»»**,*,»*„*«»,*»,*,*,**,*»*****»****************«»*«*
* function: sd-spi.wr.byte ()
* purpose: write a byte to SPI bus
* argument:
* sd.base: base address of SD card interface
* spi.data: 8-bit data
* return:

void sd_spi_wr_byte(alt_u32 sd .base , alt_u8 s p i . d a t a)
{

/* wait until SPI is ready */
while (! s d _ s p i _ i s _ r e a d y (s d . b a s e)) { } ;
/ * write a byte */
IOWR(sd_base, CHU_SD.WR_DATA.REG, (a l t_u32) s p i . d a t a) ;

}

/„·······„»····,··········,···,·*····*···*****··*..·**«··············*
* function: sd.spi.rd.byte()
* purpose: read a byte from SPI bus
* argument:
* sd.base: base address of sd card interface
* return: 8-bit data
* note:
* - shift in/out are done simultaneously in SPI bus
* — read/write are the same except that the input data are retrieved
* — dummy data are used for write

alt_u8 s d . s p i . r d . b y t e (a l t _ u 3 2 sd .base)
{

alt_u32 s p i . r e g ;
alt_u8 s p i . d a t a ;

/* write a dummy byte and shift in data as well */
s d . s p i _ w r . b y t e (s d . b a s e , Oxff);
s p i . r e g = IORD(sd_base, CHU_SD_RD.DATA.REG);
sp i .da ta - (a l t_u8) (s p i . r e g & OxOOOOOOff);
return s p i . d a t a ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

644 SO CARD CONTROLLER

/* ***
* SD card related functions
**/
/**
* function : sd-wr-cmd()
* purpose: send a command to sd card
* argument:
* sd-base: base address of sd card interface
* cmd: 6— bit command
* argument: 32— bit argument
* r3: 32—bit additional data for R3 and R5 responses
* return: response code (Rl):
* — Oxff when no response
* — CMDO (reset) command: 0x01 for no error
* — other commands: 0x00 for no error; other for error conditions
* note:
* —6 bytes send: command + 4—byte argument (MSB first) + crc
* — except for the CMD0/CMD8, crc is optional (not implemented)
* — command format: 01 + 6—bit value
* — sd card may need up to 8-byte transmission time to respond
* — sd card continues sending 1 when busy (or no data)
* — CMD8/CMD58 responds with 5 bytes
* * * * * * * * * * * * * * * * « « « « « t i l c * * * * * * * « « * « * * * « * « * « « « * « * » * « * * * « « « * * : ! : * * * * * * * * * * « * ^

alt_u8 sd_wr_cmd(alt_u32 sd.base, alt_u8 cmd, alt_u32 argument, alt_u32 *r3)
{
int i;
alt_u8 crc, rcode, byte;
alt_u32 ocr=0;

/* crc for CMDO and CMD8 */
if (cmd==SD_CMDO_RESET)
crc-0x95; // crc for CMDO(O)

else
crc -0x87; / / crc for CMDS(Oxlaa)

/* send command */
sd_spi_wr_byte(sd.base , cmd10x40); / / 2 MSBs is 01
/* send argument */
sd_spi_wr_byte(sd.base , (alt_u8)(argument >>24));
sd_spi_wr_byte(sd.base , (alt_u8)(argument >>16));
sd_spi_wr_byte(sd.base , (alt_u8)(argument >>8));
sd_spi_wr_byte(sd.base , (alt_u8)argument);
/ * send crc; only valid for CMDO and CMD8 */
sd_spi_ur_byte(sd.base , c rc) ;
/ * wait for response , up to 8-byte delay */
f o r (i » 0 ; i<8; i++){
/* read Rl response */
rcode « sd_sp i_rd_byte (sd .base) ;
if (rcode != Oxff)

break;
}
/* read 4 additional bytes for CMD8 and CMD58 response */
if (cmd==SD_CMD8_SEND_IF II cmd=-SD_CMD58_RD_0CR){

f o r (i = 0 ; i<4; i++){
byte » sd_sp i_rd_byte (sd .base) ;
ocr = (ocr <<8 I b y t e) ;

}
/ / printf("rocde, ocr: 0x%02x, 0x%08x\n", rcode, ocr);
*r3 = ocr;

}
return (rcode) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 4 5

/***
* function: sd.initf)
* purpose: initialize sd card in SPI mode
* argument:
* sd.base: base address of sd card interface
* return:
* — status code:
* — —1: initialization fails
* — 0: initialization success with standard SD card
* — +1: initialization success with high capacity SDHC card
* note:
* — initialize procedure
* 1. send at least 74 sd.clk with sd card deselected (i.e., cs.n=l)
* to force the sd card to accept native command
* 2. send CMDO w/ cs asserted (cs.n=0) to force the card
* to enter SPI mode and reset the card to idle state
* 3. send CMD55 and then CMD41 to initialize the card
* — different commands needed in step Z to initialize MMC or SDHC card
* — initialization may take a fraction of a second
***/
int s d . i n i t (a l t _ u 3 2 sd_base)
{

int i ;
alt_u8 rcode;
alt_u32 ocr;
int hcs;

/ * set SPI sclk clock to 200 kHz */
sd_spi_wr_dvsr(sd.base , 126);
/ * force the sd card to enter SPI mode */
sd_spi_wr_cs(sd .base , 1); / / set cs to 1
f o r (i " 0 ; i<10; i++){ / / generate 80 sclk cycles

sd_spi_wr_byte(sd.base , Oxff); / / 8 cycles per write
}
sd_spi_wr_cs(sd_base, 0) ; / / set cs to 0 (enable)
/* send reset command */
rcode - sd_wr.cmd(sd.base, SD_CMDO_RESET , 0, fcocr);
if (rcode != OxOlH / / not entering idle state

printf ("CMDO command f a i l s : Rl»0x*/.02x \ n " , rcode);
return (- 1) ;

}
/ * send interface condition check command */
rcode - sd_ur_cmd(sd.base, SD_CMD8_SEND_IF, OxOOOOOlaa, ¿ocr) ;
//printf("Debug CMD8 command: Rl/data=0x%02x 0x%x\n", rcode, ocr);
i f ((rcode!-0x01 II ocr!=0x000001aa) kk (rcode! -05)) {

printf("CMD8 command f a i l s : Rl/data-0x%02x Ox%x\n", rcode, (i n t) o c r) ;
return (- 1) ;

}
/* send sd card init commend and wait for 0.3 sec */
f o r (i » 0 ; i<SD_INIT_TIME_OUT; i++){

sd_wr_cmd(sd.base, SD_CMD55_APP, 0, t o c r) ;
rcode ■ sd_wr_cmd(sd_base, SD_ACMD41_INIT_SD, 0x40000000, ftocr);
if (rcode-=0x00) / / correct response received

break;
}
if (rcode!=0x00){

printf ("ACMD41 command f a i l s : Rl=0x7.02x\n" , rcode);
return (- 1) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

646 SD CARD CONTROLLER

/ * send read OCR register commend */
rcode ■ s d _ w r _ c m d (s d _ b a s e , SD_CHD58_RD_0CR, OxOOOOOlaa, ftocr);
/ / printf("Debug CMD58 command: Rl/data=0x%02x Ox%x\n", rcode, (int)ocr);
i f (r c o d e ! - OxOOH

printf("CMD58 command f a i l s : Rl»Ox*/.02x \ n " , r c o d e) ;
r e t u r n (- 1) ;

}
/ * extract hcs bit (bit 30) */
hcs = (o c r k 0 x 4 0 0 0 0 0 0 0) >> 30;
/ * set SPI clock to 1 MHz */
s d _ s p i _ w r _ d v s r (s d . b a s e , 2 5) ;
r e t u r n (h c s) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 4 7

* function: sd.read.sector()
* purpose: retrieve one sector (512 2"9) bytes) from sd card to a buffer
* argument:
* sd.base: base address of sd card interface
* sdhc: 0 for SD card; 1 for SDHC card
* sect: sector number
* buf: pointer to buffer
* return: 0 for success; —1 otherwise; buf updated
* note:
* — procedure:
* 1. send read—one—sector command
* 2. wait for sd to send data.start token
* 3. read 512 bytes
* 4- read 2 dummy crc bytes
* — CMD17 argument
* — standard capacity SD card: starting byte address (sect«9)
* — high capacity SDHC card: starting sector address (sect)
* —10 MHz sclk used to calculate # timeout cycles
* — calling function must allocate 512 byte buffer space

int sd_read_sector(al t_u32 sd .base , int sdhc, alt_u32 s e c t , alt_u8 *buf)
{

int i ;
alt_u8 rcode, token;
alt_u32 addr, ocr;

/* byte addr for SD card; sector # for SDHC card */
if (sdhc~0)
addr » (sect<<9);

else
addr = s e c t ;

/ * send sd card read single block commend */
rcode = sd_wr_cmd(sd.base, SD.CMD17.READ, addr, ftocr);
i f (rcode !- OxOOH

printf("CMD17 command f a i l s : Rl-Ox%02x \ n " , rcode);
return (- 1) ;

}
/ * wait for data start token up to 0.1 sec */
for (i=0 ; i<SD_READ_TIME_OUT; i++){

token = sd_sp i_rd_byte (sd .base) ;
if (token«SD_TOKEN_DATA_START) / / correct response received

break;
}
i f (token!»SD_TOKEN_DATA_START){ //time-out

printf("No data s tar t token: l a s t token-0x7,02x\n", token);
return (- 1) ;

}
/* read one sector (512 bytes) */
for (i-0; i<512; i++)
buf[i] » sd_spi_rd_byte(sd.base);

/* read and discard two crc bytes */
sd.spi.rd.byte(sd.base);
sd.spi_rd.byte(sd.base);
return (0);

www.it-ebooks.info

http://www.it-ebooks.info/

648 SD CARD CONTROLLER

/***
* function: sd.write.sector()
* purpose: write one sector (512 (2"9) bytes) from a buffer to sd card
* argument:
* sd.base: base address of sd card interface
* sdhc: 0 for SD card; 1 for SDHC card
* sect: sector number
* buf: pointer to buffer
* return: 0 for success; — 1 otherwise
* note:
* — procedure:
* 1. send write—one—sector command
* 2. send data.start token
* 3. send 512 bytes
* 4- send 2 dummy crc bytes
* 5 check data accept token
* 5. wait for completion
* — CMD24 argument
* — standard capacity SD card: starting byte address (sect«9)
* — high capacity SDHC card: starting sector address (sect)
* —10 MHz sclk used to calculate # timeout cycles

int sd_write_sector(alt_u32 sd.base, int sdhc, alt_u32 sect, alt_u8 *buf)
{

int i;
alt_u8 rcode, token;
alt_u32 addr, dummy;

/* byte addr for SD card; sector # for SDHC card */
if (sdhc--0)
addr - (sect<<9);

else
addr <· sect;

/ * send sd card write single block commend */
rcode = sd_wr_cmd(sd.base, SD.CMD24.WRITE, addr, ¿dummy);
if (rcode != OxOOH / / error

printf ("CMD24 command f a i l s : Rl-0x7.02x \n" , rcode);
return (-1);

}
/ * initiate transfer by send data start token */
sd.spi.wr.byte(sd.base, SD.TOKEM.DATA.START);
/ * send 512 bytes */
for (i=0; i<512; i++){

sd.spi_wr.byte(sd.base, buf[i]) ;
}
/ * send two dummy crc bytes */
sd.spi.wr.byte(sd.base , Oxff);
sd.spi.wr.byte(sd.base, Oxff);
/ * wait for data acceptance token up to 0.25 sec */
for(i -0; KSD.WRITE_TIME.OUT; i++H

token « sd_spi_rd_byte(sd_base);
token = token & Oxlf; // only 5 LSBs used
if (token-"SD_TOKEN_DATA_ACCEPT) // correct response received
break;

}
if (token!-SD_TOKEN_DATA_ACCEPT){
printf ("No data accept token: last token»0x'/.02x\n" , token);
return (-1);

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 4 9

/ * wait for write completion */
f o r (i = 0 ; i<SD_WRITE_TIME_OUT; i++){

token » sd_spi_rd_byte(sd .base) ;
if (token==Oxff) // correct response received
break;

}
if (token !- Oxff){
printf ("Write completion timeout: last token=0x'/.02x\n" , token);
return (-1);

}
return (0); // ok

www.it-ebooks.info

http://www.it-ebooks.info/

650 SD CARD CONTROLLER

/******,*********»*,*»*******»»»»*»************»*»*»****************»,*,
* FAT16 related functions
**************** ************************************ ***,*****/
A**
* function: bgetl6()
* purpose: get 16 bits from a buffer
* argument:
* buf: pointer to buffer
* pos: position in buffer
* return: a half word in alt-ul6 data type
* note: "little endian" byte ordering
****»**,***********************,*********************************,*»»**/
a l t_u l6 bge t l6 (a l t_u8 *buf, int pos)
{

a l t_ul6 bO, b l , r;

bO - (alt_ul6) buf[pos];
bl - (alt_ul6) buf[pos+1];
r = (bl<<8) + bO;
return(r) ;

y***
* function: bget32()
* purpose: get 3Z bits (a word) from a buffer
* argument:
* buf: pointer to buffer
* pos: position in buffer
* return: a word in alt.u32 data type
* note: "little endian" byte ordering
***/
alt_u32 bget32(al t_u8 »buf, int pos)
{

alt_u32 bO, b l , b2, b3, r;

bO - (a l t_u32) b u f [p o s] ;
bl = (a l t_u32) buf[pos+1];
b2 » (a l t_u32) buf[pos+2];
b3 = (a l t_u32) buf[pos+3];
r = (b3<<24) + (b2<<16) + (bl<<8) + bO;
re turn(r) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 5 1

A*,********»*******»****»*»***»»******************»»********»*»********
* function: sd-file.conv-fname ()
* purpose: convert a string to normalized FAT16 8.3 name—extension entry
* argument:
* si: pointer to file name string input (e.g., "myfile.c")
* ¡83: pointer to 11—char array of normalize 8.3 file name—extension
* return:
* updated J83
* note:
* — normalized 8.3 entry:
* - name: 8 char, padding with \0 if needed
* - extension: 3 char, padding with \0 if needed
* — all uppercase
* - e.g., convert "myfile.c" to "MYFILE C "
„******»*»********»,*,»,»»»*,„*,„*,**»»»»***»***»**»***************»/
void sd_file_conv_fname(char * s i , char *f83)
{

int i , pos ;
char ch;

/* blank */
for (i - 0 ; i < l l ; i++)

f 8 3 [i] - · ' ;
/* file name */
pos-O;
for (i - 0 ; i<9; i++){

c h - t o u p p e r (s i [p o s]) ;
pos++;
if (ch—'\0') // end of string

return;
if (ch—'.')

break;
f 8 3 [i] - c h ;

}
/* file extension */
for (i=8; i < l l ; i++){

ch- toupper(s i [p o s]) ;
post···;
i f (c h — ' \ 0 ')

return;
f 8 3 [i] - c h ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

652 SD CARD CONTROLLER

* function: sd.file.mount()
* purpose: extract key parameters from a FAT16 file system
* argument:
* sd.base: base address of SD card interface
* f: pointer to the FAT parameter record
* return:
* 0: successful; f updated
* 1: SD card initialization failed
* 2: SD card read MBR failed
* 3: MBR signature not match
* 4: FAT16 type not match
* 5: SD card read boot record failed
* 6: Boot record signature not match
* note:
* — file system must be FAT16 and in first partition
* — procedure
* 1. initialize SD card
* 1. read sector 0
* 2. determine whether the sector is MBR. If not, go to step 6.
* 3. verify MBR signature and FAT file system type
* 4- extract sector number for the first partition 's boot record
* 5. read boot record
* 6. verify boot record signature
* 7. extract relevant FAT16 parameters
* 8. construct and return the FAT parameter record
»**************************»**************»***«************************/
int sd_f i le .mount(a l t_u32 sd .base , fat_para_type *f)
{

alt_u8 buf [512]; / / buffer for a sector
al t_u32 brO; / / boot record sector number
alt_u8 s ec_per_c l s , f a t . copy;
a l t_u l6 r e s e r v e d . s e c , r o o t _ d i r _ e i z e , sec_per_part_small , sec_per_fat;
alt_u32 sec_per_part_large;
int s t a t u s , sdhc, sec_per_part;

/ * initialize SD card */
s d h c - s d _ i n i t (s d . b a s e) ;
i f (sdhc==- l) {

pr int fCSD card i n i t i a l i z a t i o n f a i l e d \ n ") ;
return (1) ;

}
f->sdhc - sdhc;
f->sd_base ■ sd .base ;
/ * fetch sector 0 */
s t a t u s ' s d . r e a d . s e c t o r (s d . b a s e , sdhc, 0, buf);
if (s t a t u s ! - 0) {

pr int f ("Sector 0 read f a i l e d \ n ") ;
return (2) ;

}
brO-0;
/* check whether the sector is the MBR */
i f (buf [0] i'Oxeb && buf [0] ! -0xe9) { / * not boot record */

/* check MBR signature 0x55aa */
i f ((buf [510]! -0x55) II (buf [511]!-Oxaa)){

printfC'MBR signature not matchAn");
return (3) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 5 3

/ * check FAT16 file system type at 0xlc2 */
i f ((buf [0x lc2] !=0x04) tit (buf [0x lc2] !»0x06) kk (b u f [0 x l c 2] ! - 0 x 0 e)) {

printf("FAT16 f i l e type not matchXn");
return (4) ;

}
/ * fetch boot record of first partition */
brO - bget32(buf, 0 x l c 6) ;
s ta tus - sd_read_sec tor (sd_base , sdhc, brO, buf);
i f (s t a t u s ! « 0) {
printf("Boot record read failed\n");
return (5);

}
} // end if
/* check boot record signature 0x55aa */
if (buf [510]!-0x55 II buf [511] ! -OxaaH
printf("Boot record signature not matchXn");
return (6);

}
/ * extract key FAT16 parameters */
sec_per_cls » buf [OxOd];
reserved .sec ■ bget l6(buf , OxOe);
fat .copy » buf [0x10] ;
root_d ir_s ize ■ bget l6(buf , O x l l) ;
sec_per_part_small » bget l6(buf , 0x13);
sec_per_fat » bget l6(buf , 0x16);
sec_per_part_large - bget32(buf, 0x20);
/* construct the FAT16 record */
i f (sec_per_part_small !»0)

sec_per_part » (i n t) sec_per_part_small;
e l s e

sec_per_part - sec_per_part_large;
f->fatO = brO + r e s e r v e d . s e c ;
f->rdirO = f->fatO + fa t . copy * sec_per_fat ;
f->dataO = f->rdirO + root_d ir_s ize»32 /512;
f - > c l s _ s i z e » (i n t) s ec_per_c l s ;
f - > r d i r _ s i z e - (i n t) r o o t _ d i r _ s i z e ;
f ->data_s ize « (sec_per_part - f ->dataO) / sec_per_c l s ;
re turn(0) ;

www.it-ebooks.info

http://www.it-ebooks.info/

654 SD CARD CONTROLLER

* function: sd.file.fopen ()
* purpose: open a FAT16 file and store relevant info in file descriptor
* argument:
* fat: pointer to the FAT parameter record
* fname: pointer to file name string (such as "myfile . c")
* fd: pointer to file descriptor
* return:
* 0: successful; fd updated
* 1: file not found
* 2: SD card read data sector failed
* 3: SD card read FAT sector failed
* note:
ft**/

int sd_file.fopen(fat_para_type »fat, char »fname, file_dp_type *fd)
{

int index, status, n;
int sect , oft;
a l t_u8 »buf; / / pointer to a sector buffer
char f 8 3 [l l] ; / / file name in normalized 8.3 format

sd_file_conv_fname(fname, f 8 3) ;
fd->open · 0;
/ * use file descriptor 's data buffer as temp buffer * /
buf - fd->dbuf;
/* search entire root directory * /
for (index=0; index<fa t ->rd ir_s i ze ; index++M

/* load a new sector after 16 file entries */
i f (indexy. l6--0){

sect - fa t ->rd ir0 + index/16;
s ta tus=sd_read_sector(fa t ->sd_base , fa t ->sdhc , s e c t , buf);
i f (s t a t u s ! « 0) {

printfC'SD read f a i l e d W) ;
return (2) ;

}
}
/* offset in current sector */
oft » 32 * (index7.16);
/* 0x00 in first char of file name means no more entries * /
i f (b u f [o f t] - - 0 x 0 0 H

p r i n t f C ' F i l e not found\n");
r e t u r n (l) ; / / file not found

y
/* compare normalized 8.3 name—extension */
for (n=0; n < l l ; n++){

if (f83[n] !- buf[of t+n])
break;

}
/* file entry matches; update file descriptor's fields */
i f (n - = l l) {

fd->rdir_index - index;
fd ->c l s0 - bget l6(buf , oft+Oxla);
f d - > s i z e - (i n t) bget32(buf, oft+Oxlc);
for (n=0; n<12; n++)

fd->name[n] - b u f [o f t + n] ;
/ * initialize file descriptor 's counters */
f d - > c l s i = fd->cXsO;
fd->sect = 0;
fd->idx - 0;
fd->seek = 0;
break; / / success

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 5 5

} / / end if
} // end for
if (i n d e x - = f a t - > r d i r _ s i z e) { / / file not found

p r i n t f C ' F i l e not f o u n d \ n ") ;
r e t u r n (1) ;

}
/ * load file 's 1st file allocation table sector to buffer */
sec t - f a t -> fa tO + f d - > c l s 0 / 2 5 6 ;
s t a t u s « s d _ r e a d _ s e c t o r (f a t - > s d _ b a s e , f a t - > s d h c , s e c t , f d -> fbu f) ;
if (s t a t u s ! - 0) {

p r i n t f C ' F i l e a l l o c a t i o n t a b l e s e c t o r read f a i l e d \ n ") ;
r e t u r n (3) ;

}
fd->sf » sect;
/* update open status */
fd->open " 1;
return(0);

}

/ a *
* function: sd.file-fclose ()
* purpose: close a FAT16 file
* argument:
* fd: pointer to file descriptor
* return:
* note: included for completeness

void s d _ f i l e _ f c l o s e (f i l e _ d p _ t y p e *fd)
{

fd->open ■ 0;
r e t u r n ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

656 SD CARD CONTROLLER

* function: sd.file.read.byte ()
* purpose: get 32 bits (a word) from a buffer
* argument:
* fat: pointer to the FAT parameter record
* fd: pointer to file descriptor
* byte: pointer to the returned byte
* return:
* 0: successful; fd updated; byte updated
* 1: end of file
* 2: SD card read data sector failed
* 3: SD card read FAT sector failed
* note:
* — file must be opened before read
***************»******»»»**/
int sd_f i le_read_byte(fat_para_type » f a t , f i le_dp_type * fd ,a l t_u8 »byte)
{

int s t a t u s ;
a l t_u l6 s;

/ * check end—of—file */
i f (fd->seek >= f d - > s i z e)

r e t u r n (l) ;
/ * must load a new sector at the beginning */
i f (fd -> idx«-0) {

s - fat->dataO + ((f d - > c l s i) - 2) * (f a t - > c l s _ s i z e) + f d - > s e c t ;
s tatus"Sd_read_sector(fat ->sd_base , fa t ->sdhc , s , fd->dbuf);
i f (s t a t u s ! » 0) {
printf("Data sector read failed\n");
return (2);

}
}
/ * read a byte */
»byte » fd ->dbuf [fd-> idx] ;
/ * update file descriptor counter */
fd->seek++;
fd->idx++;
/* not reach end of buffer yet */
i f (fd->idx1-512)

return(O); / / success
/* reach the end of buffer */
fd->idx - 0;
fd->sect++;
/ * not last sector in cluster */
if (f d - > s e c t ! » f a t - > c l s _ s i z e)

re turn(0) ; / / success
/* last sector in cluster; fetch next cluster from FAT table */
fd->sect « 0;
s · fat->fatO + f d - > c l s i / 2 5 6 ; / / sector containing the cluster
/* file allocation table sector not in buffer; load new sector */
i f (s != f d - > s f) {

s tatus«sd_read_sector(fat ->sd_base , fa t ->sdhc , s , fd->fbuf) ;
i f (s t a t u s ! - 0) {
printf("File allocation table sector read failed\nn);
return (3);

}
fd->sf = s;

}
fd->clsi - bgetl6(fd->fbuf , 2*(fd->clsi*/.256)) ;
return(0); // success

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 5 7

Listing 20.18 chujnain-sd-test.c
A»***********»»*»,»»***,**,*»»»*»****»**»****»*»»*************»**,**»**
*
* Module: SD card and FAT test
* File: chu-main.sd-test. c
* Purpose: Test SD card access
* IP core base addresses:
* - SWITCH JASE: slide switch
* - BTN-BASE: pushbutton
* - SSEG-BASE: 7-segment LED display
* - SDCJASE: SD card controller
*

/ * file inclusion */
«inc lude <s td io .h>
« inc lude "sys tem.h"
« inc lude "chu_ava lon_gpio .h"
« inc lude "chu_avalon_sd .h"

A*»»**»», ,»********»»**** , ** , * ,»* , **********************»***********»**
* function: print-sector ()
* purpose: print a 512—byte sector in hex/ascii table
* argument:
* buf: pointer to the 512-byte buffer
* return:
* note:
*»«**»******,*,****»***»*»»»*»***»»*******************************,»*,*/
/ * print a 512-byte sector in hex and ASCII format */
void p r i n t _ s e c t o r (a l t _ u 8 *buf)
{

i n t i , j ;
a l t_u8 ch;

for (j=0; j<32; j++){
p r i n t f ("0x'/.02x- " , j) ;
for (i - 0 ; i <16; i++)

pr in t f ("%02x " , b u f [j * 1 6 + i]) ;
p r i n t f (» ») ;
for (i » 0 ; i <16; i++){

ch - b u f [j * 1 6 + i] ;
if (ch>127 II ch<32) //non ascii

ch = ' . ' ;
p r i n t f (»7.C·, ch);

} / / end for i
p r i n t f (" \ n ") ;

} //end for j
p r i n t f (" \ n ") ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

658 SD CARD CONTROLLER

* function: main()
* purpose: test SD card and FAT16
* note:
* « * * » t » * * * t * * * * * t * * * » * * * * » * * * * t * * » * » * * » * * * * t * * » * * t » * * * * * » * * » * t « * * * * » *
int main(void)
{

f a t .para . type f a t ;
f i le_dp_type fd;
char fname [15] , yes [3] ;
int sw, btn;
unsigned int num;
int i , j , s , s t a t u s , sdhc;
alt_u32 s e c t ;
alt_u8 ch, dvsr;
alt_u8 rbuf [512] , wbuf [512] ; / / read and write buffers
alt_u8 d isp .msg[4]«{sseg_conv_hex(5) , sseg_conv_hex(13) ,

Oxff, sseg_conv_hex(12)};

sseg_disp_ptn(SSEG_BASE, disp.msg); / / show "Sd C" for display
printfC'SD card FAT16 f i l e system t e s t : \ n ") ;
sdhc-sd_init(SDC.BASE);
i f (sdhc==-i)

printfC'SD card i n i t i a l i z a t i o n f a i l e d \ n ") ;
btn.clear(BTN.BASE);
while (1){

while (!btn_is_pressed(BTN_BASE)H } ; / / wait for button
btn»btn_read(BTN.BASE); / / read button
if (btn fc 0x02H / / keyl pressed

sw=pio_read(SWITCH_BASE); / / read switch
// printf ("key/sw: %d/%d\n", btn, sw);

}
btn.clear(BTN.BASE);
switch (sw){
case 0: // mount FAT16 file system
status-sd.file.mount(SDC.BASE, tfat);
sdhc - fat.sdhc;
if (status~0) {
printf("FAT 16 mounted on SD card\n");
printf ("starting FAT table sector: */.d\n", fat.fatO);
printf ("starting root dir sector: '/.d\n" , fat.rdirO);
printf("starting data sector: %d\n" , fat.dataO);
printf("sectors per cluster: Xd\n", fat.cls.size);
printf ("clusters in data segment: 7.d\n" , f at. data.size);
printf("file entries of root dir: Xd\n\n", fat.rdir.size);

} else
printf("Mount failed: status»Xd\n\n", status);

break;
case 1: // open a file
printf("Enter file name in 8.3 format: ") ;
scanf("7,8", fname);
status-sd.file.fopen (tfat, fname, fcfd);
if (status»»0) {
printf("\nFile open successful.\n");
printf("file size (bytes): 5Cd\n", fd.size);
printfC'root dir entry #: 7.d\n" , fd. rdir.index);
sect » fat.rdirO + fd.rdir_index/32;
printf("entry sector #: 5Cd\n", (int)sect);
printf ("starting cluster«: 7.d\n" , fd.clsO);
sect » fat.dataO + (fd.cls0-2)«fat.cls.size;
printf("starting sector #: %d\n\n", (int)sect);

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 5 9

} e l s e
p r i n t f (" \ n F i l e open f a i l e d : status=*/.d\n\n" , s t a t u s) ;

break;
case 2: / / read file and list first 2 and last 2 sectors

s ■ f d . s i z e / 5 1 2 ;
i f ((f d. size/C512) ! =0) / / fraction of a segment

s++;
printf ("File s i z e (b y t e s / s e c t o r s) : 7,d/*/,d\n" , f d . s i z e , s) ;
printf("Data dump for f i r s t 2 and l a s t 2 s e c t o r s : \ n \ n ") ;
for (i - 0 ; i < s ; i++){

for (j - 0 ; j<512; j++){
s d _ f i l e _ r e a d _ b y t e (t f a t , Itf d , t e n) ;

r b u f [j] - c h ;
}

i f (i<2 II i > s - 3) {
printf("sector %d of file:\n", i);
print_sector(rbuf);

} else {
printf(".");

} // end if
} // end for i
break;

case 3: // read and print a 512 byte sector
printf("Enter sd card read sector number: ") ;
scanf ("*/.u" , fcnum);
sect » (alt_16) num;
status-sd_read_sector(SDC.BASE, sdhc, sect, rbuf);
if (status!=0)
printf("read sd card failed\n\n");

else{
printf("\nsector %d(0x%x)\nn, (int)sect, (int)sect);
print.sector(rbuf) ;

}
break;

case 4: // write a 512 byte sector
printf("Low-level sector write may corrupt file system.\n");
printf("Press Y to continue: ") ;
scanf("%s" , yes);
if (yes[0]!-'y' kb yes [0]!-'Y»H
printf("Sector write abandoned.\n\n");
break;

}
printf("Enter sd card write sector number: ") ;
scanf ("*/,u", ftnum);
sect - (alt_16) num;
for (i-0; i<512; i++)
wbuf[i] - (alt_u8) (sect + i);

status«sd_write_sector(SDC_BASE, sdhc, sect, wbuf);
if (status!-0)
printf("Write sd card failed\n\n");

else
printf("write sd card completed\n\n");

break;
case 5: // set frequency divisor of SPI clock
printf("Enter frequency divisor (1-255): ") ;
scanf("%u", ftnum);
dvsr - (alt_u8) num;
sd_spl_wr_dvsr(SDC.BASE , dvsr);
printfC'SPI bus frequency set to */.6.3f MHz.\n\n", 50.0/(2. 0*dvsr)) ;
break;

www.it-ebooks.info

http://www.it-ebooks.info/

660 SD CARD CONTROLLER

c a s e 6 : / / reinitialize SD card
sdhc=sd_init(SDC.BASE);
i f (s d h c » - - l)

pr int fCSD card i n i t i a l i z a t i o n f a i l ed . \n \n") ;
e l s e

pr int fCSD card i n i t i a l i z e d (sdhc s ta tus =*/,d) . \n \n" , sdhc);
break;

} //end switch
} // end while

y

www.it-ebooks.info

http://www.it-ebooks.info/

PART IV

HARDWARE ACCELERATOR
CASE STUDIES

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

GCD ACCELERATOR

The GCD (greatest common divisor) of two non-zero integers is the largest positive
integer that divides the numbers without a remainder. The binary GCD algorithm
is a method to obtain the GCD. In this chapter, we implement the algorithm using
a software routine and a hardware accelerator and compare their performances.

21.1 INTRODUCTION

The gcd(a, b) function returns the GCD of two positive integers, a and b. It is the
largest positive integer that divides the numbers without a remainder. For example,
gcd(l,12) is 1 and gcd(24,15) is 3. The gcd() function has the following property:

Í a if a = b

gcd(a - b, b) if a > b
gcd(o, b — a) if a < 6

We can apply this equation repetitively to reduce the values of two operands and
eventually obtain the GCD. However, the convergence rate of this scheme can be
really slow when one of the numbers is small. For an JV-bit input, computing
g c d ^ ^ ^ — 1) requires 2 ^ — 1 iterations. One way to improve the algorithm is to
take advantage of the binary number system. For a binary number, we can tell
whether it is odd or even by checking the LSB. Based on the LSBs of two inputs,
several simplification rules can be applied in the derivation of the gcd() function:
Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 663
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

664 GCD ACCELERATOR

• If both a and b are even, gcd(a, b) = 2gcd(| , |) .
• If a is odd and b is even, gcd(a, b) = gcd(a, |) .
• If a is even and b is odd, gcd(a, b) = gcd(| , 6).

The previous equation can be extended:

gcd(o, b) = <

a if a = b
2 gcd(| , |) if a Φ b and o, b even
gcd(o, |) if α T¿ 6 and a odd, 6 even
gcd(| , 6) if a φ b and a even, 6 odd
gcd(a — b, b) if a > ¿> and a, 6 odd
gcd(a, 6 — a) if a < b and o, 6 odd

Note that this equation uses only subtraction and divided-by-2 operations. Since
the divided-by-2 operation can be realized by shifting the dividend to the right by
one position, no expensive general-purpose division operation is needed. This is
known as the binary GCD algorithm. In the following sections, we implement this
algorithm in software and with a custom hardware accelerator and compare their
performance.

21.2 SOFTWARE IMPLEMENTATION

The previous GCD equation can be converted to C code by repetitively examining
the conditions of two operands and applying the corresponding reduction rule until
the terminating condition (i.e., the first rule) is met. These rules generally reduce
the values of the operands. However, in the second rule, which is

gcd(a, b) = 2gcd(- , -) if a Φ b and o, b even
¿á ¿i

a common factor (i.e., 2) is extracted and special treatment is needed. In addition
to normal reduction, we use a variable, n, to keep track of the number of occurrences
of this condition. The final GCD value can be restored by multiplying the initial
result by 2n . The pseudo-code is

ile (1H
if (a==b)
break;

if (even(a)H
a = a>>l;
if (even(b)H
b = b>>l;
n++;

}
} else {
if (even(b))
b = b>>l;

else {
if (a > b)
a = a - b;

else
b = b - a;

//

//

//
//

//

a

6

a
6

6

even

even

odd
even

odd

www.it-ebooks.info

http://www.it-ebooks.info/

HARDWARE IMPLEMENTATION 665

} / / end else (b odd)
> / / end else (a odd)

20 } / / end while
a = a<<n;

Note that multiplying by 2n corresponds to shifting the initial result left n positions,
as in the expression in the last statement.

21.3 HARDWARE IMPLEMENTATION

21.3.1 ASMD chart

The algorithm used in Section 21.2 can be converted to an ASMD chart and then
realized by an FSMD in hardware. The resulting ASMD chart is shown in Fig-
ure 21.1.

It is helpful to identify the key operations and their corresponding functional
units in the data path. We assume that the inputs are 32-bit unsigned integers.
There are three arithmetic operations, including two subtractions, a-b and b-a,
and one increment operation, n++. The former infers two 32-bit subtractors and
the latter infers a small 5-bit incrementor. There are four shift operations. However,
three of them shift a constant amount and thus do not introduce a physical logic
component. Only the a « n expression infers a 32-bit barrel shifter.

Since the two subtractions and barrel shifting operation are performed in parallel,
putting them in the same state will not prolong the clock period. Thus we group
all operations to a single op state.

21.3.2 HDL implementation

After constructing the ASMD chart, we can derive the HDL code accordingly. The
code is shown in Listing 21.1.

Listing 21.1 GCD engine
module gcd .engine

(
input wire e l k , r e s e t ,

4 input wire s t a r t ,
input wire [31:0] a_ in , b_ in ,
output wire gcd_done_t ick , r eady ,
output wire [31:0] r

);
9

/ / symbolic state declaration
localparam [1 :0]

i d l e = 2*b01 ,
op - 2 ' b l 0 ;

14
/ / signal declaration
reg [1:0] s t a t e . r e g , s t a t e . n e x t ;
reg [31:0] a_reg , a_next , b . r eg , b_next ;
reg [4:0] n . r e g , n . n e x t ;

19 reg gcd.done ;

www.it-ebooks.info

http://www.it-ebooks.info/

666 GCD ACCELERATOR

idle

ready <=1

- ^ start=1 \

T

Ca a j n ~ \
b bjn) " ° J

op

<^f~>-T—i
F

I T ^ a(0)=0 / (a a**" J
I I
F

I i '
f a a»1 J T—S b(0)=0 \ - F -

-<^ b(0)=0 ̂ > (b b » l) | X * * X ~ l

T I I

Figure 21.1 GCD ASMD chaxt.

www.it-ebooks.info

http://www.it-ebooks.info/

HARDWARE IMPLEMENTATION 6 6 7

/ / body
// FSMD state & data registers
always 0(posedge e lk , posedge r e s e t)

i f (r e s e t)
begin

s t a t e . r e g <■ i d l e ;
a_reg <= 0;
b.reg <= 0;
n.reg <■ 0;

end
e l s e

begin
s tate_reg <» s ta te_next ;
a_reg <= a .next;
b_reg <= b .next ;
n_reg <= n_next;

end
/ / next—state logic & data path functional units
always Q*
begin

a.next ■ a_reg;
b.next ■ b_reg;
n.next « n_reg;
s tate_next « s t a t e . r e g ;
gcd.done · 1'bO;
case (s t a t e . r e g)

i d l e :
if (s t a r t)

begin
a.next » a_in;
b.next ■ b_in;
n.next - 0;
state.next = op;

end
op:

if (a_reg-=b_reg)
begin

s tate_next = i d l e ;
gcd.done " l ' b l ;
a.next - a_reg << n_reg;

end
e l s e

i f ("a_reg[0]) / / a.reg even
begin

a_next = {1'bO, a.reg [3 1 : 1] } ;
i f ("b_reg[0]) / / both even

begin
b.next = {1'bO, b.reg [31 :1] } ;
n.next = n_reg + 1;

end
end

e l s e / / a.reg odd
i f ("b .reg[0]) / / b.reg even

b.next - {1'bO, b . r e g [3 1 : 1] } ;
e l s e / / both odd

i f (a .reg > b.reg)
a.next - a.reg - b .reg;

e l s e
b.next = b.reg - a .reg;

endcase;
end

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

668 GCD ACCELERATOR

84 / / O U t p U t
assign ready = (state_reg-»idle);
assign r » a.reg;
assign gcd_done_tick = gcd.done ;

endmodule

21.4 TIME MEASUREMENT

To compare the performance of the software routine and hardware accelerator, we
need to measure the time spent on the computation. This can be done by using
HAL's time stamp mechanism or a custom counter.

21.4.1 HAL time stamp driver

The Altera HAL framework provides a high-resolution timing function using a time
stamp driver. The driver utilizes a monotonically increasing counter driven by the
system clock. Its content can be retrieved any time and thus a "time stamp" can
be obtained at that particular point. The two main functions are:

• alt_timestamp_start () : initiate the time stamp counter and clear its content
toO.

• a l t - t imestampO: read the current time stamp.
To use the HAL time stamp driver, it must be properly configured in the BSP

setting. We must first instantiate a timer core and then designate the instance as
the stamp timer. For the Nios II system in Section 17.10.3, we create two timer
modules. The module named stamp.timer is used for this purpose. It is a 32-bit
timer designated as a stamp timer in the timestamp_timer field of BSP, as shown
in Figure 17.10. After setting up the BSP, we can then include the header file,
sys/alt_timestamp.h, and use the related functions.

By taking two time stamps at two designated points and finding their difference,
we can determine the number of elapsed clock cycles. Although the elapsed time is
represented in terms of clock cycles, the resolution is not as accurate as it appears
because of the overhead associated with the execution of a l t . t imestamp() . One
way to reduce the error is to estimate the overhead and then subtract it from the
final difference. The basic code outline is:

/* estimate the overhead of alt.timestamp () */
tO = a l t . t i m e s t a m p () ;
t l = a l t . t i m e s t a m p () ;
overhead = t l - tO;
/* start actual measurement */
tO = a l t . t i m e s t a m p () ;

a c t i v i t i e s to be measured

t l = a l t . t i m e s t a m p () ;
e l a p s e d . c y c l e s = t l - tO - overhead;

www.it-ebooks.info

http://www.it-ebooks.info/

GCD ACCELERATOR IP CORE DEVELOPMENT 669

21.4.2 Custom hardware counter

For the GCD hardware accelerator, some input combinations may take only a few
clock cycles to complete and the potential error introduced by the a l t . t imestampO
method is too large in comparison. To overcome the problem, we create a compan-
ion auxiliary counter in the GCD hardware accelerator. The counter starts when
the GCD operation is initiated and stops when the operation is done. We then read
the counter and thus obtain the exact elapsed clock cycles.

21.5 GCD ACCELERATOR IP CORE DEVELOPMENT

21.5.1 Avalon interfaces

We can add a wrapping circuit and the auxiliary counter to the GCD system and
create an SOPC component. It includes an Avalon MM slave interface to interact
with the host and a clock input interface for the system clock.

21.5.2 Register map

A Nios II processor interacts with the GCD accelerator by passing the two input
operands and retrieving the calculated GCD result. In addition, it initiates the
operation by writing dummy data to a specific address, checks the GCD accelerator
status for completion, and reads the value from the measurement counter. The
registers, their address offsets, and fields are:

• Write addresses (data from cpu)
— offset 0 (a register)

* bits 31 to 0: 32-bit a input
— offset 1 (b register)

* bits 31 to 0: 32-bit b input
— offset 2

* Dummy data used to generate an enable pulse to start GCD oper-
ation

• Read addresses (data to cpu)
— offset 3 (status register)

* bit 31: 1-bit ready signal asserted (i.e., 1) when the GCD accelerator
is idle

* bits 15 to 0: 16-bit measurement counter value
— offset 4 (r register)

* bits 31 to 0: 32-bit GCD result

21.5.3 Wrapped GCD accelerator

The wrapped GCD accelerator contains two registers to store the two input operands
and write decoding logic to generate enable signals. In addition, it contains an
auxiliary counter that keeps track of the number of clock cycles spent on GCD
computation. The counter starts when the GCD operation is initiated and stops
when the operation is done. The HDL code is shown in Listing 21.2.

www.it-ebooks.info

http://www.it-ebooks.info/

670 GCD ACCELERATOR

Listing 21.2 GCD engine Avalon interface

module chu_avalon_gcd
(
input wire e lk , r e s e t ,
/ / Avalon-MM slave interface
input wire [2:0] gcd .address ,
input wire g c d . c h i p s e l e c t , g c d . w r i t e ,
input wire [31:0] gcd_writedata,
output wire [31:0] gcd.readdata

) ;

/ / symbolic state declaration
localparam [1:0]

id le - 2'b01 ,
count = 2'blO;

/ / signal declaration
reg [1:0] s t a t e _ r e g , s t a t e . n e x t ;
wire gcd . s tar t , gcd.ready , gcd_done_tick;
reg [31:0] a . i n . r e g , b_in_reg;
wire [31:0] r_out;
wire wr_en , wr_a , ur_b ;
reg [15:0] c.reg, c.next;

ι //body

/ / instantiate gcd unit
//=
gcd.engine gcd.unit

(. c l k (c l k) , . r e s e t (r e s e t) , . s t a r t (g c d . s t a r t) ,
. a _ i n (a _ i n _ r e g) , .b_ in (b_ in_reg) , . r (r _ o u t) ,
•gcd_done_tick(gcd_done_tick) , . ready(gcd .ready)) ;

/ /=
34 / / registers , decoding , and multiplexing

// — = — = ^ = ^
/ / registers
always QCposedge e lk ,
i f (r e s e t)

begin
a_in_reg <»
b_in_reg <=

end
e l s e

begin
i f (wr_a)

a_in_reg
if (wr.b)

b_in_reg

0;
0;

<=

<=

posedge r e s e t)

gcd .wri tedata;

gcd_writedata;
end

/ / write decoding
ass ign wr.en - gcd .ur i t e t g c d . c h i p s e l e c t ;
ass ign wr_a - (gcd_address«"3*b000) k wr.en;
ass ign wr_b « (gcd_address=-3'bOOD t wr.en;
ass ign g c d . s t a r t - (gcd_address~3'bOlO) k wr.en;
/ / read multiplexing
assign gcd.readdata =

(gcd_address-»3'bl00) ? r .out : {gcd.ready, 15'bO, c . r e g } ;

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

»6 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 6 7 1

/ /
/ / auxiliary counter to measure the cycles in execution
//

04 / / registers
always 9(posedge elk, posedge reset)

if (reset)
begin

state_reg <" idle;
69 c _ r e g <= 0 ;

end
else

begin
state.reg <= state.next;

74 c_reg <- c.next;
end

/ / next—state logic
always β*
begin

79 c_next = c_reg;
state.next = state_reg;
case (state_reg)

idle:
if (gcd.start)

84 begin
c.next - 1;
state_next » count;

end
count:

89 if (gcd_done_tick)
state.next - idle;

else
c_next - c_reg + 1;

endcase
94 end

endmodule

Based on this top-level HDL file, we can create a new SOPC component in
Component Editor and integrate it into a Nios II system.

21.6 TESTING PROGRAM

The system derived in Section 17.10.3 includes the GCD accelerator core (named
g.engine) and can be used for testing. Furthermore, it also contains a timer mod-
ule for the time stamp operation and the BSP is configured to use this timer, as
discussed in Section 21.4. Since the purpose of the core is to demonstrate the use
of hardware accelerator, it is unlikely to be used in other applications. We do not
derive a separate device driver library and simply integrate the I/O access in the
testing routines.

21.6.1 GCD routines

The software GCD routine is shown in Listing 21.3.

www.it-ebooks.info

http://www.it-ebooks.info/

672 GCD ACCELERATOR

Listing 21.3

«def ine even(x) (((x) & 1)»»0) / / check whether x is an even number

al t_u32 c a l c _ g c d _ s o f t (a l t _ u 3 2 a, a l t_u32 b , i n t * t i c k s)
{

i n t η · 0 ;
a l t_32 tO, t l , overhead;

a l t _ t i m e s t a m p _ s t a r t () ; / / initialize time.stamp timer to 0
/* determine the overhead of alt-timestamp () */
tO = a l t . t i m e s t a m p () ;
t l " a l t . t i m e s t a m p O ;
overhead = t l - tO;
/* start actual measurement */
tO ■ a l t . t i m e s t a m p O ;

while (1){
if (a==b)

break;
i f (e v e n (a) H / / a even

a - a>>l;
if (even(b)) { / / b even

b - b > > l ;
n++;

}
} e l s e { / ' / a odd

if (even(b)) / / 6 even
b - b > > l ;

e l s e { // b odd
if (a > b)

a » a - b ;
e l s e

b » b - a;
} / / end else (b odd)

} // end else (a odd)
} // end while
a = a<<n;
t l " a l t . t i m e s t a m p () ;
• t i c k s ■ (i n t) (t l - t O - o v e r h e a d) ;
r e t u r n (a) ;

}

The routine follows the algorithm in Section 21.2 but with the added time mea-
surement functionality.

The hardware GCD routine is shown in Listing 21.4.

Listing 21.4
«define GCD_A_REG 0
«define GCD.B.REG 1
»define GCD.START.REG 2
«define GCD.STATUS.REG 3
«define GCD.R.REG 4
«define GCD.CNT.FLD OxOOOOffff
«define GCD.READY.BIT 0x80000000

alt_u32 calc_gcd_hard(alt_u32 gcd.base, alt_u32 a, alt_u32 b, int *clks)
{
alt_u32 status, result;

I0WR(gcd_base, GCD_A_REG, a); // write a
I0WR(gcd_base, GCD_B_REG, b); // write b

www.it-ebooks.info

http://www.it-ebooks.info/

PERFORMANCE COMPARISON 673

IOWR(gcd_base, GCD_START_REG, 0) ; / / write dummy data to start operation
v h i l e U H

/* loop until GCD data is ready */
status»IORD(gcd_base, GCD_STATUS_REG);
i f (s t a t u s k GCD_READY_BIT)

break;
}
»elks = (i n t) (s t a t u s & GCD_CNT_FLD);
result=IORD(gcd_base, GCD.R.REG);
r e t u r n (r e s u l t) ;

}

The routine simply loads the two inputs and starts the operation and then retrieves
the result and the elapsed clock cycles. The custom auxiliary timer, not the Altera
core, is used to keep track of the computation time.

21.6.2 Main program

The main program is shown in Listing 21.5.

Listing 21.5
int main(void)
{

alt_u32 a, b, r s , rh;
int i ;
int s=0, c=0;
int samples-10000;
int s . t i c k s , e l k s ;

printfC'GCD t e s t s t a r t s : \ n \ n ") ;
srand(lOO); / / set the random number seed
for (i - 0 ; Ksamples; i++){ / / obtain gcd for 10,000 random samples

a = rand O + 1; // +1 to avoid 0
b - rand() + 1;
rs = ca l c_gcd_so f t (a , b, Jfcs.ticke);
rh - calc_gcd_hard(G_ENGINE_BASE, a, b, ftclks);
if (rs!=rh) // sanity check

printf ("Inconsistency : gcd (%d ,%d)=5Cd/5id\n" , a, b, rs , rh) ;
s - s + s.ticks;
c = c + elks;

}
printf ("average clocks (soft/hard): */,d/7.d\n", s/samples, c/samples);
printf ("hardware acclerator speedup: '/,d\n" , s/c);

}

It performs the GCD computations of 10,000 randomly selected pairs with both
software and hardware accelerator-based routines and reports and summarizes the
results.

21.7 PERFORMANCE COMPARISON

Benchmarking is a complicated task since the performance depends on a wide va-
riety of factors, such as hardware configuration, compiling option, etc. Recall that
the testing system used in Section 21.6.2 is constructed with a fast processor core
(i.e., Nios Il/f). During the processing, the default setting is used in Quartus II
for hardware synthesis and the default setting is used in Nios IDE for compiling

www.it-ebooks.info

http://www.it-ebooks.info/

674 GCD ACCELERATOR

the C routines. The statistics from the previous section shows that the average
times to perform one GCD computation is about 2,000 clock cycles for the software
routine and about 60 clock cycles for the hardware accelerator. Thus, the hardware
accelerator speeds up the computation about 30 times. Because the GCD circuit
is much simpler than the Nios II processor, it can run at a much faster rate. The
Quartus II timing analysis shows that the maximal operating frequency of the ac-
celerator is about twice that of the Nios II system. It is possible to use a PLL core
to generate a separate clock for the GCD circuit. The approach can double the
performance and speed up computation more than 60 times.

Note that the GCD function is not a "computation-intensive" algorithm since
it contains mainly comparison, branching, and looping but not many arithmetic
operations. There is not much "inherent parallelism" in the algorithm. The speedup
is due to several factors. First, execution in a processor involves fetching instruction,
decoding, and fetching and storing data. The GCD accelerator is controlled by a
simple FSM and thus avoids this type of overhead. Second, the hardware accelerator
can convert the sequential conditional branches into a routing network, as discussed
in Section 4.5, and thus performs comparison and branching concurrently. Finally,
the hardware accelerator can implement and combine many simple computations,
such as testing for an even condition and shifting one position, together. In the
GCD hardware accelerator implementation, all computations are lumped into a
single op state without severe penalty to performance (i.e., significantly prolonging
the clock cycle).

In a custom hardware system, it is frequently possible to increase the system's
performance with additional hardware resource. For example, we can construct a
special combinational circuit that counts the trailing zeros and shifts them out. If
the input a has m trailing zeros, the circuit outputs the count, m, and the shifted
result, which corresponds to φ^. The corresponding new GCD equation becomes

gcd(a, b) = <

a if a = b
2n gcd(^r, ^r) if a φ b; a, b have m, n trailing 0's; m> n
2 m gcd(^r, ^r) if a φ b; a, b have m, n trailing 0's; m <n
gcd(a — b, b) if a > b; a, b odd
gcd(a, b — a) if a < 6; a, b odd

With this circuit, the GCD accelerator can process multiple trailing zeros in one
step and thus further improve the performance.

21.8 BIBLIOGRAPHIC NOTES

A more detailed discussion of the binary GCD algorithm and Euclid's algorithm can
be found on the Wikipedia website. Nios II Software Developers Handbook provides
the specification and use of the Altera HAL time stamp driver.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 675

21.9 SUGGESTED EXPERIMENTS

21.9.1 Performance with other processor configuration

Resynthesize the Nios II system with the economic configuration (i.e., Nios Il/e)
and the standard configuration (i.e., Nios II/s) and compare their performances
with the fast configuration.

21.9.2 GCD accelerator with minimal size

The three major components in the GCD accelerator's data path are two subtrac-
ters and one combinational barrel shifter. We can use a sequential shifter (which
shifts one bit in each clock cycle) and share the subtracter (i.e., to reduce two sub-
tractors to one subtracter). Modify the GCD accelerator design, resynthesize the
Nios II system, and compare its performance.

21.9.3 GCD accelerator with trailing zero circuit

Design the trailing zero counting and shifting circuit discussed in Section 21.7 and
integrate the circuit to the GCD accelerator. Resynthesize the Nios II system and
compare its performance.

21.9.4 GCD accelerator with 64-bit data

Modify the GCD software routine and hardware accelerator for 64-bit input operands
and compare their performance.

21.9.5 GCD accelerator with 128-bit data

Modify the GCD software routine and hardware accelerator for 128-bit input operands
and compare their performance.

21.9.6 GCD by Euclid's algorithm

The Euclid algorithm is an alternative method to obtain GCD and involves division
(actually modulo operation). For simplicity, assume that gcd(x,0) = x. Euclid's
algorithm can be written as

d(b) — Í a if 6 = 0
\ gcd(6, a mod b) otherwise

Derive a software routine and a hardware accelerator based on this algorithm and
compare their performance with the binary GCD algorithm. The hardware accel-
erator needs to incorporate a custom circuit to perform the modulo operation.

www.it-ebooks.info

http://www.it-ebooks.info/

6 7 6 GCD ACCELERATOR

21.10 COMPLETE PROGRAM LISTING

L i s t i n g 2 1 . 6 chu_main.gcd.test.c

/ *
*
* Module: GCD function prototypes and main
* File: chu-main.gcd-test. c
* Purpose: software— and hardware—accelerator —based GCD routines
* IP core base addresses:
* - G-ENGINE.BASE: GCD engine
*

* Register map
*
* Write (data from cpu):
* offset 0
* * bits 31-0: 32-bit a
* offset 1
* * bits 31-0: 32- bit b
* offset 2
* * dummy data to start operation
* Read (data to cpu):
* offset 3
* * bit 32: 1—bit ready signal
* * bits 15 — 0: 16—bit timer count
* offset 4
* * bits 31-0: 32-bit GCD result
** * /
/ * file inclusion * /
/ * General C library */
» i n c l u d e < s t d i o . b >
» i n c l u d e < s t d l i b . h > / / to use rand()
/ * Altera —specific library * /
» i n c l u d e < i o . h >
» i n c l u d e < a l t _ t y p e s . h >
» i n c l u d e < s y s / a l t _ t i m e s t a m p . h >
» i n c l u d e " s y s t e m . h "

/ * address and field definition * /
» d e f i n e GCD.A.REG 0
» d e f i n e GCD_B_REG 1
» d e f i n e GCD.START.REG 2
» d e f i n e GCD.STATUS.REG 3
» d e f i n e GCD.R.REG 4
» d e f i n e GCD.CNT.FLD OxOOOOffff
» d e f i n e GCD.READY.BIT 0x80000000

/ * macro definition */
» d e f i n e e v e n (x) (((x) k l) - = 0) / / check whether x is an even number

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 7 7

/ « « « « « « f t *

* function: cale.gcd.soft ()
* purpose: calculate GCD by binary GCD algorithm
* argument:
* a, b: 2 operands of gcd function
* * ticks: Φ clock cycles calculated by alt.timestamp () function
* return:
* — gcd(a,b)
* — * ticks updated
* note:
* — call/return/execution of alt.timestamp () introduces extra overhead
* — use stop.stamp.timer ()/start.stamp.timer () to pause the timer to
* get more accurate result
*t**t*t*********t**/

alt_u32 ca lc_gcd_sof t (a l t_u32 a, alt_u32 b, int « t i c k s)
{

int n-0;
al t_32 tO, t l , overhead;

a l t _ t i m e s t a m p _ s t a r t () ; / / initialize time.stamp timer to 0
/* determine the overhead of alt.timestamp () */
to » al t . t imestamp () ;
t l =» alt . t imestamp () ;
overhead = t l - tO;
/* start actual measurement */
tO » alt . t imestamp () ;

while (1){
i f (a==b)

break;
if (e v e n (a)) { / / o even

a = a>>l;
i f (e v e n (b) H / / b even

b = b>>l;
n++;

}
} e l s e { / / a odd

i f (even(b)) / / b even
b = b > > l ;

e l s e { // b odd
i f (a > b)

a = a - b;
e l s e

b - b - a;
} / / end else (b odd)

} / / end else (a odd)
y // end while
a ■ a<<n;
t l <· a l t . t imestamp () ;
« t i cks = (i n t) (t l - tO-overhead) ;
re turn(a) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

678 GCD ACCELERATOR

* function: calc.gcd-hard ()
* purpose: calculate GCD via hardware accelerator
* argument:
* gcd.base: base address of GCD engine
* a, b: 2 operands of gcd function
* *clks: # clock cycles from hardware accelerator
* return:
* — gcd(a,b)
* — * elks updated
* note:
* * t t « t « * * * * * * * * * m » # * * t * * * * * » * * * * * * * * » * t » * * * « * * » t * * * * * * * * * » * * * » * * * * * » · /
alt_u32 ca lc .gcd hard(alt_u32 gcd base , alt_u32 a, alt_u32 b, int *c lks)
{

alt_u32 s t a t u s , r e s u l t ;

IOWR(gcd_base, GCD_A_REG , a) ; / / write a
IOWR(gcd.base, GCD.B.REG , b) ; / / write b
IOWR(gcd.base , GCD_START_REG , 0) ; / / write dummy data to start operation
w h i l e U H
/* loop until GCD data is ready */

status»IORD(gcd_base, GCD_STATUS_REG);
i f (s t a t u s k GCD.READY.BIT)

break;
}
• elks - (i n t) (s t a t u s b GCD_CNT_FLD);
result-IORD(gcd_base , GCD_R_REG);
r e t u r n (r e s u l t) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 6 7 9

/***
* function: main()
* purpose: calculate gcd and collect statistics for randomly selected
* numbers by software routine and hardware accelerator
* note :
***/
int main(void)
{

alt_u32 a, b, rs, rh;
int i;
int s=0, c-0;
int samples=10000;
int s.ticks, elks;

printf("GCD t e s t : \ n \ n ") ;
s rand(lOO); / / se i the random number seed
for (i=0 ; i<samples ; i++){ / / obtain gcd ¡or 10,000 random samples

a = rand O + 1; // +1 to avoid 0
b = r a n d O + 1;
r s = c a l c _ g c d _ s o f t (a , b , fcs.ticks);
rh » calc_gcd_hard(G_ENGINE_BASE, a, b , ftclks);
if (rs!-rh) // sanity check

printf ("Inconsistency: gcd (•/.d,y.d)=,/.d/,/.d\n" , a, b, rs , rh) ;
s » s + s_ticks;
c » c + elks;

}
printf ("average clocks (soft/hard): 7.d/'/.d\n" , s/ samples , c/samples);
printf ("hardware accelerator speedup: 7.d\n" , s/c);

}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22

MANDELBROT SET FRACTAL
ACCELERATOR

The Mandelbrot set can be used to generate interesting fractal images. The algo-
rithm to determine whether a point is within the set is computation intensive and
thus drawing the entire screen requires a significant amount of time. In this chap-
ter, we design a system that can zoom in on a specific area of the set and display
the fractal on a VGA screen. We implement the same algorithm using a software
routine and a hardware accelerator and compare their performances.

22.1 INTRODUCTION

A fractal is a fragmented geometric shape that can be split into smaller parts, each
of which has a similar (but not necessarily identical) appearance to the full shape.
The boundary of the Mandelbrot set forms a fractal. A sample zoom sequence of
the Mandelbrot set is shown in Figure 22.1. The initial image of the Mandelbrot
set is shown at the top left. A small region is selected and magnified (i.e., "zoomed
in") to form the second image at the top right. The process is repeated two more
times and the images are shown on the bottom. Note that the set has an elaborate
boundary and the boundary does not simplify at any given magnification.

Despite the complexity of the image, the fractal is usually governed by simple
mathematical equations, as in the Mandelbrot set. Studying the mathematical
properties of fractals is beyond the scope of this book. We simply treat these
equations as an algorithm to generate fractal images and discuss the computation
procedure in the following subsections.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 681
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

682 MANDELBROT SET FRACTAL ACCELERATOR

Figure 22.1 Sample zoom sequence of the Mandelbrot set.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 683

22.1.1 Overview of the Mandelbrot set

The Mandelbrot set, named after mathematician Benot B. Mandelbrot, is a set
of complex numbers that has a convoluted fractal boundary when plotted. Math-
ematically, it is defined as follows. Consider a sequence defined in the complex
plane:

z ={ 0 ifn = 0
" 1 zn-i + c otherwise

For a given complex number c, c is in the Mandelbrot set if the absolute value of
zn is bounded as n goes to infinity.

Instead of complex numbers, we use a pair of real numbers in our discussion.
The previous definition can be rewritten as follows. Consider a two-dimensional
sequence:

(x «) = / (°'0) i f n = 0

n,ynj χ (xl-i-y*_1 + cx,2*xn-1*yn-1 + Cy) otherwise
For a given pair pair is in the Mandelbrot set if x\ + y% is bounded as n
goes to infinity. For example, if (cx,cy) is (1,0), the sequence becomes (0,0), (1,0),
(2,0), (2,0), (5,0), (26,0), . . . , which tends to infinity, and thus the point does not
belong to the Mandelbrot set. On the other hand, if (cx,Cy) is (—1,0), the sequence
becomes (0,0), (—1,0), (0,0), (—1,0), . . . , which is clearly bounded, and thus the
point belongs to the Mandelbrot set. The Mandelbrot set fractal is generated in
the (cx,Cy) plane (i.e., cx as the x axis and Cy as the y axis) by plotting each point
in the image plane. The points are colored black if they are in the set and white if
they are not in the set. The resulting image is shown in Figure 22.2.

22.1.2 Determination of a Mandelbrot set point

The previous bound sequence generated by (—1,0) is extremely simple and a special
case. Mathematically, there is no formula to determine whether a point is in the set
and we would have to perform an infinite number of iterations. A special property
can partially help us ease the computation. It states that the sequence will diverge
and grow infinitely large once x\+y\ ever gets to be greater than 4.0. This is some-
times known as the escape condition. For example, let (cx,cy) be (0.2,0.7). The
sequence becomes (0.00,0.00), (0.20,0.70), (-0.25,0.98), (-0.70,0.21), (0.64,0.41),
(0.45,1.22), (-1.10,1.80), and (-1.82,-3.23), which reaches the escape condition
in the seventh iteration, and thus the point is not in the set.

There is no simple test to ensure that a point is in the set and to determine
whether or when a sequence diverges. In practice, we usually set an upper limit
for the number of iterations and declare that a point is in the set if the iteration
sequence reaches the limit without diverging. A computer-generated Mandelbrot
set fractal is thus at best an approximation of the actual set. For example, if a point
diverges after 150 iterations, it is considered to be in the set if the upper limit is
set to 100 and considered not to be in the set if the upper limit is set to 200. Some
points in the boundary regions may take many iterations before they diverge and
we must set the upper limit to a larger number to obtain a more detailed image.

We can derive an algorithm to perform the iteration sequence for a given point.
Assume that the value of the point is (cx,cy) and the maximal number of iteration
is max_itr. The pseudo-code of this function is

www.it-ebooks.info

http://www.it-ebooks.info/

684 MANDELBROT SET FRACTAL ACCELERATOR

■2.0

-+-
1.0

Cx

Figure 22.2 Mandelbrot set.

calc_frac_point(cx, cy, max_itr){
x = cx;
y = cy;
itr=0;
do {

xx = x * x;
yy = y * y;
xy = x * y;
y = x2 - y2 + cx;
x = xy*2 + cy;
i t r + + ;

} while ((xx+yy)<4.0 && i t r < m a x _ i t r) ;
r e t u m (i t r) ;

}
If the sequence does not diverge, the while loop ends when max_i.tr iterations are
reached and the function returns max_itr. In this case, we declare that (cx,cy) is
in the set.

The calc_f r a c p o i n t O function is computationally intensive. It requires three
multiplications in each iteration and may need up to 3*max_itr multiplications if
the sequence does not diverge.

22.1.3 Coloring scheme

For our purposes, the Mandelbrot set is used as a mechanism to generate visual
fractal patterns. For a more interesting image, we can "color" the region just outside

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 6 8 5

the Mandelbrot set. For a point outside the set, calc_f rac .point () returns a value
that is smaller than max_itr. We can assign a color according to the value and the
resulting image can reveal the delicate characteristic in the set's boundary region.

Assume the value of max_itr is M and calc_f r a c p o i n t 0 returns n and the
value of color i is C¿. In the original Mandelbrot set fractal of Figure 22.2, the
escaped points are assigned to white and the non-escaped points are assigned to
black. The color map function is

■{ color = t Cblack i i n = M

Cwhite otherwise

A more interesting "checkerboard" pattern can be obtained by assigning the black
and white colors alternately:

if n = M
color = I Cwhite iin < M and n is even

if n < M and n is odd

A graphic display can show different intensity levels of a color. For example, the
intensity level can range from 0 to 15 for a four-bit representation. If we assume
that Cuack and Cwhue represent two extreme values of the range of a monochrome
display, we can use different levels of shades to show the "contour" around the
Mandelbrot set's boundary by assigning the intensity levels according to the number
of iterations:

_ Γ Cblack
\ (1 — o) * i

■ _ i -(MOCK if n = M

^ ~ " x : Cwhite + a* Cbiack if n < M and a = jfc

We can also reverse the intensity level around the boundary to make the fractal
look like "lightning." The color function becomes:

color = {

I a

Cbiack if n = M
* Cwhite + (1 - a) * Cbiack iin< M and a = jfc

More striking fractal images can be obtained with a color graphic display. A
simple way to do it is using a modulo function. Assume that the display supports
K colors. The color function becomes

color = < Cbiack ifn-M
Cp if n < M and p = n%K

A representative colored fractal image is shown in Figure 22.3. The previous "in-
tensity" schemes can also be combined to generate more interesting images.

22.1.4 Generation of a fractal ¡mage

A fractal image can be obtained by selecting and magnifying a specific area in the
cx-cy plane, as demonstrated in Figure 22.1. To generate an image in a graphic
display, we need to map the corresponding (cx, cy) values to the pixel location and
determine the escape iteration and color accordingly. Assume that the size of the
display is i/p¿x pixels by VPiX pixels and the bottom left corner and the top right
corner of the selected area are (cxo, Cyo) and (cx n , cyn). The horizontal and vertical

www.it-ebooks.info

http://www.it-ebooks.info/

686 MANDELBROT SET FRACTAL ACCELERATOR

Figure 22.3 Colored Mandelbrot set.

distances between successive pixels are c*»~c*'> and c»"~c»°. If the shape of the
graphic display and the selected area are similar, the two distances are identical. It
is defined as delta in our discussion. The pseudo code of generating a fractal image
is

cy = cyO;
for(j=0; j<HPIX; j++){

ex = cxO;
for(i=0; i<VPIX; i++){

itr * calc_f rac_point (ex , cy, max_i.tr);
color = assign.color(itr);
display.pix (i, j, color);
ex = ex + delta;

>
cy = cy + delta;

www.it-ebooks.info

http://www.it-ebooks.info/

FIXED-POINT ARITHMETIC 687

22.2 FIXED-POINT ARITHMETIC

The Mandelbrot set deals with the points in a complex plane, which are represented
as a pair of real numbers, and thus a proper data type should be selected to ac-
commodate the needed computation. Ideally, the floating-point data type should
be used since it provides a large range and good precision. However, its complex-
ity can severely degrade the software performance and complicate the design of a
dedicated hardware accelerator. An alternative is to use the fixed-point data type,
which requires only simple modification over the integer data type.

The fixed-point data type is essentially an integer that is scaled by a specific
factor. For explanation purposes, let us first consider the fixed-point data type
in the decimal number system. For example, we assume a fixed-point data type
with five decimal digits and a scaling factor of 10 - 3 . The value 12.345 can be
represented as 12345 (i.e., 12345 * 10 - 3) . The scaling factor corresponds to the
exponent of the floating-point data type. Unlike floating-point data types, the
scaling factor is the same for all entities of the same type and does not change
during the computation. This particular data type can be interpreted as five-digit
integer type with an implicit decimal point after the second most significant digit.
Thus, the value 12345 becomes 12.345. One way to represent a fixed-point data
type is the Qm.f notation, in which m represents the number of integer digits
and / represents the number of fractional digits. The previous data type can be
represented as the Q2.3 format.

To add or subtract two numbers in the same fixed-point type, it is sufficient to
add or subtract the underlying integers and keep their common scaling factor. The
result is in the same type, as long as no overflow occurs. In other words, if the two
numbers are in Qm.f format, the sum will also be in Qm.f format. The addition
and subtraction thus are actually identical to those in the integer data type except
that we assume that there is an implicit decimal point after the mth digits.

To multiply two fixed-point numbers, it suffices to multiply the two underlying
integers. Unlike the addition operation, the resulting scaling factor changes. It
becomes the prodvx:t of two scaling factors of the two numbers. For example, assume
that 12345 and 00025 are in Q2.3 format, which are interpreted as 12345 * 1 0 - 3

and 00025 * 1 0 - 3 (i.e., 12.345 and 0.025). The five-digit integer multiplication
leads to a ten-digit product 0000308625, which is interpreted as 308625 * 1 0 - 6 (i.e.,
0.308625). In other words, if the two numbers are in Qm.f format, the product
will be in Q2m.2f format. For the fixed-point operation, it is desirable to have
the product in the same Qm.f format. This can be done by trimming the m
most significant digits and / least significant digits. In the previous example, the
trimmed product becomes 00308, which is interpreted as 308 * 1 0 - 3 (i.e., 0.308).
When using a fixed-point data type, we usually know the range of operation in
advance and select a format to ensure that no overflow occurs after multiplication;
i.e., the m most significant digits in the product are always 0's. Thus, we only need
to perform the shift-right operation to remove the / least significant digits.

The main advantage of the fixed-point data type is in its implementation. We
can use the same integer arithmetic operations, plus the shift operation, for the
real numbers. On the other hand, the fixed-point data type operations tend to
lose precision even if all operations are within the range. For example, the previous
fixed-point multiplication can be rewritten as 12345*10-3 * 25*10-3 = 308*10-3, in
which the product only has three digits of accuracy. If the floating-point data type is

www.it-ebooks.info

http://www.it-ebooks.info/

6 8 8 MANDELBROT SET FRACTAL ACCELERATOR

used, the multiplication can be expressed as 12345 *10-3 * 25*10-3 = 30862*10-5,
in which the product maintains five digits of accuracy. If the computation involves
a larger number of iterations, the inaccuracy may be accumulated and may lead to
a much larger error.

In a digital system, the fixed-point data type is based on the binary system. The
basic properties are similar to those in the decimal system except that binary bits
are used in place of decimal digits. In the remaining chapter, both software and
hardware implementation are based on the binary representation.

22.3 SOFTWARE IMPLEMENTATION OF CALC-FRAC_POINT()

The C language has no inherent support for the fixed-point data type and thus we
must manually manipulate the proper integer operation according to the interpre-
tation of a specific fixed-point format. Since the native data width of the Nios II
processor is 32 bits, we choose this as the total width of the fixed-point data. Recall
that the area of interest of the Mandelbrot set resides within the (—2,+2) range
of both axes and the iteration stops when the escape condition, xn + y2 > 4.0, is
reached. The largest value of intermediate calculation, which is likely to be x2 +y2,
should be smaller than 8.0. Based on this observation, we select Q4.28 for our im-
plementation, in which the four MSBs are interpreted as the integer portion and the
28 LSBs are interpreted as the faction portion. In this format, the most negative
value is —8.0 (i.e., 1000·· 00) and the most positive value is close to +8.0 (i.e.,
0111 · · · 11, which is 22 + 21 + 2° + 2"1 + 2~2 + 2"3 + · · · + 2~28).

To emphasize the new interpretation of the fixed-point representation, we define
a new 32-bit data type for the Q4.28 format and a new 64-bit data type for the
Q8.56 format:

typedef a l t_32 f ixed428;
typedef al t_64 f ixed856;

The pseudo code of calc_f rac.point O of Section 22.1.1 can be modified to ac-
commodate the new format and the code is shown in Listing 22.1.

Listing 22.1
int calc_frac_point_soft(fixed428 ex, fixed428 cy, alt_ul6 max_i.tr)
{

fixed428 x, y, xx, yy, xy2;
fixed856 xx_raw, yy.raw, xy.raw;
int itr;

x - ex;
y - cy;
itr=0;
do {

/* Q4.Z8 multiplications */
xx.raw - (fixed856)(x) » (fixed856)(x);
xx - (fixed428)(xx.raw » 28);
yy.rau - (fixed856)(y) » (fixed856)(y);
yy » (fixed428)(yy_raw >> 28);
xy.raw ■ (fixed856)(x) * (fixed856)(y);
xy2 = (fixed428)(xy_raw » 27); / / 2* is same as «1
/* iteration equation */
x · xx - yy + e x ;
y - xy2 + c y ;

www.it-ebooks.info

http://www.it-ebooks.info/

HARDWARE IMPLEMENTATION OF CALC-FRAC_P0INT() 6 8 9

i t r + + ; ;
} while (((xx+yy)<0x40000000) kk (i t r < m a x _ i t r)) ;
r e t u r n (i t r) ;

The first part of the loop performs multiplications in Q4.28 format. The two
operands are extended to 64-bit Q8.56 format and multiplied as two 64-bit integers.
The result is then converted back to Q4.28 format by shifting the product to the
right by 28 positions. The *2 operation in calculation of x * y * 2 corresponds to
shift x * y to the left by one position. It is merged with the shift-right operation
and becomes the xy_raw»27 expression.

22.4 HARDWARE IMPLEMENTATION OF CALC_FRAC_POINT()

22.4.1 ASMD chart

The calc_frac_point_soft() function in Section 22.3 can be converted to an
ASMD chart and then realized by an FSMD in hardware. The resulting ASMD
chart is shown in Figure 22.4. The main computation is done in the op state and
it corresponds to the C statements within the while loop. The FSM returns to
the i d l e state when the escape condition is met or the loop reaches the maximal
number of iterations.

22.4.2 HDL implementation

After constructing the ASMD chart, we can derive the HDL code accordingly. The
code is shown in Listing 22.2. For clarity, we isolate the fixed-point multiplication
portion and code them in a separate segment. Note that the iteration algorithm
involves both positive and negative numbers. The signed data type is used in
computation so that the proper sign extension will be performed in multiplication
operation, as discussed in Section 8.3.

Listing 22.2 Fractal engine
i module f rac_engine

#(
parameter W - 32, / / width (# bits) of Qm. f format
parameter M= 4 / / # of bits in m

)
6 (

input wire e l k , r e s e t ,
input wire f r a c . s t a r t ,
input wire [W-1:0] ex, cy,
input wire [15:0] m a x . i t ,

li output wire [15:0] i t e r ,
output wire f r a c . r e a d y , f r ac_done_ t i ck

) ;

/ / constant declaration
iö localparam F = W - M; / / # of bits in fraction

// symbolic state declaration
localparam [1:0]

i d l e - 2 ' b O l ,
2i op · 2 ' b l O ;

www.it-ebooks.info

http://www.it-ebooks.info/

690 MANDELBROT SET FRACTAL ACCELERATOR

L

idle * r

frac ready <=1

_p ̂
>

—i
T
*

GO
op '

xx := x*x
yy:=y*y
xy2 := 2x*y
x xx-yy + cx
y xy2+cy
it ¡t + 1

/(xx+yy>4)or \
\(it_next = maxj t) /

1
T

f frac.done_tick<=1

— F —

Figure 22.4 Fractal point calculation ASMD chart.

www.it-ebooks.info

http://www.it-ebooks.info/

HARDWARE IMPLEMENTATION OF CALCFRAC-POINTO 691

/ / signal declaration
reg [1:0] state.reg, state.next;
reg [15:0] it.reg , it.next;
wire signed [2*W-1:0] xx_raw, yy_raw, xy_raw;
wire signed [W-1:0] xx, yy, xy2;
reg signed [W-1:0] x_reg, x.next, y.reg, y.next;
reg signed [W-1:0] cx_reg, cx_next, cy_reg, cy_next;
wire escape;
reg frac_ready_i, frac.done;

/ / body
// FSMD state & data registers
always SCposedge elk, posedge reset)

if (reset)
begin

state.reg <» idle;
it.reg <- 0;
x_reg <= 0;
y.reg <» 0;
ex.
cy.

end
else

begin

.reg

.reg

state.i
i t . .reg
x.reg
y.reg
ex.
cy.

e n d

.reg

.reg

<·
<=

reg
<-

<«=
<=

< ■

<-

0;
0;

<»
i t .

state.
.next ;

x.next ;
y_next ;

ex.
cy.

.next;

.next;

.next;

/ / fixed—point multiplications
assign xx.raw - x.reg * x.reg; / / in QSm.Sf
assign xx « xx.raw [(2*W-1)-M:F]; / / back to Qm.f
assign yy.raw = y.reg * y.reg; / / in QSm.Sf
assign yy - yy.raw [(2*W-1)-M:F]; / / back to Qm.f
assign xy.rau - x.reg * y.reg; / / xy in Q2m.2f
assign xy2 - xy.raw[(2*W-i)-M-l:F-1] ; / / 2xy in Qm. f
// escape condition
assign escape » (xx+yy > 32*h40000000);

/ / FSMD next—state logic
always β*
begin

state.next = state.reg;
it.next = it.reg;
x.next - x.reg;
y.next » y.reg;
cx.next - cx.reg;
cy.next - cy.reg;
frac.ready.i » 1'bO;
frac.done = 1'bO;
case (state.reg)

idle:
begin

frac.ready.i = I'M;
if (frac.start)

begin
x.next = ex;

26 b e g i

si en

36 r e s e

4i /

46 l o a

si 8 (n e g e d g

se loa

ei s y n . c l

66 e

7i u

76 a (n e g e d g

si a (n e g e d g

www.it-ebooks.info

http://www.it-ebooks.info/

692 MANDELBROT SET FRACTAL ACCELERATOR

y.next - cy;
cx_next » ex;
cy.next ■ cy;

»a i t _ n e x t » 0;
s t a t e . n e x t ■ op;

end
end

op:
9i b e g i n

x . n e x t » xx - yy + c x _ r e g ;
y . n e x t - xy2 + c y . r e g ;
i t . n e x t « i t _ r e g + 1;
i f (e s c a p e I (i t _ n e x t " " m a x _ i t))

«o b e g i n
s t a t e _ n e x t - i d l e ;
f r a c . d o n e = I ' M ;

end
end

mi e n d c a s e
end

/ / output assignment
a s s i g n i t e r ■ i t _ r e g ;

loe a s s i g n f r a c _ d o n e _ t i c k = f r a c . d o n e ;
a s s i g n f r a c _ r e a d y » f r a c _ r e a d y _ i ;

endmodule

22.5 MANDELBROT SET FRACTAL ACCELERATOR IP CORE
DEVELOPMENT

22.5.1 Avalon interface

We can add a wrapping circuit for the Mandelbrot set fractal accelerator and create
an SOPC component. It includes an Avalon MM slave interface to interact with
the host and a clock input interface for the system clock.

22.5.2 Register map

A Nios II processor interacts with the fractal accelerator by passing the coordinates
of (cx,Cy) and the maximal number of iterations and retrieving the calculated result.
In addition, it initiates the operation by writing dummy data to a specific address
and checks the fractal accelerator status for completion. The registers, their address
offsets, and fields are:

• Write addresses (data from cpu)
- offset 0 (ex register)

* bits 31 to 0: 32-bit cx input
- offset 1 (cy register)

* bits 31 to 0: 32-bit cv input
- offset 2 (max-it register)

* bits 15 to 0: 16-bit maximal iteration value
- offset 3

* dummy data write to start operation

www.it-ebooks.info

http://www.it-ebooks.info/

MANDELBROT SET FRACTAL ACCELERATOR IP CORE DEVELOPMENT 6 9 3

• Read addresses (data to cpu)
— offset 0 (itr .out register)

* bit 16: 1-bit fractal accelerator ready signal
* bits 15 to 0: 16-bit iteration value

22.5.3 Wrapped Mandelbrot set fractal accelerator

The wrapped Mandelbrot set fractal accelerator contains three registers to store the
input values of cx, Cy, and maximal iterations and write decoding logic to generate
enable signals. The HDL code is shown in Listing 22.3.

Listing 22.3 Fractal engine Avalon interface
module chu_avalon_frac

2 (

input wire elk, reset,
/ / Avalon-MM slave interface
input wire [1:0] frac_address,
input wire frac.chipselect, frac.write,

7 input wire [31:0] frac.writedata,
output wire [31:0] frac.readdata

) ;

/ / signal declaration
12 wire frac.start, frac.ready;

reg [31:0] cx.reg , cy_reg;
reg [15:0] max.it.reg;
wire [15:0] iter.out;
wire wr_en, wr.ci, wr_cy , «r.mai;

17

/ / body
// = _ _
/ / instantiate fractal unit
// = _ ^ = ^ ^ ^ ^ _ ^ ^ = _ _ =

22 frac.engine frac.unit
(.clk(clk), .reset(reset), . iter(iter.out),
.frac.start(frac.start), .cx(cx_reg), .cy(cy_reg),
.max.it(max_it_reg), .frac.ready(frac_ready),
.frac_done_tick());

27

/ /
/ / registers , decoding , and multiplexing

//
// registers

32 always Q(posedge elk, posedge reset)
if (reset)

begin
cx.reg <■ 0;
cy.reg <- 0;

37 max_it_reg <■ 0;
end

else
begin

if (wr.cx)
42 cx.reg <- frac_writedata;

if (wr_cy)
cy.reg <- frac.writedata;

if (wr.max)
max.it.reg <- frac.writedata[15:0];

www.it-ebooks.info

http://www.it-ebooks.info/

694 MANDELBROT SET FRACTAL ACCELERATOR

^^m . j^^tyJ B;

^

MENU:
- load zoom level
- load max iter
- select engine
- restore initial
- start drawing

PARAMETERS:
center x: +0.500000
center y; +0.000001
delta: +0.006250
zoom: 2"0
max iter: 16
engine: 0

HELP:
-left-click mouse
to select menu
or set center
-use switch tc set
desired value

Figure 22.5 Sketch of the fractal graphic user interface.

end
/ / write decoding
assign ur_en - frac.wri te k f rac .ch ipse lec t ;
assign wr_cx = (frac_address»-2'b00) k wr_en;
assign wr_cy - (f rac_address-=2 'bOD k wr_en;
assign vr.max - (irac_address==2'blO) k vr_en;
assign f r ac . s t a r t ■ (frac_address»=2'bll) k wr_en;
/ / read data
assign frac.readdata « {15'bO, frac.ready, i t e r . o u t } ;

endmodule

Base on this top-level HDL file, we can create a new SOPC component in Com-
ponent Editor and integrate it into a Nios II system.

22.6 TESTING PROGRAM

22.6.1 Fractal graphic user interface

The system derived in Section 17.10.3 includes the fractal hardware accelerator core
(named f_engine) and can be used for testing. The fractal testing program verifies
the operation of the hardware accelerator and compares its performance with the
software routine. We create a simple graphic user interface on a VGA display
and use the mouse and switches to control the fractal generations. The sketch
of the interface is shown in Figure 22.5. The 640-pixel-by-480-pixel VGA display
is divided into two areas. The left portion is a 480-by-480 square for the fractal
graphic and the right portion is a 240-by-480 rectangle for textual information. The
text consists of an action menu (top), relevant Mandelbrot set fractal parameters
(middle), and simple help information (bottom).

We need the following information to generate a fractal graphic:

26 b e g i

si en

36 r e s e

 l o a

 loa

 a (n e g e d g

 # (4 * T)

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 6 9 5

• The coordinates of the fractal's center, {cx(Center)> cy(center))·
• The zoom factor, m, which represents the magnification over the initial frac-

tal.
• The maximal number of iterations.
• The "engine" used for the computation, which can be the software routine or

the hardware accelerator.
The cxO, cyO, and d e l t a values, which are the bottom left coordinates and the
distance between two successive points, of the pseudo code in Section 22.1.4 can be
derived from cx(c e n (e r) , cy(centeT), and m. We create a fractal on the VGA display
that covers the entire Mandelbrot set during initialization. The ranges of the cx and
cy axes of the initial fractal are between [—2.0, 1.0] and [—1.5,1.5] and the resulting
graph is similar to that in Figure 22.2. The distance between two points (i.e., de l t a)
is ^ j . To magnify a region in the fractal graph by a factor of m corresponds to
reduce the distance between two points by a factor of m. The corresponding d e l t a
becomes 48Q°m. Once d e l t a is determined, cxO and cyO can be derived, which are
(Cx(center) - 240 * jgfjjLj) and (cy{center) - 240 * j f c) , respectively.

The interface uses a mouse and switches to set parameters and to control the
fractal drawing. The basic procedure is:

• Move the mouse pointer to the graphic area and click the left mouse button
to select the center coordinates of the new fractal.

• Use the slide switches to set the desired zoom level and then click the left
mouse button on the menu's "load zoom level" region. If the binary value
of the slide switches is sw, the magnification factor (m) is set to 2SW. The
maximal value of m is limited to 220.

• Use the slide switches to set the desired maximal number of iterations and
then click the left mouse button on the menu's "load max iter" region. If the
binary value of the slide switches is sw, the maximal number of iterations is
set to 10 * sw. The maximal value of iterations is limited to 4095.

• Use the switch to set the desired "computation engine" and then click the
left mouse button on the menu's "select engine" region. If the slide switch 0
(labeled swO on the DEI board) is 0, the software routine is used. If it is 1,
the hardware accelerator is used.

• Check the parameters in the middle part and, if they are correct, click the left
mouse button on the menu's "start drawing" region to initiate the operation.

There is an additional "restore initial" item on the menu. Clicking the button on
this region restores the initial parameter setting.

Since the fractal engine is mainly used to demonstrate the use of the hardware
accelerator, it is unlikely to be used in other applications. We do not derive a
separate device driver library and simply integrate the I/O access in the testing
program. The remaining section discusses the testing and user interface routines.

22.6.2 Fractal hardware accelerator engine control routine

Using fractal hardware accelerator to perform the calc_frac_point() function re-
quires a simple routine to write and read its I /O registers. The code is show in
Listing 22.4.

www.it-ebooks.info

http://www.it-ebooks.info/

696 MANDELBROT SET FRACTAL ACCELERATOR

Listing 22.4

»define CX.REG 0
»define CY.REG 1
»define MAX.ITR.REG 2
»define FRAC.START.REG 3
»define ITR.DATA.REG 0
»define ITR.FIELD OxOOOOffff
»define FRAC.READY.BIT 0x00010000

int calc_frac_point_hard(alt_u32 frac.base, fixed428 ex, fixed428 cy,
alt_u!6 max.itr)

{
alt_u32 data;
int i t r ;

IOWR(frac_base, CX.REG, (a l t_u32) ex) ;
IOWR(frac_base, CY.REG, (a l t_u32) cy) ;
IOWR(frac_base, MAX.ITR.REG, (a l t_u32) m a x . i t r) ;
I0WR(frac.base, FRAC.START.REG, 0) ; / / write dummy to start operation
v h i l e U H

data-IORD(frac.base, ITR.DATA.REG);
i f (data k FRAC.READY.BIT) / / check 17th bit for ready signal

break;
}
i t r » data k ITR.FIELD; / / get 16-bit result
r e t u r n (i t r) ;

22.6.3 Fractal drawing routine

The fractal drawing routine is based on the pseudo code in Section 22.1.4. The
engine argument specifies whether the software routine or the hardware accelerator
is selected to perform the computation.

The DEI board supports 12-bit color depth. However, due to the memory con-
straint, the data width of our VGA controller is limited to 8 bits and the colors are
arranged in the form of τ$Τ2Τις^29ιύφ2, as discussed in Section 18.4. Thus only
28 colors can be selected for the fractal image. The routine uses the following color
function:

nnlrvr - / C b l a c k i f « = M

~ 1 Cp if n< M and p = n%28

Note that the n%28 operation corresponds to extract the 8 LSBs of n. We also
rearrange the color representation as &3&2r3r2ri<7302Si to make smoother color tran-
sitions. The code is shown in Listing 22.5.

Listing 22.5
void drau.fractal(alt_u32 vga.grf.base, alt_u32 frac.base, int engine,

fixed428 cxO, fixed428 cyO, fixed428 delta, int max.itr)
{
int i , j ;
int itr;
alt_u8 color;
fixed428 ex, cy;

cy = cyO;
for(j-0; j<FPIX; j++H

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 6 9 7

ex - cxO;
f o r (i = 0 ; i<FPIX; i++)<

/* calculate one point */
i f (engine»»0)

i t r = calc_f rac_point_sof t (ex , cy , max_i.tr);
e l s e

i t r « c a l c . f r a c _ p o i n t _ h a r d (f r a c . b a s e , ex, cy, max_itr);
/ * coloring scheme */
i f (i tr««max_itr)

color ■ 0x00; / / no escape; black
e l s e

color - (a l t_u8) ((0xd0 it i tr)>>6) + (a l t _ u 8) (i t r < < 2) ;
/* write a pixel on VGA */
vgag_wr_pix(vga_grf.base, i , 4 7 9 - j , c o l o r) ;
ex « ex + d e l t a ;

} / / end ¡or i
cy ■ cy + d e l t a ;

} / / end for j
}

22.6.4 Text panel display routines

The right text panel can be constructed with the bit-mapped text driver routines of
Section 18.6.4. We divide the text generation operation into two parts and create
two functions. The dispjmsgO function generates the fixed portion of the text
and the disp_param() function processes the parameter values, which are updated
according to mouse activities. The code is shown in Listing 22.6.

Listing 22.6

«define f 2 f (x) (x) * (l . 0 / (l < < 2 8)) / / convert Q4.28 to floating

void disp_msg(alt_u32 vg
{

char para_msg[] =
"PARAMETERS
"center x
"center y
"delta
"zoom
"max iter
"engine

char menu_msg[]=
"MENU:
"- load zoom level
"- load max iter
"- select engine
"- restore initial
"- start drawing

char help_msg[]»
"HELP:
"-left-click mouse
" to select menu
" or set center
"-use switch to set
" desired value

a.grf

\n"
\n"
\n"
\n"
\n"
\n"
\n»;

\n»
\n"
\n"
\n"
\n"
\n";

\n»
\n"
\n"
\n"
\n»
\n";

.base)

vgag_wr_bi t_s tr (vga .gr f .base , 485, 0, menu.msg, Oxff, 1);
vgag_wr_bi t_s tr (vga .gr f .base , 485, 16*10, para.msg, Oxff, 1);

www.it-ebooks.info

http://www.it-ebooks.info/

698 MANDELBROT SET FRACTAL ACCELERATOR

v g a g _ v r _ b i t _ s t r (v g a . g r f . b a s e , 485, 16*20, help.msg , Oxff, 1);

void disp.param(alt_u32 v g a . g r f . b a s e , fixed428 c x . c , fixed428 c y . c ,
fixed428 d e l t a , int zoom, int max . i t r , int engine)

{
char s[]-"123456789";
char erase [] - " \ x 7 f \ x 7 f \ x 7 f \ x 7 f \ x 7 f \ x 7 f \ x 7 f \ x 7 f \ x 7 f " ;
int x . o f f s e t - 485+8*10;
int yO » 11;
int i ;

/ * clear old field */
for (i - 0 ; i<6; i++)

v g a g . w r _ b i t . s t r (v g a . g r f . b a s e , x . o f f s e t , 16*(y0+i) , erase , 0x00, 1);
/ * draw new values */
s p r i n t f (s , "y.+2.6f", f 2 f (c x _ c)) ;
v g a g . w r . b i t . s t r (v g a . g r f . b a s e , x . o f f s e t , 16*y0, s , Oxff, 1);
s p r i n t f (s , "7.+2.6Í", f 2 f (c y _ c)) ;
v g a g . w r . b i t . s t r (v g a . g r f . b a s e , x . o f f s e t , 16*(y0+l) , s , Oxff,
s p r i n t f (s , "y.+2.6f", f 2 f (d e l t a)) ;
v g a g . w r . b i t . s t r (v g a . g r f . b a s e , x . o f f s e t , 16*(y0+2), s , Oxff,
s p r i n t f (s , "2*„d", zoom);
v g a g . w r . b i t . s t r (v g a . g r f . b a s e , x . o f f s e t , 16*(y0+3), s , Oxff,
s p r i n t f (s , "Xd" , m a x . i t r) ;
v g a g . w r . b i t . s t r (v g a . g r f . b a s e , x . o f f s e t , 16*(y0+4), s , Oxff,
s p r i n t f (s , "7.d" , engine) ;
v g a g . w r . b i t . s t r (v g a . g r f . b a s e , x . o f f s e t , 16*(y0+5), s , Oxff,

The disp-msg() function simply writes three text strings to specific locations. The
disp-paramO function first erases the old values with the special 0x7f character
and then forms new strings using the sprintf () function and writes the strings to
the designated locations.

22.6.5 Mouse processing routine

The fractal user interface is controlled by a mouse. The proc_mouse() function
monitors the mouse activities and updates the parameters as needed. It exits when
the "start drawing" item of the menu is selected. The code is shown in Listing 22.7.

Listing 22.7
void proc.mouse(alt_u32 vga.grf.base, alt_u32 ps2_base, alt_u32 sw.base,

fixed428 *cx0, fixed428 *cy0, fixed428 »delta,
int »max.itr, int »engine)

alt_u32 sw;
/* fractal related variables */
s t a t i c int zoom - 0;
s t a t i c int mitr = 30;
s t a t i c fixed428 cx.c - Oxf8000000; / / center of ex axis
s t a t i c fixed428 cy.c = 0x00000000; / / center of cy axis
fixed428 cx .c .new, cy .c .new, d e l t a . o l d , del ta .new;
/* mouse pointer related variables */
s t a t i c int px ■ 240; / / x coordinate of mouse
s t a t i c int py - 240; / / y coordinate of mouse
int ac t , px.new, py.new;
mouse.mv.type mv;
/* mouse pointer pixel buffer */

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING PROGRAM 6 9 9

s t a t i c alt_u8 bdata [20*12];
bmp.type below={12, 20, bdata};

d e l t a . o l d = (WD/480) >> zoom; //delta of current graph
delta.new = d e l t a . o l d ; / / for panel display
cx_c_new - c i . c ;
cy_c_new = cy_c ;

/ * draw initial pointer */
ps2_ f lush . f i f o (ps2_base) ;
vrag.init.mouse.ptr(vga.grf.base,ps2_base,px,py,ftMOUSE.BMP,ftbelow);
/* processing mouse activities */
while (l) i

act · vrag_move_mouse_ptr(vga.grf.base, ps2_base,
px, py, ftbelow , ftpx.new, ftpy.new, tHOUSE.BMP, ftmv);

if (a c t H
px " px.new;
py " py.new;
i f (m v . l b t n) { /* left button pressed */

sw-IORD_ALTERA_AVALON_PIO_DATA(sw_base);
/ * update parameters according to mouse pointer position */
i f (px<480){ / / in drawing area,

/* set new center of drawing */
cx_c_new » cx_c + de l ta_o ld*(px-240) ;
cy_c_new - cy_c + de l ta_o ld*(240-py) ;
printf ("center :('/.+2.6f, 5C+2.6Í) \ n " ,

f 2 f (c x . c . n e w) , f 2 f (c y . c . n e w)) ;
}
i f (px>480 ftft 16<»py ftft py<32){ / / in "load zoom" area

i f (sw>20)
sw ■ 20;

zoom » sw;
delta.new » (WD/480)>>zoom;
printf("zoom fac tor : Xd (2~%d)\n", K<zoom, zoom);

}
i f (px>480 ftft 32<-py ftft py<48){ / / in "load max.itr" area

mitr - (sw ft 0x000003ff)*10;
i f (mitr>4095)

mitr=4095;
printf ("max i t e r a t i o n : */.d\n" , mi tr) ;

}
i f (px>480 ftft 48<-py ftft py<64){ / / in "select engine" area

»engine ■ sw ft 0x00000001;
printf ("engine #: V.d\n", »engine);

}
i f (px>480 ftft 64<»py ftft py<80){ / / in "restore initial" area

«engine » 0;
zoom « 0;
delta.new - (WD/480) >> zoom;
mitr » 30;
cx.c.new - Oxf8000000; / / -0.5 in Q4-28
cy_c_new - 0x00000000; / / 0.0 in Q4-28

}
i f (px>480 ftft 80<»py ftft py<96){ / / in "start drawing" area

p r i n t f (" s t a r t drawing\n\n");
break;

}
disp_param(vga_grf.base, cx .c .new, cy .c .new, de l ta .new,

zoom, mitr , «engine) ;
} / / end if (mv. Ibtn)

} // end if (act)

www.it-ebooks.info

http://www.it-ebooks.info/

700 MANDELBROT SET FRACTAL ACCELERATOR

} / / end while
/* update fractal parameters */
cx_c ■ cx_c_new;
cy_c ■ cy_c_new;
»delta ■ d e l t a . n e v ;
*max_itr » mitr;
»cxO - c i . c .new - delta_new*240;
cy0 » cy_c_neu - delta_new(479-240);
/ / restore image below mouse
vgag_wr_bitmap(vga.grf_base, px, py, febelow, 0) ;

The main part of the function is the infinite while loop and a collection of static
variables that keep track of various parameters. The loop monitors the mouse activ-
ities and continuously updates the mouse pointer's locations. When the left button
is pressed, it determines the region that the pointer resides and acts accordingly. If
the pointer is in the left graphic area, the center of the new fractal is calculated. If
it is in the action menu region, the corresponding parameter is updated. The loop
exits when the "start drawing" item of the menu is selected. The function then
calculates the relevant parameters and passes them to the calling function.

22.6.6 Main program

The code of the main program is shown in Listing 22.8. It first initializes various
components and draws the basic top-level fractal and then enters an infinite loop.
Within the loop, procjnouseO monitors the mouse activities and obtains the rel-
evant parameters. When a user select the "start drawing" command, the function
exits and draw_fractal() draws the complete fractal on the VGA screen.

Listing 22.8
int main(void)
{
fixed428 cxO = OxeOOOOOOO; // -2 in Q4-28
fixed428 cyO - 0xe8000000; // -1.5 in Q4.28
fixed428 delta = WD/FPIX;
int max_itr » 30;
int engine · 0;
alt_u8 frac_msg[4]»{sseg_conv_hex (15), 0x2f, 0x27, sseg_conv_hex (1)};

sseg_disp_ptn(SSEG_BASE, frac.msg); // show "Frei" for Fractal
printf("Fractal test \n\n");
vga_clr_«creen(VRAM_BASE,0);
disp_msg(VRAM_BASE);
disp_param(VRAM_BASE, cx0+240*delta, cy0+240*delta, delta,

0, max.itr, engine);
draw.fractal(VRAM_BASE, 0, engine, cxO, cyO, delta, max.itr);
mouse.init(PS2_BASE);
while (1){
proc_mouse(VRAM_BASE, PS2.BASE , SWITCH.BASE ,

fecxO, tcyO , ¿delta, fcmax.itr, ¿engine);
draw_fractal(VRAM_BASE, F.ENGINE.BASE, engine,

cxO, cyO, delta, max.itr);
}

}

www.it-ebooks.info

http://www.it-ebooks.info/

DISCUSSION 701

22.7 DISCUSSION

The fractal drawing system is a representative embedded SoPC application. The
core of the algorithm is computation intensive. A custom hardware accelerator can
be used to perform the main computation and a relatively slow processor can be
used to handle the remaining housekeeping tasks, such as the user interface and
video control.

The design in this chapter uses a hardware engine to determine the escape itera-
tions. The engine consists of hardware multipliers and adders to perform the main
computation within the loop body of the calc_f r a c p o i n t 0 routine:

xx - x * x;
yy = y * y;
xy = x * y;
y « x2 - y2 + ex;
x = xy*2 + cy;
i tr++;

The operation is performed in parallel and completed within a single clock cycle.
By selecting a hardware or software engine in the testing program, we can visually
observe the effect of acceleration. The speedup is due to concurrent computation
and the elimination of overhead associated with processor execution, as discussed
in Section 21.7.

It is very difficult to further improve the performance of the calc_f r a c p o i n t ()
routine. However, since the fractal drawing is required to calculate the escaped it-
erations for tens of thousands pixels, this application exhibits a significant amount
of "inherent parallelism." Multiple engines can be instantiated to work on multiple
pixels concurrently. The number of engines is limited by the number of embedded
multipliers within an FPGA device. Large modern FPGA devices contain hun-
dreds of multipliers and thus can further speed the operation by several orders of
magnitude.

For simplicity and clarity, a fixed-point format is used in our computation. This
format has less precision when the value is small and the error can be accumulated
through iterations. The resulting fractal image may show some "random" color dots
and this effect becomes more noticeable when the range of the plot is small. The
floating-point format can provide a much better result and leads to "smoother" im-
ages. Constructing a floating-point adder and multiplier is much more difficult and
requires more resources. However, with proper design technique, such as pipelin-
ing, we can still obtain a hardware accelerator with good performance. On the
other hand, since the Nios II processor does not have a floating-point unit, the
floating-point addition and multiplication will be implemented by software func-
tions. This will introduce a large overhead and further degrade the performance of
a software-based drawing routine.

22.8 BIBLIOGRAPHIC NOTES

A general overview and discussion of the Mandelbrot set can be found on the
Wikipedia website.

www.it-ebooks.info

http://www.it-ebooks.info/

702 MANDELBROT SET FRACTAL ACCELERATOR

22.9 SUGGESTED EXPERIMENTS

22.9.1 Hardware accelerator with one multiplier

Three 32-bit combinational multipliers are needed to perform three multiplications
in the hardware accelerator in Section 22.4.1. An alternative is to use one multiplier
and distribute the three multiplications over three clock cycles (i.e., three states in
FSMD). Modify the FSMD, resynthesize the design, and verify its operation.

22.9.2 Hardware accelerator with modified escape condition

The main computation of a Mandelbrot set iteration involves x2 — y2 and x * y,
which are realized by three multiplications, x * x, y * y, and x * y, in our design.
An alternative to reduce the number of multiplications is to calculate the x2 —
y2 expression with (x + y) * (x — y), which requires a single multiplication. To
accommodate this scheme, the escape condition can be changed from x2 + y2 < 4
to \x\ + \y\ < 4. Modify the FSMD with the new algorithm, resynthesize the design,
and verify its operation.

22.9.3 Hardware accelerator with Q4.12 format

To reduce the size of the combinational multiplier, we can use Q4.12 format, which
only requires 16-bit combinational multipliers. Redesign the hardware accelerator
using this format, resynthesize the circuit, and compare the fractal image with the
original Q4.28 format. Examine the synthesis report to compare the number of
embedded multipliers used in the two formats.

22.9.4 Hardware accelerator with multiple fractal engines

Follow the discussion in Section 22.7 and instantiate multiple "fractal engines" to
calculate the escape iterations of multiple pixels. Since the EPC2C20 device on
a DEI board only has a limited number of multipliers, the Q4.12 format should
be used for the engine. Examine the synthesis report to determine the usage of
embedded multipliers and instantiate as many fractal engines as possible. Redesign
the hardware accelerator and the corresponding software routines. Resynthesize
the system and observe its performance.

22.9.5 "Burning-ship" fractal

A different fractal image can be obtained by modifying the original Mandelbrot
iteration equation:

(x υ) = ((0 ' 0) i f n = 0

v n, ynj χ (χ2_ι _ y2_x + Cxj 2 * \χη_χ * y ^ + Cy) otherwise
The image looks like a ship on fire and thus is known as a "burning-ship" fractal.
Modify the hardware accelerator and software routines for the new fractal and verify
the operation.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED PROJECTS 703

22.9.6 Enhanced testing program

Several additional features can be added to the testing program:
• Add a new software "engine" that uses a floating-point data type to implement

the calc_frac_point() routine.
• Add a status item that shows the speedup of the hardware accelerator over

the software routine.
• Include multiple coloring schemes and add this to the menu selection.
• Modify the mouse interface to allow the user to press and drag the mouse

pointer to select the new drawing area.
Implement one or more of the features.

22.10 SUGGESTED PROJECTS

22.10.1 Floating-point hardware accelerator

IEEE 754 Standard defines the format for single-precision (32 bits) and double-
precession (64 bits) floating-point representations. Design a floating-point adder
and a floating-point multiplier that conform to the standard and redesign the fractal
hardware accelerator using the floating-point format.

22.10.2 General fractal drawing platform

A free online book, titled Strange Attractors: Creating Patterns in Chaos by Julien
C. Sprott, describes a method of generating fractal patterns from a class of itera-
tion equations. Develop an embedded system to generate and display the images.
The system should include a hardware accelerator to support the key computa-
tion needed and a keyboard and VGA user interface for entering commands and
displaying the resulting image.

www.it-ebooks.info

http://www.it-ebooks.info/

7 0 4 MANDELBROT SET FRACTAL ACCELERATOR

22.11 COMPLETE PROGRAM LISTING

Lis t ing 2 2 . 9 chu-mainJrac.test.c

/***********»***»»*****************«************************************
*
* Module: Fractal function prototypes and main
* File: chu.main-frac-test. c
* Purpose: software— and hardware—accelerator —based fractal routines
* IP core base addresses:
* - SSEG-BASE: 7-segment LED display
* - VRAM-BASE: video SRAM
* - PS2.BASE: PS2 controller
* - SWITCH-BASE: slide switch
* - F-ENGINEJ3ASE: fractal hardware accelerator engine
*
**
* Register map
« « H e *

* Write (data from cpu):
* offset 0
* * bits 31 — 0: ex
* offset 1
* *bits31 — 0:cy
* offs et 2
* * bits 15—0: maximal iterations
* offs et 3
* * dummy data to start operation
* Read (data to cpu):
* offset 0
* * bit 16: 1—bit ready signal
* * bits 15 — 0: 16—bit iteration value
* « « « « « « « « « * « « « « « « « « « * « « « « « « * « * /
/ * file inclusion */
/ * General C library */
» i n c l u d e < s t d i o . h >
» i n c l u d e < u n i s t d . h >
/ * Altera —specific library */
» i n c l u d e " s y s t e m . h "
• i n c l u d e " c h u _ a v a l o n _ g p i o . h "
» i n c l u d e " c h u _ a v a l o n _ v g a . h "
» i n c l u d e " c h u _ a v a l o n _ p s 2 . h "

/ * data type definition */
t y p e d e f a l t _ 3 2 f i x e d 4 2 8 ; / / define 32-bit Q4.28 fixed data type
t y p e d e f a l t _ 6 4 f i x e d 8 5 6 ; / / define 64-bit Q8.56 fixed data type

/* macro definition */
« d e f i n e f 2 f (x) (x) * (l . 0 / (l < < 2 8)) / / convert Q4.28 to floating

/* address and field definition */
» d e f i n e CX.REG 0
« d e f i n e CY.REG i
» d e f i n e MAX.ITR.REG 2
» d e f i n e FRAC.START.REG 3
» d e f i n e ITR.DATA.REG 0
» d e f i n e ITR.FIELD OxOOOOffff
» d e f i n e FRAC_READY_BIT 0x00010000

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 7 0 5

/ * constant definition */
»def ine WD (0x30000000) / / width of initial fractal: +3 in Q4.28
»def ine FPIX 480 / / # pixels in each axis in fractal

/* 12— row— by—20— column 8— bit —color mouse pointer bitmap array */
a l t_u8 MOUSE.DATAC]-

{
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
};

0x00,
Oxf f ,
Oxf f ,
Oxf f ,
Oxf f ,
Oxf f ,
Oxf f ,
Oxf f ,
Oxf f ,
Oxff ,
Oxf f ,
Oxff ,
Oxff ,
Oxff ,
Oxff ,
Oxff ,
0x00,
0x00,
0x00,
0x00,

0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x00,
0x00,
0x00,
0x00,
0x00,

0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x92,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,

0x00
0x00
0x00
0x00
Ox6d
0x92
0x92
0x92
0x92
0x92
0x92
0x92
0x6d
0x00
0x00
0x00
0x00
0x00
0x00
0x00

/ * 2—row—by—20—column 8— bit — color mouse pointer bitmap data structure */
bmp.type MOUSE_BMP-{

12, / / width
20, / / height
MOUSE.DATA / / bitmap array

} ;

, 0x00,
, 0x00,
, 0x00,
, 0x00,
, 0x00,
, 0x6d,
, 0x92,
, 0x92,
, 0x92,
, 0x92,
, 0x92,
, 0x92,
, 0x92,
, 0x6d,
, 0x6d,
, 0x00,
, 0x00,
, 0x00,
, 0x00,
, 0x00 ,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x6d,
0x92,
0x92,
0x92,
0x6d,
0x6d,
0x00,
0x00,
0x00,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x92,
0x6d,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x6d,
Ox6d,
0x00,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x92,
0x6d,
0x00,
Ox6d,
0x6d,
0x92,
0x92,
0x92,
0x92,
0x6d,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x92,
0x6d,
0x00,
0x00,
0x00,
0x6d,
0x6d,
0x92,
0x92,
Ox6d,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x6d,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x6d,
0x00,

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x6d,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

www.it-ebooks.info

http://www.it-ebooks.info/

706 MANDELBROT SET FRACTAL ACCELERATOR

/* **
* function: cale.frac.point.soft ()
* purpose: calculate one fractal point with Q4-28 fixed—point data type
* argument:
* ex, cy: ex and cy values in Q4-28
* max.itr: max number of iterations
* return: # iteration when escape condition reached
* note: return max.itr if sequence not diverge
***/
int c a l c . f r a c _ p o i n t _ s o f t (f i x e d 4 2 8 ex, fixed428 cy, a l t_u l6 max. i tr)
{
fixed428 x, y, xx, yy, xy2;
fixed856 n.raw, yy_raw, xy_raw;
int itr;

x = ex;
y - cy;
i t r ■ 0;
do {

/ * Q4-28 multiplications * /
xx.raw = (f i xed856) (x) * (f i x e d 8 5 6) (x) ;
xx - (f ixed428)(xx_raw » 28);
yy.raw - (f i xed856) (y) * (f i x e d 8 5 6) (y) ;
yy - (f ixed428)(yy_raw >> 28);
xy.raw - (f i xed856) (x) * (f i x e d 8 5 6) (y) ;
xy2 ■ (f ixed428) (xy.raw >> 27); / / 2* is same as «1
/ * iteration equation */
x = xx - yy + ex;
y - xy2 + cy ;
itr++;;

} while (((xx+yy)<0x40000000) kk (itr<max_itr));
return(itr);

}

/ t t t t t - t t t ^ t *

* function : cale.frac.point.hard ()
* purpose: calculate one fractal point with hardware accelerator
* argument:
* frac.base: base address of fractal engine
* ex, cy: ex and cy values in Q4-28
* max.itr: max number of iterations
* return: # iteration when escape condition reached
* note: return max.itr if sequence not diverge
***/
int ca lc . frac_point_hard(a l t_u32 frac_base , fixed428 ex, fixed428 cy,

a l t_u l6 max. i tr)
{ alt_u32 data;

int i t r ;

I0WR(frac_base , CX.REG , (a l t_u32) e x) ;
I0WR(frac_base , CY.REG , (a l t_u32) c y) ;
I0WR(frac_base , MAX_ITR_REG, (a l t_u32) m a x . i t r) ;
I0WR(frac.base, FRAC.START.REG, 0) ; / / write dummy to start operation
w h i l e U H

data-I0RD(frac.base , ITR.DATA.REG);
if (da t a k FRAC.READY.BIT) / / check 17th bit for ready signal

break;
}
i t r - data k ITR.FIELD; / / get 16-bit result
r e t u r n (i t r) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 7 0 7

/* **
* function: draw.fractal ()
* purpose: draw fractal graphic
* argument:
* vga.base: base address of VGA video ram
* frac.base: base address of fractal engine
* engine: engine to do computation (0 for software; 1 for accelerator)
* cxO: initial ex value in Q4-28 (left bottom point in cx—cy plane)
* cyO: initial cy value in Q4-28 (left bottom point in cx—cy plane)
* delta: value between two successive points in fractal in Q4-28
* max.itr: max number of iterations
* return:
* note:
********************************** ****** *********** ********************/
void draw_fractal(alt_u32 vga.base, alt_u32 frac_base, int engine,

fixed428 cxO, fixed428 cyO, fixed428 delta, int max.itr)
{
int i, j ;
int itr;
alt_u8 color;
fixed428 ex, cy;

for(j=0;'j<FPIX; j++){
ex - cxO!
for(i=0; i<FPIX; i++){
/* calculate one point */
if (engine«»0)
itr ■ calc.frac.point.soft(ex, cy, max.itr);

else
itr ■ calc.frac_point_hard(frac_base, ex, cy, max.itr);

/* coloring scheme */
if (itr-=max_itr)

color « 0x00; // no escape; black
else

color = (alt_u8)((OxdO fe itr)>>6) + (alt_u8)(itr<<2) ;
/* write a pixel on VGA */
vga.wr.pix(vga.base, i, 479-j, color);
ex » ex + delta;

} // end for i
cy » cy + delta;

} // end for j
y

www.it-ebooks.info

http://www.it-ebooks.info/

708 MANDELBROT SET FRACTAL ACCELERATOR

* function: disp.msg ()
* purpose: display message on right panel of VGA
* argument:
* vga.base: base address of VGA video ram
* return:
* note:
********»«»,*»»,»**»****,***************,»,****,«****,*******,**«**»***/
void disp_msg(alt_u32 vga.base)
{

char help.msg[]=
"HELP:
"-left-click mouse
" to select menu
" or set center
"-use switch to set
" desired value

char para.msg []-
"PARAMETERS
"center x
"center y
"delta
"zoom
"max iter
"engine

char menu.msg [] =
"MENU:
"- load zoom level
"- load max iter
"- select engine
"- restore initial
"- start < irawing

\n»
\n"
\n»
\n»
\n"
\n»;

\n»
\n"
\n"
\n"
\n"
\n"
\n";

\n»
\n"
\n"
\n"
\n"
\n";

}

v g a . u r . b i t . s t r (v g a . b a s e , 485, 0, menu.msg, Oxff, 1);
v g a _ w r . b i t . s t r (v g a . b a s e , 485, 16*10, para.msg, Oxff, 1);
v g a . w r . b i t . s t r (v g a . b a s e , 485, 16*20, help.msg, Oxff, 1) ;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 7 0 9

/***
* function: disp.param()
* purpose: display parameter values on right panel of VGA
* argument:
* vga.base: base address of VGA video ram
* cx.c: center ex value in Q4-28 (center of cx—cy plane)
* cy.c: center cy value in Q4-28 (center of cx—cy plane)
* delta: value between two successive points in fractal in Q4-28
* zoom: zoom factor
* max.itr: max number of iterations
* engine: engine used (0 ¡or software; 1 for accelerator)
* return:
* note:
***/
void disp_param(alt_u32 vga.base, fixed428 cx.c, fixed428 cy_c,

fixed428 delta, int zoom, int max.itr, int engine)
{

char s[]="123456789";
char erase[]= "\x7f\x7f\x7f\x7f\x7f\x7f\x7f\x7f\x7f";
int x.offset - 485+8*10;
int yO = 11;
int i;

16*y0, s, Oxff, 1);

/* clear old field */
for (i«0; i<6; i++)

vga_wr_bit_str(vga.base, x.offset, 16*(y0+i), erase, 0x00, 1);
/* draw new values */
sprintf(s, "7,+2.6f", f2f(cx_c));
vga.wr.bit.str(vga.base, x.offset,
sprintf(s, "7.+2.6f", f2f(cy_c));
vga.wr.bit.str(vga.base, x.offset,
sprintf(s, "7.+2.6f", f2f(delta));
vga.wr.bit.str(vga.base, x.offset,
sprintf(s, "2-%d", zoom);
vga.wr.bit.str(vga.base, x.offset,
sprintf(s, n7.d", max.itr);
vga.wr.bit.str(vga.base, x.offset,
sprintf(s, "*/.d" , engine);
vga.wr.bit.str(vga.base, x.offset,

1 6 * (y 0 + l) ,

1 6 « (y 0 + 2) ,

1 6 * (y 0 + 3) ,

1 6 * (y 0 + 4) ,

1 6 * (y 0 + 5) ,

s ,

s ,

s ,

s ,

s ,

Oxff , 1)

Oxff , 1)

Oxff , 1)

Oxff , 1)

Oxff , 1)

www.it-ebooks.info

http://www.it-ebooks.info/

710 MANDELBROT SET FRACTAL ACCELERATOR

A**»**»*»,»*»** ,***************************»*************** ,»**«*«*****
* function: vga.init.mouse-ptr()
* purpose: initialize the mouse pointer by writing pointer bitmap
* at (x,y) and saving the underlying pixels in below buffer
* argument:
* vga-base: base address of VGA video ram
* ps2.base: base address of PS2 device
* x: x—axis coordinate , 10 LSBs used
* y: y—axis coordinate, 9 LSBs used
* mouse: pointer to mouse pointer bitmap
* below: pointer to the buffer storing pixels below mouse pointer
* return:
* underlying pixels at (x,y) are stored into bellow buffer
* note:
* - the calling function must allocate memory for "below" buffer

void vga_ in i t _mouse_p t r (a l t _u32 v g a . b a s e , a l t_u32 ps2_base ,
i n t x, i n t y , bmp.type »mouse, bmp_type »below)

{
/ * read hidden pixels */
vga_rd_bi tmap(vga_base , x , y , be low);
/ * draw initial pointer */
vga_wr_bitmap(vga_base, x , y , mouse, 1)¡

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 7 1 1

/* **
* function: vga.move.mouse-ptr ()
* purpose: move the mouse pointer by writing pointer bitmap

to a neiu coordinate
* argument:
* vga.base: base address of VGA video ram
* ps2-base: base address of PS2 device
* xold: current x—axis coordinate , 10 LSBs used
* yold: current y—axis coordinate , 9 LSBs used
* below: pointer to the buffer storing pixels below mouse pointer
* xneui.· current x—axis coordinate , 10 LSBs used
* ynew: current y—axis coordinate , 9 LSBs used
* mouse: pointer to mouse pointer bitmap
* mv: pointer to mouse activity data
* return:
* — 1 if mouse has activities ; 0 otherwise
* — new mouse pointer coordinates: xnew, ynew
* — mouse activity data: mv
* — underlying pixels at (xnew,ynew) are stored into below buffer
* note:
* — the calling function must allocate memory for "below" buffer

int vga_move_mouse_ptr(alt_u32 vga .base , alt_u32 ps2_base,
int xold , int yo ld , bmp.type »below, int «xnew, int »ynew,
bmp_type «mouse, mouse_mv_type *mv)

{
i f (mouse_get_act iv i ty(ps2_base , mv)»«0) / / no movement

return(0) ;
/ * calculate new mouse pointer position */
»xnew « xold + mv->xmov;
if (»xnew > (639 - mouse->width))

»xnew » 639- mouse->width;
i f (*xnew<0)

*xnew=0;
»ynew - yold - mv->ymov; / / VGA y—axis goes downward
i f (*ynew>(479 - mouse->height))

»ynew ■ 479 - mouse->height;
i f (*ynew<0)

*ynew«0;
/ * draw the updated mouse pointer, restore "under" area */
vga_move_bitmap(vga.base, xold , yold , below, »xnew, »ynew, mouse);
return (1) ;

www.it-ebooks.info

http://www.it-ebooks.info/

712 MANDELBROT SET FRACTAL ACCELERATOR

/* **
* function : proc.mouse ()
* purpose: process mouse activities
* argument:
* vga-base: base address of VGA video ram
* ps2-base: base address of PSS mouse
* sw.base: base address of switches
* btn.base: base address of push buttons
* *cxO: initial ex value in Q4.Z8 (left bottom point in cx—cy plane)
* *cyO: initial cy value in Q4-S8 (left bottom point in cx—cy plane)
* *delta: value between two successive points in fractal in Q4-28
* *max.itr: max number of iterations
* * engine: engine used (0 for software; 1 for accelerator)
* return:
* update values of cxO, cyO, delta, max-itr, engine
* note:
* — function exits when clicking on "start drawing"
***/
void proc.mouse(alt_u32 vga.base , alt_u32 ps2_base, alt_u32 sw.base,

fixed428 »cxO, fixed428 *cyO, fixed428 » d e l t a ,
int »max. i tr , int «engine)

{
alt_u32 sw;
/ * fractal related variables */
s t a t i c int zoom = 0;
s t a t i c int mitr = 30;
s t a t i c fixed428 cx_c ■ Oxf8000000; / / center of ex axis
s t a t i c fixed428 cy_c - 0x00000000; / / center of cy axis
fixed428 cx_c_new, cy_c_new, d e l t a . o l d , delta_new;
/ * mouse pointer related variables */
s t a t i c int px - 240; / / x coordinate of mouse
s t a t i c int py - 240; / / y coordinate of mouse
int ac t , px.new, py.new;
mouse_mv_type mv;
/ * mouse pointer pixel buffer */
s t a t i c alt_u8 bdata [20*12];
bmp.type below={12, 20, bdata};

d e l t a . o l d = (WD/480) >> zoom; //delta of current graph
delta.new - d e l t a . o l d ; / / for panel display
cx_c_neu = cx_c ;
cy_c_new = cy_c ;

/ * draw initial pointer */
p s 2 _ f l u s h . f i f o (p s 2 _ b a s e) ;
vga_init_mouse_ptr(vga.base , ps2_base, px, py,JtMOUSE_BMP, febelow);

while (1){
act » vga_move_mouse_ptr(vga.base, ps2_base, px, py, febelow,

tpx.new, tpy.new, tMOUSE.BMP, ftmv);
i f (a c t) {

px - px.new;
py = py.new;
i f (m v . l b t n) { / * left button pressed */
sw · pio_read(sw_base);

/ * update parameters according to mouse pointer position */
if (px<480){ / / in drawing area,

/* set new center of drawing */
cx_c_new ■ cx_c + de l ta_o ld*(px-240) ;
cy_c_new = cy_c + de l ta_o ld*(240-py) ;
printf ("center : (7.+2.6Í, y.+2.6f) \n" ,

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 7 1 3

f 2 f (c x c .new), f 2 f (cy_c_nev)) ;
}
i f (px>480 kk 16<-py kk py<32){ / / in "load zoom" area

i f (sv>20)
sw » 20;

zoom = sw¡
delta_new » (WD/480)>>zoom;
printfC'zoom fac tor : Xd (2"%d)\n", K<zoom, zoom);

}
i f (px>480 kk 32<»py kk py<48){ / / in "load max.itr" area

mitr = (sw k 0x000003ff)*10;
i f (mitr>4095)

mitr=4095;
printf("max i t e r a t i o n : Xd\n", mi tr) ;

}
i f (px>480 kk 48<=py kk py<64){ / / in "select engine" area

»engine - sw k 0x00000001;
printf (" engine #: */.d\n", «engine) ;

}
i f (px>480 kk 64<»py kk py<80){ / / in "restore initial" area

»engine = 0;
zoom ■ 0;
delta.new - (WD/480) >> zoom;
mitr - 30;
ex.c.new = Oxf8000000; / / -0.5 in Q4.28
cy.c.new - 0x00000000; / / 0.0 in Q4.28

}
i f (px>480 kk 80<»py kk py<96){ / / ¿n "start drawing" area

p r i n t f (" s t a r t drawing\n\n");
break;

}
disp_param(vga_base, cx .c .new, cy .c .new, de l ta .new,

zoom, mitr , »engine) ;
} / / end if (mv. Ibtn)

} / / end if (act)
} / / end while
/* update fractal parameters */
cx.c » cx.c .new;
cy.c = cy.c .new;
«delta = delta .new;
»max.itr · mitr;
«cxO » cx.c.new - delta_new*240;
»cyO = cy.c.new - delta_new*(479-240) ;
/ / restore image below mouse
vga.wr.bitmap(vga.base, px, py, ¿below, 0) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

714 MANDELBROT SET FRACTAL ACCELERATOR

* function: main()
* purpose: Draw fractal on VGA screen with mouse/switch interface
* note:

int main(void)
{
fixed428 cxO - OxeOOOOOOO; // -2 in Q4-28
fixed428 cyO - 0xe8000000; // -1.5 in Q4.28
fixed428 delta - WD/FPIX;
int max.ltr · 30;
int engine ■ 0;
alt_u8 frac.msg[4]={sseg.conv.hex(15), 0x2f, 0x27, sseg_conv_hex(1)};

sseg_disp_ptn(SSEG_BASE, frac.msg); // show "Frei" for Fractal
printf("Fractal test \n\n");
vga_clr_screen(VRAM_BASE,0);
disp.msg(VRAM.BASE);
disp_param(VRAM_BASE, cx0+240»delta, cy0+240*delta, delta,

0, max.itr, engine);
draw_fractal(VRAM.BASE, 0, engine, cxO, cyO, delta, max.itr);
mouse.init(PS2.BASE) ;
while (1){
proc.mouse(VRAM.BASE, PS2.BASE, SWITCH.BASE ,

ftcxO, fccyO, ¿delta, femax.itr, ¿engine);
draw.fractal(VRAM.BASE, F.ENGINE.BASE, engine,

cxO, cyO, delta, max.itr);
}

}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23

DIRECT DIGITAL FREQUENCY SYNTHESIS

DDFS (direct digital frequency synthesis) is a scheme that uses digital circuits and
a DAC to generate tunable analog waveforms from a single fixed clock source.
In this chapter, we implement this scheme and treat this circuit as a specialized
Nios II peripheral. Since only the audio-frequency DACs (within the WM8731
codec device) are available on a DEI board, we use the DDFS circuit as a sound
and music synthesizer.

23.1 INTRODUCTION

Many communication-related applications need to generate a waveform of specific
frequency and phase. DDFS is a method of producing a frequency- and phase-
tunable digital or analog waveforms from a single fixed clock source. The data points
of the waveform are first generated in digital format and then converted to analog
format by using a DAC and a low-pass filter. Since the operations within a DDFS
circuit are primarily digital, it can offer fast switching among output frequencies,
fine frequency resolution, and operation over a wide range of frequencies.

23.2 DESIGN AND IMPLEMENTATION

The DDFS scheme can be used to generate a variety of waveforms. In this section,
we examine the synthesis and implementation of three types of waveforms:

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 715
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

716 DIRECT DIGITAL FREQUENCY SYNTHESIS

P
few

+ -T d q
.phase
> reg

MSB of q

Figure 23.1 Block diagram for synthesizing digital waveform.

• Digital waveform, which is a square wave with constant amplitude.
• Unmodulated analog waveform, typically a sinusoidal waveform.
• Modulated analog waveform, in which the phase, frequency, and amplitude

of the output signal can be controlled by another signal.
Once understanding the basic implementation, we can derive HDL codes accord-
ingly.

23.2.1 Direct synthesis of a digital waveform

To synthesize a digital waveform, the DDFS scheme requires a register, which is
known as the phase register or phase accumulator, and an adder, as shown in
Figure 23.1. The output of the circuit is the MSB of the register. It is a square
wave with the designated frequency and the duty cycle is close to 50%. The input
is the few (for frequency control word) signal, which controls the frequency of the
output signal. The value of few is added to the phase register in every clock cycle.

To explain the operation of this scheme, let us first define the relevant parame-
ters:

N: width (i.e., number of bits) of the register and adder.
s and Tays: frequency and period of the system clock.

fout and Tout: frequency and period of the output signal.
M: the value of few.

This system works as follows. For the phase register, its value starts from 0 and
gradually increments to 2^ — 1 and then wraps around. If we observe the MSB
of the register in the process, it starts as 0, changes to 1 when the phase register
reaches halfway of 2N — 1, and then returns to 0 and repeats when the phase register
wraps around. The duration of incrementing from 0 to 2N — 1 can be considered
one period of the MSB (i.e., Tout). Since M is added to the phase register each
time, it requires η^ additions to complete one circulation and the corresponding
duration is ¡̂j- * Tsya; i.e.,

'out — M
* 2N * T. sys

The equation can be rewritten in terms of frequencies:

fout=M*^

The £j$r term can be considered the "resolution" of a DDFS system. As N in-
creases, finer frequency can be obtained accordingly. The typical width of N is

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN AND IMPLEMENTATION 7 1 7

digital implementatioi 1

1 ; N u

* '

+ X
N

d q
phase

> reg

/..
V 's'

phase to |
amplitude j

. lookup !
> table !

analog implementation

DAC —w
low
pass -
filter

few

Figure 23.2 Block diagram for synthesizing analog waveform.

between 24 and 48 bits.
desired frequency:

Clearly, we can set M to a proper value to obtain the

= -.— * 2
u sya

The value of M must be rounded to a whole integer. The rounding error may
introduce a small variation in Tout and the effect is known as jitter.

23.2.2 Direct synthesis of an unmodulated analog waveform

Assume the N bits of the phase register are PN-\PN-2 •·Ρο· The digital waveform
uses the MSB, PN-Í, as the output. If we ignore the small jitter, it is a square wave
with one half 0 and one half 1, each lasting Qj*-. The PN-I bit essentially divides
Tout into two equal regions. The second MSB, pjv-2, switches twice faster than
PN-I- If we consider the pjv-i and PN-2 bits together, they divide Tout into four
equal regions. We can continue the process and divide Tout to smaller and smaller
regions. The regions are commonly referred to as phases of the period and this is
the reason that the register is known as a phase register.

We can generate an unmodulated analog waveform by mapping phases to digi-
tized amplitude points and then converting the value to analog format by a DAC.
The conceptual diagram is shown in Figure 23.2. The phase-to-amplitude lookup
table performs the mapping and can be implemented by a ROM or RAM. The
DAC converts a digitized amplitude value to an analog value and the low-pass filter
removes unwanted high-frequency signals. The "shape" of an analog waveform is
determined by the values loaded to the lookup table and thus the DDFS scheme
can generate any type of analog waveform. The sinusoidal waveform is used in most
applications.

It is neither practical nor necessary to use all N bits for the lookup table. We
usually use 8 to 10 MSBs from the ΛΓ-bit phase register output. It is labeled S in the
diagram. For example, to use an 8-bit (i.e., 28 entries) lookup table to implement
the sinusoidal function, we can divide one period into 256 equally spaced points,
obtain the corresponding values, and load them into the lookup table. During the
DDFS operation, the lookup table is swept every Tout seconds and the corresponding
output waveform is sin(27r/ott(i). A larger S value increases the size of the lookup
table but puts less constraint on the low-pass filter.

www.it-ebooks.info

http://www.it-ebooks.info/

718 DIRECT DIGITAL FREQUENCY SYNTHESIS

digital implementation analog implementation

fccw focw

Figure 23.3 Block diagram for synthesizing modulated analog waveform.

23.2.3 Direct synthesis of a modulated analog waveform

DDFS is used widely in communication applications. A typical communication
system involves two types of signals: a low-frequency "message" signal, such as
an audio signal, and a high-frequency "carrier" signal to convey the message, such
as the radio-frequency sinusoidal signal. Modulation is the process to modify the
carrier signal in accordance with the message signal. The carrier signal is usually a
sinusoidal waveform and the message can be used to adjust its amplitude, frequency,
phase, or a combination of them. Assume that the carrier signal is βϊη(2π/ί). The
modulated signals become the following:

• Amplitude modulation: A(t) * sin(2irft).
• Frequency modulation: sin(27r(/ + Af(t))t).
• Phase modulation: sin(27r/i + Ap(t)).

The A(t), Af(t), and Ap(t) terms are slow time-varying signals that embed the
message.

A DDFS system can incorporate the desired modulation scheme by inserting an
additional adder or multiplier in its path. We can actually construct an extended
DDFS system that supports all three modulation schemes. Instead of sin(27r/t),
the extended system generates A(t) * sin(27r(/ + Af(t))t + Ap(t)). The expanded
diagram is shown in Figure 23.3. We assume that the A(t), Af(t), and Ap(t) terms
are pre-processed and converted to proper digitized format:

• fccw: frequency control word to generate the carrier frequency, / .
• focw: frequency control word to generate the offset frequency, Af(t).
• pha: phase value corresponding to the desired phase offset, Ap(t).
• env (for envelope): digitized value of A(t).

The bus widths are the ones used in our implementation in Section 23.2.4.

23.2.4 HDL implementation

We can construct the digital portion of a DFFS circuit following the diagram in
Figure 23.3. To accommodate the resource available on a DEI board, we use the
following parameters in the design:

• fsys- 50 MHz, which is the frequency of the onboard clock.
• N: 26 bits.

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN AND IMPLEMENTATION 7 1 9

• Width of the lookup table address: 8 bits (i.e., 28 entries).
• Number of bits per lookup table entry: 16 bits (in 2's complement signed

format).
We select N to be 26 bits to obtain about 1-Hz resolution (i.e., 50

2*Α°) and use the
16-bit signed format to match the codec DAC configuration.

The size of the lookup table is 28-by-16 (i.e., 4K bits). It is relatively small
and can be implemented by using FPGA's internal embedded memory block. The
embedded memory block is versatile and flexible. It can be configured as dual-port
memory and initialized with specific values when the FPGA is programmed. We
implement the lookup table as follows:

• Initialize the memory block with the sinusoidal waveform lookup data.
• Use one port for DDFS to read the amplitude value.
• Use one port for external system to write a different amplitude mapping, in

case a different waveform is needed.
The corresponding HDL code is shown in Listing 23.1.

Listing 23.1 Sinusoidal lookup table
i module a l t e r a _ r a m _ l u t

#(
parameter DATA.WIDTH - 16, / / number of bits

ADDR.WIDTH = 8 / / number of address bits
)

β (

input wire elk ,
input wire we ,
input wire [ADDR_WIDTH-1:0] w.addr, r .addr,
input wire [DATA.WIDTH-1:0] d,

li output wire [DATA_WIDTH-1:0] q
) ;

/ / signal declaration
reg [DATA_UIDTH-1:0] ram [0:2**ADDR.WIDTH-1]; / / ascednding range

ie reg [DATA_WIDTH-1:0] data .reg;

/ / sin-table. txt specifies the sin() lookup table
i n i t i a l

$readmemh("s in . tab le . txt" , ram);
21

/ / body
// write operation
always <9(posedge e lk)
begin

2β I f (w e)
ram[w_addr] <= d;

data_reg <» ram[r_addr];
end

3i / / read operation
assign q » data .reg;

endmodule

We use the initial statement to store the sinusoidal lookup table to the RAM
module at power up, as discussed in Section 5.7.8. The s in_table . txt contains
256 hexadecimal values scaled to 16-bit format. Recall the range of the s in ()
function is [-1,1]. The scaled values in the file can be obtained by the following

www.it-ebooks.info

http://www.it-ebooks.info/

7 2 0 DIRECT DIGITAL FREQUENCY SYNTHESIS

formula:
sin(—— * n) * 215, where n = 0, · · · ,255

256
Alternatively, we can load the values to the RAM in the software initialization
routine.

After constructing the lookup table, we can derive the top-level DDFS system
code accordingly, as shown in Listing 23.2.

Listing 23.2 DDFS system
module ddfs

2 #(parameter PW ■ 26) / / width of phase accumulator
(
input wire elk , reset ,
input wire [PW-1:0] fccw, / / carrier frequency control word
input wire tPW-l:0] focw, / / frequency offset control word

7 input wire [PW-i:0] pha, / / phase offset
input wire [15:0] env, / / envelop
// p2a ram interface
input wire p2a_we ,
input wire [7:0] p2a_waddr,

12 input wire [15:0] p2a_din,
output wire [15:0] p2a_aout,
output wire [PW-1:0] p2a_pout

) ;

i7 / / signal declaration
wire [PW-1:0] few, p.next, pew;
reg [PW-1:0] p.reg;
wire [7:0] p2a_raddr;
wire [15:0] amp;

22 wire signed [31:0] modu;

/ / body
// instantiate sin ROM
altera_ram_lut p2a_ram_unit

27 (. c l k (c l k) , .we (p 2 a _ w e) , . w . a d d r (p 2 a _ w a d d r) , . d (p 2 a _ d i n) ,
. r . a d d r (p 2 a _ r a d d r) , . q (a m p)) ;

/ / phase register
always 0(posedge elk, posedge reset)
if (reset)

32 P-*eg <" 0;
else

P_reg <- p.next;
/ / frequency modulation
assign few - fecw + focw;

37 / / phase accumulation
assign p_next » P_reg + few;
/ / phase modulation
assign pew - p_reg + pha;
/ / phase to amplitude mapping address

42 assign p2a_raddr - pew[PW-1:PW-8];
/ / amplitude modulation
// Q16.0 * Q1.15 => modu is Q17.15
// However the —1 is not used and thus MSB of modu is always 0
assign modu ■ $signed(env) * $signed(amp); / / modulated output

47 assign p2a_aout - modu [30:15];
assign p2a_pout - p.reg;

endmodule

www.it-ebooks.info

http://www.it-ebooks.info/

DDFS IP CORE DEVELOPMENT 7 2 1

The code follows the diagram in Figure 23.3. Since there are combinational multi-
plication modules in a Cyclone II device, the * operator is used in the code directly.

Note that both the lookup table output (i.e., amp) and env are 16 bits wide. After
multiplication, we must trim the 32-bit multiplication result back to 16 bits. This
issue can be solved by representing the signals in fixed-point format, as discussed
in Section 22.2. We assume that amp is in Q16.0 format and env is in Q1.15
format (i.e., between —1 and +1). The multiplication result, modu, is in Q17.15
format. We can select the proper portion of the modu signal and trim it back to
Q16.0 format (i.e., 16-bit signed integer) to match the input format of the codec
DAC. In multiplication operation, we convert amp and env to signed data type with
$signed() function so that the proper sign extension can be maintained when the
resulting width is increased.

23.3 DDFS IP CORE DEVELOPMENT

23.3.1 Avalon interface

We can add a wrapping circuit for the Mandelbrot set fractal accelerator and create
an SOPC component. It includes an Avalon MM slave interface to interact with
the host, a clock input interface for the system clock, and a conduit interface for
the DDFS circuit's output signal.

23.3.2 Register map

A Nios II processor configures the DDFS circuit by specifying the values of four
key parameters, f ccw, f ocw, pha, and env, and by loading data to the lookup table
when needed. The wrapping circuit contains four registers to store the values.
Since the output of the DDFS circuit is too fast for a processor to handle, it is not
connected to the Avalon MM interface and thus no read operation is needed. The
registers, their address offsets, and fields are:

• Write addresses (data from cpu)
- offset 0x000 (fccw register)

* bits 25 to 0: 26-bit carrier frequency control word
- offset 0x001 (focw register)

* bits 25 to 0: 26-bit offset frequency control word
- offset 0x002 (phase register)

* bits 25 to 0: 26-bit phase offset word
- offset 0x003 (envelope register)

* bits 15 to 0: 16-bit amplitude modulation envelope
- offset 0x100 to Oxlff (phase-to-amplitude lookup table entries)

* bits 15 to 0: 16-bit lookup table data

23.3.3 Wrapped DDFS circuit

The wrapped DDFS circuit contains four registers for the relevant DDFS parame-
ters and writes decoding logic to generate enable signals. The HDL code is shown
in Listing 23.3.

www.it-ebooks.info

http://www.it-ebooks.info/

722 DIRECT DIGITAL FREQUENCY SYNTHESIS

Listing 23.3 DDFS circuit Avalon interface
i module chu_avalon_ddfs

(
input wire e l k , r e s e t ,
/ / avalon-MM slave interface
i npu t wi re [8 :0] d d f s . a d d r e s s ,

6 input wire d d f s . c h i p s e l e c t , d d f s . w r i t e ,
i npu t wire [31:0] d d f s . w r i t e d a t a ,
/ / conduit to/from PS2 port
output wire [15:0] ddfs_data_out

) ;

/ / signal declaration
reg [25:0] fccw_reg , focw. reg , p h a . r e g ;
reg [15:0] e n v . r e g ;
wire wr .en , wr_p2a_ram, wr.fccw , wr_focw, wr_pha, wr_env;

/ / body
/ / = = = = = = =
/ / instantiate ddfs unit
/ / = = _ _ _ = = = = ^ ^ ^ _ = ^ ^ ^ ^ ^ = _
ddfs #(.PW(26)) ddfs.unit

(.clk(clk), .reset(reset),
.fccw(fccw_reg), .focw(focw.reg), . pha(pha.reg), .env(env_reg),
.p2a_we(vr_p2a_ram), .p2a_waddr(ddfs.address[7:0]),
.p2a_din(ddfs_writedata[15:0]),
.p2a_aout(ddfs_data_out), .p2a_pout());

//
// registers and decoding
//= // registers
always 0(posedge e l k , posedge r e s e t)
if (r e s e t)

begin
fccw.reg <■
focw.reg <»
pha . r eg <=
env_reg

end
e l s e

begin
if (wr_fccw)

fccw_reg <»
if (wr.focw)

focw_reg <«
if (wr_pha)

pha . r eg <■ d d f s . w r i t e d a t a [2 5 : 0] ;
if (wr_env)

env . reg o d d f s . w r i t e d a t a [1 5 : 0] ;
end

/ / write decoding
ass ign wr.en = d d f s . w r i t e ft d d f s . c h i p s e l e c t ;
a s s ign wr.fccw - (dd f s_addres s "»9 'h000) k wr .en ;
a s s ign wr.focw « (ddfs_address»»9 'hOOl) k wr .en ;
a s s ign wr.pha » (ddfs_address=»9 'h002) k wr .en ;

i a s s ign wr.env = (ddfs_address»»9 'h003) k wr .en ;
ass ign wr_p2a_ram » d d f s . a d d r e s s [8] k wr .en ;

endmodule

<- 16 'h7f f f ; / / almost 1.00

d d f s . w r i t e d a t a [2 5 : 0] ;

d d f s . w r i t e d a t a [2 5 : 0] ;

www.it-ebooks.info

http://www.it-ebooks.info/

DDFS DRIVER 723

Based on this top-level HDL file, we can create a new SOPC component in
Component Editor and integrate the DDFS circuit into a Nios II system.

23.3.4 Codec DAC integration

The last stage of a DDFS circuit consists of a DAC and an analog low-pass filter.
The only DAC available on the DEI board is the DACs inside the audio codec de-
vice. When the audio IP core is developed, additional multiplexing logic is included
to route the external data streams to the DACs, as discussed in Section 19.4.4. To
integrate the DACs, we can instantiated a DDFS module and an audio module and
connect the DDFS circuit output to the DAC input of the audio codec controller
in the top-level HDL file. This scheme is used in the comprehensive Nios II testing
system in Section 17.10.3. The corresponding code segment of Listing 17.14 is

wire [15:0] ddfs.data;
wire dac_load_tick;

/ / within Nios II port mapping
ddfs_data_out_from_the_d_engine(ddfs.data),

codec_dac_data_in_to_the_audio({ddfs.data, ddfs_data}),
codec_dac_wr_to_the_audio(dac_load_tick),
codec_sample_tick_from_the_audio(dac_load_tick),

The connection is done via the port mapping of the instantiated Nios II module,
in which the DDFS circuit's output is connected to ddf s_data and then duplicated
(for both the left and right channels) and passed to the audio controller's DACs.

Note that the data rate of the DDFS circuit is much higher than the sampling
rate of the audio codec DAC. Our configuration does not attempt to synchronize
the operation. The DDFS circuit generates the data continuously and the audio
controller only retrieves the data when the sampling tick, which is connected to
dac_load_tick, is asserted. An external board with a fast DAC device is needed
to fully utilize the capability of the implemented DDFS system.

23.4 DDFS DRIVER

The driver consists of routines to initialize the DDFS circuit and to configure its
parameters. To make the code clear; we define the address offsets as symbolic
register names and define two constants for the phase register width and system
frequency in the header file:
»define CHU_DDFS_FCCW_REG 0
«define CHU_DDFS_FOCW_REG 1
»define CHU_DDFS_PHA_REG 2
»define CHU_DDFS_ENV_REG 3
»define DDFS.PW 26 // phase register width
»define DDFS_F_SYS 50000000 // sys frequency (50 MHz)

www.it-ebooks.info

http://www.it-ebooks.info/

724 DIRECT DIGITAL FREQUENCY SYNTHESIS

23.4.1 Configuration routines

We use four routines to configure the DDFS circuit's four registers, as shown in
Listing 23.4.

Listing 23.4
#define power2n(n) (K<(n)) //2~n is same as shifting 1 to left n bits

void ddfs_wr_carrier_freq(alt u32 ddfs.base, alt_u32 freq)
{
float trap;
alt_u32 fccw;

tmp - ((float) power2_(DDFS_PV)) / ((float) DDFS_F_SYS);
fccw - (alt_u32) (freq * tmp);
I0WR(ddfs.base, CHU_DDFS_FCCW_REG, fccw);

}

void ddfs_wr_offset_freq(alt_u32 ddfs.base, alt_u32 freq)
{
float tmp;
alt.u32 focw;

tmp - ((float) power2n(DDFS_PW)) / ((float) DDFS.F.SYS);
focu = (alt_u32) (freq » tmp);
I0WR(ddfs.base, CHU.DDFS.FOCW.REG, focw);

}

void ddfs_wr_pha(alt_u32 ddfs base, int offset)
{
alt_u32 pew;

pew - offset»DDFS_F_SYS/360 ;
I0WR(ddfs.base, CHU.DDFS PHA.REG, pew);

}

void ddfs_wr_env(alt_u32 ddfs.base, alt_16 env)
{
I0WR(ddfs.base, CHU.DDFS_ENV.REG, env);

}

The ddf s.wr.carrier_f req() and ddf s.wr.off set_freq() functions calculate and
write carrier and offset frequency control words, respectively. The formula, M =
ff2^ *2N, is used in the calculation.
/»»»

The ddfs_wr_pha() calculates the phase control word and writes the register.
The input phase offset is represented in term of degrees. Since 2N steps in the
phase registers represents one period, which is 360 degrees, the amount to be added
to the phase register is o/

3{pet * 2N.

23.4.2 Initialization routine

The ddf s_init() function initializes audio codec, connects the DDFS circuit's out-
put to DAC, and configures the DFFS registers. It is shown in Listing 23.5.

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING 725

Table 23.1 Note frequencies of nine octaves

c
c»
D
D«
E
F
F«
G
G»
A
A»
B

octO

16.4
17.3
18.4
19.5
20.6
21.8
23.1
24.5
26.0
27.5
29.1
30.9

oct 1

32.7
34.7
36.7
38.9
41.2
43.7
46.3
49.0
51.9
55.0
58.3
61.7

oct 2

65.4
69.3
73.4
77.8
82.4
87.3
92.5
98.0
103.8
110.0
116.5
123.5

oct 3

130.8
138.6
146.8
155.6
164.8
174.6
185.0
196.0
207.7
220.0
233.1
246.9

oct 4

261.6
277.2
293.7
311.1
329.6
349.2
370.0
392.0
415.3
440.0
466.2
493.9

oct 5

523.3
554.4
587.3
622.3
659.3
698.5
740.0
784.0
830.6
880.0
932.3
987.8

oct 6

1046.5
1108.7
1174.7
1244.5
1318.5
1396.9
1480.0
1568.0
1661.2
1760.0
1864.7
1975.5

oct 7

2093.0
2217.5
2349.3
2489.0
2637.0
2793.8
2960.0
3136.0
3322.4
3520.0
3729.3
3951.1

oct 8

4186.0
4434.9
4698.6
4978.0
5274.0
5587.7
5919.9
6271.9
6644.9
7040.0
7458.6
7902.1

Listing 23.5
void ddfs_init(al t_u32 audio.base, alt_u32 ddfs.base)
{

audio . in i t (audio .base) ;
audio_wr_src_sel(audio.base, 1, 0); // DAC connected to external bus
ddfs_wr_carrier_freq(ddfs.base, 440); / / mid—A frequency
ddfs_wr_offset.freq(ddfs.base , 0);
ddfs_wr_pha(ddfs.base, 0);
ddfs_wr_env(ddfs.base, 0x7fff); / / close to 1.0

23.5 TESTING

The main application of DDFS is in communication systems, usually involving the
generation and modulation of high-frequency signals. However, since the FPGA
prototyping board contains only an audio DAC, our testing program is oriented
to the generation and synthesis of sound and music. The system derived in Sec-
tion 17.10.3 includes a DDFS module (named d_engine) and can be used for testing.

23.5.1 Overview of music notes and synthesis

Music notes In music, a note means a specific frequency. There are 12 notes in an
octave, represented by C, C , D, D", E, F, F", G, G", A, A", and B. The frequencies
from octave 0 to octave 8 are summarized in Table 23.1.

There is a simple relationship between two successive notes. If the frequencies
of two successive notes are /¿ and /¿+i, then

/i+i = 2 * * Λ

The notes are standardized around the A note of octave 4 (A4), which is 440.00 Hz.
The frequencies of other notes are then derived accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

7 2 6 DIRECT DIGITAL FREQUENCY SYNTHESIS

envelop
amplitude

ami

am2

am3

! \ ! \ h sustain H v !

\ < decay ' release
' attack

Figure 23.4 ADSR envelope for piano.

The previous equation indicates that a frequency is doubled after one octave;
i.e.,

/i+i2 = (2 ^) 1 2 * / i = 2 * / i
If the frequency of a note in octave 0 is /o, the frequency in octave i becomes 2' */o.

Music synthesis and ADSR envelope A music instrument creates a direct acoustic
sound. A music synthesizer imitates an instrument by producing electronic signals
and playing them through a speaker. The unmodulated DDFS circuit can be used to
generate the basic tone. Additional schemes, such as adding harmonic components,
performing special frequency modulation, and applying an ADSR envelope, can be
combined to produce more interesting effects. We discuss the last scheme in more
detail.

When a real musical instrument produces a note, the loudness changes over
time. It rises quickly from zero and then decays over time. One scheme to model
the variation is to multiply the constant tone by a loudness ADSR envelope, which
contains the attack, decay, sustain, and release segments. The ADSR envelope for
a piano-like sound is shown in Figure 23.4. When a key is pressed, the loudness
quickly rises to the maximum (attack segment), then falls fast (decay segment) to
a rather constant level (sustain segment), which continues until the key is released.
The sound then quickly fades away (release segment). We can imitate the sound of
different instruments by adjusting the levels and lengths of various segments.

In communication terms discussed in Section 23.2.3, the original tone can be
considered as the carrier signal and the ADSR envelope can be considered as the
message. The ADSR scheme essentially performs the amplitude modulation over
the original tone.

23.5.2 Testing program

We construct a simple program to verify the DDFS operation, and demonstrate the
frequency and amplitude modulations. The program consists of the following tests:

• Initialize the DDFS circuit.
• Produce a single tone.

tima

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING 727

• Generate a dual-tone siren sound.
• Generate a continuously sweeping siren sound to demonstrate the frequency

modulation.
• Play the musical notes in six octaves.
• Play the musical notes with the piano-like ADSR envelope to demonstrate

the amplitude modulation.
The main program is shown in Listing 23.6.

Listing 23.6

int main(void)
{

int sw, btn, freq , i ;
a l t . u 8 disp.msg[4]-{SSEG.HEX.TABLE [13] , SSEG.HEX.TABLE [13] ,

SSEG.HEX.TABLE [15] , SSEG.HEX.TABLE [5] } ;

sseg_disp_ptn(SSEG_BASE, disp.msg); / / show "ddFS" for display
ddfs.init(ADUIO.BASE , D_ENGJ.NE.BASE) ;
btn.clear(BTN.BASE) ;
printf("DDFS t e s t \ n \ n n) ;

while (i) {
while (!btn_is_pressed(BTN_BASE)){ } ; / / wait for button
btn=IORD_ALTERA_AVALON_PIO_EDGE_CAP(BTN.BASE); //read button
i f (btn ft 0x02){ / / keyl pressed

sw-IORD_ALTERA_AVALON_PIO_DATA(SWITCH_BASE); / / read switch
printf ("key/sw: 7.d/,/ld\nn , btn , sw);

}
btn_clear(BTN_BASE);
switch (sw){

case 0:
ddfs.init(ADUIO.BASE, D.ENGINE.BASE);
break;

case 1: / / set ddfs frequency
pr in t f ("enter frequency:");
scanfCXd", tí req) ;
ddf s_wr_carrier_f req (D.ENGINE.BASE , freq) ;
break;

case 2: / / play siren 1
ddfs.play.sirenl(D.ENGINE.BASE);
break;

case 3: / / play siren 2
ddfs_play_siren2(D.ENGINE.BASE);
break;

case 4: / / play 6 octaves without envelope
ddfs.play.oct(D.ENGINE.BASE) ;
break;

case 5: / / play 6 octaves with piano adsr envelope
ddfs.play.piano(D.ENGINE.BASE);
break;

} //end switch
} / / end while

Siren generation routines The two siren generation functions demonstrate the fre-
quency modulation and the code is shown in Listing 23.7

www.it-ebooks.info

http://www.it-ebooks.info/

7 2 8 DIRECT DIGITAL FREQUENCY SYNTHESIS

Listing 23.7
void ddfs_p lay_s iren l (a l t_u32 ddfs .base)
{

int i ;

ddfs.wr.carrier.freq(ddfs.base, 600); // 600 Hz carrier
for (i»0; i<10; i++){ // 10 cycles

ddfs_wr_offset_freq(ddfs.base, 0); // 0 Hz offset
usleep (300*1000); // 300 ms
ddfs.wr.offset_freq(ddfs_base, 300); // 300 Hz offset
usleep(300*1000); // 300 ms

}
ddfs_wr_carrier_freq(ddfs.base, 0);
ddfs.wr.offset.freq(ddfs.base, 0);

void ddfs_play_siren2(alt_u32 ddfs.base)
{

int i , j ;

d d f s . w r . c a r r i e r . f r e q (d d f s . b a s e , 800);
for (i »0 ; i<10; i++){ / / 10 cycles

for (j=0; j<30; j++){ / / sweep 30 steps (750 ms)
d d f s . w r . o f f s e t _ f r e q (d d f s . b a s e , j * 4 0) ; / / 40 Hz increment
usleep(25*1000); / / 25 ms

} // end j loop
} / / end i loop
d d f s . w r . c a r r i e r . f r e q (d d f s . b a s e , 0) ;
d d f s . w r . o f f s e t . f r e q (d d f s . b a s e , 0) ;

}

The ddf s_play_sirenl O function generates a dual-tone (600 Hz and 900 Hz) siren
sound, alternating every 300 ms. The ddfs_play_siren2() function generates
a "sweeping" siren sound that increases its frequency gradually from 800 Hz to
2000 Hz within a 750-ms interval.

Note generation routines The frequency of a specific note can be obtained by ap-
plying the fi+i = 212 * fi formula. Since the direct calculation involves expensive
floating-point operations, we use an alternative lookup table scheme. This scheme
is based on the observation that if the frequency of a note in octave 0 is /o, the
frequency in octave i becomes 2* * /Q. We can store the precalculated frequencies
of octave 0 in a table and obtain the frequencies in other octaves by multiplying
the octave-0 frequency with 2*. The multiplication operation corresponds to shift
/o to left i positions. The code is shown in Listing 23.8.

Listing 23.8
void d d f s . s e t . n o t e (a l t _ u 3 2 ddf s .base , int oc t , int n i)
{

/ / frequency table for octave 0
// octave n: f*2'n
const f loa t NOTES[]-{

16.
17.
18.
19.
20,
21,
23

.3516,

.3239,

.3541 ,

.4454,

.6017,

.8268,

.1247,

//
//
//
//
//
//
//

0 C
i Qjt
2 D
3 D#
4 E
5 F
6 F#

www.it-ebooks.info

http://www.it-ebooks.info/

TESTING 729

}

24.
25.
27.
29 .
30,

.4997,

.9565,

.5000,

.1352,

.8677

/ /
/ /
/ /
/ /
/ /

7 G
8 G#
9 A

10 A#
11 B

}

alt_u32 freq;

ddfs_wr_of f se t_freq(ddfs .base , 0) ;
freq = N0TES[ni] * (K < o c t) ; / / Nai'ESf]* (S'oct)
ddfs_wr_carrier_freq(ddfs .base , f req) ;

The ddfs_play_oct() function plays the notes from octave 3 to octave 6, each
lasting 500 ms. The code is shown in Listing 23.9.

Listing 23.9
void ddfs_play_oct(alt_u32 ddfs.base)
{
int oct , ni ;

for (o c t - 3 ; oct<7; oct++){
for (ni»0; ni<12; ni++H

ddfs_se t_note (ddf s .base , o c t , n i) ;
us leep(500*1000);

} / / end ni loop
} // end oct loop
ddfs_wr_carrier_freq(ddfs .base , 0) ;

Piano ADSR envelope routine The ddf s_play.piano () function modulates the
original sinusoidal wave amplitude with an ADSR envelope. We assume that the
envelope register is updated in every millisecond and calculate the envelope incre-
ment or decrement according to the ASDR parameters. For example, the decre-
ment in the decay region is ¿^ytime · The coc*e *s s n o w n m Listing 23.10. As in
ddf s_play_oct(), it plays the notes from octave 3 to octave 6.

Listing 23.10
void ddfs_play_piano(alt_u32 ddfs .base)
{

int oct , ni ;
int i , e s t ep ;
int atime, dtime, s t ime, rtime;
alt_16 env, ami, am2, am3;

atime=10;
dtime=50;
stime»400;
rtime«40;
aml=0x7f00;
am2=aml*0.8;
am3«am2*0.5;

for (oct«3; oct<7; oct++){
for (ni»0; ni<12; ni++){

ddf s_se t_note (ddfs .base , oc t , n i) ; / / set note frequency
env » 0;
/* attack region */

www.it-ebooks.info

http://www.it-ebooks.info/

730 DIRECT DIGITAL FREQUENCY SYNTHESIS

estep « aml/atime;
for (i»0; Katime; i++){
env - env + estep;
usleep(1000);
ddfs_wr_env(ddfs.base, env);

}
/* decay region */
estep » (aml-am2)/dtime;
for (i=0; Kdtime; i++){
env ■ env - estep;
usleep(1000);
ddfs_wr_env(ddfs.base, env);

}
/* sustain region */
estep - (am2-am3)/stime;
for (i«0; Kstlme; i++){
env = env - estep;
usleep(1000);
ddfs_wr_env(ddfs.base, env);

}
/* release region */
estep " am3/rtime;
for (i-0; Krtime; i++M
env ■ env - estep;
usleep(1000);
ddfs_wr_env(ddfs.base , env);

}
} // end ni loop

} // end oct loop
ddfs_wr_carrier_freq(ddfs.base, 0);
ddfs_wr_env(ddfs.base, 0x7fff);

}

23.6 BIBLIOGRAPHIC NOTES

The DDFS circuit is a key component is today's communication systems. Direct
Digital Synthesizers: Theory, Design and Applications by J. Vankka provides de-
tailed coverage of this subject. The basic concepts behind modulation and ADSR
envelope can be found on the Wiki pedia website. The Theory and Technique of
Electronic Music by M. Puckette discusses various techniques and their mathemat-
ical foundations of music synthesis. The book is available online and can be found
by searching the title.

23.7 SUGGESTED EXPERIMENTS

23.7.1 Quadrature phase carrier generation

Many communication schemes require an additional 90-degree out-of-phase signal,
known as the quadrature component. In other words, the sin(27r/i) and cos(2wft)
waveforms must be generated at the same time. Expand the DDFS circuit to
generate both signals at the same time. Note that the FPGA's embedded memory
block supports dual-port operation and thus two lookup operations can be done by
using the same memory module.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED EXPERIMENTS 731

23.7.2 Reduced-size phase-to-amplitude lookup table

The size of the lookup table can grow large when high-resolution output is needed.
However, it can be reduced to one quarter of the original size by taking advantage
of the symmetry of the sinusoidal function. We only need to include data points in
the first quadrant (i.e., between 0 and ξ) and derive the rest data points using the
following equations:

sin(x) = 8ΐη(π — x) if | < x < π
sin(x) = — sin(x — π) if π < x < 2π

Design the new DDFS circuit using this approach, derive the HDL code, and verify
its operation.

23.7.3 Synthetic music player

A piece of music is represented by a sequence of notes and their durations. We
can implement a synthetic music player using the DDFS circuit. Derive software,
convert a simple song to this format and store them in an array, and verify its
operation.

23.7.4 Keyboard piano

A PS2 keyboard can be used as a piano keyboard to play synthesized music. Select
12 keys for the 12 notes and use digits 0 to 8 to select the desired octave. Note that
the duration of the sustain segment is not fixed. It lasts until the amplitude decays
to zero or when the key is released. Derive software and verify its operation.

23.7.5 Keyboard recorder

We can combine Experiments 23.7.3 and 23.7.4 and add additional recording func-
tionality. Use keys R and T to start and stop the recording session. During a
recording session, the notes and their durations are stored to an array. Use key P
to play back the stored information.

23.7.6 Hardware envelope generator

We can implement the envelope generation function in hardware. The circuit should
include registers storing the relevant amplitude and segment duration information
and an FSMD to generate the envelope points. Note that the duration of the
sustain segment is not fixed. It lasts until the amplitude decays to zero or when
the key is released. Modify the DDFS IP core to incorporate the new functionality,
resynthesize the Nios II system, create the necessary software driver, and verify its
operation.

23.7.7 Additive harmonic synthesis

A harmonic is a signal whose frequency is an integer multiple of the fundamental
frequency. For example, if the fundamental frequency is / , its harmonics are 2 / ,

www.it-ebooks.info

http://www.it-ebooks.info/

7 3 2 DIRECT DIGITAL FREQUENCY SYNTHESIS

3/ , 4/, · · ·. One scheme to generate synthesized music is to add attenuated har-
monics to the original signal. Expand the DDFS IP core to allow the addition of
three harmonics. The integer multiple and attenuation level of each harmonic can
be controlled individually. Resynthesize the Nios II system, create the necessary
software driver, and verify its operation.

23.7.8 Sample-based synthesis

The waveform produced by a real music instrument is usually very complex rather
than a simple sinusoidal function. One scheme to create better sound is to record
a sample from a real instrument and store the waveform in the phase-to-amplitude
lookup table. We can use the microphone input to record a note of an instrument
(e.g., a harmonica), extract data points from one cycle, and store the results to the
lookup table. Derive the software and verify its operation.

23.8 SUGGESTED PROJECTS

23.8.1 Sound generator

A sound generator is an IC chip designed to produce sound and were used widely
in early computers and arcade games. A representative device is Yamaha YM2149.
Search its data sheet on the Web, study its schematics and specifications, and design
a similar system using HDL and FPGA.

23.8.2 Function generator

A function generator is an instrument that can produce various waveform patterns
(such as sinusoidal, square, triangular, ramp, etc.) over a range of frequencies and
amplitudes. It is used to test the response of circuits to common input signals.
Research the basic operation and layout of a functional generator. Use the DDFS
circuit to generate the desired waveform and use the VGA monitor and keyboard
to create a virtual control panel. Note that because of the low sampling rate of an
audio DAC, the range of the frequencies is limited between 20 and 20,000 Hz.

23.8.3 Full-fledged electric synthesizer

An electric synthesizer produces a variety of sounds. It can mimic other musical
instruments and generate special effects. Several previous experiments implement
parts of the functionalities. Research the functionalities, operation, and layout of an
actual music keyboard. Expand the DDFS circuit to support a full-fledged electric
synthesizer, and use the VGA monitor and keyboard to create a virtual control
panel.

www.it-ebooks.info

http://www.it-ebooks.info/

:(es*q-sjpp sen"»!* ' eseq-otptus zW%*) »TOt"sjpp ρτοΛ
!(ΛΠΘ 9ΐ

_
ϊΐΒ 'eseq-sjpp sen"*tB)Atie-j»-sjpp ρτοΛ

¡(leejjo ^πτ 'eseq-sjpp ζεη"ΐτ
ι
β)

1
Β1<1"^»"8ΪΡΡ ΡΪΟΛ

!(bejj sen-^iB *eseq-sjpp 5gn-íiB)bejj-^esjJO-JB"Sjpp ρτοΛ
¡(bejj 5gti-»XB 'eseq-sjpp een-iiB)bejj-jeTaJE3-jB-sjpp ρτοΑ

/*****»*»»*******»******»**,******♦****,***»»******»,»»****,,*****»,,***
sadäfo^Odd uoijounj *

ZfffV Off «ouanftsj/ 93U9J9/9J Uiajsßs s/pp // 00000009 SAS~i~Siaa »ntjep#
ao)o;nuin330 asoi/d s/pp /o (β)ΐηφ) yjpim // 95 ftd'Sidd enTjep#

ε 03H"ANa"sjaa"nH0 βπτιβρ#
z oaa"¥H<i"Siaa"nHO eetjep#
ΐ oaH"wooi"siaa"nHO entjep#
0 oaH"ftooi"Siaa"nHO **w*v*

/„,„·„»·»,·,·,···„···,······,··,**········****····*··········,·,*··,·
suotfiutfap juvfsuoo *

<q-sedXi
_
axB> θρηχ3πτ#

/* uoisnjoui ajif */

*
vivp xm 3pmildwO-ot-3SOijd 1iq-9l :o-Sl SJH * *

¡fxo 0% 001*0 I's//» *
arfo/anua tiq-91 -0-GT s??<? * *

£•00*0 »3S//0 *
J3S//0 as»v<* HI-98 0S8 *»*« * *

gOOxo)9i//o *
pjoro ¡oajuoa (%3S¡¡o) b3d¡ tiq-gg --0-9Z *JH * *

100*0 issffo *
pdom JOJJU03 (J.91J.J.O0) bsdf JH-9S 0-S5 »?H * *

000*0 ?aff//o *

:(ndo mod/ v%vp) n%J-A\ *

dvut, aajsiöaj/ *

*
s/pp 9J,n6i¡uoo 0% sauiinotf :3sodJ.nj *

ys/pp-uo;oíit>-nv3 :3\i¿ *
j,9pO9y sfpp .a/npojv *

*
.♦♦««»»,«.«.,»»♦♦«♦♦♦.»..««..«♦♦♦♦♦»««♦»♦..♦♦.«♦»..♦♦♦♦»♦.♦.««..♦.«».♦./

qgpp-uojBAB-nqo H'£Z 8ui*m

9NI1SI1 YWUDOUd 3131dlAIOD 6£2

££/ DNIXSn HWMOOHd 3131dWOD

www.it-ebooks.info

http://www.it-ebooks.info/

7 3 4 DIRECT DIGITAL FREQUENCY SYNTHESIS

Listing 23.12 chu_avalon.dd£s.c
/* ****************************««*««««*«««*««««*«««««««««««««************
*
* Module: DDFS driver function prototypes
* File: chu.avalon.ddfs . c
* Purpose: Routines to configure ddfs
*
**
/* file inclusion */
»inc lude <io.h>
« inc lude "chu_ava lon_ddfs .h"
« inc lude "chu_ava lon_audio .h"

«def ine power2n(n) (1<<(η)) //2~n is same as shifting 1 to left n bits

/«««««***«**
* function: ddfs-wr-carrier.freq ()
* purpose: set freq (carrier) control word of dffs
* fccw = freq*2~DDFSJ>W/DDFS-FSYS
* argument:
* ddfs.base: base address of ddfs
* freq: carrier frequency
* return:
**/
void d d f s _ w r _ c a r r i e r _ f r e q (a l t _ u 3 2 d d f s . b a s e , a l t_u32 f req)
{
float tmp;
alt_u32 fccw;

tmp = ((float) power2n(DDFS_PW)) / ((float) DDFS.F.SYS);
fccw = (alt_u32) (freq * tmp);
IOWR(ddfs_base, CHU_DDFS_FCCW_REG, fccw);

}

/* **
* function: ddfs-wr.offset.fr eq ()
* purpose: set freq (offset) control word of dffs
* focw = freq*2~DDFSJ>W/DDFS-FSYS
* argument:
* ddfs-base: base address of ddfs
* freq: offset frequency
* r e t u r n :
««*«****«************************************«««*********««««***«***/
void ddfs.wr.offset.freq(alt_u32 ddfs.base, alt_u32 freq)
{
float tmp;
alt_u32 focw;

tmp - ((float) power2n(DDFS_PW)) / ((float) DDFS.F.SYS);
focw = (alt_u32) (freq * tmp);
IOWR(ddfs_base, CHU.DDFS_FOCW.REG, focw);

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING

A»*******»»***»*»*, ,***,*****,*****»******»*»,»*»********»***»*****»*»*
* function: ddfs.wr.pha ()
* purpose: set phase offset
* offset = (deg/360) *2'DDFSJ>W
* argument:
* ddfs.base: base address of ddfs
* offset: phase offset in degrees
* return:
* note:
»»*,»**„*»„,**,»*****»»»***********»,******«***»***»»»***»,***,***/
void ddfs_wr_pha(alt_u32 ddfs.base, int offset)
{
alt.u32 pew;

pew = offset*DDFS_F_SYS/360 ;
I0WR(ddfs.base, CHU.DDFS_PHA.REG, pew);

}

* function: ddfs.wr.env ()
* purpose: set envelope
* argument :
* ddfs.base: base address of ddfs
* env: envelope
* return:
* note:
»»***»*»**************»*****»************»***»**»*******»»»»»****»***»/
void ddfs_wr_env(alt_u32 ddfs.base, alt_16 env)
{
I0WR(ddfs.base, CHU.DDFS_ENV.REG , env);

}

/**»**„»»„„****»*,»**,„***»»*»*»**,***,»****,»**»*******************
* function: ddfs.init ()
* purpose: initialize ddfs
* argument:
* ddfs.base: ase address of ddfs
* note: use audio.init() to initialize codec and then
* route dac data to external bus
»»,»****»»*,,**„„»„***,»»**„»******,»*,*„»*,«**«***»*»********»»/
void d d f s _ i n i t (a l t _ u 3 2 a u d i o . b a s e , a l t_u32 d d f s . b a s e)
{

a u d i o . i n i t (a u d i o . b a s e) ;
audio.wr.src.sel(audio.base, 1,0); // dac to external bus
ddfs_wr_carrier_freq(ddfs.base, 262); // mid C frequency
ddfs_wr.offset_freq(ddfs.base, 0);
ddfs_wr_pha(ddfs.base, 0);
ddfs_wr_env(ddfs.base, 0x7fff); // close to 1.0

}

www.it-ebooks.info

http://www.it-ebooks.info/

7 3 6 DIRECT DIGITAL FREQUENCY SYNTHESIS

Listing 23.13 chu-main.ddfs.test.c

* Module: ddfs test
* File: chu.main.ddfs-test. c
* Purpose: Test audio frequency DDFS
* IP core base addresses:
* - SWITCH-BASE: switch
* - BTNMASE: pushbutton
* - SSEG-BASE: 7-segment LED
* - D-ENGINE.BASE: ddfs
* - AUDIO-BASE: audio codec
***/
/ * file inclusion */
«inc lude <s td io .h>
« inc lude <un i s td .h>
« inc lude "sys tem.h"
« inc lude " c h u . a v a l o n . g p i o . h "
« inc lude "chu_avalon_ddfs .h"

/***
* function: ddfs-play.sirenl ()
* purpose: play two—frequency (600/900 Hz) siren for few seconds
* argument:
* ddfs-base: base address of ddfs
* return:
****^^t**/
void ddfs_play_sirenl(alt_u32 ddfs.base)
{
int i;

ddfa.wr.carrier.ireq(ddfs.base, 600); // 600 Hz carrier
for (i=0; i<10; i++){ // 10 cycles
ddfs_wr_offset_freq(ddfs.base, 0); // 0 Hz offset
usleep(300*1000); // 500 ros
ddfs_wr_offset_freq(ddfs.base, 300); // 300 Hz offset
usleep(300*1000); // 300 ms

y
ddfs_wr_carrier_freq(ddfs.base, 0);
ddfs.wr.offset.freq(ddfs.base, 0);

}

/ » t » * * » t * * m » * * * * * t * t t * » t » * » » * » * t * t * t * * * * * * * » * * * * * * * * t * t * * t » * * * * * * » * » * *

* function: ddf s.play .siren2 ()
* purpose: play sweeping—frequncy (800—2000 Hz) siren for few seconds
* argument:
* ddfs-base: base address of ddfs
* « « « Φ * /

void d d f s _ p l a y _ s i r e n 2 (a l t _ u 3 2 d d f s . b a s e)
{

i n t i , j ;

d d f s . u r . c a r r i e r . f r e q (d d f s . b a s e , 800) ;
for (i=0 ; i<10; i++){ / / 10 cycles

for (j=0 ; j<30; j++){ / / sweep 30 steps
d d f s . w r . o f f s e t . f r e q (d d f s . b a s e , j * 4 0) ; / / 40 Hz increment
us leep(25*1000) ; / / 25 ms

} // end j loop
y // end i loop
d d f s . u r . c a r r i e r . f r e q (d d f s . b a s e , 0) ;
d d f s . w r . o f f s e t . f r e q (d d f s . b a s e , 0) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

:(o '8SBq-sjpp)bejj-J9TjJBD-JB-sjpp
dooj %oo pu9 // {

doo] tu pu9 // {
'· (000T*00S)d99Tsn

!(τπ ' %oo '9SBq-sjpp)eion-»es
_
8jpp

}(++τπ :ετ>τπ :ο=τπ) JOJ
}(++q.oo !¿>}30 :g»130) JOJ

:to *αοο ιπτ
}

(Bseq-sjpp 2en"aT«)*3o"^Btd
_
sjpp ρτοΛ

.-ajo« *
:uin)3i *

s/pp /o sss^ppo 9¡?t»} :asvq-sfpp *
: juawn6.it) *

t/at>a su* 009 '9 °t S stavfoo ui safou fí.Ojd :asodj.nd *
())00-ño)d-s/pp :uot%oun¡ *

í (bejj * esBq"s jpp) beij"ieti«3"iA"s jpp
(1 ° o. Z)* ÜS3JON // !(*30>>T) » [Tn]S3I0N - beaj

!(o '9SBq"sjpp)bejj"aesjjo"j«"sjpp

{

a n
#V 01

V 6
#Q 8

O L
#J 9

J 9
3 Ϋ

#α ε
α ζ

Φο ι
O 0

'.

//
//
//
//
//
//
//
//
//
//
//
//

'■{
¿¿98Όε

'ε9ετ·6ε .'OOOS'/S
'9996-SS
'¿66Κ*δ
' LiZI-ΐΖ
*89Z8TS
'ΛΤΟΘΟδ
'fr9frfr'6T
'T*98'8T

'βεεεζτ
'9T98"9T

}=[]S3I0N ÍBOXJ 18ΠΟ0
ti.g*/ :u 9αν%οο //

O aaojao J,O¡ a;<¡t>j /íouanfiaj/ //
}

(TU inx ' 130 %ντ · es«q
_
eipp ζε

11
"»!«) 9*οπ

_
ϊθ8

_
8 jpp ρτοΛ

diíío oípno poofi spa9u bau-f a<iojao —v6ty puv —moj o% fiuiuajsi; — *
u^%*f :u anojao ui bao./ ajou 6ut.puods9j.doo — *

3jqvf dnyooj o u? pajsi; saiousnbadf aíiojao JSJ — *
: 9%ou *

.•ujnjaj *
(a of ···■ ·#α 'α 'Φο 'ο) ιι °ι o χ»Ρ"? nou .tu *

(t »« „sippiui,, '-ZUH 91 of gj) ß o? o ™odf saspo :jao *
sfpp ¡o SS3J.PPO asvq .gsvqsfpp *

:)U9tunBdO *
ajou otsntu o JO/ ñouanbau-f s/pp jas .-asodand *

()afou-f3s-s¡pp tuotfounf *

¿£¿ OMISO WVÜDOad 3±3ndWOD

www.it-ebooks.info

http://www.it-ebooks.info/

738 DIRECT DIGITAL FREQUENCY SYNTHESIS

/* **
* function: ddfs.play-piano()
* purpose: play notes in octaves 3 to 6 with piano adsr envelope
* argument:
* ddfs.base: base address of ddfs
* return:
* note:
***/
void ddfs_play_piano(alt_u32 ddfs .base)
{

int oc t , ni ;
int i , e s tep;
int atime, dtime, s t ime, rtime;
a l t . 1 6 env, ami, am2, am3;

atime'10;
dtime»50;
st ime-400;
rtime»40;
aml-0x7f00;
am2-aml*0.8;
am3-am2*0.5;

for (o c t - 3 ; oct<7; oct++){
for (ni»0; ni<12; ni++H

d d f s . s e t . n o t e (d d f s . b a s e , o c t , n i) ; / / set note frequency
env » 0;
/* attack region */
estep = ami/atime;
for (i"0; i<atime; i++){
env « env + estep;
usleep(lOOO);
ddfs.wr.env(ddfs.base, env);

}
/* decay region */
estep » (ami-am2)/dtime;
for (i»0; Kdtime; i++){
env » env - estep;
usleep(lOOO);
ddf s .wr . env (ddf s .base , env);

}
/ * sustain region */
estep » (am2-am3)/stime;
for (i »0 ; K s t i m e ; i++){

env " env - e s t ep ;
usleep(lOOO);
ddfs .wr .env(ddfs .base , env);

}
/ * release region * /
estep " am3/rtime;
for (i=0; i<rt ime; i++){

env · env - e s t e p ;
usleep(lOOO);
ddfs.wr.env(ddfs.base, env);

}
} // end ni loop

} // end oct loop
ddfs.wr.carrier.freq(ddfs.base , 0);
ddfs.wr.env(ddfs.base, 0x7fff);

}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETE PROGRAM LISTING 7 3 9

/ f t H . J H H H f *

* function : main()
* purpose: test audio frequency ddfs
* note:
tt***/

int main(void)
{

int sv, btn, freq;
alt_u8 disp.msg[4]»{sseg_conv_hex (13) , sseg_conv_hex (13) ,

sseg_conv_hex(15) , sseg_conv_hex(5)};

sseg_disp_ptn(SSEG_BASE, dlsp_msg); / / show "ddFS" for display
ddfs_init(AUDIO_BASE, D_ENGINE_BASE);
btn_clear(BTN_BASE);
printfC'DDFS t e s t \ n \ n ") ;

while (1){
while (!btn_is_pressed(BTN_BASE)H } ; / / wait for button
btn-btn_read(BTN_BASE); / / read button
i f (btn ft 0x02H / / keyl pressed

sw-pio_read(SWITCH_BASE); / / read switch
printf ("key/sw: 7.d/'/.d\n" , btn, sw);

}
btn.clear(BTN_BASE);
switch (sw){

case 0:
ddfs.init(AUDIO.BASE , D_ENGINE_BASE);
break;

case 1: / / set ddfs frequency
pr in t f ("enter frequency:");
scanf("%d", i f r e q) ;
ddfs_wr_carrier_freq(D_ENGINE_BASE, f req) ;
break;

case 2: / / play siren 1
ddfs.play.sirenl(D_ENGINE_BASE);
break;

case 3: / / play siren 2
ddfs_play_siren2(D_ENGINE_BASE);
break;

case 4: / / play 6 octaves without envelope
ddfs_play_oct(D_ENGINE_BASE);
break;

case 5: / / play 6 octaves with piano adsr envelope
ddfs.play.piano(D.ENGIHE.BASE);
break;

} //end switch
} / / end while

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES

1. Altera, Cyclone II Device Handbook, Altera Co.

2. Altera, DEI Development and Education Board User Manual, Altera Co.

3. Altera, DE2 Development and Education Board User Manual, Altera Co.

4. Altera, Embedded Periphends IP User Guide, Altera Co.

5. Altera, Nios II Processor Reference Handbook, Altera Co.

6. Altera, Nios II Software Developers Handbook, Altera Co.

7. Altera, Quartus II Handbook, Altera Co.

8. Altera, SOPC Builder User Guide, Altera Co.

9. M. Barr, Programming Embedded Systems in C and C++, 2nd ed., O'Reilly Media,
2006.

10. L. Bening and H. D. Foster, Principles of Verifiable RTL Design, 2nd ed., Springer-
Verlag, 2001.

11. J. Bergeron, Writing Testbenches: Functional Verification of HDL Models, Springer-
Verlag, 2003.

12. A. Chapweske, "PS/2 Mouse/Keyboard Protocol," http://www.computer-engineering.org.

13. A. Chapweske, "PS/2 Keyboard Interface," http://www.computer-engineering.org.

14. A. Chapweske, "PS/2 Mouse Interface," http://www.computer-engineering.org.

15. P. P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency, Portability,
and Scalability, Wiley-IEEE Press, 2006.

16. P. P. Chu, FPGA Prototyping by Verilog Examples: Xilinx Spartan-S version, Wiley-
IEEE Press, 2008.

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu 741
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

742 REFERENCES

17. M. D. Ciletti, Advanced Digital Design with the Verilog HDL, 2nd ed., Prentice Hall,
2010.

18. M. D. Ciletti, Starter's Guide to Verilog 2001, Prentice Hall, 2003.

19. A. Feldman, Designing Arcade Computer Game Graphics, Wordware Publishing,
2000.

20. D. D. Gajski, Principles of Digital Design, Prentice Hall, 1997.

21. J. O. Hamblen et al., Rapid Prototyping of Digital Systems: Quartus II Edition,
Springer, 2005.

22. IEEE, IEEE Standard for Verilog Hardware Description Language (IEEE Std 1364-
2005), Institute of Electrical and Electronics Engineers, 2006.

23. Integrated Silicon Solution, "Data Sheet of IS61LV25616AL SRAM," Integrated Sili-
con Solution, Inc.

24. Integrated Circuit Solution, "Data Sheet of IS42S16400 SDRAM," Integrated Circuit
Solution, Inc.

25. B. Jacob et al., Memory Systems: Cache, DRAM, Disk, Morgan Kaufmann, 2007.

26. L. Di Jasio,Programming 32-bit Microcontrollers in C: Exploring the PIC32, Newnes,
2008.

27. R. H. Katz and G. Borriello, Contemporary Logic Design, 2nd ed., Prentice Hall, 2004.

28. M. Keating and P. Bricaud, Methodology Manual for System-on-a-Chip Designs, 3rd
ed., Springer-Verlag, 2002.

29. B. W. Kernighan and D. M. Ritchie, C Programming Language, 2nd ed., Prentice
Hall, 1988.

30. J. J. Labrosse, Embedded Systems Building Blocks, 2nd ed., CMP, 1999.

31. J. J. Labrosse, MicroC/OS II: The Real Time Kernel, Newnes, 2002.

32. J. J. Labrosse, uC/OS-III, The Real-Time Kernel, or a High Performance, Scalable,
ROMable, Preemptive, Multitasking Kernel for Microprocessors, Microcontrollers and
DSPs, Micrium Press, 2009.

33. C. M. Maxfield, The Design Warrior's Guide to FPGAs, Newnes, 2004.

34. Mentor Graphics, ModelSim Tutorial, Mentor Graphics Corporation.

35. NXP Semiconductor, I2C-Bus Specification and User Manual, NXP Semiconductor.

36. J. Nurmi, Processor Design: System-on-Chip Computing for ASICs and FPGAs,
Springer, 2007.

37. S. Palnitkar, Verilog HDL, 2nd ed., Prentice Hall, 2003.

38. D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface, 4th ed., Morgan Kaufmann, 2008.

39. M. Puckette, The Theory and Technique of Electronic Music, World Scientific Pub-
lishing, 2007.

40. J. M. Rabaey, Digital Integrated Circuits, 2nd ed., Prentice Hall, 2002.

41. P. R. Schaumont, A Practical Introduction to Hardware/Software Codesign, Springer,
2010.

42. P. Shirley and S. Marschner, FundamentaL· of Computer Graphics, 2nd ed., A K
Peters, 2009.

43. J. Vankka, Direct Digital Synthesizers: Theory, Design and Applications, Springer,
2001.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 743

44. J. F. Wakerly, Digital Design: Principles and Practices, Prentice Hall, 2002.
45. F. Vahid and T. D. Givargis, Embedded System Design: A Unified Hardware/Software

Introduction, Wiley, 2001.
46. W. Wolf, FPGA-Based System Design, Prentice Hall, 2004.
47. W. Wolf, Computers as Components: Principles of Embedded Computing System De-

sign, 2nd ed., Morgan Kaufmann, 2008.
48. Wolfson Microelectronics, Data Sheet of WM8731, Wolfson Microelectronics PLC.

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

.BMP, 514-516, 519, 523

.csv, 40

.elf, 7, 239

.sof, 7, 45, 239, 248

.sopcinfo, 7, 239, 248

.tcl, 379

.WAV, 583, 585, 587
ADC, 556
always block, 62, 207
ASCII code, 441, 503
ASM chart, 138
ASMD chart, 156, 488
assignment

blocking, 63, 190
continuous, 17
nonblocking, 63, 190

Avalon
interconnect, 235, 345, 352, 359, 383
interface, 351, 372
MM interface read, 355-356, 397
MM interface wr i te , 355-356
MM interface, 355
specifications, 383

barrel shifter, 85
BCD, 175
binary decoder, 67, 69
bit-length adjustment, 59
bitmap, 500-501, 503, 514
BSP Editor, 249
BSP, 7, 239, 248, 309, 415, 456

cache, 233, 637
clock distribution network, 386
code size, 252, 318
codec

controller, 572, 723
driver, 579, 724
overview, 556

color depth, 477, 494
comments, 14
Component Editor, 372, 383
connection by name, 20
connection by ordered list, 20
constant, 78
counter, 104, 114
D FF, 94
DAC, 556, 717
data type, 14

net group, 14
reg, 15, 63
signed, 203
two-dimensional array, 99
variable group, 15
variable, 63
wire, 14
x value, 61
z value, 60

DDFS (direct digital frequency synthesis), 715
debouncing circuit, 147, 161
delay control, 209
desktop system, 2, 304

745

Embedded SOPC Design with Nios II Processor and Verilog Examples. By Pong P. Chu
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

746 INDEX

development flow, 5, 30, 237
device driver, 265, 279, 290, 307, 313, 318, I
division circuit, 171, 346
DRAM, 398
edge detector, 143
embedded memory block, 29, 122, 132, 243,

385
embedded system, 1, 304
event control, 210
exception handler, 327, 335
FAT

boot record, 620, 622
cluster, 623
FA'1'16 file system, 620, 626
file allocation table, 623
file system, 620
MBR, 620, 622
partitions, 620

FIFO buffer, 117, 131, 363, 434, 572
file descriptor, 628
fixed-point arithmetic, 687, 701
flag FF, 362
floating-point adder, 87
floating-point arithmetic, 688, 701
font, 503
FSM, 95, 137
FSMD, 95, 155, 563
function, 204

system, 212
user defined, 216

GCD (greatest common divisor), 663
binary GCD algorithm, 664
Euclid's algorithm, 674
hardware accelerator, 665, 669

hold time, 94
host-based file system, 456, 517, 585
I2C

controller, 563, 572
driver, 577
electrical characteristics, 560
protocol, 560, 562, 587
timing, 560

I /O buffer, 27, 387
I /O core, 266
identifier, 13
initial block, 207
instantiation, 19
interrupt, 235, 325, 333, 637
IP core, 237, 451
ISR, 328, 330, 332, 336, 637
JTAG UART core, 270, 290, 313
keyboard, 440, 456
localparam, 78
logic cell, 25, 27
LUT, 26
macro cell, 27
Mandelbrot set

coloring, 684
definition, 683
hardware accelerator, 689
image, 683, 685, 694

maximal operating frequency, 111, 113
Mealy output, 138
memory hierarchy, 232
modulation, 718, 726-727
Moore output, 138
mount, 626
mouse, 445, 456, 500, 506, 512, 698
multiplexer, 73
number, 15

sized, 15
unsized, 15

operator, 53
arithmetic, 55
bitwise, 56
concatenation, 57
conditional, 58
logical, 57
precedence, 59
reduction, 57
relational, 56
shift, 55

overlay, 500
palette, 494, 514
parameter, 79
pin assignment file, 39
PIO core, 244, 266, 290, 307, 315, 346
placement and routing, 31
PLL, 29, 388, 408, 418
port declaration, 16
primitive, 21
priority encoder, 66, 69
priority routing network, 71
procedural statement, 207

case, 68
full, 70
parallel, 71

casex, 70
casez, 69
for, 208
forever, 209
if, 65
repeat, 208
wait, 211
while, 208

PS2
controller, 433, 437
driver, 438
packet, 423
port, 423
receiving subsystem, 424-425, 434
transmitting subsystem, 428, 430, 434

register file, 99, 231
register transfer methodology, 53
register transfer operation, 156
register, 94, 99
regular sequential circuit, 95
resolution, 556, 569
sampling rate, 556, 569
SD card, 601-602

command, 608-609
driver, 614

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 747

high capacity (SDHC), 602, 618, 620
initialization, 611, 615
manual, 637
protocol, 608
SPI mode, 602, 610

SDRAM controller, 406, 418, 452
SDRAM, 122, 385, 403, 418
sector, 611, 617, 620
sensitivity list, 62
setup time, 94
shift register, 103
sign-magnitude adder, 83
signal declaration, 18
SoC, 5
SoPC, 5, 320
SoX, 584
SPI

controller, 603, 607, 636
driver, 613
mode, 603

protocol, 602
timing, 603

sprite, 515
SRAM controller, 276, 381, 394
SRAM, 96, 102, 122, 347, 385, 389, 486, 494
state diagram, 138
synchronous design methodology, 93
system id core, 244, 252
testbench, 22, 46, 107, 217
tightly coupled memory, 234, 335, 637
time stamp, 453, 668
timer core, 272, 290, 314, 329
tristate buffer, 60, 269, 395, 429, 568
user defined primitive, 21
VGA

controller, 484, 495, 583, 694
driver, 498
mode, 479
standard, 475, 522
synchronization, 479

www.it-ebooks.info

http://www.it-ebooks.info/

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	a
	b

