{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"title: \"QR Decomposition\"\n",
"subtitle: Advanced Statistical Computing\n",
"author: Joong-Ho Won\n",
"date: today\n",
"date-format: \"MMMM YYYY\"\n",
"institute: Seoul National University\n",
"execute:\n",
" echo: true \n",
"format:\n",
" revealjs:\n",
" toc: false\n",
" theme: dark\n",
" code-fold: false \n",
" scrollable: true \n",
"jupyter: julia \n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Julia Version 1.9.3\n",
"Commit bed2cd540a1 (2023-08-24 14:43 UTC)\n",
"Build Info:\n",
" Official https://julialang.org/ release\n",
"Platform Info:\n",
" OS: macOS (x86_64-apple-darwin22.4.0)\n",
" CPU: 8 × Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz\n",
" WORD_SIZE: 64\n",
" LIBM: libopenlibm\n",
" LLVM: libLLVM-14.0.6 (ORCJIT, skylake)\n",
" Threads: 2 on 8 virtual cores\n"
]
}
],
"source": [
"versioninfo()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m new project at `~/Dropbox/class/M1399.000200/2023/M1300_000200-2023fall/lectures/09-qr`\n",
"\u001b[32m\u001b[1m No Changes\u001b[22m\u001b[39m to `~/Dropbox/class/M1399.000200/2023/M1300_000200-2023fall/lectures/09-qr/Project.toml`\n",
"\u001b[32m\u001b[1m No Changes\u001b[22m\u001b[39m to `~/Dropbox/class/M1399.000200/2023/M1300_000200-2023fall/lectures/09-qr/Manifest.toml`\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[32m\u001b[1mStatus\u001b[22m\u001b[39m `~/Dropbox/class/M1399.000200/2023/M1300_000200-2023fall/lectures/09-qr/Project.toml` (empty project)\n"
]
}
],
"source": [
"using Pkg\n",
"Pkg.activate(pwd())\n",
"Pkg.instantiate()\n",
"Pkg.status()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## QR Decomposition\n",
"\n",
"* We learned Cholesky decomposition as **one** approach for solving linear regression.\n",
"\n",
"* Another approach for linear regression uses the QR decomposition. \n",
" **This is how the `lm()` function in R does linear regression.**\n",
" \\\n",
" **This is also how Julia's (and MATLAB's) `\\` works for rectangular matrices.**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3-element Vector{Float64}:\n",
" 0.3795466676698624\n",
" 0.6508866456093487\n",
" 0.39225041956535506"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Random\n",
"\n",
"Random.seed!(280) # seed\n",
"\n",
"n, p = 5, 3\n",
"X = randn(n, p) # predictor matrix\n",
"y = randn(n) # response vector\n",
"\n",
"# backslash finds the (minimum L2 norm) least squares solution\n",
"X \\ y"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We want to understand what is QR and how it is used for solving least squares problem."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Definitions\n",
"\n",
"* Assume $\\mathbf{X} \\in \\mathbb{R}^{n \\times p}$ has full column rank. Necessarilly $n \\ge p$.\n",
"\n",
"* **Full QR decomposition**: \n",
"$$\n",
" \\mathbf{X} = \\mathbf{Q} \\mathbf{R}, \n",
"$$\n",
" - $\\mathbf{Q} \\in \\mathbb{R}^{n \\times n}$, $\\mathbf{Q}^T \\mathbf{Q} = \\mathbf{Q}\\mathbf{Q}^T = \\mathbf{I}_n$. In other words, $\\mathbf{Q}$ is an orthogonal matrix. \n",
" - First $p$ columns of $\\mathbf{Q}$ form an orthonormal basis of ${\\cal R}(\\mathbf{X})$ (**range** or column space of $\\mathbf{X}$) \n",
" - Last $n-p$ columns of $\\mathbf{Q}$ form an orthonormal basis of ${\\cal N}(\\mathbf{X}^T)$ (**null space** of $\\mathbf{X}^T$)\n",
" - Recall that $\\mathcal{N}(\\mathbf{X}^T)=\\mathcal{R}(\\mathbf{X})^{\\perp}$ and $\\mathcal{R}(\\mathbf{X}) \\oplus \\mathcal{N}(\\mathbf{X}^T) = \\mathbb{R}^n$.\n",
" - $\\mathbf{R} \\in \\mathbb{R}^{n \\times p}$ is upper triangular with positive diagonal entries. \n",
" - The lower $(n-p)\\times p$ block of $\\mathbf{R}$ is $\\mathbf{0}$ (why?)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* **Reduced QR decomposition**:\n",
"$$\n",
" \\mathbf{X} = \\mathbf{Q}_1 \\mathbf{R}_1,\n",
"$$\n",
"where\n",
" - $\\mathbf{Q}_1 \\in \\mathbb{R}^{n \\times p}$, $\\mathbf{Q}_1^T \\mathbf{Q}_1 = \\mathbf{I}_p$. In other words, $\\mathbf{Q}_1$ is a partially orthogonal matrix. Note $\\mathbf{Q}_1\\mathbf{Q}_1^T \\neq \\mathbf{I}_n$.\n",
" - $\\mathbf{R}_1 \\in \\mathbb{R}^{p \\times p}$ is an upper triangular matrix with positive diagonal entries. \n",
"\n",
"* Given QR decomposition $\\mathbf{X} = \\mathbf{Q} \\mathbf{R}$,\n",
" $$\n",
" \\mathbf{X}^T \\mathbf{X} = \\mathbf{R}^T \\mathbf{Q}^T \\mathbf{Q} \\mathbf{R} = \\mathbf{R}^T \\mathbf{R} = \\mathbf{R}_1^T \\mathbf{R}_1.\n",
" $$ \n",
" - Once we have a (reduced) QR decomposition of $\\mathbf{X}$, we automatically have the Cholesky decomposition of the *Gram matrix* $\\mathbf{X}^T \\mathbf{X}$."
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Application: least squares\n",
"\n",
"* Normal equation\n",
"$$\n",
" \\mathbf{X}^T\\mathbf{X}\\beta = \\mathbf{X}^T\\mathbf{y}\n",
"$$\n",
"is equivalently written with reduced QR as\n",
"$$\n",
" \\mathbf{R}_1^T\\mathbf{R}_1\\beta = \\mathbf{R}_1^T\\mathbf{Q}_1^T\\mathbf{y}\n",
"$$\n",
"\n",
"* $\\mathbf{R}_1$ is invertible: we only need to solve the triangluar system\n",
"$$\n",
" \\mathbf{R}_1\\beta = \\mathbf{Q}_1^T\\mathbf{y}\n",
"$$\n",
"Multiplication $\\mathbf{Q}_1^T \\mathbf{y}$ is done implicitly (see below).\n",
"\n",
"---\n",
"\n",
"* This method is numerically more stable than directly solving the normal equation, since $\\kappa(\\mathbf{X}^T\\mathbf{X}) = \\kappa(\\mathbf{X})^2$!\n",
"\n",
"* In case we need standard errors, compute inverse of $\\mathbf{R}_1^T \\mathbf{R}_1$. This involves triangular solves."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gram-Schmidt procedure \n",
"\n",
"* Wait! Does $\\mathbf{X}$ always have a QR decomposition?\n",
" - Yes. It is equivalent to the Gram-Schmidt procedure for basis orthonormalization.\n",
"\n",
":::: {.columns}\n",
"\n",
"::: {.column width=\"50%\"}\n",
"\n",
"\n",
"[Jørgen Pedersen Gram, 1850-1916](https://en.wikipedia.org/wiki/Jørgen_Pedersen_Gram)\n",
":::\n",
"\n",
"::: {.column width=\"50%\"}\n",
"\n",
"\n",
"[Erhard Schmidt, 1876-1959](https://en.wikipedia.org/wiki/Erhard_Schmidt)\n",
":::\n",
"\n",
"::::"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Assume $\\mathbf{X} = [\\mathbf{x}_1 | \\dotsb | \\mathbf{x}_p] \\in \\mathbb{R}^{n \\times p}$ has full column rank. That is, $\\mathbf{x}_1,\\ldots,\\mathbf{x}_p$ are *linearly independent*.\n",
"\n",
"* Gram-Schmidt (GS) procedure produces nested orthonormal basis vectors $\\{\\mathbf{q}_1, \\dotsc, \\mathbf{q}_p\\}$ that spans $\\mathcal{R}(\\mathbf{X})$, i.e.,\n",
"$$\n",
"\\begin{split}\n",
" \\text{span}(\\{\\mathbf{x}_1\\}) &= \\text{span}(\\{\\mathbf{q}_1\\}) \\\\\n",
" \\text{span}(\\{\\mathbf{x}_1, \\mathbf{x}_2\\}) &= \\text{span}(\\{\\mathbf{q}_1, \\mathbf{q}_2\\}) \\\\\n",
" & \\vdots \\\\\n",
" \\text{span}(\\{\\mathbf{x}_1, \\mathbf{x}_2, \\dotsc, \\mathbf{x}_p\\}) &= \\text{span}(\\{\\mathbf{q}_1, \\mathbf{q}_2, \\dotsc, \\mathbf{q}_p\\}) \n",
"\\end{split}\n",
"$$\n",
"and $\\langle \\mathbf{q}_i, \\mathbf{q}_j \\rangle = \\delta_{ij}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* The algorithm:\n",
" 0. Initialize $\\mathbf{q}_1 = \\mathbf{x}_1 / \\|\\mathbf{x}_1\\|_2$\n",
" 0. For $k=2, \\ldots, p$, \n",
"$$\n",
"\\begin{eqnarray*}\n",
"\t\\mathbf{v}_k &=& \\mathbf{x}_k - P_{\\text{span}(\\{\\mathbf{q}_1,\\ldots,\\mathbf{q}_{k-1}\\})}(\\mathbf{x}_k) = \\mathbf{x}_k - \\sum_{j=1}^{k-1} \\langle \\mathbf{q}_j, \\mathbf{x}_k \\rangle \\cdot \\mathbf{q}_j \\\\\n",
"\t\\mathbf{q}_k &=& \\mathbf{v}_k / \\|\\mathbf{v}_k\\|_2\n",
"\\end{eqnarray*}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## GS conducts reduced QR\n",
"\n",
"* $\\mathbf{Q} = [\\mathbf{q}_1 | \\dotsb | \\mathbf{q}_p]$. Obviously $\\mathbf{Q}^T \\mathbf{Q} = \\mathbf{I}_p$.\n",
"\n",
"* Where is $\\mathbf{R}$? \n",
" - Let $r_{jk} = \\langle \\mathbf{q}_j, \\mathbf{x}_k \\rangle$ for $j < k$, and $r_{kk} = \\|\\mathbf{v}_k\\|_2$.\n",
" - Re-write the above expression:\n",
"$$\n",
" r_{kk} \\mathbf{q}_k = \\mathbf{x}_k - \\sum_{j=1}^{k-1} r_{jk} \\cdot \\mathbf{q}_j\n",
"$$\n",
" or\n",
"$$\n",
" \\mathbf{x}_k = r_{kk} \\mathbf{q}_k + \\sum_{j=1}^{k-1} r_{jk} \\cdot \\mathbf{q}_j\n",
" .\n",
"$$ \n",
" - If we let $r_{jk} = 0$ for $j > k$, then $\\mathbf{R}=(r_{jk})$ is upper triangular and\n",
"$$\n",
" \\mathbf{X} = \\mathbf{Q}\\mathbf{R}\n",
" .\n",
"$$\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## {background-color=\"white\"}\n",
"\n",
"![](https://dsc-spidal.github.io/harp/img/daalAlgosNew/HarpIllustrations_QR.png){width=800}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Classical Gram-Schmidt"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"cgs (generic function with 1 method)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using LinearAlgebra\n",
"function cgs(X::Matrix{T}) where T<:AbstractFloat\n",
" n, p = size(X)\n",
" Q = Matrix{T}(undef, n, p)\n",
" R = zeros(T, p, p)\n",
" for j=1:p\n",
" Q[:, j] .= X[:, j]\n",
" for i=1:j-1\n",
" R[i, j] = dot(Q[:, i], X[:, j])\n",
" Q[:, j] .-= R[i, j] * Q[:, i]\n",
" end\n",
" R[j, j] = norm(Q[:, j])\n",
" Q[:, j] /= R[j, j]\n",
" end\n",
" Q, R\n",
"end"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* CGS is *unstable* (we lose orthogonality due to roundoff errors) when columns of $\\mathbf{X}$ are almost collinear."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4×3 Matrix{Float32}:\n",
" 1.0 1.0 1.0\n",
" 1.19209f-7 0.0 0.0\n",
" 0.0 1.19209f-7 0.0\n",
" 0.0 0.0 1.19209f-7"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"e = eps(Float32)\n",
"A = [1f0 1f0 1f0; e 0 0; 0 e 0; 0 0 e]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4×3 Matrix{Float32}:\n",
" 1.0 0.0 0.0\n",
" 1.19209f-7 -0.707107 -0.707107\n",
" 0.0 0.707107 0.0\n",
" 0.0 0.0 0.707107"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Q, R = cgs(A)\n",
"Q"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3×3 Matrix{Float32}:\n",
" 1.0 -8.42937f-8 -8.42937f-8\n",
" -8.42937f-8 1.0 0.5\n",
" -8.42937f-8 0.5 1.0"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"transpose(Q)*Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* `Q` is hardly orthogonal.\n",
"* Where exactly does the problem occur? (HW)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Modified Gram-Schmidt\n",
"\n",
"* The algorithm:\n",
" 0. Initialize $\\mathbf{q}_1 = \\mathbf{x}_1 / \\|\\mathbf{x}_1\\|_2$\n",
" 0. For $k=2, \\ldots, p$, \n",
"$$\n",
"\\small\n",
"\\begin{eqnarray*}\n",
"\t\\mathbf{v}_k &=& \\mathbf{x}_k - P_{\\text{span}(\\{\\mathbf{q}_1,\\ldots,\\mathbf{q}_{k-1}\\})}(\\mathbf{x}_k) = \\mathbf{x}_k - \\sum_{j=1}^{k-1} \\langle \\mathbf{q}_j, \\mathbf{x}_k \\rangle \\cdot \\mathbf{q}_j \\\\\n",
" &=& \\mathbf{x}_k - \\sum_{j=1}^{k-1} \\left\\langle \\mathbf{q}_j, \\mathbf{x}_k - \\sum_{l=1}^{j-1}\\langle \\mathbf{q}_l, \\mathbf{x}_k \\rangle \\mathbf{q}_l \\right\\rangle \\cdot \\mathbf{q}_j \\\\\n",
"\t\\mathbf{q}_k &=& \\mathbf{v}_k / \\|\\mathbf{v}_k\\|_2\n",
"\\end{eqnarray*}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"mgs! (generic function with 1 method)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"function mgs!(X::Matrix{T}) where T<:AbstractFloat\n",
" n, p = size(X)\n",
" R = zeros(T, p, p)\n",
" for j=1:p\n",
" for i=1:j-1\n",
" R[i, j] = dot(X[:, i], X[:, j])\n",
" X[:, j] -= R[i, j] * X[:, i]\n",
" end\n",
" R[j, j] = norm(X[:, j])\n",
" X[:, j] /= R[j, j]\n",
" end\n",
" X, R\n",
"end"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* $\\mathbf{X}$ is overwritten by $\\mathbf{Q}$ and $\\mathbf{R}$ is stored in a separate array."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4×3 Matrix{Float32}:\n",
" 1.0 0.0 0.0\n",
" 1.19209f-7 -0.707107 -0.408248\n",
" 0.0 0.707107 -0.408248\n",
" 0.0 0.0 0.816497"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Q, R = mgs!(copy(A))\n",
"Q"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3×3 Matrix{Float32}:\n",
" 1.0 -8.42937f-8 -4.8667f-8\n",
" -8.42937f-8 1.0 3.14007f-8\n",
" -4.8667f-8 3.14007f-8 1.0"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"transpose(Q)*Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* So MGS is more stable than CGS. However, even MGS is not completely immune to instability."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2×2 Matrix{Float32}:\n",
" 0.7 0.707107\n",
" 0.7 0.707107"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"B = [0.7f0 0.7071068f0; 0.7000001f0 0.7071068f0]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2×2 Matrix{Float32}:\n",
" 0.707107 1.0\n",
" 0.707107 0.0"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Q, R = mgs!(copy(B))\n",
"Q"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2×2 Matrix{Float32}:\n",
" 1.0 0.707107\n",
" 0.707107 1.0"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"transpose(Q)*Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* `Q` is hardly orthogonal.\n",
"* Where exactly the problem occurs? (HW)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Computational cost of CGS and MGS is $\\sum_{k=1}^p 4n(k-1) \\approx 2np^2$.\n",
"\n",
"* There are 3 algorithms to compute QR: (modified) Gram-Schmidt, Householder transform, (fast) Givens transform.\n",
"\n",
" In particular, the **Householder transform** for QR is implemented in LAPACK and thus used in R and Julia."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## QR by Householder transform\n",
"\n",
"![[Alston Scott Householder (1904-1993)](https://en.wikipedia.org/wiki/Alston_Scott_Householder)](http://www-history.mcs.st-andrews.ac.uk/BigPictures/Householder_2.jpeg){width=200}\n",
"\n",
"* **This is the algorithm for solving linear regression in R**.\n",
"\n",
"* Assume again $\\mathbf{X} = [\\mathbf{x}_1 | \\dotsb | \\mathbf{x}_p] \\in \\mathbb{R}^{n \\times p}$ has full column rank."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Gram-Schmidt can be understood as:\n",
"$$\n",
" \\mathbf{X}\\mathbf{R}_{1} \\mathbf{R}_2 \\cdots \\mathbf{R}_n = \\mathbf{Q}_1\n",
"$$\n",
"where $\\mathbf{R}_j$ are a sequence of upper triangular matrices.\n",
"\n",
"* Householder QR does\n",
"$$\n",
" \\mathbf{H}_{p} \\cdots \\mathbf{H}_2 \\mathbf{H}_1 \\mathbf{X} = \\begin{bmatrix} \\mathbf{R}_1 \\\\ \\mathbf{0} \\end{bmatrix},\n",
"$$\n",
"where $\\mathbf{H}_j \\in \\mathbf{R}^{n \\times n}$ are a sequence of Householder transformation matrices.\n",
"\n",
" It yields the **full QR** where $\\mathbf{Q} = \\mathbf{H}_1 \\cdots \\mathbf{H}_p \\in \\mathbb{R}^{n \\times n}$. Recall that CGS/MGS only produces the **reduced QR** decomposition."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"### Householder transformation\n",
"\n",
"* For arbitrary $\\mathbf{v}, \\mathbf{w} \\in \\mathbb{R}^{n}$ with $\\|\\mathbf{v}\\|_2 = \\|\\mathbf{w}\\|_2$, we can construct a **Householder matrix** (or **Householder reflector**)\n",
"$$\n",
" \\mathbf{H} = \\mathbf{I}_n - 2 \\mathbf{u} \\mathbf{u}^T, \\quad \\mathbf{u} = - \\frac{1}{\\|\\mathbf{v} - \\mathbf{w}\\|_2} (\\mathbf{v} - \\mathbf{w}),\n",
"$$\n",
"that transforms $\\mathbf{v}$ to $\\mathbf{w}$:\n",
"$$\n",
"\t\\mathbf{H} \\mathbf{v} = \\mathbf{w}.\n",
"$$\n",
"$\\mathbf{H}$ is symmetric and orthogonal. Calculation of Householder vector $\\mathbf{u}$ costs $4n$ flops for general $\\mathbf{u}$ and $\\mathbf{w}$.\n",
"\n",
"---\n",
"\n",
"![](https://www.cs.utexas.edu/users/flame/laff/alaff-beta/images/Chapter03/reflector.png){width=400}\n",
"\n",
"---\n",
"\n",
"* Now choose $\\mathbf{H}_1$ so that\n",
"$$\n",
"\t\\mathbf{H}_1 \\mathbf{x}_1 = \\begin{bmatrix} \\pm\\|\\mathbf{x}_{1}\\|_2 \\\\ 0 \\\\ \\vdots \\\\ 0 \\end{bmatrix}.\n",
"$$\n",
"That is, $\\mathbf{x} = \\mathbf{x}_1$ and $\\mathbf{w} = \\pm\\|\\mathbf{x}_1\\|_2\\mathbf{e}_1$.\n",
"\n",
"* Left-multiplying $\\mathbf{H}_1$ zeros out the first column of $\\mathbf{X}$ below (1, 1).\n",
"\n",
"---\n",
"\n",
"* Take $\\mathbf{H}_2$ to zero the second column below diagonal:\n",
"$$\n",
"\\mathbf{H}_2\\mathbf{H}_1\\mathbf{X} = \n",
"\\begin{bmatrix} \n",
"\\times & \\times & \\times & \\times \\\\ \n",
"0 & \\boldsymbol{\\times} & \\boldsymbol{\\times} & \\boldsymbol{\\times} \\\\\n",
"0 & \\mathbf{0} & \\boldsymbol{\\times} & \\boldsymbol{\\times} \\\\\n",
"0 & \\mathbf{0} & \\boldsymbol{\\times} & \\boldsymbol{\\times} \\\\\n",
"0 & \\mathbf{0} & \\boldsymbol{\\times} & \\boldsymbol{\\times} \n",
"\\end{bmatrix} \n",
"$$\n",
"\n",
"---\n",
"\n",
"* In general, choose the $j$-th Householder transform $\\mathbf{H}_j = \\mathbf{I}_n - 2 \\mathbf{u}_j \\mathbf{u}_j^T$, where \n",
"$$\n",
" \\mathbf{u}_j = \\begin{bmatrix} \\mathbf{0}_{j-1} \\\\ {\\tilde u}_j \\end{bmatrix}, \\quad {\\tilde u}_j \\in \\mathbb{R}^{n-j+1},\n",
"$$\n",
"to zero the $j$-th column below diagonal. $\\mathbf{H}_j$ takes the form\n",
"$$\n",
"\t\\mathbf{H}_j = \\begin{bmatrix}\n",
"\t\\mathbf{I}_{j-1} & \\\\\n",
"\t& \\mathbf{I}_{n-j+1} - 2 {\\tilde u}_j {\\tilde u}_j^T\n",
"\t\\end{bmatrix} = \\begin{bmatrix}\n",
"\t\\mathbf{I}_{j-1} & \\\\\n",
"\t& {\\tilde H}_{j}\n",
"\t\\end{bmatrix}.\n",
"$$\n",
"\n",
"---\n",
"\n",
"* Applying a Householder transform $\\mathbf{H} = \\mathbf{I} - 2 \\mathbf{u} \\mathbf{u}^T$ to a matrix $\\mathbf{X} \\in \\mathbb{R}^{n \\times p}$\n",
"$$\n",
"\t\\mathbf{H} \\mathbf{X} = \\mathbf{X} - 2 \\mathbf{u} (\\mathbf{u}^T \\mathbf{X})\n",
"$$\n",
"costs $4np$ flops. **Householder updates never entails explicit formation of the Householder matrices.**\n",
"\n",
"* Note applying ${\\tilde H}_j$ to $\\mathbf{X}$ only needs $4(n-j+1)(p-j+1)$ flops."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Algorithm \n",
"\n",
"```Julia\n",
"for j=1:p\n",
" u = House!(X[j:n, j])\n",
" for i=j:p\n",
" X[j:n, j:p] .-= 2u*(u'X[j:n, j:p])\n",
" end\n",
"end\n",
"```\n",
"\n",
"* The process is done in place. Upper triangular part of $\\mathbf{X}$ is overwritten by $\\mathbf{R}_1$ and the essential Householder vectors ($\\tilde u_{j1}$ is normalized to 1) are stored in $\\mathbf{X}[j:n,j]$.\n",
" - Can ensure $u_{j1} \\neq 0$ by a clever choice of the sign in determining vector $\\mathbf{w}$ above (HW).\n",
"\n",
"* At the $j$-th stage\n",
" 1. computing the Householder vector ${\\tilde u}_j$ costs $3(n-j+1)$ flops\n",
" 2. applying the Householder transform ${\\tilde H}_j$ to the $\\mathbf{X}[j:n, j:p]$ block costs $4(n-j+1)(p-j+1)$ flops \n",
" \n",
"* In total we need $\\sum_{j=1}^p [3(n-j+1) + 4(n-j+1)(p-j+1)] \\approx 2np^2 - \\frac 23 p^3$ flops.\n",
"\n",
"---\n",
"\n",
"* Where is $\\mathbf{Q}$? \n",
" - $\\mathbf{Q} = \\mathbf{H}_1 \\cdots \\mathbf{H}_p$. In some applications, it's necessary to form the orthogonal matrix $\\mathbf{Q}$. \n",
"\n",
" Accumulating $\\mathbf{Q}$ costs another $2np^2 - \\frac 23 p^3$ flops.\n",
"\n",
"* When computing $\\mathbf{Q}^T \\mathbf{v}$ or $\\mathbf{Q} \\mathbf{v}$ as in some applications (e.g., solve linear equation using QR), no need to form $\\mathbf{Q}$. Simply apply Householder transforms successively to the vector $\\mathbf{v}$. (HW)\n",
"\n",
"* Computational cost of Householder QR for linear regression: $2n p^2 - \\frac 23 p^3$ (regression coefficients and $\\hat \\sigma^2$) or more (fitted values, s.e., ...)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Householder QR with column pivoting\n",
"\n",
"Consider rank deficient $\\mathbf{X}$.\n",
"\n",
"* At the $j$-th stage, swap the column `X[:, j]` with `X[:, k]` where `k` is the column number in `X[j:n,j:p]` with maximum $\\ell_2$ norm to be the pivot column. If the maximum $\\ell_2$ norm is 0, it stops, ending with\n",
"$$\n",
"\\mathbf{X} \\mathbf{P} = \\mathbf{Q} \\begin{bmatrix} \\mathbf{R}_{11} & \\mathbf{R}_{12} \\\\ \\mathbf{0}_{(n-r) \\times r} & \\mathbf{0}_{(n-r) \\times (p-r)} \\end{bmatrix},\n",
"$$\n",
"where $\\mathbf{P} \\in \\mathbb{R}^{p \\times p}$ is a permutation matrix and $r$ is the rank of $\\mathbf{X}$. QR with column pivoting is rank revealing."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Implementation\n",
"\n",
"* Julia functions: [`qr`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.qr), [`qrfact!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.qr!), or call LAPACK wrapper functions [`geqrf!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.LAPACK.geqrf!) and [`geqp3!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.LAPACK.geqp3!)\n",
"\n",
"* R function: [`qr`](https://stat.ethz.ch/R-manual/R-devel/library/base/html/qr.html). Wraps LAPACK routine [`dgeqp3`](http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga1b0500f49e03d2771b797c6e88adabbb.html) (with `LAPACK=TRUE`; default uses LINPACK, an ancient version of LAPACK)."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"([0.12623784496408763 -1.1278278196026448 -0.8826696457022515; -2.3468794813834966 1.1478628422667982 1.7138424693341203; … ; -0.23920888512829233 -0.23706547458394342 1.0818212935057896; -0.5784508270929073 -0.6809935026697 -0.17040614729185025], [-1.794259674143309, 1.0913793110025305, 0.4266277597108536, -0.6244337204329091, 0.03204861737738283])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X, y"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"3-element Vector{Float64}:\n",
" 0.3795466676698624\n",
" 0.6508866456093487\n",
" 0.39225041956535506"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X \\ y # least squares solution by QR"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3-element Vector{Float64}:\n",
" 0.37954666766986195\n",
" 0.6508866456093481\n",
" 0.3922504195653549"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# same as\n",
"qr(X) \\ y"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3-element Vector{Float64}:\n",
" 0.37954666766986256\n",
" 0.6508866456093485\n",
" 0.3922504195653555"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cholesky(X'X) \\ (X'y) # least squares solution by Cholesky"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"QRPivoted{Float64, Matrix{Float64}}\n",
"Q factor:\n",
"5×5 LinearAlgebra.QRPackedQ{Float64, Matrix{Float64}}:\n",
" -0.0407665 -0.692007 0.318693 0.185526 -0.619257\n",
" 0.757887 -0.0465712 -0.260086 -0.522259 -0.288166\n",
" -0.618938 -0.233814 -0.404293 -0.624592 -0.0931611\n",
" 0.0772486 -0.235405 -0.808135 0.53435 0.00216687\n",
" 0.186801 -0.639431 0.119392 -0.131075 0.724429\n",
"R factor:\n",
"3×3 Matrix{Float64}:\n",
" -3.09661 1.60888 1.84089\n",
" 0.0 1.53501 0.556903\n",
" 0.0 0.0 -1.32492\n",
"permutation:\n",
"3-element Vector{Int64}:\n",
" 1\n",
" 2\n",
" 3"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# QR factorization with column pivoting\n",
"xqr = qr(X, Val(true))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3-element Vector{Float64}:\n",
" 0.3795466676698624\n",
" 0.6508866456093487\n",
" 0.39225041956535506"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xqr \\ y # least squares solution"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.071020016095422e-15"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# thin Q matrix multiplication (a sequence of Householder transforms)\n",
"norm(xqr.Q * xqr.R - X[:, xqr.p]) # recovers X (with columns permuted)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## QR by Givens rotation\n",
"\n",
"* Householder transform $\\mathbf{H}_j$ introduces batch of zeros into a vector.\n",
"\n",
"* **Givens transform** (aka **Givens rotation**, **Jacobi rotation**, **plane rotation**) selectively zeros one element of a vector.\n",
"\n",
"* Overall QR by Givens rotation is less efficient than the Householder method, but is better suited for matrices with structured patterns of nonzero elements.\n",
"\n",
"---\n",
"\n",
"* **Givens/Jacobi rotations**: \n",
"$$\n",
"\\small\n",
"\t\\mathbf{G}(i,k,\\theta) = \\begin{bmatrix} \n",
"\t1 & & 0 & & 0 & & 0 \\\\\n",
"\t\\vdots & \\ddots & \\vdots & & \\vdots & & \\vdots \\\\\n",
"\t0 & & c & & s & & 0 \\\\ \n",
"\t\\vdots & & \\vdots & \\ddots & \\vdots & & \\vdots \\\\\n",
"\t0 & & - s & & c & & 0 \\\\\n",
"\t\\vdots & & \\vdots & & \\vdots & \\ddots & \\vdots \\\\\n",
"\t0 & & 0 & & 0 & & 1 \\end{bmatrix},\n",
"$$\n",
"where $c = \\cos(\\theta)$ and $s = \\sin(\\theta)$. $\\mathbf{G}(i,k,\\theta)$ is orthogonal.\n",
"\n",
"---\n",
"\n",
"* Pre-multiplication by $\\mathbf{G}(i,k,\\theta)^T$ rotates counterclockwise $\\theta$ radians in the $(i,k)$ coordinate plane. If $\\mathbf{x} \\in \\mathbb{R}^n$ and $\\mathbf{y} = \\mathbf{G}(i,k,\\theta)^T \\mathbf{x}$, then\n",
"$$\n",
"\\small\n",
"\ty_j = \\begin{cases}\n",
"\tcx_i - s x_k & j = i \\\\\n",
"\tsx_i + cx_k & j = k \\\\\n",
"\tx_j & j \\ne i, k\n",
"\t\\end{cases}.\n",
"$$\n",
"Apparently if we choose $\\tan(\\theta) = -x_k / x_i$, or equivalently,\n",
"$$\n",
"\\small\n",
"\\begin{eqnarray*}\n",
"\tc = \\frac{x_i}{\\sqrt{x_i^2 + x_k^2}}, \\quad s = \\frac{-x_k}{\\sqrt{x_i^2 + x_k^2}},\n",
"\\end{eqnarray*}\n",
"$$\n",
"then $y_k=0$.\n",
"\n",
"---\n",
"\n",
"* Pre-applying Givens transform $\\mathbf{G}(i,k,\\theta)^T \\in \\mathbb{R}^{n \\times n}$ to a matrix $\\mathbf{A} \\in \\mathbb{R}^{n \\times m}$ only effects two rows of $\\mathbf{\n",
"A}$:\n",
"$$\n",
"\t\\mathbf{A}([i, k], :) \\gets \\begin{bmatrix} c & s \\\\ -s & c \\end{bmatrix}^T \\mathbf{A}([i, k], :),\n",
"$$\n",
"costing $6m$ flops.\n",
"\n",
"* Post-applying Givens transform $\\mathbf{G}(i,k,\\theta) \\in \\mathbb{R}^{m \\times m}$ to a matrix $\\mathbf{A} \\in \\mathbb{R}^{n \\times m}$ only effects two columns of $\\mathbf{A}$:\n",
"$$\n",
"\t\\mathbf{A}(:, [i,k]) \\gets \\mathbf{A}(:, [i,k]) \\begin{bmatrix} c & s \\\\ -s & c \\end{bmatrix},\n",
"$$\n",
"costing $6n$ flops.\n",
"\n",
"---\n",
"\n",
"* QR by Givens: $\\mathbf{G}_t^T \\cdots \\mathbf{G}_1^T \\mathbf{X} = \\begin{bmatrix} \\mathbf{R}_1 \\\\ \\mathbf{0} \\end{bmatrix}$.\n",
"\n",
"![](QR_by_Givens.png){width=600}\n",
"\n",
"---\n",
"\n",
"* Zeros in $\\mathbf{X}$ can also be introduced row-by-row.\n",
"\n",
"* If $\\mathbf{X} \\in \\mathbb{R}^{n \\times p}$, the total cost is $3np^2 - p^3$ flops and $O(np)$ square roots.\n",
"\n",
"* Note each Givens transform can be summarized by a single number, which is stored in the zeroed entry of $\\mathbf{X}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Applications: linear regression\n",
"\n",
"* QR decomposition of $\\mathbf{X}$: $2np^2 - \\frac 23 p^3$ flops.\n",
"\n",
"* Solve $\\mathbf{R}^T \\mathbf{R} \\beta = \\mathbf{R}^T \\mathbf{Q}^T \\mathbf{y}$ for $\\beta$.\n",
"\n",
"* If $\\mathbf{X}$ is full rank, then $\\mathbf{R}$ is invertible, so we only need to solve the triangular system\n",
"$$\n",
" \\mathbf{R} \\beta = \\mathbf{Q}^T \\mathbf{y}\n",
" .\n",
"$$\n",
"Multiplication $\\mathbf{Q}^T \\mathbf{y}$ is done implicitly.\n",
"\n",
"* If need standard errors, compute inverse of $\\mathbf{R}^T \\mathbf{R}$. This involves triangular solves."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Further reading\n",
"\n",
"* Section II.5.3 of [Computational Statistics](https://link.springer.com/book/10.1007%2F978-0-387-98144-4) by James Gentle (2010).\n",
"\n",
"* Chapter 5 of [Matrix Computation](https://www.amazon.com/Computations-Hopkins-Studies-Mathematical-Sciences/dp/1421407949/ref=sr_1_1?keywords=matrix+computation+golub&qid=1567157884&s=gateway&sr=8-1) by Gene Golub and Charles Van Loan (2013)."
]
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"kernelspec": {
"display_name": "Julia 1.9.3",
"language": "julia",
"name": "julia-1.9"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.3"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "65px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"skip_h1_title": true,
"threshold": 4,
"toc_cell": true,
"toc_section_display": "block",
"toc_window_display": true,
"widenNotebook": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}