/* * Copyright 2014-2018 Robin Stuart, Daniel Gredler * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package uk.org.okapibarcode.backend; import static java.nio.charset.StandardCharsets.ISO_8859_1; /** *

Implements Code 128 bar code symbology according to ISO/IEC 15417:2007. * *

Code 128 supports encoding of 8-bit ISO 8859-1 (Latin-1) characters. * *

Setting GS1 mode allows encoding in GS1-128 (also known as UCC/EAN-128). * * @author Robin Stuart * @author Daniel Gredler */ public class Code128 extends Symbol { /** Code sets and code set combinations which the user may require the symbol to use. */ public enum CodeSet { /** Code set A, which can encode ASCII values 0-95, as well as FNC1, FNC2, FNC3 and FNC4. */ A, /** Code set B, which can encode ASCII values 32-127, as well as FNC1, FNC2, FNC3 and FNC4. */ B, /** Code set C, which can encode pairs of numbers, as well as FNC1. */ C, /** Code sets A and B only (suppress code set C). */ AB, /** No code set restrictions (code sets A, B and C are all allowed). */ ABC } private enum Mode { NULL, SHIFTA, LATCHA, SHIFTB, LATCHB, SHIFTC, LATCHC, AORB, ABORC } private enum FMode { SHIFTN, LATCHN, SHIFTF, LATCHF } private enum Composite { OFF, CCA, CCB, CCC } protected static final String[] CODE128_TABLE = { "212222", "222122", "222221", "121223", "121322", "131222", "122213", "122312", "132212", "221213", "221312", "231212", "112232", "122132", "122231", "113222", "123122", "123221", "223211", "221132", "221231", "213212", "223112", "312131", "311222", "321122", "321221", "312212", "322112", "322211", "212123", "212321", "232121", "111323", "131123", "131321", "112313", "132113", "132311", "211313", "231113", "231311", "112133", "112331", "132131", "113123", "113321", "133121", "313121", "211331", "231131", "213113", "213311", "213131", "311123", "311321", "331121", "312113", "312311", "332111", "314111", "221411", "431111", "111224", "111422", "121124", "121421", "141122", "141221", "112214", "112412", "122114", "122411", "142112", "142211", "241211", "221114", "413111", "241112", "134111", "111242", "121142", "121241", "114212", "124112", "124211", "411212", "421112", "421211", "212141", "214121", "412121", "111143", "111341", "131141", "114113", "114311", "411113", "411311", "113141", "114131", "311141", "411131", "211412", "211214", "211232", "2331112" }; private CodeSet codeSet; private Composite compositeMode = Composite.OFF; /** * Creates a new instance. */ public Code128() { this(CodeSet.ABC); } /** *

Creates a new instance, using the specified code set restrictions. * *

NOTE: Unless your application has very specific encoding requirements, it is recommended that no * custom code set restrictions are used, allowing the system to fully optimize the encoded data. * * @param codeSet the code set restrictions to use */ public Code128(CodeSet codeSet) { this.codeSet = codeSet; } /** *

Sets the code set restrictions. The default value is {@link CodeSet#ABC}, which allows the use of any code set. * *

NOTE: Unless your application has very specific encoding requirements, it is recommended that no * custom code set restrictions are used, allowing the system to fully optimize the encoded data. * * @param codeSet the code set restrictions to use */ public void setCodeSet(CodeSet codeSet) { this.codeSet = codeSet; } /** * Returns the code set restrictions. The default value is {@link CodeSet#ABC}, which allows the use of any code set. * * @return the code set restrictions used */ public CodeSet getCodeSet() { return codeSet; } protected void setCca() { compositeMode = Composite.CCA; } protected void setCcb() { compositeMode = Composite.CCB; } protected void setCcc() { compositeMode = Composite.CCC; } public void unsetCc() { compositeMode = Composite.OFF; } @Override public boolean supportsGs1() { return true; } @Override protected boolean supportsFnc2() { return true; } @Override protected boolean supportsFnc3() { return true; } @Override protected boolean supportsFnc4() { return true; } @Override protected void encode() { int i, j, k; int input_point = 0; Mode mode, last_mode; Mode last_set, current_set; double glyph_count; int bar_characters = 0, total_sum = 0; FMode f_state = FMode.LATCHN; Mode[] mode_type = new Mode[200]; int[] mode_length = new int[200]; int[] values = new int[200]; int c; int linkage_flag = 0; int index_point = 0; int read = 0; inputData = toBytes(content, ISO_8859_1); if (inputData == null) { throw OkapiInputException.invalidCharactersInInput(); } int sourcelen = inputData.length; if (sourcelen > 170) { throw OkapiInputException.inputTooLong(); } /* Decide on mode using same system as PDF417 and rules of ISO 15417 Annex E */ if (sourcelen > 0) { int letter = inputData[input_point]; int numbers = (letter >= '0' && letter <= '9' ? 1 : 0); mode = findSubset(letter, numbers); mode_type[0] = mode; mode_length[0] += length(letter, mode); for (i = 1; i < sourcelen; i++) { letter = inputData[i]; last_mode = mode; mode = findSubset(letter, numbers); if (mode == last_mode) { mode_length[index_point] += length(letter, mode); } else { index_point++; mode_type[index_point] = mode; mode_length[index_point] = length(letter, mode); } if (letter >= '0' && letter <= '9') { numbers++; } else { numbers = 0; } } index_point++; index_point = reduceSubsetChanges(mode_type, mode_length, index_point); } /* Put set data into set[] (the calculated mode for each character) */ Mode[] set = new Mode[200]; read = 0; if (sourcelen > 0) { for (i = 0; i < index_point; i++) { for (j = 0; j < mode_length[i]; j++) { set[read] = mode_type[i]; read++; } } } else { set[0] = Mode.LATCHB; // empty barcode, avoid errors below } /* Resolve odd length LATCHC blocks */ int cs = 0, nums = 0, fncs = 0; for (i = 0; i < read; i++) { if (set[i] == Mode.LATCHC) { cs++; if (inputData[i] >= '0' && inputData[i] <= '9') { nums++; } else if (inputData[i] == FNC1) { fncs++; } } else { resolveOddCs(set, i, cs, nums, fncs); cs = 0; nums = 0; fncs = 0; } } resolveOddCs(set, i, cs, nums, fncs); /* Adjust for strings which start with shift characters - make them latch instead */ if (set[0] == Mode.SHIFTA) { i = 0; do { set[i] = Mode.LATCHA; i++; } while (set[i] == Mode.SHIFTA); } if (set[0] == Mode.SHIFTB) { i = 0; do { set[i] = Mode.LATCHB; i++; } while (set[i] == Mode.SHIFTB); } /* Detect extended ASCII characters */ FMode[] fset = new FMode[200]; for (i = 0; i < sourcelen; i++) { int ch = inputData[i]; if (ch >= 128 && ch != FNC1 && ch != FNC2 && ch != FNC3 && ch != FNC4) { fset[i] = FMode.SHIFTF; } else { fset[i] = FMode.LATCHN; } } /* Decide when to latch to extended mode - Annex E note 3 */ j = 0; for (i = 0; i < sourcelen; i++) { if (fset[i] == FMode.SHIFTF) { j++; } else { j = 0; } if (j >= 5) { for (k = i; k > (i - 5); k--) { fset[k] = FMode.LATCHF; } } if ((j >= 3) && (i == (sourcelen - 1))) { for (k = i; k > (i - 3); k--) { fset[k] = FMode.LATCHF; } } } /* Decide if it is worth reverting to 646 encodation for a few characters as described in 4.3.4.2 (d) */ for (i = 1; i < sourcelen; i++) { if ((fset[i - 1] == FMode.LATCHF) && (fset[i] == FMode.LATCHN)) { /* Detected a change from 8859-1 to 646 - count how long for */ /* There is one exception: code set C cannot shift in and out of extended mode */ for (j = 0; fset[i + j] == FMode.LATCHN && set[i + j] != Mode.LATCHC && set[i + j] != Mode.SHIFTC && i + j < sourcelen; j++) { // keep counting } if ((j < 5) || ((j < 3) && ((i + j) == (sourcelen - 1)))) { /* Uses the same figures recommended by Annex E note 3 */ /* Change to shifting back rather than latching back */ for (k = 0; k < j; k++) { fset[i + k] = FMode.SHIFTN; } } } } /* Now we can calculate how long the barcode is going to be - and stop it from being too long */ last_set = Mode.NULL; glyph_count = 0.0; for (i = 0; i < sourcelen; i++) { if ((set[i] == Mode.SHIFTA) || (set[i] == Mode.SHIFTB)) { glyph_count += 1.0; } if ((fset[i] == FMode.SHIFTF) || (fset[i] == FMode.SHIFTN)) { glyph_count += 1.0; } if (((set[i] == Mode.LATCHA) || (set[i] == Mode.LATCHB)) || (set[i] == Mode.LATCHC)) { if (set[i] != last_set) { last_set = set[i]; glyph_count += 1.0; } } if (i == 0) { if (fset[i] == FMode.LATCHF) { glyph_count += 2.0; } } else { if ((fset[i] == FMode.LATCHF) && (fset[i - 1] != FMode.LATCHF)) { glyph_count += 2.0; } if ((fset[i] != FMode.LATCHF) && (fset[i - 1] == FMode.LATCHF)) { glyph_count += 2.0; } } if (set[i] == Mode.LATCHC) { if (inputData[i] == FNC1) { glyph_count += 1.0; } else { glyph_count += 0.5; } } else { glyph_count += 1.0; } } if (glyph_count > 80.0) { throw OkapiInputException.inputTooLong(); } info("Encoding: "); /* So now we know what start character to use - we can get on with it! */ if (readerInit) { /* Reader Initialisation mode */ switch (set[0]) { case LATCHA: values[0] = 103; current_set = Mode.LATCHA; values[1] = 96; bar_characters++; info("STARTA FNC3 "); break; case LATCHB: values[0] = 104; current_set = Mode.LATCHB; values[1] = 96; bar_characters++; info("STARTB FNC3 "); break; default: /* Start C */ values[0] = 104; values[1] = 96; values[2] = 99; bar_characters += 2; current_set = Mode.LATCHC; info("STARTB FNC3 CODEC "); break; } } else { /* Normal mode */ switch (set[0]) { case LATCHA: values[0] = 103; current_set = Mode.LATCHA; info("STARTA "); break; case LATCHB: values[0] = 104; current_set = Mode.LATCHB; info("STARTB "); break; default: values[0] = 105; current_set = Mode.LATCHC; info("STARTC "); break; } } bar_characters++; if (inputDataType == DataType.GS1) { values[1] = 102; bar_characters++; info("FNC1 "); } if (fset[0] == FMode.LATCHF) { switch (current_set) { case LATCHA: values[bar_characters] = 101; values[bar_characters + 1] = 101; info("FNC4 FNC4 "); break; case LATCHB: values[bar_characters] = 100; values[bar_characters + 1] = 100; info("FNC4 FNC4 "); break; } bar_characters += 2; f_state = FMode.LATCHF; } /* Encode the data */ read = 0; while (read < sourcelen) { if (read != 0) { if ((fset[read] == FMode.LATCHN) && (f_state == FMode.LATCHF)) { /* Latch end of extended mode */ switch (current_set) { case LATCHA: values[bar_characters] = 101; values[bar_characters + 1] = 101; info("FNC4 FNC4 "); break; case LATCHB: values[bar_characters] = 100; values[bar_characters + 1] = 100; info("FNC4 FNC4 "); break; } bar_characters += 2; f_state = FMode.LATCHN; } } if ((read != 0) && (set[read] != current_set)) { /* Latch different code set */ switch (set[read]) { case LATCHA: values[bar_characters] = 101; bar_characters++; current_set = Mode.LATCHA; info("CODEA "); break; case LATCHB: values[bar_characters] = 100; bar_characters++; current_set = Mode.LATCHB; info("CODEB "); break; case LATCHC: values[bar_characters] = 99; bar_characters++; current_set = Mode.LATCHC; info("CODEC "); break; } } if (read != 0) { if ((fset[read] == FMode.LATCHF) && (f_state == FMode.LATCHN)) { /* Latch beginning of extended mode */ switch (current_set) { case LATCHA: values[bar_characters] = 101; values[bar_characters + 1] = 101; info("FNC4 FNC4 "); break; case LATCHB: values[bar_characters] = 100; values[bar_characters + 1] = 100; info("FNC4 FNC4 "); break; } bar_characters += 2; f_state = FMode.LATCHF; } } if ((fset[read] == FMode.SHIFTF && f_state != FMode.LATCHF) || (fset[read] == FMode.SHIFTN && f_state != FMode.LATCHN)) { /* Shift to or from extended mode */ switch (current_set) { case LATCHA: values[bar_characters] = 101; info("FNC4 "); break; case LATCHB: values[bar_characters] = 100; info("FNC4 "); break; } bar_characters++; } if ((set[read] == Mode.SHIFTA && current_set != Mode.LATCHA) || (set[read] == Mode.SHIFTB && current_set != Mode.LATCHB)) { /* Insert shift character */ values[bar_characters] = 98; info("SHFT "); bar_characters++; } /* Encode data characters */ c = inputData[read]; switch (set[read]) { case SHIFTA: case LATCHA: if (c == FNC1) { values[bar_characters] = 102; info("FNC1 "); } else if (c == FNC2) { values[bar_characters] = 97; info("FNC2 "); } else if (c == FNC3) { values[bar_characters] = 96; info("FNC3 "); } else if (c == FNC4) { values[bar_characters] = 101; info("FNC4 "); } else if (c > 127) { if (c < 160) { values[bar_characters] = (c - 128) + 64; } else { values[bar_characters] = (c - 128) - 32; } infoSpace(values[bar_characters]); } else { if (c < 32) { values[bar_characters] = c + 64; } else { values[bar_characters] = c - 32; } infoSpace(values[bar_characters]); } bar_characters++; read++; break; case SHIFTB: case LATCHB: if (c == FNC1) { values[bar_characters] = 102; info("FNC1 "); } else if (c == FNC2) { values[bar_characters] = 97; info("FNC2 "); } else if (c == FNC3) { values[bar_characters] = 96; info("FNC3 "); } else if (c == FNC4) { values[bar_characters] = 100; info("FNC4 "); } else if (c > 127) { values[bar_characters] = c - 32 - 128; infoSpace(values[bar_characters]); } else { values[bar_characters] = c - 32; infoSpace(values[bar_characters]); } bar_characters++; read++; break; case LATCHC: if (c == FNC1) { values[bar_characters] = 102; info("FNC1 "); bar_characters++; read++; } else { int d = inputData[read + 1]; int weight = (10 * (c - '0')) + (d - '0'); values[bar_characters] = weight; infoSpace(values[bar_characters]); bar_characters++; read += 2; } break; } } infoLine(); /* "...note that the linkage flag is an extra code set character between the last data character and the Symbol Check Character" (GS1 Specification) */ /* Linkage flags in GS1-128 are determined by ISO/IEC 24723 section 7.4 */ switch (compositeMode) { case CCA: case CCB: /* CC-A or CC-B 2D component */ switch(set[sourcelen - 1]) { case LATCHA: linkage_flag = 100; break; case LATCHB: linkage_flag = 99; break; case LATCHC: linkage_flag = 101; break; } infoLine("Linkage Flag: " + linkage_flag); break; case CCC: /* CC-C 2D component */ switch(set[sourcelen - 1]) { case LATCHA: linkage_flag = 99; break; case LATCHB: linkage_flag = 101; break; case LATCHC: linkage_flag = 100; break; } infoLine("Linkage Flag: " + linkage_flag); break; default: break; } if (linkage_flag != 0) { values[bar_characters] = linkage_flag; bar_characters++; } infoLine("Data Codewords: " + bar_characters); /* Check digit calculation */ for (i = 0; i < bar_characters; i++) { total_sum += (i == 0 ? values[i] : values[i] * i); } int checkDigit = total_sum % 103; infoLine("Check Digit: " + checkDigit); /* Build pattern string */ StringBuilder dest = new StringBuilder((6 * bar_characters) + 6 + 7); for (i = 0; i < bar_characters; i++) { dest.append(CODE128_TABLE[values[i]]); } dest.append(CODE128_TABLE[checkDigit]); dest.append(CODE128_TABLE[106]); // stop character /* Readable text */ if (inputDataType != DataType.GS1) { readable = removeFncEscapeSequences(content); if (inputDataType == DataType.HIBC) { readable = "*" + readable + "*"; } } if (compositeMode == Composite.OFF) { pattern = new String[] { dest.toString() }; row_height = new int[] { -1 }; row_count = 1; } else { /* Add the separator pattern for composite symbols */ pattern = new String[] { "0" + dest, dest.toString() }; row_height = new int[] { 1, -1 }; row_count = 2; } } private static String removeFncEscapeSequences(String s) { return s.replace(FNC1_STRING, "") .replace(FNC2_STRING, "") .replace(FNC3_STRING, "") .replace(FNC4_STRING, ""); } private void resolveOddCs(Mode[] set, int i, int cs, int nums, int fncs) { if ((nums & 1) != 0) { int index; Mode m; if (codeSet == CodeSet.C) { // User wants to force the use of code set C only, but it's not possible throw new OkapiInputException("Unable to encode the specified data using only code set C"); } if (i - cs == 0 || fncs > 0) { // Rule 2: first block -> swap last digit to A or B index = i - 1; if (index + 1 < set.length && set[index + 1] != null && set[index + 1] != Mode.LATCHC) { // next block is either A or B -- match it m = set[index + 1]; } else { // next block is C, or there is no next block -- just latch to B m = Mode.LATCHB; } } else { // Rule 3b: subsequent block -> swap first digit to A or B // Note that we make an exception for C blocks which contain one (or more) FNC1 characters, // since swapping the first digit would place the FNC1 in an invalid position in the block index = i - nums; if (index - 1 >= 0 && set[index - 1] != null && set[index - 1] != Mode.LATCHC) { // previous block is either A or B -- match it m = set[index - 1]; } else { // previous block is C, or there is no previous block -- just latch to B m = Mode.LATCHB; } } set[index] = m; } } private Mode findSubset(int letter, int numbers) { Mode mode; if (letter == FNC1) { if (numbers % 2 == 0) { /* ISO 15417 Annex E Note 2 */ /* FNC1 may use subset C, so long as it doesn't break data into an odd number of digits */ mode = Mode.ABORC; } else { mode = Mode.AORB; } } else if (letter == FNC2 || letter == FNC3 || letter == FNC4) { mode = Mode.AORB; } else if (letter <= 31) { mode = Mode.SHIFTA; } else if ((letter >= 48) && (letter <= 57)) { mode = Mode.ABORC; } else if (letter <= 95) { mode = Mode.AORB; } else if (letter <= 127) { mode = Mode.SHIFTB; } else if (letter <= 159) { mode = Mode.SHIFTA; } else if (letter <= 223) { mode = Mode.AORB; } else { mode = Mode.SHIFTB; } // if the user wishes to force the use of certain code sets, take that into account if (codeSet == CodeSet.A) { if (mode == Mode.ABORC || mode == Mode.AORB || mode == Mode.SHIFTA) { mode = Mode.SHIFTA; } else { throw new OkapiInputException("Unable to encode the specified data using only code set A"); } } else if (codeSet == CodeSet.B) { if (mode == Mode.ABORC || mode == Mode.AORB || mode == Mode.SHIFTB) { mode = Mode.SHIFTB; } else { throw new OkapiInputException("Unable to encode the specified data using only code set B"); } } else if (codeSet == CodeSet.C) { if (mode == Mode.ABORC) { mode = Mode.SHIFTC; } else { throw new OkapiInputException("Unable to encode the specified data using only code set C"); } } else if (codeSet == CodeSet.AB) { if (mode == Mode.ABORC) { mode = Mode.AORB; } } return mode; } private int length(int letter, Mode mode) { if (letter == FNC1 && mode == Mode.ABORC) { /* ISO 15417 Annex E Note 2 */ /* Logical length used for making subset switching decisions, not actual length */ return 2; } else { return 1; } } /** Implements rules from ISO 15417 Annex E. Returns the updated index point. */ private int reduceSubsetChanges(Mode[] mode_type, int[] mode_length, int index_point) { int totalLength = 0; int length; Mode current, last, next, nextShift; for (int i = 0; i < index_point; i++) { current = mode_type[i]; length = mode_length[i]; if (i != 0) { last = mode_type[i - 1]; } else { last = Mode.NULL; } if (i != index_point - 1) { next = mode_type[i + 1]; } else { next = Mode.NULL; } /* The next shift mode is the location of the next fully-known code set. */ /* Everything between here and there will be either A/B/C or A/B. */ nextShift = Mode.NULL; for (int j = i + 1; j < index_point; j++) { if (mode_type[j] == Mode.SHIFTA || mode_type[j] == Mode.SHIFTB || mode_type[j] == Mode.SHIFTC) { nextShift = mode_type[j]; break; } } /* ISO 15417 Annex E Note 2 */ /* Calculate difference between logical length and actual length in this block */ int extraLength = 0; for (int j = 0; j < length - extraLength; j++) { if (length(inputData[totalLength + j], current) == 2) { extraLength++; } } if (i == 0) { /* first block */ if ((index_point == 1) && ((length == 2) && (current == Mode.ABORC))) { /* Rule 1a */ mode_type[i] = Mode.LATCHC; current = Mode.LATCHC; } if (current == Mode.ABORC) { if (length >= 4) { /* Rule 1b */ mode_type[i] = Mode.LATCHC; current = Mode.LATCHC; } else { mode_type[i] = Mode.AORB; current = Mode.AORB; } } if (current == Mode.SHIFTA) { /* Rule 1c */ mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if ((current == Mode.AORB) && (nextShift == Mode.SHIFTA)) { /* Rule 1c */ mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if (current == Mode.AORB) { /* Rule 1d */ mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } if (current == Mode.SHIFTC) { /* user forced use of code set C */ mode_type[i] = Mode.LATCHC; current = Mode.LATCHC; } } else { if ((current == Mode.ABORC) && (length >= 4)) { /* Rule 3 */ mode_type[i] = Mode.LATCHC; current = Mode.LATCHC; } if (current == Mode.ABORC) { mode_type[i] = Mode.AORB; current = Mode.AORB; } if ((current == Mode.AORB) && (last == Mode.LATCHA)) { mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if ((current == Mode.AORB) && (last == Mode.LATCHB)) { mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } if ((current == Mode.AORB) && (nextShift == Mode.SHIFTA)) { mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if ((current == Mode.AORB) && (nextShift == Mode.SHIFTB)) { mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } if (current == Mode.AORB) { mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } if ((current == Mode.SHIFTA) && (length > 1)) { /* Rule 4 */ mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if ((current == Mode.SHIFTB) && (length > 1)) { /* Rule 5 */ mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } if ((current == Mode.SHIFTA) && (last == Mode.LATCHA)) { mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if ((current == Mode.SHIFTB) && (last == Mode.LATCHB)) { mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } if ((current == Mode.SHIFTA) && (next == Mode.AORB)) { mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if ((current == Mode.SHIFTB) && (next == Mode.AORB)) { mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } if ((current == Mode.SHIFTA) && (last == Mode.LATCHC)) { mode_type[i] = Mode.LATCHA; current = Mode.LATCHA; } if ((current == Mode.SHIFTB) && (last == Mode.LATCHC)) { mode_type[i] = Mode.LATCHB; current = Mode.LATCHB; } } /* Rule 2 is implemented elsewhere, Rule 6 is implied */ /* ISO 15417 Annex E Note 2 */ /* Convert logical length back to actual length for this block, now that we've decided on a subset */ mode_length[i] -= extraLength; totalLength += mode_length[i]; } return combineSubsetBlocks(mode_type, mode_length, index_point); } /** Modifies the specified mode and length arrays to combine adjacent modes of the same type, returning the updated index point. */ private int combineSubsetBlocks(Mode[] mode_type, int[] mode_length, int index_point) { /* bring together same type blocks */ if (index_point > 1) { for (int i = 1; i < index_point; i++) { if (mode_type[i - 1] == mode_type[i]) { /* bring together */ mode_length[i - 1] = mode_length[i - 1] + mode_length[i]; /* decrease the list */ for (int j = i + 1; j < index_point; j++) { mode_length[j - 1] = mode_length[j]; mode_type[j - 1] = mode_type[j]; } index_point--; i--; } } } return index_point; } /** {@inheritDoc} */ @Override protected int[] getCodewords() { return getPatternAsCodewords(6); } }