
Data Day:

Introduction to Git and
GitHub

Prepared by DIME Analytics
dimeanalytics@worldbank.org

Presented by Benjamin Daniels
bdaniels@worldbank.org

mailto:DIMEAnalytics_Internal_Use_Only@worldbank.org
mailto:bdaniels@worldbank.org

What is Git?
What is GitHub?
First, Git is not GitHub.
Second, GitHub is not Git.

Git is a version control software.
It organizes versions of every file in
a project in an orderly way. It is
approved for use on WB machines.

GitHub is a development platform.
It manages contributions to projects
in an orderly way. It is a standard
tool in code development and the
Bank has a subscription.

Together, Git and GitHub allow you
to avoid the “FINAL”.doc problem.
(For code, not Word documents)

Git:
The basics
Git is a software that runs on your
computer. It stores “version
histories” of your files in a way that
is really useful, but that you mainly
don’t need to understand.

The complete history of a project is
called a “repository”. A repository
can be viewed in a desktop “client”,
such as GitKraken, shown here.

A very simple repository would look
much like this one: it has a series of
versions called commits that make
up its history. Each commit is a
record of the changes between itself
and the previous commit.

http://gitkraken.com/

GitHub:
The basics
GitHub is a website that you can
use to manage collaboration with
other people.

This has two main forms: first,
managing and tracking tasks
(known generally as “issues”), and
second, allowing people to submit
new materials to the repository.

A very simple issue looks like this
one: A problem is posed, and after
some discussion a solution is
submitted as a “pull request” to the
repository.

Git & GitHub:
The basics
Mastering Git with GitHub gives you
an awesome tool for managing your
own team’s workflow. Having both
your data, code, and code history
available for all authors makes an
incredibly useful tool.

Plus, Git protects all your files much
better than other software.

Repositories can optionally be
published publicly, which is
increasing popular for process
transparency. Shown here: The
World Bank Atlas of Sustainable
Development Goals.

So how does it work?

Part 1: Creating a repository
and making commits

Create a new
repository on GitHub

1

2

4

3

Your repository
has a README
README.md is a common
filename. In fact, it’s so common
that if you have one in a folder,
GitHub will automatically display its
contents when you are browsing
that folder.

You should write short READMEs
for every folder. Let’s edit this one.

Click on the edit button, and add
something like your name here.

Add some text and
“Commit changes”
Unlike a regular editor, the built-in
editor on GitHub has no “save”
button. “Saving” is not something Git
or GitHub know how to do.

Git and GitHub are NOT file
managers, or code editors.
Therefore you will rarely, if ever,
make file changes from within Git or
GitHub.

Most people already have a
preferred way to edit their files. You
can stick to yours without any
trouble.

The repo records
changes for you
Instead of “saving” the file, you have
done something called “committing
changes”.

By doing that, you have
simultaneously:
• Changed the contents of the file

reflected by GitHub;
• Recorded when you did it; and
• Noted what you did

(“Update README.md”)

This is Git fundamental feature #1.

Git creates
commits
The most important thing Git does is
create “commits”.

A commit is a snapshot of the entire
working directory. Each commit has
a name and a timestamp.

You have to tell Git when to create
new commits. This is probably the
biggest difference from whatever
you do now.

Commits name
past versions
Git watches your saved changes

But it only stores them when you tell
it to: this is a “commit”

You can name these so that they
make sense and are easy to find
when you need them in the future
(you always need them when you
least expect, right?)

Required Reading: Git vs Dropbox
https://michaelstepner.com/blog/git-
vs-dropbox

https://michaelstepner.com/blog/git-vs-dropbox

How is that better
than Dropbox?
Dropbox stores a new
snapshot every time you
save each file.

You save your work often
(right?)

So Dropbox stores many
similar images of your files

But you can’t tell which is
which!

Clone the repo with
your desktop client
Cloning the repository makes a
complete copy of it at the new
location, including the entire history
(remember, the repository is the
history).

Cloning from GitHub to your local
computer is a good way to start a
repository.

Clone the repo with
your desktop client
Cloning the repository makes a
complete copy of it at the new
location, including the entire history
(remember, the repository is the
history).

Cloning from GitHub to your local
computer is a good way to start a
repository.

(I know it seems like a lot of steps
now, but this becomes second
nature. Bear with me, and use this
presentation as a guide!)

2

1

3

4

The “local” and “remote” instances are identical

Add some kind of file locally

The local and remote are not in sync

Git notes changes as
“work in progress”
1. “Stage” your changes to add

them to the queue to be
committed.

2. “Name” your changes
informatively – a short sentence
will do nicely.

3. “Commit” your changes to add
them to the version history. You
will see the local copy of the
repository move ahead of the
GitHub (remote) copy.

4. “Push” your changes to sync the
remote (GitHub) repository with
your local copy.

2

1

3

4

The local and
remote are in sync
Each item records when it was last
modified – using the corresponding
name and timestamp form the
commit that modified it.

So how does it work?

Part 2: Creating branches in
a repository

Git creates
branches
Branches are the “killer feature” of
Git. Nearly every advanced Git
usage you learn will be about how to
manage branches.

Branches enable different people to
work on the same thing at the same
time, and they enable you to view
different versions of your files.

Branching allows you to move
forwards or backwards in time; and
to move “horizontally” in time
through various concurrent versions.

Branches name
current versions
Each “branch” points to a commit,
usually the latest version in some
development workflow. You can
switch between branches locally.
When you do, your working
directory will look exactly as it did
when that commit was made.

Every contributor can be on any
branch they like at any time – past
or current.

This means various experimental
changes can be made
simultaneously without affecting the
current edition of a product.

How is that better
than Dropbox?
In Dropbox, there can be only one
living version of a file at any time –
otherwise a “conflicted copy” is
created. This means nobody can
edit the same file at the same time:
Dropbox has no concurrency.

Worse, if you “roll back” a file to a
previous version to see what it
looked like, this affects everyone’s
current version, even if you don’t
want it to.

Finally, Dropbox versions are costly
(computationally) – so they delete
them often without telling you.

Open your repository
in GitKraken

Create a branch
called develop
The name develop is a common
name for a second branch. In one
popular workflow model, master
always holds a released product,
and develop is the workstream for
the next version.

Right-click on the commit named
“Initial commit”, and select “Create
branch here”.

Open your repository
in GitKraken
You should now see that the
develop branch is “checked out” in
this repo.

You should also see that the
develop branch “points to” the “Initial
commit”.

What does that mean?

It means that you have used Git to
set your working directory to reflect
the state recorded in the “Initial
commit”. Go check!

Where’s my file?

If you look in the working directory
associated with “my-new-repo”, you
will see that it is exactly in the state
it was when you initialized it.

Don’t ask where your file “is”. You
really don’t need to know.

What you do need to know is that by
“checking out” the master branch, it
will be in the working directory
again. Try it!

Check out the
master branch
This will return your working
directory to the state recorded in the
commit named “Added my-
dofile.do”. This is why naming your
commits is important!

Finally, go ahead and check out the
develop branch again, so we can do
some work there. Go back and forth
a couple times if you like, to
convince yourself how this works.

Make sure you know which branch
you have checked out when you are
done! You can only know this
information from the client, not from
the working directory.

Add a different file to your working directory

Stage and commit
your changes
Navigate back to the client and view
the “work in progress” at the top of
the tree.

Stage, name, and commit your
changes.

Stage and commit
your changes
Navigate back to the client and view
the “work in progress” at the top of
the tree.

Stage, name, and commit your
changes.

After doing this, you will see that the
develop branch has “diverged” from
the master branch.

Try switching back and forth
between them and see what
happens in the working directory.

So how does it work?

Part 3: Merging branches
using GitHub

GitHub manages
contributions
GitHub provides interfaces for
assigning tasks, submitting updates,
and approving and accepting
contributions into a project.

Like Git, everything you ever do is
saved in an orderly way, so you can
always look back and see when and
why you did (or undid) something.

It is designed to make project
record-keeping and task-
management as part of your
workflow.

Push the develop
branch to GitHub
Navigate back to the client and
make sure the develop branch is
checked out.

“Push” this branch to GitHub (the
“origin”). You will get a notification
that the branch does not yet exist
there, and ask you to name it. The
default is develop; stick with that.

Push the develop
branch to GitHub
Navigate back to the client and
make sure the develop branch is
checked out.

“Push” this branch to GitHub (the
“origin”). You will get a notification
that the branch does not yet exist
there, and ask you to name it. The
default is develop; stick with that.

You’ll know it’s worked when the
client reflects the existence and
location of the develop branch on
origin.

Go to GitHub and
open a pull request
When there are recent changes,
GitHub will notify you and ask you if
you want to merge the changes.

This is not the most common way to
start a pull request, but it will do for
now.

Create and merge the pull request

Check out and pull
the master branch
In your client, you will at first see
that the “origin” copy of the master
branch is ahead of the local copy.

That’s because you merged it on
GitHub, and all operations in Git and
GitHub are manual.

Check out and pull
the master branch
In your client, you will at first see
that the “origin” copy of the master
branch is ahead of the local copy.

That’s because you merged it on
GitHub, and all operations in Git and
GitHub are manual.

When you “pull” the branch, you
update your local copy to reflect the
origin copy, and you will see the
local pointer for the branch move
forward.

What did this do?

Merging consolidates
changes
In the local working directory, you
will now see that both files now exist
in the same commit, “Merge pull
request #1 from bbdaniels/develop”,
on the master branch.

If people made conflicting changes
to the same files, this process also
gives you a chance to resolve those,
and this and other workflows will be
covered in a later session.

That’s all for now!

Homework: play with toys
• Practice Git branching at:

https://learngitbranching.js.org
• Type [levels]
• Complete Level 1-4 of

“Introduction Sequence” on
the Main tab

• Complete all levels on the
Remote tab

https://learngitbranching.js.org/

Thank you!

