

WRFDA Background Error Estimation

Syed RH Rizvi National Center For Atmospheric Research NCAR/ESSL/MMM, Boulder, CO-80307, USA rizvi@ucar.edu

July, 2014 WRFDA Tutorial

Talk overview

- What is Background Error (BE) ?
- Some properties of BE
- Role of BE in WRFDA
- Various components of BE
- Impact of BE on minimization and forecasts
- How to compute ("gen_be" utility)?
- Single Observation Test
- Upcoming new features
- Introduction to Practice Session

What is **BE**?

- The BE covariance matrix describes the probability distribution function (PDF) of forecast errors, assumed Gaussian
- BE is the covariance of (forecast truth) in analysis control variable space

BE = <(x-x^t), (x-x^t)^T>

- Since truth (x^t) is not known, it needs to be estimated
- Common methods for estimating BE
 - Innovation Method
 - NMC Method: (x-x^t) ≈ (x^{t1} x^{t2})

(Forecast differences valid for the same time)

■ Ensemble Method: (x-x^t) ≈ (x^{ens} - <x^{ens}>)

= (Ensemble - Ensemble mean)

Some properties of BE

- B matrix is square and symmetric. Thus, its eigenvalues are all real and eigenvectors are mutually orthogonal
- It is positive semi-definite. Thus, its eigenvalues are all non-negative. It is very important property because without this minimum of the cost function may not exist
- It consists of correlation (C) and variance (Σ) parts, B = $\Sigma C \Sigma$
- If V is an orthogonal matrix $(V^T V = I)$ transforming vector X to U (U = VX), then the background error for X (B) and of U (B^u) will be related as $B^{u} = V^{T} B V$
- A special representation of **B** is the eigen-representation, where **B**^u is diagonalized. Eigenvectors of **B** forms the columns of **V** and the eigenvalues of B are the diagonal elements of B^u

Role of BE

• B spreads information, both vertically & horizontally with proper weights to observations and FG. This effect may be understood by introducing a single observation of one (kth) element of x in the analysis equation

 $\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{B}\mathbf{H}^{\mathsf{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1}[\mathbf{y}^{o}-\mathbf{H}(\mathbf{x}^{b})]$

In this case *H* or H is a row vector with all elements zero except the kth, which is = 1 and $y^{o} = y$; $R = \sigma^{2}$. Thus analysis equation gives,

$$x_{l}^{a} = x_{l}^{b} + B_{lk} \frac{y - x_{k}^{b}}{B_{kk} + \sigma^{2}} = x_{l}^{b} + \frac{B_{lk}}{B_{kk} + \sigma^{2}} y - \frac{B_{lk}}{B_{kk} + \sigma^{2}} x_{k}^{b}$$

Thus non-zero off-diagonal terms for **B** leads to analysis increment for **I**th element

- In data assimilation, this is not the only mechanism of spreading the information. Observation operators (*H* & H) also does this job
- If σ² << B_{kk} ; x_k^a ≈ y and if σ² >> B_{kk}; x_k^a ≈ x_k^b Thus if BE is very large compared to observation error, analysis is closer to observation otherwise it is closer to FG

- **B** matrix spreads information between variables and imposes balance
- Since **B** is the last operator in the analysis equation, the analysis increments lies in the subspace of **B**.
- **B** provides a means by which observations can act in synergy. **B** allows observations to reinforce each other in a way that improves the analysis to a degree that is greater than their individual contributions.
- **B** is used for preconditioning the analysis equation.

How BE is represented in WRFDA?

• It is represented with a suitable choice of U as follows

 $\mathbf{B} = \mathbf{U}^{\mathsf{T}} \mathbf{U}$ with $\mathbf{U} = \mathbf{U}_{\mathsf{p}} \mathbf{U}_{\mathsf{v}} \mathbf{U}_{\mathsf{h}}$

- **U_h Horizontal Transform**
- **U_v** Vertical Transform
- **U**_p Physical Transform
- Horizontal transformation (U_h) is via Regional ----- Recursive filters
 - **Global ----- Power spectrum**
- Vertical transformation (U_v) is via EOF's
- Physical transformation (U_p) depends upon the choice of the analysis control variable

How BE is represented?

- Size of B is typically of the order of 10⁷x10⁷
- It is reduced by designing the analysis control variables in such a way that cross covariance between these variables are minimum
- Currently, analysis control variables for WRFDA are the amplitudes of EOF's of

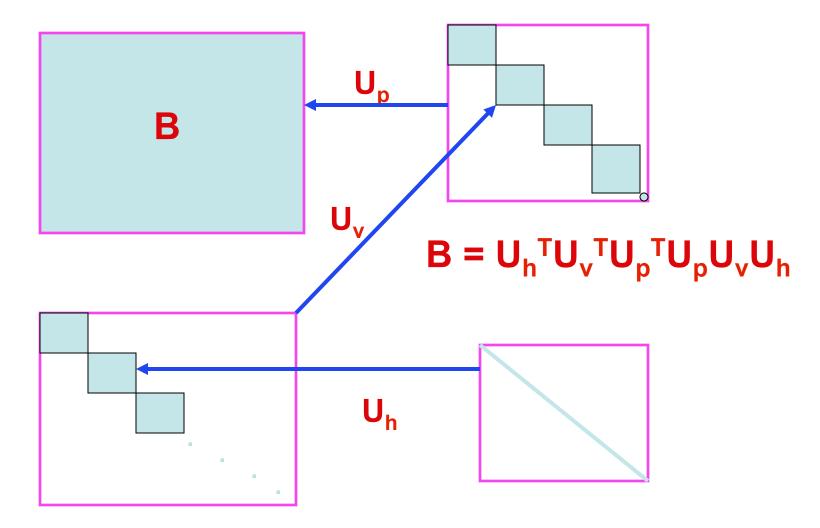
stream function (ψ) Unbalanced part of velocity potential (χ_u)

Unbalanced part of temperature (T_u)

Relative Humidity (q)

Unbalanced part of surface pressure (p_{s u})

• With this choice of analysis control variables off-diagonal elements of BE is very small and thus its size typically reduces to the order of 10⁷

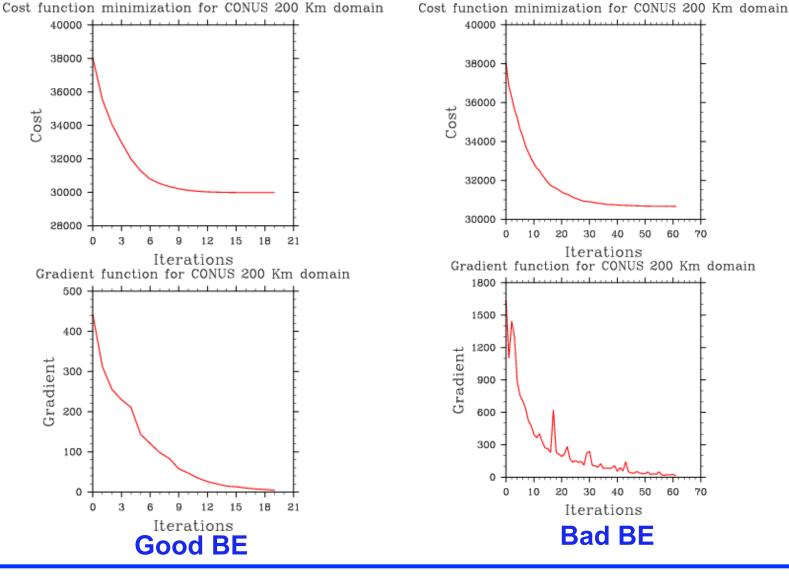


How BE is represented?

July, 2014 WRFDA Tutorial

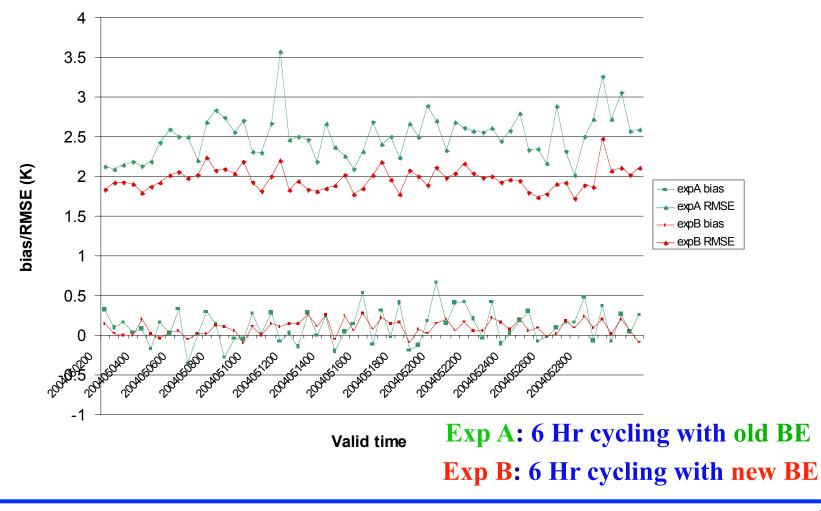
Components of BE

- Regression Coefficient for balanced part of Velocity potential, Temperature and Surface pressure
- Eigen vectors and Eigen values for stream function, unbalanced velocity potential, unbalanced temperature and moisture field
- Horizontal length-scales of control variables for regional option
- Power spectrum of control variables for global option



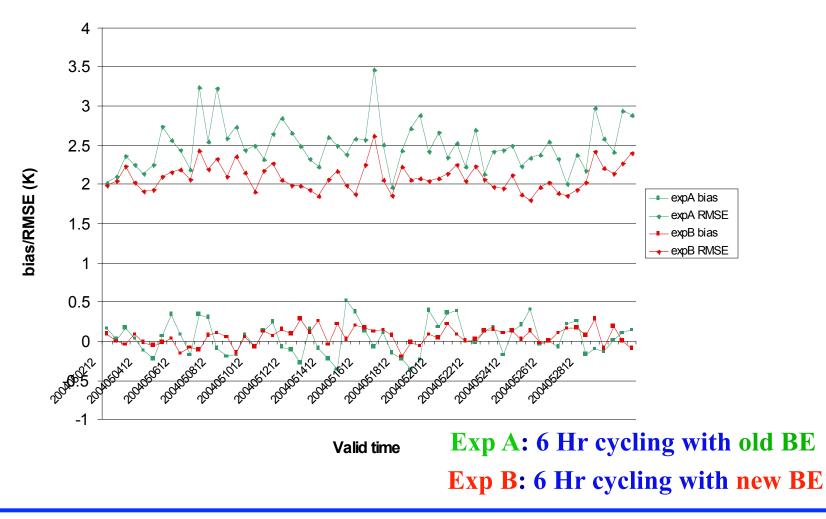
July, 2014 WRFDA Tutorial

Impact of BE on Minimization



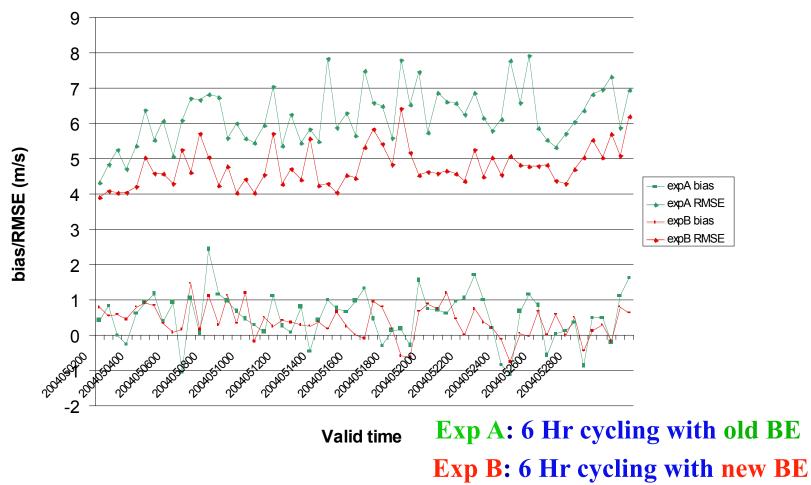
Impact of BE on Temperature forecast

12 hr f/c bias/RMSE for Sound T


July, 2014 WRFDA Tutorial

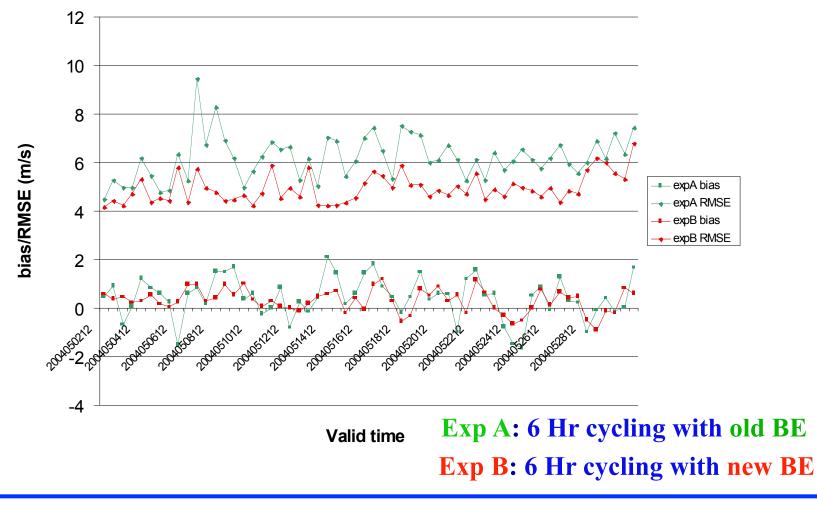
Impact of BE on Temperature forecast

24 hr f/c bias/RMSE for Sound T



Impact of BE on Wind (U Comp.) forecast

12 hr f/c bias/RMSE for Sound U-comp



Impact of BE on Wind (U Comp.) forecast

24 hr f/c bias/RMSE for Sound U-comp

WRFDA "gen_be" utility:

- It resides in WRFDA under "var" directory
- Computes various components of BE statistics
- Designed both for NMC and Ensemble methods ("BE_METHOD")
- It consists of five stages
- Basic goal is to estimate the error covariance in analysis control variable space (Coefficients of the EOF's for ψ , χ_u , T_u , rh and p_{s_u}) with input from model space (U, V, T, q & P_s)

"gen_be" - Stage0

- Computes (ψ , χ) from (u,v)
- Forms desired differences for the following fields
 - **ψ** Stream Function
 - x Velocity potential
 - Temperature
 - **q** Relative Humidity
 - **p**_s Surface Pressure

Т

"gen_be" - Stage1

- Reads "gen_be_stage1" namelist
- Fixes "bins" for computing BE statistics
- Computes "mean" of the differences formed in stage0
- Removes respective "mean" and forms perturbations for

Stream Function	(ψ´)
Velocity potential	<mark>(</mark> X´)
Temperature	(T´)
Relative Humidity	(q´)
Surface Pressure	(p _s ´)

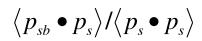
"gen_be" - Stage2 & 2a

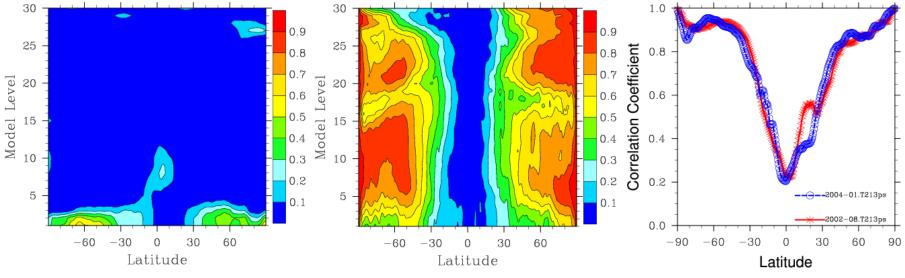
- Reads "gen_be_stage2" namelist
- Reads field written in stage1 and computes covariance of the respective fields
- Computes regression coefficient & balanced part of χ, T & p_s

$$\begin{array}{ll} \chi_{b} & = C \psi' \\ T_{b}(k) & = \sum_{l} G(k,l) \psi'(l) \\ p_{s_b} & = \sum_{l} W(k) \psi'(k) \end{array}$$

Computes unbalanced part

$$\begin{array}{ll} \chi_{u} &= \chi' - \chi_{b} \\ T_{u} &= T' - T_{b} \\ p_{s_u} &= p_{s} &- p_{s_b} \end{array}$$





WRFDA Balance constraints

- WRFDA imposes statistical balanced constraints between Stream Function & Velocity potential Stream Function & Temperature Stream Function & Surface Pressure
- How good are these balanced constraints? $\langle \chi_b \bullet \chi \rangle / \langle \chi \bullet \chi \rangle \qquad \langle T_b \bullet T \rangle / \langle T \bullet T \rangle$

Computed based on KMA global model

- Reads "gen_be_stage3" namelist
- Removes mean for χ_u , T_u , $k_s p_{s_u}$
- Computes eigenvectors and eigen values for vertical error covariance matrix of ψ´, χ_u´, T_u´ & q
- Computes variance of p_{s_u}
- Computes eigen decomposition of ψ' , χ_u' , $T_u' \& q$

- Reads "gen_be_stage4" namelist
- For each variable & each eigen mode, for regional option computes "lengthscale (s)"

$$B(r) = B(0) \exp\{-r^2 / 8s^2\}$$

$$y(r) = 2\sqrt{2}[\ln(B(0)/B(r))]^{\frac{1}{2}} = r/s$$

For global option, computes "power spectrum (D_n)"

$$D_{n} = \sum_{m=-n}^{n} (F_{n}^{m})^{2} = (F_{n}^{0})^{2} + 2\sum_{m=1}^{n} \left[(\operatorname{Re}(F_{n}^{m}))^{2} + (\operatorname{Im}(F_{n}^{m}))^{2} \right]$$

Single observation test

- Through single observation test, one can understand
 - structure of BE
 - It identifies the "shortfalls" of BE
 - It gives a broad guidelines for tuning BE

Basic concept:

Analysis equation: $x^a = x^b + BH^T(HBH^T + R)^{-1}[y^o - H(x^b)]$

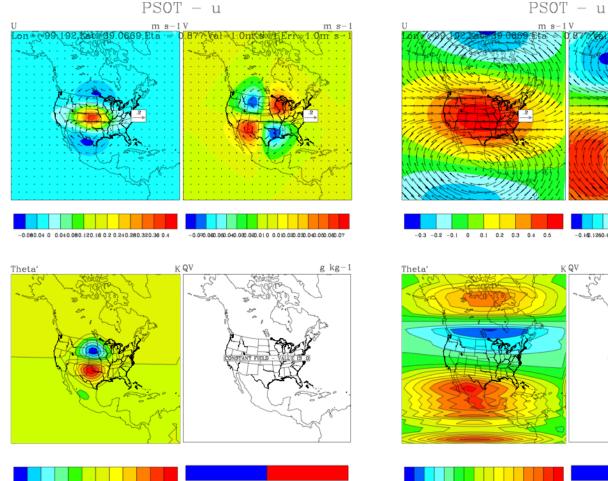
Set single observation (U,V,T etc.) as follows: $[y^{o}-H(x^{b})] = 1.0$; R = I

Thus, x^a - x^b = B * constant delta vector

How to activate Single obs test (PSOT)?

"single obs utility" or "psot" may be activated by setting the following namelist parameters

num_pseudo = 1 pseudo_var = "Variable name" like "U", "T", "P", etc. pseudo x = "X-coordinate of the observation" pseudo y = "Y-coordinate of the observation" pseudo z = "Z-coordinate of the observation" pseudo val = "Observation innovation", departure from FG" pseudo err = "Observation error"



m s-1

g kg-1

-0.10.1250-10.070.00.0250 0.020.00.0750.10.120.10.175

Single Obs (U) test with different BE

0

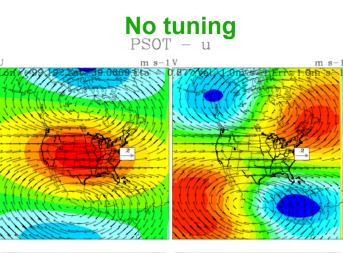
-0.00.008.008.008.0020 0.002.008.008.0080.01

How to perform tuning of BE?

Horizontal component of BE can be tuned with following namelist parameters

LEN_SCALING1 - 5 (Length scaling parameters) VAR_SCALING1 - 5 (Variance scaling parameters)

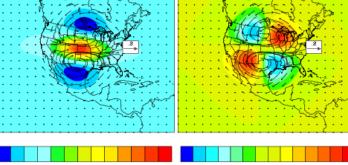
• Vertical component of BE can be tuned with following namelist parameter


MAX_VERT_VAR1 - 5 (Vertical variance parameters)

Results with BE Tuning

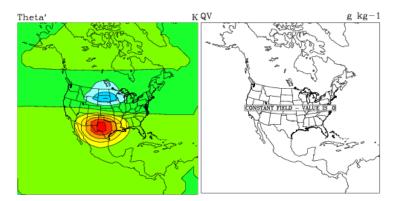
K QV

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5


Theta'

-0.100.1250.10.0700.000.0250 0.0200.000.0750.10.1200.100.175

0


g kg-1

-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.24-0.2-0.160.120.080.04 0 0.040.080.120.16 0.2 0.24

-0.0.07050050250.0305005076.0.135105176.0.23525

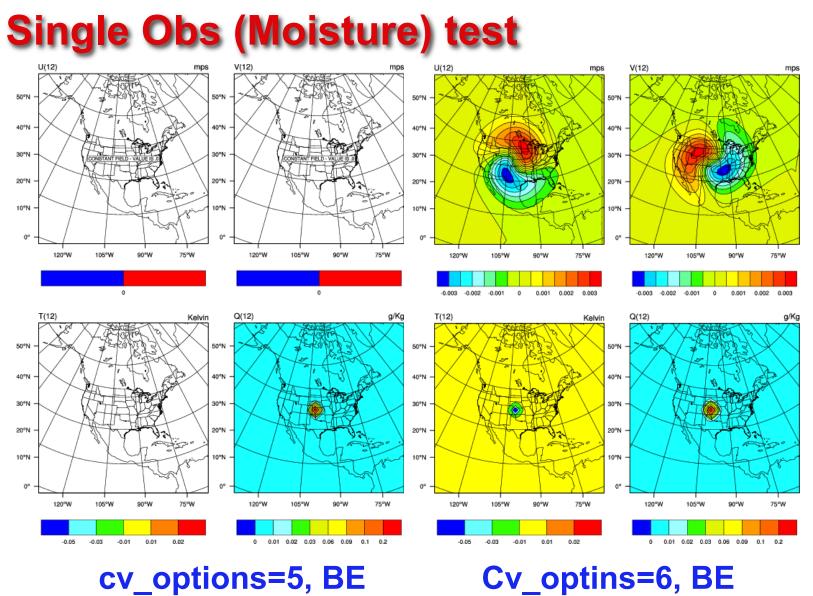
Multivariate formulation of BE

 New set of analysis control variables (cv_options=6) have been designed

$$\chi_b(i,j,k) = \alpha_{\chi\psi} * \psi(i,j,k)$$

$$T_{b}(i,j,k) = \sum_{l=1}^{N_{k}} \alpha_{T\Psi}(i,j,k,l) * \Psi(i,j,k,l) + \sum_{l=1}^{N_{k}} \alpha_{T\chi_{u}}(i,j,k,l) * \chi_{u}(i,j,l)$$

$$Q_{b}(i,j,k) = \sum_{l=1}^{N_{k}} \alpha_{Q\psi}(i,j,k,l)^{*} \psi(i,j,l) + \sum_{l=1}^{N_{k}} \alpha_{Q\chi_{u}}(i,j,k,l)^{*} \chi_{u}(i,j,l) + \sum_{l=1}^{N_{k}} \alpha_{Q\chi_{u}}(i,j,k,l)^{*} \chi_{u}(i,j,l) + \sum_{l=1}^{N_{k}} \alpha_{ps_{u}Q}(i,j,l)^{*} ps_{u}(i,j)$$


$$P_{s}(i,j) = \sum_{l=1}^{N_{k}} \alpha_{P_{s}\Psi}(i,j,l) * \Psi(i,j,l) + \sum_{l=1}^{N_{k}} \alpha_{P_{s}\chi_{u}}(i,j,l) * \chi_{u}(i,j,l)$$

Indexes i,j and k are corresponding to West-East, North-South and vertical sigma levels respectively, N_k is the number of sigma levels and α is the regression coefficient between the variables indicated in its subscript.

July, 2014 WRFDA Tutorial

Upcoming new features

- Some filtering options at various stages
- Background error for cloud hydrometeors like cloud water vapor, ice, snow and rain
- Introduction of new "bin_type=7" for four types of "rain" categories
- Additional diagnostics to study the frequency distribution of background error statistics
- Implementation of Holm (2002) type background error
- Stand alone branch of "gen_be"

Advanced Practice Session – "gen_be"

- Compilation of "gen be" utility
- **Generation of BE statistics**
- Familiarization with various graphical utilities to display "gen_be" diagnostics
- Running single observation tests to understand the • structure of BE
- **BE error tuning**

Generation of BE

 "gen_be_wrapper.ksh" script for generating BE for "CONUS" at 200 Km domain with:

Grid Size : 45 x 45 x 28 BE Method : NMC Method Data Input : January, 2007 forecasts, both from 00 & 12 UTC IC

Basic environment variables that needs to be set are:

- Gen_be executables location (WRFVAR_DIR)
- Forecast input data (FC_DIR)
 Run directory (BE_DIR)
 Data Range (START_DATE, END_DATE)

"gen_be" wrapper script basically executes "var/scripts/gen_be/ gen_be.ksh" script

Gen_be diagnostics

- "gen_be" creates various diagnostic files which may be used to display various components of BE statistics.
- Important files are:

How to run Single Observation Test ?

- Familiarization with single observation "wrapper" script ("da_run_suite_wrapper_con200.ksh") to run Single Observation test
- Key parameters are Type of observation (pseudo_var)
 Obs co-ordinates (pseudo_x, pseudo_y & pseudo_z)
 Observation value (pseudo_val)
 Observation error (pseudo_err)
- Display analysis increments to understand BE structure

BE tuning

- Understand the role of BE-tuning parameters through namelist options
 - LEN_SCALING1 5 (Length scaling parameters) VAR_SCALING1 - 5 (Variance scaling parameters) MAX_VERT_VAR1 - 5 (Vertical variance parameters)

Note: If BE is available for the same domain configuration then it's tuning is not required

