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Outline 
•  Background 

•  Hybrid formulation in a variational 
framework 

•  Some results 

•  Introduction to hybrid practice 
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Motivation of Hybrid DA 
•  3D-Var uses static (“climate”) BE 

•  4D-Var implicitly uses flow-dependent information, but 
still starts from static BE 

•  Hybrid uses flow-dependent background error covariance 
from forecast ensemble perturbation in a variational DA 
system 

WRFDA Tutorial, July 2014 

� 

J(δx) =
1
2
δxTB−1δx +

1
2
[Hδx − d]TR−1[Hδx − d]

� 

J(δx) =
1
2
δxTB−1δx +

1
2

[HM iδx − di]
TR−1[HM iδx − di]

i=1

I

∑



4 

What is the Hybrid DA? 

•  Ensemble mean is analyzed by a variational algorithm (i.e., minimize a 
cost function).  
–  It combines (so “hybrid”) the 3DVAR “climate” background error 

covariance and “error of the day” from ensemble perturbation. 

•  Hybrid algorithm (again in a variational framework) itself usually does 
not generate ensemble analyses. 

•  Need a separate system to update ensemble 
–  Could be ensemble forecasts already available from NWP centers 
–  Could be an Ensemble Kalman Filter-based DA system 
–  Or multiple model/physics ensemble 

•  Ensemble needs to be good to well represent “error of the day”  
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Potential	  temperature	  increment,	  21st	  model	  level	  

single	  observa-on	  tests	  

Pure EnKF 

Hybrid-full ensemble Hybrid 50/50 

3DVAR 
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Hybrid formulation (1) 
(Hamill and Snyder, 2000) 

•  3DVAR cost function 
 
 
 

•  Idea: replace B by a weighted sum of static Bs and the 
ensemble Be 

–  Has been demonstrated on a simple model. 
–  Difficult to implement for large NWP model.   

� 

J(x) =
1
2
(x − xb )

TB−1 (x − xb ) +
1
2
[H(x) − y]TR−1[H(x) − y]

� 

B = asBs +aeBe,  as =1- ae
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Hybrid formulation (2): used in WRFDA 
(Lorenc, 2003) 

•  Ensemble covariance is included in the 3DVAR cost function through 
augmentation of control variables 

  
•  In practical implementation, αi can be reduced to horizontal 2D fields 
(i.e., use same weight in different vertical levels) to save computing cost. 

•  βs and βe (1/βs + 1/βe =1) can be tuned to have different weight between 
static and ensemble part. 

  

� 

J(x,α) = βs
1
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(x − xb )TB−1(x − xb ) + βe
1
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α i
TC−1α i
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∑
ensemble control variable α i  (M ×1)6 7 4 4 8 4 4 

                     +
1
2

[y − H(x + x e
' )]TR−1[y − H(x + x e

' )]

x e
' = α i o x i

'

i=1

N

∑ ,   where x i
'  is the ensemble perturbation for the ensemble member i.

o denote element - wise product.  α i is in effect the ensemble weight.
C :  correlation matrix (effectively loclization of ensemble perturbations)
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Hybrid formulation (3) 

•  Equivalently can write in another form (Wang et al., 
2008) 

 
•  C is “localization” matrix 

  

� 

J(x,α) =
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2

(x + x e − xb )T ( 1
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Be oC)−1(x + x e − xb )

           +
1
2

[y − H(x + x e )]
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Hybrid DA data flow 
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Ensemble Perturbations (extra input for hybrid)	


WRFDA Tutorial, July 2014 

B 

� 

x1
a

� 

xN
f

� 

x2
f

� 

x1
f

.	


.	


.	


.	


.	


.	

� 

x2
a

� 

xN
a

For cycling data assimilation/forecast 	

Experiment, need a mechanism to 	

update ensemble.	
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EnKF-based Ensemble Generation 
•  EnKF with perturbed observations 

•  EnKF without perturbed observations 
–  All based on square-root filter 
–  Ensemble Transformed Kalman Filter (ETKF) 
–  Ensemble Adjustment Kalman Filter (EAKF) 
–  Ensemble Square-Root Filter (EnSRF) 

•  Most implementation assimilates obs sequentially (i.e., one 
by one, or box by box) 
–  can be parallelized 
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More information was given in 2012 slides.	
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Advantages of the Hybrid DA 

•  Hybrid localization is in model space while EnKF 
localization is usually in observation space. 

•  For some observations type, e.g., radiances, localization is 
not well defined in observation space 

 
•  Easier to make use of existing radiance VarBC in hybrid 

•  For small-size ensemble, use of static B could be beneficial 
to have a higher-rank covariance. 
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•  Paula case: 0600 UTC 10 October  2010  to  1200 UTC 15 October 
2010; 

•  Background: 15km interpolated from GFS data;  
•  Resolution:  718x 373 (15km) and 43 levels; 
•  Observations:  GTS  and TAMDAR; 
•  Cycle frequency: 6 hours; 
•  Background error:CV5;	
•  Time widows: 2 hours;  

	
	
	

•  TAMDAR: a new Tropospheric Airborne Meteorological Data Reporting 
(TAMDAR) observing system that has been developed by AirDat company. 

a Hurricane Case Study (Dongmei Xu)	
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CYC1:assimilate  GTS and TAMDAR with Hybrid (w/ TAMDAR H); 
CYC2:same to CYC1,but no TAMDAR (w/o TAMDAR H) 
CYC3:assimilate GTS and TAMDAR with standard 3DVAR (Deterministic 
WRFDA) 

Experiments: 

Experimental design	
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Brief introduction of TAMDAR inflation and fraction factor
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Brief introduction of TAMDAR Forecast Verification: RMSE

+12hr 

+24hr 
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Brief introduction of TAMDAR Track Forecast Verification (+24hr)
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Hybrid practice 
§  Computation steps: 

•  Computing ensemble mean (gen_be_ensmean.exe). 
•  Extracting ensemble perturbations (gen_be_ep2.exe). 
•  Running WRFDA in “hybrid” mode (da_wrfvar.exe). 
•  Displaying results for: ens_mean, std_dev, ensemble 

perturbations, hybrid increments, cost function 
•  If time permits, play with different namelist settings: 

“je_factor” and “alpha_corr_scale”. 
§  Scripts to use: 

•  Some NCL scripts to display results. 

•  Ensemble generation part not included in current practice 
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Namelist for WRFDA in hybrid mode 
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 &wrfvar7	

je_factor=2,     # half/half for Jb and Je term (tunable parameter)	

 	

&wrfvar16	

 alphacv_method=2,       # ensemble part is in model space (u,v,t,q,ps)	

 	

ensdim_alpha=10,       	

	

 alpha_corr_type=3,  # 1=Exponential; 2=SOAR; 3=Gaussian	

	

 alpha_corr_scale=750.,  # correlation scale in km (tunable parameter)	

	

 alpha_std_dev=1.,	

	

 alpha_vertloc=true,  (use program “gen_be_vertloc.exe 42” to generate file)	




Dual-Resolution hybrid (V3.6) 
http://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/ppts/6A.3.pdf 
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d01! 45km grid	


15km grid	


Doing Hybrid-Analysis at 15km d02 grid but with ensemble perturbation input from 45km d01 grid	
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•  High-resolution (HR) variables: 
–  x1, B, H, δx 

•  Low-resolution (LR) variables: 
–  a, A, D 

Dual-resolution cost-function 
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� 

J(x1 ,a) =
β1
2
x1( )TB−1x1 +

β2
2
aTA −1a +

1
2
d −Hδx( )TR−1 d −Hδx( )

Scalar!	
 Scalar!	
 Scalar!	


HR	
 LR	
 HR	
 HR	


HR	

LR	


� 

δx = x1 +Da
HR	


This	  term	  requires	  interpolation	  
from	  low	  to	  high	  resolution.	  



Intermediate domain 
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d01!

Intermediate domain 
 

Dx = 45-km 

(89, 22)	


(150, 87)	


•  WRFDA directly reads in d01 ensembles, then cut to d02 
size (making use of WRF model nest namelist setting) 

45-km domain coordinates	
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