
WRF Data Assimilation System

Michael Kavulich, Jr.

Special thanks to:

Xin Zhang, Xiang-Yu Huang

WRFDA Tutorial, July 2014, NCAR

Many slides are borrowed from WRF software lectures

WRFDA System – Outline

• Introduction

• WRFDA Software Overview

• Computing Overview

Introduction – What is WRFDA?

• A data assimilation system for the WRF Model (ARW core)

– 3D- and 4D-VAR, FGAT, Ensemble, and Hybrid methods

• Designed to be flexible, portable and easily installed and

modified

– Open-source and public domain

– Can be compiled on a variety of platforms

– Part of the WRF Software Framework

• Designed to handle a wide variety of data

– Conventional observations

– Radar velocity and reflectivity

– Satellite (radiance and derived data)

– Accumulated precipitation

Blue: Supported by WRFDA team

WRFDA System – Outline

• Introduction

• WRFDA Software

• Computing Overview

program da_wrfvar_main

 !---

 ! Purpose: Main program of WRF-Var. Responsible for starting up, reading

 ! in (and broadcasting for distributed memory) configuration data, defining

 ! and initializing the top-level domain, either from initial or restart

 ! data, setting up time-keeping, and then calling the da_solve

 ! routine assimilation. After the assimilation is completed,

 ! the model is properly shut down.

 !---

 use module_symbols_util, only : wrfu_finalize

 use da_control, only : trace_use, var4d

 use da_tracing, only : da_trace_init, da_trace_report, da_trace_entry, &

 da_trace_exit

 use da_wrf_interfaces, only : wrf_shutdown, wrf_message, disable_quilting

 use da_wrfvar_top, only : da_wrfvar_init1,da_wrfvar_init2,da_wrfvar_run, &

 da_wrfvar_finalize

#ifdef VAR4D

 use da_4dvar, only : clean_4dvar, da_finalize_model

#endif

 implicit none

 ! Split initialisation into 2 parts so we can start and stop trace here

 call disable_quilting

 call da_wrfvar_init1

 if (trace_use) call da_trace_init

 if (trace_use) call da_trace_entry("da_wrfvar_main")

 call da_wrfvar_init2

 call da_wrfvar_run

 call da_wrfvar_finalize

#ifdef VAR4D

 if (var4d) then

 call clean_4dvar

 call da_finalize_model

 end if

#endif

 call wrf_message("*** WRF-Var completed successfully ***")

 if (trace_use) call da_trace_exit("da_wrfvar_main")

 if (trace_use) call da_trace_report

 call wrfu_finalize

 call wrf_shutdown

end program da_wrfvar_main

arch

clean

compile

configure

dyn_em

dyn_exp

external

frame

inc

main

Makefile

phys

README.DA

Registry

run

share

test

tools

var

build

scripts

WRFDA source

code directory

Contains registry.var

WRFDA Directory structure

Legend:

Blue – directory

Green – script file

Gray – other text file

README file with information about WRFDA

build

convertor

da

external

gen_be

graphics

Makefile

obsproc

README.basics

README.namelist

README.radiance

run

scripts

test

More README files with

useful information

WRFDA/var Directory structure

Legend:

Blue – directory

Green – script file

Gray – other text file

Executables built here

WRFDA main source code contained here

Source code for external libraries (CRTM, BUFR, etc.)

GEN_BE source code

OBSPROC source code

Useful runtime files (mostly for radiance)

Data for tutorial cases

• Hierarchical software architecture

– Insulate scientists' code from parallelism and other

architecture/implementation-specific details

– Well-defined interfaces between layers, and

external packages for communications, I/O.

DA obs_type-callable

 Subroutine

WRFDA Software – Architecture

registry.var

• Registry: an “Active” data dictionary

– Tabular listing of model state and attributes

– Large sections of interface code generated automatically

– Scientists manipulate model state simply by modifying

Registry, without further knowledge of code mechanics

– registry.var is the dictionary for WRFDA

registry.var

DA obs_type-callable

 Subroutine

WRFDA Software – Architecture

registry.var

WRFDA Software – Architecture

Variable

type

Variable

name

Namelist

name
Default

value

Variable

size

rconfig integer rttov_emis_atlas_ir namelist,wrfvar14 1 0 - "rttov_emis_atlas_ir" "" "“

rconfig integer rttov_emis_atlas_mw namelist,wrfvar14 1 0 - "rttov_emis_atlas_mw" "" "“

rconfig integer rtminit_print namelist,wrfvar14 1 1 - "rtminit_print" "" "“

rconfig integer rtminit_nsensor namelist,wrfvar14 1 1 - "rtminit_nsensor" "" "“

rconfig integer rtminit_platform namelist,wrfvar14 max_instruments -1 - "rtminit_platform" "" "“

rconfig integer rtminit_satid namelist,wrfvar14 max_instruments -1.0 - "rtminit_satid" "" "“

rconfig integer rtminit_sensor namelist,wrfvar14 max_instruments -1.0 - "rtminit_sensor" "" "“

rconfig integer rad_monitoring namelist,wrfvar14 max_instruments 0 - "rad_monitoring" "" "“

rconfig real thinning_mesh namelist,wrfvar14 max_instruments 60.0 - "thinning_mesh" "" "“

rconfig logical thinning namelist,wrfvar14 1 .true. - "thinning " "" "“

rconfig logical read_biascoef namelist,wrfvar14 1 .false. - "read_biascoef" "" "“

rconfig logical biascorr namelist,wrfvar14 1 .false. - "biascorr" "" "“

rconfig logical biasprep namelist,wrfvar14 1 .false. - "biasprep" "" "“

rconfig logical rttov_scatt namelist,wrfvar14 1 .false. - "rttov_scatt" "" "“

rconfig logical write_profile namelist,wrfvar14 1 .false. - "write_profile" "" "“

rconfig logical write_jacobian namelist,wrfvar14 1 .false. - "write_jacobian" "" "“

rconfig logical qc_rad namelist,wrfvar14 1 .true. - "qc_rad" "" "“

rconfig logical write_iv_rad_ascii namelist,wrfvar14 1 .false. - "write_iv_rad_ascii" "" "“

rconfig logical write_oa_rad_ascii namelist,wrfvar14 1 .false. - "write_oa_rad_ascii" "" "“

rconfig logical write_filtered_rad namelist,wrfvar14 1 .false. - "write_filtered_rad" "" "“

rconfig logical use_error_factor_rad namelist,wrfvar14 1 .false. - "use_error_factor_rad" "" "“

rconfig logical use_landem namelist,wrfvar14 1 .false. - "use_landem" "" "“

rconfig logical use_antcorr namelist,wrfvar14 max_instruments .false. - "use_antcorr" "" "“

rconfig logical use_mspps_emis namelist,wrfvar14 max_instruments .false. - "use_mspps_emis" "" "“

rconfig logical use_mspps_ts namelist,wrfvar14 max_instruments .false. - "use_mspps_ts" "" "“

• Driver Layer

– Domains: Allocates, stores, decomposes, represents
abstractly as single data objects

Registry

DA obs_type-callable

 Subroutine

WRFDA Software – Architecture

• Minimization/Solver Layer

– Minimization/Solver routine, choose the function
based on the namelist variable, 3DVAR, 4DVAR,
FSO or Verification, and choose the minimization
algorithm.

Registry

DA obs_type-callable

 Subroutine

WRFDA Software – Architecture

• Observation Layer

– Observation interfaces: contains the gradient and
cost function calculation subroutines for each type
of observations.

Registry

DA obs_type-callable

 Subroutine

WRFDA Software – Architecture

Call Structure Superimposed on

Architecture

da_wrfvar_main (var/da/da_main/da_wrfvar_main.f90)

da_wrfvar_run (da_main)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
synop (da_synop/da-synop.f90)
sound (da_sound/da_sound.f90)

da_wrfvar_interface -> da_solve (da_main)

da_sound.f90(da_sound)

da_calculate_j (da_minimisation)

da_minimise_cg (da_minimisation)

http://box.mmm.ucar.edu/wrf/WG2/bench/

WRFDA and J

• Model background (𝒙𝒃)

• Background error (𝐁𝟎)

• Observations (𝑦0) and their associated error statistics (𝐑)

• Minimize this cost function (𝐽 𝑥) to find the analysis (𝒙𝒂)

• Run forecast, repeat for cycling mode

𝐽 𝑥 =
1

2
𝑥 − 𝒙𝒃

T
𝐁𝟎

−1 𝑥 − 𝒙𝒃 +
1

2
𝑦0 −𝐻(𝑥) T𝐑−1 𝑦0 −𝐻(𝑥)

WRFDA broken down by process

Namelist xb y, R B

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

y − H (x)
Minimize cost function

Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

xa

Outer loop

WRFDA broken down by process

Namelist
Input

files

Diagnostics

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

y − H (x)
Minimize cost function

Compute

analysis

Calculate

diagnostics
Clean up

Formulate

analysis

xa

Outer loop

xb y, R B

Input files: Namelist

• File name: namelist.input

• Specifies Input/Output options, domain details, types of

observations to assimilate and how to assimilate them

• Allows user great flexibility to change the usage of WRFDA

without having to recompile

• A large number (>1000) of namelist options govern the running

of WRFDA; however, users will typically only be concerned

with setting a few dozen of these

• More details can be found in the User’s Guide

Input files: xb (background)

• File name: fg

• Can be either a WRF input file created by WPS and real.exe,

or a WRF output file from a forecast.

Input files: y (observations)

 and R (observation errors)

• File name: ob.ascii, amsua.bufr, ob01.rain, etc.

• WRFDA accepts a wide variety of observations in several

different formats

– OBSPROC ASCII format (surface, sounding, GPS, etc.)

– PREPBUFR format (surface, sounding, etc.)

– BUFR format (radiance)

– Other ASCII format (radar, precipitation)

• Observation errors are either provided in the observation file,

or standard errors (file name: obserr.txt) are used.

Input files: B (background error)

• File name: be.dat

• This is a binary file containing background error information

– cv_options=3 NCEP background error formulation

• File provided with WRFDA code

• Not recommended: should be used with caution

– cv_options=5 NCAR background error formulation

• File created using gen_be utility

• Recommended option

– cv_options=6; Multivariate Background Error (MBE)

statistics

• Still experimental: not officially supported

WRFDA broken down by process

Namelist xb y, R B

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

WRFDA

Processes

Diagnostics xa

Formulate

analysis

Outer loop

Calculate

y − H (x)

Read namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Namelist

Read

namelist

Formulate

analysis

Outer loop

xb B

Calculate

y − H (x)

xa

y, R

Read namelist

• Read user-specified options from namelist.input

• Set default values for options not specified in the namelist

• Perform consistency checks between namelist options

Calling order:
da_wrfvar_main ==> call da_wrfvar_init1, da_wrfvar_init2 ==> call initial_config

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init1.inc, da_wrfvar_init2.inc ==> module_configure.F

Set up framework

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

Outer loop

Namelist

Set up

framework

Read

namelist

xb B

Calculate

y − H (x)

xa

y, R

Set up framework

• Utilize WRF Software Framework distributed memory

capability to allocate and configure the domain

• Allocate needed memory, initializes domain and tile

dimensions, etc.

• Create output files

Calling order:
da_wrfvar_main ==> call da_wrfvar_init2 ==> call alloc_and_configure_domain
da_wrfvar_main ==> call da_wrfvar_run.inc ==> call da_wrfvar_interface ==> call da_solve ==> call da_solve_init

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init2.inc ==> module_domain.F
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==> da_solve_init.inc

Set up background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

Outer loop

Read

namelist

xb

Set up

background

Set up

framework

Namelist B

Calculate

y − H (x)

xa

y, R

Set up background

• Read the first-guess file

• Extract fields used by WRFDA

• Create background FORTRAN 90 derived data type xb, etc.

Calling order:
da_wrfvar_main ==> call da_wrfvar_init2 ==> call da_med_initialdata_input
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_setup_firstguess

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init2.inc ==> da_med_initialdata_input.inc
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_setup_firstguess.inc

Set up observations and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

Outer loop

Read

namelist

Set up

framework

Namelist y, R

Set up

observations

and error

Set up

background

xb B

Calculate

y − H (x)

xa

Set up observations and error

• Read in observations

• Assign observational error

• Create observation FORTRAN 90 derived data type ob

• Domain and time check

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==> call da_setup_obs_structures

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_setup_obs_structures.inc

Set up background error

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

Outer loop

Read

namelist

Set up

framework

Namelist

Set up

background

B

Set up

background

error

Set up

observations

and error

xb

Calculate

y − H (x)

xa

y, R

Set up background error

• Reads in background error statistics from be.dat

• Extracts necessary quantities: eigenvectors, eigenvalues,

lengthscales, regression coefficients, etc.

• Creates background error FORTRAN 90 derived data type be

• Specifics of background error in WRFDA be covered in more

detail in a later talk

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_setup_background_errors

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_setup_background_errors.inc

Calculate y − H (x)

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

Outer loop

Read

namelist

Set up

framework

Namelist

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

y − H (x)

xb B

xa

y, R

Calculate y − H (x) (Innovation)

• Calculate model equivalent of observations through

interpolation and variable transformations

• Compute observation minus first guess (y − H (x)) value

• Create innovation vector FORTRAN 90 derived data type iv

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==>

 call da_solve ==>call da_get_innov_vector, da_allocate_y

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==>
 da_solve.inc ==>da_get_innov_vector.inc, da_allocate_y.inc

Minimize cost function

Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

Outer loop

Read

namelist

Set up

framework

Namelist

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function

xb B

Calculate

y − H (x)

xa

y, R

Minimize cost function

• Use conjugate gradient method

– Initializes analysis increments to zero

– Computes cost function (if desired)

– Computes gradient of cost function

– Uses gradient of the cost function to calculate new value of

analysis control variable

• Increment this process until specified minimization is achieved

 Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_minimise_cg

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_minimise_cg.inc

Further reading: Shewchuk, Jonathan Richard, 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain

 (http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf)

Compute analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

Outer loop

Read

namelist

Set up

framework

Namelist

Set up

background

Set up

observations

and error

Set up

background

error

Compute

analysis
Minimize cost function

xb B

Calculate

y − H (x)

xa

y, R

Compute analysis

• Convert control variables to model space analysis increments

• Calculate analysis = first-guess + analysis increment

• Perform consistency checks (e.g., remove negative humidity)

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_transfer_xatoanalysis.inc

Calculate diagnostics

Clean up
Formulate

analysis

Outer loop

Read

namelist

Set up

framework

Namelist

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics

Diagnostics

xb B

Calculate

y − H (x)

xa

y, R

Calculate diagnostics

• Output y − H(xb), y − H(xa) statistics for all observation types

and variables

• Compute xa − xb (analysis increment) statistics for all model

variables and levels

• Statistics include minimum, maximum (and their locations),

mean and standard deviation.

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_transfer_xatoanalysis.inc

Outer loop

Clean up
Formulate

analysis

Read

namelist

Set up

framework

Namelist

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

diagnostics

Calculate

y − H (x)
Minimize cost function

Compute

analysis

Outer loop

Diagnostics

xb B

xa

y, R

Outer loop

• An outer loop is a method of iterative assimilation to maximize

contributions from observations non-linearly related to the

control variables (e.g., GPS refractivity, Doppler radial velocity)

– After the previous steps, the analysis xa is used as the new

first guess

– The cost function minimization and diagnostic steps are

repeated

– This can be repeated up to ten times

 Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

Further reading: Rizvi et al., 2008 (http://www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/P5-03.pdf)

Write analysis

Clean up

Diagnostics

Outer loop

Read

namelist

Set up

framework

Namelist

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics

Formulate

analysis

xa

xb B

Calculate

y − H (x)

y, R

Write analysis

• Write analysis file in native WRF format.

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve ==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc ==>da_transfer_xatoanalysis.inc

Clean up

Diagnostics

Outer loop

Read

namelist

Set up

framework

Namelist

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics

Formulate

analysis
Clean up

xb B

Calculate

y − H (x)

xa

y, R

Clean up

• Deallocate dynamically-allocated arrays, structures, etc.

• Timing information

• Clean end to WRFDA

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

da_wrfvar_main ==> call da_wrfvar_finalize

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

da_wrfvar_main.f90 ==> da_wrfvar_finalize.inc

Output

files

WRFDA broken down by process

Namelist xb B

Diagnostics

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

y − H (x)
Minimize cost function

Compute

analysis

Calculate

diagnostics
Clean up

Formulate

analysis

Outer loop

xa

y, R

Output files: Diagnostics

• File names: grad_fn, jo, qcstat_conv*, statistics, etc.

• There will be a number of diagnostics files output by WRFDA

– Many will end in .0000, .0001, etc.; these are diagnostics

specific to each processor used

– Many will also contain a _01; these files will appear for

each outer loop as _02, _03, etc.

• More or fewer output files can be specified by certain namelist

options

Output files: xa (analysis)

• File name: wrfvar_output

• This is the model output in WRF native format. This file can be

used directly for research purposes, or used to initialize a WRF

forecast

Cycling mode

• Because WRFDA takes WRF forecast files as input, the

system can naturally be run in cycling mode

• WRFDA initializes a WRF forecast, the output of which is fed

back into WRFDA to initialize another WRF forecast

• Requires boundary condition updating

Cycling mode

Further reading: User’s Guide, Chapter 6, section “Updating WRF Boundary Conditions”

WRFDA System – Outline

• Introduction

• WRFDA Software Overview

• Computing Overview

WRFDA Parallelism

• WRFDA can be run serially or as a parallel job

• WRFDA uses domain decomposition to divide total amount

of work over parallel processes

• The decomposition of the application over processes has two

levels:

– The domain is broken up into rectangular pieces that are

assigned to MPI (distributed memory) processes. These

pieces are called patches

– The patches may be further subdivided into smaller

rectangular pieces that are called tiles, and these are

assigned to shared-memory threads within the process.

• However, WRFDA does not support shared memory

parallelism! So distributed memory is what I will cover here.

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Inter-processor

communication

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Parallelism in WRFDA: Multi-level Decomposition

Distributed Memory Communications

Communication is required between patches when a

horizontal index is incremented or decremented on the right-

hand-side of an assignment.

On a patch boundary, the index may refer to a value that is

on a different patch.

Following is an example code fragment that requires

communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,

and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the

indexed operands may lie in the patch of a neighboring

processor. That neighbor’s updates to that element of the

array won’t be seen on this processor.

When

Needed?

Why?

Signs in

code

 (da_transfer_xatowrf.inc)

subroutine da_transfer_xatowrf(grid)

. . .

 do k=kts,kte

 do j=jts,jte+1

 do i=its,ite+1

 u_cgrid(i,j,k)=0.5*(grid%xa%u(i-1,j ,k)+grid%xa%u(i,j,k))

 v_cgrid(i,j,k)=0.5*(grid%xa%v(i ,j-1,k)+grid%xa%v(i,j,k))

 end do

 end do

 end do

 . . .

Distributed Memory Communications

 (da_transfer_xatowrf.inc)

subroutine da_transfer_xatowrf(grid)

. . .

 do k=kts,kte

 do j=jts,jte+1

 do i=its,ite+1

 u_cgrid(i,j,k)=0.5*(grid%xa%u(i-1,j ,k)+grid%xa%u(i,j,k))

 v_cgrid(i,j,k)=0.5*(grid%xa%v(i ,j-1,k)+grid%xa%v(i,j,k))

 end do

 end do

 end do

 . . .

Distributed Memory Communications

• Halo updates

memory on one processor memory on neighboring processor

*

+ *

*

* *

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Distributed Memory Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Distributed Memory Communications

Halo (contains

information about

adjacent patch)

Inter-processor

communication

(Halos update from

adjacent patch after

each minimization

step)

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Distributed Memory Communications

Halo (contains

information about

adjacent patch)

Grid Representation in Arrays

• Increasing indices in WRFDA arrays run

– West to East (X, or I-dimension)

– South to North (Y, or J-dimension)

– Bottom to Top (Z, or K-dimension)

• Storage order in WRFDA is IJK , but for WRF, it is IKJ (ARW)

and IJK (NMM)

• Output data has grid ordering independent of the ordering

inside the WRFDA model

Grid Representation in Arrays

• The extent of the logical or domain dimensions is always the

"staggered" grid dimension. That is, from the point of view of a

non-staggered dimension (also referred to as the ARW “mass

points”), there is always an extra cell on the end of the domain

dimension

• In WRFDA, the minimization is on A-grid (non-staggered grid).

The wind components will be interpolated from A-grid to C-grid

(staggered grid) before they are output, to conform with

standard WRF format

WRFDA I/O

• Streams: pathways into and out of model

– Input

• fg is the name of the input

• wrfvar_output is the name of output

– Boundary

• Only needed for 4DVAR.

Summary

• WRFDA is designed to be an easy-to-use data assimilation

system for use with the WRF model

• WRFDA is designed within the WRF Software Framework for

rapid development and ease of modification

• WRFDA can be run in parallel for quick assimilation of large

amounts of data

Appendix – WRFDA Resources

• WRFDA users page

– http://www.mmm.ucar.edu/wrf/users/wrfda

– Download WRFDA source code, test data, related

packages and documentation

– Lists WRFDA news and developments

• Online documentation

– http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/u

sers_guide_chap6.htm

– Chapter 6 of the WRF Users’ Guide; documents installation

of WRFDA and running of various WRFDA methods

• WRFDA user services and help desk

– wrfhelp@ucar.edu

http://www.mmm.ucar.edu/wrf/users/wrfda
http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap6.htm
http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap6.htm
mailto:rfhelp@ucar.edu

Appendix – Derived Data Structures

• Driver layer

– All data for a domain is an object, a domain derived data type (DDT)

– The domain DDT is dynamically allocated/deallocated

– Only one DDT is allowed in WRFDA; it is head_grid, defined in

frame/module_domain.F

– WRFDA doesn’t support nested domains.

head_grid 1

• Every Registry defined state, I1,

and namelist variable is

contained inside the DDT

(locally known as a grid of type

domain), where each node in

the tree represents a separate

and complete 3D model

domain/nest.

Appendix – Derived Data Structures

• cvt

– Real type array to store the control variables

– It is an all-ZERO array during the first outer loop

and will be updated at the end of each outer loop

• xhat

– Real type array to store the control variables

– It stores the control variables for each inner loop.

• be

– It is used to store the background error

covariance.

Appendix – Derived Data Structures

• iv

– Stores the innovations for each observational type

• ob

– Stores the observations

• re

– Store the residual



y



y H(x  x) 

y Hx

• Primarily written in Fortran and C

• Part of the WRF Software Framework

– Hierarchical organization

– Multiple functions (3DVAR, 4DVAR, etc.)

use the same framework to simplify

development

– Plug observation type interface

3DVAR

minimization Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics Plug-compatible

Observation interface

4DVAR

Top-level Control,

Memory Management,

Parallelism, External APIs

M
in

im
iz

a
ti
o
n

d
ri
v
e
r

o
b
s
e
rv

a
ti
o
n
s

FSO

Appendix – WRFDA structure

• Processor:

– A device that reads and executes instructions in
sequence from a memory device, producing results that
are written back to a memory device

• Node: One memory device connected to one or more

processors.

– Multiple processors in a node are said to share-memory
and this is “shared memory parallelism”

– They can work together because they can see each
other’s memory

– The latency and bandwidth to memory affect
performance

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Appendix – Parallel Computing

Terms (Hardware)

• Cluster: Multiple nodes connected by a network

– The processors attached to the memory in one node can not
see the memory for processors on another node

– For processors on different nodes to work together they must
send messages between the nodes. This is “distributed
memory parallelism”

• Network:

– Devices and wires for sending messages between nodes

– Bandwidth – a measure of the number of bytes that can be
moved in a second

– Latency – the amount of time it takes before the first byte of a
message arrives at its destination

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Appendix – Parallel Computing

Terms (Hardware)

• Process:

– A set of instructions to be executed on a processor

– Enough state information to allow process execution to

stop on a processor and be picked up again later, possibly

by another processor

• Processes may be lightweight or heavyweight

– Lightweight processes, e.g. shared-memory threads,

store very little state; just enough to stop and then start the

process

– Heavyweight processes, e.g. UNIX processes, store a lot

more (basically the memory image of the job)

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Appendix – Parallel Computing

Terms (Software)

Appendix – Parallel Computing

Terms (Software)

• Every job has at least one heavy-weight process.

– A job with more than one heavy-weight process is a distributed-memory

parallel job

– Even on the same node, heavyweight processes do not share memory

• Within a heavyweight process you may have some number of lightweight

processes, called threads.

– Threads are shared-memory parallel; only threads in the same memory

space can work together.

– A thread never exists by itself; it is always inside a heavy-weight

process.

• Heavy-weight processes are the vehicles for distributed memory parallelism

• Threads (light-weight processes) are the vehicles for shared-memory

parallelism

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

• Since the process model has two levels (heavy-

weight and light-weight = MPI and OpenMP), the decomposition of the

application over processes has two levels:

– The domain is first broken up into rectangular pieces that are

assigned to heavy-weight processes. These pieces are called

patches

– The patches may be further subdivided into smaller rectangular

pieces that are called tiles, and these are assigned to threads within

the process.

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Appendix – Parallel Computing in

WRFDA context

Appendix –

Parallel Computing APIs

• Message Passing Interface – MPI, referred to as the

communication layer

• MPI is used to start up and pass messages between multiple

heavyweight processes

– The mpirun command controls the number of processes

and how they are mapped onto nodes of the parallel

machine

– Calls to MPI routines send and receive messages and

control other interactions between processes

– http://www.mcs.anl.gov/mpi

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

http://www.mcs.anl.gov/mpi

Appendix –

Parallel Computing APIs

• OpenMP is used to start up and control threads

within each process

– Directives specify which parts of the program are multi-

threaded

– OpenMP environment variables determine the number of

threads in each process

– http://www.openmp.org

• OpenMP is usually activated via a compiler option

• MPI is usually activated via the compiler name

• The number of processes (number of MPI processes times the

number of threads in each process) usually corresponds to the

number of processors

• In general, WRFDA should not be run with shared memory!

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

http://www.openmp.org/

• Halo updates

• Parallel transposes

Distributed Memory (MPI)

Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Distributed Memory (MPI)

Communications

all y on

patch

all z on

patch

all x on

patch

• Halo updates

• Parallel transposes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors

Nodes

Networks

Processes

Threads

Messages

Patches

Tiles

WRF Comms

Review – Computing Overview

APPLICATION
(WRF)

HARDWARE
(Processors, Memories, Wires)

SYSTEM
(UNIX, MPI, OpenMP)

Domain contains Patches contain Tiles

Job contains Processes contain Threads

Cluster contains Nodes contain Processors

Distributed

Memory

Parallel

Shared

Memory

Parallel

Main WRFDA Program (driver):

WRFDA Subroutines

(mediation layer)
OBSERVATION

TYPES
da_airep

da_airsr

da_bogus

da_buoy

da_geoamv

da_gpspw

da_gpsref

da_metar

da_mtgirs

da_pilot

da_polaramv

da_profiler

da_4dvar

da_control

da_etkf

da_define_structures

da_dynamics

da_grid_definitions

da_interpolation

da_minimisation

da_physics

da_setup_structures

da_varbc

da_vtox_transforms

Appendix – WRFDA/var/da

Directory structure

da_pseudo

da_qscat

da_radar

da_radiance

da_rain

da_satem

da_ships

da_sound

da_ssmi

da_synop

da_tamdar

da_main

Appendix – WRFDA History

• Developed from MM5 3DVar beginning around 2002, first

version (2.0) released December 2003

• 4DVAR capability added in 2008, made practical with

parallelism starting with Version 3.4 (April 2012)

• Developed and supported by WRFDA group of MMM, part of

NESL

• Requirements emphasize flexibility over a range of platforms,

applications, users, performance

• Current release WRFDA v3.6 (April 2014)

• Shares the WRF Software Framework

Appendix – WRFDA and J

• Model background (𝒙𝒃)

• Background error (𝐁𝟎)

• Observations (𝑦0) and their associated error statistics (𝐑)

• Minimize this cost function (𝐽 𝑥) to find the analysis (𝒙𝒂)

• Run forecast, repeat for cycling mode

𝐽 𝑥 =
1

2
𝑥 − 𝒙𝒃

T
𝐁𝟎

−1 𝑥 − 𝒙𝒃 +
1

2
𝑦0 −𝐻(𝑥) T𝐑−1 𝑦0 −𝐻(𝑥)

Appendix – WRFDA and J

• Model background (𝒙𝒃) is the “first guess” of the atmospheric

state before data assimilation

• The background can be provided by WPS and real.exe, or a

full WRF forecast

𝐽 𝑥 =
1

2
𝑥 − 𝒙𝒃

T
𝐁𝟎

−1 𝑥 − 𝒙𝒃 +
1

2
𝑦0 −𝐻(𝑥) T𝐑−1 𝑦0 −𝐻(𝑥)

Appendix – WRFDA and J

• Background error covariance (𝐁𝟎) describes the relationship

between different errors in the background

• Arguably the most important ingredient to a successful forecast

• Several options available:

– cv_options=3; generic NCEP Background Error model

• This is recommended for testing and debugging only

– cv_options=5; the NCAR Background Error model

• The default and recommended BE formulation

• Requires gen_be (learned in later presentation)

– cv_options=6; Multivariate Background Error (MBE)

statistics

• Not officially supported

𝐽 𝑥 =
1

2
𝑥 − 𝒙𝒃

T
𝐁𝟎

−1 𝑥 − 𝒙𝒃 +
1

2
𝑦0 −𝐻(𝑥) T𝐑−1 𝑦0 −𝐻(𝑥)

Appendix – WRFDA and J

• Observations (𝑦0) and their associated errors (𝐑) are essential

to any data assimilation process

• WRFDA can assimilate a wide variety of observations

– Conventional observations

• Includes radiosonde, ships, surface, etc.

• Should be in LITTLE_R format for ingest into OBSPROC

– Satellite radiance data

• Can assimilate data from dozens of instruments

• Assimilated directly in BUFR format

• Requires radiative transfer model (CRTM or RTTOV)

• Radar velocity and reflectivity, accumulated precipitation, others

𝐽 𝑥 =
1

2
𝑥 − 𝒙𝒃

T
𝐁𝟎

−1 𝑥 − 𝒙𝒃 +
1

2
𝑦0 −𝐻(𝑥) T𝐑−1 𝑦0 −𝐻(𝑥)

