

WRFDA Background Error (Modeling and Estimation)

Syed RH Rizvi

National Center For Atmospheric Research

NCAR/MMM, Boulder, CO-80307, USA

August 5-August 7, 2015, Boulder, CO

Talk Overview

- Background Error (BE) and its role in DA?
- Modeling of BE
- Estimation of BE ("gen_be" utility)
- Single observation test and tuning of BE
- Impact of BE on analysis and NWP forecast
- Hands on practice session

Background Error (BE)

• If \mathbf{x} is the forecast of the analysis variable and \mathbf{x}^t is the corresponding truth state, the BE is defined as the covariance of forecast minus truth $(\mathbf{x} - \mathbf{x}^t)$.

$$BE = \langle (\mathbf{x} - \mathbf{x}^t), (\mathbf{x} - \mathbf{x}^t)^T \rangle$$

• Thus, the BE covariance matrix (**B**) describes the probability distribution function (PDF) of the forecast errors ($\mathbf{x} - \mathbf{x}^{\mathbf{t}}$)

Role of BE in DA

• **B** appears in the cost function and the analysis equation as,

$$J(x) = \frac{1}{2} (x - x^b)^T B^{-1} (x - x^b) + \frac{1}{2} [y - H(x)]^T R^{-1} [y - H(x)]$$
$$x^a = x^b + BH^T (HBH^T + R)^{-1} [y^o - H(x^b)]$$

- Thus, **B** gives proper weight to the background term $(x-x^b)$ in defining the analysis cost function (J)
- Since **B** is the last operator in the analysis equation, the analysis increment (x^a-x^b) lies in the subspace of **B**
- **B** spreads information, both vertically and horizontally with proper weights to observation $(y^{\mathbf{o}})$ and the background $(x^{\mathbf{b}})$

Role of BE in DA

- **B** spreads information between variables and imposes balance across different analysis variables. Thus, the pressure or the temperature observation has the ability to modify the wind analysis and vise-versa
- **B** provides a means by which observations can act in synergy, means **B** allows observations to reinforce each other in a way that improves the analysis to a degree that is greater than their individual contributions
- **B** is used for preconditioning the analysis equation

Modeling of BE

Why?

- **B** is a square, symmetric and positive definite matrix with dimension equal to the number of the analysis variables
- Thus, typically the size of $\bf B$ is of the order of $10^7 x 10^7$ and so, it is not possible to either store or compute its inverse

How?

- The size of $\bf B$ is reduced by designing the actual analysis control variables in such a way that the cross covariance between these variables are minimum (zero)
- Thus assuming all the off-diagonal elements as zero, the size of ${\bf B}$ is typically reduced to the order of 10^7

Modeling of BE

• Let us define a control variable transform (CVT),

$$\delta x = B^{1/2}v$$
or,
 $\delta x = Uv$
Where,
 $\delta x = x - x^b$
and
 $U = B^{1/2}$

- Since $\mathbf{B} = \boldsymbol{U} \boldsymbol{U}^{\mathrm{T}}$, modeling of back ground error amounts to approximating the control variable transform, \boldsymbol{U}
- It is approximated with a sequence of three linear transforms

$$U = U_p U_v U_h$$

• Thus,

$$B = U_p U_v U_h U_h^T U_v^T U_p^T$$

Control variable transform (CVT)

$$U = U_{\rm p} U_{\rm v} U_{\rm h}$$

- $U_h \longrightarrow$ Horizontal transform is applied via recursive filter (Hayden and Purser(1995)
- $U_v \longrightarrow$ Vertical transform is applied through empirical orthogonal functions (EOFs). The EOFs are the eigenvectors of the vertical error covariance matrix (**E**). Thus,

$$U_v = E \Lambda^{1/2}$$

Where, $\Lambda^{1/2}$ is a diagonal matrix holding square root of the eigenvalues of vertical error covariance matrix (E)

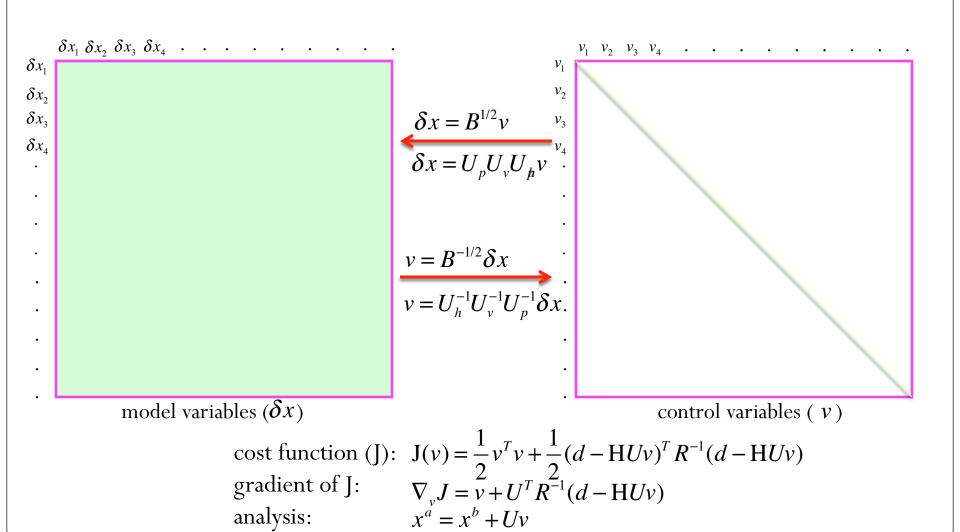
• $U_p \longrightarrow$ Physical transform is applied via statistical balance

Modeling of BE

Thus, for modeling of background error, following is estimated

- Horizontal length-scale for $oldsymbol{U}_{
 m h}$ transform
- Eigenvectors and eigenvalues for $oldsymbol{U}_{ ext{v}}$ transform
- Regression coefficients for $oldsymbol{U}_{
 m p}$ transform

How CVT ($U=U_pU_vU_h$) works?



10

Choice of analysis variables

cv_options	Analysis variables
3	Ψ , unbalance X , unbalance t, pseudo rh and unbalance log (P_s)
5	Ψ , unbalance X , unbalance t, pseudo rh and unbalance P_{s}
6	Ψ and unbalance X , unbalance t, unbalance pseudo rh and unbalance $P_{\rm s}$
7	u, v, t, Ps and pseudo rh

Estimation of Background Error

- For simplicity, the background error distribution is assumed Gaussian
- Since the truth (\mathbf{x}^t) is not known, the forecast error $(\mathbf{x} \mathbf{x}^t)$ needs to be estimated
- There are two common methods for estimating $(\mathbf{x} \mathbf{x}^t)$
 - a) NMC method: $(\mathbf{x} \mathbf{x}^t) = (\mathbf{x}^{t1} \mathbf{x}^{t2})$ (Forecast differences valid for the same time)
 - b) Ensemble method: $(\mathbf{x} \mathbf{x}^t) = (\mathbf{x}^{ens} \langle \mathbf{x}^{ens} \rangle)$ (Ensemble — Ensemble mean)

"gen_be" utility

"gen_be" utility estimates the different components of the BE

- It is designed both for NMC and Ensemble methods by setting BE_METHOD="NMC" or "ENS"
- It consists of five stages (0-4)

StageO: (forecast error samples)

• Step 1 - (u,v) to horizontal divergence (D) and vorticity (ζ)

$$D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \qquad \zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

• Step 2 – (D, ζ) to Ψ and χ $\nabla^2 \psi = \zeta \qquad \nabla^2 \chi = D$

- Finally, the forecast errors $(\mathbf{x} \mathbf{x}^t)$ is generated for
 - Ψ Stream function
 - χ Velocity potential

T - Temperature

q - Relative humidity

p_s - Surface pressure

Stage1: (removes temporal mean)

- Computes temporal mean of the forecast error samples generated in stage0
- Removes temporal mean to form the perturbations for

```
Stream function (\psi')
Velocity potential (\chi')
Temperature (T')
Relative humidity (q')
Surface pressure (p_s')
```


Stage2: (Regression coefficients)

• Regression coefficient (α_{xy}) between two variables x and y is estimated as

$$\alpha_{xy} = \frac{\langle x.y \rangle}{\langle x.x \rangle}$$

Where,

 $\langle x, y \rangle$ is the covariance between x and y

 $\langle x, x \rangle$ is the variance of x

Stage2a: (Input for U_p-transform)

The U_p transform is defined as,

$$\begin{pmatrix} \Psi \\ \chi \\ t \\ Ps \\ rh \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ M & I & 0 & 0 & 0 \\ N & 0 & I & 0 & 0 \\ Q & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & I \end{pmatrix} \begin{pmatrix} \psi \\ \chi_u \\ t_u \\ Ps_u \\ rh \end{pmatrix}$$

Where,

I - identity matrix, 0 - zero matrix and M, N, Q are respectively the regression coefficient matrices for (χ , ψ), (t, ψ), and (Ps₁₁, ψ)

Stage2a: (cv_options=6, the MBE)

The U_p transform is defined as,

$$\begin{pmatrix} \Psi \\ \chi \\ t \\ Ps \\ rh \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ M & I & 0 & 0 & 0 \\ N & P & I & 0 & 0 \\ Q & R & 0 & I & 0 \\ S_1 & S_2 & S_3 & S_4 & I \end{pmatrix} \begin{pmatrix} \psi \\ \chi_u \\ t_u \\ Ps_u \\ rh_u \end{pmatrix}$$

Where,

P, R, S_1 , S_2 , S_3 and S_4 are respectively the regression coefficient matrices for (t, χ_u) , (Ps_u, χ_u) , (rh, ψ) , (rh, χ_u) , (rh, t_u) and (rh, Ps_u)

Stage3: (Input for U_v-transform)

For all 3-D analysis variables,

- Compute vertical error correlation matrix
- Compute eigenvectors (\mathbf{E}) and eigenvalues ($\boldsymbol{\Lambda}$) of the vertical error covariance matrix
- Perform $\Lambda^{-1/2} \mathbf{E}^{T}$ operation to compute the amplitude of the corresponding EOFs

Stage4 (Input for U_h-transform)

- a) Computes covariance (**z**) of the coefficients of the EOF's in distance-wise bins
- b) Assuming the horizontal covariance has exponential decay (Gaussian function) as,

$$z(r) = z(0) \exp\{-r^2 / 8s^2\}$$

c) Estimate the horizontal length-scale (**s**) of the covariance using linear curve fitting method as,

$$y(r) = 2\sqrt{2} \left[\ln(z(0)/z(r)) \right]^{1/2} = r/s$$

"gen_be" Bin's Choice

bin_type	Total number of bins (num_bins) and bin's description
0	num_bins= total number of grid points (no binning)
1	num_bins=nj * nk (each latitude is a bin)
2	num_bins= bin_width_lat * bin_width_hgt
3	num_bins=bin_width_lat * n _k (bin_width_lat is defined with lats.)
4	num_bins=bin_width_lat * n _k (bin_width_lat is defined with the
	number of points in south-north direction)
5	num_bins=n _k (bins with all horizontal points)
6	num_bins=1 (average over all the grid (3D) points)

- n_i number of points in south-north direction
- n_k number of points in vertical
- Remarks: Default option is "bin_type=5"

Single observation test (PSOT)

Why?

Assimilation of single observation helps in understanding the following aspects of the background error

- Its role and the structure
- Identify the "shortfalls"
- Broad guidelines for tuning

PSOT - Basic concept

Let y is the single observation for the k^{th} element of x^b with standard observation error σ . Then the analysis equation

$$x^{a} = x^{b} + BH^{T}(HBH^{T} + R)^{-1}[y^{o} - H(x^{b})]$$

$$x_{l}^{a} - x_{l}^{b} = \frac{B_{lk}}{B_{kk} + \sigma^{2}} (y - x_{k}^{b})$$

Thus,

- If $\sigma^2 << B_{kk} \implies x_k^a = y$
- If $\sigma^2 >> B_{kk} \implies x_k^a = x_k^b$
- Thus, if BE is very large compared to observation error, analysis
 is closer to observation otherwise it is closer to the first guess
 (FG) or the background
- A non-zero off-diagonal term B_k of **B** leads to non-zero analysis increment for the I^{th} element of x^{a}

PSOT - Basic concept

• Set single observation (u, v, t, ps etc.) as, unit innovation, $[y^o - H(x^b)] = 1.0$ unit observation error, R = 1.0

The analysis equation

$$x^{a} = x^{b} + BH^{T}(HBH^{T} + R)^{-1}[y^{o} - H(x^{b})]$$

gives,

$$x^a - x^b = B\delta$$

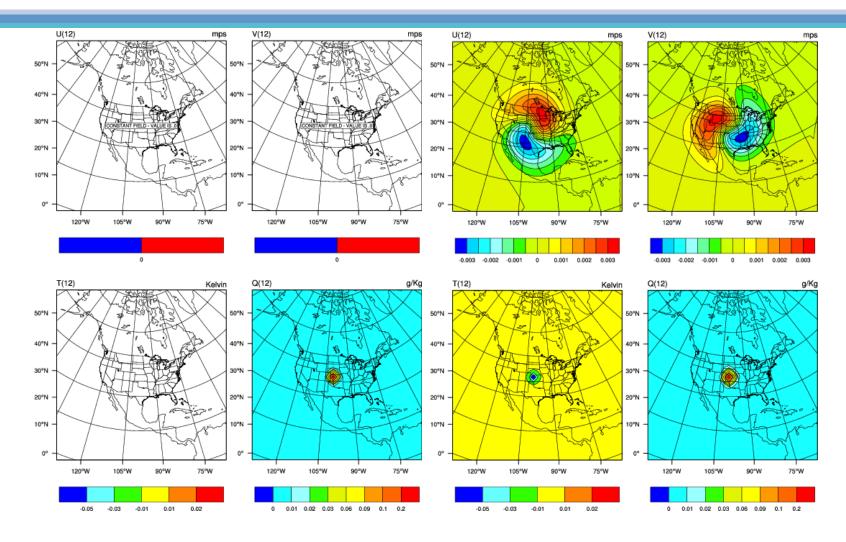
Where, δ is a constant delta vector

• Thus, analysis increments with single observation, displays the structure of the background error

How to activate PSOT?


```
PSOT utility may be activated by setting the following namelist
parameters
num_pseudo = 1
pseudo_var = Variable name like u, t, p, etc.
pseudo_x = X-coordinate of the observation
pseudo_y = Y-coordinate of the observation
pseudo_z = Z-coordinate of the observation
pseudo_val = Observation innovation, departure from FG
pseudo_err = Observation error
```


Analysis increments with PSOT-q



Tuning of BE

 Horizontal component of BE can be tuned with following namelist parameters

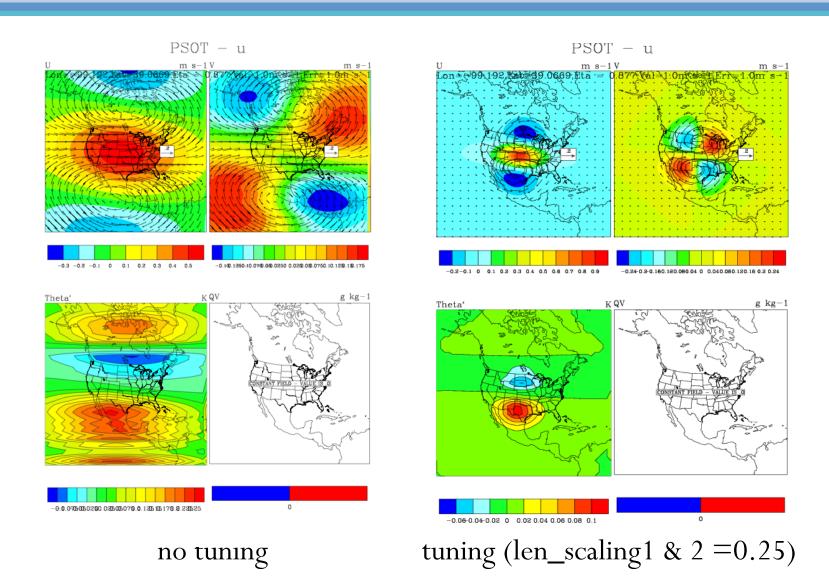
LEN_SCALING1 - 5 (Length scaling parameters)

VAR_SCALING1 - 5 (Variance scaling parameters)

• Vertical component of BE can be tuned with following namelist parameter

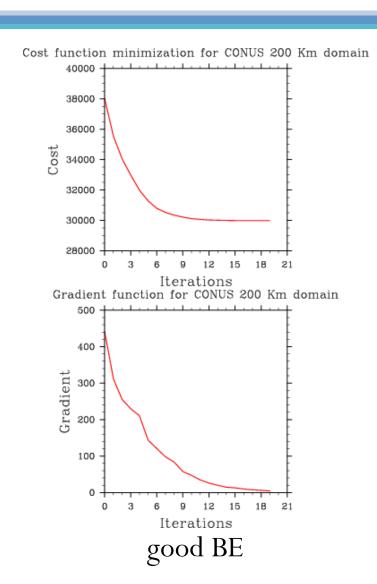
MAX_VERT_VAR1 - 5 (Vertical variance parameters)

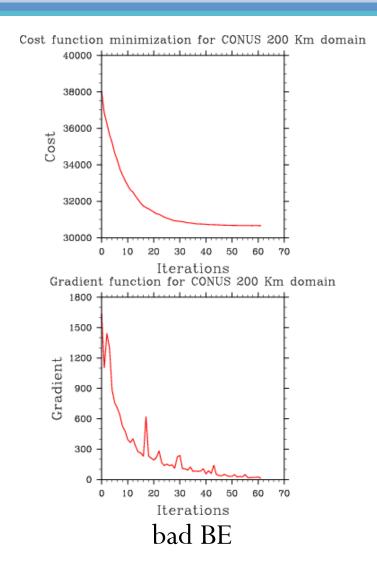
BE tuning (length-scale)



28

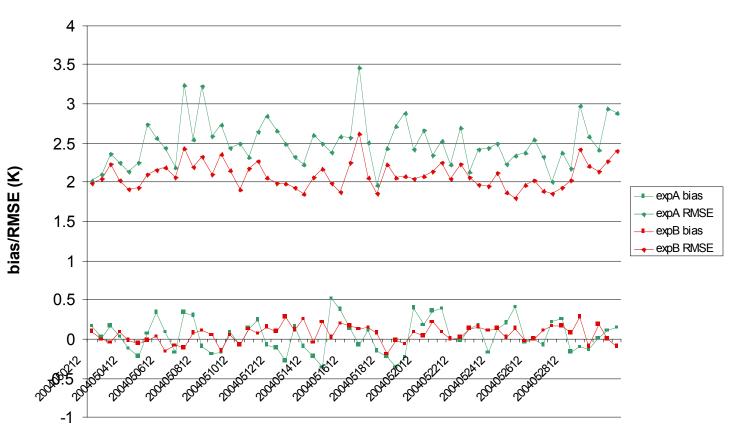
Impact of BE on Minimization





Impact of BE on Temp. Forecast

24 hr f/c bias/RMSE for Sound T



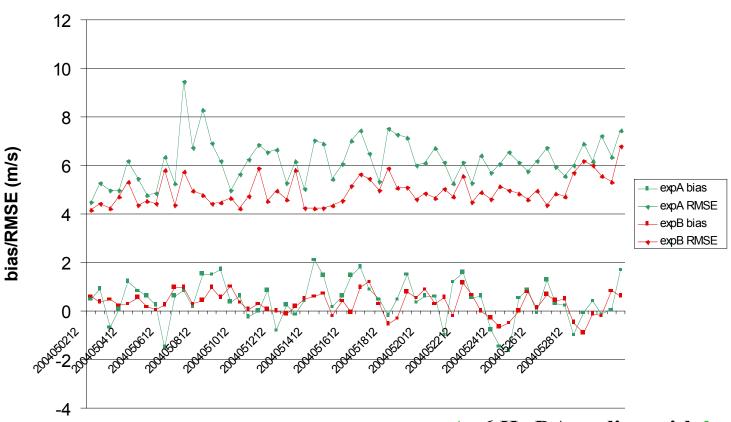
Valid time

expA: 6 Hr DA cycling with bad BE

expB: 6 Hr DA cycling with good BE

Impact of BE on U-comp Forecast

24 hr f/c bias/RMSE for Sound U-comp



Valid time

expA: 6 Hr DA cycling with bad BE

expB: 6 Hr DA cycling with good BE

Advance practice "gen_be"

- Compilation of "gen_be" utility
- Generation of BE statistics
- Familiarization with "gen_be" diagnostics
- Running PSOT to understand the structure of BE
- BE tuning

Generation of BE

"gen_be_wrapper.ksh" script for generating BE at 60 Km "CONUS" domain with:

Grid Size : 90 X 60 X 41 (staggered grid points)

BE Method: NMC Method

Data Input : 12 and 24 hour forecasts (already run)

Basic environment variables to be set in the wrapper script:

WRFVAR_DIR (code location); FC_DIR (forecast location)

START_DATE (1st pert time) ; END_DATE (last pert time)

NUM_LEVELS (half sigma levels) ; RUN_DIR (run directory)

gen_be diagnostics

- "gen_be" creates various diagnostic files which may be used to display different components of BE
- Important diagnostics files are:

Eigen vectors: fort.174, fort.178, fort.182, fort.186

Eigen values: fort.175, fort.179, fort.183, fort.187

scale-length: fort.194, fort.195, fort.196, fort.197

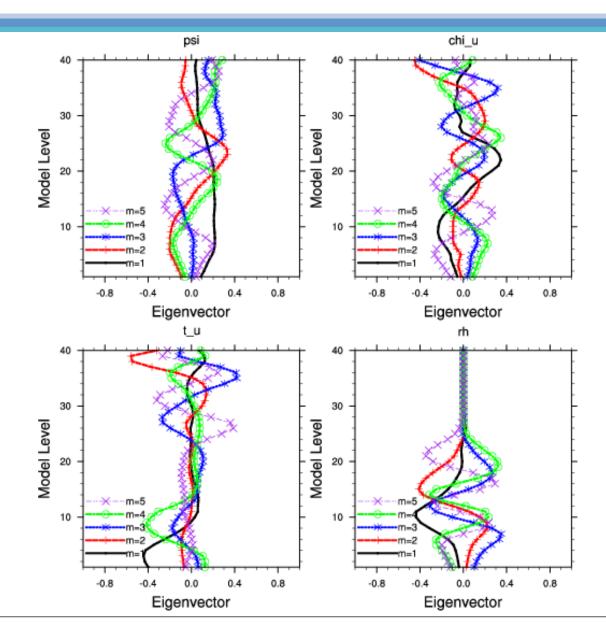
Correlation between X_u & X_b (chi_u.chi.dat)

Correlation between T_u & T_b (T_u.T.dat)

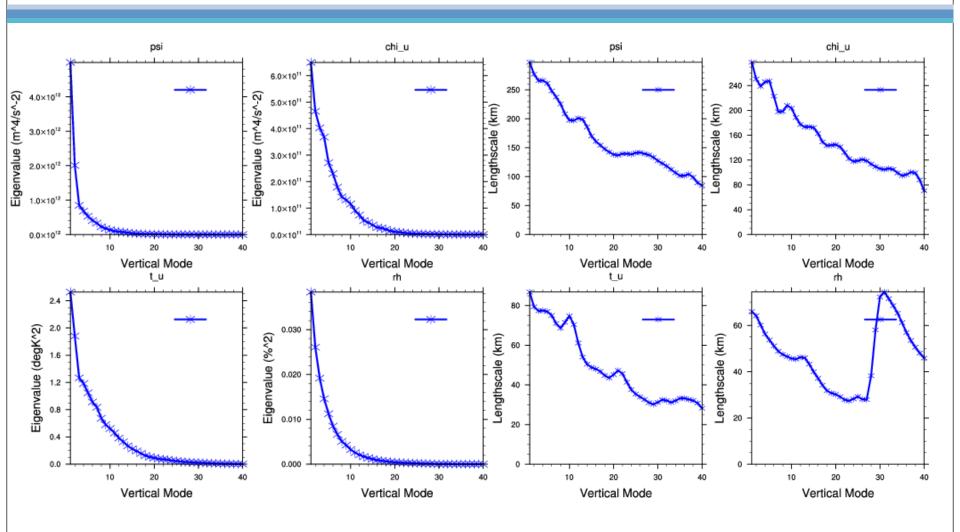
Correlation between p_{s u} & (ps_u.ps.dat)

Sample wrapper script for the display of BE diagnostics
 "var/scripts/gen_be/gen_be_plot_wrapper.ksh"

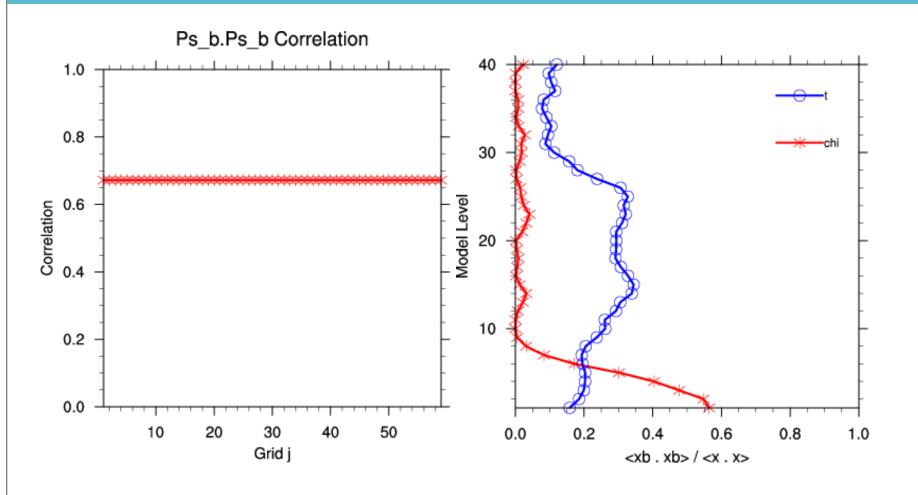
Note: BE_DIR is set to "gen_be" RUN_DIR directory



Eigenvalues and length-scales



Balance Correlations



How to run PSOT?

- Use following script from the WRFDA TOOLS package to build the PSOT wrapper script
 - "var/scripts/gen_be/da_run_suite_wrapper_con200.ksh"
- Key parameters to set are:

Type of observation (pseudo_var)

Obs coordinates (pseudo_x, pseudo_y & pseudo_z)

Observation value (pseudo_val)

Observation error (pseudo_err)

Display analysis increments to understand BE structure

Tuning of BE

• Understand the role of BE-tuning parameters through namelist options

```
LEN_SCALING1 - 5 (Length scale)
```

VAR_SCALING1 - 5 (Horizontal variance)

MAX_VERT_VAR1 – 5 (Vertical variance)