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Outline 

•  Background 

•  Some results 

•  Introduction to hybrid practice 
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What is data assimilation? 

Gridded model forecast: 
the “background”  

or “first guess” 
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Some data assimilation methods 
•  Three-dimensional variational (3DVAR) 

– Background error covariances (BECs) typically fixed/
time-invariant 

– May yield poor results when actual flow differs from that 
encapsulated within the fixed “climatology” 

•  Ensemble Kalman filter (EnKF) 
– Time-evolving, “flow-dependent” BECs estimated from 

a short-term ensemble forecast 
– Many different flavors (e.g., ETKF, EAKF) 
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Ensemble BECs (i.e., spread) 

(a) 0000 UTC (b) 0000 UTC 

(c) 1200 UTC (d) 1200 UTC 

Potential Temperature (K)! Wind speed (m/s)!

(a) 0000 UTC (b) 0000 UTC 

(c) 1200 UTC (d) 1200 UTC 

Potential Temperature (K)! Wind speed (m/s)!

• Average ensemble spread of wind speed over ~3 weeks at 0000 UTC 

From Schwartz et al. (2013)	
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Ensemble BECs (i.e., spread) 
• General definition of covariance: 

• In vector matrix form (here, assume n is ensemble size): 
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•  “Hybrid” variational/ensemble 

–  Incorporates ensemble background 
errors within a variational (e.g., 
3DVAR) framework  

– Combination of fixed and time-
evolving background errors 

– Main additional expense compared 
to 3DVAR is running an ensemble 
of forecasts 

Baby-dol
l/centipe
de hybrid 

“Hybrid” variational/ensemble DA	  

75% squirrel 
25% cat 
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What is Hybrid DA? 
•  Deterministic background is analyzed by a variational algorithm (i.e., 

minimize a cost function) 
–  It combines the 3DVAR “climatological” BECs and “errors of the day” from 

ensemble perturbations 

•  Traditionally generates a deterministic analysis (like 3DVAR) 

•  Need a separate system to update ensemble 
–  Could be ensemble forecasts already available from operational centers 
–  Could be an EnKF-based DA system 
–  Could be a multiple model/physics ensemble 

•  Ensemble needs to be good to well-represent “errors of the day”  
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Hybrid formulation  
(Hamill and Snyder, 2000) 

•  3DVAR cost function 
 
 

•  Idea: replace B by a weighted sum of static Bs and the ensemble Be 

 
–  Term C is localization for the ensemble 
–  Terms as and ae can be tuned to determine how much Bs and Be are weighted 

•  This form is difficult to implement for a large NWP model   
–  Most systems use “extended control variables” 

� 

J(x) =
1
2
(x − xb )

TB−1 (x − xb ) +
1
2
[H(x) − y]TR−1[H(x) − y]

B=asBs + aeBe !C,         as=1-ae
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•  Ensemble covariance is included in the 3DVAR cost function through augmentation  
of control variables 

  

•  More simply: 

•  βs and βe (1/βs + 1/βe =1) can be tuned to have different weight between static and     
ensemble part 
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Hybrid formulation used in WRFDA 
(Lorenc, 2003) 

  

� 

J(x,α) = βs
1
2

(x − xb )TB−1(x − xb ) + βe
1
2

α i
TC−1α i

i=1

N

∑
ensemble control variable α i  (M ×1)6 7 4 4 8 4 4 

                     +
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[y − H(x + x e
' )]TR−1[y − H(x + x e

' )]

x e
' = α i o x i

'
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N

∑ ,   where x i
'  is the ensemble perturbation for the ensemble member i.

o denote element - wise product.  α i is in effect the ensemble weight.
C :  correlation matrix (effectively loclization of ensemble perturbations)

J(x,α ) = Jb + Je +Jo



13	  

•  Potential temperature increment, 21st model level 

Single observation tests 

Pure EnKF 

Hybrid-full ensemble 
(ae = 1) 

Hybrid 50/50 (ae = 0.5) 
 

3DVAR 

WRFDA Tutorial, August 2015 



14	  

•  Localization defines the extent to which an observation can
 produce an analysis increment 

•  In this example, 100% of the BECs are from ensemble 

Meaning of localization 
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Temperature increment (K) 

Small localization	
 Big localization	
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Advantages of Hybrid DA 

•  Hybrid localization is in model space while EnKF localization is 
usually in observation space 

•  For some observation types (e.g., radiances), localization is not well 
defined in observation space 

 
•  Easier to make use of existing radiance VarBC in hybrid 

•  For small ensembles, use of static B could be beneficial to have a 
higher-rank covariance. 
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Hybrid	  example	  

From Wang et al. (2008) 

•  Example over North America at coarse grid spacing 
•  Similar results have been obtained by many studies 

Sample results 
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Hybrid vs. 3DVAR and EnKF 
•  Fractions skill scores for rainfall (higher is better) 
 

Aggregated over hourly 18-36-hr  
forecasts of precipitation	


Modified from Schwartz and 
   Liu (2014) 

0.2 mm/hr 0.5 mm/hr 

5.0 mm/hr 10.0 mm/hr 



Fig. 13.  (a) Best track positions of tropical cyclones Sinlaku, Hagupit, and Jangmi.  Locations are plotted 
every 6-hrs.  See Table 4 for the starting and ending times of each storm. (b) Mean 0-72-hr absolute track 
errors (km) averaged over the three TCs.  The sample size at each forecast hour is denoted along the top 
axis.  Horizontal lines are “zero lines” for 90% bootstrap CIs based upon track error differences between 
pairs of experiments.  Differences between two experiments were statistically significant at the 95% level 
if the bounds of the 90% CI did not include zero.  

Sinlaku 

Jangmi 

Hagupit 

(a) 

(b) 

0     Hybrid_DR_1way  minus  Hybrid_DR_2way 

0     Hybrid_DR_1way  minus  3DVAR 

0     Hybrid_DR_1way  minus  Hybrid_SR 

Typhoon example 
•  Mean tropical cyclone track errors 
 

From Schwartz et al. (2015)	




Dual-Resolution hybrid (V3.6) 
Schwartz et al. (2015; MWR) 
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d01!
45km grid	


15km grid	


Hybrid analysis on 15-km grid but with ensemble perturbation input from 45-km grid	
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Intermediate domain 
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d01!

Intermediate domain 
 

Dx = 45-km 

(89, 22)	


(150, 87)	


•  WRFDA directly reads in d01 ensembles, then cuts to d02 
size (making use of WRF model nest namelist setting) 

45-km domain coordinates	
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Fig. 13.  (a) Best track positions of tropical cyclones Sinlaku, Hagupit, and Jangmi.  Locations are plotted 
every 6-hrs.  See Table 4 for the starting and ending times of each storm. (b) Mean 0-72-hr absolute track 
errors (km) averaged over the three TCs.  The sample size at each forecast hour is denoted along the top 
axis.  Horizontal lines are “zero lines” for 90% bootstrap CIs based upon track error differences between 
pairs of experiments.  Differences between two experiments were statistically significant at the 95% level 
if the bounds of the 90% CI did not include zero.  

Sinlaku 

Jangmi 

Hagupit 

(a) 

(b) 

0     Hybrid_DR_1way  minus  Hybrid_DR_2way 

0     Hybrid_DR_1way  minus  3DVAR 

0     Hybrid_DR_1way  minus  Hybrid_SR 

Impact of dual-resolution 
•  Mean tropical cyclone track errors 
 

From Schwartz et al. (2015)	




Impact of dual-resolution	  

•  Fractions skill   
score (FSS)     
aggregated      
over the first 12 
forecast hours  
and 55 4-km     
forecasts 
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Hybrid practice 
•  Computation steps: 

•  Compute ensemble mean (gen_be_ensmean.exe) 
•  Extract ensemble perturbations (gen_be_ep2.exe) 
•  Run WRFDA in “hybrid” mode (da_wrfvar.exe) 
•  Display results for: ens_mean, std_dev, ensemble 

perturbations, hybrid increments, cost function 
•  If time permits, play with different namelist settings: 

“je_factor” and “alpha_corr_scale” 

•  Scripts to use: 
•  Some NCL scripts to display results 

•  Ensemble generation part not included in current practice 

WRFDA Tutorial, August 2015 
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Namelist for WRFDA in hybrid mode 
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 &wrfvar7	

je_factor=2,     # half/half for ensemble and static B weightings (tunable parameter)	

 	

&wrfvar16	

 alphacv_method=2,       # ensemble part is in model space (u,v,t,q,ps)	

 	

ensdim_alpha=10,          # ensemble size	

	

 alpha_corr_type=3,        # 1=Exponential; 2=SOAR; 3=Gaussian	

	

 alpha_corr_scale=750.,   # correlation scale in km (tunable parameter)	

	

 alpha_std_dev=1.,	

	

 alpha_vertloc=true,  (use program “gen_be_vertloc.exe 42” to generate file)	
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