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WRFDA Overview 
 

Zhiquan (Jake) Liu 
NCAR/MMM 

 

WRFDA is a Data Assimilation system built within the WRF 
software framework, used for application in both research and 
operational environments…. 

 
 



WRFDA Overview -  Tutorial – 5 Aug. 2015                                        2 
	


DA	



Outline 

•  What is data assimilation 
– Scalar case 
– Two state variables case 
– General case 

•  Introduction to WRF Data Assimilation 
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What is data assimilation? 
•  A statistical method to obtain the best estimate of 

state variables, based upon 
–  Probability theory, Bayes theorem 
–  Optimal control, optimal estimation theory 
–  Inverse problem theory 

•  In the atmospheric sciences, DA involves 
combining a model and observations, along with 
their respective errors characterization, to produce 
an analysis that can initialize a numerical weather 
prediction model (i.e., WRF) 
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A freely available book 

Albert Tarantola 

09/02/2014	
  



WRFDA Overview -  Tutorial – 5 Aug. 2015                                        6 
	


DA	



Scalar Case 
•  State variable to estimate “x”, e.g., consider today’s 

temperature of Boulder at 12 UTC. 

•  Now we have a “background” (or “prior”) information xb 
of x, which is from a 6-h GFS or WRF forecast initiated 
from 06 UTC today. 

•  We also have an observation y of x at a surface station in 
Boulder, measured at 12 UTC. 

•  What is the best estimate (analysis) xa of x? 



WRFDA Overview -  Tutorial – 5 Aug. 2015                                        7 
	


DA	



Scalar Case 
•  We can simply average them:  

–  This implies we trust equally the background and 
observation. 

•  But what if their accuracy is different and we have 
some estimation of their errors 
–  e.g., for background, we have statistics (e.g., mean and 

variance) of xb – y from the past 
–  For observation, we have instrument error information 

from manufacturer 

xa = 1
2 (xb + y)
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Assume we got Gaussian error statistics for both 
background and observation 

background error: N(0, σb)	


observation error: N(0, σo)	
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Scalar Case 
•  Then we can do a weighted mean:                       in 

a least square sense, i.e., 
–  Minimize  

–  Requires 
–  Then we can easily get 

–  We can also write in the form of analysis increment 

xa = axb + by

J(x) = 1
2
(x−xb )

2

σ b
2 + 1

2
(x−y)2

σ o
2

dJ (x )
dx = (x−xb )

σ b
2 + (x−y)

σ o
2 = 0

xa =
σ o
2

σ b
2+σ o

2 xb +
σ b
2

σ b
2+σ o

2 y

xa − xb =
σ b
2

σ b
2+σ o

2 (y− xb )
Innovation	
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•  Analysis (posterior) error PDF: N (0, σa
2) 

 1
σ a

2 =
1
σ b

2 +
1
σ o

2
So σ

a
2  is always smaller than σb

2 and σo
2 	



(only in a statistical sense, but for a sin
gle realization, analysis is not necessar
ily more accurate than background).	



Precision: inverse of error 	


                      variance	
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Two state variables case 
•  Consider two state variables to estimate: Boulder and 

Denver’s temperatures x1 and x2 at 12 UTC today. 

•  Background from 6-h forecast: x1
b and x2

b  
–  and their error covariance with correlation c, which is extremely 

important in data assimilation (see lecture by Rizvi) 

 

•  We only have an observation y1 at a Boulder station and its 
error variance σo
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Analysis increment for two variables 

x1
a − x1

b =
σ1
2

σ1
2 +σ o

2 (y1 − x1
b )

x2
a − x2

b =
cσ1σ 2

σ1
2 +σ o

2 (y1 − x1
b )

Unobserved variable x2 gets updated through the error	


correlation c in the background error covariance.	


	


This correlation can be correlation between two	


locations (spatial), two variables (multivariate), or 	


two times (temporal).	



Boulder	


	


	


Denver	
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Model state  
x, ~107 

Observations 
yo, ~105-106 

General NWP Case	
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General Case: vector and matrix notation 
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Observation error covariance	


J(x) = 1

2
(x − xb )TB−1(x − xb )+ 1

2
[Hx − y]TR−1[Hx − y]

H [n x m] maps x to y space, e. g., interpolation.	


Terminology in DA: observation operator	



Minimize J is equivalent to maximize a Gaussian PDF 	



e−J (x )Constant *	
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General case: analytical solution 

xa − xb = BHT(HBHT +R)−1[y−Hxb ]

0][)()( 11 =−−−=∇ −− HxyRHxxBx T
bxJ

Again, minimize J requires its gradient (a vector) with respect to x equal to zero:	



This leads to analytical solution for the analysis increment:	



HBHT : projection of background error covariance 	


               in observation space	


	


BHT : projection of background error covariance	


               in background-observation space	



Transpose of H: adjoint operator	



x2
a − x2

b =
cσ1σ 2

σ1
2 +σ o

2 (y1 − x1
b )Analog to 2 variables case:	
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Precision of Analysis 
KH)B(IHRHBA 1T −=+= −−− 11

K = BHT(HBHT +R)−1
With	


	


	


	


called Kalman gain matrix	



 1
σ a

2 =
1
σ b

2 +
1
σ o

2Generalization of scalar case	



= Hessian: the second order derivative of cost function	
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cv_options=6 in WRFDA 

xl
a − xl

b =
clkσ lσ k

σ k
2 +σ ok

2 (yk − xk
b )

Analysis increment with a single humidity observation	



x1
a − x1

b =
σ1
2

σ1
2 +σ o

2 (y1 − x1
b )

x2
a − x2

b =
cσ1σ 2

σ1
2 +σ o

2 (y1 − x1
b )

It is generalization of previous 	


two variables case:	



xa − xb = BHT(HBHT +R)−1[y−Hxb ]
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Other Remarks 
•  Observation operator can be non-linear and thus 

analysis error PDF is not necessarily Gaussian 

•  For non-linear problem, J(x) can have multiple local 
minimum. Final solution of least square depends on 
starting point of iteration, e.g., choose the background 
xb as the first guess. 

09/02/2014	
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Other Remarks 
•  B matrix is of very large dimension, explicit inverse of B 

is impossible, substantial efforts in data assimilation 
were given to the estimation and modeling of B. 

•  B shall be spatially-varied and time-evolving according 
to weather regime. 

•  Analysis can be sub-optimal if using inaccurate 
estimate of B and R. 

•  Could use non-Gaussian PDF 
–  Thus not a least square cost function 
–  But difficult (usually slow) to solve 

09/02/2014	
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WRFDA in WRF Modeling System 
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What WRFDA can do? 

•  Provide Initial conditions for the WRF model forecast 
•  Verification and validation via difference b.w. obs and model 

–  See the last Lecture by Kavulich  
•  Observing system design, monitoring and assessment 
•  Reanalysis 
•  Better understanding: 

–  Data assimilation methods 
–  Model errors 
–  Data errors 
–  … 
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Assimilation methods 
•  Empirical methods 

–  Successive Correction Method (SCM) 
–  Nudging  
–  Physical Initialisation (PI), Latent Heat Nudging (LHN) 

•  Statistical methods  
–  Optimal Interpolation (OI) 
–  3-Dimensional VARiational data assimilation (3DVAR) 
–  4-Dimensional VARiational data assimilation (4DVAR) 

•  Advanced methods 
–  Extended Kalman Filter (EKF) 
–  Ensemble Kalman Filter (EnKF) 
–  Hybrid VAR/Ens DA 
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WRFDA is a Data Assimilation system  
built within the WRF software framework, … 

•  Goal: Community WRF DA system for 
•  research/operations, and   
•  deterministic/probabilistic applications. 

•  DA Techniques:  
•  3D-Var (Lecture by Schwartz) 
•  4D-Var (Lecture by Liu) 
•  Ensemble Transformed Kalman Filter 
•  Hybrid-3DVAR (Lecture by Schwartz) 

•  Support:  
•  NCAR/MMM via wrfhelp@ucar.edu 

•  Observations: Conv.+Sat.+Radar(+bogus) 
•  Lectures by Bresch and Sun. 

Panasonic Weather Solution European	



Both operations run in hybrid-3DVAR mode	
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3DVAR 

� 

J(x) =
1
2
(x − xb )

TB−1(x − xb ) +
1
2
[H(x) − y]TR−1[H(x) − y]
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§  In-Situ: 
-  SYNOP 
-  METAR 
-  SHIP 
-  BUOY 
-  TEMP 
-  PIBAL 
-  AIREP, AIREP humidity  
-  TAMDAR 

§  Bogus: 
-  TC bogus 
-  Global bogus 

§  Radiances: can use RTTOV_11.1 or 11.2 (new in V3.7) or CRTM_2.1.3: 
–  HIRS     NOAA-16, NOAA-17, NOAA-18, NOAA-19, METOP-A 
–  AMSU-A   NOAA-15, NOAA-16, NOAA-18, NOAA-19, EOS-Aqua, METOP-A, METOP-B 
–  AMSU-B   NOAA-15, NOAA-16, NOAA-17 
–  MHS      NOAA-18, NOAA-19, METOP-A, METOP-B 
–  AIRS     EOS-Aqua 
–  SSMIS    DMSP-16, DMSP-17, DMSP-18  
–  IASI  METOP-A, METOP-B 
–  ATMS  Suomi-NPP 
–  MWTS  FY-3 
–  MWHS  FY-3 
–  SEVIRI  METEOSAT 

W
R

FD
A

 O
bs

er
va

tio
ns

 
§  Remotely sensed retrievals: 

-  Atmospheric Motion Vectors (geo/polar) 
-  SATEM thickness 
-  Ground-based GPS TPW or ZTD 
-  SSM/I oceanic surface wind speed and TPW 
-  Scatterometer oceanic surface winds 
-  Wind Profiler 
-  Radar data (enhancements in V3.7) 
-  Satellite temperature/humidity/thickness profiles 
-  GPS refractivity (e.g. COSMIC) 
-  Stage IV precipitation/rain rate data (4D-Var) 

	



WRFDA is flexible to allow assimilation	


of different formats of observations:	


•  Little_r (ascii), HDF, Binary	


•  NOAA MADIS (netcdf), 	


•  NCEP PrepBufr, 	


•  NCEP radiance bufr	
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www2.mmm.ucar.edu/wrf/users/wrfda 
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