
WRF Data Assimilation System:

Software and Compilation

WRFDA Tutorial, August 2015, NCAR

Michael Kavulich, Jr.

1

WRFDA System – Outline

• Introduction

• Compiling the code

• WRFDA software structure

• Computing overview

2

Introduction – What is WRFDA?

• A data assimilation system for the WRF Model (ARW core)

• 3D- and 4D-VAR, FGAT, Ensemble, and Hybrid methods

• Designed to be flexible, portable and easily installed and modified

• Open-source and public domain

• Can be compiled on a variety of platforms

• Part of the WRF Software Framework

• Designed to handle a wide variety of data

• Conventional observations

• Radar velocity and reflectivity

• Satellite (radiance and derived data)

• Accumulated precipitation

3

4

WRFDA in WRF Modeling System

Cycling mode

• Because WRFDA takes WRF forecast files as input, the

system can naturally be run in cycling mode

• WRFDA initializes a WRF forecast, the output of which

is fed back into WRFDA to initialize another WRF

forecast

• Requires boundary condition updating

5

Blue: Supported by WRFDA team
6

WRFDA System – Outline

• Introduction

• Compiling the code

• WRFDA software structure

• Computing overview

7

Compiling – What is needed?

• WRFDA has similar system requirements to WRF

• Can be run on a wide variety of UNIX and Linux-based systems

• Linux/Mac, desktops/laptops, clusters with UNIX-based OS

• WRFDA computational requirements depend on your task

• Running a small 3DVAR case may take less than 1GB of RAM

• Large 4DVAR cases may require hundreds of GB

• A supported C and Fortran compiler

• ifort/icc

• gfortran/gcc

• pgf90/pgcc

• Some have known problems; see

http://www2.mmm.ucar.edu/wrf/users/wrfda/known-

problems.html#compilers
8

http://www2.mmm.ucar.edu/wrf/users/wrfda/known-problems.html#compilers
http://www2.mmm.ucar.edu/wrf/users/wrfda/known-problems.html#compilers
http://www2.mmm.ucar.edu/wrf/users/wrfda/known-problems.html#compilers

Compiling – What is needed?

• Similar to WRF, there are required and optional libraries

• netCDF C/fortran libraries are required, and must be downloaded and built

by the user

• http://www.unidata.ucar.edu/downloads/netcdf/index.jsp

• MPI libraries, such as MPICH, are required for running WRFDA in

parallel

• For radiance assimilation, a radiative transfer model is needed:

• CRTM, the Community Radiative Transfer Model, is included with the WRFDA source

code

• RTTOV is provided by EUMETSAT/NWC SAF, and must be downloaded and built

separately

• https://nwpsaf.eu/deliverables/rtm/rtm_rttov11.html

• BUFR libraries are required for reading PREPBUFR or

radiance BUFR files, but they are included in WRFDA and built

automatically
9

http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
https://nwpsaf.eu/deliverables/rtm/rtm_rttov11.html

Compiling – Getting the source code

• Visit the WRFDA download website:
• http://www2.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html

• Click “New Users” and fill out the registration form, (registration

is free), or

• Click “Returning users” and enter your email if you have

previously registered to download a WRF product

• Download the latest tar file (Version 3.7)

• Unzip (gunzip WRFDA_V3.7.tar.gz) and un-tar (tar -xvf

WRFDA_V3.7.tar) the code package

• You should see a directory named “WRFDA”; this is the WRFDA

source code

10

http://www2.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html

WRFDA Directory structure

arch

clean

compile

configure

dyn_em

dyn_exp

external

frame

inc

main

Makefile

phys

README.DA

Registry

run

share

test

tools

var

build

scripts

WRFDA source

code directory

Contains registry.var

Legend:

Blue – directory

Green – script file

Gray – other text file

README file with information about WRFDA

11

WRFDA/var Directory structure

build

convertor

da

external

gen_be

graphics

Makefile

obsproc

README.basics

README.namelist

README.radiance

run

scripts

test

More README files with

useful information

Legend:

Blue – directory

Green – script file

Gray – other text file

Executables built here

WRFDA main source code contained here

Source code for external libraries (CRTM, BUFR, etc.)

GEN_BE source code

OBSPROC source code

Useful runtime files (mostly for radiance)

Data for tutorial cases

12

Main WRFDA Program (driver):

WRFDA Subroutines

(mediation layer)
OBSERVATION

TYPES
da_airep

da_airsr

da_bogus

da_buoy

da_geoamv

da_gpspw

da_gpsref

da_metar

da_mtgirs

da_pilot

da_polaramv

da_profiler

da_4dvar

da_control

da_etkf

da_define_structures

da_dynamics

da_grid_definitions

da_interpolation

da_minimisation

da_physics

da_setup_structures

da_varbc

da_vtox_transforms

WRFDA/var/da Directory structure

da_pseudo

da_qscat

da_radar

da_radiance

da_rain

da_satem

da_ships

da_sound

da_ssmi

da_synop

da_tamdar

da_main

13

Compiling – Preparing the environment

• As mentioned before, some libraries are required for WRFDA,

and some are optional depending what you are using WRFDA for

• netCDF is required; you should set an environment variable to specify

where the netCDF libraries are built on your system:

• setenv NETCDF full_path_for_NETCDF

• If you plan on doing radiance assimilation, you will need CRTM or

RTTOV. WRFDA can be built with either or both

• The CRTM source code is included in the WRFDA package, use

setenv CRTM 1 to build it

• To use RTTOV, set an environment variable specifying where RTTOV is

built on your system:

• setenv RTTOV full_path_for_RTTOV

• To build faster, if your computer has the gnu make utility, you can set

the environment variable J to build the code in parallel

• setenv J “-j 4” (will build on 4 processors) 14

Compiling – Building the WRFDA code

• Two scripts must be run to build the code:

• configure asks for some information about your

machine and how you want to build the code, and

generates a configure.wrf file

• ./configure wrfda

• Select the option that is best for your purposes

> ./configure wrfda

checking for perl5... no

checking for perl... found /usr/bin/perl (perl)

Will use NETCDF in dir: /usr/local/netcdf-3.6.3-gfortran

PHDF5 not set in environment. Will configure WRF for use without.

Will use 'time' to report timing information

$JASPERLIB or $JASPERINC not found in environment, configuring to build without grib2 I/O...

--

Please select from among the following Linux x86_64 options:

 1. (serial) 2. (smpar) 3. (dmpar) 4. (dm+sm) PGI (pgf90/gcc)

 5. (serial) 6. (smpar) 7. (dmpar) 8. (dm+sm) PGI (pgf90/pgcc): SGI MPT

 9. (serial) 10. (smpar) 11. (dmpar) 12. (dm+sm) PGI (pgf90/gcc): PGI accelerator

 13. (serial) 14. (smpar) 15. (dmpar) 16. (dm+sm) INTEL (ifort/icc)

15

Compiling – Building the WRFDA code

• Two scripts must be run to build the code:

• compile compiles all the code for the settings you

specified
 ./compile all_wrfvar >& compile.wrfda.log

• Depending on your machine and what options you have

selected, compilation can take less than 5 minutes up to

an hour. For example, gfortran compiles WRFDA quite

quickly, while intel compilers take longer to build (but

the executables will run faster)

16

Compiling – review compiled code

• When the compilation script is completed, you should see the

message “build completed:” followed by the date and time.

• The script does not automatically check to make sure all

executables were successfully built; You will need to check

manually

• There should be 44 executables built all together: 43 in the

WRFDA/var/build directory, and

WRFDA/var/obsproc/obsproc.exe

• In all likelihood, you will not use most of these directly: the

majority of them are called by scripts for various diagnostic

packages

17

Compiling – review executables

• These are the executables you will most likely be using:

• da_wrfvar.exe

• The main WRFDA executable: this program will perform the

actual data assimilation/minimization

• obsproc.exe

• The executable for OBSPROC, the observation pre-processor

for text-based observation formats

• da_update_bc.exe

• The executable for UPDATE_BC; used for updating boundary

conditions after assimilation and during cycling runs

18

WRFDA System – Outline

• Introduction

• Compiling the code

• WRFDA software structure

• Computing overview

19

WRFDA Software – Architecture

• Hierarchical software architecture

• Insulate scientists' code from parallelism and other

architecture/implementation-specific details

• Well-defined interfaces between layers, and external packages

for communications, I/O.

DA obs_type-callable

 Subroutine

Registry.wrfvar

20

WRFDA Software – Architecture

• Registry: an “Active” data dictionary

• Tabular listing of model state and attributes

• Large sections of interface code generated automatically

• Scientists manipulate model state simply by modifying Registry, without further knowledge of

code mechanics

• registry.var is the main dictionary for WRFDA

• registry.var is combined at compile time with Registry.EM_COMMON.var and others to

produce Registry.wrfvar, which contains all of the registry definitions used by WRFDA

Registry.wrfvar

DA obs_type-callable

 Subroutine

21

registry.var
Variable

type

Variable

name

Namelist

name

Default

value

Variable

size

rconfig integer rttov_emis_atlas_ir namelist,wrfvar14 1 0 - "rttov_emis_atlas_ir" "" "“

rconfig integer rttov_emis_atlas_mw namelist,wrfvar14 1 0 - "rttov_emis_atlas_mw" "" "“

rconfig integer rtminit_print namelist,wrfvar14 1 1 - "rtminit_print" "" "“

rconfig integer rtminit_nsensor namelist,wrfvar14 1 1 - "rtminit_nsensor" "" "“

rconfig integer rtminit_platform namelist,wrfvar14 max_instruments -1 - "rtminit_platform" "" "“

rconfig integer rtminit_satid namelist,wrfvar14 max_instruments -1.0 - "rtminit_satid" "" "“

rconfig integer rtminit_sensor namelist,wrfvar14 max_instruments -1.0 - "rtminit_sensor" "" "“

rconfig integer rad_monitoring namelist,wrfvar14 max_instruments 0 - "rad_monitoring" "" "“

rconfig real thinning_mesh namelist,wrfvar14 max_instruments 60.0 - "thinning_mesh" "" "“

rconfig logical thinning namelist,wrfvar14 1 .true. - "thinning " "" "“

rconfig logical read_biascoef namelist,wrfvar14 1 .false. - "read_biascoef" "" "“

rconfig logical biascorr namelist,wrfvar14 1 .false. - "biascorr" "" "“

rconfig logical biasprep namelist,wrfvar14 1 .false. - "biasprep" "" "“

rconfig logical rttov_scatt namelist,wrfvar14 1 .false. - "rttov_scatt" "" "“

rconfig logical write_profile namelist,wrfvar14 1 .false. - "write_profile" "" "“

rconfig logical write_jacobian namelist,wrfvar14 1 .false. - "write_jacobian" "" "“

rconfig logical qc_rad namelist,wrfvar14 1 .true. - "qc_rad" "" "“

rconfig logical write_iv_rad_ascii namelist,wrfvar14 1 .false. - "write_iv_rad_ascii" "" "“

rconfig logical write_oa_rad_ascii namelist,wrfvar14 1 .false. - "write_oa_rad_ascii" "" "“

rconfig logical write_filtered_rad namelist,wrfvar14 1 .false. - "write_filtered_rad" "" "“

rconfig logical use_error_factor_rad namelist,wrfvar14 1 .false. - "use_error_factor_rad" "" "“

rconfig logical use_landem namelist,wrfvar14 1 .false. - "use_landem" "" "“

rconfig logical use_antcorr namelist,wrfvar14 max_instruments .false. - "use_antcorr" "" "“

rconfig logical use_mspps_emis namelist,wrfvar14 max_instruments .false. - "use_mspps_emis" "" "“

rconfig logical use_mspps_ts namelist,wrfvar14 max_instruments .false. - "use_mspps_ts" "" "“

WRFDA Software – Architecture

22

WRFDA Software – Architecture

• Driver Layer

• Domains: Allocates, stores, decomposes, represents abstractly
as single data objects

Registry

DA obs_type-callable

 Subroutine

23

WRFDA Software – Architecture

• Minimization/Solver Layer

• Minimization/Solver routine, choose the function based on the
namelist variable, 3DVAR, 4DVAR, FSO or Verification, and
choose the minimization algorithm.

Registry

DA obs_type-callable

 Subroutine

24

WRFDA Software – Architecture

• Observation Layer

• Observation interfaces: contains the gradient and cost
function calculation subroutines for each type of observations.

Registry

DA obs_type-callable

 Subroutine

25

Call Structure Superimposed on Architecture

da_wrfvar_main (var/da/da_main/da_wrfvar_main.f90)

da_wrfvar_run (da_main)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
synop (da_synop/da-synop.f90)
sound (da_sound/da_sound.f90)

da_wrfvar_interface -> da_solve (da_main)

da_sound.f90(da_sound)

da_calculate_j (da_minimisation)

da_minimise_cg (da_minimisation)

26

http://box.mmm.ucar.edu/wrf/WG2/bench/

WRFDA System – Outline

• Introduction

• Compiling the code

• WRFDA software overview

• Computing overview

27

WRFDA Parallelism

• WRFDA can be run serially or as a parallel job

• WRFDA uses domain decomposition to divide total amount of

work over parallel processes

• The decomposition of the application over processes has two

levels:

• The domain is broken up into rectangular pieces that are assigned to MPI

(distributed memory) processes. These pieces are called patches

• The patches may be further subdivided into smaller rectangular pieces that

are called tiles, and these are assigned to shared-memory threads within

the process.

• However, WRFDA does not support shared memory parallelism! So

distributed memory is what I will cover here.

28

Inter-processor

communication

Parallelism in WRFDA: Multi-level Decomposition

29

Communication is required between patches when a

horizontal index is incremented or decremented on the

right-hand-side of an assignment.

On a patch boundary, the index may refer to a value that

is on a different patch.

Following is an example code fragment that requires

communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr,

H1, and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the

indexed operands may lie in the patch of a neighboring

processor. That neighbor’s updates to that element of

the array won’t be seen on this processor.

When

Needed?

Why?

Signs in

code

Distributed Memory Communications

30

Halo (contains

information about

adjacent patch)

Distributed Memory Communications

31

Inter-processor

communication

(Halos update

from adjacent

patch after each

minimization step) Halo (contains

information about

adjacent patch)

Distributed Memory Communications

32

Grid Representation in Arrays

• Increasing indices in WRFDA arrays run

• West to East (X, or I-dimension)

• South to North (Y, or J-dimension)

• Bottom to Top (Z, or K-dimension)

• Storage order in WRFDA is IJK , but for WRF, it is IKJ

(ARW) and IJK (NMM)

• Output data has grid ordering independent of the

ordering inside the WRFDA model

33

Grid Representation in Arrays

• The extent of the logical or domain dimensions is always

the "staggered" grid dimension. That is, from the point

of view of a non-staggered dimension (also referred to

as the ARW “mass points”), there is always an extra cell

on the end of the domain dimension

• In WRFDA, the minimization is on A-grid (non-

staggered grid). The wind components will be

interpolated from A-grid to C-grid (staggered grid)

before they are output, to conform with standard WRF

format

34

Summary

• WRFDA

• is designed to be an easy-to-use data assimilation system for use

with the WRF model

• is designed within the WRF Software Framework for rapid

development and ease of modification

• is compiled in much the same way as WRF

• can be run in parallel for quick assimilation of large amounts of

data on large domains

35

Appendix – WRFDA Resources

• WRFDA users page

• http://www2.mmm.ucar.edu/wrf/users/wrfda

• Download WRFDA source code, test data, related packages and

documentation

• Lists WRFDA news and developments

• Online documentation

• http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V

3/users_guide_chap6.htm

• Chapter 6 of the WRF Users’ Guide; documents installation of

WRFDA and running of various WRFDA methods

• WRFDA user services and help desk

• wrfhelp@ucar.edu
36

http://www2.mmm.ucar.edu/wrf/users/wrfda
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap6.htm
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap6.htm
mailto:rfhelp@ucar.edu

Appendix – WRFDA History

 Developed from MM5 3DVar beginning around 2002, first

version (2.0) released December 2003

 4DVAR capability added in 2008, made practical with

parallelism starting with Version 3.4 (April 2012)

 Developed and supported by WRFDA group of the

Mesoscale and Microscale Meteorology Lab of NCAR

 Requirements emphasize flexibility over a range of

platforms, applications, users, performance

 Current release WRFDA v3.7 (April 2015)

 Shares the WRF Software Framework

37

WRFDA and J

• Model background (𝐱𝐛)

• Background error (𝐁)

• Observations (𝑦0) and their associated error statistics

(𝐑)

• Minimize this cost function (𝐽 𝐱) to find the analysis

(𝐱)

• Run forecast, repeat for cycling mode

𝐽 𝐱 =
1

2
𝐱 − 𝐱𝐛

T𝐁−1 𝐱 − 𝐱𝐛 +
1

2
𝐲 − 𝐻(𝐱) T𝐑−1 𝐲 − 𝐻(𝐱)

WRFDA broken down by process

Namelist xb y, R B

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

y − H (x)
Minimize cost function

Compute

analysis

Calculate

diagnostics
Clean up

Diagnostics

Formulate

analysis

xa

Outer loop

WRFDA broken down by process

Namelist
Input

files

Diagnostics

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

y − H (x)
Minimize cost function

Compute

analysis

Calculate

diagnostics
Clean up

Formulate

analysis

xa

Outer loop

xb y, R B

Input files

• namelist.input

• fg

• ob.ascii, amsua.bufr,

 ob01.rain, etc

• be.dat

The input file where the user specifies the different

options for a WRFDA run. This allows user great

flexibility to change the usage of WRFDA without

having to recompile

“First guess”; can be either a WRF input file created by

WPS and real.exe, or a WRF output file from a

forecast.

WRFDA accepts a wide variety of observations in

several different formats, which will be described in

later talks

This is a binary file containing background error

information; it can be generated using the GEN_BE

utility, which will be described in a later talk

WRFDA broken down by process

Namelist xb y, R B

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Minimize cost function
Compute

analysis

Calculate

diagnostics
Clean up

WRFDA

Processes

Diagnostics xa

Formulate

analysis

Outer loop

Calculate

y − H (x)

Read namelist

• Read user-specified options from

namelist.input

• Set default values for options not specified in the

namelist

• Perform consistency checks between namelist options

Calling order:
da_wrfvar_main ==> call da_wrfvar_init1, da_wrfvar_init2 ==> call initial_config

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init1.inc, da_wrfvar_init2.inc ==> module_configure.F

Set up framework

• Utilize WRF Software Framework distributed memory

capability to allocate and configure the domain

• Allocate needed memory, initializes domain and tile

dimensions, etc.

• Create output files

Calling order:
da_wrfvar_main ==> call da_wrfvar_init2 ==> call alloc_and_configure_domain

da_wrfvar_main ==> call da_wrfvar_run.inc ==> call da_wrfvar_interface ==> call

da_solve ==> call da_solve_init

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init2.inc ==> module_domain.F

da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==> da_solve_init.inc

Set up background

• Read the first-guess file

• Extract fields used by WRFDA

• Create background FORTRAN 90 derived data type xb,

etc.

Calling order:
da_wrfvar_main ==> call da_wrfvar_init2 ==> call da_med_initialdata_input

da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

==>call da_setup_firstguess

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_init2.inc ==> da_med_initialdata_input.inc

da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==>da_setup_firstguess.inc

Set up observations and error

• Read in observations

• Assign observational error

• Create observation FORTRAN 90 derived data type ob

• Domain and time check

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

==> call da_setup_obs_structures

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==>da_setup_obs_structures.inc

Set up background error

• Reads in background error statistics from be.dat

• Extracts necessary quantities: eigenvectors, eigenvalues,

lengthscales, regression coefficients, etc.

• Creates background error FORTRAN 90 derived data

type be

• Specifics of background error in WRFDA be covered in

more detail in a later talk
Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

==>call da_setup_background_errors

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==>da_setup_background_errors.inc

Minimize cost function

• Use conjugate gradient method

• Initializes analysis increments to zero

• Computes cost function

• Computes gradient of cost function

• Uses gradient of the cost function to calculate new value of

analysis control variable

• Increment this process until specified minimization is

achieved
Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

==>call da_minimise_cg

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==>da_minimise_cg.inc

Further reading: Shewchuk, Jonathan Richard, 1994. An Introduction to the Conjugate Gradient Method Without the

Agonizing Pain (http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf)

Compute analysis

• Convert control variables to model space analysis

increments

• Calculate analysis = first-guess + analysis increment

• Perform consistency checks (e.g., remove negative

humidity)

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==>da_transfer_xatoanalysis.inc

Calculate diagnostics

• Output y − H(xb), y − H(xa) statistics for all

observation types and variables

• Compute xa − xb (analysis increment) statistics for all

model variables and levels

• Statistics include minimum, maximum (and their

locations), mean and standard deviation.

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==>da_transfer_xatoanalysis.inc

Outer loop

• An outer loop is a method of iterative assimilation to

maximize contributions from observations non-linearly

related to the control variables (e.g., GPS refractivity,

Doppler radial velocity)

• After the previous steps, the analysis xa is used as the new first

guess

• The cost function minimization and diagnostic steps are

repeated

• This can be repeated up to 100 times, though only a few

should be necessary

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

Further reading: Rizvi et al., 2008 (http://www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/P5-03.pdf)

Write analysis

• Write analysis file in native WRF format (netCDF).

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

==>call da_transfer_xatoanalysis

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

==>da_transfer_xatoanalysis.inc

Clean up

• Deallocate dynamically-allocated arrays, structures, etc.

• Timing information

• Clean end to WRFDA

Calling order:
da_wrfvar_main ==> call da_wrfvar_run ==> call da_wrfvar_interface ==> call da_solve

da_wrfvar_main ==> call da_wrfvar_finalize

Calling subroutines:
da_wrfvar_main.f90 ==> da_wrfvar_run.inc ==> da_wrfvar_interface.inc ==> da_solve.inc

da_wrfvar_main.f90 ==> da_wrfvar_finalize.inc

Output files

WRFDA broken down by process

Namelist xb B

Diagnostics

Read

namelist

Set up

framework

Set up

background

Set up

observations

and error

Set up

background

error

Calculate

y − H (x)
Minimize cost function

Compute

analysis

Calculate

diagnostics
Clean up

Formulate

analysis

Outer loop

xa

y, R

Output files: Diagnostics

• File names: grad_fn, jo, qcstat_conv*,

statistics, etc.

• There will be a number of diagnostics files output by

WRFDA

• Many will end in .0000, .0001, etc.; these are diagnostics

specific to each processor used

• Many will also contain a _01; these files will appear for each

outer loop as _02, _03, etc.

• More or fewer output files can be specified by certain

namelist options

Output files: xa (analysis)

• File name: wrfvar_output

• This is the model output in WRF native format

(netCDF). This file can be used directly for research

purposes, or used to initialize a WRF forecast

