WRFDA 4DVAR

Zhiquan (Jake) Liu NCAR/MMM

Outline

- Incremental formulation of 3DVAR
- Incremental formulation of 4DVAR
- Introduction to 4DVAR practice

Incremental formulation of 3DVAR and outer loop

1.1 Non-linear 3DVAR Formulation

Non-linear 3DVAR cost function

$$
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{b}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}^{b}\right)+\frac{1}{2}[H(\mathbf{x})-\mathbf{y}]^{\mathrm{T}} \mathbf{R}^{-1}[H(\mathbf{x})-\mathbf{y}]
$$

1.2 Incremental 3DVAR Formulation

Linearization, let $\delta \mathbf{x}=\mathbf{x}-\mathbf{x}^{g}$ and $\delta \mathbf{x}^{g}=\mathbf{x}^{b}-\mathbf{x}^{g}$, thus $\mathbf{x}=\delta \mathbf{x}+\mathbf{x}^{g}$, we have

$$
\left.J(\delta \mathbf{x})=\frac{1}{2}\left(\delta \mathbf{x}-\delta \mathbf{x}^{g}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\delta \mathbf{x}-\delta \mathbf{x}^{g}\right)+\frac{1}{2}\left[H\left(\delta \mathbf{x}+\mathbf{x}^{g}\right)-\mathbf{y}\right]^{\mathrm{T}} \mathbf{R}^{-1}\left[H\left(\delta \mathbf{x}+\mathbf{x}^{g}\right)\right)-\mathbf{y}\right]
$$

Do Taylor Expansion for observation term

$$
J(\delta \mathbf{x})=\frac{1}{2}\left(\delta \mathbf{x}-\delta \mathbf{x}^{g}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\delta \mathbf{x}-\delta \mathbf{x}^{g}\right)+\frac{1}{2}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

where $\mathbf{d}=\mathbf{y}-H\left(\mathbf{x}^{g}\right)$ and \mathbf{H} is the linearized version of H in the vicinity of \mathbf{x}^{g}.
NOTE: X^{g} is the first guess, not to confuse with the background X^{b} even though they are the same for the first outer loop. From the 2nd outer loop, \mathbf{X}^{g} is equal to the analysis $\mathbf{X}^{\text {a }}$ from previous outer loop.

1.3 Control Variable Transform (CVT)

To avoid the inverse calculation of large \mathbf{B} matrix, do a change of variable $\delta \mathbf{x}=\mathbf{U v}$ and $\delta \mathbf{x}^{g}=\mathbf{U v}^{g}$ with \mathbf{U} the square root of \mathbf{B}, namely $\mathbf{B}=\mathbf{B}^{1 / 2} \mathbf{B}^{\mathrm{T} / 2}=\mathbf{U U}^{\mathrm{T}}$ or $\mathbf{U}=\mathbf{B}^{1 / 2}$. Also $\mathbf{B}^{-1}=\mathbf{U}^{-T} \mathbf{U}^{-1}$. Then the cost function with respect to the control variable \mathbf{v} becomes

$$
\begin{equation*}
J(\mathbf{v})=\frac{1}{2}\left(\mathbf{v}-\mathbf{v}^{g}\right)^{\mathrm{T}}\left(\mathbf{v}-\mathbf{v}^{g}\right)+\frac{1}{2}(\mathbf{H U v}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H U v}-\mathbf{d}) \tag{4}
\end{equation*}
$$

1.4 Solution of Incremental 3DVAR

The minimization of the cost function requires its gradient with respect to \mathbf{v} to be zero, namely

$$
\begin{equation*}
\nabla_{\mathbf{v}} J(\mathbf{v})=\left(\mathbf{v}-\mathbf{v}^{g}\right)+\mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H U v}-\mathbf{d})=0 \tag{5}
\end{equation*}
$$

After minimization, we get the analysis increment \mathbf{v}^{a} in control variable space,

$$
\mathbf{v}^{a}=\left(\mathrm{I}+\mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{U}\right)^{-1}\left(\mathbf{v}^{g}+\mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{d}\right)
$$

The analysis increment and the analysis in model space are

$$
\mathbf{x}^{a}=\mathbf{x}^{g}+\delta \mathbf{x}^{a}=\mathbf{x}^{g}+\mathbf{U} \mathbf{v}^{a}
$$

NOTE: (1)outer loop-1: $X^{g}=X^{b} ; V^{g}=0$; loop-2: $X^{g}=X^{a}, V^{g}=V^{\text {a }}$ from previous loop. (2) For each outer loop, H needs to be re-linearized around new X^{g};
(3) $\mathrm{d}=\mathrm{y}-H\left(\mathrm{X}^{\mathrm{g}}\right)$ is also re-calculated and re-do QC (OMB check).

Cost Function/Gradient with 2 outer loops

3DVAR

Assume observations valid at the center of time window

Outline

- Incremental formulation of 4DVAR

4DVAR

Need develop/maintain TL/AD version of a NWP model.

Incremental formulation of 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

$$
\begin{equation*}
J\left(\mathbf{x}_{0}\right)=\frac{1}{2}\left(\mathbf{x}_{0}-\mathbf{x}_{0}^{b}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}_{0}-\mathbf{x}_{0}^{b}\right)+\frac{1}{2} \sum_{i=1}^{N}\left[H_{i}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right]^{\mathrm{T}} \mathbf{R}_{i}^{-1}\left[H_{i}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right] \tag{15}
\end{equation*}
$$

where the subscript " 0 " indicates the beginning of the 4DVAR time window. Substitute the NWP model into the cost function, we obtain

$$
\begin{equation*}
J\left(\mathbf{x}_{0}\right)=\frac{1}{2}\left(\mathbf{x}_{0}-\mathbf{x}_{0}^{b}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}_{0}-\mathbf{x}_{0}^{b}\right)+\frac{1}{2} \sum_{i=1}^{N}\left[H_{i}\left(M_{i}\left(\mathbf{x}_{0}\right)\right)-\mathbf{y}_{i}\right]^{\mathrm{T}} \mathbf{R}_{i}^{-1}\left[H_{i}\left(M_{i}\left(\mathbf{x}_{0}\right)\right)-\mathbf{y}_{i}\right] \tag{16}
\end{equation*}
$$

2.2 Incremental 4DVAR Formulation

Linearization, let $\delta \mathbf{x}_{0}=\mathbf{x}_{0}-\mathbf{x}_{0}^{g}$ and $\delta \mathbf{x}_{0}^{g}=\mathbf{x}_{0}^{b}-\mathbf{x}_{0}^{g}$, thus $\mathbf{x}_{0}=\delta \mathbf{x}_{0}+\mathbf{x}_{0}^{g}$, we have $J\left(\delta \mathbf{x}_{0}\right)=\frac{1}{2}\left(\delta \mathbf{x}_{0}-\delta \mathbf{x}_{0}^{g}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\delta \mathbf{x}_{0}-\delta \mathbf{x}_{0}^{g}\right)+\frac{1}{2} \sum_{i=1}^{N}\left[H_{i}\left(M_{i}\left(\delta \mathbf{x}_{0}+\mathbf{x}_{0}^{g}\right)-\mathbf{y}_{i}\right]^{\mathrm{T}} \mathbf{R}_{i}^{-1}\left[H_{i}\left(M_{i}\left(\delta \mathbf{x}_{0}+\mathbf{x}_{0}^{g}\right)\right)-\mathbf{y}_{i}\right]\right.$

Do Taylor Expansion for observation term
$J\left(\delta \mathbf{x}_{0}\right)=\frac{1}{2}\left(\delta \mathbf{x}_{0}-\delta \mathbf{x}_{0}^{g}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\delta \mathbf{x}_{0}-\delta \mathbf{x}_{0}^{g}\right)+\frac{1}{2} \sum_{i=1}^{N}\left(\mathbf{H}_{i} \mathbf{M}_{i} \delta \mathbf{x}_{0}-\mathbf{d}_{i}\right)^{\mathrm{T}} \mathbf{R}_{i}^{-1}\left(\mathbf{H}_{i} \mathbf{M}_{i} \delta \mathbf{x}_{0}-\mathbf{d}_{i}\right)$
where $\mathbf{d}_{i}=\mathbf{y}_{i}-H_{i}\left[M_{i}\left(\mathbf{x}_{0}^{g}\right)\right]$.

Incremental 4DVAR with control variable transform

Again, control variable transform $\delta \mathbf{x}_{0}=\mathbf{U v}$ and $\delta \mathbf{x}_{0}^{g}=\mathbf{U} \mathbf{v}^{g} . \delta \mathbf{x}_{0}$ indicates that analysis increment is valid at the beginning of the 4DVAR time window. Then the cost function with respect to the control variable \mathbf{v} becomes

$$
\begin{equation*}
J(\mathbf{v})=\frac{1}{2}\left(\mathbf{v}-\mathbf{v}^{g}\right)^{\mathrm{T}}\left(\mathbf{v}-\mathbf{v}^{g}\right)+\frac{1}{2} \sum_{i=1}^{N}\left(\mathbf{H}_{i} \mathbf{M}_{i} \mathbf{U} \mathbf{v}-\mathbf{d}_{i}\right)^{\mathrm{T}} \mathbf{R}_{i}^{-1}\left(\mathbf{H}_{i} \mathbf{M}_{i} \mathbf{U} \mathbf{v}-\mathbf{d}_{i}\right) \tag{19}
\end{equation*}
$$

NOTE:

(1) For each outer loop, need to store forecast trajectory (each time step) and V^{g} in the memory.
(2) For each loop, H and M needs to be re-linearized around new forecast trajectory; $\mathrm{d}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}-H_{i}\left(\mathrm{X}_{\mathrm{i}}^{\mathrm{g}}\right)$ is also re-calculated and re-do QC (OMB check).
(3) 4DVAR outer loops could run at different (typically lower) resolutions, common practice at operational NWP centers (capability under development with WRFDA)

Multi-Resolution Incremental 4DVAR

- 4DVAR minimization runs at lower resolutions than WRF model's to allow substantial speed-up
- Now works for cv_options = 3
- Need more development to make it work properly with cv_options = 5/6/7

TABLE 2. Computational performance comparison of the full-resolution WRF 4D-Var and multi-incremental WRF 4D-Va on NCAR Yellowstone; Each test has three outer loops with 20 iterations inner loops for each. Unit: Minutes

Cores	8	16	32	64	128	256	512	1024
Full-Res.	-	-	4191	2169	1230	728	392	257
Multi-Inc.	455	217	135	83	53			

$15 \mathrm{~km} / 15 \mathrm{~km} / 15 \mathrm{~km}$ versus $135 \mathrm{~km} / 45 \mathrm{~km} / 45 \mathrm{~km}$

Xin Zhang et al., 2014: Development of an Efficient Regional Four-Dimensional Variational Data Assimilation System for WRF. J. Atmos. Oceanic Technol., 31, 2 777-2794.

Advantages of 4DVAR

- Data can be assimilated at appropriate time, so can use frequently reported observations
- Can use "future" observations to constrain the analysis at earlier time
- NWP model as part of constraints, so propagating observation information via model dynamics and physics
- Background error covariance (BEC) implicitly evolving within time window through linearized model, though B (BEC at the beginning of time window) typically the same for each analysis cycle. BEC at time t_{i},

$$
B_{i}=M_{i} B M_{i}^{T}
$$

4DVAR Single Obs Test 500 T at the end of time window

Valid: 2000-01-25_04:00:00
Valid: 2000-01-25_05:00:00
Valid: 2000-01-25_06:00:00

From Xin Zhang

Number of obs assimilated: 3DVAR vs. 4DVAR

From Xin Zhang

Some word about WRFDA-3DVAR/4DVAR for WRF/Chem

- Under development for aerosol/chemistry data assimilation
- Including WRFPlus-Chem for GOCART
- J. J. Guerrette and D. K. Henze, 2015
- Will be very useful for air-quality forecast and source emission inversion.

See Lecture by J. J. Guerrette

Outline

- Introduction to 4DVAR practice

Compile WRFDA in 4DVAR mode

- Download WRFPlus code
- Include non-linear and TL/AD code of WRF
- Download WRFDA code
- Install WRFPLUS V3.8
- ./configure (-d) wrfplus ./compile wrf (only compile wrf.exe)
- wrf.exe should be generated under the WRFPLUSV3/main directory.
- for csh, tcsh : setenv WRFPLUS_DIR path of wrfplusv3 for bash, ksh : export WRFPLUS_DIR=path of wrfplusv3
- Install WRFDA V3.8
- ./configure (-d) 4dvar ./compile all_wrfvar da_wrfvar.exe should be generated in the var/build directory.

Notes about WRFPlus

- WRFPLUS only works with regional ARW core, not for NMM core or global WRF.
- WRFPLUS only works with single domain, not for nested domains.
- WRFPLUS can not work with Adaptive Time Stepping options.
- WRFPLUS TL/AD code only has 3 simplified physics processes:
- surface drag (bl_pbl_physics=98);
- large scale condensate or Kessler (mp_physics=98 or 99)
- a simplified cumulus scheme (cu_physics=98)

Prepare obs for 4DVAR

- Conventional observations
- LITTLE_R format
- NCEP PREPBUFR format
- Satellite radiance BUFR data
- ASCII format precipitation and radar data

4DVAR time window

IC\&BC
4D-Var

Run a 4DVAR test case

- enter WRFDA/var/test/4dvar (or working directory of your choice)
- get the test dataset from:
- http://www2.mmm.ucar.edu/wrf/users/wrfda/download/ testdata.html
- \ln-fs wrfinput_d01 fg
- \ln-fs wrfbdy_d01.
- ln -fs ../../build/da_wrfvar.exe .
- ln -fs ../../run/be.dat.cv3 be.dat
- ./da_wrfvar.exe
- Typically you should run in parallel with MPI (mpirun -np \# da_wrfvar.exe) or your system's custom run command (on Yellowstone: bsub))

Run a 4DVAR test case

- WRFPlus/WRFDA compiled in double precision
- So link double-precision version of following files for 4DVAR run
- ln -sf \$\{WRF_DIR\}/run/RRTM_DATA_DBL RRTM_DATA
- \ln-sf $\$\left\{W R F _D I R\right\} / r u n / R R T M G _L W _D A T A _D B L ~$ RRTMG_LW_DATA
- ln -sf \$\{WRF_DIR\}/run/RRTMG_SW_DATA_DBL RRTMG_SW_DATA
- And other WRF related files
- ln -sf \$\{WRF_DIR\}/run/SOILPARM.TBL
- ln -sf \$\{WRF_DIR\}/run/VEGPARM.TBL
- ln -sf \$\{WRF_DIR\}/run/GENPARM.TBL
- ln -sf \$\{WRF_DIR\}/run/LANDUSE.TBL

Important namelist variables

- \&wrfvarl
- var4d: logical, set to .true. to use 4D-Var
- var4d_lbc: logical, set to .true. to include lateral boundary condition control in 4D-Var
- var4d_bin: integer, seconds, length of sub-window to group observations in 4D-Var
- \&wrfvar18,21,22
- analysis_date : the start time of the assimilation window
- time_window_min : the start time of the assimilation window
- time_window_max : the end time of the assimilation window
- \&perturbation
- jcdfi_use: logical, if turn on the digital filter as a weak constraint.
- jcdfi_diag: integer, 0/1, Jc term diagnostics
- jcdfi_penalty: real, weight to jcdfi term

Important namelist variables

- \&physics
- all physics options must be consistent with those used in wrfinput
- Non-linear WRF run can use different physics options from TL/AD
- mp_physics_ad =

98: large-scale condensation microphysics (default)
99: modified Kessler scheme (new in V3.7)

- bl pbl physics = any : but only surface drag available for TL/AD
- cu physics = any : but only simplified cumulus scheme for TL/AD
- \& time control
- run_xxxx : be consistent with the length of the time window
- start_xxxx : be consistent with the start time of the time window
- end_xxxx : be consistent with the end time of the time window

WRFDA adjoint check before 4DVAR run

- \&wrfvar10
- test_transforms=true,
- run da wrfvar.exe

```
Check results
wrf: back from adjoint integrate
d01 2008-02-05_21:00:00 read nonlinear xtraj time stamp:2008-02-05_21:00:00
Single Domain < y, y > = 2.15435506772433E+06
Single Domain < x, x_adj > = 2.15435506772431E+06
Whole Domain < y, y > = 2.15435506772433E+06
Whole Domain < x, x_adj > = 2.15435506772431E+06
da_check_xtoy_adjoint: Test Finished:
    *** WRF-Var check completed successfully ***
```

