

WRFDA Background Error (Modeling and Estimation)

Syed RH Rizvi

National Center For Atmospheric Research NCAR/MMM, Boulder, CO-80307, USA

August 1–August 3, 2016, Boulder, CO

Talk Overview

- Background Error (BE) and its role in DA?
- Modeling of BE
- Estimation of BE ("gen_be" utility)
- Single observation test and tuning of BE
- Impact of BE on analysis and NWP forecast
- Hands on practice session

• If **x** is the forecast of the analysis variable and \mathbf{x}^t is the corresponding true state, the BE is defined as the covariance of forecast minus truth $(\mathbf{x} - \mathbf{x}^t)$.

$$\mathbf{B}\mathbf{E} = \langle (\mathbf{x} - \mathbf{x}^{\mathsf{t}}), (\mathbf{x} - \mathbf{x}^{\mathsf{t}})^{\mathsf{T}} \rangle$$

• Thus, the BE covariance matrix (**B**) describes the probability distribution function (PDF) of the forecast errors $(\mathbf{x} - \mathbf{x}^t)$

Role of BE in DA

• **B** appears in the cost function and the analysis equation as,

$$J(x) = \frac{1}{2}(x - x^{b})^{T}B^{-1}(x - x^{b}) + \frac{1}{2}[y - H(x)]^{T}R^{-1}[y - H(x)]$$

 $x^{a} - x^{b} = \mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}[y^{o} - H(x^{b})]$

- Thus, **B** gives proper weight to the background term $(x-x^b)$ in defining the analysis cost function (J)
- Since **B** is the last operator in the analysis equation, the analysis increment $(x^a x^b)$ lies in the subspace of **B**
- **B** spreads information, both vertically and horizontally with proper weights to observation (y^{o}) and the background (x^{b})

Role of BE in DA

- **B** spreads information between variables and imposes balance across different analysis variables. Thus, a pressure or the temperature observation has the ability to modify the wind analysis and vise-versa
- **B** provides a means by which observations can act in synergy, meaning **B** allows observations to reinforce each other in a way that improves the analysis to a degree that is greater than their individual contributions
- **B** is used for preconditioning the analysis equation

Modeling of BE

Why?

- **B** is a square, symmetric and positive definite matrix $(x^T \mathbf{B}x > 0$ for all non-zero vectors x) with dimension equal to the number of the analysis variables
- Thus, typically the size of **B** is of the order of $10^7 \times 10^7$ and so, it is not possible to either store or compute its inverse

How?

- The size of **B** is reduced by designing the actual analysis control variables in such a way that the cross covariance between these variables are minimum (zero)
- Thus assuming all the off-diagonal elements as zero, the size of **B** is typically reduced to the order of 10^7

Modeling of BE

• Let us define a control variable transform (CVT),

 $\delta x = B^{1/2} v$

or, $\delta x = Uv$ Where, $\delta x = x - x^b$

 $U = B^{1/2}$ and $vv^T = I$

- Thus **B**=**UU**^T, and so the modeling of back ground error amounts to approximating the control variable transform (**U**)
- **U** is approximated with a sequence of three linear transforms

 $U = U_p U_v U_h$

• Thus,

 $B = U_p U_v U_h U_h^T U_v^T U_p^T$

Control variable transform (CVT)

 $U = U_p U_v U_h$

- $U_{\rm h} \longrightarrow$ Horizontal transform. It is applied via recursive filter (Hayden and Purser(1995)
- $U_v \longrightarrow$ Vertical transform. It is applied through empirical orthogonal functions (EOFs). The EOFs are the eigenvectors of the vertical error covariance matrix (**E**). Thus,

$U_{\rm v} = E \Lambda^{1/2}$

Where, $\Lambda^{1/2}$ is a diagonal matrix holding square root of the eigenvalues of vertical error covariance matrix (E)

 $U_p \longrightarrow$ Physical transform. It is applied via statistical balance

Modeling of BE

Thus, for modeling of background error, following is estimated

- Horizontal length-scale for $oldsymbol{U}_{
 m h}$ transform
- Eigenvectors and eigenvalues for U_v transform
- Regression coefficients for U_p transform

Choice of analysis variables

Estimation of Background Error

- For simplicity, the background error distribution is assumed Gaussian
- Since the truth (\mathbf{x}^t) is not known, the forecast error $(\mathbf{x}-\mathbf{x}^t)$ needs to be estimated
- There are two common methods for estimating $(\mathbf{x} \mathbf{x}^t)$

a) NMC method: $(\mathbf{x} - \mathbf{x}^t) \approx (\mathbf{x}^{t1} - \mathbf{x}^{t2})$

The difference of forecasts (with t1 and t2 ICs) valid for the same time

b) Ensemble method: $(\mathbf{x} - \mathbf{x}^t) \approx (\mathbf{x}^{ens} - \langle \mathbf{x}^{ens} \rangle)$ Ensemble minus Ensemble mean

"gen_be" utility

"gen_be" utility estimates the different components of the BE

- It is designed to work both for NMC and Ensemble methods with "namelist" option: BE_METHOD= "NMC" for NMC-method
 - BE_METHOD ="ENS" for Ensemble method

• It consists of five stages
$$(0-4)$$

StageO: (forecast error samples)

- Step 1 (u,v) to horizontal divergence (D) and vorticity (ζ) $D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$ $\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$
- Step 2 Convert D and ζ) to Ψ and χ $\nabla^2 \psi = \zeta$ $\nabla^2 \chi = D$
- Finally, the forecast errors $(\mathbf{x} \cdot \mathbf{x}^t)$ are generated for
 - Ψ Stream function
 - $\boldsymbol{\chi}$ Velocity potential
 - T Temperature
 - q Relative humidity
 - p_s Surface pressure

Stage1: (removes temporal mean)

- Computes temporal mean of the forecast error samples generated in stage0
- Removes temporal mean to form the perturbations for Stream function (\$\u03c6\$')
 Velocity potential (\$\u03c6\$')
 Temperature (T')
 Relative humidity (q')
 Surface pressure (p_s')

• Regression coefficient (α_{xy}) between two variables x and y is estimated as

$$\alpha_{xy} = \frac{\langle x.y \rangle}{\langle x.x \rangle}$$

Where,

- $\langle x, y \rangle$ is the covariance between x and y
- $\langle x,x\rangle$ is the variance of x

The U_p transform is defined as,

$$\begin{pmatrix} \Psi \\ \chi \\ t \\ Ps \\ rh \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ M & I & 0 & 0 & 0 \\ N & 0 & I & 0 & 0 \\ Q & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & I \end{pmatrix} \begin{pmatrix} \psi \\ \chi_u \\ t_u \\ Ps_u \\ rh \end{pmatrix}$$

Where,

I - identity matrix, **0** – zero matrix and **M**, **N**, **Q** are respectively the regression coefficient matrices for (χ, ψ), (t, ψ), and (Ps_u, ψ)

The U_p transform is defined as,

$$\begin{pmatrix} \Psi \\ \chi \\ t \\ Ps \\ rh \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ M & I & 0 & 0 & 0 \\ N & P & I & 0 & 0 \\ Q & R & 0 & I & 0 \\ S_1 & S_2 & S_3 & S_4 & I \end{pmatrix} \begin{pmatrix} \psi \\ \chi_u \\ t_u \\ Ps_u \\ rh_u \end{pmatrix}$$

Where,

P, **R**, **S**₁, **S**₂, **S**₃ and **S**₄ are respectively the regression coefficient matrices for (t, χ_{u}), (Ps_u, χ_{u}), (rh, ψ), (rh, χ_{u}), (rh,t_u) and (rh,Ps_u)

MMM

Stage3: (Input for U_v-transform)

NSI)

For all 3-D analysis variables,

- Compute vertical error correlation matrix
- Compute eigenvectors (E) and eigenvalues (Λ) of the vertical error covariance matrix
- Perform $\Lambda^{-1/2} \: E^T$ to compute the amplitude of the corresponding EOFs

Stage4 (Input for U_h-transform)

b) Assuming the horizontal covariance has exponential decay (Gaussian function) as,

$$z(r) = z(0) \exp\{-r^2 / 8s^2\}$$

c) Estimate the horizontal length-scale (**s**) of the covariance using linear curve fitting method as,

$$y(r) = 2\sqrt{2} \left[\ln(z(0) / z(r)) \right]^{\frac{1}{2}} = r / s$$

"gen_be" Bin's Choice

bin_type	Total number of bins (num_bins) and bin's description
0	num_bins= total number of grid points (no binning)
1	num_bins=nj * nk (each latitude is a bin)
2	num_bins= bin_width_lat * bin_width_hgt
3	num_bins=bin_width_lat * n _k (bin_width_lat is defined with lats.)
4	num_bins=bin_width_lat * n _k (bin_width_lat is defined with the number of points in south-north direction)
5	num_bins=n _k (bins with all horizontal points)
6	num_bins=1 (average over all the grid (3D) points)

- n_i number of points in south-north direction
- n_k number of points in vertical
- **Remarks:** Default option is "bin_type=5"

Single observation test (PSOT)

Why?

Assimilation of a single observation helps in understanding the following aspects of the background error

- Its role and the structure
- Identify the "shortfalls"
- Broad guidelines for tuning

 $x_{l}^{a} - x_{l}^{b} = \frac{B_{lk}}{B_{lk} + \sigma^{2}} (y - x_{k}^{b})$

Let *y* be the single observation for the kth element of x^b with standard observation error σ . Then the analysis equation

$$x^{a} = x^{b} + \mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}[y^{o} - H(x^{b})]$$

leads to Thus,

• If
$$\sigma^2 \ll B_{kk} \implies x_k^a = y$$

- If $\sigma^2 >> B_{kk} \implies x_k^a = x_k^b$
- Thus, if BE is very large compared to observation error, analysis is closer to observation, otherwise it is closer to the first guess (FG) or the background
- A non-zero off-diagonal term B_{lk} of **B** leads to non-zero analysis increment for the I^{th} element of x^{a}

 Set single observation (u, v, t, ps etc.) as, unit innovation, [y^o-H(x^b)]=1.0 unit observation error, R=1.0

The analysis equation

 $x^{a} = x^{b} + BH^{T}(HBH^{T} + R)^{-1}[y^{o} - H(x^{b})]$

gives,

$$x^a - x^b = B\delta$$

Where, δ is a constant delta vector

• Thus, analysis increments with single observation, displays the structure of the background error

How to activate PSOT?

PSOT utility may be activated by setting the following namelist parameters

 $num_pseudo = 1$

pseudo_var = Variable name like u, t, p, etc.

- pseudo_x = X-coordinate of the observation
- pseudo_y =Y-coordinate of the observation
- $pseudo_z = Z$ -coordinate of the observation
- pseudo_val = Observation innovation, departure from FG
- pseudo_err = Observation error

Analysis increments with PSOT-q

26

Tuning of BE

 Horizontal component of BE can be tuned with following ten namelist parameters
 LEN_SCALING1 - 5 (Length scaling parameters)

VAR_SCALING1 - 5 (Variance scaling parameters)

 Vertical component of BE can be tuned with the following five namelist parameters

MAX_VERT_VAR1 - 5 (Vertical variance parameters)

BE tuning (length-scale)

PSOT - u

28

Impact of BE on Minimization

Advanced practice "gen_be"

- Compilation of "gen_be" utility
- Generation of BE statistics
- Familiarization with "gen_be" diagnostics
- Running PSOT to understand the structure of BE
- BE tuning

"gen_be_wrapper.ksh" script for generating BE at 60 km "CONUS" domain with:

Grid Size : 90 X 60 X 41 (staggered grid points)BE Method : NMC MethodData Input : 12 and 24 hour forecasts (already run)

Basic environment variables to be set in the wrapper script:

WRFVAR_DIR (code location) ; FC_DIR (forecast location)
START_DATE (1st pert time) ; END_DATE (last pert time)
NUM_LEVELS (half sigma levels) ; RUN_DIR (run directory)

gen_be diagnostics

- "gen_be" creates various diagnostic files which may be used to display different components of BE
- Important diagnostics files are:

Eigen vectors:fort.174, fort.178, fort.182, fort.186Eigen values:fort.175, fort.179, fort.183, fort.187scale-length:fort.194, fort.195, fort.196, fort.197Correlation between $X_u \& X_b$ (chi_u.chi.dat)Correlation between $T_u \& T_b$ (T_u.T.dat)Correlation between $p_{s-u} \&$ (ps_u.ps.dat)

 Sample wrapper script for the display of BE diagnostics "var/script/gen_be/gen_be_plot_wrapper.ksh"
 Note: BE_DIR is set to "gen_be" RUN_DIR directory

Leading (first 5) Eigenvectors

MMM

How to run PSOT?

- Use following script from the WRFDA TOOLS package to build the PSOT wrapper script "var/scripts/wrappers/ da_run_suite_wrapper_con200.ksh"
- Key parameters to set are: Type of observation (pseudo_var)
 Obs co-ordinates (pseudo_x, pseudo_y & pseudo_z)
 Observation value (pseudo_val)
 Observation error (pseudo_err)
- Display analysis increments to understand BE structure

Tuning of BE

• Understand the role of BE-tuning parameters through namelist options

LEN_SCALING1 - 5 (Length scale) VAR_SCALING1 - 5 (Horizontal variance) MAX_VERT_VAR1 - 5 (Vertical variance)