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Outline 

•  Background 

•  Some results 

•  Introduction to hybrid practice 
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Some data assimilation methods 
•  Three-dimensional variational (3DVAR) 

– Background error covariances (BECs) typically fixed/
time-invariant 

– May yield poor results when actual flow differs from that 
encapsulated within the fixed “climatology” 

•  Ensemble Kalman filter (EnKF) 
– Time-evolving, “flow-dependent” BECs estimated from 

a short-term ensemble forecast 
– Many different flavors (e.g., ETKF, EAKF) 
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Ensemble BECs (i.e., spread) 

(a) 0000 UTC (b) 0000 UTC 

(c) 1200 UTC (d) 1200 UTC 

Potential Temperature (K)! Wind speed (m/s)!

(a) 0000 UTC (b) 0000 UTC 

(c) 1200 UTC (d) 1200 UTC 

Potential Temperature (K)! Wind speed (m/s)!

• Average ensemble spread of wind speed over ~3 weeks at 0000 UTC 

From Schwartz et al. (2013)
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Ensemble BECs (i.e., spread) 
• General definition of covariance: 

• In vector matrix form (here, n is ensemble size): 
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•  “Hybrid” variational/ensemble 

–  Incorporates ensemble background 
errors within a variational (e.g., 
3DVAR) framework  

– Combination of fixed and time-
evolving background errors 

– Main additional expense compared 
to 3DVAR is running an ensemble 
of forecasts 

Baby-dol
l/centipe
de hybrid 

“Hybrid” variational/ensemble DA	

75% squirrel 
25% cat 
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What is Hybrid DA? 
•  Deterministic background is analyzed by a variational algorithm (i.e., 

minimize a cost function) 
–  It combines the 3DVAR “climatological” BECs and “errors of the day” from 

ensemble perturbations 

•  Traditionally generates a deterministic analysis (like 3DVAR) 

•  Need a separate system to update ensemble 
–  Could be ensemble forecasts already available from operational centers 
–  Could be an EnKF-based DA system 
–  Could be a multiple model/physics ensemble 

•  Ensemble needs to be good to well-represent “errors of the day”  
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Hybrid formulation  
(Hamill and Snyder, 2000) 

•  3DVAR cost function 
 
 

•  Idea: replace B by a weighted sum of static Bs and the ensemble Be 

 
–  Term C is localization for the ensemble 
–  Terms as and ae can be tuned to determine how much Bs and Be are weighted 

•  This form is difficult to implement for a large NWP model   
–  Most systems use “extended control variables” 

� 

J(x) =
1
2
(x − xb )

TB−1 (x − xb ) +
1
2
[H(x) − y]TR−1[H(x) − y]

B=asBs + aeBe !C,         as=1-ae
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•  Ensemble covariance is included in the 3DVAR cost function through augmentation  
of control variables 

  

•  More simply: 

•  βs and βe (1/βs + 1/βe =1) can be tuned to have different weight between static and     
ensemble part 

12 WRFDA Tutorial, August 2016 

Hybrid formulation used in WRFDA 
(Lorenc, 2003) 

J(x,α ) = βs
1
2

(x − xb )TB−1(x − xb )+ βe
1
2

α i
TC−1α i

i=1

N

∑
ensemble control variable α i  (M×1)! "## $##

                     + 1
2

[y −H (x + xe
' )]TR−1[y −H (x + xe

' )]

xe
' = α i !xi

'

i=1

N

∑ ,   where xi
'  is the ensemble perturbation for the ensemble member i.

! denotes element-wise product.  α i  is in effect the ensemble weight.
C: correlation matrix (effectively loclization of ensemble perturbations)

J(x,α ) = Jb + Je +Jo
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•  Potential temperature increment, 21st model level 

Single observation tests 

Pure EnKF 

Hybrid-full ensemble 
(ae = 1) 

Hybrid 50/50 (ae = 0.5) 
 

3DVAR 
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•  Localization defines the extent to which an observation can
 produce an analysis increment 

•  In this example, 100% of the BECs are from ensemble 

Meaning of localization 
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Temperature increment (K) 

Small localization Big localization



15 

Advantages of Hybrid DA 

•  Hybrid localization is in model space while EnKF localization is 
usually in observation space 

•  For some observation types (e.g., radiances), localization is not well 
defined in observation space 

 
•  Easier to make use of existing radiance VarBC in hybrid 

•  For small ensembles, use of static B could be beneficial to have a 
higher-rank covariance. 
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Hybrid	example	

From Wang et al. (2008) 

•  Example over North America at coarse grid spacing 
•  Similar results have been obtained by many studies 

Sample results 

WRFDA Tutorial, August 2016 16 



Hybrid vs. 3DVAR and EnKF 
•  Fractions skill scores for rainfall (higher is better) 
 

Aggregated over hourly 18-36-hr  
forecasts of precipitation

Modified from Schwartz and 
   Liu (2014) 

0.2 mm/hr 0.5 mm/hr 

5.0 mm/hr 10.0 mm/hr 
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Fig. 13.  (a) Best track positions of tropical cyclones Sinlaku, Hagupit, and Jangmi.  Locations are plotted 
every 6-hrs.  See Table 4 for the starting and ending times of each storm. (b) Mean 0-72-hr absolute track 
errors (km) averaged over the three TCs.  The sample size at each forecast hour is denoted along the top 
axis.  Horizontal lines are “zero lines” for 90% bootstrap CIs based upon track error differences between 
pairs of experiments.  Differences between two experiments were statistically significant at the 95% level 
if the bounds of the 90% CI did not include zero.  

Sinlaku 

Jangmi 

Hagupit 

(a) 

(b) 

0     Hybrid_DR_1way  minus  Hybrid_DR_2way 

0     Hybrid_DR_1way  minus  3DVAR 

0     Hybrid_DR_1way  minus  Hybrid_SR 

Typhoon example 
•  Mean tropical cyclone track errors 
 

From Schwartz et al. (2015)
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Dual-Resolution hybrid (V3.6) 
Schwartz et al. (2015; MWR) 
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d01
45km grid

15km grid

Hybrid analysis on 15-km grid but with ensemble perturbation input from 45-km grid
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Intermediate domain 
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d01

Intermediate domain 
 

Dx = 45-km 

(89, 22)

(150, 87)

•  WRFDA directly reads in d01 ensembles, then cuts to d02 
size (making use of WRF model nest namelist setting) 

45-km domain coordinates
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Fig. 13.  (a) Best track positions of tropical cyclones Sinlaku, Hagupit, and Jangmi.  Locations are plotted 
every 6-hrs.  See Table 4 for the starting and ending times of each storm. (b) Mean 0-72-hr absolute track 
errors (km) averaged over the three TCs.  The sample size at each forecast hour is denoted along the top 
axis.  Horizontal lines are “zero lines” for 90% bootstrap CIs based upon track error differences between 
pairs of experiments.  Differences between two experiments were statistically significant at the 95% level 
if the bounds of the 90% CI did not include zero.  

Sinlaku 

Jangmi 

Hagupit 

(a) 

(b) 

0     Hybrid_DR_1way  minus  Hybrid_DR_2way 

0     Hybrid_DR_1way  minus  3DVAR 

0     Hybrid_DR_1way  minus  Hybrid_SR 

Impact of dual-resolution 
•  Mean tropical cyclone track errors 
 

From Schwartz et al. (2015)
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Impact of dual-resolution	

•  Fractions skill   
score (FSS)     
aggregated      
over the first 12 
forecast hours  
and 55 4-km     
forecasts 
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Hybrid practice 
•  Computation steps: 

•  Compute ensemble mean (gen_be_ensmean.exe) 
•  Extract ensemble perturbations (gen_be_ep2.exe) 
•  Run WRFDA in “hybrid” mode (da_wrfvar.exe) 
•  Display results for: ens_mean, std_dev, ensemble 

perturbations, hybrid increments, cost function 
•  If time permits, play with different namelist settings: 

“je_factor” and “alpha_corr_scale” 

•  Scripts to use: 
•  Some NCL scripts to display results 

•  Ensemble generation part not included in current practice 

WRFDA Tutorial, August 2016 
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Namelist for WRFDA in hybrid mode 

WRFDA Tutorial, August 2016 

 &wrfvar7
je_factor=2,     # half/half for ensemble and static B weightings (tunable parameter)
 
&wrfvar16
 alphacv_method=2,       # ensemble part is in model space (u,v,t,q,ps)
 
ensdim_alpha=10,          # ensemble size

 alpha_corr_type=3,        # 1=Exponential; 2=SOAR; 3=Gaussian

 alpha_corr_scale=750.,   # correlation scale in km (tunable parameter)

 alpha_std_dev=1.,

 alpha_vertloc=true,  (use program “gen_be_vertloc.exe 42” to generate file)

 hybrid_dual_res = .false.   # If true, hybrid is in “dual-resolution” mode
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Namelist for dual-resolution hybrid 

&wrfvar16
hybrid_dual_res = .true.   

&domains
e_we                           = 222, 316
e_sn                            = 128, 274
s_vert                          = 1,1
e_vert                          = 45, 45
dx                                = 45000, 15000,
dy                                = 45000, 15000,
hypsometric_opt         = 2
max_dom                    = 2
grid_id                        = 1, 2, 
parent_id                     = 0, 1
i_parent_start             = 0, 74,
j_parent_start              = 0, 17,
parent_grid_ratio        = 1, 3

•  Dual-resolution hybrid uses WRF nesting to 
define grids, so also need to specify nested 
domain geometry in the namelist 

•  Analysis on the nested domain (i.e., “d02”), 
but using the ensemble from the parent 
domain (i.e., “d01”) 

•  When running in dual-resolution mode, also 
need to link “d01” file to run directory as    
“./fg_ens”: 

 
ln –sf ${dir}/wrfinput_d01 ./fg_ens (ensemble grid) 
ln –sf ${dir}/wrfinput_d02 ./fg     (high-res background) 
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