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Outline 

•  Incremental 4DVAR 

•  Multi-Resolution Incremental 4DVAR 

•  Introduction to 4DVAR practice 
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4DVAR 

Static B and background
/analysis valid at the beg
inning of time window 

1）4D: properly take into account obs time (split obs into multiple time slots). 
2）Integration of TL/AD of WRF involved in minimization (so model constraint) 
3）Static B at t0 will be implicitly evolving with WRF TL model integration. 

Need develop/maintain TL/AD version of a NWP model. 
         memory/computing demanding 
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Non-Linear 4DVAR cost function 

(1)   Analysis vector X0  and B matrix is valid at the beginning of 
      the assimilation time window

(2) NWP model acts as a strong constraint in the cost function

(3) [Obs – Forecast Trajectory] is calculated at different time slots 
      within time window.

Note: Mi means model integration to time ti

However, if v is defined in vertical EOF space (such as for CV5/6/7), it is not trivial to
obtain higher resolution vg

n. One possibility is to invert grid-point space increment back
to the control variable space, i.e.,

vg
n = U�1S�1SUva

n�1 (11)

Inverse operators for interpolation S, balance transform, vertical EOF decomposition and
recursive filter exist.

2 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(xi)� yi]
TR�1

i [Hi(xi)� yi] (12)

where the subscript ”0” indicates the beginning of the 4DVAR time window. Substitute
the NWP model into the cost function, we obtain

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(Mi(x0))� yi]
TR�1

i [Hi(Mi(x0))� yi] (13)

2.2 Incremental 4DVAR Formulation

Linearization, let �x0 = x0 � xg
0 and �xg

0 = xb
0 � xg

0, thus x0 = �x0 + xg
0, we have

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

[Hi(Mi(�x0+xg
0)�yi]

TR�1
i [Hi(Mi(�x0+xg

0))�yi]

(14)
Do Taylor Expansion for observation term

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

(HiMi�x0�di)
TR�1

i (HiMi�x0�di) (15)

where di = yi � Hi[Mi(x
g
0)].

2.3 Control Variable Transform (CVT)

Again, control variable transform �x0 = Uv and �xg
0 = Uvg. �x0 indicates that analysis

increment is valid at the beginning of the 4DVAR time window. Then the cost function
with respect to the control variable v becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2

NX

i=1

(HiMiUv � di)
TR�1

i (HiMiUv � di) (16)

3
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Incremental 4DVAR 

(1) OMB is calculated using non-linear forecast trajectory

(2) H and M are linearized around forecast trajectory

However, if v is defined in vertical EOF space (such as for CV5/6/7), it is not trivial to
obtain higher resolution vg

n. One possibility is to invert grid-point space increment back
to the control variable space, i.e.,

vg
n = U�1S�1SUva

n�1 (11)

Inverse operators for interpolation S, balance transform, vertical EOF decomposition and
recursive filter exist.

2 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(xi)� yi]
TR�1

i [Hi(xi)� yi] (12)

where the subscript ”0” indicates the beginning of the 4DVAR time window. Substitute
the NWP model into the cost function, we obtain

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(Mi((x0))� yi]
TR�1

i [Hi(Mi(x0))� yi] (13)

2.2 Incremental 4DVAR Formulation

Linearization, let �x0 = x0 � xg
0 and �xg

0 = xb
0 � xg

0, thus x0 = �x0 + xg
0, we have

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

[Hi(Mi((�x0)+xg
0)�yi]

TR�1
i [Hi(Mi(�x0+xg

0))�yi]

(14)
Do Taylor Expansion for observation term

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

(HiMi�x0�di)
TR�1

i (HiMi�x0�di) (15)

where di = yi � Hi[Mi(x
g
0)].

2.3 Control Variable Transform (CVT)

Again, control variable transform �x0 = Uv and �xg
0 = Uvg. �x0 indicates that analysis

increment is valid at the beginning of the 4DVAR time window. Then the cost function
with respect to the control variable v becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2

NX

i=1

(HiMiUv � di)
TR�1

i (HiMiUv � di) (16)

3

However, if v is defined in vertical EOF space (such as for CV5/6/7), it is not trivial
to obtain higher resolution vg

n

. One possibility is to invert grid-point space increment
back to the control variable space, i.e.,

vg

n

= U�1
high

SU
low

va

n�1 (12)

test
va

high

= U�1
high

SU
low

va

low

(13)

Inverse operators for interpolation S, balance transform, vertical EOF decomposition
and recursive filter exist.

vg

n

= U�1Uva

n�1 (14)

2 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[H
i

(x
i

)� y
i

]TR�1
i

[H
i

(x
i

)� y
i

] (15)

where the subscript ”0” indicates the beginning of the 4DVAR time window. Substitute
the NWP model into the cost function, we obtain

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[H
i

(M
i

(x0))� y
i

]TR�1
i

[H
i

(M
i

(x0))� y
i

] (16)

2.2 Incremental 4DVAR Formulation

Linearization, let �x0 = x0 � xg

0 and �xg

0 = xb

0 � xg

0, thus x0 = �x0 + xg

0, we have

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

[H
i

(M
i

(�x0+xg

0)�y
i

]TR�1
i

[H
i

(M
i

(�x0+xg

0))�y
i

]

(17)
Do Taylor Expansion for observation term

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

(H
i

M
i

�x0�d
i

)TR�1
i

(H
i

M
i

�x0�d
i

) (18)

where d
i

= y
i

� H
i

[M
i

(xg

0)].

2.3 Control Variable Transform (CVT)

Again, control variable transform �x0 = Uv and �xg

0 = Uvg. �x0 indicates that analysis
increment is valid at the beginning of the 4DVAR time window. Then the cost function
with respect to the control variable v becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2

NX

i=1

(H
i

M
i

Uv � d
i

)TR�1
i

(H
i

M
i

Uv � d
i

) (19)

3
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Incremental 4DVAR in control variable space 

(1)  Control variable transform U is the same as in 3DVAR

(2)  Need one TL forward and one AD backward integration to 
    obtain the gradient of cost function in each inner loop iteration

However, if v is defined in vertical EOF space (such as for CV5/6/7), it is not trivial to
obtain higher resolution vg

n. One possibility is to invert grid-point space increment back
to the control variable space, i.e.,

vg
n = U�1S�1SUva

n�1 (11)

Inverse operators for interpolation S, balance transform, vertical EOF decomposition and
recursive filter exist.

2 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(xi)� yi]
TR�1

i [Hi(xi)� yi] (12)

where the subscript ”0” indicates the beginning of the 4DVAR time window. Substitute
the NWP model into the cost function, we obtain

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(Mi(x0))� yi]
TR�1

i [Hi(Mi(x0))� yi] (13)

2.2 Incremental 4DVAR Formulation

Linearization, let �x0 = x0 � xg
0 and �xg

0 = xb
0 � xg

0, thus x0 = �x0 + xg
0, we have

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

[Hi(Mi(�x0+xg
0)�yi]

TR�1
i [Hi(Mi(�x0+xg

0))�yi]

(14)
Do Taylor Expansion for observation term

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

(HiMi�x0�di)
TR�1

i (HiMi�x0�di) (15)

where di = yi � Hi[Mi(x
g
0)].

2.3 Control Variable Transform (CVT)

Again, control variable transform �x0 = Uv and �xg
0 = Uvg. �x0 indicates that analysis

increment is valid at the beginning of the 4DVAR time window. Then the cost function
with respect to the control variable v becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2

NX

i=1

(HiMiUv � di)
TR�1

i (HiMiUv � di) (16)

3

2.4 Solution of Incremental 4DVAR

The minimization of the cost function requires its gradient with respect to v to be zero,
namely

rvJ(v) = (v � vg) +
NX

i=1

UTMT
i H

T
i R

�1
i (HiMiUv � di) = 0 (17)

After minimization, we get the analysis increment va in control variable space. The
analysis increment and the analysis at the beginning of assimilation window in model
space are �xa

0 = Uva and xa
0 = xg

0 + �xa
0. To solve Eq. (17), we need:

(1) Non-linear NWP model and non-linear observation operator to calculate innovation
vector di. This calculation is only needed once before the minimization.

(2) Tangent linear (TL) and adjoint (AD) version of the non-linear NWP model and
the observation operator. Note that TL/AD operators are estimated around the non-
linear model’s forecast trajectory (at each time step), i.e., base state of Taylor expansion.
So flow dependency is included in the TL/AD operators.

(3) Control variable transform operator U and its adjoint UT . If CVT includes non-
linear balance operator, then flow-dependency is also implied.

(4) Each iteration needs a forward TL model integration and a backward AD model
integration.

2.5 About 4DVAR outer Loop

In the first outer loop, we take the first guess xg
0 (i.e., start point of the minimization, not

confuse with the background) to be the background xb
0. Thus �xg

0 = 0 and vg = 0. All
TL/AD operators are linearized about xg

0 = xb
0 and its forecast trajectory.

From the second outer loop, xg
0 is the analysis xa

0 from the last outer loop. The non-
linear NWP model will integrate again to obtain an updated forecast trajectory initialized
from the new xg

0. The innovation di will be recalculated from new trajectory and then
followed by quality control procedure (typically more observations shall be assimilated in
the second outer loop).

Forecast trajectory array (at each time step) needs to be stored in the memory in
4DVAR mode.

2.6 4DVAR outer Loop at di↵erent resolutions

The problem is really the same as in 3DVAR outer loop at di↵erent resolutions, as de-
scribed in section 1.6. For quick reference, we repeat equations here.

If outer loops run at di↵erent resolutions, we need an additional operator S to trans-
form low-resolution increment to high-resolution, i.e.,

xa
0 = xg

0 + SUva (18)

Now the problem arises for transforming va to a higher resolution and serve as vg of the
next outer loop. If v is defined in grid-point space, S can simply be a bi-linear interpola-
tion; If v is defined in spectral space, S can act to fill zeros at higher wavenumbers. In
either case,

vg
n = Sva

n�1 (19)

4

va = (I +UTHTR�1HU)�1(vg +UTHTR�1d) (7)

The analysis increment and the analysis in model space are

xa = xg + �xa = xg +Uva (8)

To solve Eq. (6), we need:
(1) Non-linear observation operator to calculate innovation vector d. This calculation

is only needed once before the minimization.
(2) Tangent linear (TL) and adjoint (AD) version of the observation operator. Note

that TL/AD operators are estimated around the first guess xg, i.e., base state of Taylor
expansion. So flow dependency is included in the TL/AD operators.

(3) Control variable transform operator U and its adjoint UT. If CVT includes non-
linear balance operator, then flow-dependency is also implied.

(4) Each iteration needs a forward TL and a backward AD operation.

1.5 Outer Loops at the same resolution

In the first outer loop, we take the first guess xg (i.e., start point of the minimization, not
confuse with the background) to be the background xb. Thus �xg = 0 and vg = 0. All
TL/AD operators are linearized about xg = xb.

From the second outer loop, xg is the analysis xa from the last outer loop. The
innovation d will be recalculated and then followed by quality control procedure (typically
more observations shall be assimilated in the second outer loop).

Variables (arrays) stored in the memory (3DVAR mode) are:
(1) ”xhat” -> v, inner loop control variable, always zero at the beginning of minimiza-

tion;
(2) ”cvt” -> vg, control variable background field, zero for the first outer loop, non-zero

from the second outer loop.
(3) ”grid%xb%variables” -> ”xg”, the first guess at A-grid, be xb for the first outer

loop, xa of the (n-1)th outer loop for the nth outer loop.
(4) ”grid%variables” -> ”xg”, the first guess at WRF model C-grid.

1.6 Outer Loop at di↵erent resolutions

For outer loops at the same resolution, 3DVAR can run without stops (all in memory).
If outer loops run at di↵erent resolutions, we need an additional operator S to trans-

form low-resolution increment to high-resolution, i.e.,

xa = xg + SUva (9)

Now the problem arises for transforming va to a higher resolution and serve as vg of the
next outer loop. If v is defined in grid-point space, S can simply be a bi-linear interpola-
tion; If v is defined in spectral space, S can act to fill zeros at higher wavenumbers. In
either case,

vg
n = Sva

n�1 (10)

2

(All variables at same resolution)
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Incremental 4DVAR with control variable transform 

NOTE: 
(1) For each outer loop, need to store forecast trajectory (each time step) and 
Vg in the memory.

(2) For each loop, H and M needs to be re-linearized around new forecast 
trajectory; di=yi-Hi(Xg

i) is also re-calculated and re-do QC (OMB check).

(3) 4DVAR outer loops could run at different (typically lower) resolutions, 
common practice at operational NWP centers (capability under development 
with WRFDA) 

However, if v is defined in vertical EOF space (such as for CV5/6/7), it is not trivial
to obtain higher resolution vg

n

. One possibility is to invert grid-point space increment
back to the control variable space, i.e.,

vg

n

= U�1
high

SU
low

va

n�1 (12)

test
va

high

= U�1
high

SU
low

va

low

(13)

Inverse operators for interpolation S, balance transform, vertical EOF decomposition
and recursive filter exist.

vg

n

= U�1Uva

n�1 (14)

2 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[H
i

(x
i

)� y
i

]TR�1
i

[H
i

(x
i

)� y
i

] (15)

where the subscript ”0” indicates the beginning of the 4DVAR time window. Substitute
the NWP model into the cost function, we obtain

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[H
i

(M
i

(x0))� y
i

]TR�1
i

[H
i

(M
i

(x0))� y
i

] (16)

2.2 Incremental 4DVAR Formulation

Linearization, let �x0 = x0 � xg

0 and �xg

0 = xb

0 � xg

0, thus x0 = �x0 + xg

0, we have

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

[H
i

(M
i

(�x0+xg

0)�y
i

]TR�1
i

[H
i

(M
i

(�x0+xg

0))�y
i

]

(17)
Do Taylor Expansion for observation term

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

(H
i

M
i

�x0�d
i

)TR�1
i

(H
i

M
i

�x0�d
i

) (18)

where d
i

= y
i

� H
i

[M
i

(xg

0)].

2.3 Control Variable Transform (CVT)

Again, control variable transform �x0 = Uv and �xg

0 = Uvg. �x0 indicates that analysis
increment is valid at the beginning of the 4DVAR time window. Then the cost function
with respect to the control variable v becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2

NX

i=1

(H
i

M
i

Uv � d
i

)TR�1
i

(H
i

M
i

Uv � d
i

) (19)

3
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Advantages of 4DVAR 
•  Data can be assimilated at appropriate time, so can use 

frequently reported observations 
•  Can use “future” observations to constrain the analysis at 

earlier time 
•  NWP model as part of constraints, so propagating 

observation information via model dynamics and physics 

•  Background error covariance (BEC) implicitly evolving 
within time window through linearized model, though B 
(BEC at the beginning of time window) typically the same 
for each analysis cycle. BEC at time ti, 

Bi = MiBMi
T
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4DVAR Single Obs Test 
500 T at the end of time window 

Implicit time propagation of B matrix
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Number of obs assimilated: 3DVAR vs. 4DVAR 
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Outline 

•  Incremental 4DVAR 

•  Multi-Resolution Incremental 4DVAR 

•  Introduction to 4DVAR practice 
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Multi-Resolution Incremental 4DVAR 
(MRI-4DVAR, under development) 

•  OmB (i.e., di) calculation uses high-resolution 
model trajectory at each outer loop 

•  4DVAR minimization (need TL/AD integration 
for each iteration) runs at lower resolutions to 
allow substantial speed-up 
–  Minimization resolution can be different for different 

outer loops, i.e., 9km for the 1st loop, 3km for the 2nd 
loop. 

However, if v is defined in vertical EOF space (such as for CV5/6/7), it is not trivial to
obtain higher resolution vg

n. One possibility is to invert grid-point space increment back
to the control variable space, i.e.,

vg
n = U�1S�1SUva

n�1 (11)

Inverse operators for interpolation S, balance transform, vertical EOF decomposition and
recursive filter exist.

2 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(xi)� yi]
TR�1

i [Hi(xi)� yi] (12)

where the subscript ”0” indicates the beginning of the 4DVAR time window. Substitute
the NWP model into the cost function, we obtain

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(Mi(x0))� yi]
TR�1

i [Hi(Mi(x0))� yi] (13)

2.2 Incremental 4DVAR Formulation

Linearization, let �x0 = x0 � xg
0 and �xg

0 = xb
0 � xg

0, thus x0 = �x0 + xg
0, we have

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

[Hi(Mi(�x0+xg
0)�yi]

TR�1
i [Hi(Mi(�x0+xg

0))�yi]

(14)
Do Taylor Expansion for observation term

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

(HiMi�x0�di)
TR�1

i (HiMi�x0�di) (15)

where di = yi � Hi[Mi(x
g
0)].

2.3 Control Variable Transform (CVT)

Again, control variable transform �x0 = Uv and �xg
0 = Uvg. �x0 indicates that analysis

increment is valid at the beginning of the 4DVAR time window. Then the cost function
with respect to the control variable v becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2

NX

i=1

(HiMiUv � di)
TR�1

i (HiMiUv � di) (16)

3
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MRI-4DVAR test: Taiwan Rainfall forecast	
OBS                      2km/2km              6km/6km              18km/6km
rainfall                   4DVAR             MRI-4DVAR         MRI-4DVAR

3-hr acc.
Rainfall

6-hr acc.
rainfall
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Computing time: 2012/06/10 case 
20 min time window 	

Experiment	 Outer loop/
iteration	

CPU	 Time	

2km2km_vp_sobs	 25,25	 32	 36 hrs	
6km6km_vp_sobs	 25,25	 32	 90 mins	
18km6km_vp_sobs	 25,25	 32	 50 mins	
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3-stage MRI-3D/4DVAR: 18km/6km 

•  Loop1/Stage1: run WRFDA in “Observer” mode at full 
model resolution 2km 
–  Run WRF non-linear model at 2km 
–  then compute OMB and do QC at different time slots 
–  Write out OMB at different time slots (e.g., gts_omb.01.synop, 

gts_omb.02.synop, …) 

•  Loop1/Stage2: run WRFDA in “Minimization” mode at 18km 
–  Thin (not interpolation) 2km fg to 18km 
–  Run non-linear WRF integration at 18km using 18km fg/wrfbdy to 

generate 18km model trajectory, which is used as the base state of 
WRF TL/AD integration. 

–  Read in OMB output from “Observer” step 
–  Run minimization 
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3-stage MRI-3D/4DVAR: 18km/6km 

•  Stage-3: run “Regriding” outside WRFDA 
–  wrfvar_output@2km = fg@2km + S 

(wrfvar_output@18km – fg@18km) 
–  vp@6km = S vp@18km 
–  S is interpolation operator 

•  Then go to for the 2nd outer loop 
–  Run WRFDA in Observer mode at 2km 
–  Run WRFDA in minimization mode at 6km 
– Run regridding 



                                                                                                            17 

How ECMWF does? 
Chapter 2: 4D variational assimilation

Figure 2.1 Schematic of the revised 4D-Var solution algorithm implemented in January 2003 (Cy25r4).
Outer loops are performed at high resolution (currently T1279) using the full non-linear model. Inner
iterations are performed at lower resolution (first T159, then T255) using the tangent-linear forecast
model, linearised around a 12-hour succession of model states (‘the trajectory’) obtained through
interpolation from high resolution (S denotes the truncation operator, J the cost function and x the
atmospheric state vector).

In a further ‘multi-resolution’ extension to the incremental method (Veerse and Thépaut, 1998) the inner-
loop resolution is increased with each iteration of the outer-loop. A schematic is shown in Fig. 2.1. In
particular, the information about the shape of the cost-function obtained during the early low-resolution
iterations provides a very effective pre-conditioner (Chapter 6) for subsequent iterations at higher-
resolution, thus reducing the number of costly iterations. The inner-loops can be particularly efficiently
minimised using the conjugate gradient method, provided the cost-function is purely quadratic (Fisher,
1998), i.e. the operators involved in the definition of the cost function (the model and the observation
operators) are purely linear. For this reason, the inner-loops have been made entirely linear, with the
non-linear effects gathered at the outer-loop level. The convergence properties of the outer-loop iterations
have been investigated by Trémolet (2005).

2.2.2 The job-steps

In the CY37R2 operational configurations the assimilation window is 12-hours long, running from 09–
21 UTC to produce the 12 UTC analysis and forecast products, and from 21–09UTC for the 00 UTC
production (Haseler, 2004). Several different job steps are performed.

(i) Comparison of the observations with the background at high resolution to compute the innovation
vectors. These are stored in the NCMIFC1-word of the ODB (the observation database) for later
use in the minimization. This job step also performs screening (i.e. blacklisting, thinning and
quality control against the background) of observations (see Part 1). The screening determines
which observations will be passed for use in the main minimisation. Very large volumes of data are
present during the screening run only, for the purpose of data monitoring. The model trajectory is
interpolated to the resolution of the next job step and written out.

(ii) First minimization at low resolution to produce preliminary low-resolution analysis increments,
using simplified tangent-linear physics, and tangent-linear observation operators. The eigenvectors of
the analysis Hessian are computed and will be used to precondition subsequent inner-loop iterations.

8 IFS Documentation – Cy41r1

Previous operation from 12 May 2015: 
high-res model @T1279 (16km); 2 minimization @T159 & T255

Integrate/write-out high-res traj. 
                  @T1279

Compute/write-out OMB with high-res traj.
                           also do QC

Truncate/Interpolate high-res traj. to 
                      low-res @T159 or T255

Minimization @T159/T255

Interpolate/add low-res analysis increment to high-res first guess 
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Some word about WRFDA-3DVAR/4DVAR 
for WRF/Chem 

•  Under development for aerosol/chemistry data 
assimilation 

•  Including WRFPlus-Chem for GOCART 
–  J. J. Guerrette and D. K. Henze, 2015, GMD 

–  J. J. Guerrette and D. K. Henze, 2017, ACP 

•  Will be very useful for air-quality forecast and 
source emission inversion. 
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Outline 

•  Incremental 4DVAR 

•  Multi-Resolution Incremental 4DVAR 

•  Introduction to 4DVAR practice 
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Compile WRFDA in 4DVAR mode 
•  Download WRFPlus code 

–  Include non-linear and TL/AD code of WRF 

•  Download WRFDA code 
•  Install WRFPLUS V3.9 

–  ./configure (-d) wrfplus 
./compile wrf (only compile wrf.exe) 

–  wrf.exe should be generated under the WRFPLUSV3/main 
directory.  

•  for csh, tcsh : setenv WRFPLUS_DIR path of wrfplusv3 
for bash, ksh : export WRFPLUS_DIR=path of wrfplusv3 

•  Install WRFDA V3.9 
–  ./configure (-d) 4dvar 

./compile all_wrfvar 
da_wrfvar.exe should be generated in the var/build directory. 
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Notes about WRFPlus 
•  WRFPLUS only works with regional ARW core, not for 

NMM core or global WRF.  

•  WRFPLUS only works with single domain, not for nested 
domains.  

•  WRFPLUS can not work with Adaptive Time Stepping 
options.  

•  WRFPLUS TL/AD code only has 3 simplified physics 
processes: 
–  surface drag (bl_pbl_physics=98);  
–  large scale condensate or Kessler (mp_physics=98 or 99) 
–  a simplified cumulus scheme (cu_physics=98)  
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Prepare obs for 4DVAR 

•  Conventional observations 
–  LITTLE_R format 
–  NCEP PREPBUFR format  

•  Satellite radiance BUFR data 

•  ASCII format precipitation and radar data 
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4DVAR time window 
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Run a 4DVAR test case 

•  enter WRFDA/var/test/4dvar (or working directory of your 
choice)  

•  get the test dataset  
•  ln -fs wrfinput_d01 fg 
•  ln -fs wrfinput_d01 . 
•  ln –fs wrfbdy_d01 . 
•  ln -fs ../../build/da_wrfvar.exe .  
•  ln -fs ../../run/be.dat.cv3 be.dat  
•  ./da_wrfvar.exe 
•  Typically you should run in parallel with MPI 

(mpirun -np # da_wrfvar.exe) or your system’s custom run 
command (on Yellowstone: bsub))  
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Run a 4DVAR test case 

•  WRFPlus/WRFDA compiled in double precision 
•  So link double-precision version of following files for 

4DVAR run 
–  ln -sf ${WRF_DIR}/run/RRTM_DATA_DBL      RRTM_DATA 
–  ln -sf ${WRF_DIR}/run/RRTMG_LW_DATA_DBL  

RRTMG_LW_DATA 
–  ln -sf ${WRF_DIR}/run/RRTMG_SW_DATA_DBL  

RRTMG_SW_DATA 
•  And other WRF related files 

–  ln -sf ${WRF_DIR}/run/SOILPARM.TBL       . 
–  ln -sf ${WRF_DIR}/run/VEGPARM.TBL        . 
–  ln -sf ${WRF_DIR}/run/GENPARM.TBL        . 
–  ln -sf ${WRF_DIR}/run/LANDUSE.TBL        . 
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Important namelist variables 
•  &wrfvar1 

–  var4d: logical, set to .true. to use 4D-Var  
–  var4d_lbc: logical, set to .true. to include lateral boundary 

condition control in 4D-Var 
–  var4d_bin: integer, seconds, length of sub-window to group 

observations in 4D-Var  

•  &wrfvar18,21,22 
–  analysis_date : the start time of the assimilation window  
–  time_window_min : the start time of the assimilation window 
–  time_window_max : the end time of the assimilation window  

•  &perturbation 
–  jcdfi_use: logical, if turn on the digital filter as a weak constraint. 
–  jcdfi_diag: integer, 0/1, Jc term diagnostics  
–  jcdfi_penalty: real, weight to jcdfi term 
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Important namelist variables 
•  &physics  

–  all physics options must be consistent with those used in wrfinput 
•  Non-linear WRF run can use different physics options from TL/AD 

–  mp_physics_ad =  
    98: large-scale condensation microphysics (default) 
    99: modified Kessler scheme (new in V3.7) 

–  bl pbl physics = any : but only surface drag available for TL/AD 
–  cu physics = any : but only simplified cumulus scheme for TL/AD 

 

•  &time control 
–  run_xxxx : be consistent with the length of the time window 
–  start_xxxx : be consistent with the start time of the time window 
–  end_xxxx : be consistent with the end time of the time window  
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WRFDA adjoint check before 4DVAR run 

•  &wrfvar10  
–  test_transforms=true,  

•  run da wrfvar.exe  


