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•  WRFDA-3DVAR: Incremental formulation

•  B matrix modeling within WRFDA

•  B matrix estimation: GEN_BE package

•  Visualize B effect: single observation test



J(x): Scalar cost function  

x: The analysis: what we’re trying to find! 

xb: Background field 

B: Background error covariance matrix 

y: Observations 

H: Observation operator: computes model-simulated obs 

R: Observation error covariance matrix 

WRFDA-3DVar Equation 

� 

J(x) =
1
2
(x − xb )

TB−1(x − xb ) +
1
2
(y −H(x))TR−1(y −H(x))
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However, this cost function is not really what WRFDA uses! 



Incremental formulation of 3DVAR and outer loop

NOTE: Xg is the first guess, not to be confused with the background Xb 
even though they are the same for the first outer loop. From the 2nd 
outer loop, Xg is equal to the analysis Xa from previous outer loop. 

Multiple-Incremental 3D/4D-VAR: Formulation

Zhiquan Liu, NCAR/MMM
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1 3DVAR

1.1 Non-linear 3DVAR Formulation

Non-linear 3DVAR cost function

J(x) =
1

2
(x� xb)TB�1(x� xb) +

1

2
[H (x)� y]TR�1[H (x)� y] (1)

1.2 Incremental 3DVAR Formulation

Linearization, let �x = x� xg and �xg = xb � xg, thus x = �x+ xg, we have

J(�x) =
1

2
(�x� �xg)TB�1(�x� �xg) +

1

2
[H (�x+ xg)� y]TR�1[H (�x+ xg))� y] (2)

Do Taylor Expansion for observation term

J(�x) =
1

2
(�x� �xg)TB�1(�x� �xg) +

1

2
(H�x� d)TR�1(H�x� d) (3)

where d = y � H (xg) and H is the linearized version of H in the vicinity of xg.

1.3 Control Variable Transform (CVT)

To avoid the inverse calculation of large B matrix, do a change of variable �x = Uv and
�xg = Uvg with U the square root of B, namely B = B1/2BT/2 = UUT or U = B1/2.
Also B�1 = U�TU�1. Then the cost function with respect to the control variable v
becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2
(HUv � d)TR�1(HUv � d) (4)

1.4 Solution of Incremental 3DVAR

The minimization of the cost function requires its gradient with respect to v to be zero,
namely

rvJ(v) = (v � vg) +UTHTR�1(HUv � d) = 0 (5)

After minimization, we get the analysis increment va in control variable space,

(I +UTHTR�1HU)va = vg +UTHTR�1d (6)
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Simplistic outer loop schematic 

Perform 
analysis with 
non-rejected 
observations 

Observations 

Background  
(or “first 
guess”) 

Compare observations to 
background.  Reject observations 

too far away from the guess. 

Updated 
guess 

The 
outer 
loop 

The inter loop 
minimization 

and re-linearize H  



NOTE: (1) outer loop-1: Xg = Xb; Vg=0; loop-2: Xg = Xa , Vg=Va from previous loop. 
(2) For each outer loop, H needs to be re-linearized around new Xg ;  

(3) d=y-H(Xg) is also re-calculated and re-do QC (OMB check). 
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va = (I +UTHTR�1HU)�1(vg +UTHTR�1d) (7)

The analysis increment and the analysis in model space are

xa = xg + �xa = xg +Uva (8)

To solve Eq. (6), we need:
(1) Non-linear observation operator to calculate innovation vector d. This calculation

is only needed once before the minimization.
(2) Tangent linear (TL) and adjoint (AD) version of the observation operator. Note

that TL/AD operators are estimated around the first guess xg, i.e., base state of Taylor
expansion. So flow dependency is included in the TL/AD operators.

(3) Control variable transform operator U and its adjoint UT. If CVT includes non-
linear balance operator, then flow-dependency is also implied.

(4) Each iteration needs a forward TL and a backward AD operation.

1.5 Outer Loops at the same resolution

In the first outer loop, we take the first guess xg (i.e., start point of the minimization, not
confuse with the background) to be the background xb. Thus �xg = 0 and vg = 0. All
TL/AD operators are linearized about xg = xb.

From the second outer loop, xg is the analysis xa from the last outer loop. The
innovation d will be recalculated and then followed by quality control procedure (typically
more observations shall be assimilated in the second outer loop).

Variables (arrays) stored in the memory (3DVAR mode) are:
(1) ”xhat” -> v, inner loop control variable, always zero at the beginning of minimiza-

tion;
(2) ”cvt” -> vg, control variable background field, zero for the first outer loop, non-zero

from the second outer loop.
(3) ”grid%xb%variables” -> ”xg”, the first guess at A-grid, be xb for the first outer

loop, xa of the (n-1)th outer loop for the nth outer loop.
(4) ”grid%variables” -> ”xg”, the first guess at WRF model C-grid.

1.6 Outer Loop at di↵erent resolutions

For outer loops at the same resolution, 3DVAR can run without stops (all in memory).
If outer loops run at di↵erent resolutions, we need an additional operator S to trans-

form low-resolution increment to high-resolution, i.e.,

xa

high

= xg

high

+ SU
low

va

low

(9)

Now the problem arises for transforming va to a higher resolution and serve as vg of the
next outer loop. If v is defined in grid-point space, S can simply be a bi-linear interpola-
tion; If v is defined in spectral space, S can act to fill zeros at higher wavenumbers. In
either case,

vg

n

= Sva

n�1 (10)

va

high

= Sva

low

(11)

2



Cost Function/Gradient with 2 outer loops 

More observations 
in the 2nd loop
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•  WRFDA-3DVAR: Incremental formulation

•  B matrix modeling within WRFDA

•  B matrix estimation: GEN_BE package

•  Visualize B effect: single observation test



•   B/U gives proper weight to the background term (x –xb)
•  B/U spreads information spatially (vertical and horizontal) 
and across different variables

xa − xb = BHT (HBHT +R)−1[yo −H (xb )]

9

J(x) = 1
2
(x − xb )T B−1(x − xb )+ 1

2
[y −H (x)]T R−1[y −H (x)]
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Role of B (or U) within DA 



•  B is square and symmetric 

•  B is positive semi-definite, eigenvalues are positive  

Properties of B matrix 
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Modeling of U=B1/2

•  U = Up Uv Uh, 3 sequential transforms
–  Horizontal transform Uh via recursive filter, to model 

horizontal correlation of individual control variables

–  Vertical transform Uv via EOF decomposition of 
vertical covariance

–  Balance/Physical transform Up via linear regression, 
which determines CV5, 6 or 7

Inverse transform: U-1 = Uh
-1 Uv

-1 Up
-1 

B =UpUvUhUh
TUv

TUp
T =UpUvBhUv

TUp
T
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Horizontal Transform: Uh

(1) 2D filter is done by a filter in X-direction, followed by a filter in Y-dir. 
 
(2) namelist rf_passes=6: 3 passes for U, 3 passes for UT (adjoint of U) 



More on recursive filter (RF)
•  2-pass RF output approximates a second-order auto-

regressive (SOAR) function

•  Infinite-pass RF output tends to a Gaussian function

/, (r) l+ exp -i (8)

In the limit N -0 oo it can be shown that the RF output tends to a Gaussian function

Ag- (r) = (9)

in which r is distance and s is a characteristic lengthscale. The equivalence of RF output

and SOAR/Gaussian functions is most easily illustrated by considering the spectral

response of the RF for a given wavenumber k. This can be derived by first considering

the inverse, non-recursive filter algorithm

wavenumber k by

Ck = AkN-(11)

(1 ) 2 n )2

Eq. (11) indicates that Ck=o=Ak=o i.e. a constant term in input function Aj is unchanged in

the filtering process. For small kAx and o we have

Ck L-( 2 (kiA) Ak (12)

Eq I1)idcae ha kO=kO~e ontn tr n nu fntonA s nhngdi

28
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Note a factor of 2 in WRFDA, differs from normal Gaussian function 



Relation between α and correction lengthscale

The corresponding spectral response for the SOAR function defined in Eq. (8) for ks << 1
is

S (k) 4s(1-2(ks)2 ) (13)

and for the Gaussian defined in Eq. (9) is

Sg (k) = (8z) 1"2 s(l- 2(ks)2 (14)

A family of RF solutions with the same large scale (kAx <<) behaviour as

SOAR/Gaussian functions can be defined by comparing Eq. (12) with Eqs. (13) and (14)
which become equivalent if we define a factor E so that

a 1a(15)
(1-a)2 2E

where

E= N(A) 2 /4s2 . (16)

Note - the definition of E here is the same for both SOAR and Gaussian functions. This

arises from the particular scaling of Gaussian function given by Eq. (9). Lorenc (1992)
uses a slightly different formulation (factor of 2 in the exponent) which leads to a

different E for SOAR and Gaussian functions.

Given parameters N, s and Ax, the parameter E is thus given by Eq. (16). The value of oa

to be used in the RF algorithm is then

a=+ E- [E(E + 2)]' /2 (17)

29
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Vertical EOF transform: Uv

•  Uv = EΛ1/2

–  E: matrix formed by eigenvectors of vertical covariance 
matrix

–  Λ: diagonal matrix formed by eigenvalues of vertical 
covariance matrix

•  Inverse transform Uv
-1=Λ-1/2ET

•  EOF can be truncated
–  Default setting in WRFDA: 99% of total eigenvalues

16



Balance Transform Up and its inverse
Up : convert unbalanced field to full field, e.g., for CV5 

Up
-1 :  convert full field to unbalanced field 

e.g., for CV6 

No balance transform for CV7 as 
all control variables are full fields 

             U, V, T, Q/Qs, Ps 



cv_options  Analysis variables
3 Ψ, unbalanced Χ, unbalanced t, pseudo rh and 

unbalanced log (Ps), Recursive filter in vertical   

5 Ψ, unbalanced Χ, unbalanced t, pseudo rh and 
unbalanced Ps

6 Ψ and unbalanced Χ, unbalanced t, 
unbalanced pseudo rh and unbalanced Ps

7 u, v, t, Ps and pseudo rh 

18

Choices of control variables in WRFDA 

•  In control variable space (i.e., v), assumes no spatial and 
multivariate correlation.

•  In model variable space (i.e., δx) after apply U transform, 
we have spatial and multivariate correlation



Control Variable Options in WRFDA 

&WRFVAR7
•  cv_options: Background error covariance option

cv_options = 3 : global, default…see …/var/run/be.dat.cv3
cv_options = 5 : regional, generated by “gen_be”
cv_options = 6 : regional, generated by “gen_be” with
                             multivariate moisture correlation, new in              
                             WRFDA V3.3
cv_options = 7 : regional, generated by “gen_be”, new in  
                             WRFDA V3.7

� 

J(x) =
1
2
(x − xb )

TB−1(x − xb ) +
1
2
(y −H(x))TR−1(y −H(x))

• What type of background error covariance do I want to use? 

19
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•  WRFDA-3DVAR: Incremental formulation

•  B matrix modeling within WRFDA

•  B matrix estimation: GEN_BE package

•  Visualize B effect: single observation test



How to estimate B?

•  By definition,  B = <(x – xt), (x – xt)T> 
–  xt is the ground truth, which does not exist!

•  Alternatively, we can replace x-xt by
–  xt1 – xt2, i.e., NMC method, use the difference 

of forecasts (for t1 and t2 forecast range) valid 
at the same time

– Or ensemble perturbations xensemble – <xensemble>

21



GEN_BE package: basically performs 
inverse transform of U

22

GEN_BE is to compute horizontal correlation length-scales,  
Eigenvectors/eigenvalues of vertical covariances,  
and balance regression coefficients between control variables 
Using large enough sample dataset of forecast difference or ensemble 



GEN_BE Stage0: forecast error samples
•  Step 1 -  (u,v) to horizontal divergence (D) and vorticity (ζ) 
 

•  Step 2 – Convert D and ζ  to Ψ and χ 
    

•  Finally, the forecast errors are generated using NMC or ensemble 
method for 

 Ψ  - Stream function  
 χ  - Velocity potential 
 T  - Temperature 
 q/qs - Relative humidity 
 ps  - Surface pressure 

23

D = ∂u
∂x

+ ∂v
∂y

ζ = ∂v
∂x

− ∂u
∂y

∇2ψ = ζ ∇2χ = D



GEN_BE Stage1: remove temporal mean

•  Computes temporal mean of the forecast error samples generated 
in stage0 

•  Removes temporal mean to form the perturbations for 
  Stream function  (ψ´) 
  Velocity potential (χ´) 
  Temperature (T´)  
  Relative humidity (rh´)  
  Surface pressure  (ps´) 

24



GEN_BE Stage2 & 2a
•  Stage2: Computes regression coefficients (i.e., linear 

correlation coefficients) between two variables 
•  Stage2a: Obtain unbalanced fields by removing the 

balanced part of fields using inverse transform Up
-1 

•  Balance transform Up in matrix form 

25CV5 CV6 



GEN_BE Stage3: EOF of vertical covariances

•  Computes vertical covariances for unbalanced 3D fields 

•  Performs EOF decomposition of vertical covariances to 
obtain eigenvectors and eigenvalues 

•  Projects unbalanced fields into vertical modes using 
inverse transform Uv

-1 

26



GEN_BE Stage4

•  Calculate correlation as a function of distance between 
points 

•  Fit correlation to a Gaussian function with a lengthscale 

•  This step is time consuming, there is some trick to 
speed up 
•  Calculate lengthscale for each mode/variable simultaneously, 

which can be done in script level 

27

z(r) = z(0)exp{−r2 / 8s2}

y(r) = 2 2[ln(z(0) / z(r)]
1
2 = r / s



GEN_BE: choice of bin_type

•  nj – number of points in south-north direction 
•  nk – number of points in vertical 
•  bin_type=5 default option, domain-averaged statistics

28

bin_type Total number of bins (num_bins)  and bin’s description 

0 num_bins= total number of grid points (no binning) 

1 num_bins=nj * nk (each latitude is a bin) 

2 num_bins= bin_width_lat * bin_width_hgt 

3 num_bins=bin_width_lat * nk (bin_width_lat is defined with lats.) 

4 num_bins=bin_width_lat * nk (bin_width_lat is defined with the 
number of points in south-north direction) 

5 num_bins=nk ( bins with all horizontal points) 

6 num_bins=1 (average over all the grid (3D) points) 
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Outline
 
•  WRFDA-3DVAR: Incremental formulation

•  B matrix modeling within WRFDA

•  B matrix estimation: GEN_BE package

•  Visualize B effect: single observation test



LEADING (FIRST 5) EIGENVECTORS 
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EIGENVALUES AND LENGTH-
SCALES 
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Eigenvalues Horizontal lengthscales 



Vertical Correlation (UvUv
T

 = EΛET)

32cv_options=5 cv_options=7 



BALANCE CORRELATIONS 
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Correlation coefficients w.r.t. stream function 



ANALYSIS INCREMENTS 
WITH PSOT-Q

cv_options=5 cv_options=6 
34

SINGLE OBSERVATION TEST: Q



BE Tuning via namelist parameters

•  Horizontal component of BE can be tuned with 
following ten namelist parameters  

 LEN_SCALING1  - 5    (Length scaling parameters) 
     VAR_SCALING1  - 5    (Variance scaling parameters) 
    
•  Vertical component of BE can be tuned with the 

following five namelist parameters 
 MAX_VERT_VAR1 - 5    (Vertical variance 
parameters) 
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BE TUNING (LENGTH-SCALE) 

tuning (len_scaling1 & 2 =0.25)  no tuning            
36


