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WRFDA Overview 
 

Zhiquan (Jake) Liu 
NCAR/MMM 

 

WRFDA is a Data Assimilation system built within the WRF 
software framework, used for application in both research and 
operational environments…. 
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Outline 

•  Basic principal of data assimilation 
– Scalar case 
– Two state variables case 
– General n-dimensional case 

•  Introduction to WRF Data Assimilation 
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What is data assimilation? 
•  A statistical method to obtain the best 

estimate of state variables 

•  In the atmospheric sciences, DA involves 
combining model forecast (prior) and 
observations, along with their respective 
errors characterization, to produce an 
analysis (Posterior) that can initialize a 
numerical weather prediction model (e.g., 
WRF) 



WRFDA Tutorial – July 2017                                                                         5 

Scalar Case 
•  State variable to estimate “x”, e.g., consider 

today’s temperature of Boulder at 12 UTC. 

•  Now we have a “background” (or “prior”) 
information xb of x, which is from a 6-h GFS or 
WRF forecast initiated from 06 UTC today. 

•  We also have an observation y of x at a surface 
station in Boulder 

•  What is the best estimate (analysis) xa of x? 
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Scalar Case 

•  We can simply average them:  
– This means we trust equally the background 

and observation. 
•  But if their accuracy is different and we 

have some estimation of their errors 
–  e.g., for background, we have statistics (e.g., 

mean and variance) of xb – y from the past 
– For observation, we have instrument error 

information from manufacturer 

xa = 1
2 (xb + y)
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Scalar Case 
•  Then we can do a weighted mean:                       in 

a least square sense, i.e., 
–  Minimize  

–  Requires 
–  Then we can easily get 

–  We can also write in the form of analysis increment 

xa = axb + by

J(x) = 1
2
(x−xb )

2

σ b
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2
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2

dJ (x )
dx = (x−xb )
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σ o
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Scalar Case 

•  Minimize  

•  Is actually equivalent to maximize a 
Gaussian PDF 

 

J(x) = 1
2
(x−xb )

2

σ b
2 + 1

2
(x−y)2

σ o
2

ce−J (x )
Assume errors of Xb and y are unbiased
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Background error: N(0, σb=1.5)
Observation error: N(0, σo=1)
Analysis error: N(0, σa=0.832)

 1
σ a

2 =
1
σ b

2 +
1
σ o

2

σa is always smaller than 
σb  and σo.
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Two state variables case 
•  Consider two state variables to estimate: Boulder 

and Denver’s temperatures x1 and x2 at 12 UTC 
today. 

•  Background from 6-h forecast: x1
b and x2

b  
–  and their error covariance with correlation c 

•  We only have an observation y1 at a Boulder 
station and its error variance σo

2 

B =
σ1
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Analysis increment for two variables 

x1
a − x1

b =
σ1
2

σ1
2 +σ o

2 (y1 − x1
b )

x2
a − x2

b =
cσ1σ 2

σ1
2 +σ o

2 (y1 − x1
b )

Unobserved variable x2 gets updated through the error
correlation c in the background error covariance.

This correlation can be correlation between two
locations (spatial), two variables (multivariate), or 
two times (temporal).
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Model state  
x, ~107 

Observations 
yo, ~105-106 

General Case
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General Case: vector and matrix notation 
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General Case: cost function 

J(x) = 1
2
(x − xb )TB−1(x − xb )+ 1

2
[Hx − y]TR−1[Hx − y]

H maps x to y space, e. g., interpolation.
Terminology in DA: observation operator

Minimize J(x) is equivalent to maximize a 
multi-dimensional Gaussian PDF 

e−J (x )Constant *
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General Case: analytical solution 

xa − xb = BHT(HBHT +R)−1[y−Hxb ]

0][)()( 11 =−−−=∇ −− HxyRHxxBx T
bxJ

Again, minimize J requires its gradient (a vector) with respect to x equal to zero:

This leads to analytical solution for the analysis increment:

HBHT : projection of background error covariance 
               in observation space

BHT : projection of background error covariance
               in background-observation space
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Iterative algorithm to find minimum of cost function 

•  Descending algorithms　　　　 

–  Descending direction:γn 
(N-dimensional vector) 

–  Descending step:μn  

€ 

xn+1 = xn + µnγ n
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Precision of Analysis with optimal B and R  
−1A = −1B + TH −1R H

K = BHT(HBHT +R)−1
With

called Kalman gain matrix

 1
σ a

2 =
1
σ b

2 +
1
σ o

2Generalization of scalar case

A = (I −KH)BOr in another form:
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Precision of analysis: more 
general formulation 

A = (I −KH)Bt (I −KH)
T +KRtK

T

where Bt and Rt are “true” background and observation 
error covariances. 

This formulation is valid for any given gain matrix K, 
which could be suboptimal (e.g., due to incorrect 
estimation/specification of B and R).
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cv_options=6 in WRFDA 

xl
a − xl

b =
clkσ lσ k

σ k
2 +σ ok

2 (yk − xk
b )

Analysis increment with a single humidity observation

x1
a − x1

b =
σ1
2

σ1
2 +σ o

2 (y1 − x1
b )

x2
a − x2

b =
cσ1σ 2

σ1
2 +σ o

2 (y1 − x1
b )

It is generalization of previous 
two variables case:

xa − xb = BHT(HBHT +R)−1[y−Hxb ]
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Other Remarks 
•  Observation operator can be non-linear and thus 

analysis error PDF is not necessarily Gaussian 

•  J(x) can have multiple local minima. Final solution of 
least square depends on starting point of iteration, e.g., 
choose the background xb as the first guess. 
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Other Remarks 
•  B matrix is of very large dimension, explicit inverse of B 

is impossible, substantial efforts in data assimilation 
were given to the estimation and modeling of B. 

•  B shall be spatially-varied and time-evolving according 
to weather regime. 

•  Analysis can be sub-optimal if using inaccurate 
estimate of B and R. 

•  Could use non-Gaussian PDF 
–  Thus not a least square cost function 
–  Difficult (usually slow) to solve; could transform into Gaussian 

problem via variable transform 
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Two helpful books 
Albert Tarantola Edwin Thompson Jaynes  

 

Probability Theory :  
The Logic of Science http://www.ipgp.fr/~tarantola/Files/Professional/Books/

Freely available book!
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WRFDA is a Data Assimilation system  
built within the WRF software framework 
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What WRFDA can do? 

•  Provide Initial conditions for the WRF model forecast 
•  Verification and validation via difference b.w. obs and model 
•  Observing system design, monitoring and assessment 
•  Reanalysis 
•  Better understanding: 

–  Data assimilation methods 
–  Model errors 
–  Data errors 
–  … 
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DA algorithms currently available in WRFDA 

•  3DVAR and FGAT 
–  Different options for choice of control variables (e.g., Psi/Chi or U/

V) and background error covariance modeling (e.g., vertical EOF 
or vertical recursive filter) 

•  4DVAR 
–  TL/Adjoint (i.e., WRFPlus code) of WRF up-to-date with WRF 
–  Allow LBC control variable and Jc-DFI 

•  Hybrid-3DEnVar and Hybrid-4DEnVar (since V3.9) 
–  Can run in dual-resolution mode 
–  Can ingest ensemble from global or regional sources 

•  ETKF: for generating ensemble analysis 
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§  In-Situ: 
-  SYNOP 
-  METAR 
-  SHIP 
-  BUOY 
-  TEMP 
-  PIBAL 
-  AIREP, AIREP humidity  
-  TAMDAR 

§  Bogus: 
-  TC bogus 
-  Global bogus 

§  Radiances: 
–  HIRS     NOAA-16, NOAA-17, NOAA-18, NOAA-19, METOP-A 
–  AMSU-A   NOAA-15, NOAA-16, NOAA-18, NOAA-19, EOS-Aqua, METOP-A, METOP-B 
–  AMSU-B   NOAA-15, NOAA-16, NOAA-17 
–  MHS      NOAA-18, NOAA-19, METOP-A, METOP-B 
–  AIRS     EOS-Aqua 
–  SSMIS    DMSP-16, DMSP-17, DMSP-18  
–  IASI  METOP-A, METOP-B 
–  ATMS  Suomi-NPP 
–  MWTS  FY-3 
–  MWHS  FY-3 
–  SEVIRI  METEOSAT 
–  AMSR2           GCOM-W1 (new in V3.8) 

W
R

FD
A

 O
bs

er
va

tio
ns

 
§  Remotely sensed retrievals: 

-  Atmospheric Motion Vectors (geo/polar) 
-  SATEM thickness 
-  Ground-based GPS TPW or ZTD 
-  SSM/I oceanic surface wind speed and TPW 
-  Scatterometer oceanic surface winds 
-  Wind Profiler 
-  Radar data (reflectivity/retrieved rainwater, and radial-wind) 
-  Satellite temperature/humidity/thickness profiles 
-  GPS refractivity (e.g. COSMIC) 
-  Stage IV precipitation/rain rate data (4D-Var only) 

WRFDA is flexible to allow assimilation
of different formats of observations:
•  Little_r (ascii), HDF, Binary
•  NOAA MADIS (netcdf), 
•  NCEP PrepBufr, 
•  NCEP radiance bufr
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WRFDA  
Radiance Assimilation 

•  Two RTM interfaces 
–  RTTOV or CRTM 

•  Variational Bias Correction 
 

•  Modular code design to ease adding new 
satellite sensors 

•  Capability for cloudy radiance DA 
DMSP(SSMI/S)

Aqua (AMSU, AIRS)

NOAA (HIRS, AMSU)
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New in V3.9: all-sky radiance DA: AMSR2 

Channel Frequency 
(GHz) Polarization  

Footprint 
(along scan* 
along track) 

1,2 6.925 V,H 35*61 km 
3,4 7.3 V,H 35*61 km 
5,6 10.65 V,H 24*41 km 
7,8 18.7 V,H 13*22 km 
9,10 23.8 V,H 15*26 km 
11,12 36.5 V,H 7*12 km 
13,14 89.0 V,H 3*5 km 
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3DVAR	(Barker et al. 2004) 

� 

J(x) =
1
2
(x − xb )

TB−1(x − xb ) +
1
2
[H(x) − y]TR−1[H(x) − y]
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4DVAR	(Huang et al. 2009) 

However, if v is defined in vertical EOF space (such as for CV5/6/7), it is not trivial to
obtain higher resolution vg

n. One possibility is to invert grid-point space increment back
to the control variable space, i.e.,

vg
n = U�1S�1SUva

n�1 (11)

Inverse operators for interpolation S, balance transform, vertical EOF decomposition and
recursive filter exist.

2 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(xi)� yi]
TR�1

i [Hi(xi)� yi] (12)

where the subscript ”0” indicates the beginning of the 4DVAR time window. Substitute
the NWP model into the cost function, we obtain

J(x0) =
1

2
(x0 � xb

0)
TB�1(x0 � xb

0) +
1

2

NX

i=1

[Hi(Mi(x0))� yi]
TR�1

i [Hi(Mi(x0))� yi] (13)

2.2 Incremental 4DVAR Formulation

Linearization, let �x0 = x0 � xg
0 and �xg

0 = xb
0 � xg

0, thus x0 = �x0 + xg
0, we have

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

[Hi(Mi(�x0+xg
0)�yi]

TR�1
i [Hi(Mi(�x0+xg

0))�yi]

(14)
Do Taylor Expansion for observation term

J(�x0) =
1

2
(�x0��xg

0)
TB�1(�x0��xg

0)+
1

2

NX

i=1

(HiMi�x0�di)
TR�1

i (HiMi�x0�di) (15)

where di = yi � Hi[Mi(x
g
0)].

2.3 Control Variable Transform (CVT)

Again, control variable transform �x0 = Uv and �xg
0 = Uvg. �x0 indicates that analysis

increment is valid at the beginning of the 4DVAR time window. Then the cost function
with respect to the control variable v becomes

J(v) =
1

2
(v � vg)T(v � vg) +

1

2

NX

i=1

(HiMiUv � di)
TR�1

i (HiMiUv � di) (16)

3
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€ 

x f 3/4D-Var 
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Hybrid 
Var+ETKF 
 
(Wang et al. 2008) 

J =Wb

2
vTv+Wα

2
aTA−1a+ 1

2
di −HiMiUv[ ]T

i=0

n

∑ Ri
−1 di −HiMiUv[ ]
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9km

3km

15km

3km

Antarctic Mesoscale Prediction System—AMPS

30/10/3.3/1.1-km

� synop 
+ metar 
� ship 
� buoy 
* sound 
� gpsref 
� profiler 
� airep 
� quikscat 
� SatWind 

Beijing Met Bureau - RUC

Taiwan Central Weather Bureau
Hybrid-3DEnVar

Arctic System Reanalysis
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       Radar DA for hydrological application

15KM

3KM

STEP Hydromet Real Time Exp. during spring time

•  The goal is to improve lo
cal-scale QPF in coupled 
hydromet system

•  < 1 h rapid update

•  Radar radial velocity an
d reflectivity assimilation 

•  High resolution vs. ense
mble 

•  Impact of terrain

•  Improved results in capt
uring localized storms

OBS

WRFDA 
RADAR
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Impact of Aircraft T VarBC on rainfall forecast
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GEOS imager radiance DA at convection-permitting 
scale (4km, hourly-cycling, hybrid-3DVAR) 

obs No-GOES DA GOES-DA

Yang et al., 2017, 
JGR.
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24h	accumulated	rainfall	field	ini2alized	at	2016071912 

OBS CONV AHI 

39 

Beijing Heavy rainfall

Himawari-8 AHI radiance DA impact
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Other ongoing work 

•  Continue developing Multi-Resolution 
Incremental 4DVAR (MRI-4DVAR) 

•  Continue developing cloudy radiance/product DA 
•  High spatial- and temporal-resolution 

geostationary satellite DA 
•  Improving surface data assimilation 
•  Improving radar DA 
•  WRFPlus-Chem & WRFDA-Chem 
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Last Remarks 
•  We welcome contributions from external users/

developers. 
–  Contact wrfhelp@ucar.edu or directly email to me 

liuz@ucar.edu for contributing back your code 

•  We maintain a WRFDA-related publications list, 
please inform us your papers to be included 
–  http://www2.mmm.ucar.edu/wrf/users/wrfda/

publications.html 


