--- name: kpi-dashboard-design description: Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts. --- # KPI Dashboard Design Comprehensive patterns for designing effective Key Performance Indicator (KPI) dashboards that drive business decisions. ## When to Use This Skill - Designing executive dashboards - Selecting meaningful KPIs - Building real-time monitoring displays - Creating department-specific metrics views - Improving existing dashboard layouts - Establishing metric governance ## Core Concepts ### 1. KPI Framework | Level | Focus | Update Frequency | Audience | |-------|-------|------------------|----------| | **Strategic** | Long-term goals | Monthly/Quarterly | Executives | | **Tactical** | Department goals | Weekly/Monthly | Managers | | **Operational** | Day-to-day | Real-time/Daily | Teams | ### 2. SMART KPIs ``` Specific: Clear definition Measurable: Quantifiable Achievable: Realistic targets Relevant: Aligned to goals Time-bound: Defined period ``` ### 3. Dashboard Hierarchy ``` ├── Executive Summary (1 page) │ ├── 4-6 headline KPIs │ ├── Trend indicators │ └── Key alerts ├── Department Views │ ├── Sales Dashboard │ ├── Marketing Dashboard │ ├── Operations Dashboard │ └── Finance Dashboard └── Detailed Drilldowns ├── Individual metrics └── Root cause analysis ``` ## Common KPIs by Department ### Sales KPIs ```yaml Revenue Metrics: - Monthly Recurring Revenue (MRR) - Annual Recurring Revenue (ARR) - Average Revenue Per User (ARPU) - Revenue Growth Rate Pipeline Metrics: - Sales Pipeline Value - Win Rate - Average Deal Size - Sales Cycle Length Activity Metrics: - Calls/Emails per Rep - Demos Scheduled - Proposals Sent - Close Rate ``` ### Marketing KPIs ```yaml Acquisition: - Cost Per Acquisition (CPA) - Customer Acquisition Cost (CAC) - Lead Volume - Marketing Qualified Leads (MQL) Engagement: - Website Traffic - Conversion Rate - Email Open/Click Rate - Social Engagement ROI: - Marketing ROI - Campaign Performance - Channel Attribution - CAC Payback Period ``` ### Product KPIs ```yaml Usage: - Daily/Monthly Active Users (DAU/MAU) - Session Duration - Feature Adoption Rate - Stickiness (DAU/MAU) Quality: - Net Promoter Score (NPS) - Customer Satisfaction (CSAT) - Bug/Issue Count - Time to Resolution Growth: - User Growth Rate - Activation Rate - Retention Rate - Churn Rate ``` ### Finance KPIs ```yaml Profitability: - Gross Margin - Net Profit Margin - EBITDA - Operating Margin Liquidity: - Current Ratio - Quick Ratio - Cash Flow - Working Capital Efficiency: - Revenue per Employee - Operating Expense Ratio - Days Sales Outstanding - Inventory Turnover ``` ## Dashboard Layout Patterns ### Pattern 1: Executive Summary ``` ┌─────────────────────────────────────────────────────────────┐ │ EXECUTIVE DASHBOARD [Date Range ▼] │ ├─────────────┬─────────────┬─────────────┬─────────────────┤ │ REVENUE │ PROFIT │ CUSTOMERS │ NPS SCORE │ │ $2.4M │ $450K │ 12,450 │ 72 │ │ ▲ 12% │ ▲ 8% │ ▲ 15% │ ▲ 5pts │ ├─────────────┴─────────────┴─────────────┴─────────────────┤ │ │ │ Revenue Trend │ Revenue by Product │ │ ┌───────────────────────┐ │ ┌──────────────────┐ │ │ │ /\ /\ │ │ │ ████████ 45% │ │ │ │ / \ / \ /\ │ │ │ ██████ 32% │ │ │ │ / \/ \ / \ │ │ │ ████ 18% │ │ │ │ / \/ \ │ │ │ ██ 5% │ │ │ └───────────────────────┘ │ └──────────────────┘ │ │ │ ├─────────────────────────────────────────────────────────────┤ │ 🔴 Alert: Churn rate exceeded threshold (>5%) │ │ 🟡 Warning: Support ticket volume 20% above average │ └─────────────────────────────────────────────────────────────┘ ``` ### Pattern 2: SaaS Metrics Dashboard ``` ┌─────────────────────────────────────────────────────────────┐ │ SAAS METRICS Jan 2024 [Monthly ▼] │ ├──────────────────────┬──────────────────────────────────────┤ │ ┌────────────────┐ │ MRR GROWTH │ │ │ MRR │ │ ┌────────────────────────────────┐ │ │ │ $125,000 │ │ │ /── │ │ │ │ ▲ 8% │ │ │ /────/ │ │ │ └────────────────┘ │ │ /────/ │ │ │ ┌────────────────┐ │ │ /────/ │ │ │ │ ARR │ │ │ /────/ │ │ │ │ $1,500,000 │ │ └────────────────────────────────┘ │ │ │ ▲ 15% │ │ J F M A M J J A S O N D │ │ └────────────────┘ │ │ ├──────────────────────┼──────────────────────────────────────┤ │ UNIT ECONOMICS │ COHORT RETENTION │ │ │ │ │ CAC: $450 │ Month 1: ████████████████████ 100% │ │ LTV: $2,700 │ Month 3: █████████████████ 85% │ │ LTV/CAC: 6.0x │ Month 6: ████████████████ 80% │ │ │ Month 12: ██████████████ 72% │ │ Payback: 4 months │ │ ├──────────────────────┴──────────────────────────────────────┤ │ CHURN ANALYSIS │ │ ┌──────────┬──────────┬──────────┬──────────────────────┐ │ │ │ Gross │ Net │ Logo │ Expansion │ │ │ │ 4.2% │ 1.8% │ 3.1% │ 2.4% │ │ │ └──────────┴──────────┴──────────┴──────────────────────┘ │ └─────────────────────────────────────────────────────────────┘ ``` ### Pattern 3: Real-time Operations ``` ┌─────────────────────────────────────────────────────────────┐ │ OPERATIONS CENTER Live ● Last: 10:42:15 │ ├────────────────────────────┬────────────────────────────────┤ │ SYSTEM HEALTH │ SERVICE STATUS │ │ ┌──────────────────────┐ │ │ │ │ CPU MEM DISK │ │ ● API Gateway Healthy │ │ │ 45% 72% 58% │ │ ● User Service Healthy │ │ │ ███ ████ ███ │ │ ● Payment Service Degraded │ │ │ ███ ████ ███ │ │ ● Database Healthy │ │ │ ███ ████ ███ │ │ ● Cache Healthy │ │ └──────────────────────┘ │ │ ├────────────────────────────┼────────────────────────────────┤ │ REQUEST THROUGHPUT │ ERROR RATE │ │ ┌──────────────────────┐ │ ┌──────────────────────────┐ │ │ │ ▁▂▃▄▅▆▇█▇▆▅▄▃▂▁▂▃▄▅ │ │ │ ▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁ │ │ │ └──────────────────────┘ │ └──────────────────────────┘ │ │ Current: 12,450 req/s │ Current: 0.02% │ │ Peak: 18,200 req/s │ Threshold: 1.0% │ ├────────────────────────────┴────────────────────────────────┤ │ RECENT ALERTS │ │ 10:40 🟡 High latency on payment-service (p99 > 500ms) │ │ 10:35 🟢 Resolved: Database connection pool recovered │ │ 10:22 🔴 Payment service circuit breaker tripped │ └─────────────────────────────────────────────────────────────┘ ``` ## Implementation Patterns ### SQL for KPI Calculations ```sql -- Monthly Recurring Revenue (MRR) WITH mrr_calculation AS ( SELECT DATE_TRUNC('month', billing_date) AS month, SUM( CASE subscription_interval WHEN 'monthly' THEN amount WHEN 'yearly' THEN amount / 12 WHEN 'quarterly' THEN amount / 3 END ) AS mrr FROM subscriptions WHERE status = 'active' GROUP BY DATE_TRUNC('month', billing_date) ) SELECT month, mrr, LAG(mrr) OVER (ORDER BY month) AS prev_mrr, (mrr - LAG(mrr) OVER (ORDER BY month)) / LAG(mrr) OVER (ORDER BY month) * 100 AS growth_pct FROM mrr_calculation; -- Cohort Retention WITH cohorts AS ( SELECT user_id, DATE_TRUNC('month', created_at) AS cohort_month FROM users ), activity AS ( SELECT user_id, DATE_TRUNC('month', event_date) AS activity_month FROM user_events WHERE event_type = 'active_session' ) SELECT c.cohort_month, EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month)) AS months_since_signup, COUNT(DISTINCT a.user_id) AS active_users, COUNT(DISTINCT a.user_id)::FLOAT / COUNT(DISTINCT c.user_id) * 100 AS retention_rate FROM cohorts c LEFT JOIN activity a ON c.user_id = a.user_id AND a.activity_month >= c.cohort_month GROUP BY c.cohort_month, EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month)) ORDER BY c.cohort_month, months_since_signup; -- Customer Acquisition Cost (CAC) SELECT DATE_TRUNC('month', acquired_date) AS month, SUM(marketing_spend) / NULLIF(COUNT(new_customers), 0) AS cac, SUM(marketing_spend) AS total_spend, COUNT(new_customers) AS customers_acquired FROM ( SELECT DATE_TRUNC('month', u.created_at) AS acquired_date, u.id AS new_customers, m.spend AS marketing_spend FROM users u JOIN marketing_spend m ON DATE_TRUNC('month', u.created_at) = m.month WHERE u.source = 'marketing' ) acquisition GROUP BY DATE_TRUNC('month', acquired_date); ``` ### Python Dashboard Code (Streamlit) ```python import streamlit as st import pandas as pd import plotly.express as px import plotly.graph_objects as go st.set_page_config(page_title="KPI Dashboard", layout="wide") # Header with date filter col1, col2 = st.columns([3, 1]) with col1: st.title("Executive Dashboard") with col2: date_range = st.selectbox( "Period", ["Last 7 Days", "Last 30 Days", "Last Quarter", "YTD"] ) # KPI Cards def metric_card(label, value, delta, prefix="", suffix=""): delta_color = "green" if delta >= 0 else "red" delta_arrow = "▲" if delta >= 0 else "▼" st.metric( label=label, value=f"{prefix}{value:,.0f}{suffix}", delta=f"{delta_arrow} {abs(delta):.1f}%" ) col1, col2, col3, col4 = st.columns(4) with col1: metric_card("Revenue", 2400000, 12.5, prefix="$") with col2: metric_card("Customers", 12450, 15.2) with col3: metric_card("NPS Score", 72, 5.0) with col4: metric_card("Churn Rate", 4.2, -0.8, suffix="%") # Charts col1, col2 = st.columns(2) with col1: st.subheader("Revenue Trend") revenue_data = pd.DataFrame({ 'Month': pd.date_range('2024-01-01', periods=12, freq='M'), 'Revenue': [180000, 195000, 210000, 225000, 240000, 255000, 270000, 285000, 300000, 315000, 330000, 345000] }) fig = px.line(revenue_data, x='Month', y='Revenue', line_shape='spline', markers=True) fig.update_layout(height=300) st.plotly_chart(fig, use_container_width=True) with col2: st.subheader("Revenue by Product") product_data = pd.DataFrame({ 'Product': ['Enterprise', 'Professional', 'Starter', 'Other'], 'Revenue': [45, 32, 18, 5] }) fig = px.pie(product_data, values='Revenue', names='Product', hole=0.4) fig.update_layout(height=300) st.plotly_chart(fig, use_container_width=True) # Cohort Heatmap st.subheader("Cohort Retention") cohort_data = pd.DataFrame({ 'Cohort': ['Jan', 'Feb', 'Mar', 'Apr', 'May'], 'M0': [100, 100, 100, 100, 100], 'M1': [85, 87, 84, 86, 88], 'M2': [78, 80, 76, 79, None], 'M3': [72, 74, 70, None, None], 'M4': [68, 70, None, None, None], }) fig = go.Figure(data=go.Heatmap( z=cohort_data.iloc[:, 1:].values, x=['M0', 'M1', 'M2', 'M3', 'M4'], y=cohort_data['Cohort'], colorscale='Blues', text=cohort_data.iloc[:, 1:].values, texttemplate='%{text}%', textfont={"size": 12}, )) fig.update_layout(height=250) st.plotly_chart(fig, use_container_width=True) # Alerts Section st.subheader("Alerts") alerts = [ {"level": "error", "message": "Churn rate exceeded threshold (>5%)"}, {"level": "warning", "message": "Support ticket volume 20% above average"}, ] for alert in alerts: if alert["level"] == "error": st.error(f"🔴 {alert['message']}") elif alert["level"] == "warning": st.warning(f"🟡 {alert['message']}") ``` ## Best Practices ### Do's - **Limit to 5-7 KPIs** - Focus on what matters - **Show context** - Comparisons, trends, targets - **Use consistent colors** - Red=bad, green=good - **Enable drilldown** - From summary to detail - **Update appropriately** - Match metric frequency ### Don'ts - **Don't show vanity metrics** - Focus on actionable data - **Don't overcrowd** - White space aids comprehension - **Don't use 3D charts** - They distort perception - **Don't hide methodology** - Document calculations - **Don't ignore mobile** - Ensure responsive design ## Resources - [Stephen Few's Dashboard Design](https://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_using_color.pdf) - [Edward Tufte's Principles](https://www.edwardtufte.com/tufte/) - [Google Data Studio Gallery](https://datastudio.google.com/gallery)