--- model: claude-opus-4-1 --- # Machine Learning Pipeline Design and implement a complete ML pipeline for: $ARGUMENTS Create a production-ready pipeline including: 1. **Data Ingestion**: - Multiple data source connectors - Schema validation with Pydantic - Data versioning strategy - Incremental loading capabilities 2. **Feature Engineering**: - Feature transformation pipeline - Feature store integration - Statistical validation - Handling missing data and outliers 3. **Model Training**: - Experiment tracking (MLflow/W&B) - Hyperparameter optimization - Cross-validation strategy - Model versioning 4. **Model Evaluation**: - Comprehensive metrics - A/B testing framework - Bias detection - Performance monitoring 5. **Deployment**: - Model serving API - Batch/stream prediction - Model registry - Rollback capabilities 6. **Monitoring**: - Data drift detection - Model performance tracking - Alert system - Retraining triggers Include error handling, logging, and make it cloud-agnostic. Use modern tools like DVC, MLflow, or similar. Ensure reproducibility and scalability.