{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Chapter 2: Introductory examples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. USAGov Data From bit.ly" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "path = 'ch02/usagov_bitly_data2012-03-16-1331923249.txt'" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "open(path).readline()\n", "\n", "import json\n", "path = 'ch02/usagov_bitly_data2012-03-16-1331923249.txt'\n", "records = [json.loads(line) for line in open(path)]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{u'a': u'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.78 Safari/535.11',\n", " u'al': u'en-US,en;q=0.8',\n", " u'c': u'US',\n", " u'cy': u'Danvers',\n", " u'g': u'A6qOVH',\n", " u'gr': u'MA',\n", " u'h': u'wfLQtf',\n", " u'hc': 1331822918,\n", " u'hh': u'1.usa.gov',\n", " u'l': u'orofrog',\n", " u'll': [42.576698, -70.954903],\n", " u'nk': 1,\n", " u'r': u'http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/wfLQtf',\n", " u't': 1331923247,\n", " u'tz': u'America/New_York',\n", " u'u': u'http://www.ncbi.nlm.nih.gov/pubmed/22415991'}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "records[0]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "u'America/New_York'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "records[0]['tz']" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "America/New_York\n" ] } ], "source": [ "print (records[0]['tz'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Counting Time Zones in pure Python" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "ename": "KeyError", "evalue": "'tz'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtimezones\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mrec\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'tz'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mrec\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mKeyError\u001b[0m: 'tz'" ] } ], "source": [ "timezones = [rec['tz'] for rec in records]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " at 0x1098b13c0>\n" ] } ], "source": [ "print (rec['tz'] for rec in records)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "timezones = [rec['tz'] for rec in records if 'tz' in rec]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[u'America/New_York',\n", " u'America/Denver',\n", " u'America/New_York',\n", " u'America/Sao_Paulo',\n", " u'America/New_York',\n", " u'America/New_York',\n", " u'Europe/Warsaw',\n", " u'',\n", " u'',\n", " u'']" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "timezones[:10]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def get_counts(sequences):\n", " count = {}\n", " for i in sequences:\n", " if x in count:\n", " count[x] += 1\n", " else:\n", " count[x] = 1\n", " return count" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from collections import defaultdict\n", "\n", "def get_counts(sequences):\n", " count = defaultdict(int)\n", " for x in count:\n", " count[x] += 1\n", " return count" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "counts = get_counts(timezones)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "defaultdict(, {'America/New_York': 0})\n" ] } ], "source": [ "print counts" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "counts['America/New_York']" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3440" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(timezones)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def top_counts(count_dict, n = 10):\n", " value_key_pairs = [(count, tz) for tz, count in count_dict.items()]\n", " value_key_pairs.sort()\n", " return value_key_pairs[-n: ]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(0, 'America/New_York')]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top_counts(counts)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from collections import Counter" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "counts = Counter(timezones)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(u'America/New_York', 1251),\n", " (u'', 521),\n", " (u'America/Chicago', 400),\n", " (u'America/Los_Angeles', 382),\n", " (u'America/Denver', 191),\n", " (u'Europe/London', 74),\n", " (u'Asia/Tokyo', 37),\n", " (u'Pacific/Honolulu', 36),\n", " (u'Europe/Madrid', 35),\n", " (u'America/Sao_Paulo', 33)]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "counts.most_common(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Counting Time Zones with Pandas" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n", " warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n" ] } ], "source": [ "% matplotlib inline" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from __future__ import division\n", "from numpy.random import randn\n", "import numpy as np\n", "import os\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "plt.rc('figure', figsize = (10, 6))\n", "np.set_printoptions(precision = 4)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import json\n", "path = 'ch02/usagov_bitly_data2012-03-16-1331923249.txt'\n", "lines = open(path).readlines()\n", "records = [json.loads(line) for line in lines]" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from pandas import DataFrame, Series\n", "import pandas as pd\n", "\n", "frame = DataFrame(records)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
_heartbeat_aalccyggrhhchhkwlllnkrttzu
0NaNMozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi...en-US,en;q=0.8USDanversA6qOVHMAwfLQtf13318229181.usa.govNaNorofrog[42.576698, -70.954903]1http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/...1331923247America/New_Yorkhttp://www.ncbi.nlm.nih.gov/pubmed/22415991
1NaNGoogleMaps/RochesterNYNaNUSProvomwszkSUTmwszkS1308262393j.mpNaNbitly[40.218102, -111.613297]0http://www.AwareMap.com/1331923249America/Denverhttp://www.monroecounty.gov/etc/911/rss.php
2NaNMozilla/4.0 (compatible; MSIE 8.0; Windows NT ...en-USUSWashingtonxxr3QbDCxxr3Qb13319199411.usa.govNaNbitly[38.9007, -77.043098]1http://t.co/03elZC4Q1331923250America/New_Yorkhttp://boxer.senate.gov/en/press/releases/0316...
3NaNMozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)...pt-brBRBrazzCaLwp27zUtuOu13319230681.usa.govNaNalelex88[-23.549999, -46.616699]0direct1331923249America/Sao_Paulohttp://apod.nasa.gov/apod/ap120312.html
4NaNMozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi...en-US,en;q=0.8USShrewsbury9b6kNlMA9b6kNl1273672411bit.lyNaNbitly[42.286499, -71.714699]0http://www.shrewsbury-ma.gov/selco/1331923251America/New_Yorkhttp://www.shrewsbury-ma.gov/egov/gallery/1341...
\n", "
" ], "text/plain": [ " _heartbeat_ a \\\n", "0 NaN Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi... \n", "1 NaN GoogleMaps/RochesterNY \n", "2 NaN Mozilla/4.0 (compatible; MSIE 8.0; Windows NT ... \n", "3 NaN Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)... \n", "4 NaN Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi... \n", "\n", " al c cy g gr h hc hh \\\n", "0 en-US,en;q=0.8 US Danvers A6qOVH MA wfLQtf 1331822918 1.usa.gov \n", "1 NaN US Provo mwszkS UT mwszkS 1308262393 j.mp \n", "2 en-US US Washington xxr3Qb DC xxr3Qb 1331919941 1.usa.gov \n", "3 pt-br BR Braz zCaLwp 27 zUtuOu 1331923068 1.usa.gov \n", "4 en-US,en;q=0.8 US Shrewsbury 9b6kNl MA 9b6kNl 1273672411 bit.ly \n", "\n", " kw l ll nk \\\n", "0 NaN orofrog [42.576698, -70.954903] 1 \n", "1 NaN bitly [40.218102, -111.613297] 0 \n", "2 NaN bitly [38.9007, -77.043098] 1 \n", "3 NaN alelex88 [-23.549999, -46.616699] 0 \n", "4 NaN bitly [42.286499, -71.714699] 0 \n", "\n", " r t \\\n", "0 http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/... 1331923247 \n", "1 http://www.AwareMap.com/ 1331923249 \n", "2 http://t.co/03elZC4Q 1331923250 \n", "3 direct 1331923249 \n", "4 http://www.shrewsbury-ma.gov/selco/ 1331923251 \n", "\n", " tz u \n", "0 America/New_York http://www.ncbi.nlm.nih.gov/pubmed/22415991 \n", "1 America/Denver http://www.monroecounty.gov/etc/911/rss.php \n", "2 America/New_York http://boxer.senate.gov/en/press/releases/0316... \n", "3 America/Sao_Paulo http://apod.nasa.gov/apod/ap120312.html \n", "4 America/New_York http://www.shrewsbury-ma.gov/egov/gallery/1341... " ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frame.head()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 America/New_York\n", "1 America/Denver\n", "2 America/New_York\n", "3 America/Sao_Paulo\n", "4 America/New_York\n", "5 America/New_York\n", "6 Europe/Warsaw\n", "7 \n", "8 \n", "9 \n", "Name: tz, dtype: object" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frame['tz'][:10]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "America/New_York 1251\n", " 521\n", "America/Chicago 400\n", "America/Los_Angeles 382\n", "America/Denver 191\n", "Europe/London 74\n", "Asia/Tokyo 37\n", "Pacific/Honolulu 36\n", "Europe/Madrid 35\n", "America/Sao_Paulo 33\n", "Name: tz, dtype: int64" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tz_counts = frame['tz'].value_counts()\n", "tz_counts[:10]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "America/New_York 1251\n", "Unknown 521\n", "America/Chicago 400\n", "America/Los_Angeles 382\n", "America/Denver 191\n", "Missing 120\n", "Europe/London 74\n", "Asia/Tokyo 37\n", "Pacific/Honolulu 36\n", "Europe/Madrid 35\n", "Name: tz, dtype: int64" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "clean_tz = frame['tz'].fillna('Missing')\n", "clean_tz[clean_tz == ''] = 'Unknown'\n", "tz_counts = clean_tz.value_counts()\n", "tz_counts[:10]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize = (10, 4))" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAFrCAYAAADLiaG+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYZVV97//3h0bBAUTitblxaHAgShAEBKJAqCAIxETR\nSABRiYlTQhSjV40Y0925Jj+nGHDAhCgEMEFFhoBGBpFS0Aik6aYbJCgRIjFBEmWS5DJ0f39/nFX0\noaixu6pP1a7363nOU3uvvfba66wq6E+tWmfvVBWSJElSF2w26A5IkiRJM8VwK0mSpM4w3EqSJKkz\nDLeSJEnqDMOtJEmSOsNwK0mSpM7YfNAd0OxI4j3eJEnSvFFVmYl2nLntsKrytQGvpUuXDrwP8/nl\n+Dl+jt38fDl+jt8gXzPJcCtJkqTOMNxKkiSpMwy30ihDQ0OD7sK85vhtHMdvwzl2G8fx2ziO39yR\nmV7noLkhSfm9lSRJ80ESyg+USZIkSQ9nuJUkSVJnGG47LMm0X9ttt/2guy1JkrTBXHPbUb2HOGzI\n9zYzfr85SZKkibjmVpIkSRqD4VaSJEmdMW/CbZK1Sa5JsrJ9ffeA+/OeJEclWZpkXZJn9B17eyvb\nfRrt7Z/kgnGO7ZHkhHGO3Zxk2+m/A0mSpO7ZfNAdmIZ7q2rKYbFfkkVVtXaG+3MwcDiwI7AaOBL4\ns3bsVcB1G9DmIxa7tr6vAFZM9RxJkqSFat7M3AJjLjLun7lsM5yXte2lSU5PcgVwepItkpySZHWS\nFUmGWr1jkpyX5LIkNyb54762j05yZZsp/nSStPKtgEdV1U9a1b8HXt6OPQO4C/ivvnZOSnJVkjVJ\nlvaVH5LkhiT/BLyyr3x03x+a1U2ybZKLWlt/Pd64SJIkLUTzKdw+ZtSyhMNb+eiZy/795wIHVNXR\nwLHAuqraBXg1cFqSR7d6ewKvAHYFDk+ye5LnAEcAL2ozxuuAo1v9A4FL+65zN3Brkl+kN4P7+VF9\nOr6q9mrtDyXZOckWwMnAS6vqBcB2o87p73v/+1oKXF5VzwPOBZ4+znhJkiQtOPNpWcJ/j7MsYaKZ\ny/Or6v62vS/wcYCqujHJLfSWFABcUlV3AiQ5u9VdC+wBXN1mbLcEftzqHwKc0nedohdojwReArwY\n+O2+40cmeSO98d4O2AlYBPygqn7Q6nwOeOM4fe/3y/SCOFX1D0numOD9S5IkLSjzKdyO50HWz0Bv\nOerYvROc1x+Ka1T5yP7fVNX7xjh3L+Ato8q+AnwUuKqqftZWMJBke+CdwB5VdXeSU/v6OVEwn6jv\n/SZoY1nf9lB7SZIkDdbw8DDDw8Oz0vZ8Crfjhbib6c2wXgT8xgTnX05vWcFwkh2BpwE3tnMPSrIN\ncB9wGPB64H+A85KcUFX/meSJwFbA44EbatSTDqrqf9odHL436rpbAz8D7kmyGDgUuAz4Z2BJkh2q\n6mbgqKkMAvDN9j7+NMmhwDbjV102xSYlSZI2naGhIYaGhh7aX758+Yy1PZ/C7ZZJrmH9zOqFVXU8\n8CfAZ5PcBQxPcP5JwKeTrAYeAI6pqgfaDOtVwDnAU4AzquoagCR/BFycZDPgfnrrdvcDLhzrAlX1\nxf7dVrY6ySrgBuBW4IpWfl+SNwP/kOReeuH78VMYh+XAmUmOBL4N/HAK50iSJC0IC/7xu0mOobdk\n4G1TrH8R8Lqq+vGklQfIx+9KkqT5YiYfvzufZm7nhKo6eNB9kCRJ0tgW/MxtVzlzK0mS5ouZnLmd\nT/e5lSRJkiZkuJUkSVJnuOa206Y/u7948ZJZ6IckSdKmYbjtMNfOSpKkhcZlCZIkSeoMw60kSZI6\nw3ArSZKkzjDcSpIkqTMMt5IkSeoMw60kSZI6w3ArSZKkzjDcSpIkqTMMt5IkSeoMw60kSZI6w3Ar\nSZKkzjDcSpIkqTMMt5IkSeoMw60kSZI6w3ArSZKkzjDcdliSab+22277QXdbkiRpg6WqBt0HzYIk\nBRvyvQ3+TEiSpE0pCVWVmWjLmVtJkiR1xpwJt0nWJrkmyZokX0iy5Qa08etJ3t22n5TkO0lWJNk3\nyZeTbD3J+dsluSjJkiRrRh1bmuQd0+3TJNfbP8kFU6h3z0xeV5IkqavmTLgF7q2q3avqecADwFum\n20BVXVBVH267BwKrq2qPqrqiqn6tqu6epIlDgAtHmpvu9TfQVK7jOgFJkqQpmEvhtt/lwLMAkpyb\n5Oo2o/uGkQpJDmmzsquSXNLKjknyiSS7Ah8CDmuzwVsmuTnJtq3e65Jcm2RlktP6rnsI8NWRS4zX\nuSTPT/KP7dpnJ3lCK78syQeTXJnkn5Ps08q3SHJKktWtz0NjtPmwmeH2fp8+qs7DZnrbe33dlEZU\nkiRpAdh80B3oE4AkmwOHsj5kvr6q7mzLFK5OcjawCDgZ2Leqfphkm752qqquTfLHwB5V9bbWbrWv\nOwHHAy+sqjtGzk2yGbBjVf1zkiXAM5Nc09e3xcBH2/5pwLFVdUWS5cBSYCSYLqqqvZMcCiwDDgKO\nBdZV1S5JfgG4OMmzN3CcnMWVJEkax1wKt4/pC5OXA59t229PcljbfirwbODJwDeq6ocAVXXnNK5z\nAHBWVd0x6ty9gSv76t1UVbuP7CRZ2r5uDTyhqq5oh04Dvth33jnt6wpgSdveF/h4u96NSW4BdpxG\nnyVJkjQFcync/nd/mITen+HphdG9q+q+JJcBIx8025jbRYx17qGsX2+7IeePuK99Xcv44zvW+Q/y\n8GUiY32gbip1+izr2x5qL0mSpMEaHh5meHh4VtqeS+F2rMD3BOCOFmyfA/xSK/8O8KkkS6rqX5M8\ncWQmdgrtfx04J8nHquqnfee+mN463Yn6Q1XdneSnSfapqm8BrwW+Mcm1LweOBoaT7Ag8DbgReFFf\nnVuAlwIk2R3YYYy+/CuwU5JHAY9rfb58/Msum6RbkiRJm97Q0BBDQ0MP7S9fvnzG2p5L4XastaQX\nAm9Jcj29MPiPAFX1X0neBJybJMDtwMFTab+qvpvkT4FvJHkQWNluH/Y/VXXvJP0Z8VvAXyZ5DPAD\n4PWTnHMS8Okkq+ndCeKYqnqg1/WHnA28rt2C7Mr2fkf3/d+SfBG4DrgZuAZJkiQ9xCeUAUmOBp7S\ndxuxec8nlEmSpPliJp9QZrjtKMOtJEmaL3z8riRJkjQGw60kSZI6w3ArSZKkzjDcSpIkqTPm0q3A\nNOOmvy578eIlk1eSJEmaowy3HeZdDyRJ0kLjsgRJkiR1huFWkiRJnWG4lSRJUmcYbiVJktQZhltJ\nkiR1huFWkiRJnWG4lSRJUmcYbiVJktQZhltJkiR1huFWkiRJnWG4lSRJUmcYbiVJktQZhltJkiR1\nhuFWkiRJnWG47bAk035tt932g+62JEnSBktVDboPmgVJCjbkexv8mZAkSZtSEqoqM9GWM7eSJEnq\nDMOtJEmSOmPBhtskhyVZl2THSep9OcnWU2jvPUmOT7KyvR5Mck17/f4E552R5GUb8h4kSZL0cAt2\nzW2SzwOPBVZU1fIZaO/rwOFV9ZO2f3dVTSUUnwGcVVXnb2wfRrXrmltJkjQvuOZ2IyV5HLA3cCxw\nZCvbLsk32kzr6iT7tPKbk2zbts9NcnWSNUne0NfeVsCjRoLtONfcPsnXk6xKclGSnx+jzp8l+esk\nByU5q6/8kCRfaNuvaf1bneRPZ2ZEJEmSumFBhlvg5cBFVXUrcHuS3YBXAxdW1e7ArsCqVrd/GvP1\nVbUnsCdwXJIntvIDgUsnueZJwMlV9XzgS8CJfceS5GPAVlX1RuBrwPP62n898NkkTwH+L7A/sBuw\nT5Jfne6blyRJ6qqFGm6PAr7Yts+iF2yvAn47yR8Du1TVve14/xT525OsAr4DPBV4dis/BPjqJNfc\nG/hC2z4d2Lfv2HLg0VX1VoDqrQv4W+DVLeDuDlzS2ri0qu6oqrXA3wG/POV3LUmS1HGbD7oDm1oL\niwcAO/fWpbKIXp58V5L9gJcCf5Pkz6vqc33n7d/O27uq7ktyGbBlO7wX8JZJLj3RQtYrgT2TbFNV\nd7ayU4Gz6YXrL1RVJYGHh+1JLOvbHmovSZKkwRoeHmZ4eHhW2l5wHyhL8iZgt6r63b6yy4ClwBVV\ntS7JscAzq+odSW4G9qA30/o7VfXyJM8BVgIHA/8F/FFVvXrUde6pqq369r8MnFFVX2jrdQ+qqiNG\nPlBGLyi/DTh4ZNY4yVeAXYBfqaqb2rKEbwIvAO4BLgY+UlWPmDX2A2WSJGm+mMkPlC24mVvgCOBD\no8rOoTdTem+SB+kFx9e2YyNJ70LgLUmuB24E/rGVH9qOjTY6If4+cEqS9wI/preO9qF6VfXFdsux\n85K8tKrup7fsYKuquqnV+VGS9wPfaOeeP1awlSRJWqgW3MztTEtyEfC6qvrxLLT9aeDbVXXGBpzr\nzK0kSZoXZnLm1nA7RyVZCfwEOKSqHtyA8w23kiRpXjDcalKGW0mSNF/4EAdJkiRpDIZbSZIkdcZC\nvFvCAjL92f3Fi5fMQj8kSZI2DcNth7l2VpIkLTQuS5AkSVJnGG4lSZLUGYZbSZIkdYbhVpIkSZ1h\nuJUkSVJnGG4lSZLUGYZbSZIkdYbhVpIkSZ1huJUkSVJnGG4lSZLUGYZbSZIkdYbhVpIkSZ1huJUk\nSVJnGG4lSZLUGYZbSZIkdcbmg+6AZk+STXq9xYuXcNttt2zSa0qSJPVLVQ26D5oFSQo29fc2+PMk\nSZKmKwlVNSOzci5LkCRJUmfM6WUJSdYC1wKhNw35+ar68AD78x7gVuDZwD1V9bEZbHsJ8OWqet5M\ntSlJkrTQzOlwC9xbVbtvyIlJFlXV2hnuz8HA4fTC7Wzwb/qSJEkbYa4vSxhz7UWSm5Ns27b3SHJZ\n216a5PQkVwCnJ9kiySlJVidZkWSo1TsmyXlJLktyY5I/7mv76CRXJrkmyafTPpWVZCvgUVX1k3E7\nm7wjyZp2veNa2ZIk301ycpLrklyYZIu+vq9KshI4tq+difp9dpKvtn5/aCPGVpIkqXPmerh9TAuZ\nK9vXw1v56BnO/v3nAgdU1dH0AuO6qtoFeDVwWpJHt3p7Aq8AdgUOT7J7kucARwAvajPG64CjW/0D\ngUvH62iS3YFjWrsvBN6YZNd2+FnAJ6pqZ+Au4Dda+SnAsVW126jmJur3rvRmj3cBjkjylPH6JEmS\ntNDM9WUJ/z3OsoSJPk13flXd37b3BT4OUFU3JrkF2LEdu6Sq7gRIcnaruxbYA7i6zdhuCfy41T+E\nXhgdz77AuVX1/1qb5wD7ARcAN1fVmlZvBbB9kicAT6iqb7XyM9o1Juv3pVX1s3aN7wJLgB9N0C9J\nkqQFY66H2/E8yPpZ5y1HHbt3gvP6Q3GNKh/Z/5uqet8Y5+4FvGU6nexzX9/2Wtb3eaq3vOivN7qt\nCb6Hy/q2h9pLkiRpsIaHhxkeHp6Vtud6uB0v/N1Mb4b1Itb/iX8sl9NbVjCcZEfgacCN7dyDkmxD\nLyweBrwe+B/gvCQnVNV/JnkisBXweOCGevhNXEf37XLg1CQfBBbRW/LwmvHeR1XdleSOJC+qqm/3\n1Z2s39OwbHrVJUmSNoGhoSGGhoYe2l++fPmMtT3Xw+2WSa5h/czqhVV1PPAnwGeT3AUMT3D+ScCn\nk6wGHgCOqaoH2mfErgLOAZ4CnFFV1wAk+SPg4iSbAffTW/+6H3DhqLbf1z40FqCq6ulJTgOubn09\nuaqubbf4Gu8uCL8NnJJkHXDxFPvdz7srSJIk9VmQTyhLcgywR1W9bYr1LwJeV1U/nrTyHOETyiRJ\n0nwxk08om+szt3NCVR086D5IkiRpcgty5nYhcOZWkiTNFzM5czvX73MrSZIkTZnhVpIkSZ1huJUk\nSVJn+IGyTpuRpStTtnjxkk16PUmSpNEMtx3mh7skSdJC47IESZIkdYbhVpIkSZ1huJUkSVJnGG4l\nSZLUGYZbSZIkdYbhVpIkSZ1huJUkSVJnGG4lSZLUGYZbSZIkdYbhVpIkSZ1huJUkSVJnGG4lSZLU\nGYZbSZIkdYbhVpIkSZ2x+aA7oNmTZNBd2CCLFy/htttuGXQ3JEnSPJSqGnQfNAuSFMzX723w51KS\npIUjCVU1I7NyLkuQJElSZxhuJUmS1BmG2w2QZF2S0/v2FyX5zyTnt/1fT/LuDWj3ipnspyRJ0kLj\nB8o2zL3Azkm2qKr7gIOAW0cOVtUFwAXTbbSq9p25LkqSJC08ztxuuH8AXtq2jwLOHDmQ5Jgkn2jb\nhydZk2RlkuFWtlOSK5Nck2RVkme28nva1/2TXJbkrCQ3JDmjr+1fbWVXJzkxybRDtCRJUlcZbjdM\nAZ8HjkqyBbALcOUYdQDeD7ykqnYDXtbK3gKcUFW7Ay8A/m3UOQDPB94G7AQ8M8mL2rX+Eji4qvYE\n/hfz95YIkiRJM85wu4Gq6jpge3qztl8Bxrt9xRXAaUnewPplIP8IvC/Ju4Dt29KG0a6qqv+o3j2x\nVrVrPQf4l6r6Yatz5hjnSZIkLViuud045wMfAYaAJ41Voap+L8mewK8BK5LsXlVnJvlOK/uHJG+q\nquFRp/YH3rWs/15N4x5wy/q2h9pLkiRpsIaHhxkeHp6Vtg23G2YkYJ4C3FFV1yfZf8yKyTOq6mrg\n6iSHAE9Lsk1V3Qx8IsnT6S1rGGby4HojsEOSp7fZ2yMmrr5sim9HkiRp0xkaGmJoaOih/eXLl89Y\n24bbDVMAVfUj4JOT1P1Ikme37a9V1eok70nyWuAB4D+AP+1vd4Lr/b8kvwdclORnwNUTnCNJkrTg\n+PjdeSbJ46rq3rb9KeB7VXXiGPV8/K4kSZoXfPzuwvbGdlux64Gtgb8adIckSZLmCmduO8qZW0mS\nNF84cytJkiSNwXArSZKkzvBuCZ02I7P7m9zixUsG3QVJkjRPGW47zHWrkiRpoXFZgiRJkjrDcCtJ\nkqTOMNxKkiSpMwy3kiRJ6gzDrSRJkjrDcCtJkqTOMNxKkiSpMwy3kiRJ6gzDrSRJkjrDcCtJkqTO\nMNxKkiSpMwy3kiRJ6gzDrSRJkjrDcCtJkqTOMNxKkiSpMzYfdAc0e5IMugvzxuLFS7jttlsG3Q1J\nkrSRUlWD7oNmQZICv7dTF/xvQZKkwUhCVc3IrJzLEiRJktQZcyrcJjksybokO85S+3skOWEjzj8i\nyfFJjklye5IVSb6X5KtJXjiTfZUkSdL0zalwCxwJfBk4aqYbTrKoqlZU1ds3oplDga+27c9X1R5V\ntSPwIeCcJL+w0R2dpiSLNvU1JUmS5qo5E26TPA7YGziWXsglyf5JhpOcl+SmJB9M8pokVyW5NskO\nrd6TknwpyZXt9cJWvjTJ6UmuAE5v7V0wcr0kpyRZnWRVkle08pNa+2uSLB3VzV2rauXovlfVMPBX\nwJtaG89os7lXJ/nGyEx0klOTnJjkW+39vLKVn5nk0L6xODXJK5NsluTD7T2tSvLGvnH5ZpK/B66f\noW+BJEnSvDeX7pbwcuCiqrq1/cl/t1a+C/Ac4E7gZuCvq2qvJG8D3gq8AzgR+FhVfTvJ04CLgJ3a\n+c8F9qmq+5Psz/pPWb0fuLOqdgFI8oRWfnxV3ZlkM+DSJGdX1XWtP9dO0P+VtHALnAy8uar+Jcle\nwKeBF7dj21XVPkmeC5wPnAN8ATgC+GqSRwEHAG8Bfqf1ce8kjwa+leTi1s5uwC9W1Q+nNLqSJEkL\nwFwKt0cBf9G2zwJeTW+JwtVVdTtAkpvoBVeANcBQ2z4QeG7W3/vq8Uke27bPr6r7x7jegfQCJQBV\ndVfbPLLNkG4ObEcvJF8HHML6JQljSevj44AXAWf19edRffXOa9e7IcmTW9lXgRNasD0U+GZV3Zfk\nJcDzkhze6m0NPBt4ALjKYCtJkvRwcyLcJnkivdnKnXu3sGIRvRnWrwD39VVd17e/jvX9D7B3VT0w\nql2Ae6fRj+2BdwJ7VNXdSU4FtmyHXwK8coLTdwNuoLfU446q2n2cev3vJwAtyA7TC9BHAGf2HX9r\nVV0yqp/7M6X3taxve4j1vwtIkiQNzvDwMMPDw7PS9pwIt8DhwOlV9bsjBUkuA/ab4vkXA8cBH23n\n7lpVEy0hALiE3vred7RztqE3M/oz4J4ki+nNol6WZGtgUVXd0Xf+Q/dia2HzjcBQVd2T5OYkr6qq\nL7Xju1TV6jH60H8/ty8CbwD2AI5pZRcBv5fksqp6MMmzgR9NNhjrLZt6VUmSpE1kaGiIoaGhh/aX\nL18+Y23PlQ+UHQGcO6rsHHofLOu/s/54d9k/DnhB+5DZdcCbp3DNDwDbtg+OraQXTFcDq+jNwH4O\nuKLVPQj42qjzfzPJNUluBP4QeGVVfa8dOxr4nfYhsOuAl43T//79i4FfBi6pqgdb2WeA7wLXJFkD\n/CW9WW1JkiSNwSeUTUGSk4HPVNVVg+7LVPmEsunyCWWSJA3KTD6hzHDbUYbb6TLcSpI0KD5+V5Ik\nSRqD4VaSJEmdYbiVJElSZxhuJUmS1Blz5T63mhUzsi57QVi8eMmguyBJkmaA4bbD/PS/JElaaFyW\nIEmSpM4w3EqSJKkzDLeSJEnqDMOtJEmSOsNwK0mSpM4w3EqSJKkzDLeSJEnqDMOtJEmSOsNwK0mS\npM4w3EqSJKkzDLeSJEnqDMOtJEmSOsNwK0mSpM4w3EqSJKkzNh90BzR7kgy6C+qoxYuXcNtttwy6\nG5IkPUKqatB90CxIUuD3VrMl+P8OSdJMSUJVzcisnMsSJEmS1BmGW0mSJHXGlMJtksOSrEuy42x0\nIskeSU7YiPOPSHJ8kmOSfGIm+9Z3jUVJbk/yZ7PRfrvGzUm2na32JUmSum6qM7dHAl8GjprpDiRZ\nVFUrqurtG9HMocBX2/ZsLQQ8CLgG+I1Zah9cJCtJkrRRJg23SR4H7A0cSy/kkmT/JMNJzktyU5IP\nJnlNkquSXJtkh1bvSUm+lOTK9nphK1+a5PQkVwCnt/YuGLleklOSrE6yKskrWvlJrf01SZaO6uau\nVbVygvdwVGtvdZIPtrLNkpzayq5NctwkQ3EUcBLwgyS/1Nf2zUmWJVnR2tmx771f3Pr710luGZmV\nTXJ0G49rknw6629rkL52H1FnA/osSZK0oExl5vblwEVVdStwe5LdWvkuwJuAnYDXAs+qqr2AzwJv\nbXVOBD5WVXsDr2rHRjwXOKCqjm77I7OW7wfurKpdqur5wNdb+fGt/V2BoSQ7A7T+XDte55P8b+CD\nwBDwfGDPJC9r209p19kVOHWCNrYAfgW4EPgi8OpRVW6vqj2AvwT+TytbClxaVc8DvgQ8rbX1HOAI\n4EVVtTuwDji6v7EJ6ky5z5IkSQvRVMLtUfQCHcBZrA92V1fV7VV1P3ATcFErXwNs37YPBD6ZZCVw\nPvD4JI9tx85v5452IPCpkZ2quqttHplkBbCSXqDeqZUfwvolCWPZE7isqn5aVeuAvwV+GfgBsEOS\nE5McDNwzQRu/Bgy3/v49cFjfbCvAue3rir73vi/w+fYeLgLuaOUvBnYHrm7jcgCww6jrjVXnGdPs\nsyRJ0oIz4UMckjyRXrDauXffVBbRm2H9CnBfX9V1ffvr+toNsHdVPTCqXYB7p9rJJNsD7wT2qKq7\nk5wKbNkOvwR45WRNjC6oqjuT7AocDLwZ+E3gd8Y5/yhgnyQ/aG1tS29cLm3HR977WsYf0/6lB6dV\n1fvGqFOT1ZlGn4FlfdtD7SVJkjRYw8PDDA8Pz0rbkz2h7HDg9Kr63ZGCJJcB+02x/YuB44CPtnN3\nrapxlxA0l9Bb3/uOds42wNbAz4B7kiym9wGyy5JsDSyqqjv6zh8dZK8CTmzrXe+iF1Q/nuTngPur\n6twk3wPOGKsz7Rr70VsO8GArO4beDPalY53TfIve0oIPJ3kJsE0rvxQ4L8kJVfWf7ReIrarqh319\nH7MOvV8IJu3zessmPixJkjQAQ0NDDA0NPbS/fPnyGWt7smUJR7D+T+4jzqH3wbL+T/aP9yn/44AX\ntA8/XUdvtnEyHwC2bR/EWgkMVdVqYBVwA/A54IpW9yDga6POPybJD5PcmuSH9N7jHwLD9JY0XF1V\nFwBPAYbbNc5odcZyGL21sw/2lZ0P/FqSR0/w3pcDByVZTe8OC7cB91TVDcAfARcnuZbeLwDbtXMK\nYII6U+2zJEnSgjSvH7+b5GTgM1V11aD7MloLvmuram27u8JJ7cNhm+r6Pn5Xs8jH70qSZk5m8PG7\n8zrczmVJnkXvg3ib0VuT+3tVtWITXt9wq1lkuJUkzRzD7SxJ8klgH3qpMO3riVV12kA7tgEMt5pd\nhltJ0swx3GpShlvNLsOtJGnmzGS4nerjdyVJkqQ5b7JbgWlem5FfgKRHWLx4yaC7IEnSmAy3Heaf\njSVJ0kLjsgRJkiR1huFWkiRJnWG4lSRJUmcYbiVJktQZhltJkiR1huFWkiRJnWG4lSRJUmcYbiVJ\nktQZhltJkiR1huFWkiRJnWG4lSRJUmcYbiVJktQZhltJkiR1huFWkiRJnWG4lSRJUmdsPugOaPYk\nGXQXtAAtXryE2267ZdDdkCQtUKmqQfdBsyBJgd9bDULw/yuSpOlIQlXNyKycyxIkSZLUGQMNt0kO\nS7IuyY6z1P4eSU7YiPOPSPLetn1okquTXJdkRZKPtPJTk7xyjHP/d5IvbnjvJUmSNF2Dnrk9Evgy\ncNRMN5xkUVWtqKq3b0QzhwIXJvlF4BPAq6tqZ+AFwE0TnVhV/1FVv7kR15YkSdI0DSzcJnkcsDdw\nLL2QS5L9kwwnOS/JTUk+mOQ1Sa5Kcm2SHVq9JyX5UpIr2+uFrXxpktOTXAGc3tq7YOR6SU5JsjrJ\nqiSvaOUntfbXJFk6qpu7VtVK4N3AB6rq+wDV81d99fZP8q3W51e2dpckWdO2N0vykXaNVUmObeXv\nb/1fneQv+8Zmz/Z+r0ny4b52tuh7DyuSDM3gt0SSJGneG+TM7cuBi6rqVuD2JLu18l2ANwE7Aa8F\nnlVVewGfBd7a6pwIfKyq9gZe1Y6NeC5wQFUd3fZHPtnyfuDOqtqlqp4PfL2VH9/a3xUYSrIzQOvP\nta3OzsDT0yg2AAAQTUlEQVSKCd7LdlW1D/DrwIf6ykeu/WZgCTBy7b9t5Z+oqr2rahfgsUle2spP\nAd5YVbsDa/vaORZY1+q/GjgtyaMn6JckSdKCMshwexQwsib1LHphDeDqqrq9qu6n96f/i1r5GmD7\ntn0g8MkkK4HzgccneWw7dn47d7QDgU+N7FTVXW3zyCQrgJX0AvVOrfwQ4KtTfC/ntTZvAJ48xvEX\nA39V7SPkVXXnSHmS7yRZDfwK8ItJngA8vqquanX+rq+dfYHPtTZuBG4BZmW9siRJ0nw0kPvcJnki\ncACwc++WVSyiNzv5FeC+vqrr+vbXsb6/AfauqgdGtQtw7zT6sT3wTmCPqro7yanAlu3wS4CRD4pd\nR2+d7Zpxmurv85RuY5FkC3phe/eq+ve2JGLk2lO9FcYk9Zb1bQ+1lyRJ0mANDw8zPDw8K20P6iEO\nhwOnV9XvjhQkuQzYb4rnXwwcB3y0nbtrVV078SlcQu/P+u9o52wDbA38DLgnyWJ6HyC7LMnWwKKq\nuqOd+1Hg7CRXVNX3k2xGb9nAXz3iKmMHzkuANycZrqq1Ldyvoxfof5Lk8fSWV5xVVXcluTvJnlV1\nNW09cnM5cDQw3O4w8TTgxvHf8rJJhkSSJGnTGxoaYmho6KH95cuXz1jbg1qWcARw7qiyc+gFuf67\nv493J/jjgBe0D11dR29N62Q+AGzbPtS1EhiqqtXAKuAGen/uv6LVPQj42kOdqFoDvB04M8n1wGpg\nh3H6OFafPwPcCqxu1z6qLYv4DHA9veUPV/XVfwPwmSTXAI8FRpZQnAQsassYzgSOGT17LUmStJD5\nhLIxJDkZ+EzfutdNff3HVdW9bfs99D6w9gfTbMMnlGlAfEKZJGl6ZvIJZYbbOSjJbwLvpbds5Bbg\nt6rqJ9Nsw3CrATHcSpKmx3CrSRluNTiGW0nS9MxkuB30E8okSZKkGWO4lSRJUmcM6lZg2iRmZHZf\nmpbFi5cMuguSpAXMcNthrnuUJEkLjcsSJEmS1BmGW0mSJHWG4VaSJEmdYbiVJElSZxhuJUmS1BmG\nW0mSJHWG4VaSJEmdYbiVJElSZxhuJUmS1BmGW0mSJHWG4VaSJEmdYbiVJElSZxhuJUmS1BmGW0mS\nJHWG4VaSJEmdsfmgO6DZk2TQXZDmncWLl3DbbbcMuhuSpA2Uqhp0HzQLkhT4vZWmL/j/RUnatJJQ\nVTMyK+eyBEmSJHWG4VaSJEmdYbgdJcmSJGtGlS1N8o4JzjkmySdmv3eSJEmaiOF2bBuy4M5FepIk\nSQNmuJ26JLksyQeTXJnkn5PsM0allyb5VpJtk5ya5MS2f1OSV/bV+0iSNUmuTXJ4K/tkkl9r2+cm\n+Uzbfn2S/9tmlb+b5OQk1yW5MMkWm2oAJEmS5jrD7fQtqqq9gT8AlvUfSHIY8G7g0Kr6aSverqr2\nAX4d+FCr9xvALlX1POAg4KNJFgOXA/u1834e2Klt7wd8s20/C/hEVe0M3AX8xoy/Q0mSpHnKcPtI\n4y0vqPY6p+2vAJb0HX8xvWD70qq6u6/8PICqugF4civbBzizld8ODAN70gu3v5zkucB3gR8n2Q54\nIfDtdu7NVTWyJngFsP2036EkSVJH+RCHR/oJsO2osm2BH7Tt+9rXtTx8/P4F2AH4BXqhk1H1Aca7\nf1sAqurfk2wDHAx8o133N4F7qureJE8a1d5aYMvx38qyvu2h9pIkSRqs4eFhhoeHZ6Vtw+0oLUT+\ne5JfqarLkmxLL2yeAPz2qOr9YfUW4P8A5yZ5VZupHW2k/uXAm5KcDvwcvWUH/6cd+w69JQ+/AjwJ\n+BJw1jjXnMSyqVeVJEnaRIaGhhgaGnpof/ny5TPWtssSxvY64P1JVgJfA5ZV1c08csnCw/ar6nvA\n0cBZSXYYr35VnQusBq5t7b+rLU+AXvBdVFU/AK4Bnsj69baPuKYkSZLW8/G7HeXjd6UN5eN3JWlT\n8/G7kiRJ0hgMt5IkSeoMw60kSZI6w3ArSZKkzvBWYJ02I+uypQVl8eIlk1eSJM1ZhtsO8xPfkiRp\noXFZgiRJkjrDcCtJkqTOMNxKkiSpMwy3kiRJ6gzDrSRJkjrDcCtJkqTOMNxKkiSpMwy3kiRJ6gzD\nrSRJkjrDcCtJkqTOMNxKkiSpMwy3kiRJ6gzDrSRJkjrDcCtJkqTOMNxKkiSpMzYfdAc0e5IMuguS\nJGkDLF68hNtuu2XQ3ZiXUlWD7oNmQZICv7eSJM1PYSFltCRU1YzMyrksQZIkSZ1huJUkSVJnzFq4\nTXJYknVJdpyl9vdIcsJGnH9EkvcmOSbJ2iQ79x1bk+TpM9PTh9p8Q5LP9+1vleSmJNtPo40zkrxs\nJvslSZLUJbM5c3sk8GXgqJluOMmiqlpRVW/fiGYOBS5s27cC7+s7NuOLXKrqM8BTkxzQiv4E+ExV\n3TKV85Msmuk+SZIkdc2shNskjwP2Bo6lF3JJsn+S4STntRnLDyZ5TZKrklybZIdW70lJvpTkyvZ6\nYStfmuT0JFcAp7f2Lhi5XpJTkqxOsirJK1r5Sa39NUmWjurmrlW1sm1/BfjFJM8eeQt97+WgJN9O\n8k9JvpDksUlekOTsdvzlSf47yeZJtkjyLxMMze8CJybZAzgA+GhrY/ck32l9PyvJVq388iQfS3JV\nG8v+Mf6zJH895W+KJEnSAjBbM7cvBy6qqluB25Ps1sp3Ad4E7AS8FnhWVe0FfBZ4a6tzIvCxqtob\neFU7NuK5wAFVdXTbH5lhfT9wZ1XtUlXPB77eyo9v7e8KDI0sPWj9ubav3bXAh3n47C1Jfg74I+DF\nVfUCYAXwDmBlaxNgX2ANsCe9QP+d8QalqtYAFwGXAr9fVQ+2Q2cAb299/157PyM2q6q9qurj67uV\njwFbVdUbx7uWJEnSQjRb97k9CviLtn0W8Gp6SxSurqrbAZLcRC/oQS8cDrXtA4HnZv1NWh+f5LFt\n+/yqun+M6x0IHDGyU1V3tc0jk7yR3vvcjl6ovg44BPjqqDbOBN43ag3sL7VzvtX68yjg21W1Nsm/\nJHkOsBfwMWB/YBFw+fjDAsCngEOq6vI2DtsCW1TVSCg+DTi9r/4XRp2/HLiiqn5/kusAy/q2h1g/\nxJIkSYMzPDzM8PDwrLQ94+E2yRPp/cl95969VllEb4b1K8B9fVXX9e2v6+tLgL2r6oFR7QLcO41+\nbA+8E9ijqu5OciqwZTv8EuCV/fVbYP1z4D2snxEOcHHfTHG/b9Jbt3s/8DV6oXQz4F2TdG1dez2s\nuxPUH/2erwT2TLJNVd058aWWTdIVSZKkTW9oaIihoaGH9pcvXz5jbc/GsoTDgdOraoeqekZVLQFu\nBvab4vkXA8eN7CTZdYK6Iy6hb01qkm2ArYGfAfckWUwviJJka2BRVd0xRjun0ZsF/l9t/zvAPkme\n2c59bN+63CuAt9Obyf0J8HPAL1TV9VPo70Nhtqp+Cvx3kl9qRa8FvjHBuV8B/hz4clvbLEmSpGY2\nwu0RwLmjys6h98Gy/rsQjHdHguOAF7QPmV0HvHkK1/wAsG374NhKYKiqVgOrgBuAz9ELowAH0Ztp\nfYQ2W/xx4Mlt/7+A3wLOTHIt8G3gF1r1K1u9b7b91e01FaPf+2uBE5Ksoreu+APj1KvWry8CfwOc\nl+TRU7ymJElS5y24x+8mOZneLbiuGnRfZpOP35UkaT7z8bsb3NZCGriFxHArSdJ8ZrjdULN1t4QF\nLckngX3opcu0rydW1WkD7ZgkSVLHOXPbUc7cSpI0nzlzu6Gcue20GfkZkSRJm9jixUsG3YV5y3Db\nYQvpNz5JkiSYvcfvSpIkSZuc4VaSJEmdYbiVJElSZxhupVGGh4cH3YV5zfHbOI7fhnPsNo7jt3Ec\nv7nDcCuN4v+gNo7jt3Ecvw3n2G0cx2/jOH5zh+FWkiRJnWG4lSRJUmf4hLKO6j2hTJIkaX6YqSeU\nGW4lSZLUGS5LkCRJUmcYbiVJktQZhtuOSXJIkn9O8r0k7xl0f+aaJE9N8vUk1ydZk+RtrfyJSS5O\ncmOSi5I8oe+c9yb5fpIbkrxkcL2fO5JsluSaJOe3fcdvipI8IclZbTyuT7K34zc1bSyuT7I6yd8m\nebRjN7Ekn03y4ySr+8qmPWZJdm/j/r0kJ2zq9zEI44zdh9vYrEpydpKt+445dn3GGr++Y+9Msi7J\ntn1lMzd+VeWrIy96v6zcBCwBHgWsAp4z6H7NpRewHfD8tv144EbgOcCHgHe38vcAH2zbOwErgc2B\n7dv4ZtDvY9Av4A+AzwHnt33Hb+pj9zfA69v25sATHL8pjdsS4AfAo9v+F4BjHLtJx21f4PnA6r6y\naY8ZcCWwZ9v+B+DgQb+3AY3dgcBmbfuDwP/n2E19/Fr5U4ELgZuBbVvZc2dy/Jy57Za9gO9X1b9W\n1QPA54GXD7hPc0pV3VZVq9r2z4Ab6P2H9nLgtFbtNOCwtv0y4PNV9WBV3QJ8n944L1hJngr8KvCZ\nvmLHbwraLM9+VXUqQBuXu3D8puJu4H7gcUk2Bx4D/AjHbkJVdQVwx6jiaY1Zku2Ararq6lbv9L5z\nOmussauqr1XVurb7HXr/foBj9wjj/OwB/AXwrlFlL2cGx89w2y1PAW7t2/+3VqYxJNme3m+V3wEW\nV9WPoReAgSe3aqPH9Ec4piP/Y+q/1YrjNzU7AP+V5NS2rOPkJI/F8ZtUVd0B/DnwQ3rjcFdVfQ3H\nbkM8eZpj9hR6/56M8N+Wnt+mN5MIjt2UJHkZcGtVrRl1aEbHz3CrBSnJ44EvAce1GdzR98TzHnlj\nSPJS4Mdt9nui+xE6fmPbHNgd+FRV7Q7cC/wh/vxNKskz6C2HWQL8PL0Z3KNx7GaCYzZNSd4HPFBV\nZw66L/NFkscAxwNLZ/tahttu+RHw9L79p7Yy9Wl/0vwScEZV/X0r/nGSxe34dsDtrfxHwNP6Tl/o\nY7oP8LIkPwDOBA5IcgZwm+M3Jf9Gb9bin9r+2fTCrj9/k3sB8K2q+mlVrQXOBV6EY7chpjtmjmWf\nJL9Fb2nWq/uKHbvJPZPeetprk9xMbyyuSfJkxs8vGzR+httuuRp4VpIlSR4NHAmcP+A+zUWnAN+t\nqhP7ys4HfqttHwP8fV/5ke1T2TsAzwKu2lQdnWuq6viqenpVPYPez9fXq+q1wAU4fpNqfwq+NcmO\nrejFwPX48zcVNwK/lGTLJKE3dt/FsZuK8PC/tExrzNrShbuS7NXG/nV953Tdw8YuySH0lmW9rKru\n66vn2I3tofGrquuqaruqekZV7UDvl/3dqup2euN3xIyN36A/Tedrxj+deAi9fwS+D/zhoPsz1170\nZh7X0ruTxErgmjZm2wJfa2N3MbBN3znvpffJzRuAlwz6PcyVF7A/6++W4PhNfdx2pfeL6CrgHHp3\nS3D8pjZ276L3y8Bqeh+EepRjN+mY/R3w78B99NYrvx544nTHDNgDWNP+bTlx0O9rgGP3feBf278d\n1wAnOXZTH79Rx39Au1vCTI+fj9+VJElSZ7gsQZIkSZ1huJUkSVJnGG4lSZLUGYZbSZIkdYbhVpIk\nSZ1huJUkSVJnGG4lSZLUGYZbSZIkdcb/DwV5SEtMzEXBAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "tz_counts[:10].plot(kind = 'barh', rot = 0)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "u'GoogleMaps/RochesterNY'" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frame['a'][1]" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "u'Mozilla/5.0 (Windows NT 5.1; rv:10.0.2) Gecko/20100101 Firefox/10.0.2'" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frame['a'][50]" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "u'Mozilla/5.0 (Linux; U; Android 2.2.2; en-us; LG-P925/V10e Build/FRG83G) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1'" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frame['a'][51]" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 Mozilla/5.0\n", "1 GoogleMaps/RochesterNY\n", "2 Mozilla/4.0\n", "3 Mozilla/5.0\n", "4 Mozilla/5.0\n", "dtype: object" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results = Series([x.split()[0] for x in frame.a.dropna()])\n", "results[:5]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Mozilla/5.0 2594\n", "Mozilla/4.0 601\n", "GoogleMaps/RochesterNY 121\n", "Opera/9.80 34\n", "TEST_INTERNET_AGENT 24\n", "GoogleProducer 21\n", "Mozilla/6.0 5\n", "BlackBerry8520/5.0.0.681 4\n", "dtype: int64" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results.value_counts()[:8]" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [], "source": [ "cframe = frame[frame.a.notnull()]" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Windows', 'Not Windows', 'Windows', 'Not Windows', 'Windows'], \n", " dtype='|S11')" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "operating_system = np.where(cframe['a'].str.contains('Windows'), 'Windows', 'Not Windows')\n", "operating_system[:5]" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [], "source": [ "by_tz_os = cframe.groupby(['tz', operating_system])" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Not WindowsWindows
tz
245 276
Africa/Cairo 0 3
Africa/Casablanca 0 1
Africa/Ceuta 0 2
Africa/Johannesburg 0 1
Africa/Lusaka 0 1
America/Anchorage 4 1
America/Argentina/Buenos_Aires 1 0
America/Argentina/Cordoba 0 1
America/Argentina/Mendoza 0 1
\n", "

10 rows × 2 columns

\n", "
" ], "text/plain": [ " Not Windows Windows\n", "tz \n", " 245 276\n", "Africa/Cairo 0 3\n", "Africa/Casablanca 0 1\n", "Africa/Ceuta 0 2\n", "Africa/Johannesburg 0 1\n", "Africa/Lusaka 0 1\n", "America/Anchorage 4 1\n", "America/Argentina/Buenos_Aires 1 0\n", "America/Argentina/Cordoba 0 1\n", "America/Argentina/Mendoza 0 1\n", "\n", "[10 rows x 2 columns]" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agg_counts = by_tz_os.size().unstack().fillna(0)\n", "agg_counts[:10]" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "tz\n", " 24\n", "Africa/Cairo 20\n", "Africa/Casablanca 21\n", "Africa/Ceuta 92\n", "Africa/Johannesburg 87\n", "Africa/Lusaka 53\n", "America/Anchorage 54\n", "America/Argentina/Buenos_Aires 57\n", "America/Argentina/Cordoba 26\n", "America/Argentina/Mendoza 55\n", "dtype: int64" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# use to sort ascending order\n", "indexer = agg_counts.sum(1).argsort()\n", "indexer[:10]" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Not WindowsWindows
tz
America/Sao_Paulo 13 20
Europe/Madrid 16 19
Pacific/Honolulu 0 36
Asia/Tokyo 2 35
Europe/London 43 31
America/Denver 132 59
America/Los_Angeles 130 252
America/Chicago 115 285
245 276
America/New_York 339 912
\n", "

10 rows × 2 columns

\n", "
" ], "text/plain": [ " Not Windows Windows\n", "tz \n", "America/Sao_Paulo 13 20\n", "Europe/Madrid 16 19\n", "Pacific/Honolulu 0 36\n", "Asia/Tokyo 2 35\n", "Europe/London 43 31\n", "America/Denver 132 59\n", "America/Los_Angeles 130 252\n", "America/Chicago 115 285\n", " 245 276\n", "America/New_York 339 912\n", "\n", "[10 rows x 2 columns]" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "count_subset = agg_counts.take(indexer)[-10:]\n", "count_subset" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAFqCAYAAAAeHEKoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X98zfX///HbGbb8TPJrkuiHH/Mzb2yLcSY/Nm2SeZeV\nUAiRUkS/D0mmKcV6z6/wzjs+KUQ1v3dG1Ewh65shJrSohSHD7PX9g523vU1t57Xt7Ozcr5fLuew8\nz/Z6vZ7nfvx4nOcer9exGIZhICIiIiJSini5egIiIiIiIoVNRa6IiIiIlDoqckVERESk1FGRKyIi\nIiKljopcERERESl1VOSKiIiISKlT1tUTkOLRqlUrdu3a5eppiIiIiPytli1bsnPnTlP70Equh9i1\naxeGYejm5O21115z+Rzc+ab8lJ+yc8+b8lN+rroVxsKcilyRfEhNTXX1FNya8jNH+TlP2Zmj/MxR\nfq6lIldERERESh0VuSL5MHDgQFdPwa0pP3OUn/OUnTnKzxzl51oWwzAMV09Cip7FYkEvtYiIiLiD\nwqhbtJIrkg92u93VU3Brys8c5ec8ZWeO8jNH+bmWilwRERERKXXUruAh1K4gIiIi7kLtCiIiIiIi\neVCRK5IP6qsyR/mZo/ycp+zMUX7mKD/XUpErIiIiIqWOenI9hHpyRURExF2oJ1dEREREJA8qckXy\nQX1V5ig/c5Sf85SdOcrPHOXnWipyRURERKTUKevqCUjxsVgsrp6ClFReQLarJyEiIn+l8o2VyTiZ\n4eppuA2deOYhLhe4eqnleixgc/UcRETkL9nwmJPIdeKZSLGxu3oC7u2gqyfg5pSf85SdOcrPHOXn\nUipyRURERKTUKZFF7tSpU6lTpw7nz58vtH0uXLiQVatWFXi7ZcuWMX/+fKxWK88++6zj8czMTBo0\naFBo8wMYO3Ysw4YNc4wvXbpEQEAAa9as+dttbTYbs2bNKtT5yNWsrp6AeyvcvyqeR/k5T9mZo/zM\nUX4uVSKL3EWLFhEZGcmSJUsKbZ8DBgwgPDy8wNvFxcVx3333AbBkyRI2bdpUaHP6X5MmTWLLli1s\n2LABgLfeegt/f3+6d+/+t9vqpDIRERGR/ypxRa7dbueuu+5i6NChxMTEAGC1WnnmmWfo0qULvXr1\nYtq0aXTr1o127dpx8uRJLl68yKBBg+jUqRNBQUEkJCQA0KxZMyIiIoiMjGTChAmOlc6RI0fi7+/P\n3XffzcqVK8nOzmbw4MGEhITQsmVLXnnlFeByc/fx48epWbMmFouF6dOn88QTT3D27Nlccz58+DA9\nevQgODiYHj16cOTIEZ599lk+/fRTAEJCQnjnnXcAGDJkCF9//XWez93Hx4d///vfjBgxgu+//55P\nPvmEt956i5MnTxIWFkanTp1o37498fHx1zy/HPv378ff35/k5OTCekkEUE+uSepLM0f5OU/ZmaP8\nzFF+LlXiity5c+cyaNAgGjZsiI+PD9u2bcNiseDv78/69es5f/48FStWZO3atfj5+ZGQkMDcuXOp\nUaMGCQkJrFixghEjRgBw9uxZXn31VRYvXuzY//Lly0lPTycxMZH4+Hi2b9/O4cOHCQwMZPXq1SQm\nJhIbGwtAUlISbdu2dWzbsmVL+vfvz7PPPptr5XTMmDGMGjWK+Ph4nnvuOcaPH88DDzxAXFwcmZmZ\nnDx5ko0bNwLw3XffERgYeN3nf/fdd/PII4/QpUsX5s+fj7e3N5MmTaJ79+4kJCSwdOlSBg0alOfz\n27NnD4888ggfffQRzZo1K6RXRERERMT9lKjr5J44cYK4uDh+++03ZsyYQUZGBjNnzgSgdevWAFSt\nWhU/Pz8AbrrpJjIzM0lOTmbz5s0kJiYCl3tZ09PTAWjUqFGuY+zdu9dRZFatWpWJEyeSkZFBUlIS\n8fHxVKlSxdEL/Pnnn9O7d2/HthaLhfHjx9O+fXu+/PJLx+O7d+9m8uTJREVFYRgG3t7edOjQgaef\nfpr4+HgiIiL45JNP2Lx5818WuDn69+/Pl19+SfPmzYHLxeujjz4KQJ06dahSpQrHjx+/5vmtXr2a\ncuXK4eV1vfcuA4H6V+5XBVrx315T+5WvGuc9znmspMynsMdcXnFocNV9CnFc1Psv7eOcx0rKfNxp\n3KCEzcfdxsqvxOWX8ylqVqu1VI1z7qemplJYStR1cmfMmMGRI0eIiooC4Ny5c9SvX58aNWqwbNky\nGjZsSGRkJMOHD6djx46MHj2agIAAjh8/zpkzZ3jhhRfIyMhg2rRp2Gw2br/9dlJSUvD29mbChAnU\nrl0bX19fli5dyocffsipU6eIjIwkNDSUo0ePMmXKFPbv30/jxo3JysqiZ8+erFy5EoDg4GBmzZpF\nw4YN2bt3L926dcPLy4sDBw4QERHBmDFjCAwMJDk5mW3btvH444/zxBNPsG/fPqZPn86///1vtm7d\nyuTJkwkODv7LHFJTU4mMjHS0NYwdO5Z69erx1FNPcfToUdq3b89PP/3EnXfemev5+fr6cvvttzNx\n4kTsdnuuYlfXyZW/puvkioiUeDZdJ7cgSlS7wrx58xwrlgDly5enT58+7N+//7rbWCwWhg4dyp49\ne7BarVitVurVq5fniVgWi4WePXty0003ERQUREhICE8//TT33nsvq1evpmvXrkyZMoU2bdrwyy+/\nUKdOnTyP2bBhw1xXWoiOjmbChAlYrVYGDRpE06ZNAejduzd79uyhZcuWdOvWjZ9++olOnTrlK4ur\n5//iiy+yceNGOnXqxAMPPMDs2bMpU6ZMns+xS5cu+Pn5Od4oSGGxu3oC7k19aeYoP+cpO3OUnznK\nz6VK1EquFB2t5Jplp3RfRqyIV3Kv/lW7FJzyc56yM0f5mVPY+dm0klsQJaon11O8/vrrjhPRrjZ/\n/nzq169f/BOSfLC6egLuTf9JmqP8nKfszFF+5ig/l9JKrofQSq78NfXkioiUeDat5BZEierJFSm5\n7K6egHtTX5o5ys95ys4c5WeO8nMpFbkiIiIiUuqoyBXJF6urJ+De1JdmjvJznrIzR/mZo/xcSj25\nHiKvy42JOHgB2a6ehIiI/JXKN1Ym42SGq6dRLHR1BSkQvZ9xnt1ud3w6ixSc8jNH+TlP2Zmj/MxR\nfq6ldgURERERKXXUruAhCmPZX0RERKQ46BJiIiIiIiJ5UJErkg92u93VU3Brys8c5ec8ZWeO8jNH\n+bmWilwRERERKXXUk+sh1JMrIiIi7kI9uSIiIiIieVCRK5IP6qsyR/mZo/ycp+zMUX7mKD/XUpEr\nIiIiIqWOenI9hHpyRURExF2oJ1dEREREJA8qckXyQX1V5ig/c5Sf85SdOcrPHOXnWipyRURERKTU\nUU+uh1BProiIiLiLwqhbyhbSXMQNWCwWV09BvIBsV09CCqryjZXJOJnh6mmIiEgBaCXXQ1wucPVS\nO88OWAthPxawFcJu3M1BoIGrJ2GCDZf+JsRut2O1Wl12fHem7MxRfuYoP+fp6goiIiIiInnQSq6H\n0EpuSeGhK7nuzubalVwREU+jlVwRERERkTyoyBXJF7urJ+DeDrp6Au5N19p0nrIzR/mZo/xcS0Wu\niIiIiJQ66sn1EOrJLSnUk+uWbOrJFREpTrpOrhTQQKD+lftVgVb897JY9itfNS7a8RU5v75voLFb\njMl9KaCcX0FqrLHGGmtcOOOc+6mpqRQWreR6CK3kmmVH18k1QdfJNcWua206TdmZo/zMUX7O09UV\nRERERETyoJVcD6GV3JLCQ1dy3Z1NPbkiIsVJK7kiIiIiInlQkSuSL3ZXT8C96Tq5plx9YoYUjLIz\nR/mZo/xcS0WuiIiIiJQ66sn1EOrJLSnUk+uWbOrJFREpToXRk6si10NcLnLF5byAbFdPQgqq8o2V\nyTiZ4eppiIh4DJ14JgViGIZuTt7i4+MLZ1+XXP9c3Do/F91cXeCqr895ys4c5WeO8nMtFbkiIiIi\nUuqoXcFDFMayv4iIiEhxULuCiIiIiEgeVOSK5IP6qsxRfuYoP+cpO3OUnznKz7VU5IqIiIhIqaOe\nXA+hnlwRERFxF+rJFRERERHJg4pckXxQX5U5ys8c5ec8ZWeO8jNH+bmWilwRERERKXXUk+sh1JMr\nIiIi7kI9uSIiIiIieVCRK5IP6qsyR/mZo/ycp+zMUX7mKD/XUpErIiIiIqWOenI9hHpyRURExF2o\nJ1dEREREJA8qcj2IxWJxv1uZEjAH3UzfKlSq4Oo//m5NfX3OU3bmKD9zlJ9rlXX1BKQ4uWG7QrYF\nbK6eBHAQaODqSbivc7Zzrp6CiIh4GPXkegiLxYJbFrmUkCJXzLGhnnAREck3i0U9uSIiIiIi13Db\nInfq1KnUqVOH8+fPF9o+Fy5cyKpVqwq83bJly5g/fz6GYTB58mQ6duxIcHAwnTt3Jjk5GQCr1cre\nvXtzbbdr1y5ef/31Qpm7FLGDrp6AeDL19TlP2Zmj/MxRfq7ltj25ixYtIjIykiVLljBgwIBC2aez\n+4mLi+ONN94gKiqKP/74g02bNgGwfft27r//flJSUvJcdm/ZsiUtW7Y0PW8RERERyc0te3Ltdjsz\nZszgzTffpF+/fmzbtg2r1UqrVq1ITk6mUqVKBAUFsWbNGk6ePMnatWupWLEiw4YNY//+/WRnZzNp\n0iQ6depEs2bNaNSoEd7e3jRu3JjatWszdOhQRo4cSVJSEhcuXGDChAmEhYXxxBNPcOTIEdLS0ujZ\nsyevv/46hmHQq1cvPvvsM+644w6+++47brzxRsdcT5w4wU033URwcDC+vr4cO3aMs2fPsnjxYg4d\nOsSsWbNYvHgx8+bNIzY2lkuXLtGzZ09sNhszZ85k+fLlnD17lurVq7N8+XKysrLo378/aWlp3Hrr\nrWzatImjR4+yY8cORo0aRZkyZbjhhhuYM2cOt956q2Me6skVl7KpJ1dERPLPY3ty586dy6BBg2jY\nsCE+Pj5s27YNi8WCv78/69ev5/z581SsWJG1a9fi5+dHQkICc+fOpUaNGiQkJLBixQpGjBgBwNmz\nZ3n11VdZvHixY//Lly8nPT2dxMRE4uPj2b59O4cPHyYwMJDVq1eTmJhIbGwsAElJSbRt2xaAP//8\nM1eBC3DTTTc57oeFhbFhwwZCQ0P55JNPrhSe8NtvvxEVFcVXX33Fd999x4ULFzh9+jR//PEH69ev\n55tvviErK4ukpCRmz57NHXfcwVdffYXNZuPYsWMADBkyhJiYGOx2O08++STPPvts0b0AIiIiIiWc\n27UrnDhxgri4OH777TdmzJhBRkYGM2fOBKB169YAVK1aFT8/P+BykZmZmUlycjKbN28mMTERgEuX\nLpGeng5Ao0aNch1j7969BAYGOvY1ceJEMjIySEpKIj4+nipVqjh6gT///HN69+7tONbp06epXLmy\nY1/Lly+nS5cuAPzjH/8AoHbt2vz666+Onzlw4ADNmjXDx8cHgMmTJwNQrlw5IiMjqVSpEkeOHOHi\nxYvs2bOHkJAQx7xr1KgBQFpaGi1atAAgKCiI8ePH55HeQKD+lftVgVaA9crYfuVrSRtfkdMT28BF\n46+B2i48vruPufwbGKvV6rgPaJzP8fTp02nVqlWJmY87ja/uiSwJ83G3sfJTfsU1zrmfmppKYXG7\ndoUZM2Zw5MgRoqKiADh37hz169enRo0aLFu2jIYNGxIZGcnw4cPp2LEjo0ePJiAggOPHj3PmzBle\neOEFMjIymDZtGjabjdtvv52UlBS8vb2ZMGECtWvXxtfXl6VLl/Lhhx9y6tQpIiMjCQ0N5ejRo0yZ\nMoX9+/fTuHFjsrKy6NmzJytXrgQgKiqK3377jejoaAC2bt1Kv379SElJoVu3bsyaNYuGDRsya9Ys\nfv31V6xWK7GxscyYMYOOHTuyc+dOvL29eeihhxgxYgTPP/8833zzDX/++Sdt2rTh/fff54cffuDw\n4cNMmTKFn376icaNG3Px4kXatm3LBx98QPPmzVmxYgULFy5k+fLljtzUrmCSrpNrjk3tCmbYr3qD\nIAWj7MxRfuYoP+cVRruC263kzps3j0WLFjnG5cuXp0+fPsybN++621gsFoYOHcqQIUOwWq1kZGQw\nYsQIR7vA//5sz549Wb9+PUFBQWRlZWGz2bj11lt5+OGH+fbbb7ntttto06YNv/zyC3Xq1HFsO3bs\nWF555RUCAwMpV64c3t7erFq1inLlyuV5nJyv1atXZ9y4cXTq1Mlx/LZt21KxYkU6duxI9erVad26\nNWlpaQwaNIiBAwfSqVMnbrvtNm644QYA5syZw8iRIzEMg3Llyv1lHuIEFbjiQvpP0nnKzhzlZ47y\ncy23W8n1dF9//TVnzpyha9eu7Nu3jx49erBv376/3U4rueJSNq3kiohI/nnsiWee7Pbbb+fNN9+k\nQ4cO9OvXj5iYGFdPyTPoOrniQlf3rEnBKDtzlJ85ys+13K5dwdPVqlWLjRs3unoaIiIiIiWa2hU8\nhNoVxKVsalcQEZH8U7uCiIiIiEgetJLrIfK6koRb8AKyXT0JMat8xfL8eeZPV0/DbekyRM5TduYo\nP3OUn/M88hJi4jy9n3Ge/qEyRydfiIhIcdNKrocojHdEIiIiIsVBPbkiIiIiInlQkSuSD/p1uznK\nzxzl5zxlZ47yM0f5uZaKXBEREREpddST6yHUkysiIiLuQj25IiIiIiJ5UJErkg/qqzJH+Zmj/Jyn\n7MxRfuYoP9dSkSsiIiIipY56cj2EenJFRETEXagnV0REREQkDypyRfJBfVXmKD9zlJ/zlJ05ys8c\n5edaKnJFREREpNRRT66HUE+uiIiIuAv15IqIiIiI5EFFrgexWCyl51amBMxBt1y3KlWrXPfPnvrS\nzFF+zlN25ig/c5Sfa5V19QSkOJWidoVsC9iK8XgHgQbFeDw3dNp22tVTEBERcVBProewWCyUqiKX\nYi5y5e/ZUN+3iIgUCotFPbkiIiIiItco8iJ36tSp1KlTh/PnzxfaPhcuXMiqVasKvN2yZcuYP38+\nwcHBpKSkFNp8rvbLL79QoUIFPvnkk0Ld78CBA1mzZk2h7lMK4KCrJ+De1JdmjvJznrIzR/mZo/xc\nq8iL3EWLFhEZGcmSJUsKbZ8DBgwgPDy8wNvFxcVx3333ATm/vi988+fP5+mnnyYmJqZQ95tzco+I\niIiI/L0iLXLtdjt33XUXQ4cOdRR9VquVZ555hi5dutCrVy+mTZtGt27daNeuHSdPnuTixYsMGjSI\nTp06ERQUREJCAgDNmjUjIiKCyMhIJkyYwKxZswAYOXIk/v7+3H333axcuZLs7GwGDx5MSEgILVu2\n5JVXXgEu9woeP36cmjVr5jnXixcv0q9fP9q3b09AQAAff/wxAO+//z4BAQHcc889PP3003/5fA3D\nYNGiRTz33HNcuHCBH374AYAFCxbw4IMPEh4ejp+fHwsXLgRg27ZttGvXjnvvvZfIyEgee+wxAGbM\nmME999xD+/btmTFjRq5jZGVl5ZnPSy+9RPv27fH392fq1KkFe6Hk7+mkM1OsVqurp+DWlJ/zlJ05\nys8c5edaRVrkzp07l0GDBtGwYUN8fHzYtm0bFosFf39/1q9fz/nz56lYsSJr167Fz8+PhIQE5s6d\nS40aNUhISGDFihWMGDECgLNnz/Lqq6+yePFix/6XL19Oeno6iYmJxMfHs337dg4fPkxgYCCrV68m\nMTGR2NhYAJKSkmjbtu115zpr1ixq1arFli1bWL9+PS+//DLp6eksWLCAmJgYtm7dSpMmTbh06dJ1\n97FhwwaaN29O9erVeeyxx3Kt5mZkZLBq1SpWrlzJlClTABg2bBgLFy5kw4YN3HHHHVgsFn788Uc+\n/vhjtmzZwqZNm1ixYgV79+4FLhfRc+bMyTOfjz76iMWLF7N582aqVq3q5CsmIiIiUjoU2SXETpw4\nQVxcHL/99hszZswgIyODmTNnAtC6dWsAqlatip+fHwA33XQTmZmZJCcns3nzZhITEwG4dOkS6enp\nADRq1CjXMfbu3UtgYKBjXxMnTiQjI4OkpCTi4+OpUqWKoxf4888/p3fv3ted7549e+jSpQsAlSpV\nws/Pj59++on58+cTHR3NwYMHCQwM/Msz/ebMmcPBgwcJDQ3lwoUL7Nq1iylTpmCxWGjVqhUAdevW\nJTMzE4C0tDSaNGkCQFBQEEuWLCE5OZlDhw7RuXNnAE6ePMm+ffscx7hePv/5z38YN24cv/76K6Gh\nodeZ4UCg/pX7VYFWgPXK2H7lq7uMyX1Zr5ye2aIafw3ULsbjuev4ipw+tJxVjOnTp9OqVSvH+H+/\nr/Ffj5Wf8+OreyJLwnzcbaz8lF9xjXPup6amUliK7BJiM2bM4MiRI0RFRQFw7tw56tevT40aNVi2\nbBkNGzYkMjKS4cOH07FjR0aPHk1AQADHjx/nzJkzvPDCC2RkZDBt2jRsNhu33347KSkpeHt7M2HC\nBGrXro2vry9Lly7lww8/5NSpU0RGRhIaGsrRo0eZMmUK+/fvp3HjxmRlZdGzZ09WrlwJQHBwMLGx\nsbmK5piYGA4cOMC0adM4ffo0rVq14ptvvuGNN94gKioKHx8fQkJCeOmllwgKCrrm+f7++++0adOG\ngwcPOnpnn3jiCZo3b06VKlXYs2cPb775JpmZmTRp0oSDBw/Srl07Fi5cSJMmTbDZbBw6dIjRo0cz\nbtw44uLiAHj77bf55z//yauvvkrfvn3Zu3fvNfm89NJLjBs3jnfeeQfDMGjatClr1qzh1ltv/e8L\nrUuImaPr5P492/UvIWa32x3/oEnBKT/nKTtzlJ85ys95hXEJsSJbyZ03bx6LFi1yjMuXL0+fPn2Y\nN2/edbexWCwMHTqUIUOGYLVaycjIYMSIEXmecGWxWOjZsyfr168nKCiIrKwsbDYbt956Kw8//DDf\nfvstt912G23atOGXX36hTp06ubbv06cPN9xwA3C56H3jjTcYMmQIQUFBnDt3DpvNRo0aNWjevDlB\nQUFUrlyZunXr4u/vn+fcP/zwQ/r06ZNrrkOGDKF///6MGzcu1+M5999//30ef/xxKlWqhLe3N3Xr\n1qVFixbce++9dOjQgczMTAICArjlllv+Mh9vb2+qVatGQEAA5cuXp3v37rkKXCkEKnBN0T/y5ig/\n5yk7c5SfOcrPtfRhEC70/vvv8+CDD1K9enVeeeUVfHx8ePnll4vkWFrJlSJn04dBiIhI4dCHQbjA\nqlWrCA4Ovua2YsWKAu+rVq1adOvWjY4dO7Jr1y7HSWRSAuk6uaZc3XMlBaf8nKfszFF+5ig/1yqy\ndoXSKjw83Klr9OYlIiKCiIiIQtmXiIiIiPyX2hU8hNoVpMjZ1K4gIiKFQ+0KIiIiIiJ5UJErkh/q\nyTVFfWnmKD/nKTtzlJ85ys+11JPrUa69FJvb8kLtCiVM5Rsru3oKIiIiDurJ9RCF0dsiIiIiUhzU\nkysiIiIikgcVuSL5oL4qc5SfOcrPecrOHOVnjvJzLRW5IiIiIlLqqCfXQ6gnV0RERNyFenJFRERE\nRPKgIlckH9RXZY7yM0f5OU/ZmaP8zFF+rqUiV0RERERKHfXkegj15IqIiIi7UE+uiIiIiEgeVOSK\n5IP6qsxRfuYoP+cpO3OUnznKz7VU5IqIiIhIqaOeXA+hnlwRERFxF+rJFRERERHJg4pckXxQX5U5\nys8c5ec8ZWeO8jNH+blWWVdPQIqPxWJx9RQKlxeQXXS7r3xjZTJOZhTdAURERKTIqCfXQ1wucEvb\nS20BWxHu3ob6mEVERFxAPbkiIiIiInlQkSuSD+qrMkf5maP8nKfszFF+5ig/1yo1PblTp05l+vTp\nHDx4EB8fn0LZ58KFC6lWrRrh4eEF2m7ZsmWcOnWKhQsXcu7cOSpUqMDFixdp0KAB7777LtWqVSuU\n+YmIiIhI3kpNT26LFi3o2rUrLVq0YMCAAS6dy5AhQ3jjjTd46KGHmDVrFg0bNgTgo48+YtmyZXzy\nySfFPif15DrBpp5cERERVyiMntxSsZJrt9u56667GDp0KP369WPAgAFYrVZatWpFcnIylSpVIigo\niDVr1nDy5EnWrl1LxYoVGTZsGPv37yc7O5tJkybRqVMnmjVrRqNGjfD29qZx48bUrl2boUOHMnLk\nSJKSkrhw4QITJkwgLCyMJ554giNHjpCWlkbPnj15/fXXMQyD48ePU7NmTSB3kfTwww/z0ksvceHC\nBVJSUnj66acxDIObb76ZDz74gO+++46oqCh8fHw4cOAAffv25fnnn6dJkyZ8//33lC9fnujoaMqW\nLUtERARDhw7l3LlzlC9fntmzZ5OVlUV4eDjVq1enR48ejB071lUviYiIiIhLlYqe3Llz5zJo0CAa\nNmyIj48P27Ztw2Kx4O/vz/r16zl//jwVK1Zk7dq1+Pn5kZCQwNy5c6lRowYJCQmsWLGCESNGAHD2\n7FleffVVFi9e7Nj/8uXLSU9PJzExkfj4eLZv387hw4cJDAxk9erVJCYmEhsbC0BSUhJt27Z1bPu/\nl+266aabOHHiBEOGDOH9998nPj6eHj16MHXqVCwWCz///DPLli3jm2++YerUqY6CNmf1d/HixfTv\n358xY8YwatQo4uPjee655xg/fjwWi4Vjx46xbt06FbiFTH1V5ig/c5Sf85SdOcrPHOXnWm6/knvi\nxAni4uL47bffmDFjBhkZGcycOROA1q1bA1C1alX8/PyAy0VmZmYmycnJbN68mcTERAAuXbpEeno6\nAI0aNcp1jL179xIYGOjY18SJE8nIyCApKYn4+HiqVKnC+fPnAfj888/p3bt3nnM1DINff/2VmjVr\n8uOPPzJ8+HAALl686GhpaN68OV5eXlSoUIHy5csDMHjwYIYPH07jxo1p3Lgx1apVY/fu3UyePJmo\nqCgMw8Db2xuABg0aULbs9V7WgUD9K/erAq0A65Wx/cpXdxtfcfDK1waFPL5i586dl49uvXz8nH+4\nNM7fWPmZGys/jTXWuLSPc+6npqZSWNy+J3fGjBkcOXKEqKgoAM6dO0f9+vWpUaMGy5Yto2HDhkRG\nRjJ8+HAn7MjQAAAgAElEQVQ6duzI6NGjCQgI4Pjx45w5c4YXXniBjIwMpk2bhs1m4/bbbyclJQVv\nb28mTJhA7dq18fX1ZenSpXz44YecOnWKyMhIQkNDOXr0KFOmTGH//v00btyYrKwsevbsycqVKwEI\nDg4mNjbWUTTPnTuXTZs28e9//xt/f38+/fRT6taty6ZNm0hPT6datWrExsY6VpF9fX1JS0sDoEuX\nLlSrVo0nn3wSq9VKREQEY8aMITAwkOTkZBITE+nSpQt9+/bl66+/viYn9eQ6waaeXBEREVdQTy4w\nb948Fi1a5BiXL1+ePn36MG/evOtuY7FYGDp0KEOGDMFqtZKRkcGIESPy/EQwi8VCz549Wb9+PUFB\nQWRlZWGz2bj11lt5+OGH+fbbb7ntttto06YNv/zyC3Xq1Mm1ff/+/alYsSIAdevWJSYmBoB//etf\nPProo2RlZeHl5cW8efM4evRorjlcfX/QoEG89tprjnc+0dHRDB8+nMzMTM6dO8d77713zTYiIiIi\nnsrtV3Ilf7SS6wTbf1dy7Xa74w2GFJzyM0f5OU/ZmaP8zFF+ztMnnomIiIiI5EEruR5CK7lOsKkn\nV0RExBW0kisiIiIikgcVuSL5cPUlTqTglJ85ys95ys4c5WeO8nMtt7+6ghREKbvyghdF2q5Q+cbK\nRbdzERERKVLqyfUQhdHbIiIiIlIciqUn9/XXX+fixYuO8bhx40wdUERERESkqP1tkfvee+/Rs2dP\nzpw5A8C2bduKfFIiJY36qsxRfuYoP+cpO3OUnznKz7X+tsht1qwZI0eOpHv37hw7dkyfqCUiIiIi\nJd7f9uQGBwcTHx/Ppk2bGD16NNnZ2ezYsaO45ieFRD25IiIi4i4Ko2752yLXy8uL7OxsAHbs2ME/\n//lP9u/fb+qgUvxU5IqIiIi7KNITz+bNm0dgYCCVK1cmMDCQwMBAhg0bRuXKuqySeB71VZmj/MxR\nfs5TduYoP3OUn2td9zq5/fr149577+WNN97g5ZdfxjAMvLy8qFWrVnHOT0RERESkwHSdXA+hdgUR\nERFxF8VynVwREREREXejIlckH9RXZY7yM0f5OU/ZmaP8zFF+rqUiV0RERERKHfXkegj15IqIiIi7\nUE+uiIiIiEgeVOSK5IP6qsxRfuYoP+cpO3OUnznKz7VU5IqIiIhIqaOeXA9hsVgKZ0deQHb+f7zy\njZXJOJlROMcWERERj1AYPbkqcj3E5SK3MF5qC9gK8OM2dMKbiIiIFIhOPBMpJuqrMkf5maP8nKfs\nzFF+5ig/11KRKyIiIiKlTqlqV7Db7Tz44IM0bdrU8ViNGjX4+OOPi20OPXv25LnnniM2NpbFixcX\nyj63b99OTEwM8+fPd3ofalcQERERd1EY7QplC2kuJYLFYqFLly589NFHLjn+zz//TL169VxybBER\nERH5r1LVrmAYRp5Vv9VqZe/evQDExsYyYcIEDh06RPPmzQkODuatt95ix44dBAUFYbVaCQkJ4fDh\nw6SmpmK1Wrnvvvto3bo1r776KgCHDx+mR48eBAcH06NHD44cOQLA559/TlhY2HXnt27dOgICArBa\nrURERHDq1CnsdjuhoaH06tWLFi1aMHnyZABSUlJo3749Xbp04a233nLs4z//+Q/t2rUjKCiIxx9/\nnKysLBYsWMCDDz5IeHg4fn5+LFy4sNAylcvUV2WO8jNH+TlP2Zmj/MxRfq5VqlZyATZu3EhwcLBj\nfN999+W6fNbV948dO8aOHTsoW7Ysbdq04YMPPqBFixasXLmSZ599lujoaA4dOsQPP/yAj48PHTp0\n4IEHHmDKlCmMGjWKkJAQNmzYwPjx41m0aBF2u53BgwezdevWa+ZlGAZDhw5ly5Yt+Pr68t577zFp\n0iTCwsL4+eef2b17N5mZmdSpU4cXX3yRsWPHMnHiRO69917mzJnD1q1b+eOPP7DZbOzcuZOKFSvy\n7LPPMmvWLCpVqkRGRgarV69m//79hIeHM2DAgKINWkRERKQEK3VFbufOna/phf3iiy8c97Oz/3uR\n1wYNGlC27OUI0tLSaNGiBQBBQUGMHz8egICAACpUqACAv78/e/fuJTk5mcmTJxMVFYVhGHh7e3Pu\n3Dm8vLzw9vbOc16///47VapUwdfX13GMl156ibCwMJo3b46XlxcVKlSgfPnywOWV3LZt2wLQsWNH\ntm7dyoEDB2jatCkVK1Z0PL527Vr8/f1p1aoVAHXr1iUzM/M66QwE6l+5XxVoBVivjO1Xvv7d+IqD\nOSH+zThn6yvvZq1Wq1uOcx4rKfNxt3HOYyVlPu42znmspMzHncZWq7VEzcfdxspP+RXXOOd+amoq\nhaXUnXg2a9asa4rc0NBQxo0bh9VqZciQIdStW5eBAwfSt29fvv76awDatm3LBx98QPPmzVmxYgUL\nFy5k+vTphIaGsmvXLry8vAgKCmLOnDm8+uqrjBkzhsDAQJKTk0lMTKRGjRocP36cwYMH5zkPwzC4\n44472Lp1K7Vr12b69OkcOnSIXr165TpJzdfXl7S0NB544AGGDBlCjx49WLBgAQkJCURHRxMYGMjO\nnTupUKECzzzzDA0aNKBq1ars2bOHN998k8zMTJo0acLBg7mrTJ14JiIiIu5CJ579D4vFck27AsDY\nsWN58sknqVevHrfccoujZeHq1oU5c+YwcuRIDMOgXLlyzJs3D8MwsFgshIeHk56eTmRkJE2bNiU6\nOprhw4eTmZnJuXPnePfdd1mwYAGvvfaaY79r1651rMQCfPTRR8yZM4fevXvj5eVFtWrVWLBgAbt3\n786zneKdd95h4MCBTJs2jbp161KmTBluvvlmJkyYQHBwMF5eXtx1111ERUWxZMmS67ZkSOGwX7WK\nJgWn/MxRfs5TduYoP3OUn2uVqpXcwpaamspTTz3FqlWrXD0V07SSa47+oTJH+Zmj/Jyn7MxRfuYo\nP+fpY32L2KFDh3jqqadYuXKlq6dimopcERERcRcqciXfVOSKiIiIuyiMIterkOYiUqpdffanFJzy\nM0f5OU/ZmaP8zFF+rqUiV0RERERKHbUreIhCu+KCF5D9tz/lUPnGymSczCicY4uIiIhH0CXEpED0\nfkZEREQ8hdoVRPJBfVXmKD9zlJ/zlJ05ys8c5edaKnJFREREpNRRT66HKIzeFhEREZHioEuIiYiI\niIjkQUWuSD6or8oc5WeO8nOesjNH+Zmj/FxLRa6IiIiIlDrqyfUQ6skVERERd6GeXBERERGRPKjI\nFckH9VWZo/zMUX7OU3bmKD9zlJ9rqcgVERERkVJHPbkeQj25IiIi4i7UkysiIiIikgcVuSL5oL4q\nc5SfOcrPecrOHOVnjvJzLRW5IiIiIlLqqCfXQ1gslstvabILvm3lGyuTcTKj0OckIiIikpfC6MlV\nkeshLBbL5Ts2Jza2oZPWREREpNjoxDORYqK+KnOUnznKz3nKzhzlZ47ycy0VuSIiIiJS6qhdIR+m\nTp3K9OnTOXjwID4+Pnn+TFRUFJ07d6Zt27bX3c/bb79Ns2bNePPNNwHYsmUL7du3d3zv7rvvzvXz\nCxYsICUlxfHzZqhdQURERNxFYbQrlC2kuZRqixYtIjIykiVLljBgwIA8f2bcuHF/u58tW7bw9NNP\n061bNwB8fX2Jj4+/7s87ClMRERERKRC1K/wNu93OXXfdxdChQ4mJiQHg/fffJyAggHvuuYenn34a\ngIEDB7JmzRpOnz7Ngw8+SPfu3WnevDmxsbEAnDp1igoVKlCmTJk8j/Of//yHdu3aERQUxOOPP05W\nVpbje7/99hsdOnRg48aNPPLII3z55ZcA/Pjjj4SFhZGVlUW/fv1o3749AQEBfPzxx0UZiUdSX5U5\nys8c5ec8ZWeO8jNH+bmWity/MXfuXAYNGkTDhg3x8fFh27ZtLFiwgJiYGLZu3UqTJk24dOmSY9V1\n//79REZGsmbNGtasWcPbb78NwJo1a+jevXuex0hPT8dmsxEfH8/mzZupWrUqs2bNAuDXX3/l/vvv\n55133qFz584MGTKEhQsXAvDBBx8wePBgYmNjqVWrFlu2bGH9+vW8/PLLpKenF0M6IiIiIiWTity/\ncOLECeLi4nj33XcJDQ3l1KlTzJw5k/nz5zNz5kysViuHDh3K1TNSs2ZNVqxYwaOPPsobb7zhWJFd\nvXo1PXr0yPM4Bw4coGnTplSsWBGAjh078sMPPwCXi+MLFy5w6dIlADp16sT/+3//j99//51169YR\nFhbGnj17CAoKAqBSpUr4+flx4MCBvJ9U/JXb18DBqx4/+Ndju92e6x2pp41zHisp83G3cc5jJWU+\n7jbOeaykzMedxlartUTNx93Gyk/5FdfYbrdjs9kYOHAgAwcOpDDoxLO/MGPGDI4cOUJUVBQA586d\no0GDBvTp04dp06bh4+NDSEgIL774IvPnz6dv376sXbuWu+66i2HDhhEfH89jjz3GwYMHeeCBB1ix\nYkWu/fv6+pKWlsbvv//OPffcw86dO6lQoQLPPPMMDRo0oGrVquzZs4dHH32UBx98kG3btlGhQgWm\nTp3Kjh07qFevHlFRUcTExHDgwAGmTZvG6dOnadWqFYmJiVSvXt1xLJ14JiIiIu5C18ktYvPmzePR\nRx91jMuXL09ERAS1atUiKCiIe++9l1q1auHv7w9cfkHCw8OJiYmhe/furFq1isqVK7N582YCAgKu\n2X9O4Vm9enUmTJhAcHAwgYGB/PHHHwwbNszxM35+fvTr14/Ro0cDMGDAAJYtW8agQYMAeOKJJ0hP\nTycoKIjg4GBsNluuAlfMu/pdpxSc8jNH+TlP2Zmj/MxRfq6llVw3lJaWRv/+/Vm3bl2+t9FKrjl2\nux2r1erqabgt5WeO8nOesjNH+Zmj/Jynj/X1QMuWLcNmszFr1iwCAwPzvZ2KXBEREXEXKnIl31Tk\nioiIiLtQT65IMVFflTnKzxzl5zxlZ47yM0f5uZaKXBEREREpddSu4CHUriAiIiLuQj25km8Wi+Xy\nun12wbetfGNlMk5mFPqcRERERPKinlwpEOOSgWEU/KYCV31VZik/c5Sf85SdOcrPHOXnWipyRURE\nRKTUUbuChyiMZX8RERGR4qB2BRERERGRPKjIFckH9VWZo/zMUX7OU3bmKD9zlJ9rqcgVERERkVJH\nPbkeQj25IiIi4i7UkysiIiIikgcVuSL5oL4qc5SfOcrPecrOHOVnjvJzLRW5IiIiIlLqqCfXQ6gn\nV0RERNyFenJFRERERPKgIlckH9RXZY7yM0f5OU/ZmaP8zFF+rqUiV0RERERKHfXkegj15IqIiIi7\nUE+uFIjFYnHqVqVqFVdPXURERKRAtJLrISwWC9ic3NiGx68C2+12rFarq6fhtpSfOcrPecrOHOVn\njvJznlZyRURERETyoJVcD6GVXBEREXEXWsnl8q8CatasSXBwMJ07dyYwMJCZM2fme/tjx44xYsQI\nAJYvX07Dhg2ZMWMGERERf7ndO++8Q3x8PA0aNODChQuOx/fs2UNwcLBzTyYPtWvXvu73UlNTCQwM\nLLRjiYiIiJQWbl/kWiwWunTpQnx8PBs3biQhIYFp06aRkZGRr+1r1apFTEwMAKtWreLtt9/mqaee\n4tNPP/3L7b766iuCgoLynE9hKuz9iXN0rUNzlJ85ys95ys4c5WeO8nMtty9yDcPItZydkZFBmTJl\n2LlzJ/feey/BwcG0bduWffv2ATBp0iTatm3L3XffzezZszl06BABAQGsWrWKuLg4Xn75Zb755hvH\nCmpiYiL33HMPAQEBREREkJmZyalTp6hQoQJly5Z1zOHq+eRYt24dAQEBWK1WIiIiOHXqFHa7ndDQ\nUHr16kWLFi2YPHkycHlVtnPnznTq1Amr1cr333+f63larVb27t0LQGxsLBMmTMhVANevX9+xojx+\n/HgWLlxYaBmLiIiIuJuyrp5AYdi4cSPBwcF4eXlRrlw5Zs6cyQ8//MCiRYvw9fXlzTffZOnSpYSG\nhrJ69Wq2bdtGVlYWL774It26dcNisRAeHk5ISAiRkZEEBAQ4CsihQ4fyf//3fzRq1IgPPviAH3/8\nkX379tG9e3fgclHbrVs3vLwuv1/4888/qVixomPbLVu24Ovry3vvvcekSZMICwvj559/Zvfu3WRm\nZlKnTh1efPFFxowZw+jRowkPD2fXrl0MGjSIpKQkx3O8uqDNa3X3774v5ujsWHOUnznKz3nKzhzl\nZ47yc61SUeR27tyZxYsX53rss88+Y9SoUVSqVImjR4/Svn179u7dS7t27bBYLJQrV4633nqL1NTU\nv9z3sWPHaNSoEQCPP/44ADNmzCA6Ohq4XFCuW7cOb29vAFJSUhg2bBi///47VapUwdfXF4CgoCBe\neuklwsLCaN68OV5eXlSoUIHy5csDl3t5O3bsCEDLli05fPjwdeeUnZ39l3O+bqP2cqDqlfs3ALWB\nBlfGB698vc4451cuOX9hNdZYY4011lhjjQtrnHP/7+qyAjHcXHx8vNG3b99rHq9Zs6Zx5swZwzAM\nY8CAAcZrr71m7Ny50+jUqZORnZ1tXLhwwejevbuRkpJiBAQEGIZhGAMHDjTWrFljGIZh1K5d2zAM\nw2jdurWxb98+wzAMY+rUqcann35q3H///Y7j1K9f3zh//rxj/OOPPxpWq9UwDMNo0KCBkZaWZhiG\nYbzzzjvGM888Y9jt9lzzzTlOnz59jJUrVxqGYRg7duwwWrVqlev7ISEhRnx8vGEYhjF48GDDZrMZ\nqampjrk3btzYOHjwoJGdnW10797dWLBgQa48AAObkzf3/2NiWk724hzlZ47yc56yM0f5maP8nFcY\ntYfbr+TmfCrX/+rXrx9BQUHUqVOHxo0bk5aWRsuWLQkJCaF9+/ZkZ2fz5JNP4uPj85e//p81axaP\nP/44Xl5e1KlTB39/fwICAq75uby2nTNnDr1798bLy4tq1aqxYMECdu/enWdrQXR0NEOGDCE6OpqL\nFy8yb968XN8fNWoUTz75JPXq1eOWW25xPJ7z9fnnn6dHjx7Ur1+fatWqqWVBREREPJquk+shdJ1c\nERERcRe6Tq6IiIiISB5U5Irkw9WN8VJwys8c5ec8ZWeO8jNH+bmWilwRERERKXXUk+sh1JMrIiIi\n7qIwenJV5HoIM1dbqHxjZTJO5u9jkkVERETM0olnUiDGlY9ALuhNBa76qsxSfuYoP+cpO3OUnznK\nz7VU5IqIiIhIqaN2BQ9RGMv+IiIiIsVB7QoiIiIiInlQkSuSD+qrMkf5maP8nKfszFF+5ig/11KR\nKyIiIiKljnpyPYR6ckVERMRdqCdXRERERCQPKnJF8kF9VeYoP3OUn/OUnTnKzxzl51oqckVERESk\n1FFProdQT66IiIi4C/XkioiIiIjkQUWuSD6or8oc5WeO8nOesjNH+Zmj/FxLRa6IiIiIlDrqyfUQ\n6skVERERd6GeXBERERGRPKjI9SAWiyXvW5nrPG6xUKVqFVdPu0RQX5U5ys8c5ec8ZWeO8jNH+blW\nWVdPQIrTdZb9sy1gy/tbp22ni2w2IiIiIkVFPbkewmKxcN0il+sXudhQL6+IiIgUK/XkioiIiIjk\nodQWuXa7nZo1axIcHOy4Pfjgg8U6h549e5KQkICXlxf/93//l+t7LVq04LHHHsv3vpo3b37NY2vW\nrGHOnDnXPB4eHs6hQ4cKPmG5LvVVmaP8zFF+zlN25ig/c5Sfa5XanlyLxUKXLl346KOPXHL8n3/+\nmXr16gHQuHFjlixZwkMPPQTA7t27+fPPP6+0EDive/fu1/2e2X2LiIiIuLNSW+QahpFnL4fVamX2\n7Nk0bNiQ2NhYjh07xsCBAwkLC6N69er06NGDLl26MGrUKMqUKcMNN9zAnDlzuHTpEgMHDqRixYqk\npaURFhbGxIkTOXz4MEOHDuXcuXOUL1+e2bNnU7duXT7//HPCwsIAaNmyJXv37iUjI4MqVaqwaNEi\nHnnkEX7++WcAZs6cyfLlyzl79izVq1dn+fLlXLx4kX79+vH7779zxx13cOnSJcf8a9WqxR9//EFk\nZCT79u3jzTff5LXXXuOLL77A19eXw4cPF1/QHsJqtbp6Cm5N+Zmj/Jyn7MxRfuYoP9cqte0KABs3\nbszVrhAdHZ1rhfPq+8eOHWPdunWMHTuWIUOGEBMTg91u58knn+TZZ5/FYrFw6NAhli5dSlJSEuvW\nrWPHjh2MGTOGUaNGER8fz3PPPcf48eOBy7+i6Ny5s2P/ERERLFu2DICkpCTuuece4HIx/scff7B+\n/Xq++eYbsrKySEpKIjY2lqZNm7Jp0ybGjx/PhQsXHHN++OGHWbduHWXKlAHgu+++Iz4+nu3bt7N0\n6VLOnDlTtMGKiIiIlHCldiUXoHPnzixevDjXY1988YXjfnZ2tuN+gwYNKFv2chxpaWm0aNECgKCg\nIEfhGhAQQIUKFQDw9/dn7969JCcnM3nyZKKiojAMA29vb86dO4eXlxfe3t6O1eTIyEiGDx/O7bff\nTlBQkOO4FouFcuXKERkZSaVKlThy5AgXL14kJSWFHj16ANCoUSNq1Kjh2KZRo0a5nlNKSgr/+Mc/\nALjhhhto27btdc5IHAjUv3K/KtAKsF4eHswJgtzjK3L6inLelXraePr06bRq1arEzMfdxsrP3Fj5\nOT/OuV9S5uNuY+Wn/IprnHM/NTWVQmOUUvHx8Ubfvn2veTwkJMSIj483DMMwBg8ebNhsNiM1NdUI\nCAhw/EybNm2M77//3jAMw1i+fLnRq1cvIzU11WjSpIlx4cIFIysrywgMDDSSk5ON3r17G1u3bjUM\nwzB2795tzJ071/jss8+MOXPmXDOPDh06GBEREca+ffuMuLg4Y+DAgcb3339v+Pv7G4ZhGGfPnjWa\nNGlixMfHG9OnTzfGjh1rGIZh7N+/37jzzjsNwzAMq9VqpKSkGIZhGAsWLDDGjx9v7Ny50wgMDDQu\nXbpknD9/3mjUqJFx6NChXM8bMMC4zg0D23VupfePSIHk/JkR5yg/c5Sf85SdOcrPHOXnvMKoP0rt\nSq7FYnG0K1xt7NixPPnkk9SrV49bbrnF0bJwdevCnDlzGDlyJIZhUK5cOebNm4dhGFgsFsLDw0lP\nTycyMpKmTZsSHR3N8OHDyczM5Ny5c7z77rssWLCA1157zbHfnH0/9NBDLFq0iDvvvJOffvoJi8XC\nnXfeScWKFenYsSPVq1endevWpKWlMWzYMB5//HE6dOhA/fr1qVat2nWfZ8uWLbn//vtp164dNWvW\npHr16kURqUfLeccpzlF+5ig/5yk7c5SfOcrPtfRhEPmUmprKU089xapVq1w9FafowyBERETEXejD\nIIrR1Suy4nmu7hmSglN+5ig/5yk7c5SfOcrPtVTk5tNtt93GypUrXT0NEREREckHtSt4CLUriIhI\naVOtWjVOnDjh6mmICTfddBN//PHHNY8XRrtCqT3xTEREREq3EydOaCHGzRVlK6jaFTyKJe+bF5dX\ncvO4Vb6xcrHPsiRSX5U5ys8c5ec8ZWeO8hN3ppVcD6J3uyIiIuIp1JPrIQqjt0VERKQk0f9t7u96\nr6EuISYiIiJylSpVqjku+1kUtypV8v5wJil5VOSK5IP60sxRfuYoP+cpO3PcMb/Tp09w+WpCRXO7\nvP+/l5qaipeXF/Pmzcv1eHR0NI899tjfbj9x4sQ8L10aGhrKu+++6xjv3bsXLy8vXnzxRcdjx48f\nx8fHh4yMDO677z727NmTrznnCAsLY+HChQXapiRSkSsiIiJSBLy8vBg7diz79u1zPJbfqwls3LiR\nixcvXvN4jx49cr35WLVqFeHh4bkK4o0bN9KhQweqVKnCF198QePGjQs079LyAVgqckXyQZ8/bo7y\nM0f5OU/ZmaP8zClfvjzPPfcckZGRjoL16j7TU6dO0a9fP5o3b06LFi0YN24cly5dIiYmhm+//Zax\nY8fy2Wef5dpnSEgImzZtcow///xzxo8fz+nTpzl48CAAGzZs4L777gOgfv36fPvtt9jtdtq3b0//\n/v1p3bo1TZs2dRTLv/zyC127dqVZs2aEhoby66+/Ova/efNmAgMDadmyJW3btmXNmjVcunSJGjVq\ncODAAQCmTJlC/fr1Hdt07dqVuLg4li1bxj/+8Q/atm1LQEAAmzdvLrxw80FFroiIiEgRefHFF6lY\nsWKudoIco0aNokaNGuzevZvt27eza9cuoqOjGTFiBG3atCE6Opr7778/1zZ33XUX1apV4/vvv+fE\niROkpKQQEBBAjx49HAXxxo0bHUXu1auy27ZtY8yYMXz33XcMGjQIm80GwIgRI7jnnntITk7m/fff\nJyUlBYD09HT++c9/8t5777Fr1y4WLlxIv379OHz4MD179iQuLg6A1atXc/HiRfbt28epU6fYtWsX\nXbp04fnnn+df//oXSUlJvP766yQkJBRJxtejIlckH9yxL60kUX7mKD/nKTtzlJ95FouFRYsWMX/+\nfNavX5+rDWD16tWMHDkSAG9vb4YNG+YoHOH6l/4MDQ0lPj6euLg4unXrhsViISwsjLVr13Lo0CEA\nGjVqdM12t912Gy1atADg7rvvdnzS2IYNGxg4cCAADRo0oGvXrhiGQWJiInfeeSdt27YFwM/Pj/bt\n22O323nggQeIi4vjzJkz/Prrrzz88MOsW7eOL7/8ktDQUMqVK0ffvn3p1asXQ4YM4cSJE4wdO9Zk\nmgWjIldERESkCN16663ExsYyYMAAfv/9d8fj2dnZuQrZS5cukZWV5Rhfry82NDSUTZs28cUXXxAW\nFgZAcHAwO3fuZP369Y5V3P9Vvnz5XPvOObbFYiE7O9vxvbJlL3+MQl5Fds4cu3btyvbt2/niiy+w\nWq106dKFNWvWsGrVKiIiIgCYNGkSW7ZsoU2bNixYsIDAwMBiveSbilyRfFBfmjnKzxzl5zxlZ47y\nK3zcsLsAABOaSURBVDx9+vQhNDSU6dOnO4rX7t27ExMTA8D58+eZPXs2Xbt2BS4XmhcuXMhzX8HB\nwezYsYOEhAS6d+8OQIUKFWjdujUzZ850FL75FRISwuzZswE4cuQIGzZswGKxEBAQQEpKCklJSQD8\n8MMPbN68GavVio+PD506dWLChAl0796dTp068fXXX/PVV18REhJCVlYWDRo04OzZswwdOpSYmBh+\n/PHHXEV8UdMnnomIiIgUgf9diX3vvff46quvco2feuopmjdvzoULFwgNDeWll14CIDw8nDFjxnDx\n4kUeffTRXPu54YYbaNSoERcvXqRy5cqOx++77z6ef/75PN+c5HXFhJxxTEwMjz32GH5+ftStW5eW\nLVsCcPPNN7N06VKeeuop/vzzT7y8vFiwYAF33nknAA888ADLli2jc+fO3HDDDbRq1Yqbb74Zb29v\nAKZPn87DDz9MuXLl8PLyYv78+ZQrV86ZKJ2iTzzzEPpUGHPsdrtWNExQfuYoP+cpO3NKen55/d9W\npUq1fF/L1hmVK99ERsYfRbZ/T1OUn3imlVwREREpNVSASg6t5HoIreSKiEhpo//b3F9RruTqxDMR\nEZH/3969B0VV/nEcf68iaiqXkiSnEsrbkOalVlmQmwguIggkJY2CRDeyIEsbq6lQy9ukRV7SskHL\nMbpZXgrztrthJRKKZCpKSWOpoZi7pCXont8f/tjEkBYW2mX5vmZ25Dm75/icz96+++yz5wghnI4U\nuW1I7aTzOpf29Sy74uLm4WbvbjsEOVakbSQ/20h+TSfZ2UbyE62ZzMltU+oZ9jerIOvaa1RlVbVY\nb4QQQgghWorMyW0jLh8mpL67uuEil6xrn3FFCCGEsCeZk9v6yZxcIYQQQgghGsEhitwFCxbQs2dP\nLly40GzbXL16NRs3bmz0euvWrSMnJ4eysjLGjh3L6NGj0Wg0zJgxo9k+Ler1em688UbCwsIYOXIk\nGo2GJUuWNHo7WVlZrFixoln6JBom89JsI/nZRvJrOsnONq0xPzcPtwZ/a2LrxdrfqkRFRZGdnW1p\nHz58mHbt2vHcc89ZllVUVODq6kp4eDgHDx5s1H6OHTuW1atXN2qdtsYh5uSuWbOGpKQkcnNzSUlJ\naZZtNnU7eXl5vPLKKzz++ONkZGQQGRkJQEJCAhs2bGDcuHE2902lUjFq1CjWrl0LQHV1Nf369SM5\nORk3N+t/6HWtc1oLIYQQbVWVsarhaXi2bt/K36qMGTOGHTt2kJmZCcDGjRuJiYlhw4YNzJkzB4Ad\nO3YQFBTE9u3bG92P+s5gJuqy+0iuXq+nT58+lvMaw+VzZT/55JOMGjWKuLg4Fi5cSGRkJMOGDePs\n2bPU1NSQlpZGSEgIQUFBGAwGAAYMGMA999xDUlISM2fOtIxyPv744wwfPpwhQ4awYcMGzGYzDz74\nIFqtlkGDBvHCCy8Al+eeVlRUcOONN+Lt7U1OTg7ffPMNNTU1fPjhh4wbN+6a65aXlzNy5EhCQkII\nDQ2lpKTkmvusKEqdUWGTyUT79u1xcXHBYDAQHh5OWFgYarWaI0eOUF5ejkajsdxeo9Hw888/19nm\n008/jb+/P/7+/rzxxhvNcM+IKznyGX9aA8nPNpJf00l2tpH8mk6r1fLVV19Z2ps2bWLGjBlUVVVx\n9OhR4HKRO2bMGHx9fSkqKkKv1xMYGEhycjJDhw7ljjvusIymHz9+nIiICAYMGEBUVBQnT560bDs/\nPx+NRsOgQYNQq9V8+eWXXLp0CS8vL3766ScA5s2bh4+Pj2WdiIgI8vLyWLduHXfddRdqtRp/f3/y\n8/NbPpz/iN2L3JUrV5KWlkbfvn3p2LEju3fvRqVSMXz4cLZt28aFCxfo0qULW7Zswc/PD4PBwMqV\nK/Hy8sJgMPDZZ58xZcoUAM6dO8eLL77I+++/b9n+p59+SmVlJQUFBeh0Or777juOHTuGRqNh8+bN\nFBQUsHz5cgAKCwu5++67AXj11Vfx9/fn2WefpUePHqSmpmI0Gq+57rRp05g6dSoGg4Hs7GzS0tIa\n3O8dO3YQFhZGeHg4EydOZMmSJVx33XUcOHCANWvWoNPpSEhI4KOPPvrXT2qbNm2ivLycXbt2sXPn\nTtauXcv+/fubfJ8IIYQQwjZ9+vTh+uuvp6SkhN9//53S0lL8/f0ZM2YM69evB2D79u1ER0cDf387\nu3v3bqZNm8aePXtIS0sjKysLgClTphAQEMD+/ftZtmwZpaWlAFRWVpKYmMgbb7zBvn37WL16NRMn\nTuTYsWPExsaSl5cHwObNm6mpqeHIkSMYjUb27dvHqFGjeOaZZ3jzzTcpLCxk9uzZloFDZ2DX6Qq/\n//47eXl5nDp1isWLF2MymSxzU4cOHQqAh4cHfn5+AHh6evLXX3+xf/9+8vPzKSgoAODSpUtUVlYC\n0K9fvzr/x+HDhy2joB4eHsyaNQuTyURhYSE6nQ43NzfLXOBNmzaRkJAAgE6nIzMzk8zMTM6dO8e0\nadOYPXs2L730Up11q6urATh06BDBwcEADBo0iGPHjjW47yNHjqxTjNfq2bMnGRkZdO3alV9//ZUR\nI0b84zZXzw0+dOgQQUFBALi4uODv78+BAwcYMGDAVWtOBnz+/7cHMPjvq47+/1/fq9r/V/tJsvZT\nfVtrv/766wwePNhh+tPa2pKfbW3Jr+nt2r8dpT+trd0a8nNkUVFR6HQ6vLy8iIyMRKVSMXbsWJYu\nXUp8fDwA/fv3r7NOr169uPPOOwEYMmQIq1atAi4XxIsWLQLA19eXiIgIFEWhoKCA3r17o1arAfDz\n8yMwMBC9Xk98fDzLly8nJSWFkydPcv/997N161Y8PT2JioqiQ4cOTJgwgbi4OKKjo4mIiGD69On/\nUTp/q71P9Xo95eXlzbZdux5CbPHixfzyyy/Mnz8fgD///BMfHx+8vLxYt24dffv2JSkpifT0dIKD\ng5k6dSr+/v5UVFTwxx9/8Oyzz2IymVi4cCFZWVncdtttlJaW4urqysyZM/H29uamm27io48+4r33\n3sNoNJKUlERUVBS//vor8+bNo6ysjP79+3Px4kViY2PZsGEDcLlQXbJkiaV4fO211zh9+jTe3t71\nrpuYmEhycjIxMTEUFxeTmprK3r17691vvV7PihUr6i1ye/TowU8//USXLl2YPHkyPj4+pKenExAQ\nwJEjRzCZTPTr14/du3ezatUqvL29ufnmm8nJyeHjjz+mpqaGwMBA3nrrLQYP/ruIlUOI2Uav17eK\nF1RHJfnZRvJrOsnONo6eX32HmVKp/uV9zVZZ1r8v5uXlsXLlSjp16kR8fDzjx4/n/Pnz9O7dm9mz\nZ1NSUkJ2dja+vr588sknmEwmnnjiCb7//nvgcv61bXd3d/bs2cPtt98OwH333ceYMWPo3r07c+fO\nZefOnZb/NyYmhnHjxjFp0iR69epFdnY2Op2O+Ph4li1bRpcuXZgwYQKxsbEAHD16lC1btrB+/XpO\nnjxJUVHRfzbf12kPIfbOO+8wadIkS7tz586MHz+esrKya66jUql45JFHOHToEKGhoYSGhnLrrbfW\ne2eoVCpiY2Px9PQkKCgIrVZLZmYm4eHhbN68mYiICObNm8fdd9/N8ePH6dmzp2XdDz74gNmzZ6NW\nqwkICGDv3r0899xz9a574sQJXn31VRYvXkxISAiPPfYY77zzToP7cK0Hz8SJEwkKCmLs2LF0796d\nEydO0KNHDyIiIlCr1Tz88MP06dOnzraio6Px9fUlICAAjUZDYmJinQJX2M6RX+RbA8nPNpJf00l2\ntpH8bBMWFsbevXsxGAyMHj0agOuuu46hQ4eyZMkSy1QFa2i1Wt566y0AfvnlF7Zv345KpcLf35/S\n0lIKCwsB+OGHH8jPzyc0NJSOHTsSEhLCzJkzGT16NCEhIXz77bfs3LkTrVbLxYsX8fX15dy5c5bf\nRh08eJCLFy82fxh2ICeDaCNkJFcIIYSzcfSRXLg8ZaGmpoZt27ZZlr355ps888wzVFZW4urqahnJ\nraqq4oknnrD8eF2v15ORkUFJSQmnT58mNTWVH3/8kZtvvplLly6RkpJCcnIyer2eGTNmcP78edq1\na0dWVhZxcXEA5ObmMmnSJE6fPo27uzuRkZHccMMNlm+T169fzwsvvECHDh1o164dTz/9NBMmTGi+\nvP5FS47kSpHbgqZMmcKBAwf+sTwvL49OnTr9p32RItc2jv6VnaOT/Gwj+TWdZGcbR8+vvkLIzcPt\n8mHEWkg3926YzppabPttTUsWuQ5xnFxnVXtINCGEEEL8N6QAFbVkJLeNkJFcIYQQzqY5RvuEfTnt\nD8+EEEIIIYRoCVLkCmGFK48VKRpP8rON5Nd0kp1tJD/Rmsmc3DalnsOWtaPB6Qrd3Lu1VGeEEEII\nIVqMzMltI2TekhBCCGcj722tnxxdQQghhBDiKp6env/ZmblEy/D09GyxbcucXCGsIPPSbCP52Uby\nazrJzjaOnt+ZM2dQFMVhLzqdzu59cPTLmTNnWuzxIUWuEFYoLi62dxdaNcnPNpJf00l2tpH8bCP5\n2ZcUuUJY4ezZs/buQqsm+dlG8ms6yc42kp9tJD/7kiJXCCGEEEI4HSlyhbBCeXm5vbvQqkl+tpH8\nmk6ys43kZxvJz77kEGJtxODBg9m3b5+9uyGEEEII8a8GDRpk85xmKXKFEEIIIYTTkekKQgghhBDC\n6UiRK4QQQgghnI4UuU7ObDbz6KOPEhAQQFhYGD/++KO9u+SQampqmDRpEsHBwQwfPpyNGzdSVlbG\niBEjCA4O5rHHHrOcXvDtt99GrVaj0Wj4/PPP7dxzx1JRUcEtt9zC4cOHJb9Gmjt3LgEBAajValav\nXi35WclsNvPAAw9YsiotLZXsrFRQUEBYWBhAozL7888/ueeeewgODiY6OprTp0/bbR/s5crsiouL\nCQ4OJiwsDK1WS0VFBSDZNeTK/GqtXbuWgIAAS7tZ8lOEU/vkk0+U1NRURVEUZdeuXcq4cePs3CPH\nlJOTo0ydOlVRFEU5c+aMcssttyixsbGKwWBQFEVRHn30UeXTTz9VTpw4oQwcOFCprq5WjEajMnDg\nQOXChQv27LrDqK6uVuLi4pR+/fophw4dUmJiYiQ/K+l0OiUmJkZRFEX5448/lBdffFEef1bKy8tT\n7r33XkVRFGXr1q1KQkKCZGeF+fPnKwMHDlQ0Go2iKEqjnq8LFy5UZs6cqSiKouTm5iqZmZl22w97\nuDq7kJAQZd++fYqiKMqKFSuUp556Sjl58qRkdw1X56coirJnzx4lPDzcsqy5Hnsykuvkvv76a7Ra\nLQDDhw/nu+++s3OPHFNiYiKzZs0CLo8MdejQgT179hAcHAxAVFQU27Zto7CwkMDAQDp06ICbmxu9\ne/empKTEnl13GNOnTyc9PZ2bbroJQPJrhC1btjBw4EDi4uKIiYkhNjaWoqIiyc8KnTt3xmg0oigK\nRqMRV1dXyc4KvXv3Zt26dZYR28Y8X698X9FqtWzbts1u+2EPV2eXm5vLnXfeCVz+VrBz587s3r1b\nsruGq/OrrKzk+eef5/XXX7csa678pMh1ciaTCTc3N0u7ffv2mM1mO/bIMXXp0oWuXbtSVVVFYmIi\nL7/8cp2cunXrhtFoxGQy4e7u/o/lbd2qVavw8vIiMjISwHJO8lqSX8NOnTpFUVERH3/8McuXL+f+\n+++X/KwUGBjIX3/9Rf/+/XnkkUfIyMiQ7KyQkJCAi4uLpd2YzK58X2mLOV6dnbe3NwDffPMNS5cu\nZerUqZJdA67Mz2w2k5aWxqJFi+jatavlNs2VnxS5Ts7NzY2qqipL22w2066d3O31OXbsGCNHjiQ5\nOZmkpKQ6OZlMJjw8PP6RZ1VVFZ6envborkPJyclh69athIWFUVxcTEpKCqdOnbJcL/k1rHv37kRG\nRuLi4kLfvn3p1KlTnRdvye/aFixYQGBgIKWlpRQXF5OcnExNTY3lesnOOta+3l29vHZZW/fBBx+Q\nnp7OF198wQ033CDZWamoqIiysjLS09NJSkriwIEDPPXUU7i7uzdLflLtOLnAwEC++OILAHbt2mX5\nSkXU9dtvvxEZGcmCBQuYPHkyAEOGDMFgMACQl5dHcHAww4YNIz8/nwsXLmA0Gjl48CADBgywY88d\ng8FgQK/Xo9PpGDx4MO+++y5arVbys9KIESPYvHkzAMePH+f8+fOEh4dLflY4d+6cZWTH09OTixcv\nynO3CRqT2ZXvK7W3bcvWrFnD0qVL0ev1+Pj4AEh2VlKr1ezfvx+dTkdubi5+fn4sWrQItVrdLPm5\nNHitaPXi4+PZunUrgYGBwOURN/FPc+bMwWg0MmvWLMvc3OzsbDIyMqiursbPz4/x48ejUqnIyMgg\nKCgIs9nMnDlzcHV1tXPvHY9KpWLhwoU89NBDkp8VoqOj+eqrrxg2bBhms5lly5bh4+Mj+Vlh+vTp\npKamEhQURE1NDXPnzuWuu+6S7KykUqkArH6+duzYkfT0dFJSUggKCqJjx46sXbvWznthHyqVCrPZ\nTGZmJr169SIhIQGA0NBQXnrpJcnuX9Q+9mopimJZ5u3t3Sz5yRnPhBBCCCGE05HpCkIIIYQQwulI\nkSuEEEIIIZyOFLlCCCGEEMLpSJErhBBCCCGcjhS5QgghhBDC6UiRK4QQQgghnI4UuUIIIYQQwulI\nkSuEEEIIIZzO/wDuKqlzvVX28gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "count_subset.plot(kind = 'barh', stacked = True)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAAFqCAYAAAAEIKImAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVeX6//H3QgUV9WfknJVUKuKYaYKGbgwHCEzTBswc\nQkLT9FRq1mnAIY+aNqgYTqnneNJz7KiphTMbzQpxTPzmlEOaU+GAOYLw+4PcSeIAqJuH/Xld177Y\nz4a11r3XbXHz7Hs9y8rMzMxERERERMRgbs4OQEREREQkv1TUioiIiIjxVNSKiIiIiPFU1IqIiIiI\n8VTUioiIiIjxVNSKiIiIiPGKOjsAuTMaNGjAli1bnB2GiIiIyA3Vr1+fzZs352obS+vUugbLslCq\nzRUdHU10dLSzw5A8Uv7MpdyZTfkzV17qFrUfiBhg3759zg5B8kH5M5dyZzblz7WoqBURERER46mo\nFTFA9+7dnR2C5IPyZy7lzmzKn2tRT62LUE+tiIiImEI9tSKFlN1ud3YIkg/Kn7mUu4LNy8sLy7L0\nMPjh5eV1y/49aEkvERERMdKJEyf0KaThLMu6dftS+4FrUPuBiIgUNvrdZr5r5VDtByIiIiLiklTU\nihhAfX1mU/7MpdyJmENFrYiIiBQaZcrc3ovHypS5uQub9u3bh5ubG9OmTcv2+pgxY+jRo8cNtx86\ndCgLFy686vXg4GA++eQTx3jnzp24ubnx1ltvOV47duwYHh4epKam8sQTT7B9+/abivmy0NBQZs6c\nmattCgIVtSIGsNlszg5B8kH5M5dyZ57Tp08AmbftkbX/m+Pm5sbAgQPZtWuX47WbvTBq1apVpKWl\nXfV6SEhItk8QFi1aRFhYWLYCeNWqVTz22GOUKVOGr776Ch8fn5uO+XKMt/ICrjtFRa2IiIjIbVCi\nRAlef/11wsPDHQXqlRc/nTp1ii5dulC3bl3q1avHG2+8waVLl4iJiWHDhg0MHDiQL7/8Mts+27Zt\ny+rVqx3jxYsXM3jwYE6fPs3evXsBWLlyJU888QQA1apVY8OGDdjtdpo1a0bXrl1p2LAhtWvXdhTH\nhw4dolWrVtSpU4fg4GCOHDni2P+aNWvw9/enfv36NG7cmKVLl3Lp0iXKly/Pnj17ABg5ciTVqlVz\nbNOqVSvi4uKYN28ejzzyCI0bN8bPz481a9bcupObAxW1IgZQX5/ZlD9zKXeSX2+99Raenp7Z2gMu\n69evH+XLl2fr1q2sX7+eLVu2MGbMGPr06UOjRo0YM2YMTz75ZLZtqlevjpeXFz/88AMnTpxgx44d\n+Pn5ERIS4iiAV61a5Shqr5x1XbduHQMGDGDjxo1EREQQHR0NQJ8+fWjatCnJyclMnDiRHTt2AJCS\nksLTTz/NuHHj2LJlCzNnzqRLly4cOHCAdu3aERcXB8CSJUtIS0tj165dnDp1ii1bthAUFMSgQYP4\n9NNPSUpKYtiwYSQkJNyWc3yZiloRERGR28SyLGbNmsX06dNZsWJFto/1lyxZQt++fQFwd3enV69e\njkIRuOaSVsHBwcTHxxMXF0fr1q2xLIvQ0FCWLVvG/v37AahZs+ZV291///3Uq1cPgIcffpjjx48D\nWTO7l28p7O3tTatWrcjMzCQxMZGHHnqIxo0bA+Dr60uzZs2w2+106NCBuLg4fv/9d44cOULnzp1Z\nvnw5X3/9NcHBwRQrVoznnnuO9u3bExkZyYkTJxg4cGA+z+b16eYLLsTE/hgxhBuQ4ewgREQKpnvv\nvZfY2Fi6detG165dHa9nZGRkK1wvXbpEenq6Y3yt39vBwcFMnTqV4sWL06FDBwACAwOJjIxkxYoV\njlnavypRokS2fV8+tmVZZGT8+T/xokWzysOciurLMbZq1YqePXvy1VdfYbPZCAoKYuLEiXh6evLc\nc88BMHz4cCIiIli2bBkzZsxg5MiRbNiw4ar3davqExW1LkULVMttkmFBtLODEBGXE+3sAG5ep06d\nWLJkCR9//DHh4eEAtGnThpiYGD766CMuXLjA5MmTadWqFZBVWF68eDHHfQUGBtKnTx8uXrxIbGws\nACVLlqRhw4ZMmDCBUaNG5Sq2tm3bMnnyZEaNGsXBgwcdPbl+fn7s2LGDpKQkGjduzLZt21izZg0f\nffQRHh4etGjRgiFDhvD+++/TokULXnjhBYoXL86MGTNIT0+nevXqLFq0iKioKFq3bo2vry/p6ekU\nK1YsewDROQSV02s3oKJWxAh2wObkGCTP9gLezg5C8kS5k3z46wzkuHHj+Oabb7KNX3nlFerWrcvF\nixcJDg7m73//OwBhYWEMGDCAtLQ0XnjhhWz7KV68ODVr1iQtLY3SpUs7Xn/iiScYNGhQjqt25LSi\nweVxTEwMPXr0wNfXl6pVq1K/fn0A7r77bubOncsrr7zC2bNncXNzY8aMGTz00EMAdOjQgXnz5tGy\nZUuKFy9OgwYNuPvuu3F3dwfg448/pnPnzhQrVgw3NzemT59+dUF7C+k2uS4i6x+uUm0uOwW7qNVM\n7XWpMDKXclewRV/9EXmZMl65WnYrt0qXvovU1OO3bf+uxrKu8fsj+to9xddSIC8UGz16NFWqVOHC\nhQu3bJ8zZ85k0aJFud5u3rx5TJ8+HZvNxmuvveZ4/fz583h739r/0w0cOJBevXo5xpcuXcLPz4+l\nS5fecNvo6GgmTZp0S+ORgsTm7AAkP1QUmUu5M05q6nEyMzNv20MFbcFVIIvaWbNmER4ezpw5c27Z\nPrt160ZYWFiut4uLi3M0XM+ZMyfb2nC32vDhw1m7di0rV64E4IMPPqBJkya0adPmhtvqIjARERFx\nZQWuqLXb7VSvXp2oqChiYmKArDu6/O1vfyMoKIj27dszduxYWrduzaOPPsrJkydJS0sjIiKCFi1a\nEBAQ4FgHrU6dOnTs2JHw8HCGDBnimMns27cvTZo04eGHH2bhwoVkZGTQs2dP2rZtS/369XnnnXeA\nrGnvY8eOUaFCBSzL4uOPP+all17izJkz2WI+cOAAISEhBAYGEhISwsGDB3nttdf43//+B2Q1YH/0\n0UcAREZG8t133+X43j08PPjnP/9Jnz59+OGHH/jiiy/44IMPOHnyJKGhobRo0YJmzZoRHx9/1fu7\nbPfu3TRp0oTk5ORblRIpEOzODkDyY6+zA5A8U+5EjFHgitqpU6cSERFBjRo18PDwYN26dViWRZMm\nTVixYgUXLlzA09OTZcuW4evrS0JCAlOnTqV8+fIkJCSwYMEC+vTpA8CZM2d49913mT17tmP/8+fP\nJyUlhcTEROLj41m/fj0HDhzA39+fJUuWkJiY6LiS8PLVfpfVr1+frl278tprr2WbGR0wYAD9+vUj\nPj6e119/ncGDBzvWbzt//jwnT55k1apVAGzcuBF/f/9rvv+HH36Y559/nqCgIKZPn467uzvDhw+n\nTZs2JCQkMHfuXCIiInJ8f9u3b+f555/n888/p06dOrcoIyIiIiIFX4Fa/eDEiRPExcXx66+/Mn78\neFJTU5kwYQIADRs2BKBs2bL4+voCcNddd3H+/HmSk5NZs2YNiYmJQFYvakpKCnD14sM7d+50FJVl\ny5Zl6NChpKamkpSURHx8PGXKlHH08i5evJinnnrKsa1lWQwePJhmzZrx9ddfO17funUrI0aMYNSo\nUWRmZuLu7s5jjz1G//79iY+Pp2PHjnzxxReOW83dSNeuXfn666+pW7cukFWsXr7ysUqVKpQpU4Zj\nx45d9f6WLFniuMIwZ92Ban88Lws04M9eTfsfXzUumOPLrxWUeHKI78oLai7Pbmn8J50fM8feBSwe\njXP+70vMdjmn+4CTed9NgSpqZ82aRc+ePR3rq507d45q1apRvnz56/aM+vj4ULVqVd58801SU1MZ\nO3YsXl5eAFcVeLVq1WLu3LlA1j2Xw8PDCQ4OpmzZssTGxrJ7924mT54MwObNmxk6dGi27d3c3Jg5\ncyatW7d27LtWrVoMGDAAf39/kpOTHbPLjRo1YvTo0Xz88cccOXKEQYMGMWLEiBueh79e7VerVi1W\nr15N/fr1+eWXXzh58iR33333Ve/v1Vdf5YEHHqBbt27Y7fYcitsZ1zmqTWON8zEm+y+Yv/6y0Vhj\njTW+XWMxn/dfvgJsyf1uClT7wbRp07KtxVaiRAk6derE7t27r7mNZVlERUWxfft2bDYbNpuN++67\nL8ci2LIs2rVrx1133UVAQABt27alf//+PP744yxZsoRWrVoxcuRIGjVqxKFDh6hSpUqOx6xRo0a2\nlRDGjBnDkCFDsNlsREREULt2bQCeeuoptm/fTv369WndujU//fQTLVq0uKlzcWX8b731FqtWraJF\nixZ06NCByZMnU6RIkRzfY1BQEL6+vrleeFkKOruzA5D8UF+muZQ7EWNonVoXoXVqTWenYC/rZWmd\n2uvRWqfmUu4Ktugc1qktW4bTp07ftkOW/n+lST2Zetv272pu5Tq1Bar9wFUMGzbMceHYlaZPn061\natXufEBiAJuzA5D8UFFkLuXOOKdPnb6tf2Sfjr65gjk4ONjxiTBkXdPj4+PD4MGDHa2Ix44do2rV\nqgQEBDBhwgRq1ap103GEhoby9NNP061bt9y/iUJKRa0TvPPOO45lw0RERKTwCQkJYdWqVY6idtGi\nRYSFhbFw4UJHUbtq1SoCAgIc69PnRk63vXV1BaqnVkSuxe7sACQ/1JdpLuVO8qht27bZbti0ePFi\nBg8ezOnTp9m7N+sf1qpVqwgJCcHb25sNGzZgt9tp1qwZXbt2pWHDhtSuXRu73Q7AoUOHaNWqFXXq\n1CE4OJgjR4449n15daX69evTuHFjli5dyqVLlyhfvjx79uwBYOTIkdk+DW7VqhVxcXHMmzePRx55\nhMaNG+Pn58eaNWtu/8m5TVTUioiIiNxi1atXx8vLix9++IETJ06wY8cO/Pz8CAkJ4csvvwRg5cqV\njruWXp51XbduHQMGDGDjxo1EREQQHR0NQJ8+fWjatCnJyclMnDiRHTt2AJCSksLTTz/NuHHj2LJl\nCzNnzqRLly4cOHCAdu3aERcXB2Qt+5mWlsauXbs4deoUW7ZsISgoiEGDBvHpp5+SlJTEsGHDHDew\nMpGKWhEj2JwdgOSH+jLNpdxJPgQHBxMfH09cXBytW7fGsixCQ0NZtmwZ+/fvB7KWJb3S/fffT716\n9YCsGzIdP34cyCqAu3fvDoC3tzetWrUiMzOTxMREHnroIcfNonx9fWnWrBl2u91xI6jff/+dI0eO\n0LlzZ5YvX87XX39NcHAwxYoV47nnnqN9+/ZERkZy4sQJBg4ceIfOzq2nnlqXot4buU3c0OoHIiJ/\nERwczNSpUylevDgdOnQAIDAwkMjISFasWEFoaOhV25QoUcLx3LIsxwoAlmWRkZHh+F7RolklXE4r\nBFy6dIn09HRatWpFz549+eqrr7DZbAQFBTFx4kQ8PT157rnnABg+fDgREREsW7aMGTNmMHLkSDZs\n2HBn+3Wjb81uNFPrQjIzM/Uw9BEfH+/0GK77uFQAYijAjwKfPz2UO0MfBV1gYCCbNm0iISGBNm3a\nAFCyZEkaNmzIhAkTHK0HN6Nt27aOm0MdPHiQlStXYlkWfn5+7Nixg6SkJAC2bdvGmjVrsNlseHh4\n0KJFC4YMGUKbNm1o0aIF3333Hd988w1t27YlPT0db29vzpw5Q1RUFDExMfz444+kp6ff+pNxHbcq\nt5qpFREREbkNihcvTs2aNUlLS6N06dKO15944gkGDRqEzWbL9vM5rWhweRwTE0OPHj3w9fWlatWq\n1K9fH4C7776buXPn8sorr3D27Fnc3NyYMWMGDz30EAAdOnRg3rx5tGzZkuLFi9OgQQPuvvtu3N3d\nAfj444/p3LkzxYoVw83NjenTp1OsWLHbdUpuK918wUVc+RGGiIhIYZDT7zbdfMEs16pP8lK3qKh1\nESpqRUSksNHvNvPdyqJWPbUiBri8TqGYSfkzl3InYg4VtSIiIiJiPLUfuAh9RCMiIoWNfreZT+0H\nIiIiIiJXUFErYgD19ZlN+TOXclew3XXXXY5lsPQw83HXXXfdsn8PWqdWREREjHT5FrLXYrfbr1oL\nVgov9dS6CPUdiYiIiCnUUysiIiIiLklFrYgB1NdnNuXPXMqd2ZQ/16KiVkRERESMp55aF6GeWhER\nETFFXuoWrX7gQizLcnYIIlLQuAEZzg5CRCT/VNS6FM3UmssO2Jwcg+SdnQKbvwwLop0dRAG2F/B2\ndhCSZ8qfuaJzv4l6akVERETEeCpqRYxgc3YAki82ZwcgeaVZPrMpfy5FRa2IiIiIGE9FrYgR7M4O\nQPLF7uwAJK/2OjsAyRflz6WoqBURERER46moFTGCzdkBSL7YnB2A5JV6Ms2m/LkULenlUroD1f54\nXhZowJ+/bO1/fNVYY41dbnz5I9rLBYDGGmus8Z0eA+wDTpJnuqOYi8i68YJSbS47mu0zmZ2Cmz+t\nU3tdWufUbMqfuaLJ9R3F1H4gIiIiIsZTUStiBJuzA5B8sTk7AMkrzfKZTflzKSpqRURERMR4KmpF\njGB3dgCSL3ZnByB5pXVOzab8uRQVtSIiIiJiPBW1IkawOTsAyRebswOQvFJPptmUP5eiJb1cRNaS\nXiIif+EGZDg7CBGRq+W2RNXNF1yI/n4xl91ux2azOTsMySPlz1zKndmUP3PlZTJO7QciIiIiYjy1\nH7gIy7I0UysiIiJGyEvdoplaERERETGeiloRA9jtdmeHIPmg/JlLuTOb8udaVNSKiIiIiPHUU+si\n1FMrIiIiplBPrYiIiIi4JBW1IgZQX5jZlD9zKXdmU/5ci4paERERETGeempdhHpqRURExBTqqRUR\nERERl6SiVsQA6gszm/JnLuXObMqfa1FRKyIiIiLGU0+ti1BPrYiIiJhCPbUiIiIi4pKKOjsAuXMs\ny3J2COLK3IAMZwchIiKFlYpal6L2A3PZAZuTY8inDAuinR2Ek+wFvJ0dhOSJcmc25c9c0bnfRO0H\nIkawOTsAyQ/9UjWXcmc25c+lqKgVEREREeMZW9SOHj2aKlWqcOHChVu2z5kzZ7Jo0aJcbzdv3jym\nT59OZmYmI0aMoHnz5gQGBtKyZUuSk5MBsNls7Ny5M9t2W7ZsYdiwYbckdins7M4OQPJjr7MDkDxT\n7sym/LkUY3tqZ82aRXh4OHPmzKFbt263ZJ953U9cXBzvv/8+o0aN4vjx46xevRqA9evX8+STT7Jj\nx44cl6aoX78+9evXz3fcIiIiIq7OyKLWbrdTvXp1oqKi6NKlC926dcNms9GgQQOSk5MpVaoUAQEB\nLF26lJMnT7Js2TI8PT3p1asXu3fvJiMjg+HDh9OiRQvq1KlDzZo1cXd3x8fHh0qVKhEVFUXfvn1J\nSkri4sWLDBkyhNDQUF566SUOHjzI4cOHadeuHcOGDSMzM5Njx45RoUIFpkyZwsaNGx1xNmrUiPXr\n11O0aNZpHjJkCEePHuXMmTPMnj2b/fv3M2nSJGbPns20adOIjY3l0qVLtGvXjujoaCZMmMD8+fM5\nc+YM5cqVY/78+aSnp9O1a1cOHz7Mvffey+rVq/nll1/YtGkT/fr1o0iRIhQvXpwpU6Zw7733OitF\ncsvZnB2A5If6+syl3JlN+XMpRrYfTJ06lYiICGrUqIGHhwfr1q3DsiyaNGnCihUruHDhAp6enixb\ntgxfX18SEhKYOnUq5cuXJyEhgQULFtCnTx8Azpw5w7vvvsvs2bMd+58/fz4pKSkkJiYSHx/P+vXr\nOXDgAP7+/ixZsoTExERiY2MBSEpKonHjxgCcPXuW//f//l+2WO+66y7H89DQUFauXElwcDBffPGF\nY4mtX3/9lVGjRvHNN9+wceNGLl68yOnTpzl+/DgrVqzg+++/Jz09naSkJCZPnsyDDz7IN998Q3R0\nNEePHgUgMjKSmJgY7HY7L7/8Mq+99trtS4CIiIhIAWPcTO2JEyeIi4vj119/Zfz48aSmpjJhwgQA\nGjZsCEDZsmXx9fUFsorK8+fPk5yczJo1a0hMTATg0qVLpKSkAFCzZs1sx9i5cyf+/v6OfQ0dOpTU\n1FSSkpKIj4+nTJkyjl7exYsX89RTTzmOdfr0aUqXLu3Y1/z58wkKCgLgkUceAaBSpUocOXLE8TN7\n9uyhTp06eHh4ADBixAgAihUrRnh4OKVKleLgwYOkpaWxfft22rZt64i7fPnyABw+fJh69eoBEBAQ\nwODBg3M4e92Ban88Lws04M8ZQPsfXzUumOOPKRz5+sPlPjdvFxl/B1QqQPFofPPjK3syC0I8Git/\nhXUMsA84SZ4Zd5vc8ePHc/DgQUaNGgXAuXPnqFatGuXLl2fevHnUqFGD8PBwevfuTfPmzXn11Vfx\n8/Pj2LFj/P7777z55pukpqYyduxYoqOjeeCBB9ixYwfu7u4MGTKESpUqUblyZebOncu//vUvTp06\nRXh4OMHBwfzyyy+MHDmS3bt34+PjQ3p6Ou3atWPhwoUAjBo1il9//ZUxY8YA8O2339KlSxd27NhB\n69atmTRpEjVq1GDSpEkcOXIEm81GbGws48ePp3nz5mzevBl3d3eeffZZ+vTpw6BBg/j+++85e/Ys\njRo1YuLEiWzbto0DBw4wcuRIfvrpJ3x8fEhLS6Nx48Z89tln1K1blwULFjBz5kzmz5/vOG9Zs8JG\npVqysWN+C4LWqRUDKXdmU/7MFU2ub5Nr3EzttGnTmDVrlmNcokQJOnXqxLRp0665jWVZREVFERkZ\nic1mIzU1lT59+uR4hy3LsmjXrh0rVqwgICCA9PR0oqOjuffee+ncuTMbNmzg/vvvp1GjRhw6dIgq\nVao4th04cCDvvPMO/v7+FCtWDHd3dxYtWkSxYsVyPM7lr+XKleONN96gRYsWjuM3btwYT09Pmjdv\nTrly5WjYsCGHDx8mIiKC7t2706JFC+6//36KFy8OwJQpU+jbty+ZmZkUK1bsuudDTGRzdgCSH/ql\nai7lzmzKn0sxbqbW1X333Xf8/vvvtGrVil27dhESEsKuXbtuuJ1masX5XHimVkREcic69zO1Rl4o\n5soeeOAB/vGPf/DYY4/RpUsXYmJinB2S3BF2Zwcg+aG1Ms2l3JlN+XMpxrUfuLqKFSuyatUqZ4ch\nIiIiUqBoplbECDZnByD5ob4+cyl3ZlP+XIqKWhERERExni4UcxE5rfQgcke5ARnODkJERExR6Jf0\nkrzT3y/mstvt2Gw2Z4cheaT8mUu5M5vyZ668TMZpptZFWJalolZERESMkJe6RT21IiIiImI8FbUi\nBrDb7c4OQfJB+TOXcmc25c+1qKgVEREREeOpp9ZFqKdWRERETKGeWhERERFxSSpqRQygvjCzKX/m\nUu7Mpvy5FhW1IiIiImI89dS6CPXUioiIiCnUUysiIiIiLklFrYgB1BdmNuXPXMqd2ZQ/16KiVkRE\nRESMp55aF6GeWhERETGFempFRERExCUVdXYAcudYluXsEETuLDcgw9lBiIjInaCi1qWo/cBcdsDm\n5BgMlGFBtLODAPYC3s4OQvJEuTOb8meu6NxvovYDESPYnB2A5Id+qZpLuTOb8udSVNSKiIiIiPFu\ne1E7evRoqlSpwoULF27ZPmfOnMmiRYtyvd28efOYPn06gYGB7Nix45bFc6VDhw5RsmRJvvjii1u6\n3+7du7N06dJbuk8xid3ZAUh+7HV2AJJnyp3ZlD+XctuL2lmzZhEeHs6cOXNu2T67detGWFhYrreL\ni4vjiSeeAG7fRVPTp0+nf//+xMTE3NL9WpalC71EREREruG2FrV2u53q1asTFRXlKPJsNht/+9vf\nCAoKon379owdO5bWrVvz6KOPcvLkSdLS0oiIiKBFixYEBASQkJAAQJ06dejYsSPh4eEMGTKESZMm\nAdC3b1+aNGnCww8/zMKFC8nIyKBnz560bduW+vXr88477wCQmZnJsWPHqFChQo6xpqWl0aVLF5o1\na4afnx///e9/AZg4cSJ+fn40bdqU/v37X/f9ZmZmMmvWLF5//XUuXrzItm3bAJgxYwbPPPMMYWFh\n+Pr6MnPmTADWrVvHo48+yuOPP054eDg9evQAYPz48TRt2pRmzZoxfvz4bMdIT0/P8fz8/e9/p1mz\nZjRp0oTRo0fnLlFiAJuzA5D8UF+fuZQ7syl/LuW2FrVTp04lIiKCGjVq4OHhwbp167AsiyZNmrBi\nxQouXLiAp6cny5Ytw9fXl4SEBKZOnUr58uVJSEhgwYIF9OnTB4AzZ87w7rvvMnv2bMf+58+fT0pK\nComJicTHx7N+/XoOHDiAv78/S5YsITExkdjYWACSkpJo3LjxNWOdNGkSFStWZO3ataxYsYK3336b\nlJQUZsyYQUxMDN9++y21atXi0qVL19zHypUrqVu3LuXKlaNHjx7ZZmtTU1NZtGgRCxcuZOTIkQD0\n6tWLmTNnsnLlSh588EEsy+LHH3/kv//9L2vXrmX16tUsWLCAnTt3AllF85QpU3I8P59//jmzZ89m\nzZo1lC1bNo8ZExERETHTbVvS68SJE8TFxfHrr78yfvx4UlNTmTBhAgANGzYEoGzZsvj6+gJw1113\ncf78eZKTk1mzZg2JiYkAXLp0iZSUFABq1qyZ7Rg7d+7E39/fsa+hQ4eSmppKUlIS8fHxlClTxtHL\nu3jxYp566qlrxrt9+3aCgoIAKFWqFL6+vvz0009Mnz6dMWPGsHfvXvz9/a97d4spU6awd+9egoOD\nuXjxIlu2bGHkyJFYlkWDBg0AqFq1KufPnwfg8OHD1KpVC4CAgADmzJlDcnIy+/fvp2XLlgCcPHmS\nXbt2OY5xrfPz73//mzfeeIMjR44QHBx8jQi7A9X+eF4WaMCfM4D2P75qXDDHH6N85WX8h8t9dd5O\nGn8HVHLi8TXO+/jKnsyCEI/Gyl9hHQPsA06SZ7etqJ01axY9e/Zk1KhRAJw7d45q1apRvnz56/aG\n+vj4ULVqVd58801SU1MZO3YsXl5eALi5ZZ9YrlWrFnPnzgXg1KlThIeHExwcTNmyZYmNjWX37t1M\nnjwZgM12Ho+eAAAgAElEQVSbNzN06FDHtn8tTmvVqsWaNWto3749p0+fZuvWrXh7e/P+++8TGxuL\nh4cHbdu25bvvviMgIOCquH/77TcSExPZu3ev4/299NJLzJw5kzJlyuT4nu+9915+/PFHatWqxXff\nfQdkFe61a9cmLi4OgA8//JB69eo5LjzL6fyULl2auXPnMnv2bDIzM6lduzbh4eHce++9fznijGue\n96s/3ta4YI0b/OU1Z8dj2PivH0He6XGlv7zm7Hg01lhjjQvi+MrnW8i121bUTps2jVmzZjnGJUqU\noFOnTkybNu2a21iWRVRUFJGRkdhsNlJTU+nTp0+OBaFlWbRr144VK1YQEBBAeno60dHR3HvvvXTu\n3JkNGzZw//3306hRIw4dOkSVKlWybd+pUyeKFy8OQGBgIO+//z6RkZEEBARw7tw5oqOjKV++PHXr\n1iUgIIDSpUtTtWpVmjRpkmPs//rXv+jUqVO2WCMjI+natStvvPFGttcvP584cSIvvvgipUqVwt3d\nnapVq1KvXj0ef/xxHnvsMc6fP4+fnx/33HPPdc+Pu7s7Xl5e+Pn5UaJECdq0aZNDQStmszk7AMmP\nv/5PXMyh3JlN+XMpVub1Pk+X22rixIk888wzlCtXjnfeeQcPDw/efvvt23KsrEJaqRZXYxWMO4qJ\niEjuRF/9qfqN6Da5ubRo0SI+/PDDq17v378/7du3z9W+KlasSOvWrSlVqhRly5Z1rIogcjU7mq01\nmG7VaS7lzmzKn0vRTK2L0Eyt6eyoqM2LAjJTq1+s5lLuzKb8mSs69zO1uk2uiBFszg5A8kO/VM2l\n3JlN+XMpKmpFRERExHgqakWMYHd2AJIfuv+8uZQ7syl/LkU9tS7iemsDixRabkCGs4MQEZG80OoH\nck36+0VERERMkJfJOLUfiIiIiIjxVNSKGMButzs7BMkH5c9cyp3ZlD/XoqJWRERERIynC8VchGVZ\n6qkVERERI+SlbtFMrYiIiIgYT0WtiAHUF2Y25c9cyp3ZlD/XoqJWRERERIynnloXoZ5aERERMYV6\nakVERETEJamoFTGA+sLMpvyZS7kzm/LnWlTUioiIiIjx1FPrItRTKyIiIqZQT62IiIiIuCQVtSIG\nUF+Y2ZQ/cyl3ZlP+XEtRZwcgd45lWc4OQUREnMUNyHB2ECK3j4pal6KeWhERl5VhQbSzgxC5SdG5\n30TtByIiIiJiPBW1IkawOzsAyRe7swOQPLM7OwDJj73ODkDupELTfjB69Gg+/vhj9u7di4eHxy3Z\n58yZM/Hy8iIsLCxX282bN49Tp04xc+ZMzp07R8mSJUlLS8Pb25tPPvkELy+vWxKfiIiIiGQpNOvU\n1qtXj1atWlGvXj26devm1FgiIyN5//33efbZZ5k0aRI1atQA4PPPP2fevHl88cUXdzymrIvECkWq\nRUQkT9RTKwaJJtfr1BaKmVq73U716tWJioqiS5cudOvWDZvNRoMGDUhOTqZUqVIEBASwdOlSTp48\nybJly/D09KRXr17s3r2bjIwMhg8fTosWLahTpw41a9bE3d0dHx8fKlWqRFRUFH379iUpKYmLFy8y\nZMgQQkNDeemllzh48CCHDx+mXbt2DBs2jMzMTI4dO0aFChWA7Anp3Lkzf//737l48SI7duygf//+\nZGZmcvfdd/PZZ5+xceNGRo0ahYeHB3v27OG5555j0KBB1KpVix9++IESJUowZswYihYtSseOHYmK\niuLcuXOUKFGCyZMnk56eTlhYGOXKlSMkJISBAwc6KyUiIiIid1Sh6KmdOnUqERER1KhRAw8PD9at\nW4dlWTRp0oQVK1Zw4cIFPD09WbZsGb6+viQkJDB16lTKly9PQkICCxYsoE+fPgCcOXOGd999l9mz\nZzv2P3/+fFJSUkhMTCQ+Pp7169dz4MAB/P39WbJkCYmJicTGxgKQlJRE48aNHdv+dRmtu+66ixMn\nThAZGcnEiROJj48nJCSE0aNHY1kWP//8M/PmzeP7779n9OjRjgL28uzu7Nmz6dq1KwMGDKBfv37E\nx8fz+uuvM3jwYCzL4ujRoyxfvlwFbaFjd3YAki92ZwcgeWZ3dgCSH+qpdSnGz9SeOHGCuLg4fv31\nV8aPH09qaioTJkwAoGHDhgCULVsWX19fIKuoPH/+PMnJyaxZs4bExEQALl26REpKCgA1a9bMdoyd\nO3fi7+/v2NfQoUNJTU0lKSmJ+Ph4ypQpw4ULFwBYvHgxTz31VI6xZmZmcuTIESpUqMCPP/5I7969\nAUhLS3O0KNStWxc3NzdKlixJiRIlAOjZsye9e/fGx8cHHx8fvLy82Lp1KyNGjGDUqFFkZmbi7u4O\ngLe3N0WLXiut3YFqfzwvCzQAbH+M7X981bhgjjcXsHg0zt1Y+dO4IIz/cLnQ89ZY4wI0BtgHnCTP\njO+pHT9+PAcPHmTUqFEAnDt3jmrVqlG+fHnmzZtHjRo1CA8Pp3fv3jRv3pxXX30VPz8/jh07xu+/\n/86bb75JamoqY8eOJTo6mgceeIAdO3bg7u7OkCFDqFSpEpUrV2bu3Ln861//4tSpU4SHhxMcHMwv\nv/zCyJEj2b17Nz4+PqSnp9OuXTsWLlwIQGBgILGxsY4ieerUqaxevZp//vOfNGnShP/9739UrVqV\n1atXk5KSgpeXF7GxsY5Z4sqVK3P48GEAgoKC8PLy4uWXX8Zms9GxY0cGDBiAv78/ycnJJCYmEhQU\nxHPPPcd333131XlST62IiKtTT60YJNoFe2qnTZvGrFmzHOMSJUrQqVMnpk2bds1tLMsiKiqKyMhI\nbDYbqamp9OnTJ8c7blmWRbt27VixYgUBAQGkp6cTHR3NvffeS+fOndmwYQP3338/jRo14tChQ1Sp\nUiXb9l27dsXT0xOAqlWrEhMTA8Cnn37KCy+8QHp6Om5ubkybNo1ffvklWwxXPo+IiOC9997DZrMB\nMGbMGHr37s358+c5d+4c48aNu2obEREREVdh/Eyt3BzN1JrOzp8fJYp57Ch/prJTeHLngjO1e/nz\nY24xS3TuZ2oLxYViIiIiIuLaVNSKGMHm7AAkX2zODkDyzObsACQ/NEvrUlTUioiIiIjxVNSKGMHu\n7AAkX+zODkDyzO7sACQ/tE6tS9GFYi5CqyKIiLg4NyDD2UGI3DyXW9JLbp7+fhERERET5GUy7obt\nB8OGDSMtLc0xfuONN3J9EBERERGR2+mGRe24ceNo164dv//+OwDr1q277UGJSHZ2u93ZIUg+KH/m\nUu7Mpvy5lhsWtXXq1KFv3760adOGo0ePqjdTRERERAqcG14oFhgYSHx8PKtXr+bVV18lIyODTZs2\n3an45BaxLEs9tSIiImKEvNQtNyxq3dzcyMjIulxy06ZNPP300+zevTvvUYpTqKgVERERU+Slbrlm\n+8G0adPw9/endOnS+Pv74+/vT69evShdunS+AxWR3FFfmNmUP3Mpd2ZT/lzLNZf06tKlC48//jjv\nv/8+b7/9NpmZmbi5uVGxYsU7GZ+IiIiIyA3p5gsuQu0HIiIiYopb2n4gIiIiImIKFbUiBlBfmNmU\nP3Mpd2ZT/lyLiloRERERMZ56al2EempFRETEFOqpFRERERGXpKJWxADqCzOb8mcu5c5syp9rUVEr\nIiIiIsa75s0XpPCxLMvZIYiIFAxuQIazgxCRW0lFrUvRhWIiIgBkWBDt7CBE5Jqic7+J2g9EjGB3\ndgCSL3ZnByB5tdfZAUi+KH8uRUWtiIiIiBivUBW1drudChUqEBgY6Hg888wzdzSGdu3akZCQQHh4\n+C3b5/r16+nRo8ct25+YyObsACRfbM4OQPLK29kBSL4ofy6lUPXUWpZFUFAQn3/+uVOO//PPP3Pf\nffc55dgiIiIirqxQzdRmZmbmePcJm83Gzp07AYiNjWXIkCHs37+funXrEhgYyAcffMCmTZsICAjA\nZrPRtm1bDhw4wL59+7DZbDzxxBM0bNiQd999F4ADBw4QEhJCYGAgISEhHDx4EIDFixcTGhp6zfiW\nL1+On58fNpuNjh07curUKex2O8HBwbRv35569eoxYsQIAHbs2EGzZs0ICgrigw8+cOzj3//+N48+\n+igBAQG8+OKLpKenM2PGDJ555hnCwsLw9fVl5syZt+ycSkFhd3YAki92ZwcgeaWeTLMpfy6lUM3U\nAqxatYrAwEDH+Iknnsi2lNWVz48ePcqmTZsoWrQojRo14rPPPqNevXosXLiQ1157jTFjxrB//362\nbduGh4cHjz32GB06dGDkyJH069ePtm3bsnLlSgYPHsysWbOw2+307NmTb7/99qq4MjMziYqKYu3a\ntVSuXJlx48YxfPhwQkND+fnnn9m6dSvnz5+nSpUqvPXWWwwcOJChQ4fy+OOPM2XKFL799luOHz9O\ndHQ0mzdvxtPTk9dee41JkyZRqlQpUlNTWbJkCbt37yYsLIxu3brd3hMtIiIiUoAUqplagJYtWxIf\nH+94DBgwINv3MzL+XJjQ29ubokWz6vrDhw9Tr149AAICAti2bRsAfn5+lCxZkiJFitCkSRN27txJ\ncnIyI0aMIDAwkGHDhnHs2DHOnTuHm5sb7u7uOcb122+/UaZMGSpXrnzVMerWrYubmxslS5akRIkS\nQNZMbePGjQFo3rw5AHv27KF27dp4eno6Xr+8jwYNGgBQtWpVzp8/f42z052sNTKigY/JPntk17hA\nj7nB9zUu2GNu8H2N7/z4CnvJPqN35dj7Bt/XuGCPlT9zxnuBeGD+H488KHQztTkpXrw4hw4dokaN\nGmzcuJGqVasC4Ob2Z01fpUoVtm7dSt26dUlISKBmzZoAbNmyhbS0NNzc3Fi3bh2RkZH4+PgwYMAA\n/P39SU5OJjExkeXLlxMUFHTNGMqVK0dqaipHjhyhUqVK2Y6R000RfH19+eabbwgJCeG7774Dsorw\n//u//+Ps2bOULFkSu91+3X1cbcZ1vmfTWGONNXbN8V8vJtJYY42dM77y+RZyrVAVtZZlXdV+ADBw\n4EBefvll7rvvPu655x5HAXhlIThlyhT69u1LZmYmxYoVY9q0aWRmZmJZFmFhYaSkpBAeHk7t2rUZ\nM2YMvXv35vz585w7d45PPvmEGTNm8N577zn2u2zZMsdMK8Dnn3/OlClTeOqpp3Bzc8PLy4sZM2aw\ndevWHNsjPvroI7p3787YsWOpWrUqRYoU4e6772bIkCEEBgbi5uZG9erVGTVqFHPmzLlmi4UUFnZ0\nBb3J7Ch/htqLrqA3mfLnUqzMnK6sEgD27dvHK6+8wqJFi5wdSr5lFbpKtbnsqCgymR3lr6C5yTuK\nqSgym/JnrmhyvPj/egpdT+2tZFmWZj2lgLA5OwDJF5uzA5C8UkFkNuXPpWim1kVoplZE5Eo3OVMr\nIs4RrZlakULK7uwAJF/szg5A8mrvjX9ECjDlz6WoqBURERER46n9wEWoN1hE5ApuQMYNf0pEnCi3\nJWqhWtJLrk9/v4iIiIgJ8jIZp/YDEQPY7XZnhyD5oPyZS7kzm/LnWlTUioiIiIjx1FPrIizLUvuB\niIiIGCEvdYtmakVERETEeCpqRQygvjCzKX/mUu7Mpvy5FhW1IiIiImI89dS6CPXUioiIiCnUUysi\nIiIiLklFrYgB1BdmNuXPXMqd2ZQ/16KiVkRERESMp55aF6GeWhERETGFempFRERExCWpqBUxgPrC\nzKb8mUu5M5vy51pU1IqIiIiI8Yo6OwC5cyzLcs6B3YAM5xxaREREXIOKWpfipAvFMiyIds6hRURE\nxEDRud9E7QciJtjr7AAkX5Q/cyl3ZlP+XIqKWhERERExnoramzB69GiqVKnChQsXrvkzo0aNIikp\n6br7+fDDD1m2bBmBgYEEBgbi7u7ueL5p06arfn7GjBm8+eab+Y5fCgFvZwcg+aL8mUu5M5vy51LU\nU3sTZs2aRXh4OHPmzKFbt245/swbb7xxw/2sXbuW/v3707p1awAqV65MfHz8NX/eaRd2iYiIiBhG\nM7U3YLfbqV69OlFRUcTExAAwceJE/Pz8aNq0Kf379wege/fuLF26lNOnT/PMM8/Qpk0b6tatS2xs\nLACnTp2iZMmSFClSJMfj/Pvf/+bRRx8lICCAF198kfT0dMf3fv31Vx577DFWrVrF888/z9dffw3A\njz/+SGhoKOnp6XTp0oVmzZrh5+fHf//739t5SsQZ1BdmNuXPXMqd2ZQ/l6Ki9gamTp1KREQENWrU\nwMPDg3Xr1jFjxgxiYmL49ttvqVWrFpcuXXLMqu7evZvw8HCWLl3K0qVL+fDDDwFYunQpbdq0yfEY\nKSkpREdHEx8fz5o1ayhbtiyTJk0C4MiRIzz55JN89NFHtGzZksjISGbOnAnAZ599Rs+ePYmNjaVi\nxYqsXbuWFStW8Pbbb5OSknIHzo6IiIhIwaCi9jpOnDhBXFwcn3zyCcHBwZw6dYoJEyYwffp0JkyY\ngM1mY//+/dnuTVyhQgUWLFjACy+8wPvvv++YcV2yZAkhISE5HmfPnj3Url0bT09PAJo3b862bduA\nrGL44sWLXLp0CYAWLVrwf//3f/z2228sX76c0NBQtm/fTkBAAAClSpXC19eXPXv25HCk7mStkREN\nfAzYr/ie/faO95L9L2aNczfmBt/XuGCPucH3NS64Y+8CFo/Gyl9hHe8F4oH5fzzywMq8siKTbMaP\nH8/BgwcZNWoUAOfOncPb25tOnToxduxYPDw8aNu2LW+99RbTp0/nueeeY9myZVSvXp1evXoRHx9P\njx492Lt3Lx06dGDBggXZ9l+5cmUOHz7Mb7/9RtOmTdm8eTMlS5bkb3/7G97e3pQtW5bt27fzwgsv\n8Mwzz7Bu3TpKlizJ6NGj2bRpE/fddx+jRo0iJiaGPXv2MHbsWE6fPk2DBg1ITEykXLlyjmNlzSQ7\nK9Vap1ZERERyIRpyW6JqpvY6pk2bxgsvvOAYlyhRgo4dO1KxYkUCAgJ4/PHHqVixIk2aNAGyCsew\nsDBiYmJo06YNixYtonTp0qxZswY/P7+r9n+5ZaFcuXIMGTKEwMBA/P39OX78OL169XL8jK+vL126\ndOHVV18FoFu3bsybN4+IiAgAXnrpJVJSUggICCAwMJDo6OhsBa0UAntv/CNSgCl/5lLuzKb8uRTN\n1Bro8OHDdO3aleXLl9/0NpqpNdxetDSNyZQ/cyl3ZlP+zBWtmdpCb968ebRp04ahQ4c6OxS5k/Q/\nZbMpf+ZS7sym/LkUzdS6CM3UioiIiDGiNVMrUjipL8xsyp+5lDuzKX8uRUWtiIiIiBhPRa2ICdQX\nZjblz1zKndmUP5einloXcXn5MKdwAzKcd3gRERExT25L1KK3KQ4pgPT3i7nsdjs2m83ZYUgeKX/m\nUu7MpvyZKy+TcWo/EBERERHjqf3ARViWpZlaERERMUJe6hbN1IqIiIiI8VTUihjAbrc7OwTJB+XP\nXMqd2ZQ/16KiVkRERESMp55aF6GeWhERETGFempFRERExCWpqBUxgPrCzKb8mUu5M5vy51pU1IqI\niIiI8dRT6yLUUysiIiKmUE+tiIiIiLgkFbUiBlBfmNmUP3Mpd2ZT/lyLiloRERERMZ56al2EempF\nRETEFHmpW4replikALIsy9khiIiIiNwWKmpdSbSzA5A82wt4OzsIyTPlz1zKndmUP3NF534T9dSK\niIiIiPFU1IqYQDMNZlP+zKXcmU35cynGF7V2u50KFSoQGBhIy5Yt8ff3Z8KECTe9/dGjR+nTpw8A\n8+fPp0aNGowfP56OHTted7uPPvqI+Ph4vL29uXjxouP17du3ExgYmLc3k4NKlSpd83v79u3D39//\nlh1LRERExFTGF7WWZREUFER8fDyrVq0iISGBsWPHkpqaelPbV6xYkZiYGAAWLVrEhx9+yCuvvML/\n/ve/6273zTffEBAQkGM8t5Iu7hIgqy9MzKX8mUu5M5vy51KML2ozMzOzLfmQmppKkSJF2Lx5M48/\n/jiBgYE0btyYXbt2ATB8+HAaN27Mww8/zOTJk9m/fz9+fn4sWrSIuLg43n77bb7//nvHDGliYiJN\nmzbFz8+Pjh07cv78eU6dOkXJkiUpWrSoI4Yr47ls+fLl+Pn5YbPZ6NixI6dOncJutxMcHEz79u2p\nV68eI0aMALJmXVu2bEmLFi2w2Wz88MMP2d6nzWZj586dAMTGxjJkyJBsBW+1atUcM8aDBw9m5syZ\nt+wci4iIiBR0hWL1g1WrVhEYGIibmxvFihVjwoQJbNu2jVmzZlG5cmX+8Y9/MHfuXIKDg1myZAnr\n1q0jPT2dt956i9atW2NZFmFhYbRt25bw8HD8/PwcBWNUVBT/+c9/qFmzJp999hk//vgju3btok2b\nNkBWEdu6dWvc3LL+Pjh79iyenp6ObdeuXUvlypUZN24cw4cPJzQ0lJ9//pmtW7dy/vx5qlSpwltv\nvcWAAQN49dVXCQsLY8uWLURERJCUlOR4j1cWsDnN3t7o+2I49YWZTfkzl3JnNuXPpRSKorZly5bM\nnj0722tffvkl/fr1o1SpUvzyyy80a9aMnTt38uijj2JZFsWKFeODDz5g375919330aNHqVmzJgAv\nvvgiAOPHj2fMmDFAVgG5fPly3N3dAdixYwe9evXit99+o0yZMlSuXBmAgIAA/v73vxMaGkrdunVx\nc3OjZMmSlChRAsjqxW3evDkA9evX58CBA9eMKSMj47oxX3Ox4vlA2T+eFwcq8ed/8Jc/otFYY401\n1lhjjTW+02OAfcBJ8qxQFLU5eemll9izZw+enp50796dzMxMfHx8+PTTT8nMzCQ9PZ2wsDDGjRt3\n3f1UqVKF3bt389BDD/HBBx/w4IMPcvz4cby8vHL8+csFZbly5UhNTeXIkSNUqlSJhIQER3Gc00xq\nrVq1WL16NWFhYWzevNlRDF9WvHhxDh06RI0aNdi4cSNVq1bN8fv3338/mzdvplatWlcH1+E6b9Rb\n4wI9/utrzo5H49yN//qas+PR+ObHewtYPBorf4V5fOXzLeSa8UWtZVnkVCR26dKFgIAAqlSpgo+P\nD4cPH6Z+/fq0bduWZs2akZGRwcsvv4yHh0eO219+bdKkSbz44ou4ublRpUoVmjRpgp+f31U/l9O2\nU6ZM4amnnsLNzQ0vLy9mzJjB1q1byalVYMyYMURGRjJmzBjS0tKYNm1atu/369ePl19+mfvuu497\n7rnH8frlr4MGDSIkJIRq1arh5eWVY1wiIiIihZWVmdsb64qRLMvSHcVERETEDNHXaae8BuNXPxAR\nERERUVErYoK9N/4RKcCUP3Mpd2ZT/lyKiloRERERMZ6KWhET5HQ1vZhD+TOXcmc25c+l6EIxF6HV\nEERERMQkuS1RjV/SS26e/n4xl91ux2azOTsMySPlz1zKndmUP3PlZTJO7QciIiIiYjy1H7gIy7I0\nUysiIiJGyEvdoplaERERETGeiloRA9jtdmeHIPmg/JlLuTOb8udaVNSKiIiIiPHUU+si1FMrIiIi\nplBPrYiIiIi4JBW1IgZQX5jZlD9zKXdmU/5ci4paERERETGeempdhHpqRURExBTqqRURERERl6Si\nVsQA6gszm/JnLuXObMqfa1FRKyIiIiLGU0+ti1BPrYiIiJhCPbUiIiIi4pKKOjsAuXMsy3J2CCJy\np7kBGc4OQkTk9lNR61LUfmAuO2BzcgySd3aclr8MC6Kdc+hCYS/g7ewgJM+UP3NF534TtR+IGMHm\n7AAkX2zODkDySgWR2ZQ/l6KiVkRERESMV2iLWrvdToUKFQgMDHQ8nnnmmTsaQ7t27UhISMDNzY3/\n/Oc/2b5Xr149evTocdP7qlu37lWvLV26lClTplz1elhYGPv37899wFKA2Z0dgOSL3dkBSF7tdXYA\nki/Kn0sptD21lmURFBTE559/7pTj//zzz9x3330A+Pj4MGfOHJ599lkAtm7dytmzZ/N94VabNm2u\n+T1dFCYiIiKupNAWtZmZmTmub2az2Zg8eTI1atQgNjaWo0eP0r17d0JDQylXrhwhISEEBQXRr18/\nihQpQvHixZkyZQqXLl2ie/fueHp6cvjwYUJDQxk6dCgHDhwgKiqKc+fOUaJECSZPnkzVqlVZvHgx\noaGhANSvX5+dO3eSmppKmTJlmDVrFs8//zw///wzABMmTGD+/PmcOXOGcuXKMX/+fNLS0ujSpQu/\n/fYbDz74IJcuXXLEX7FiRY4fP054eDi7du3iH//4B++99x5fffUVlStX5sCBA3fuRMsdYnN2AJIv\nNmcHIHmlnkyzKX8updC2HwCsWrUqW/vBmDFjss1gXvn86NGjLF++nIEDBxIZGUlMTAx2u52XX36Z\n1157Dcuy2L9/P3PnziUpKYnly5ezadMmBgwYQL9+/YiPj+f1119n8ODBQFb7Q8uWLR3779ixI/Pm\nzQMgKSmJpk2bAlnF9/Hjx1mxYgXff/896enpJCUlERsbS+3atVm9ejWDBw/m4sWLjpg7d+7M8uXL\nKVKkCAAbN24kPj6e9evXM3fuXH7//ffbe2JFRERECphCO1ML0LJlS2bPnp3tta+++srxPCPjz8Ub\nvb29KVo063QcPnyYevXqARAQEOAoVP38/ChZsiQATZo0YefOnSQnJzNixAhGjRpFZmYm7u7unDt3\nDjc3N9zd3R2zxeHh4fTu3ZsHHniAgIAAx3Ety6JYsWKEh4dTqlQpDh48SFpaGjt27CAkJASAmjVr\nUr58ecc2NWvWzPaeduzYwSOPPAJA8eLFady48TXuwtEdqPbH87JAA/6cQbL/8VXjgjn+GOXL5LGT\n83e5r/DyrJXGNz++siezIMSjsfJXWMcA+4CT5FmhLmpzUrx4cQ4dOkSNGjXYuHEjVatWBcDN7c9J\n6ypVqrB161bq1q1LQkKCo4jcsmULaWlpuLm5sW7dOiIjI/Hx8WHAgAH4+/uTnJxMYmIiy5cvJygo\nKPYmZsQAAA6lSURBVNtxvb29OXPmDOPGjWPkyJHs3r0byOqv/fLLL/n+++85e/YsjRo1IjMzE19f\nX9auXcuTTz7JTz/9xG+//ebY15WxAvj6+jJ+/HgyMjJIT09n06ZN1+ipnXGdM2PTuECPG/zlNWfH\no3Huxk7O318/gtVYY401LojjK59vIdcKbVFrWZaj/eBKAwcO5OWXX+a+++7jnnvucRR/VxaBU6ZM\noW/fvmRmZlKsWDGmTZtGZmYmlmURFhZGSkoK4eHh1K5dmzFjxtC7d2/Onz/PuXPn+OSTT5gxYwbv\nvfeeY7+X9/3ss88ya9YsHnroIX766Scsy+Khhx7C09OT5s2bU65cORo2bMjhw4fp1asXL774Io89\n9hjVqlXDy8vrmu+zfv36PPnkkzz66KNUqFCBcuXK3Y5TKk5lc3YAki82ZwcgefXXX8BiFuXPpViZ\nOX9OLX+xb98+XnnlFRYtWuTsUPIkq7BWqkVcj6U7ionI/2/v/mOirv84gD8PDsUgyDngZDX56inM\nkbAC5fjVQTY1hYrVCsZEYoiMhDn5Q/qjEPsjGtq3oIUOoh8MKhEaukhD79CUny3bGBFiYWpMw3Gc\nEHLifb5/FPeVH94FmB/e3PPxj77vc58Pr9tzwIs3Lz4nnlzcY5Ty3hxsP4WA8TuuRA+eXu4CaFb0\nchdAM8X7nIqN+dkVNrX/0LJly1BbWyt3GUREREQ0BTa1RELQyl0AzYpW7gJopjiTKTbmZ1fY1BIR\nERGR8PiHYnaC88BEdsoBgNnms4iI5pzptqjz9pZeNBl/fhGXXq+HVquVuwyaIeYnLmYnNuYnrpls\nxnGn1k4oFAo2tURERCSEmfQtnKklIiIiIuGxqSUSgF6vl7sEmgXmJy5mJzbmZ1/Y1BIRERGR8DhT\nayc4U0tERESi4EwtEREREdklNrVEAuBcmNiYn7iYndiYn31hU0tEREREwuNMrZ3gTC0RERGJgjO1\nRERERGSX2NQSCYBzYWJjfuJidmJjfvaFTS0RERERCY8ztXaCM7VEREQkCs7UEhEREZFdUspdAD04\nCoVC7hKI7IMDALPcRRAR2Rc2tXaF4wfi0gPQylwD/WNmBZB71/pXAP+RqRaaHWYnNuYnrtzpn8Lx\nAyIhaOUugGaD31TFxezExvzsCptaIiIiIhLenGhq33nnHXh7e2NkZOS+XfOTTz7B0aNHp31edXU1\nysrK0N3djS1btmDDhg3QaDTYs2fPfbt7gF6vh6enJ6KiohAdHQ2NRoOioqJpXyc3NxcHDx68LzXR\nXKeXuwCajV/lLoBmjNmJjfnZlTnR1JaXlyM+Ph6ff/75fbtmUlISYmJipn1eXV0dNm/ejNdffx2Z\nmZk4fvw4Ghsb0dXVhdra2vtSm0KhwPr166HT6XDq1Ck0NDRg//79MBqN074OEREREc2BPxTT6/VY\nuXIl0tLSkJiYiKSkJGi1WgQGBqK9vR2urq6IiIjA8ePHYTAYcOLECbi4uGDHjh3o7u6G2WzGW2+9\nhaeeegr+/v7w9fXFggUL4OfnB5VKhbS0NLz22mtobW2FyWTC3r17sWXLFmzfvh1XrlxBb28vYmNj\nsW/fPkiShOvXr8PT0xMqlQplZWVwdXVFcHAwvvzySyiVSpjN5inP7enpwauvvoo7d+5AoVDg/fff\nx5o1a6Z8zZIkjdv1NRqNcHR0hFKpRENDA/Ly8mA2mzE4OIiKigo4OTkhPj4ejY2NAACNRjPpB4Dd\nu3fj7NmzAICEhARkZmb+S4mRPLRyF0Czwbk+cTE7sTE/uyL7Tm1JSQlSUlKwatUqLFy4EC0tLVAo\nFFi3bh3q6+sxMjICFxcXnDhxAqtXr0ZDQwNKSkrg4eGBhoYGfPXVV8jIyAAADA0N4Y033kBlZaXl\n+jU1Nbhx4waam5uh0+nQ1taGy5cvQ6PR4JtvvkFzczOKi4sBAK2trQgKCgIAFBQUICQkBDk5OfDy\n8kJycjIGBgbueW52djZ27dqFhoYGvPfee0hJSbH6uk+dOoWoqCg8/fTTSExMRFFRER566CF0dHSg\nvLwcOp0OcXFxOHz4sM0d2WPHjqGnpwdNTU347rvvUFFRgfb29hlnQkRERCQaWXdq+/v7UVdXhz/+\n+AOFhYUwGo2W2dInnngCAPDII49g9erVAIDFixfj1q1baG9vx5kzZ9Dc3AwAuHPnDm7cuAEA8PX1\nHfcxurq6oNFoLNfKy8uD0WhEa2srdDod3NzcLLO8x44dQ1xcHABAp9MhKysLWVlZGBoaQnZ2Nvbt\n24c333xz3LkmkwkA0NnZicjISABAQEAALl++bPW1R0dHj2u+x3h7eyMzMxOurq64evUqwsPDJz1n\n4mxvZ2cnIiIiAABKpRIhISHo6OiAv7//hDO3AfD5+/+PAAjE/3cA9X//y/XcXP8XzEukNcbfSqgR\ngOqu9dicH9dzf333TOZcqIdr5jdf1wDQA8CAGZP1bXILCwtx5coV5OfnAwCGh4fh4+MDDw8PVFdX\nY9WqVYiPj0d6ejoiIyOxa9cuhISE4Pr16xgcHEROTg6MRiP279+P3NxcLF++HD///DMWLFiAvXv3\nQqVSYenSpTh8+DA+++wzDAwMID4+Hps2bcLVq1fx9ttvo7u7G35+fhgdHUVsbKxlbjYgIABFRUWW\nZvHdd99FX18fVCrVlOe+9NJL2Lp1K2JiYnD+/HkkJyfjhx9+mPJ16/V6HDx4cMqm1svLC7/88gtc\nXFywbds2+Pj4ID09HaGhobhw4QKMRiN8fX3R0tKCjz/+GCqVCo8++ijKyspQVVWF27dvIywsDIcO\nHUJgYKDlun/t9vI+teLSgyMIIuF9aucNZic25ieu3MmbeLbIulNbWlqK8vJyy3rRokV48cUXUVpa\nes9zFAoF0tLSkJqaCq1WC6PRiIyMjCl/Ra9QKBAbG4v6+npERERgdHQUubm5eOyxx5CQkIDvv/8e\ny5YtQ1BQEH7//Xd4e3tbzv3iiy+QmZmJ/v5+ODk5Qa1W48MPP8SlS5cmndvb24uCggKkpqaioKAA\nt2/ftvka7jVSkJiYiIiICHh7e8PPzw+9vb3w8vLCM888g+DgYKxYsQIrV64cd63NmzdDr9cjNDQU\nJpMJL7/88riGluYDrdwF0Gzwm6q4mJ3YmJ9dkXWnlh4c7tQSPUiKGb0bDhER/S1XsJ3a+S4jIwMd\nHR2THq+rq4Ozs7MMFZG49OBurcD4K1BxMTuxMT+7wqb2X/TBBx/IXQIRERGRXZD9ll5E9E9o5S6A\nZoM7ReJidmJjfnaFTS0RERERCY9NLZEQ9HIXQLPB958XF7MTG/OzK7z7gZ2w9a5kRHQfOQAwy10E\nEZHYePcDuif+/EJEREQimMlmHMcPiIiIiEh4bGqJBKDX6+UugWaB+YmL2YmN+dkXNrVEAjh//rzc\nJdAsMD9xMTuxMT/7wqaWSAAGg0HuEmgWmJ+4mJ3YmJ99YVNLRERERMJjU0skgJ6eHrlLoFlgfuJi\ndmJjfvaF96m1E4GBgfjxxx/lLoOIiIjIpoCAgGnPRLOpJSIiIiLhcfyAiIiIiITHppaIiIiIhMem\ndp4xm83YsWMHQkNDERUVhYsXL447fvToUaxduxahoaEoKSmRqUqaiq3sKisrERISgvDwcKSnp/Nt\nj+cYW/mN2b59O3Jych5wdWSLrfxaW1sRGRmJiIgIvPLKKzCZTDJVShPZyq6mpgbBwcFYu3YtiouL\nZaqSrGlubkZUVNSkx6fds0g0rxw5ckRKTk6WJEmSmpqapOeee85yzGQySWq1WjIYDJLJZJKCg4Ol\na9euyVUqTWAtuz///FNasWKFNDw8LEmSJMXHx0u1tbWy1ElTs5bfmOLiYkmj0Ug5OTkPujyywVp+\nZrNZCgwMlC5evChJkiQdOnRI6uzslKVOmszW556Pj4/U398/7nsgzR35+fnS448/Lmk0mnGPz6Rn\n4U7tPHP27Fls3LgRALBu3Tq0tbVZjv30009Qq9Vwd3eHk5MTwsPDcfr0ablKpQmsZefs7IzGxkY4\nOzsDAEZHR7Fo0SJZ6qSpWcsPAM6dO4eWlhakpaVxl30OspZfV1cXlixZggMHDkCr1cJgMMDX11eu\nUmkCW597Tk5OMBgMGB4ehiRJUCgUcpRJ96BWq1FdXT3p6+JMehY2tfOM0WiEm5ubZe3o6Aiz2Ww5\n5u7ubjn28MMPY2Bg4IHXSFOzlp1CoYCHhwcAoLCwEENDQ1i/fr0sddLUrOXX29uLvLw8FBUVsaGd\no6zl19fXh3PnzmHnzp2or6/HyZMnodPp5CqVJrCWHQDs3r0bTz75JPz9/RETEzPuuSS/uLg4KJXK\nSY/PpGdhUzvPuLm54ebNm5a12WyGg8NfMbu7u487dvPmTSxevPiB10hTs5bd2Do7OxsnT57EkSNH\n5CiRrLCWX1VVFfr6+vDss88iPz8fFRUV+PTTT+UqlaZgLb8lS5ZArVbD19cXSqUSGzdunLQbSPKx\nlt1vv/2GoqIiXLp0CT09Pbh27RqqqqrkKpWmYSY9C5vaeSYsLAxff/01AKCpqQlr1qyxHPPz88OF\nCxfQ398Pk8mE06dPQ6PRyFUqTWAtOwBIS0vDyMgIampqLGMINHdYy2/nzp1oa2uDTqfDnj17kJCQ\ngK1bt8pVKk3BWn7Lly/H4OCg5Q+Qzpw5A39/f1nqpMmsZXfr1i04Ojpi4cKFcHBwgKenJwwGg1yl\n0jTMpGeZvN9LQnvhhRfw7bffIiwsDABQVlaGyspKDA4OIjU1FQcOHMCGDRtgNpuRkpKCpUuXylwx\njbGWXVBQED766CNERkYiOjoaAJCVlYXnn39ezpLpLrY+9+7Gmb65x1Z+paWlSEhIgCRJCAsLw6ZN\nm2SumMbYyi4pKQmhoaFwdnaGWq3Gtm3b5C2YpjT2dXE2PQvfUYyIiIiIhMfxAyIiIiISHptaIiIi\nIhIem1oiIiIiEh6bWiIiIiISHptaIiIiIhIem1oiIiIiEh6bWiIiIiISHptaIiIiIhLe/wCKwzNT\ne/J0fwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "normed_subset = count_subset.div(count_subset.sum(1), axis = 0)\n", "normed_subset.plot(kind = 'barh', stacked = True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###MovieLens 1M Data Set" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "encoding = 'latin1'\n", "\n", "upath = os.path.expanduser('ch02/movielens/users.dat')\n", "rpath = os.path.expanduser('ch02/movielens/ratings.dat')\n", "mpath = os.path.expanduser('ch02/movielens/movies.dat')\n", "\n", "unames = ['user_id', 'gender', 'age', 'accupation', 'zip']\n", "rnames = ['user_id', 'movie_id', 'rating', 'timestamp']\n", "mnames = ['movie_id', 'title', 'genres']\n", "\n", "users = pd.read_csv(upath, sep = '::', header = None, names = unames, encoding = encoding)\n", "ratings = pd.read_csv(rpath, sep = '::', header = None, names = rnames, encoding = encoding)\n", "movies = pd.read_csv(mpath, sep = '::', header = None, names = mnames, encoding = encoding)" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
user_idgenderageaccupationzip
0 1 F 1 10 48067
1 2 M 56 16 70072
2 3 M 25 15 55117
3 4 M 45 7 02460
4 5 M 25 20 55455
\n", "

5 rows × 5 columns

\n", "
" ], "text/plain": [ " user_id gender age accupation zip\n", "0 1 F 1 10 48067\n", "1 2 M 56 16 70072\n", "2 3 M 25 15 55117\n", "3 4 M 45 7 02460\n", "4 5 M 25 20 55455\n", "\n", "[5 rows x 5 columns]" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "users[:5]" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
user_idmovie_idratingtimestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291
\n", "

5 rows × 4 columns

\n", "
" ], "text/plain": [ " user_id movie_id rating timestamp\n", "0 1 1193 5 978300760\n", "1 1 661 3 978302109\n", "2 1 914 3 978301968\n", "3 1 3408 4 978300275\n", "4 1 2355 5 978824291\n", "\n", "[5 rows x 4 columns]" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ratings[:5]" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
movie_idtitlegenres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
\n", "

5 rows × 3 columns

\n", "
" ], "text/plain": [ " movie_id title genres\n", "0 1 Toy Story (1995) Animation|Children's|Comedy\n", "1 2 Jumanji (1995) Adventure|Children's|Fantasy\n", "2 3 Grumpier Old Men (1995) Comedy|Romance\n", "3 4 Waiting to Exhale (1995) Comedy|Drama\n", "4 5 Father of the Bride Part II (1995) Comedy\n", "\n", "[5 rows x 3 columns]" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "movies[:5]" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
user_idmovie_idratingtimestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291
5 1 1197 3 978302268
6 1 1287 5 978302039
7 1 2804 5 978300719
8 1 594 4 978302268
9 1 919 4 978301368
10 1 595 5 978824268
11 1 938 4 978301752
12 1 2398 4 978302281
13 1 2918 4 978302124
14 1 1035 5 978301753
15 1 2791 4 978302188
16 1 2687 3 978824268
17 1 2018 4 978301777
18 1 3105 5 978301713
19 1 2797 4 978302039
20 1 2321 3 978302205
21 1 720 3 978300760
22 1 1270 5 978300055
23 1 527 5 978824195
24 1 2340 3 978300103
25 1 48 5 978824351
26 1 1097 4 978301953
27 1 1721 4 978300055
28 1 1545 4 978824139
29 1 745 3 978824268
30 1 2294 4 978824291
31 1 3186 4 978300019
32 1 1566 4 978824330
33 1 588 4 978824268
34 1 1907 4 978824330
35 1 783 4 978824291
36 1 1836 5 978300172
37 1 1022 5 978300055
38 1 2762 4 978302091
39 1 150 5 978301777
40 1 1 5 978824268
41 1 1961 5 978301590
42 1 1962 4 978301753
43 1 2692 4 978301570
44 1 260 4 978300760
45 1 1028 5 978301777
46 1 1029 5 978302205
47 1 1207 4 978300719
48 1 2028 5 978301619
49 1 531 4 978302149
50 1 3114 4 978302174
51 1 608 4 978301398
52 1 1246 4 978302091
53 2 1357 5 978298709
54 2 3068 4 978299000
55 2 1537 4 978299620
56 2 647 3 978299351
57 2 2194 4 978299297
58 2 648 4 978299913
59 2 2268 5 978299297
............
\n", "

1000209 rows × 4 columns

\n", "
" ], "text/plain": [ " user_id movie_id rating timestamp\n", "0 1 1193 5 978300760\n", "1 1 661 3 978302109\n", "2 1 914 3 978301968\n", "3 1 3408 4 978300275\n", "4 1 2355 5 978824291\n", "5 1 1197 3 978302268\n", "6 1 1287 5 978302039\n", "7 1 2804 5 978300719\n", "8 1 594 4 978302268\n", "9 1 919 4 978301368\n", "10 1 595 5 978824268\n", "11 1 938 4 978301752\n", "12 1 2398 4 978302281\n", "13 1 2918 4 978302124\n", "14 1 1035 5 978301753\n", "15 1 2791 4 978302188\n", "16 1 2687 3 978824268\n", "17 1 2018 4 978301777\n", "18 1 3105 5 978301713\n", "19 1 2797 4 978302039\n", "20 1 2321 3 978302205\n", "21 1 720 3 978300760\n", "22 1 1270 5 978300055\n", "23 1 527 5 978824195\n", "24 1 2340 3 978300103\n", "25 1 48 5 978824351\n", "26 1 1097 4 978301953\n", "27 1 1721 4 978300055\n", "28 1 1545 4 978824139\n", "29 1 745 3 978824268\n", "30 1 2294 4 978824291\n", "31 1 3186 4 978300019\n", "32 1 1566 4 978824330\n", "33 1 588 4 978824268\n", "34 1 1907 4 978824330\n", "35 1 783 4 978824291\n", "36 1 1836 5 978300172\n", "37 1 1022 5 978300055\n", "38 1 2762 4 978302091\n", "39 1 150 5 978301777\n", "40 1 1 5 978824268\n", "41 1 1961 5 978301590\n", "42 1 1962 4 978301753\n", "43 1 2692 4 978301570\n", "44 1 260 4 978300760\n", "45 1 1028 5 978301777\n", "46 1 1029 5 978302205\n", "47 1 1207 4 978300719\n", "48 1 2028 5 978301619\n", "49 1 531 4 978302149\n", "50 1 3114 4 978302174\n", "51 1 608 4 978301398\n", "52 1 1246 4 978302091\n", "53 2 1357 5 978298709\n", "54 2 3068 4 978299000\n", "55 2 1537 4 978299620\n", "56 2 647 3 978299351\n", "57 2 2194 4 978299297\n", "58 2 648 4 978299913\n", "59 2 2268 5 978299297\n", " ... ... ... ...\n", "\n", "[1000209 rows x 4 columns]" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ratings" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
user_idmovie_idratingtimestampgenderageaccupationziptitlegenres
0 1 1193 5 978300760 F 1 10 48067 One Flew Over the Cuckoo's Nest (1975) Drama
1 2 1193 5 978298413 M 56 16 70072 One Flew Over the Cuckoo's Nest (1975) Drama
2 12 1193 4 978220179 M 25 12 32793 One Flew Over the Cuckoo's Nest (1975) Drama
3 15 1193 4 978199279 M 25 7 22903 One Flew Over the Cuckoo's Nest (1975) Drama
4 17 1193 5 978158471 M 50 1 95350 One Flew Over the Cuckoo's Nest (1975) Drama
5 18 1193 4 978156168 F 18 3 95825 One Flew Over the Cuckoo's Nest (1975) Drama
6 19 1193 5 982730936 M 1 10 48073 One Flew Over the Cuckoo's Nest (1975) Drama
7 24 1193 5 978136709 F 25 7 10023 One Flew Over the Cuckoo's Nest (1975) Drama
8 28 1193 3 978125194 F 25 1 14607 One Flew Over the Cuckoo's Nest (1975) Drama
9 33 1193 5 978557765 M 45 3 55421 One Flew Over the Cuckoo's Nest (1975) Drama
10 39 1193 5 978043535 M 18 4 61820 One Flew Over the Cuckoo's Nest (1975) Drama
11 42 1193 3 978038981 M 25 8 24502 One Flew Over the Cuckoo's Nest (1975) Drama
12 44 1193 4 978018995 M 45 17 98052 One Flew Over the Cuckoo's Nest (1975) Drama
13 47 1193 4 977978345 M 18 4 94305 One Flew Over the Cuckoo's Nest (1975) Drama
14 48 1193 4 977975061 M 25 4 92107 One Flew Over the Cuckoo's Nest (1975) Drama
15 49 1193 4 978813972 M 18 12 77084 One Flew Over the Cuckoo's Nest (1975) Drama
16 53 1193 5 977946400 M 25 0 96931 One Flew Over the Cuckoo's Nest (1975) Drama
17 54 1193 5 977944039 M 50 1 56723 One Flew Over the Cuckoo's Nest (1975) Drama
18 58 1193 5 977933866 M 25 2 30303 One Flew Over the Cuckoo's Nest (1975) Drama
19 59 1193 4 977934292 F 50 1 55413 One Flew Over the Cuckoo's Nest (1975) Drama
20 62 1193 4 977968584 F 35 3 98105 One Flew Over the Cuckoo's Nest (1975) Drama
21 80 1193 4 977786172 M 56 1 49327 One Flew Over the Cuckoo's Nest (1975) Drama
22 81 1193 5 977785864 F 25 0 60640 One Flew Over the Cuckoo's Nest (1975) Drama
23 88 1193 5 977694161 F 45 1 02476 One Flew Over the Cuckoo's Nest (1975) Drama
24 89 1193 5 977683596 F 56 9 85749 One Flew Over the Cuckoo's Nest (1975) Drama
25 95 1193 5 977626632 M 45 0 98201 One Flew Over the Cuckoo's Nest (1975) Drama
26 96 1193 3 977621789 F 25 16 78028 One Flew Over the Cuckoo's Nest (1975) Drama
27 99 1193 2 982791053 F 1 10 19390 One Flew Over the Cuckoo's Nest (1975) Drama
28 102 1193 5 1040737607 M 35 19 20871 One Flew Over the Cuckoo's Nest (1975) Drama
29 104 1193 2 977546620 M 25 12 00926 One Flew Over the Cuckoo's Nest (1975) Drama
30 107 1193 5 977533908 M 45 18 63129 One Flew Over the Cuckoo's Nest (1975) Drama
31 109 1193 2 977516253 M 45 15 92028 One Flew Over the Cuckoo's Nest (1975) Drama
32 120 1193 5 977458103 M 25 11 27106 One Flew Over the Cuckoo's Nest (1975) Drama
33 123 1193 5 977448350 M 35 9 67208 One Flew Over the Cuckoo's Nest (1975) Drama
34 131 1193 5 977431822 M 18 4 06520 One Flew Over the Cuckoo's Nest (1975) Drama
35 136 1193 4 977421091 M 18 2 21202 One Flew Over the Cuckoo's Nest (1975) Drama
36 139 1193 4 977359402 F 25 20 45409 One Flew Over the Cuckoo's Nest (1975) Drama
37 146 1193 4 979940868 F 35 20 10954 One Flew Over the Cuckoo's Nest (1975) Drama
38 150 1193 5 978163667 M 35 7 98144 One Flew Over the Cuckoo's Nest (1975) Drama
39 151 1193 4 993121122 F 25 20 85013 One Flew Over the Cuckoo's Nest (1975) Drama
40 155 1193 5 977253254 M 35 12 07470 One Flew Over the Cuckoo's Nest (1975) Drama
41 166 1193 5 977299851 M 18 4 92802 One Flew Over the Cuckoo's Nest (1975) Drama
42 169 1193 5 977197066 M 25 7 55439 One Flew Over the Cuckoo's Nest (1975) Drama
43 175 1193 5 978051929 F 25 2 95123 One Flew Over the Cuckoo's Nest (1975) Drama
44 178 1193 4 977098352 M 56 17 53705 One Flew Over the Cuckoo's Nest (1975) Drama
45 180 1193 5 977089623 M 45 12 01603 One Flew Over the Cuckoo's Nest (1975) Drama
46 190 1193 5 977026946 M 25 17 55125 One Flew Over the Cuckoo's Nest (1975) Drama
47 191 1193 3 977026629 M 18 4 04915 One Flew Over the Cuckoo's Nest (1975) Drama
48 192 1193 4 977089850 M 18 1 10977 One Flew Over the Cuckoo's Nest (1975) Drama
49 195 1193 5 977064554 M 25 12 10458 One Flew Over the Cuckoo's Nest (1975) Drama
50 196 1193 4 977004875 F 35 9 94587 One Flew Over the Cuckoo's Nest (1975) Drama
51 202 1193 4 976937045 M 18 4 53706 One Flew Over the Cuckoo's Nest (1975) Drama
52 206 1193 1 976921007 M 25 17 20194 One Flew Over the Cuckoo's Nest (1975) Drama
53 208 1193 5 984510357 M 35 17 55432 One Flew Over the Cuckoo's Nest (1975) Drama
54 216 1193 4 976868526 M 45 13 52761 One Flew Over the Cuckoo's Nest (1975) Drama
55 224 1193 4 976833559 F 18 4 14850 One Flew Over the Cuckoo's Nest (1975) Drama
56 225 1193 4 976832915 M 25 7 11215 One Flew Over the Cuckoo's Nest (1975) Drama
57 227 1193 4 976829587 M 35 20 90291 One Flew Over the Cuckoo's Nest (1975) Drama
58 230 1193 4 976824488 M 45 1 43210 One Flew Over the Cuckoo's Nest (1975) Drama
59 231 1193 4 997057648 M 25 3 55455 One Flew Over the Cuckoo's Nest (1975) Drama
..............................
\n", "

1000209 rows × 10 columns

\n", "
" ], "text/plain": [ " user_id movie_id rating timestamp gender age accupation zip \\\n", "0 1 1193 5 978300760 F 1 10 48067 \n", "1 2 1193 5 978298413 M 56 16 70072 \n", "2 12 1193 4 978220179 M 25 12 32793 \n", "3 15 1193 4 978199279 M 25 7 22903 \n", "4 17 1193 5 978158471 M 50 1 95350 \n", "5 18 1193 4 978156168 F 18 3 95825 \n", "6 19 1193 5 982730936 M 1 10 48073 \n", "7 24 1193 5 978136709 F 25 7 10023 \n", "8 28 1193 3 978125194 F 25 1 14607 \n", "9 33 1193 5 978557765 M 45 3 55421 \n", "10 39 1193 5 978043535 M 18 4 61820 \n", "11 42 1193 3 978038981 M 25 8 24502 \n", "12 44 1193 4 978018995 M 45 17 98052 \n", "13 47 1193 4 977978345 M 18 4 94305 \n", "14 48 1193 4 977975061 M 25 4 92107 \n", "15 49 1193 4 978813972 M 18 12 77084 \n", "16 53 1193 5 977946400 M 25 0 96931 \n", "17 54 1193 5 977944039 M 50 1 56723 \n", "18 58 1193 5 977933866 M 25 2 30303 \n", "19 59 1193 4 977934292 F 50 1 55413 \n", "20 62 1193 4 977968584 F 35 3 98105 \n", "21 80 1193 4 977786172 M 56 1 49327 \n", "22 81 1193 5 977785864 F 25 0 60640 \n", "23 88 1193 5 977694161 F 45 1 02476 \n", "24 89 1193 5 977683596 F 56 9 85749 \n", "25 95 1193 5 977626632 M 45 0 98201 \n", "26 96 1193 3 977621789 F 25 16 78028 \n", "27 99 1193 2 982791053 F 1 10 19390 \n", "28 102 1193 5 1040737607 M 35 19 20871 \n", "29 104 1193 2 977546620 M 25 12 00926 \n", "30 107 1193 5 977533908 M 45 18 63129 \n", "31 109 1193 2 977516253 M 45 15 92028 \n", "32 120 1193 5 977458103 M 25 11 27106 \n", "33 123 1193 5 977448350 M 35 9 67208 \n", "34 131 1193 5 977431822 M 18 4 06520 \n", "35 136 1193 4 977421091 M 18 2 21202 \n", "36 139 1193 4 977359402 F 25 20 45409 \n", "37 146 1193 4 979940868 F 35 20 10954 \n", "38 150 1193 5 978163667 M 35 7 98144 \n", "39 151 1193 4 993121122 F 25 20 85013 \n", "40 155 1193 5 977253254 M 35 12 07470 \n", "41 166 1193 5 977299851 M 18 4 92802 \n", "42 169 1193 5 977197066 M 25 7 55439 \n", "43 175 1193 5 978051929 F 25 2 95123 \n", "44 178 1193 4 977098352 M 56 17 53705 \n", "45 180 1193 5 977089623 M 45 12 01603 \n", "46 190 1193 5 977026946 M 25 17 55125 \n", "47 191 1193 3 977026629 M 18 4 04915 \n", "48 192 1193 4 977089850 M 18 1 10977 \n", "49 195 1193 5 977064554 M 25 12 10458 \n", "50 196 1193 4 977004875 F 35 9 94587 \n", "51 202 1193 4 976937045 M 18 4 53706 \n", "52 206 1193 1 976921007 M 25 17 20194 \n", "53 208 1193 5 984510357 M 35 17 55432 \n", "54 216 1193 4 976868526 M 45 13 52761 \n", "55 224 1193 4 976833559 F 18 4 14850 \n", "56 225 1193 4 976832915 M 25 7 11215 \n", "57 227 1193 4 976829587 M 35 20 90291 \n", "58 230 1193 4 976824488 M 45 1 43210 \n", "59 231 1193 4 997057648 M 25 3 55455 \n", " ... ... ... ... ... ... ... ... \n", "\n", " title genres \n", "0 One Flew Over the Cuckoo's Nest (1975) Drama \n", "1 One Flew Over the Cuckoo's Nest (1975) Drama \n", "2 One Flew Over the Cuckoo's Nest (1975) Drama \n", "3 One Flew Over the Cuckoo's Nest (1975) Drama \n", "4 One Flew Over the Cuckoo's Nest (1975) Drama \n", "5 One Flew Over the Cuckoo's Nest (1975) Drama \n", "6 One Flew Over the Cuckoo's Nest (1975) Drama \n", "7 One Flew Over the Cuckoo's Nest (1975) Drama \n", "8 One Flew Over the Cuckoo's Nest (1975) Drama \n", "9 One Flew Over the Cuckoo's Nest (1975) Drama \n", "10 One Flew Over the Cuckoo's Nest (1975) Drama \n", "11 One Flew Over the Cuckoo's Nest (1975) Drama \n", "12 One Flew Over the Cuckoo's Nest (1975) Drama \n", "13 One Flew Over the Cuckoo's Nest (1975) Drama \n", "14 One Flew Over the Cuckoo's Nest (1975) Drama \n", "15 One Flew Over the Cuckoo's Nest (1975) Drama \n", "16 One Flew Over the Cuckoo's Nest (1975) Drama \n", "17 One Flew Over the Cuckoo's Nest (1975) Drama \n", "18 One Flew Over the Cuckoo's Nest (1975) Drama \n", "19 One Flew Over the Cuckoo's Nest (1975) Drama \n", "20 One Flew Over the Cuckoo's Nest (1975) Drama \n", "21 One Flew Over the Cuckoo's Nest (1975) Drama \n", "22 One Flew Over the Cuckoo's Nest (1975) Drama \n", "23 One Flew Over the Cuckoo's Nest (1975) Drama \n", "24 One Flew Over the Cuckoo's Nest (1975) Drama \n", "25 One Flew Over the Cuckoo's Nest (1975) Drama \n", "26 One Flew Over the Cuckoo's Nest (1975) Drama \n", "27 One Flew Over the Cuckoo's Nest (1975) Drama \n", "28 One Flew Over the Cuckoo's Nest (1975) Drama \n", "29 One Flew Over the Cuckoo's Nest (1975) Drama \n", "30 One Flew Over the Cuckoo's Nest (1975) Drama \n", "31 One Flew Over the Cuckoo's Nest (1975) Drama \n", "32 One Flew Over the Cuckoo's Nest (1975) Drama \n", "33 One Flew Over the Cuckoo's Nest (1975) Drama \n", "34 One Flew Over the Cuckoo's Nest (1975) Drama \n", "35 One Flew Over the Cuckoo's Nest (1975) Drama \n", "36 One Flew Over the Cuckoo's Nest (1975) Drama \n", "37 One Flew Over the Cuckoo's Nest (1975) Drama \n", "38 One Flew Over the Cuckoo's Nest (1975) Drama \n", "39 One Flew Over the Cuckoo's Nest (1975) Drama \n", "40 One Flew Over the Cuckoo's Nest (1975) Drama \n", "41 One Flew Over the Cuckoo's Nest (1975) Drama \n", "42 One Flew Over the Cuckoo's Nest (1975) Drama \n", "43 One Flew Over the Cuckoo's Nest (1975) Drama \n", "44 One Flew Over the Cuckoo's Nest (1975) Drama \n", "45 One Flew Over the Cuckoo's Nest (1975) Drama \n", "46 One Flew Over the Cuckoo's Nest (1975) Drama \n", "47 One Flew Over the Cuckoo's Nest (1975) Drama \n", "48 One Flew Over the Cuckoo's Nest (1975) Drama \n", "49 One Flew Over the Cuckoo's Nest (1975) Drama \n", "50 One Flew Over the Cuckoo's Nest (1975) Drama \n", "51 One Flew Over the Cuckoo's Nest (1975) Drama \n", "52 One Flew Over the Cuckoo's Nest (1975) Drama \n", "53 One Flew Over the Cuckoo's Nest (1975) Drama \n", "54 One Flew Over the Cuckoo's Nest (1975) Drama \n", "55 One Flew Over the Cuckoo's Nest (1975) Drama \n", "56 One Flew Over the Cuckoo's Nest (1975) Drama \n", "57 One Flew Over the Cuckoo's Nest (1975) Drama \n", "58 One Flew Over the Cuckoo's Nest (1975) Drama \n", "59 One Flew Over the Cuckoo's Nest (1975) Drama \n", " ... ... \n", "\n", "[1000209 rows x 10 columns]" ] }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.merge(pd.merge(ratings, users), movies)\n", "data" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "user_id 1\n", "movie_id 1193\n", "rating 5\n", "timestamp 978300760\n", "gender F\n", "age 1\n", "accupation 10\n", "zip 48067\n", "title One Flew Over the Cuckoo's Nest (1975)\n", "genres Drama\n", "Name: 0, dtype: object" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.ix[0]" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
genderFM
title
$1,000,000 Duck (1971) 3.375000 2.761905
'Night Mother (1986) 3.388889 3.352941
'Til There Was You (1997) 2.675676 2.733333
'burbs, The (1989) 2.793478 2.962085
...And Justice for All (1979) 3.828571 3.689024
1-900 (1994) 2.000000 3.000000
10 Things I Hate About You (1999) 3.646552 3.311966
101 Dalmatians (1961) 3.791444 3.500000
101 Dalmatians (1996) 3.240000 2.911215
12 Angry Men (1957) 4.184397 4.328421
\n", "

10 rows × 2 columns

\n", "
" ], "text/plain": [ "gender F M\n", "title \n", "$1,000,000 Duck (1971) 3.375000 2.761905\n", "'Night Mother (1986) 3.388889 3.352941\n", "'Til There Was You (1997) 2.675676 2.733333\n", "'burbs, The (1989) 2.793478 2.962085\n", "...And Justice for All (1979) 3.828571 3.689024\n", "1-900 (1994) 2.000000 3.000000\n", "10 Things I Hate About You (1999) 3.646552 3.311966\n", "101 Dalmatians (1961) 3.791444 3.500000\n", "101 Dalmatians (1996) 3.240000 2.911215\n", "12 Angry Men (1957) 4.184397 4.328421\n", "\n", "[10 rows x 2 columns]" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean_rating = data.pivot_table('rating', rows = 'title', cols = 'gender', aggfunc = 'mean')\n", "mean_rating[:10]" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rating_by_title = data.groupby('title').size()" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "title\n", "$1,000,000 Duck (1971) 37\n", "'Night Mother (1986) 70\n", "'Til There Was You (1997) 52\n", "'burbs, The (1989) 303\n", "...And Justice for All (1979) 199\n", "1-900 (1994) 2\n", "10 Things I Hate About You (1999) 700\n", "101 Dalmatians (1961) 565\n", "101 Dalmatians (1996) 364\n", "12 Angry Men (1957) 616\n", "dtype: int64" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rating_by_title[0:10]" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index([u''burbs, The (1989)', u'10 Things I Hate About You (1999)', u'101 Dalmatians (1961)', u'101 Dalmatians (1996)', u'12 Angry Men (1957)', u'13th Warrior, The (1999)', u'2 Days in the Valley (1996)', u'20,000 Leagues Under the Sea (1954)', u'2001: A Space Odyssey (1968)', u'2010 (1984)'], dtype='object')" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "active_titles = rating_by_title.index[rating_by_title >= 250]\n", "active_titles[:10]" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
genderFM
title
'burbs, The (1989) 2.793478 2.962085
10 Things I Hate About You (1999) 3.646552 3.311966
101 Dalmatians (1961) 3.791444 3.500000
101 Dalmatians (1996) 3.240000 2.911215
12 Angry Men (1957) 4.184397 4.328421
13th Warrior, The (1999) 3.112000 3.168000
2 Days in the Valley (1996) 3.488889 3.244813
20,000 Leagues Under the Sea (1954) 3.670103 3.709205
2001: A Space Odyssey (1968) 3.825581 4.129738
2010 (1984) 3.446809 3.413712
28 Days (2000) 3.209424 2.977707
39 Steps, The (1935) 3.965517 4.107692
54 (1998) 2.701754 2.782178
7th Voyage of Sinbad, The (1958) 3.409091 3.658879
8MM (1999) 2.906250 2.850962
About Last Night... (1986) 3.188679 3.140909
Absent Minded Professor, The (1961) 3.469388 3.446809
Absolute Power (1997) 3.469136 3.327759
Abyss, The (1989) 3.659236 3.689507
Ace Ventura: Pet Detective (1994) 3.000000 3.197917
Ace Ventura: When Nature Calls (1995) 2.269663 2.543333
Addams Family Values (1993) 3.000000 2.878531
Addams Family, The (1991) 3.186170 3.163498
Adventures in Babysitting (1987) 3.455782 3.208122
Adventures of Buckaroo Bonzai Across the 8th Dimension, The (1984) 3.308511 3.402321
Adventures of Priscilla, Queen of the Desert, The (1994) 3.989071 3.688811
Adventures of Robin Hood, The (1938) 4.166667 3.918367
African Queen, The (1951) 4.324232 4.223822
Age of Innocence, The (1993) 3.827068 3.339506
Agnes of God (1985) 3.534884 3.244898
Air America (1990) 2.823529 2.741176
Air Force One (1997) 3.699588 3.555822
Airplane II: The Sequel (1982) 2.906250 2.995671
Airplane! (1980) 3.656566 4.064419
Akira (1988) 3.511111 3.980344
Aladdin (1992) 3.857143 3.756494
Alice in Wonderland (1951) 3.705882 3.692308
Alien (1979) 3.888252 4.216119
Alien Nation (1988) 3.433333 3.195946
Alien: Resurrection (1997) 2.708738 2.997041
Aliens (1986) 3.802083 4.186684
Alien� (1992) 3.008264 3.042289
Alive (1993) 3.469388 3.376866
All About Eve (1950) 4.363057 4.186992
All About My Mother (Todo Sobre Mi Madre) (1999) 4.333333 3.944000
All Quiet on the Western Front (1930) 3.957447 4.244344
All That Jazz (1979) 4.061856 3.718182
Almost Famous (2000) 4.220217 4.228731
Amadeus (1984) 4.346734 4.213415
American Beauty (1999) 4.238901 4.347301
American Gigolo (1980) 3.337500 3.106977
American Graffiti (1973) 3.940476 4.055556
American History X (1998) 4.181818 4.240741
American Movie (1999) 4.028986 4.008850
American Pie (1999) 3.539792 3.754545
American President, The (1995) 3.923483 3.718654
American Psycho (2000) 3.085271 3.253493
American Tail, An (1986) 3.649254 3.318519
American Werewolf in London, An (1981) 3.548077 3.800000
American Werewolf in Paris, An (1997) 2.814815 2.739336
......
\n", "

1216 rows × 2 columns

\n", "
" ], "text/plain": [ "gender F \\\n", "title \n", "'burbs, The (1989) 2.793478 \n", "10 Things I Hate About You (1999) 3.646552 \n", "101 Dalmatians (1961) 3.791444 \n", "101 Dalmatians (1996) 3.240000 \n", "12 Angry Men (1957) 4.184397 \n", "13th Warrior, The (1999) 3.112000 \n", "2 Days in the Valley (1996) 3.488889 \n", "20,000 Leagues Under the Sea (1954) 3.670103 \n", "2001: A Space Odyssey (1968) 3.825581 \n", "2010 (1984) 3.446809 \n", "28 Days (2000) 3.209424 \n", "39 Steps, The (1935) 3.965517 \n", "54 (1998) 2.701754 \n", "7th Voyage of Sinbad, The (1958) 3.409091 \n", "8MM (1999) 2.906250 \n", "About Last Night... (1986) 3.188679 \n", "Absent Minded Professor, The (1961) 3.469388 \n", "Absolute Power (1997) 3.469136 \n", "Abyss, The (1989) 3.659236 \n", "Ace Ventura: Pet Detective (1994) 3.000000 \n", "Ace Ventura: When Nature Calls (1995) 2.269663 \n", "Addams Family Values (1993) 3.000000 \n", "Addams Family, The (1991) 3.186170 \n", "Adventures in Babysitting (1987) 3.455782 \n", "Adventures of Buckaroo Bonzai Across the 8th Dimension, The (1984) 3.308511 \n", "Adventures of Priscilla, Queen of the Desert, The (1994) 3.989071 \n", "Adventures of Robin Hood, The (1938) 4.166667 \n", "African Queen, The (1951) 4.324232 \n", "Age of Innocence, The (1993) 3.827068 \n", "Agnes of God (1985) 3.534884 \n", "Air America (1990) 2.823529 \n", "Air Force One (1997) 3.699588 \n", "Airplane II: The Sequel (1982) 2.906250 \n", "Airplane! (1980) 3.656566 \n", "Akira (1988) 3.511111 \n", "Aladdin (1992) 3.857143 \n", "Alice in Wonderland (1951) 3.705882 \n", "Alien (1979) 3.888252 \n", "Alien Nation (1988) 3.433333 \n", "Alien: Resurrection (1997) 2.708738 \n", "Aliens (1986) 3.802083 \n", "Alien� (1992) 3.008264 \n", "Alive (1993) 3.469388 \n", "All About Eve (1950) 4.363057 \n", "All About My Mother (Todo Sobre Mi Madre) (1999) 4.333333 \n", "All Quiet on the Western Front (1930) 3.957447 \n", "All That Jazz (1979) 4.061856 \n", "Almost Famous (2000) 4.220217 \n", "Amadeus (1984) 4.346734 \n", "American Beauty (1999) 4.238901 \n", "American Gigolo (1980) 3.337500 \n", "American Graffiti (1973) 3.940476 \n", "American History X (1998) 4.181818 \n", "American Movie (1999) 4.028986 \n", "American Pie (1999) 3.539792 \n", "American President, The (1995) 3.923483 \n", "American Psycho (2000) 3.085271 \n", "American Tail, An (1986) 3.649254 \n", "American Werewolf in London, An (1981) 3.548077 \n", "American Werewolf in Paris, An (1997) 2.814815 \n", " ... \n", "\n", "gender M \n", "title \n", "'burbs, The (1989) 2.962085 \n", "10 Things I Hate About You (1999) 3.311966 \n", "101 Dalmatians (1961) 3.500000 \n", "101 Dalmatians (1996) 2.911215 \n", "12 Angry Men (1957) 4.328421 \n", "13th Warrior, The (1999) 3.168000 \n", "2 Days in the Valley (1996) 3.244813 \n", "20,000 Leagues Under the Sea (1954) 3.709205 \n", "2001: A Space Odyssey (1968) 4.129738 \n", "2010 (1984) 3.413712 \n", "28 Days (2000) 2.977707 \n", "39 Steps, The (1935) 4.107692 \n", "54 (1998) 2.782178 \n", "7th Voyage of Sinbad, The (1958) 3.658879 \n", "8MM (1999) 2.850962 \n", "About Last Night... (1986) 3.140909 \n", "Absent Minded Professor, The (1961) 3.446809 \n", "Absolute Power (1997) 3.327759 \n", "Abyss, The (1989) 3.689507 \n", "Ace Ventura: Pet Detective (1994) 3.197917 \n", "Ace Ventura: When Nature Calls (1995) 2.543333 \n", "Addams Family Values (1993) 2.878531 \n", "Addams Family, The (1991) 3.163498 \n", "Adventures in Babysitting (1987) 3.208122 \n", "Adventures of Buckaroo Bonzai Across the 8th Dimension, The (1984) 3.402321 \n", "Adventures of Priscilla, Queen of the Desert, The (1994) 3.688811 \n", "Adventures of Robin Hood, The (1938) 3.918367 \n", "African Queen, The (1951) 4.223822 \n", "Age of Innocence, The (1993) 3.339506 \n", "Agnes of God (1985) 3.244898 \n", "Air America (1990) 2.741176 \n", "Air Force One (1997) 3.555822 \n", "Airplane II: The Sequel (1982) 2.995671 \n", "Airplane! (1980) 4.064419 \n", "Akira (1988) 3.980344 \n", "Aladdin (1992) 3.756494 \n", "Alice in Wonderland (1951) 3.692308 \n", "Alien (1979) 4.216119 \n", "Alien Nation (1988) 3.195946 \n", "Alien: Resurrection (1997) 2.997041 \n", "Aliens (1986) 4.186684 \n", "Alien� (1992) 3.042289 \n", "Alive (1993) 3.376866 \n", "All About Eve (1950) 4.186992 \n", "All About My Mother (Todo Sobre Mi Madre) (1999) 3.944000 \n", "All Quiet on the Western Front (1930) 4.244344 \n", "All That Jazz (1979) 3.718182 \n", "Almost Famous (2000) 4.228731 \n", "Amadeus (1984) 4.213415 \n", "American Beauty (1999) 4.347301 \n", "American Gigolo (1980) 3.106977 \n", "American Graffiti (1973) 4.055556 \n", "American History X (1998) 4.240741 \n", "American Movie (1999) 4.008850 \n", "American Pie (1999) 3.754545 \n", "American President, The (1995) 3.718654 \n", "American Psycho (2000) 3.253493 \n", "American Tail, An (1986) 3.318519 \n", "American Werewolf in London, An (1981) 3.800000 \n", "American Werewolf in Paris, An (1997) 2.739336 \n", " ... \n", "\n", "[1216 rows x 2 columns]" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean_rating = mean_rating.ix[active_titles]\n", "mean_rating" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false }, "outputs": [], "source": [ "mean_rating = mean_rating.rename(index = {'Seven Samurai (The Magnificent Seven) (Shichinin no samurai) (1954)':\n", " 'Seven Samurai (Shichinin no samurai)(1954)'}) " ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
genderFM
title
Close Shave, A (1995) 4.644444 4.473795
Wrong Trousers, The (1993) 4.588235 4.478261
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 4.572650 4.464589
Wallace & Gromit: The Best of Aardman Animation (1996) 4.563107 4.385075
Schindler's List (1993) 4.562602 4.491415
Shawshank Redemption, The (1994) 4.539075 4.560625
Grand Day Out, A (1992) 4.537879 4.293255
To Kill a Mockingbird (1962) 4.536667 4.372611
Creature Comforts (1990) 4.513889 4.272277
Usual Suspects, The (1995) 4.513317 4.518248
\n", "

10 rows × 2 columns

\n", "
" ], "text/plain": [ "gender F M\n", "title \n", "Close Shave, A (1995) 4.644444 4.473795\n", "Wrong Trousers, The (1993) 4.588235 4.478261\n", "Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 4.572650 4.464589\n", "Wallace & Gromit: The Best of Aardman Animation (1996) 4.563107 4.385075\n", "Schindler's List (1993) 4.562602 4.491415\n", "Shawshank Redemption, The (1994) 4.539075 4.560625\n", "Grand Day Out, A (1992) 4.537879 4.293255\n", "To Kill a Mockingbird (1962) 4.536667 4.372611\n", "Creature Comforts (1990) 4.513889 4.272277\n", "Usual Suspects, The (1995) 4.513317 4.518248\n", "\n", "[10 rows x 2 columns]" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top_female_rating = mean_rating.sort_index(by = 'F', ascending = False)\n", "top_female_rating[:10] " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Measure rating disaggreement" ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": false }, "outputs": [], "source": [ "mean_rating['diff'] = mean_rating['M'] - mean_rating['F']" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [], "source": [ "sorted_by_diff = mean_rating.sort_index(by = 'diff')" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
genderFMdiff
title
Dirty Dancing (1987) 3.790378 2.959596-0.830782
Jumpin' Jack Flash (1986) 3.254717 2.578358-0.676359
Grease (1978) 3.975265 3.367041-0.608224
Little Women (1994) 3.870588 3.321739-0.548849
Steel Magnolias (1989) 3.901734 3.365957-0.535777
Anastasia (1997) 3.800000 3.281609-0.518391
Rocky Horror Picture Show, The (1975) 3.673016 3.160131-0.512885
Color Purple, The (1985) 4.158192 3.659341-0.498851
Age of Innocence, The (1993) 3.827068 3.339506-0.487561
Free Willy (1993) 2.921348 2.438776-0.482573
French Kiss (1995) 3.535714 3.056962-0.478752
Little Shop of Horrors, The (1960) 3.650000 3.179688-0.470312
Guys and Dolls (1955) 4.051724 3.583333-0.468391
Mary Poppins (1964) 4.197740 3.730594-0.467147
Patch Adams (1998) 3.473282 3.008746-0.464536
\n", "

15 rows × 3 columns

\n", "
" ], "text/plain": [ "gender F M diff\n", "title \n", "Dirty Dancing (1987) 3.790378 2.959596 -0.830782\n", "Jumpin' Jack Flash (1986) 3.254717 2.578358 -0.676359\n", "Grease (1978) 3.975265 3.367041 -0.608224\n", "Little Women (1994) 3.870588 3.321739 -0.548849\n", "Steel Magnolias (1989) 3.901734 3.365957 -0.535777\n", "Anastasia (1997) 3.800000 3.281609 -0.518391\n", "Rocky Horror Picture Show, The (1975) 3.673016 3.160131 -0.512885\n", "Color Purple, The (1985) 4.158192 3.659341 -0.498851\n", "Age of Innocence, The (1993) 3.827068 3.339506 -0.487561\n", "Free Willy (1993) 2.921348 2.438776 -0.482573\n", "French Kiss (1995) 3.535714 3.056962 -0.478752\n", "Little Shop of Horrors, The (1960) 3.650000 3.179688 -0.470312\n", "Guys and Dolls (1955) 4.051724 3.583333 -0.468391\n", "Mary Poppins (1964) 4.197740 3.730594 -0.467147\n", "Patch Adams (1998) 3.473282 3.008746 -0.464536\n", "\n", "[15 rows x 3 columns]" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_by_diff[:15]" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
genderFMdiff
title
Good, The Bad and The Ugly, The (1966) 3.494949 4.221300 0.726351
Kentucky Fried Movie, The (1977) 2.878788 3.555147 0.676359
Dumb & Dumber (1994) 2.697987 3.336595 0.638608
Longest Day, The (1962) 3.411765 4.031447 0.619682
Cable Guy, The (1996) 2.250000 2.863787 0.613787
Evil Dead II (Dead By Dawn) (1987) 3.297297 3.909283 0.611985
Hidden, The (1987) 3.137931 3.745098 0.607167
Rocky III (1982) 2.361702 2.943503 0.581801
Caddyshack (1980) 3.396135 3.969737 0.573602
For a Few Dollars More (1965) 3.409091 3.953795 0.544704
Porky's (1981) 2.296875 2.836364 0.539489
Animal House (1978) 3.628906 4.167192 0.538286
Exorcist, The (1973) 3.537634 4.067239 0.529605
Fright Night (1985) 2.973684 3.500000 0.526316
Barb Wire (1996) 1.585366 2.100386 0.515020
\n", "

15 rows × 3 columns

\n", "
" ], "text/plain": [ "gender F M diff\n", "title \n", "Good, The Bad and The Ugly, The (1966) 3.494949 4.221300 0.726351\n", "Kentucky Fried Movie, The (1977) 2.878788 3.555147 0.676359\n", "Dumb & Dumber (1994) 2.697987 3.336595 0.638608\n", "Longest Day, The (1962) 3.411765 4.031447 0.619682\n", "Cable Guy, The (1996) 2.250000 2.863787 0.613787\n", "Evil Dead II (Dead By Dawn) (1987) 3.297297 3.909283 0.611985\n", "Hidden, The (1987) 3.137931 3.745098 0.607167\n", "Rocky III (1982) 2.361702 2.943503 0.581801\n", "Caddyshack (1980) 3.396135 3.969737 0.573602\n", "For a Few Dollars More (1965) 3.409091 3.953795 0.544704\n", "Porky's (1981) 2.296875 2.836364 0.539489\n", "Animal House (1978) 3.628906 4.167192 0.538286\n", "Exorcist, The (1973) 3.537634 4.067239 0.529605\n", "Fright Night (1985) 2.973684 3.500000 0.526316\n", "Barb Wire (1996) 1.585366 2.100386 0.515020\n", "\n", "[15 rows x 3 columns]" ] }, "execution_count": 97, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Reverse order of rows, taking first 15 rows\n", "sorted_by_diff[::-1][:15]" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Standard deviation of rating grouped by title\n", "rating_sd_by_title = data.groupby('title')['rating'].std()" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Filter down to active titles\n", "rating_sd_by_title = rating_sd_by_title.ix[active_titles]" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "title\n", "Dumb & Dumber (1994) 1.321333\n", "Blair Witch Project, The (1999) 1.316368\n", "Natural Born Killers (1994) 1.307198\n", "Tank Girl (1995) 1.277695\n", "Rocky Horror Picture Show, The (1975) 1.260177\n", "Eyes Wide Shut (1999) 1.259624\n", "Evita (1996) 1.253631\n", "Billy Madison (1995) 1.249970\n", "Fear and Loathing in Las Vegas (1998) 1.246408\n", "Bicentennial Man (1999) 1.245533\n", "Name: rating, dtype: float64" ] }, "execution_count": 100, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Order series by values in ascending order\n", "rating_sd_by_title.order(ascending=False)[:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### US baby name" ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from __future__ import division\n", "from numpy.random import randn\n", "import numpy as np\n", "import matplotlib.pylab as plt\n", "plt.rc('figure', figsize = (12, 5))\n", "np.set_printoptions(precision = 4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "http://www.ssa.gov/oact/babynames/limits.html" ] }, { "cell_type": "code", "execution_count": 106, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namessexbirths
0 Mary F 7065
1 Anna F 2604
2 Emma F 2003
3 Elizabeth F 1939
4 Minnie F 1746
5 Margaret F 1578
6 Ida F 1472
7 Alice F 1414
8 Bertha F 1320
9 Sarah F 1288
10 Annie F 1258
11 Clara F 1226
12 Ella F 1156
13 Florence F 1063
14 Cora F 1045
15 Martha F 1040
16 Laura F 1012
17 Nellie F 995
18 Grace F 982
19 Carrie F 949
20 Maude F 858
21 Mabel F 808
22 Bessie F 794
23 Jennie F 793
24 Gertrude F 787
25 Julia F 783
26 Hattie F 769
27 Edith F 768
28 Mattie F 704
29 Rose F 700
30 Catherine F 688
31 Lillian F 672
32 Ada F 652
33 Lillie F 647
34 Helen F 636
35 Jessie F 635
36 Louise F 635
37 Ethel F 633
38 Lula F 621
39 Myrtle F 615
40 Eva F 614
41 Frances F 605
42 Lena F 603
43 Lucy F 591
44 Edna F 588
45 Maggie F 582
46 Pearl F 569
47 Daisy F 564
48 Fannie F 560
49 Josephine F 544
50 Dora F 524
51 Rosa F 507
52 Katherine F 502
53 Agnes F 473
54 Marie F 471
55 Nora F 471
56 May F 462
57 Mamie F 436
58 Blanche F 427
59 Stella F 414
.........
\n", "

2000 rows × 3 columns

\n", "
" ], "text/plain": [ " names sex births\n", "0 Mary F 7065\n", "1 Anna F 2604\n", "2 Emma F 2003\n", "3 Elizabeth F 1939\n", "4 Minnie F 1746\n", "5 Margaret F 1578\n", "6 Ida F 1472\n", "7 Alice F 1414\n", "8 Bertha F 1320\n", "9 Sarah F 1288\n", "10 Annie F 1258\n", "11 Clara F 1226\n", "12 Ella F 1156\n", "13 Florence F 1063\n", "14 Cora F 1045\n", "15 Martha F 1040\n", "16 Laura F 1012\n", "17 Nellie F 995\n", "18 Grace F 982\n", "19 Carrie F 949\n", "20 Maude F 858\n", "21 Mabel F 808\n", "22 Bessie F 794\n", "23 Jennie F 793\n", "24 Gertrude F 787\n", "25 Julia F 783\n", "26 Hattie F 769\n", "27 Edith F 768\n", "28 Mattie F 704\n", "29 Rose F 700\n", "30 Catherine F 688\n", "31 Lillian F 672\n", "32 Ada F 652\n", "33 Lillie F 647\n", "34 Helen F 636\n", "35 Jessie F 635\n", "36 Louise F 635\n", "37 Ethel F 633\n", "38 Lula F 621\n", "39 Myrtle F 615\n", "40 Eva F 614\n", "41 Frances F 605\n", "42 Lena F 603\n", "43 Lucy F 591\n", "44 Edna F 588\n", "45 Maggie F 582\n", "46 Pearl F 569\n", "47 Daisy F 564\n", "48 Fannie F 560\n", "49 Josephine F 544\n", "50 Dora F 524\n", "51 Rosa F 507\n", "52 Katherine F 502\n", "53 Agnes F 473\n", "54 Marie F 471\n", "55 Nora F 471\n", "56 May F 462\n", "57 Mamie F 436\n", "58 Blanche F 427\n", "59 Stella F 414\n", " ... ... ...\n", "\n", "[2000 rows x 3 columns]" ] }, "execution_count": 106, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "names1880 = pd.read_csv('ch02/names/yob1880.txt', names = ['names', 'sex', 'births'])\n", "names1880" ] }, { "cell_type": "code", "execution_count": 107, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "sex\n", "F 90993\n", "M 110493\n", "Name: births, dtype: int64" ] }, "execution_count": 107, "metadata": {}, "output_type": "execute_result" } ], "source": [ "names1880.groupby('sex').births.sum()" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# year 2010 is the last year available right now\n", "years = range(1880, 2011)\n", "\n", "pieces = []\n", "columns = ['names', 'sex', 'births']\n", "\n", "for year in years:\n", " path = 'ch02/names/yob%d.txt' %year\n", " frame = pd.read_csv(path, names = columns)\n", " frame['year'] = year\n", " pieces.append(frame)\n", " \n", "# concatenate them into a single dataframe\n", "names = pd.concat(pieces, ignore_index = True)" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "collapsed": false }, "outputs": [ { "ename": "IOError", "evalue": "[Errno 2] No such file or directory: 'ch02/all_names'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnames\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ch02/all_names'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/usr/lib/python2.7/dist-packages/pandas/io/pickle.pyc\u001b[0m in \u001b[0;36mread_pickle\u001b[0;34m(path)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtry_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mPY3\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/lib/python2.7/dist-packages/pandas/io/pickle.pyc\u001b[0m in \u001b[0;36mtry_read\u001b[0;34m(path, encoding)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mencoding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfh\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mencoding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'ch02/all_names'" ] } ], "source": [ "# names = pd.read_pickle('ch02/all_names')" ] }, { "cell_type": "code", "execution_count": 114, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sexFM
year
2006 1896468 2050234
2007 1916888 2069242
2008 1883645 2032310
2009 1827643 1973359
2010 1759010 1898382
\n", "

5 rows × 2 columns

\n", "
" ], "text/plain": [ "sex F M\n", "year \n", "2006 1896468 2050234\n", "2007 1916888 2069242\n", "2008 1883645 2032310\n", "2009 1827643 1973359\n", "2010 1759010 1898382\n", "\n", "[5 rows x 2 columns]" ] }, "execution_count": 114, "metadata": {}, "output_type": "execute_result" } ], "source": [ "total_births = names.pivot_table('births', rows = 'year', cols = 'sex', aggfunc = sum)\n", "total_births.tail()" ] }, { "cell_type": "code", "execution_count": 115, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 115, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAFNCAYAAACudrGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcFNcWB/AfICgKigWMBSNWUIpSBAQRNIK994a9PrBF\nfUmMNRprVIwlEitWrNgLIlZQRBQ1dsWCgiACK0Vg97w/5rkGqcIuw8L5fj77iTM7c+fOyYqHu2fu\nVSMiAmOMMcYYY6zIqIvdAcYYY4wxxkobTsIZY4wxxhgrYpyEM8YYY4wxVsQ4CWeMMcYYY6yIcRLO\nGGOMMcZYEeMknDHGGGOMsSLGSThjrMSbNGkSmjdvjubNm0NLSwvGxsZo3rw5LC0t8enTp2zPOX78\nOObMmZNn287Ozjhw4EC2+/fu3Ztl/5s3b+Dg4JBtW8+fP0fv3r0BABEREdDV1c3z+hEREdDW1s7z\nOFVlamqKCxcuiN0NxhhTuDJid4AxxpRt9erV8j8bGRlh165dsLS0zPWckJAQxMXF5dm2mpoa1NTU\nst2fnZo1a+LKlSvZvvfixQs8fPgwz2uWJjnFlzHGVB2PhDPGSrUFCxagadOmsLCwQJ8+fRAdHY1r\n167hr7/+wt69e/Hrr78iOTkZQ4cOhb29PRo3bgxra2s8evQoz7b9/PxgY2ODpk2bYtGiRQAyj3DP\nnTsXbm5usLCwwMCBAzF69Gg8ffoUHTp0gJqaGqRSKcaPHw8rKyvUr18fBw8ezPY6RISxY8fC0tIS\ntra2uHbtGogIjRs3xtmzZ+XHjR49Gl5eXpnOzcjIwPjx42Fubg5ra2v07dsXSUlJAICrV6/CyckJ\nVlZWsLGxwfHjxwEA8+bNQ8uWLSGTyRAVFYVatWplO1q9efNm2NnZwdLSEnXr1sWGDRsAAFu3bkW3\nbt3Qs2dPmJmZwcrKCvfu3QMA/PPPP7Czs4OFhQX69u2Ljx8/Zmn35cuXqFixIhITE+X336hRI9y5\ncwcJCQkYNmwYrK2tYWFhgalTp0IqlebZn1atWsHKygpt27bN8/8rY4wpBDHGWClSt25dCg0NJSKi\nzZs3U8uWLSk5OZmIiObOnUvt27eX/9nDw4OIiPbv30+TJk2StzFu3Dj5e87OznTgwIEs12ndujV1\n7dqVpFIpJSYmkomJCZ08eZKeP39OOjo6REQ0Z84cMjExIalUSkREgYGBZGpqSkREz58/JzU1NTp4\n8CARER06dIjq16+f5Tqfj/P19SUiotOnT1OdOnUoLS2NVq1aRX379iUiooSEBDIwMKCEhIRM51+8\neJFMTEzk2zNnzqSgoCCKi4ujRo0a0YsXL4iIKDIykgwNDenVq1cklUqpdevWtHjxYvrhhx/o999/\nz9IviURC9vb2FBcXR0REQUFBpKurS0REW7ZsIT09PYqMjCQiIg8PD3J3dyciombNmtHmzZuJiCg4\nOJg0NDTowoULWdrv3r07rVu3joiIzp07Ry1btiQiouHDh9OaNWuIiCgjI4MGDx5MS5cupY8fP+ba\nnypVqpBEIslyHcYYUxYuR2GMlVqnTp3CiBEj5DXVkyZNwsKFC5Geng4iAhEBAHr16gUjIyOsWbMG\nT548QWBgIFq2bJlr22pqahg1ahTU1dWhq6uL3r174+zZszAxMcl0nJ2dHdTVhS8lP1/vMy0tLfTo\n0QMAYGFhgXfv3mV7LT09PfTp0wcA4OrqCiLCw4cP4e7ujnnz5iE2Nhb79u1Dly5dULFixUznmpub\nQ0NDA7a2tnBzc0OvXr1gY2ODEydOICoqCt26dZMfq66ujvDwcNSuXRs7duyAmZkZWrRogf/+979Z\n+qSjo4Njx47h6NGjePLkCW7duiUfYQcAKysr1KxZEwBgaWmJgwcPIi4uDnfu3MHQoUMBALa2trCw\nsMj2nidOnIgZM2Zg/Pjx+OuvvzB+/HgAwLFjxxASEoJNmzYBAFJTU6Guro4KFSrk2h9zc3Po6Ohk\ney3GGFMGTsIZY6WWTCbLlPhKpVJkZGTI932uRV6/fj28vb3h4eGBQYMGoWrVqoiIiMiz/c/J9edr\naWlpZTmmQoUKOZ6vqakp/7OamlqWJP0zDQ2NTNtEBE1NTXly7uPjg927d2PdunVZzq1UqRJu376N\nq1ev4ty5c+jXrx88PT3RoEEDmJiYIDg4WH5sZGQkqlevDkCoXy9fvjyePHmC+Ph46OnpZWr39evX\nsLe3x7hx49CqVSv07t0bx44dk7//9cOkRCSPt0wmk99TmTLZ/zPVtm1bJCcn49y5c7h06RJ8fHzk\n5+7fvx+NGzcGAMTHx0NNTS3P/nACzhgralwTzhgrtdzc3LBlyxYkJycDALy8vNC6dWtoaWlBU1MT\naWlpAIAzZ85g2LBhGD58OBo1aoQjR47I64xzQkTYvn07AODDhw/w9fVFhw4dckykASHhTE9P/+b7\neP/+vbxe++jRo9DW1kbDhg0BCCPGXl5eICJYW1tnOffYsWNo27Yt7O3tMWfOHAwdOhTh4eGws7PD\n48ePcfHiRQBAeHg4jI2N8fbtW8THx2PIkCHYvn07+vfvj5EjR2Zp98aNGzAwMMAvv/yCdu3a4ejR\nowCEJDknlStXhpWVFf7++28AwK1bt3Dr1q1sj1VTU8OECRMwatQoDBo0SP4LjpubG/744w8QEdLS\n0tCjRw+sXbsWoaGh39wfxhhTJh4JZ4yVWiNHjsSrV6/QokULyGQyNGzYEDt37gQgjLT27NkTZcuW\nxY8//ogxY8Zg+/btqFq1Krp3746TJ0/m2raamhr09PRgZWWFlJQUeHp6wsnJCREREfIR369n/jA1\nNYWGhgbs7OywZ8+eLLOC5DRLiIGBAQ4cOIBZs2ahQoUKOHDggHwU3tzcHFWqVMG4ceOyPbdjx444\ndeoUTE1NoaOjgypVqsDb2xvVqlXDgQMHMGPGDKSmpkImk8HHxweGhobo27cvOnfujLZt28LJyQk2\nNjbYsGFDpmt8/gWncePGMDAwQLdu3VCjRg08efIky33/e3v37t0YPnw41q9fLx+Nz8nQoUMxbdo0\njB07Vr7Py8sLkyZNgrm5OdLT09GuXTvMnDkTaWlp2Lx5c776wxhjRUGNchuWYYwxptKePn0KFxcX\nPHr0COXKlRO7Owq1Z88e+Pj4yL8FYIwxVZJrOUp6ejqGDBkCJycn2Nra4ujRowgLC0OtWrXg4uIC\nFxcX7Nu3DwDg7e0NGxsb2Nvby38gpqSkoFevXnByckKnTp0QGxsLAAgODoadnR0cHR0xf/58+fXm\nzZsHW1tbODg4ICQkBAAQGxsLV1dXODk5oX///khJSVFKIBhjrKSZPXs2HB0dsWLFihKXgDs7O2PB\nggVYsWKF2F1hjLECyXUkfOvWrQgPD8cff/yBDx8+wMLCAnPmzEFCQgKmTp0qPy4qKgqurq4IDQ1F\nSkoKHB0dcePGDfz555/4+PEjZs+ejb179yIoKAirVq1Cs2bNcOjQIRgZGaFTp05YuHAhZDIZpk+f\njnPnzuHVq1fo1asXrl+/Dk9PT1hbW2Po0KFYsmQJypYti8mTJxdJcBhjjDHGGFOGXEfC+/TpIx+p\nlslk0NTURGhoKI4fP47WrVtj1KhR+PjxI65fvw4HBwdoamqiYsWKaNCgAcLDw3HlyhW0b98eANC+\nfXv4+/tDIpEgLS0NRkZGAIS6QX9/f1y5cgWurq4AAENDQ2RkZCA2NjZTGx06dIC/v7/SgsEYY4wx\nxlhRyDUJr1ChAnR0dCCRSNCnTx8sXLgQLVq0wPLly3HhwgXUq1cP8+bNg0QiQaVKleTn6erqIiEh\nAYmJifI5abPb9/X+nNr4vF9HRwcJCQkKDQBjjDHGGGNFLc/ZUV69eoWePXti4sSJ6N+/PxISEuRJ\ncY8ePeDh4QEnJydIJBL5ORKJBHp6eqhYsaJ8f3b7ACAxMRF6enrQ0tLKsY3ExETo6+vL92WnVq1a\nePPmTcGiwBhjjDHGWD7Ur18fT548KXQ7uY6ER0dHw9XVFUuXLsWwYcMACGUlnx+a9Pf3h7W1NVq0\naIFLly7h06dPSEhIwP3792FqagoHBwecOHECAHDy5Ek4OTlBV1cXWlpaePbsGYgIZ86cgZOTExwc\nHHD69GkQEV6+fAkiQtWqVbNtIztv3ryRr3DHr6J9zZkzR/Q+lOYXx5/jX1pfHHuOf2l+cfzFez19\n+rTQCTiQx0j4okWLkJCQgPnz58trw1etWoUpU6ZAU1MTNWrUwMaNG6GjowNPT0+0atUKMpkMixYt\nQtmyZTF+/Hi4u7ujVatWKFu2LHbt2gUA2LBhAwYNGgSpVAo3NzfY2NgAAFq1agV7e3vIZDKsXbsW\nADBr1iy4u7vD29sb+vr68jZY8ZGflQOZ8nD8xcXxFw/HXlwcf3Fx/FVfrkn46tWrsXr16iz7L1++\nnGXfqFGjMGrUqEz7tLW14evrm+VYW1tbBAUFZdk/Z84czJkzJ9M+AwODPBfFYIwxxhhjTJXwsvWs\n0D6XKjFxcPzFxfEXD8deXBx/cXH8VV+JWTFTTU0NJeRWGGOMMcZYMaWonLPEj4RXqVIFampqJeJV\npUoVscOZrcDAQLG7UKpx/MXF8RcPx15cHH9xcfxVX55TFKq6Dx8+lJgRcjU1NbG7wBhjjDHGFKDE\nl6OUpDKVknQvjDHGGGOqiMtRGGOMMcYYU1GchLNC47o0cXH8xcXxFw/HXlwcf3Fx/FUfJ+GMMcYY\nY4wVMa4JVyEl6V4YY4wxxlQR14QXsUePHsHBwQHOzs5wcnLC69ev8dNPP6FVq1Zo2bIl9u/fD6lU\nCgcHB5w5cwbR0dEwNTVFZGSk2F1njDHGGGPFDCfh+eTv7w87Ozv4+/tj3rx5OHz4MCIiInDp0iUE\nBARg4cKFSEpKwq5duzB16lQMGTIEK1asQK1atcTuutJxXZq4OP7i4viLh2MvLo6/uDj+qo+T8Hwa\nOXIkKlWqhPbt2+PPP//Ehw8fEBoaChcXF3To0AEZGRmIiIjA999/D0dHR8TExMDNzU3sbjPGGGOM\nsWKIa8LzydfXF/r6+nBxccHu3bvxyy+/wNXVFRs2bEBGRgYWLVqEqVOn4u7du5g+fTosLS1Rp04d\nTJs2rdDX/oxrwhljjDHGxKWofKzEr5ipKNbW1nB3d4eWlhZkMhkOHDiAHTt2wMnJCR8/fkTPnj0h\nk8kwatQoHD58GIaGhrC1tYWLiwssLS3F7j5jjDHGGCtGeCRchRTXewkMDISzs7PY3Si1OP7i4viL\nh2MvLo6/uDj+4uHZURhjjDHGGFNRPBKuQkrSvTDGGGOMqSIeCWeMMcYYY0xFcRLOCo3nKhUXx19c\nHH/xcOzFxfEXF8df9XESzhhjjDHGWBHjmnAVUpLuhTHGGGNMFXFNOGOMMcYYYyqKk3CRqKurw9zc\nHM2bN5e/xowZI3a3CoTr0sTF8RcXx188HHtxcfzFxfFXfbxipogCAwNRpUoVsbvBGGOMMcaKGNeE\ni0RdXR0xMTGoWrVqvs8prvfCGGOMMVZaKCof4yRcJOrq6jA1NYWGhoZ839mzZ1GtWrUczymu98IY\nY4wxVlrwg5kKoqammFdBBAYGIiwsTP7KLQEvzrguTVwcf3Fx/MXDsRcXx19cHH/VV+prwnlgmTHG\nGGOMFTUuRxGJuro6YmNjv+nBzOJ6L4wxxhhjpQWXo6g4tYLWsDDGGGOMMZXHSbhIpFJpiZmekOvS\nxMXxFxfHXzwce3Fx/MXF8Vd9nIQzxhhjjDFWxLgmXIWUpHthjDHGGFNFXBPOGGNM5cUmxyI+NV7s\nbjDGWJHjJJwVGteliYvjLy6Of8E9//AcNt42aP5Xc4RHh3/z+Rx7cXH8xcXxV32chDPGGCtyzz48\ng8s2F/xo/yMWtlmIttvbwu+Bn9jdYoyxIsM14SqkJN0LY6z0ehL3BG22tcHPrX7GOOtxAICQyBD0\n2NsDE2wm4CfHn+Q/7+7H3seRh0cQ8DwAadI0lFEvAw11DWioaUCvnB5a1WkFFyMXNK7amKd+ZYwV\nCUXlY5yEq5CSdC+MsdLp0ftHaLu9LX51+hVjrMZkei8yMRLd93ZHvcr1UFu3Nvwe+iFNmoaujbvC\nrb4bdLR0ICUppDIppCTFu6R3uPDiAgKeByBdmg4XIxeMtRoLp++dRLo7xlhpwEn4VzgJF09gYCCc\nnZ3F7kapxfEXF8c//57GPUXrra0xz3keRlqOzPaYlPQU/Hr+V+hq6aJr465o9l2zHEe4P8eeiPA8\n/jnOPD2D2ednI8A9AKYGpsq8FQb+7IuN4y8enh1FxUVEREBdXR2tW7fO8t7w4cOhrq6OuLg4EXrG\nGGOKl5yejJ6+PTHTYWaOCTgAaGtqY7nrcsxxnoPmNZrnq8RETU0N9SrXwzjrcVjhugLd93RHXAr/\n/GSMFW88Ei6SiIgINGnSBHp6eggODkadOnUAAElJSWjWrBmePXuGmJiYTKtqFtd7YYyx3BARRhwZ\ngTRpGnb02KH02u2pp6fiXsw9HB94HGXUyyj1Woyx0odHwksADQ0N9OvXDzt37pTvO3jwILp3787J\nNmOsxNgUtgnXI69jY+eNRfLw5NJ2SyGVSfHzuZ+Vfi3GGCuoUj8SrjZPMf8g0JxvC2NERATMzMxw\n4cIFDBkyBPfu3QMAtGvXDqtWrYKZmRliY2NVYiSc69LExfEXF8c/dzff3kT7He1xcfhFGFczVmjb\nucX+ffJ72HjbYGGbhRhgNkCh12UC/uyLi+MvHkXlY6X+e7pvTZ4VzdLSEurq6rh58yb09fUhkUjQ\ntGlTUfvEGGOK8CHlA/rs64O1HdcqPAHPS9XyVXG4/2G03d4WdfXqwt7Qvkivz1hJlpSWBJ9wH2iq\na2JE8xE8PWgBlfqRcLF8HgmXSCRYunQpoqKioK+vj0qVKmHChAlQV1dXmZFwxhj7WmpGKvrs64P6\nletjVftVovXjxOMTcD/sDu8u3uhu3F20fjBWEryRvMGf1/+E901vOBg64NmHZ3AwdMCajmtK1fMX\nXBNeggwePBi+vr7Yu3cvBg4cKHZ3GGOswCSfJFh2ZRnqra6HcmXKYWm7paL2p2PDjjg56CQmnpiI\nlUEreSCDgYgw/8J8HHl4ROyuqIz41HgMPTQUputMIfkkQdDIIBzufxiXR1zG8/jn6Lq7KySfJGJ3\nU+VwEi6iz1/f1KxZE02aNEGjRo2gp6eX6T1VEBgYKHYXSjWOv7g4/oL3ye8x5/wc1POqh5tRN3Fy\n0Ens67MPWhpaOZ6TkQHMmAH8+qvw52+V39hb17TG1RFXsSlsEzxOeiBDVoCLsSxU9bPvdc0Le+/t\nhcdJD/zX/78q+3koqvgTEYb7DYe6mjqeej7Fmo5r0KBKAwBAxbIVcXTAURhWNESrLa3wOvF1kfSp\npOAkXCR169ZFYmKifPvMmTPw9fWVb0ul0kylKIwxVlzFJsfCfIM5IiWRuDriKnb32g2L7yxyPUci\nAbp1A8LCgOBgwM0NePdOeX38Xu97XBlxBQ/fP0SPvT2QlJakvIuxYuvM0zNYfGUxjg88jtAxoQiL\nCkM7n3aI/hgtdteKrdXXViMyMRJ/df4LlbUrZ3lfU0MTGzpvwCCzQbDfZI9/Yv4RoZeqKdea8PT0\ndIwYMQIvXrzAp0+fMGvWLJiYmGDYsGFQV1eHqakp1q5dCzU1NXh7e2Pjxo0oU6YMZs2ahU6dOiEl\nJQWDBw9GTEwMdHV1sW3bNlSrVg3BwcGYPHkyypQpA1dXV8yePRsAMG/ePJw4cQJlypTBqlWrYGNj\ng9jYWAwcOBCpqamoWbMmtmzZAm1t7aw3omI14QVRku6FMVZyDDs8DHrl9PJd+/3yJdClC2BnB/z5\nJ6CuDsyeDfj4AL6+wv7PiIDwcODSJWG0XFMTKFNG+G+FCkCdOkDdukD16kI7eUmXpmPssbHyecSr\nla9WsJtmKufx+8dw3OKIfX32wel7JwCAVCbF/AvzsSlsE/b03gPHOo4i97J4uR55HV12d0HwyGAY\nVTbK8/hNNzdhedBy3Bh9AxW0KhRBD8WhsHyMcrFlyxaaMmUKERHFxcWRoaEhde3alS5cuEBEROPG\njaNDhw7R27dvyczMjNLS0ighIYHMzMzo06dPtGLFCpo3bx4REe3Zs4cmTZpEREQWFhb07NkzIiLq\n2LEjhYWFUWhoKLVp04aIiF6+fEk2NjZEROTh4UHbtm0jIqLFixfTypUrs+1rTreSxy2qlJJ0L4yx\nkiHgWQAZ/mFIiamJ+To+JISoZk2i5cuJZLLM7/n5EenrE3l5Ee3fTzRypHBs/fpEY8YQTZpENGEC\n0ejRRMOGEfXuTdSiBZGBAVG5ckSNGhH9/5+cXMlkMvrZ/2dqtKYRPf/w/Ntvmqmc+JR4Mv7TmP66\n8Ve27594dIKqL6tOY4+OpTeJb4q4d8XT++T3VHdVXTp0/9A3nTf44GAafWS0knpVPCgqH8u1lY8f\nP5JEIiEiotjYWKpXrx7Vrl1b/r6fnx9NnDiRjhw5QuPGjZPv79GjB4WEhFDPnj3p2rVrREQUHx9P\nTZs2pcTERDIxMZEfu3r1alq2bBl5eXnR4sWL5fubN29OMTExZGlpSdHR0UREdPv2berUqVP2N8JJ\nuGjOnz8vdhdKNY6/uEpz/FPSU6ihV0Pye+CXr+MDAoiqVSM6lMu/6Y8fEzk6Erm5Ea1eTfToUc7H\n/jv2SUlE4eFEjRsTrV+fv/57BXtRrRW16NbbW/k7gWWiKp/9DGkGddzZkSYcm5Drce+T39O009Oo\nypIqNOvcLEpITSiiHhaMMuMvk8mo6+6uNPnk5G8+NzE1kRp4NSDfu75K6FnxoKh8LNcv7ypUqAAd\nHR1IJBL06dMHv/32G2Qymfx9XV1dJCQkIDExEZUqVcp2f8WKFXPcl982Pu/X0dFBQkJC4Yb+GWOM\nKcSiS4tgamCKro275nnss2fAgAHA3r1A91xmCmzQQCg9OXUK8PQEGjbMX1/KlwfMzIBjx4C5c4Ez\nZ/I+x8PWA3+4/YF2Pu0QGBGYvwsxlbP86nIkpyfnWS5VRbsKlrsux80xN/Ei4QUarWmEDTc2lLoy\nUCLC8qvLEfUxCkvaLfnm83XL6mJ3r92YeGIiXsS/UEIPS448J3V89eoVevbsiYkTJ2LAgAGYMWOG\n/L3ExETo6emhYsWKkEi+TE0jkUiy7M9u37/b0NLSyrGNxMRE+UI2n2cPyc6wYcNQt25dAICenh6a\nNWuW/0iomM9PRX9eLUvMbWdn52LVn9K2zfHn+IuxHREfgfWP1+PW2Ft5Hn/yZCAmTAB++cUZbdoo\nt38NGgA//xyIvn2BK1ec0bRp7sf3bdoXr8Nfo/Oizoj+MxoVtCoUi/jytmK2JZ8k+H3H7/Dq4AVN\nDc18nf/81nOMqDwC0wZPw3C/4Th86jCm2k+Fa1tX0e9HWdsJqQlIrZ2KM0/P4OiZo9DU0MTV+Veh\npaFV4PZnOMzAwIMDMb/ufGioaxSr+/3W7Vu3biE+Ph6AsM6LwuQ2TB4VFUXGxsYUEBAg39elSxcK\nDAwkIqKxY8eSr68vRUVFkZmZGaWmplJ8fDwZGxtTamoqrVixgubOnUtERLt376YJE4Svgpo1a0ZP\nnz4lmUxGHTt2pOvXr1NoaCi1bduWZDIZvXjxgpo1a0ZEQk341q1biYjo999/p6VLl2bb15xupXLl\nygSgRLwqV66c/+84GGNMSaQyKTludqQ119bkeaxMRtSrF9Hw4VlrwJVp+3aiunWJ/l/NmKd229vR\n/nv7ldspVuSWXF5C/fb1K/D5Hz99pB57epDjZkeKSYpRYM/EI5VJ6d67e7QlbAuNOzqOmm9oTrqL\ndKnzrs7kFexFD2MfkkwBf1mlMim5+rjSrHOzFNDr4iWP9Dn/7eT2pqenJ9WoUYOcnZ3lr9u3b1Pr\n1q3J3t6eRo4cKf8f5e3tTTY2NmRlZUUHDx4kIqLk5GTq06cPOTo6Utu2beW13cHBwWRnZ0c2NjY0\na9aX/zlz584lW1tbsrGxoStXrhARUXR0NLVv354cHByoe/fulJycnP2NFNN66dJAVeoCSyqOv7hK\nW/xlMhmtDFpJtt62lCHNyPP4BQuI7OyIUlMV35e8Yv/rr8K1c/hnI5MNIRtowP4BiulYKVHcP/tJ\naUlUfVl1Co8KL1Q7UpmUfvL/ieqtrkf33t1TUO8K71vjn5qeSh4nPKji7xWp/ur6NGD/AFoZtJKu\nvrxKnzI+KaWPbyVv6bvl39G119eU0r5YFJVzlvhl65nyBQYGyr+2YUWP4y+u0hT/R+8fYdKpSYiI\nj8DBvgdhom+S6/FHjgATJgDXrwM1ayq+P3nFnggYPFiYf/zgQUBXN+e2oj9Gw3itMd5Oe4tyZcop\nvrMlUHH/7K8OXo3AF4E41O+QQtrbdmsbpp+dji3dtqBTo04KabMg0qRpWHZlGcpHlsfk/pPztbjf\nq4RX6L2vN2rp1sL6TutRXad6EfRUsPXWVmwM3YgrI66o1EKEuVFUzslJOGOMsVxJPknw28XfsCls\nE35y/Aketh45roT56RNw4YKQgO/ZIzwo+e95v4taRgYwbpww1/iJE0C1XKYFb721NX60/xFdGncp\nug4ypUjNSEUDrwbw6+8Hq5pWCmv38svLGHRwENzqu2GF6wrols3lNzslSJemo9/+fohLiUOkJBI1\ndGpgTus5aGPUJscE99yzcxh8aDCm2E3B9JbTizwRlpEMLbxbYJr9NAwwG1Ck11YWReWc6groC2OM\nsRLq4ouLMFlrguikaNwZfwfTWk7LNgH38wP69BEWzZk7F6hdG7h6VdwEHBAW9vH2Bn74AXB0FBYK\nyklvk944cP9A0XWOKc2WsC2w+M5CoQk4ADjWcUT4uHDISAaz9WY49+ycQtvPTbo0HQMPDkSaNA2n\nB5/G/Yn3McZqDCaemAjHLY448M8BBL0Kwq2oW3gY+xAvE15iyeUlGHxoMHb23IkZDjNEGYlWV1PH\nqvarMNN/JpLTk4v8+sUZj4SzQivuX0mWdBx/cZXk+Cd+SoTpOlOs7bg219Fhf39g2DDgt9+Ajh0B\nA4Oi6d8k/cfsAAAgAElEQVS3xn7lSuF16hTQpEnW9yMTI2G+wRxvp73NcaSffVFcP/vp0nQ0WNMA\ne3rtgb2hvdKuc/LxSYw5NgZdG3XFknZLoKOlo7RrZcgyMPjgYCR+SsShfodQtkxZefylMil87/li\n6+2tSPyUiOT0ZKSkpyAlIwUNqjTA9u7bYVjJUGl9y69++/uhqX5TzG49W+yuFJqics48pyhkjDFW\nOs08OxOu9V1zTcDj4oDhw4EtW4B27YqwcwUwZYpQjtKmDbBzJ9C2beb3a1WshUZVG+H88/Nwa+Am\nTidZofmE+6BhlYZKTcABoEPDDggfF44pp6fAfL05tnTbgtZ1Wyv8OlKZFO6H3fEh9QP8+vuhbJmy\nmd7XUNfAALMBxb7UY+kPS2G50RIjmo9A7Yq1xe5OscAj4YwxxrK4EHEBgw4Owt0Jd6FXLuf1GQYM\nEEa+V68uws4VUkCA8MDmhAnAzz8D6v8qzFxxdQUevn+IjV02itdBVmAZsgwY/2mMTV03KSUhzsnR\nh0cx7vg49Dbpjd9/+B3lNcsXuC0iwsuElwh9G4rQN6EIiAiAjpYOjvQ/Am1NbQX2uuA+fQJ27ACk\nUmD0aCC/VS6zAmbhRcIL+PTwUW4HlYwfzPwKJ+GMMaYYKekpMN9gjuXtlqObcbccj9u1SyhBCQ0F\ntItHbpBvb94A/foBOjqAj8+XBzaff3gO279t8WbaG5RR5y+LVc2vAb/iyqsrCHAPKPJrx6XEwfOk\nJ65FXsPWblvhUMfhm85PSE3AnMA52HlnJ8qol4F1TWtY1bCCVQ0rtKvfrljM2pOUJDxjsXw5YGoK\nvH8P1KkjfBP2r8XQc/Qx7SMa/9kYB/sehG1tW+V3WEn4wUxWbHxeXYqJg+MvrpIY/7mBc2FZwzLX\nBPzVK2DyZGE0TKwEvDCxr1lTGBE3MwOsrIDgYGG/UWUjGFYyxKUXlxTTyRKsuH3211xbg7339mJP\n7z15HnvxIvD4sWKvX0W7Cnb03IGlPyxF7329YbHBAmOOjsGmm5tw7909SGXSbM8jIuy+sxtN1jVB\nUloSbo65ibfT3uLogKOY6zwXXRp3yTYBL8r4p6UJv3AbGQGXLwsPYp86JfzZwACwsQHu3s27HR0t\nHSxssxCTT0/mgVNwTThjjLF/ufHmBrbe3oo74+/keIxMBri7C0m4pWURdk7BNDWBpUuBli2FB0pf\nvhRGxj/PkuJi5CJ2F1k+7b6zG0uvLsWl4ZdgUCH3J4OvXQN69hT+3LcvMHs28N13iutLD5Me6NSo\nE25H3Ubw62CcjziPxVcW413SO1jXtIZdLTvY1raFbS1bfEj9gIknJuJ98nvs77Nf6XXsBUEETJwI\nREQI04+a/Gt5gLJlgfXrge3bARcXoSxt4MDc2xtqMRSpGanIkGVAU0NTqX0v7rgchTHGGABhVglr\nb2tMbzkdg80HZ3uMVArMmwecOyeMJmpoFHEnlaR9e2DkSGGaxUfvH8F5qzNeT30NdTX+wri4O/Xk\nFNwPu+Pc0HMwNTDN9djoaGHUds0awMEBWLQI2LYN+M9/gB9/zH1Bp8KKTY7F9cjruPb6GoIjg3E9\n8joAYJ7zPEywmVBsy5/WrgU2bBCmHM0tPrdvA716CQn7lClF1z8xcE34VzgJZ4yxwlkfsh4HHxzE\nmcFnsp1P+No14R9YbW1hdpE6dUTopJL8/Tdw5gzg6ytsm603w4ZOG765rpcVraBXQei6pyv8+vuh\npWHLXI9NTxdm8GnVCliw4Mv+iAjg11+FqTb/+gvo2lW5ff5MRjKkSdOKRa13Ts6fFx6+vnoVqFcv\n7+NfvABatAD27xfiXFJxTTgrNopbXWBpw/EXV0mJf5o0DYuvLMYClwVZEvCYGGDUKKBHD2DSJGEE\nvDgk4IqMfffuwOnTQPL/1xLpbdIb+/7Zp7D2v0ZESM1IVVr7RUHMzz4RYfvt7ei2pxu2dd+WZwIO\nADNnCr9Azp2beX/dusLDufv3A56ewiu1CP7XqKupFyoBV3b8nz8XEvBdu/KXgAPA998DW7cK50VH\nK7V7JQIn4YwxxuBz2weNqjaCXe3MS1yeOAE0bSp8DX3/PjBkSP6nI1Ml1aoBtrbC/QLAYPPB2BG+\nAzFJMUq53k/nfoLbDp6LvCBuR92G01YneF3zwtEBR9GxYcc8z9m9W3iYcOfOnEuoHByAsDBh5hw7\nO+DBAwV3XIV8/Ah06wb88oswr/636NBBWDtgwAChfI3ljMtRGGOslPs8t/Lmbpvh9L2TfP/jx8JD\ni4cPCwlKSeftLdS67/n/5BoeJzygpqYGrw5eCr3Oneg7aLO9DSpoVsCOnjvgWMdRoe2rOiLCokuL\n8E/sPzCuagzjasYw0TeBfnl9LLq0CLvv7sYClwUYZTkKGup5P5Rw546QSPr7AxYW+bk+sHGjkIAu\nWyYklKVFWhpw/bpQK1+zpvB3oiC/dEulgKsrYG8vzKpS0nBN+Fc4CWeMsYLxue2DTWGbEDgsUL4v\nOVn4B3TsWGFRm9IgJgZo2BB4+1YoW4hJioHJWhNcHXkVjao2Usg1ZCSD0xYnDDYfDDWo4cijIzg+\n8LhC2i4JiAjTz07H+Yjz8GzhiQexD/Dg/QM8iH2A5x+eY6jFUCxquwjVylfLV3ufPgkPYk6bJszo\n8y3u3gV69wZ++AFYuVKYTaekSU4Gbt0SSszOnweCgoS/A66uQtlO2bJ5NpGjd++E2ZM2bhRmHypJ\nFJZzUglRgm5F5Zw/f17sLpRqHH9xiR3/+zH3afed3QU+P0OaQY3WNCL/p/6Z9g8fTjRwIJFMVtge\nKo8yYt+2LdGBA1+2f7/0O/Xc21Nh7f8d+jfZetuSVCallPQUqrG8BoW9DVNY+0VJ0fGXyWQ08+xM\narahGb1Pfp/t+9/ql1+IunYt+Oc4Pp6oQwciFxeimJiCtaEsBYl/RATRmjVEw4YRmZkRaWsTWVkR\nTZpEdPgwUVycYvt46RKRgQHRq1eKbVdsiso5uSacMcZU2M7wnRjuNxwv4l8U6Px9/+xDVe2qaGP0\npfBz0yZh8Zq//iqZ9d+56dMH2Pev5zEn2U7CjTc3cPnl5UK3HZMUg58DfsaGzhvkD+VNtZ+KxZcX\nF7ptVUdEmBUwCyefnIT/EH9U0a6S5ZjsZuzJzY0bQjlFYT7HlSoBR48Ko+ktWgilLcVBUpJQNpNf\nRMLfa2trYeTb3l54gDI+XojTqlVCDXjlyortp6MjMG6c8EA3y4ZCUvlioATdCmOM5ZurjyvZ/W1H\nfXz7fPO5UpmUmq5tSicenZDvCwsjqlaN6J9/FNlL1REdTVSpElFy8pd9Prd9yNbbtkAjsf827PAw\nmnJqSqZ9iamJVG1pNXr8/nGh2i5uElMTaXbAbKqxvAZNOjmJ3kre5nr87IDZZLrOlN59fKeQ66em\nEjVpQrRrl0KaIyKiHTuEvxs7d4r7DdHp00TlyxM1aEA0fz7Rs2e5H//uHVH37kQWFkR37hRNH/8t\nJYWoYUMiP7+iv7ayKCrn5JFwxhhTUUSEkMgQ7Oy5E9cir+FCxIVvOv/wg8PQ1tRG+wbtAQCJiUIN\n7Jo1mVfFK00MDIQ61tOnv+wbaDYQ6bL0Qk1ZeCHiAvyf+WOe87xM+3XL6mKC9QQsvbK0wG0XJ2nS\nNKy5tgYN1zTE8/jn8OvvByJCk7VNMPPsTMQmxwIQPrt3ou9g2ZVlcN7qjP339+Pc0HPQr6CvkH7M\nnQs0bgz076+Q5gAAgwYBJ08KD2va2wOXLimu7fw6fhwYPFj4fO7YAURFCSP0rVsDf/4pvH/jBvD6\ntfCQ5cmTwsOoDRsK8/yb5r6WkVKUKycs9uPhIcy6wv5FIal8MVCCbkXliF0TW9px/MUlZvwfv39M\ntf+oTUREe+/uJYv1FpQhzcjXuVGSKDJfb05+D74MT82eTTRkiFK6qhTKiv26dUI9/L+de3aOjFYZ\nUWp66je3l5qeSiZ/mtD+e/uzfT82KZYqL65MrxNeF6S7ovkc/4TUBAp+FUxrr68lo1VG1HFnR7od\ndTvTsa8SXtG4o+OoypIq1Nu3N9VcUZOMVhnRhGMTyO+BHyWlJSmsX9euEVWvThQVpbAmM5FKhVHx\n778X6s2L6lujQ4eI9PWJgoKE7c/x//RJeG/kSKF+vXlzopo1icqUIapThyggoGj6l5ehQ4mmThW7\nF4qhqJyzxGSunISLh5NAcXH8xSVm/HeG75Q/NCiTychpixNtCNmQ6zmP3z+msUfHkt5iPZp0cpK8\nxCIujqhqVaKnT5XebYVRVuyjooj09ISv0f+t085O9N+z//2mshSZTEbuh9ypt2/vXM+bfHIyTT2l\nOhnKsYfHyOZnGzL8w5DKLyxPln9Z0pCDQ+j88/O5nvcs7hl5h3rTo9hHhS7vyU5KCpGxMdGePQpv\nOttrLV8uJMYeHkSJicq7lq+v8IDjjRtf9uX1+ZdKiTLy9zt5kXj3TriHmzfF7knhKSrn5CkKGWNM\nRU05NQXlqTo66/0X9vbArahbcNvhhgcTH6Cy9pcnrIgIIW9CsOzqMgRGBGKc1Th42HrAoIKB/Jg5\nc4SvsDdtEuNOih8XF2DKlMxLmL+VvIXbDje0NWqLFW4roK6Wd0Xn75d+x/77+3Fx2EVU0KqQ43Gv\nE1/DYoMFHv3nEaqWr6qIW1CaiPgI2HjbwKu9F1rUaoG6enXzNV+3sqWkAL16AVWrAtu3F91DxXFx\nwPTpwNmzwNq1QJcuhW+TCIiMFBbICg4G1q0DTp3K3zznxdnmzUJpSlBQzosmqQKeJ/wrnIQzxkob\nh80OaBy5AEdWt8GjR0CVKsDYo2OhramNVe1XIS4lDjvCd2BT2CZIPkngaeuJUZajoKOlk6mdDx+E\nmtHr1/O/PHVJt3YtcPmysNLiv31I+YAuu7vAqLIRNnfdDE2NnCePPvDPAUw+PRnBI4NRq2KtPK85\n3G84TPVNMa3ltMJ2X2mkMilctrmgS6MumO4wXezuyCUlCbN7GBgICXiZMkXfh/PnhXn1LSwALy+g\nRo1vOz8tTZilxNcXePgQ0NEBjI2Fl4cH0KSJcvpdlIgAZ2dhFqL//Efs3hSconJOfjCTFVpgYKDY\nXSjVOP7iEiv+6dJ03I66jaibVtDTA+b9/3m/39r8hp13dqK3b2/UW10Pwa+D8YfrH3ji+QST7SZn\nScABYSGS7t1VLwFXZuwHDwYCA4GbNzPvr6xdGWeGnMGHlA/osbcHktOTsz3/xpsbGHd8HPz6++Ur\nAQeA3ia9cfTR0UL2XLlWBAnfAEy1n1psfvZIJMJiMIaGgI+POAk4IHx7Eh4uJM3m5sLy7RMnAsuX\nAwcOCO/JZNmfe/480KwZcOGCkIi/fCksGnX+PLB+ffYJeHGJ/7dQUxNGwv/4Q/ilo7TjJJwxxlTQ\nvZh7MKxkiJtBlbB3L7Brl/DVtX4FfXh38YZzXWc8m/QMu3rtQtt6bXMsnYiLE77q/vnnIr6BYq5S\nJWDhQmEE8usBr/Ka5XGo3yFU0a6Cdj7tcPbpWTyNe4p0aToAobSk+57u8O7iDcsaltm2f/askGz9\nm4uRC26+vYn41Hhl3FKh3Y66jWVXl2Fb923FovwEEOa5dnUVEt9Nm8QvcShXDliwAAgNFRJwY2Oh\nrMTHRxj9/e47YOhQYM8e4e9eVJTwC9+wYcLn7dgxYW5tRc/XXZyYmAirkWppid0T8XE5CmOMqSDv\nUG+cvn8ZV6Zvw5s3wmj22bPClGTfYvZs4M0b4O+/ldNPVSaTAba2wOTJwvR0Wd4nGRZfXgz/Z/54\nHv8cbyRvUEOnBtKkaZhsNxkzHGZk2250tDDqmZIiLP5iaPjlvU67OsHdwh19m/ZV0l0VTGpGKmy8\nbTC95XQMtRgqdncACImcu7uQtK5apRoLS0VECH9HT5wQRr3V1YXFbH79FaiQ8yMDrJjhmvCvcBLO\nGCtNRh8ZDdlbC8Se+A/8/ISvds3MhGS8Y8f8tREXBzRqBISEAEZGyu2vqgoKEkYw798HdHVzPzZd\nmo6XCS8RlxIH65rW2a7wSCQ8uGdhAWRkCKUU69Z9eX9dyDpci7yGbd23KfhOCufHMz8iIj4C+/rs\n++aVKxUtMlJ4kPjoUSF5nThRNRLwr6WmCiP5330ndk/Yt+KacFZsqGJdWknC8ReXWPEPeROCT89a\noEULYVtLC1ixApg6FUhPz18bK1cCPXqobgJeFLG3twfathVKBfKiqaGJ+lXqw6aWTY6J6l9/CbW+\nc+YIM2rs3Qu8ePHl/U4NO+Hk45OQUQ7FwyK48vIKdt/djQ2dN2S6L2XG38cH+OUXYdl5f3/gyRMg\nNhaYNUuot9bXFx5e/M9/VDMBB4TSlcIk4PyzX/WJ9PgCY4yxgkpKS8Kj94+ge80Cw2Z92d+pk7Bq\n3tq1QgkFIIy83rkDnDsnJHuxsV9eT54AYWHi3IMqWbxY+JZh5EhhFpmCevhQGLm9dEn4palaNWE2\njUWLhOQcAL7X+x4GFQwQEhkC29q2irmBQiAiTDszDUt+WIJq5asp/XpSKfDjj8J0fAMGCN9E7N4t\nlHG8eSPsu3UrcwkPY6qKy1EYY0zFXH55GZNPTcHDaSF49QrQ0/vy3j//CEtYr1ghzKxw+jSgrS08\nvNawoZD4VasmjCTWqQNUry7efaiSZcuEGt5jxwp2fno60LKl8ADexIlf9r9/L5QE3bjx5RuJmWdn\nQktDCwvaLCh0vwvr4P2DmH9hPm6OvZmvedELIzlZqL2PjwcOHsz6cCKR6o56s5KFy1EYY6yUCokM\nQYNyLVC7duYEHBCmMvPwAPbtA6ysgIsXgadPhWnOpk4VZmbo2BGwseEE/FtMmgQ8fgwcPlyw8xcs\nEH75mTAh8/6qVYV9/y536dSoE44/Pl7wzipIhiwDP5/7GUt+WFKgBDw2Vpgv++XLvI+NihLmj9bV\nFX5xzG52EE7AWUnDSTgrNK5LExfHX1xixP/6m+vQ/mAjrwf/2uzZwkNr//kP0KBB0fatKBVl7LW0\nhNX+xowRSiW+xcmTwMaNwvnZJZJTpwrJ/dOnwnZLw5aIiI/AG8mbwne8ELaEbUFN3Zpwre+a7fs5\nxT8jQyiJatJE+DameXOhPOrdu6zHJicDR44ItfedOgHbtvHUdfnFP/tVHyfhjDGmYkIiQyB50CLH\nJJwph4ODkCwPHZr/EfGrV4XjDx3KeQXFypWFEpXffhO2y6iXgWt9V5x4fEIxHS+A5PRkzL0wF0t+\nWPJNs6FcuCB8A7N/v/AcwqFDQokUkTA/9K+/Ao8eCQ9cdu0qPJi4cqVQ7jNnDo92s9KFa8IZY0yF\nvE9+D6PVRqi75wM2b9KAtbXYPSp9QkOFUduVK4UHBXNy964ws8q2bUD79rm3GR8vfGsRFCTU7vvc\n9sHBBwdxqN8hxXY+n36/9DvCosLg28c3x2MyMoSHe+/cEV7XrwtTOS5fDvTunTWhfvECmDtXmCO7\nTRshCW/fvmQvTMNKJp4n/CuchDPGSoPTT05j4cXFCPU4jw8f+Kt7sdy9C7i5AfPnC7OmfC0iAmjV\nCliyBBg4MH9t/vSTsEDQkiVATFIMGqxpgHc/vkPZMmUV2ve8vE9+D+O1xrg64ioaVs1+OpiffgJW\nrxZG983MhJe5ufC8AS86w0o6fjCTFRtclyYujr+4ijr+1yOvo7ZaC5iZcQIu5mff1FSod54/X3ig\ncO5cYTslRah9dnUV5gHPbwIOCHO2Hz0q/Fm/gj6a6DfBxRcXldF9OalMmmVO8t8v/47eJr1zTMB3\n7BAe/N21KxBPnwqlOQsWCIsacQJedPhnv+rjecIZY0yFhLwJgV70UNiKP4V0qdeoEXDvnjDvd2Cg\nMDp8966QiI4ZA3h6flt71tbAhw9CiUeDBsLCPccfH0e7+u2U0v/41HiYrTdDZGIkypYpi/Ka5aFd\nRhvJ6cm4N+FetueEhwNTpgj13nFxSukWY6UGl6MwxpiKICLUWFEDVjevY2CnOhg0SOwesa9JJMJU\nhs2bF+whw9GjhVlFpkwBbkXdQp99ffDY47HiOwpg8qnJSE5PxobOG5CakYrk9GSkpKegvGZ5VC1f\nNcvx8fHCLwrz53/bCD9jJQ2XozDGWCkTKYkEgXDniiGPhBdTurqApWXBZ/no0uVLSYpFdQukpKfg\nVtQtxXXw//6J+Qc77+zEwjYLoa6mjvKa5VGtfDUYVjLMNgGXyYAhQ4QHUjkBZ0wxOAlnhcZ1aeLi\n+IurKON/7909NNYzw0eJGurXL7LLFlsl8bP/ww/C6pkfPgijbb86/YoxR8cgQ5ahsGsQESafmoxf\nWv0C/Qr6+Trnt9+EPi1b9mVfSYy/KuH4qz5OwhljTEU8iH0AnU+N0aIFz6dcUpUvD7Ru/WVBoDFW\nY6BXTg9LryxV2DWOPjqK14mvMdFmYr6OP38e+Osv4WHM0v4wMGOKxDXhjDGmIiYcn4Cn10xgp+aB\nefPE7g1Tlo0bhQc9d+0Stl8lvILlRkucG3oO5tXNC9X2p4xPaLquKdZ1WpfjSpj/lp4ONGsmjIT3\n6FGoSzNWYnBNOGOMlTIPYh8g5r4xr5RZwnXuLIyEp6cL24aVDLHkhyVwP+yOdGl6odpeGbwSTQ2a\n5isBB4D164GaNYHu3Qt1WcZYNjgJZ4XGdWni4viLqyjj/yD2AZ4EN+Yk/P9K6me/Zk2gXj3g8uUv\n+4Y3G46aujWx8NLCLMenSdPwMuFlniNzbyRvsPzqcvzh+ke++hETI8z/vXp19uVPJTX+qoLjr/p4\nnnDGGFMBiZ8SEZ+SAH2N2tDP37N0TIV17SrMkuLiImyrqalhY+eNaP5Xc3Rt3BUm1Uxw+ulpHLh/\nAMcfHYeGuga0y2ijjVEbtDFqA5e6LqisXRl3391FeHQ4wqPDEfA8AKMtR6N+lfw91TtrFjB4sDBl\nImNM8bgmnDHGVEBIZAj67xyLJpduyqewYyVXWBjQty/w6FHmUWif2z748eyPSM1IhXVNa/Q07oke\nJj1QQ6cGHsc9RsDzAAQ8D8D5iPNISktCE/0mMK9uDovqFjCvbg6n752goa6R5/Vv3hSWoH/wANDT\nU+KNMqaCFJVz8kg4Y4ypgAexD6CTasyjkqVEs2ZAairw8CFgbPxl/2DzwTCoYACrmlaoVr5apnMa\nVW2ERlUbYZz1OMhIBiLKV8L9NSJhtc/ffuMEnDFl4ppwVmhclyYujr+4iir+D98/BGIbw8SkSC6n\nEkryZ19NTVi458iRr/erwa2BW5YE/GvqauoFSsABYPduICUFGD489+NKcvxVAcdf9eUrCb927Rpc\n/l+YFhYWhtq1a8PFxQUuLi7Yt28fAMDb2xs2Njawt7fH8ePHAQApKSno1asXnJyc0KlTJ8TGxgIA\ngoODYWdnB0dHR8yfP19+nXnz5sHW1hYODg4ICQkBAMTGxsLV1RVOTk7o378/UlJSFHf3jDGmIh7E\nPkDicx4JL03+vXqmMkilwKhRQtlJz57CSpgjRwLTpgFeXoBGwXJ4xlg+5VkTvnTpUuzYsQM6Ojq4\nevUq/v77byQmJmLq1KnyY6KiouDq6orQ0FCkpKTA0dERN27cwJ9//omPHz9i9uzZ2Lt3L4KCgrBq\n1So0a9YMhw4dgpGRETp16oSFCxdCJpNh+vTpOHfuHF69eoVevXrh+vXr8PT0hLW1NYYOHYolS5ag\nbNmymDx5ctYb4ZpwxlgJZrrOFE+X7sS7OxbQ1RW7N6wopKYC1asDT55AKQ/jrloFHDoEzJwpXOvz\ny8BAmCaRMZa9IpsnvEGDBjh48KD8YqGhoTh+/Dhat26NUaNG4ePHj7h+/TocHBygqamJihUrokGD\nBggPD8eVK1fQvn17AED79u3h7+8PiUSCtLQ0GBkZAQDc3Nzg7++PK1euwNVVmLfU0NAQGRkZiI2N\nzdRGhw4d4O/vX+ibZowxVSKVSfEk7imqqjXkBLwUKVdOmJ1k5kzFt/3ihVDz7e2deSR8xAhOwBkr\nKnkm4T179kSZMl+e37S1tcXy5ctx4cIF1KtXD/PmzYNEIkGlSpXkx+jq6iIhIQGJiYmoWLFijvu+\n3p9TG5/36+joICEhofB3zRSK69LExfEXV1HEPyI+ApU0qqNpo/JKv5YqKQ2f/cWLhdUzjx1TXJtE\nwMSJwJQpQKNGBW+nNMS/OOP4q75vnh2lR48e8qS4R48e8PDwgJOTEyQSifwYiUQCPT09VKxYUb4/\nu30AkJiYCD09PWhpaeXYRmJiIvT19eX7cjJs2DDUrVsXAKCnp4dmzZrB2dkZwJcPK2/zNm/ztqpt\n+x73hdYTA3k9uNj9KS7bnxWX/ihjW1cX8PQMxLBhwMOHzqhatfDtz50biHv3gIMHC9e/z4pTvErT\n9mfFpT8lefvWrVuIj48HAEREREBR8jVPeEREBAYMGICgoCDY29vDy8sLNjY2WLNmDSIjIzFlyhS0\na9cOISEhSE1NhZ2dHW7duoW1a9dCIpFgzpw52LNnDy5duoS1a9eiefPmOHDgAIyMjNC5c2fMnTsX\nGhoamDFjBs6ePYtXr16hW7duCAsLg6enJ6ysrODu7o7FixdDQ0MD06dPz3ojXBPOGCuhVlxdgc0H\nXmGy8SqMHi12b5gYpkwBoqKEmUsK48MHoGlT4MABwN5eMX1jrLQp8nnC1f6/WsCGDRswceJEaGpq\nokaNGti4cSN0dHTg6emJVq1aQSaTYdGiRShbtizGjx8Pd3d3tGrVCmXLlsWuXbvkbQwaNAhSqRRu\nbm6wsbEBALRq1Qr29vaQyWRYu3YtAGDWrFlwd3eHt7c39PX15W0wxlhp8fD9QyS/ag6THmL3hIll\n0SKgeXPA11dYxKegZs4EevTgBJyx4oBXzGSFFhgYKP/ahhU9jr+4iiL+TlucELpiHl5ecEHVqkq9\nlEopbZ/9a9eAbt2A27eFWVMA4P17Yf/bt0CLFsIot7p61nNlMuDMGWFKwnv3gH89glVgpS3+xQ3H\nX/GXhvwAACAASURBVDy8YiZjjJUS/7x7gPLJxpyAl3K2tsI83r17A3XrAsHBwLt3gLU1UKOG8BBn\nbCxgZwc4OAAVKwJ37givz4n3xo2KScAZY4XHI+GMMVaMxaXEwXBFXdicS0DgeTWxu8NE9umTkGzX\nri0k5SYmmRfViY4Grl4FrlwBkpIAMzPhZWoKVK4sXr8ZK0kUlXNyEs4YY8VY0Ksg9N82CZ3fXsf/\nH5VhjDEmoiJbrIexvHw9XRIrWhx/cSk7/g9iH6CshJerzw5/9sXF8RcXx1/1cRLOGGNFiIgw8+xM\nLLq0KF/HP3z/EOlvjWFiouSOMcYYK1JcjsIYY0Vo9vnZOProKN5K3uLIgCNoUatFrsd339MdAauG\n4NHhXvjuuyLqJGOMsRxxOQpjjKmYlUErsffeXpwefBpeHbzgftgdqRmpuZ5zL/oB1GKN5VPSMcYY\nKxk4CWeFxnVp4uL4iyu/8d8cthmrrq3C2SFnkRxjAFudvjA1MMWc83NyPCddmo6XiS/Q5LsGUOOJ\nUbLgz764OP7i4virPk7CGWNMyQ78cwCzAmbh7JCzSI2uA3t7YdGV1e3WYXv4dgS/Ds72vGcfnqGS\nWi2YmpQt4h4zxhhTNq4JZ4wxJQqPDscP23/A6cGnUSmlOZydgXnzgD17gLZtgXqd92NWwCyEjQ2D\ntqZ2pnP9Hvhhso83PKsdw5Qp4vSfMcZYZlwTzhhjKsD3ni9GNh+JahnN0bYt8NNPwPDhwPr1wNKl\ngGW53rD4zgKzz8/Ocu7D9w8he8czozDGWEnESTgrNK5LExfHX1x5xf/Uk1OwqdwebdoAnp7A+PHC\n/nr1gBkzhO017f/Ejjs7MCtgFp7GPZWf+yD2ARKe8hzhOeHPvrg4/uLi+Ks+TsIZY0xJ3iW9w6P3\njzFrmD2GD0eWkpIpU4Rlxs/66ePCsAv4mPYR9pvs0Xpra2wJ24Kbb24j7U1jGBqK03/GGGPKwzXh\njDGmJDvDd2LJsX1oEn4Ye/Zkf0xICNClC3DvHlC1KpAmTcOJxyew5dYWnHniD+MTLxF2tWrRdpwx\nxliOuCacMcaKuVNPTyH9fnv065fzMTY2QL9+wI8/CttaGlrobtwdfv39sKaGBOYNOQFnjLGSiJNw\nVmhclyYujr+4coq/jGQ49fg0Xp13Q7t2ubfx22/AuXNCjfjbt1/2P7ivzvXgueDPvrg4/uLi+Ks+\nTsIZY0wJbkXdgqa0MlqZGUFHJ/djdXWBS5eA5GSgSRNg9Gjg4UPg/n3wzCiMMVZCcU04Y4wpwaJL\ni+BzMBoeDVdjwoT8nxcTA6xdC6xbB8THC7XiDRsqr5+MMca+jaJyTk7CGWNMCVptdsLttT/h7qEO\nqFPn289PSgICAoDOncFL1jPGWDHCD2ayYoPr0sTF8RdXdvFPSE1A6JswfE+tC5SAA0CFCsKsKZyA\n54w/++Li+IuL46/6OAlnjDEFC3gegOppLdGtY3mxu8IYY6yY4nIUxhhTsLFHx8Jvc2P4/XcqbG3F\n7g1jjDFF4nIUxhgrhogIxx6eQsaD9rCxEbs3jDHGiitOwlmhcV2auBQVfyIgI0MhTZUqX8f/QewD\nJCcTurY0gTr/hFUq/tkjLo6/uDj+qo//iWCMQSoFhg4FGjcGbtwQuzeq7fTT0yj/pj26duEnKhlj\njOWMa8IZK2EePQJq1RJm18iPjAzA3V2Yn3roUGDqVGDWLMDDg2fmKIgftrbHFa/RiLnYK89Fehhj\njKkerglnjGWxcSNgbQ3Y2AiLvOQlI0NIvGNjAT8/YPBgICgI2L4d/2vvzuNjuvc/jr+yCxKx1hZE\n0RaxhywSu1iK2q6qtbd1ixZttVq3G24Xeqt0oVV+VV1Ue1tLKVVxxZqQ1hJalLapIJYEWSRkmfP7\n41yxVyqTnEzyfj4e8+CcTGY+836E+Tg+8/3Srx+cOVPwNRcn5y6cY2v8VkKqd1IDLiIif0pNuOSb\n5tKsFRkZSWYmjBkDs2aZ4ySTJkH79rBwoTnrfSPZ2TBsmNlor1gBnp7m+TvvhK1boU4daNECoqML\n65U4pit//idHTMb37FD69fCxrqASRH/3WEv5W0v5Oz5XqwsQkfw5cwY6dYLy5WH7dvD2hgYNzKvh\nf/sbbNhgboFetqzZkJ8+Db//DjNnQmoqLF8OpUpd/ZgeHmZD37499OkDTz0FEyeiDxr+ieij0aw4\nuIILS37mXv3DRUREbkEz4SIOLDbW3FVxxAiYMuX6Jvn8eXO2e/16c0b8jz/MK95+fmaT/uab1zfg\n1/rjDxg82GzyFy2CSpUK7OU4rKycLFrNb0WDk8+SETOYVausrkhERAqKvXpONeEiDuriRWjWDJ5+\nGv7+9z+/744dZvNdpw54ef3158rKMj+suXgxfPYZ1K9vzpz//LP565kzZkPv63tbL8XhvbHtDb7e\n/T2HXlrL7l1O1KxpdUUiIlJQ9MFMKTI0l2aNGTPMZtjPL/KW923dGvz9b68BB3BzM5/vgw9gwABo\n0gRefhkOHDB/37AhtG1rHpc0S1YtYfqW6aR8PpfXZ6gBL0z6u8dayt9ayt/xaSZcxAEdPAhvvw07\nd8JvvxXe83bvDidO3Hg2vG5d6NABVq40V2gpCQzD4K3tb9HM/XFcy9TjwQetrkhERByFxlFEHIxh\nQMeO5gcmH3/c6mqu9s038NBD8Pnn0Lmz1dUUvKX7l/LUmudImbGbXT94lNhxHBGRkkTjKCLF2JEj\nEBRkXlW+1kcfmauajBtX6GXdUu/e8PXX8MAD8J//WF1NwTqeepxxq8fhtvZ9pr+iBlxERP4aNeGS\nb5pLs79//hNq14YnnoBBg+DkSfP86dPw7LPmbLaLi3muqOUfFgbff2/W/vrrN1+n3JFlZGVw35L7\naJT+KF5JBg89ZHVFJVNR+9kvaZS/tZS/41MTLlLE7Nhhru29YAHs3WsuJ+jvb2688+ST5gY7LVrY\n/3kNwyAzJ9Muj9WsmbnJz+LF8I9/mKurFBeGYfCPVf/AI70usXMn89RT4ORkdVUiIuJoNBMuUoQY\nhnkleeRIrrq6umsXPPwwJCWZSwKWKWPf502+kMygrwaxNX4r9ze6n1EtRxFQPQCnPHSXp86fYuuR\nrXSu2xkvj6uXX0lNNdcYv3ABvvoKfHyu/lpsLDRvDqVL2/f1FKR/b/0386M/5+zMLaz5pnSJ+RCq\niIiYNBMuUgwtXQopKWYTfqXmzc3dMHftsn8DHncujpAPQ6hbvi4/j/2ZOyvcyQNfP0DT95vyzvZ3\nOJB4gIysjKu+52L2Rb76+St6f96bBu80YPb22fi95cekdZM4mnI0935eXrBiBTRuDMHB8P77MGqU\nuaxh1armVX1HGuVYfWg1/94yi6Q5K/j8YzXgIiJy+3QlXPItMjKS9u3bW12Gw7t40Vxve968v7ay\nSH7yjz4aTb8v+vFMyDOMbzM+98q3zbARGRfJ/+36P2KOxXAk+Qg+pXyo41OHO8rewdYjW2latSnD\nmwynf8P+lHUvy+9nf+ft7W+zaM8iutfvzqTgSTSt2jT3uebPhy1bzDXL27QxG/GcHGjZ0twI6IEH\nbuslFIgjyUdY9+s6yrqXxcvDi7LuZbmYfZH7/zMEpy+XMffZEP72N/O++vm3jrK3lvK3lvK3jr16\nTq0TLlJEzJkD99yTv6X9bIaNd7a/g4uzC70a9KK2T+2b3vfLn77k0dWP8mHvD+l1V6+rvubs5ExH\nv4509OuY+7gn0k4Qdy6OoylHeaf7O9QqV+uq7/Er78esbrOY0n4K83fOp+unXZkUPIkng57EycmJ\nUaPMq+BXyszJ5JNP3Oje3Ym2baHW1Q9piUNJh2g9pxNuJ4Io62Xg4ZWKs2cq2c5puK5/kymjLjfg\nIiIit0tXwkWKgKQkuPtu2LTJbMRvR0ZWBsOXD+d46nHqV6jPt4e+pYZXDXo16EWnup1ISE1gz8k9\n5u3EHtxd3Fl+/3KaVW1m3xfzP3Hn4hj01SCqlq3KR30+orxn+dyvpWWm8c72d/j3tn/zWOvH8Iye\nxrp1EBFx442ACsvBxF8IeKcTZX58iQVjHuaPP2D/fnMn0F9+MT9k+txz1tUnIiLWs1fPqSZcpAh4\n7DHz13ffvb3vP3X+FH2W9KFu+bp82PtDPFw9yLHlEHU0ipUHVxL5RyS+3r40uaMJTe9oStOqTald\nrnaePniZH5k5mTyz7hmWH1zOFwO+oHGVxszZMYc3ot6gk18nxrQaw/1f38/C3h/zrwc7cd99MHFi\ngZZ0Uz+dPEjrdztxx/5pxMz7OxUrWlOHiIgUbWrCr6Em3DqaS7t9NhtMngzLlsG2bVCp0l9/jEXL\nFzH1j6kMbTKUqe2nFnhjfTuW7V/GI6sewdnJmbDaYbzU7iUaVWkEQMRvEYxYPoJl3XbSs90drF9v\nzosXpj3HDhA4txN1/3iZ7e8/SNmyef9e/fxbR9lbS/lbS/lbRzPhIg4uIwOGD4cTJyAqitu68hp9\nNJrH1z7OrEdmMbLZSLvXaC997+lLQI0AUi+mck/lq+dtOtftzMimI3lh53BmvL6G++93pk8fOHfO\nvJ09C+XLm+uklypl/9pW7t7GgC8H0izxVTb93wg8POz/HCIiItfSlXARC5w6BX36mBvxfPjh7TWX\nNsNGi3ktmNx2MoMaD7J/kYUo25ZN+4/ac2+DXpTb+0xu4+3jY97mzYM6dWD2bPs955nki/Se/SLb\n0j6hn/s8vpjWK3cXUhERkZvRlXARB3XwIPToYS7JN23a7e+2uGz/MlydXflbI8dfqsPV2ZXF/RcT\nMD+A5YPCCPINyv1a8oVkGjTNpmNQRbp2NbO7kXPnYOdOOH788u3ECahRw9zBs3lz88OvTk4w7YNd\nvHpgOFVdG7D9oT0ENKxcSK9URETEpCvhkm+aS8u7lBSzGXz22euX6/srbIaNJu814fUur1P6WOli\nk//yA8t5dPWjNLmjCUeSjxCfHI+BgYuTC//2X8+LD7dk506oVu3q79u7F3r1ghq1svC6cx+2qj+Q\n6vUDp5x3kZ3pSk5yVdJOVCX9VFXcvVLJvGcR/2z1Ji/dNyTfM/T6+beOsreW8reW8rdOoV4J3759\nO88++ywbNmzg8OHDjBw5EmdnZxo3bsycOXNwcnJi/vz5fPDBB7i6uvL888/Ts2dPMjIyGDp0KKdP\nn8bLy4tFixZRqVIloqOjefzxx3F1daVr1668+OKLAEydOpXVq1fj6urK7NmzCQgIIDExkQceeIAL\nFy5QvXp1Fi5ciKenZ75fuIgVxo+HTp3y14AD/Oen/+Dl4UX3et3ZeGyjfYorAu67+z5Ku5UmKycL\n33K+1CpXi3Ie5Vi6fylPrO3L4FExjBhxB999d3kpwzVrYPjIHJpNHse29EX4+fjRqnorWlVvRfOq\nwzEwOJF2ghNpJzhy5iSnztj4V8+d+Jarae2LFRGRks24hRkzZhj+/v5GUFCQYRiG0atXL2Pjxo2G\nYRjG6NGjjWXLlhkJCQmGv7+/kZmZaSQnJxv+/v7GxYsXjZkzZxpTp041DMMwlixZYkyYMMEwDMNo\n2rSp8dtvvxmGYRg9evQwdu3aZfz4449Gx44dDcMwjCNHjhgBAQGGYRjGuHHjjEWLFhmGYRjTp083\nZs2adcM68/BSRCy1ZIlhNGhgGGlp+Xuc7Jxs4+537za+P/y9fQpzEC/+90UjeEGI0Sb4ovHGG+a5\nt982jDuqZxpd3h9sdFzU0TibcdbaIkVEpNizV895y20x6tWrx9KlS3Mvu+/cuZOwsDAAunfvTkRE\nBDExMYSEhODm5oa3tzf16tUjNjaWrVu30q1bNwC6detGREQEqampZGZm4ufnB0B4eDgRERFs3bqV\nrl27AuDr60t2djaJiYlXPcal5xNxNPHxMG4cfPYZlClz6/ufOn+KHp/1IPZk7HVf+3zf51QqXYnO\ndfOxtaYDeqn9S1QuU4m6j41jxgwYPBje+yCTpi8Pws0rmVWDV+FTysfqMkVERPLklk14v379cHW9\nPLViXDED4+XlRXJyMikpKZQrV+6G5729vW96Lq+Pcel82bJlSU5OzsfLlYIQGRlpdQlFWk4ODBsG\nTzwBrVrl7XvejHqT5IvJdPq4E5/FfpZ7PtuWzdSNU5nWflruLHNJyd/ZyZlP+n7CnrNb6PvK+1zM\nycD3qb6UKQ3LBi3D082aMbWSkn9RpOytpfytpfwd319eHcX5ij2lU1JS8PHxwdvbm9TU1Nzzqamp\n152/0bkrH8Pd3f2mj5GSkkLlypVzz93MyJEjqVOnDgA+Pj40a9Ys90MLl35Ydazjwj5+4w04ezaS\n1q0Bbn3/MxlnmPPlHOb3nk/Dng3p90U/vl7zNWNajeFYxWP4evvi9IcTkX9EFonXV9jHK+5fQcBz\nAdxRazYtyrZg0X2L2Lp5a5GpT8eFd3xJUamnpB1fUlTqKWnHlxSVeorz8e7duzl37hwAcXFx2Eue\nVkeJi4tj8ODBREVF0bt3byZOnEi7du0YPXo0nTp1IiwsjC5duhATE8OFCxcIDAxk9+7dzJkzh9TU\nVF566SWWLFnC5s2bmTNnDs2bN+frr7/Gz8+Pe++9lylTpuDi4sKkSZNYt24d8fHx9OnTh127djF+\n/HhatmzJiBEjmD59Oi4uLjz99NPXvxCtjiJF0J490KULxMRA7dp5+54pkVOIT47n//r8HwDnLpxj\n2LJhnMk4Q0JqAovuW0Ro7dACrLro2/D7Btb+upZXOr6Ci7MW9xYRkcJTqNvWx8XF8cADD7Bt2zYO\nHTrEqFGjyMzMpGHDhsyfPx8nJycWLFjABx98gM1m47nnnqNv375kZGQwYsQIEhIS8PDwYPHixVSp\nUoXt27fz+OOPk5OTQ3h4OP/6178Ac3WUNWvWYLPZmD17NsHBwZw6dYoRI0aQmppK5cqVWbx48Q1X\nR1ETLkXRP/8Jrq7meuB5kXIxhTvfvpOoh6KoV6Fe7nmbYePVza9yMOkgn/T9pICqFRERkVsp1Cbc\nEagJt05k5OWxCLla9+4wZgz07p23+7+2+TV+Ov0Tn/b7NM/Pofytpfyto+ytpfytpfytox0zRYo4\nwzB3cGzePG/3P595ntnbZ7NhxIaCLUxEREQspyvhIgXk+HFo2hROncrb1vRvRr3JtvhtfPW3rwq+\nOBEREbktuhIuUsTt2mVeBc9LA56RlcEb295g9ZDVBV+YiIiIWM7Z6gLE8V27XJKY/sooyoe7PqRl\n9ZY0q9rsLz+P8reW8reOsreW8reW8nd8asJFCsilK+G3EhUfxbRN03gh7IWCL0pERESKBM2EixQQ\nPz9YuxYaNLj5fRbtXsRT655iYZ+F3Nvg3sIrTkRERG6LZsJFirCzZyEpCerVu/HXc2w5PBvxLMsO\nLCNyRCSNqjQq3AJFRETEUhpHkXzTXNr1du2CJk3A+QZ/wlIuptB7SW9+TPiR7Q9vz3cDrvytpfyt\no+ytpfytpfwdn5pwkQKwaxe0aHH9+dPnTxO2MIza5WqzduhaKpauWPjFiYiIiOU0Ey5SAIYOhU6d\n4MEHL59LSE2g08edGNBwAFPbT8UpL2sXioiISJFir55TV8JFCsC1yxPGJ8fT7qN2DG0ylGkdpqkB\nFxERKeHUhEu+aS7taunpEBcHDRuax7+f/Z12H7VjdKvR/DP0n3Z/PuVvLeVvHWVvLeVvLeXv+LQ6\nioidxcbCPfeAuzvEnYuj/aL2PBPyDGMDxlpdmoiIiBQRmgkXsbO5c81xlAUL4Ln1z3Eh+wIzw2da\nXZaIiIjYgWbCRYqoK1dGiToaRZc7u1hbkIiIiBQ5asIl3zSXdrVL29Xn2HL44fgPtKnRpkCfT/lb\nS/lbR9lbS/lbS/k7PjXhInaUlQU//2xu1LPv1D5qeNegvGd5q8sSERGRIkYz4SJ2tGcPDB5sNuLz\nfphH9LFoFvZZaHVZIiIiYieaCRcpgi6NooA5Dx5UM8jagkRERKRIUhMu+aa5tMuu3KQn6mgUgTUD\nC/w5lb+1lL91lL21lL+1lL/jUxMuYkeXVkZJSk/iRNoJGlVuZHVJIiIiUgRpJlzETmw28PExd8uM\nTlrNm1FvEjE8wuqyRERExI40Ey5SxBw6BBUqmLfoo9GFMooiIiIijklNuOSb5tJM330HnTqZvy/M\nD2Uqf2spf+soe2spf2spf8enJlzETpYvh/vuMzfp2XFsB21qFuwmPSIiIuK4NBMuYgdJSVC3Lpw4\nAb+m7qPfF/34ZdwvVpclIiIidqaZcJEiZNUq6NwZPD0hKj6KIF+tDy4iIiI3pyZc8k1zaZdHUeB/\n64PXKLwPZSp/ayl/6yh7ayl/ayl/x6cmXCSf0tPhv/+Fnj3N4+ij0boSLiIiIn9KM+Ei+bRiBbz9\nNqxfD2czzlJrdi3OPnMWV2dXq0sTERERO9NMuEgRceUoyo5jO2hVvZUacBEREflTasIl30ryXFp2\ntvmhzD59zOPCngeHkp1/UaD8raPsraX8raX8HZ+acJF82LoVatUyb/C/TXo0Dy4iIiK3oJlwkXx4\n4glzm/oXXgCbYaPCjAr8Mu4XqpSpYnVpIiIiUgDs1XNqcFXkNhmGOQ/+zTfm8f7T+6lYuqIacBER\nEbkljaNIvpXUubTYWHB2hsaNzePVh1bTtW7XQq+jpOZfVCh/6yh7ayl/ayl/x6cmXOQ2XVoVxcnJ\nPF75y0p63dXL2qJERETEIWgmXOQ2NWsG77wDoaGQlJ5E3bfrcvKpk5RyLWV1aSIiIlJAtE64iIWW\nLoULFyA42Dxec3gNHep0UAMuIiIieaImXPKtpM2lnT0L48bBggXg4mKeW/nLSno1sGYUpaTlX9Qo\nf+soe2spf2spf8enJlzkL3r6aXMWvG1b8zgzJ5Pvf/2eng16WluYiIiIOAzNhIv8BevXw9//Dnv3\ngrf3/879tp7n/vsc0Q9HW1uciIiIFDjNhIsUsvPn4R//gPfeu9yAA3xz8BvLRlFERETEMakJl3wr\nKXNpL74IgYHQo8flc4ZhWL40YUnJv6hS/tZR9tZS/tZS/o5PO2aK5EFMDHz2mTmGcqWfT/9MjpGD\nfxV/awoTERERh6SZcJE8CA2FUaNg+PCrz0/fMp2jKUd5t8e71hQmIiIihUoz4SKF5MQJ2LcP7r//\n+q9ZuTShiIiIOC414ZJvxX0ubeVKCA8Hd/erz58+f5qfTv1E+zrtLanrkuKef1Gn/K2j7K2l/K2l\n/B3fbTfhLVq0oEOHDnTo0IGHHnqIw4cP07ZtW8LCwhg7dmzuZfr58+cTEBBAUFAQ3377LQAZGRn0\n79+fsLAwevbsSWJiIgDR0dEEBgbStm1bpk2blvtcU6dOpU2bNoSEhBATE5Of1yvyl33zDfTpc/35\n1YdW07luZzxcPQq/KBEREXFotzUTfuHCBYKDg9m5c2fuud69e/PUU08RFhbGmDFjCA8PJzAwkK5d\nu/Ljjz+SkZFB27Zt+eGHH3j33XdJS0vjxRdf5IsvviAqKorZs2fTrFkzli1bhp+fHz179uSVV17B\nZrPx9NNPs379euLj4+nfvz87duy4/oVoJlwKwPnzUK0aHDkCPj5Xf23AlwPo1aAXI5qNsKY4ERER\nKXSWzoTv2bOH9PR0wsPD6dSpE9HR0ezcuZOwsDAAunfvTkREBDExMYSEhODm5oa3tzf16tUjNjaW\nrVu30q1bNwC6detGREQEqampZGZm4ufnB0B4eDgRERFs3bqVrl27AuDr60t2djZJSUn5fuEiebFu\nHbRufX0Dfu7COdb/vp4e9Xvc+BtFRERE/sRtNeFlypTh6aefZu3atbz//vsMGTLkqq97eXmRnJxM\nSkoK5cqVu+F57//tdnKjc3l5DCk6ivNc2jffQO/e15+fuW0mfe/uS+UylQu/qGsU5/wdgfK3jrK3\nlvK3lvJ3fLe1TniDBg2oV68eAPXr16dixYrs2rUr9+spKSn4+Pjg7e1Nampq7vnU1NTrzt/o3JWP\n4e7ufsPHuJGRI0dSp04dAHx8fGjWrBnt27cHLv+w6ljHeT3OyYFVq9rz4otXf/30+dO89cVbfNDr\nAy4pCvXqWMcl7fiSolJPSTu+pKjUU9KOLykq9RTn4927d3Pu3DkA4uLisJfbmgmfN28esbGxzJkz\nh+PHj9OpUyfq1q3LpEmTaNeuHaNHj6ZTp06EhYXRpUsXYmJiuHDhAoGBgezevZs5c+aQmprKSy+9\nxJIlS9i8eTNz5syhefPmfP311/j5+XHvvfcyZcoUXFxcmDRpEuvWrSM+Pp7evXuze/fu61+IZsLF\nzrZuhbFjYc+eq89PXDuRizkXtTa4iIhICWSvnvO2roQ/9NBDPPjgg7kz4AsXLqRixYqMGjWKzMxM\nGjZsyIABA3BycmL8+PGEhoZis9l49dVX8fDwYMyYMYwYMYLQ0FA8PDxYvHgxQO5oS05ODuHh4QQE\nBAAQGhpKUFAQNpuNuXPn5vtFi+TFihXXr4pyLOUYH+35iH1j9llTlIiIiBQL2jFT8i0yMjL3v22K\nk7vvhk8/hVatLp8b++1YyrqX5fUur1tX2DWKa/6OQvlbR9lbS/lbS/lbx9Ir4SLF3cGDkJYGLVte\nPvf72d/58qcvOfjYQesKExERkWJBV8JFbuDf/4bff4crp59GLh9J7XK1mdphqnWFiYiIiKV0JVyk\nAK1YAc8/f/l4/+n9rD60mkPjDllXlIiIiBQbzlYXII7v2uWSHN3p07BvH3TocPncy5tfZmLQRMqV\nKnfzb7RIccvf0Sh/6yh7ayl/ayl/x6cmXOQaX34JXbqAh4d5bBgGaw+vZVjTYdYWJiIiIsWGZsJF\n/mfXLnjpJdi5E774AkJCzPO/n/2d0IWhHH3yqLUFioiIiOXs1XPqSriUeLGx0K8f9OwJnTvD4cOX\nG3CAHcd20LpGa+sKFBERkWJHTbjkmyPPpc2eDV27Qmgo/PorjB8PpUpdfZ8dx3YQUD3AmgLzEDxy\n7wAAFjRJREFUwJHzLw6Uv3WUvbWUv7WUv+NTEy4l1tdfwxtvwI4d8MQT4Ol54/vtOK4r4SIiImJf\nmgmXEikqCnr3hu+/h+bNb36/bFs25WeU5+gTR4vkyigiIiJSuDQTLnKbDh82Z8AXLfrzBhzg59M/\nU9O7phpwERERsSs14ZJvjjSXlpgIPXrAlCnmr7dS1OfBwbHyL46Uv3WUvbWUv7WUv+NTEy4lgs0G\nP/wAffpA377wyCN5+z6tjCIiIiIFQTPhUmylp8P69bByJaxaBeXKweDB5nb0znn852ez95vxQa8P\n1IiLiIgIYL+e09UOtYgUGTk58N//wscfm8138+bQqxc8/TTUr//XHis9K51DZw7R9I6mBVOsiIiI\nlFgaR5F8Kwpzab/8As88A7VqweTJEBBgntuwAZ588q834AC7EnbRqHIjPFw97F+wHRWF/Esy5W8d\nZW8t5W8t5e/41ISLQzt2DB5+GNq2NY+//96c/R4/HqpUyd9jO8KHMkVERMQxaSZc8i0lBby9C/c5\nk5NhxgyYN89swp99FsqXt+9zDP56MN3u7MaIZiPs+8AiIiLisDQTLkXCp5/C2LGwZw/4+dn/8dPS\nzI11Tp6E06fh1Cnz999+ay4xuHs3+Pra/3kBYo7F8GLYiwXz4CIiIlKiaRxFbtvp0zBxIrRtG8mw\nYZCdbZ/HNQzYtAkefNBssF9+GVavhj/+AC8vCA42P3y5cGHBNeBJ6UmcTj/NXZXuKpgnsCPNBVpL\n+VtH2VtL+VtL+Ts+XQmX2/b44zBsmHlF+rXXzNsLL9z+4x04AF99BR99BB4eZhP+2mtQtardSs6z\nmOMxtKreCmcn/TtVRERE7E8z4XJbVq+Gxx6DvXuhTBnzA5ItWsA330CbNtff/9w5c5TEy8u8lS5t\nnt+xA5YvN29paXDffTB8uLm6iZNT4b6mK03bOI30rHSmd55uXREiIiJS5GgmXApUejrMnw8tW15e\neeSS1FQYMwYWLDAbcIAaNWDuXBgyBHbtMhttgMxMmDMHXn3V3CwnLc38/owMcHeHevXMxvvTT83n\nsrLxvlLM8RgebPag1WWIiIhIMaX/a5erGAZ89hncdZe5xvbgwTBihPlhyEuefx46dIAuXczjS3Np\n/ftDWJg5pgLm1XJ/f1i7FjZuhMOH4cQJOH8esrIgKQn27TNnvlu1KjoNuGEYDrVdveYCraX8raPs\nraX8raX8HZ+uhJcgNhskJsLx4+aV7sqVzbW0vb3NBnjHDpgwwWyQlyyBkBDzqvW//gWNG8OLL5oj\nJ19+aTbPN/LWW+YulYGBcOYMzJplzoxf22C7uFy+il7UHEk+gouTCzW8alhdioiIiBRTmgkvpk6d\ngs2bzVVGduwwZ7ZPnDAb7urVzZnsxETzfpmZZkNus8Err5gz2c7X/B/Jzz+bM+CbNplXygcNuvlz\n794NW7bAP/5hjpw4mv/89B8+2/sZy+9fbnUpIiIiUsTYq+dUE15MHDliNsiXGu+EBPNKdlgYBAVB\n7drmKiMeN9iBPSPDbMYrV778gckbMQxzPfCmTYvO6Ii9JaYnMuDLAfSo34NJIZOsLkdERESKGDXh\n1yjuTfgvv5hrY2dnQ06OecvKgp9+Mpvu8+fNhvvSrUkTc+SjMERGRtK+ffvCebICtPmPzTyw9AEG\nNx7MKx1fwc3FzeqS8qS45O+olL91lL21lL+1lL91tDpKCXHhAkyfDu++C336QKlSZnPt6mr+2rYt\n/POf5gcpi+vV6YKWY8vhtS2v8e6Od/mwz4f0qN/D6pJERESkmNOV8CJswwYYPRoaNYK334aaNa2u\nqPhJSE1g2LJhZNmyWNxvMTW89WFMERERuTldCXdwcXHm0n3ffQdRUVC+vLkF+6Xbr7+ay/q98455\nBVzsb8WBFTyy6hFGtxrN82HP4+qsPw4iIiJSOHQlvIAYhrnZzebN5kojzs7muIjNBtHRcPYsdO0K\n3bpBaCikpEB8/OWbmxs88cTlTW+KMkebS0vLTOOJ757gv3H/5dO+nxLkG2R1SfniaPkXN8rfOsre\nWsrfWsrfOroSXoSlpMDDD5ub04wfb54zDLMBB/Ncs2bXLwPYuHHh1lkSbT+6naHLhhJaK5Tdj+zG\ny8MB/pUjIiIixY6uhNtZbCwMHGjuKDl7tvlBSrGGYRj8evZXtsVvIyo+im1Ht5GQmsDcnnMZ0HCA\n1eWJiIiIA9IShdcoCk34woUwaZK5S+TQoZaWUmjOZpzl20PfMsR/CE4WLs+SnpXO3pN72Xtqb+6v\nsSdj8XTzJNg3mKCaQQT7BtOsajPcXRxwByEREREpEjSOYoFTp2D9eoiIgO3bzbW5MzLMZQQzMqBe\nPfPDlA0bWl1p4Ui+kEz4p+Ec/OEgPw38iVc7vVqojXhSehIrf1nJsgPL2PD7BupXrI9/FX/8q/jT\no34P/O/wp7pX9UKrxyqaC7SW8reOsreW8reW8nd8asKvcf68uXLJiROXb0eOmM11XBy0awdduphb\nuJcrB56e5q1UKXM3ypKyVndaZho9F/ckoHoAz/V9jhcOvYCHqwdT2k/J1+Nm27I5mXaShLQEElIT\nSEhL4EzGGTJzMsnKyTJ/tWURezKWmOMxdK7bmb81/BuL7luETykf+7w4ERERkQKmcRTMD01u2QIL\nFsCKFVC9urnF+6Vb9eoQHAytW5ub5OTV2Yyz5Bg5VCpd6bbqutKR5CMcST5Cy2ot8XTzzNdjZduy\nMQzjT3eEjE+OZ/ux7TSu0pi7K9191dcysjLoubgndcvX5YNeH+Ds5Myp86do91E7hjcZzuTQyVfd\nP8eWQ2RcJKfTT1OpdCUqla5E5dKV8Snlwy9JvxBzPIaYYzHEHI9hf+J+KnhWoFrZalTzqka1stWo\nVLoS7i7uuDm74ebihpuzG3dWuJOud3altFvpfGUhIiIi8ldoJvwafxaIYRjsObmHQ0mHaFGtBX4+\ndUlKcuLYMVi3zmy+nV1z6D5iL9UCoqlcvhR3V7qbuyreRXnP8tc9Xo4th8yczJs2w4fPHGZW1CwW\n71tMji0H33K+hNYKJbRWKG1rtaW8Z3lsho0cWw42w4aLswsVPCvc9LFe2/wayw8ux8/Hj/2J+2lc\npTHBNYMJ9g2mjHsZTp8/zen005w+f5rE9ERSM1M5n3We85nnSctMu+732bZsXJ1dqeNTh7sr3c09\nle7hnkr3kJaZxtb4rWw5soUL2RcIqBHAzoSd1C1fl4eaP8TAhgNxd3Gnz5I+VCpdiUX3LcLF2SW3\n1uOpx2n3UTvGtBrDk0FPcijpEB/t/oiPYz+mSpkq1K9Q/6o6z2ScoW75urSu0ZqA6gEE1AigyR1N\nKOWqT7OKiIhI0aQm/BpOTk4MWzqMYF+zOa1XoR6b/tjENwe/YfnPq7iQ7ganG5JSejc5Tum4nWpN\n+fTWVK8OrnW3cTBtOzW8axBUM4gsWxYHEg9wMPEgnm6e3Fn+TjJzMjmTcYYzGWdIzUzNvRobWCOQ\nwJqBtKnZhrTMNGZGzWTTH5t4pOUjPNb6MSqVrsSeE3vYfGQzm/7YxLb4bZzPOo+LkwvOTs64OLtw\nMfsi5T3LE+wbTIhvCCG+Ibi5uDF9y3S+O/wdjwY8yoTACVTwrEB6Vjo/HP/BXPHjaBRZOVm5V5Yv\nXWX29vCmjHsZyriVoax72et+7+HiQWZOJofPHOZA4gH2J+5nf+J+PF09zeevFUL9CvVxcnIiKyeL\n1YdW8+HuD9kYt5Fa5WpxV6W7+Lz/57mb21w5lxafHE+7j9pRrlQ5jqceZ4j/EB5s9iD+d/hb+NNR\nvGku0FrK3zrK3lrK31rK3zr6YOYNhNYKZdvRbcyKnsVvZ3+jjmsbcn7uRcb27xgSfg/9+jlRpw4Y\nZY+z70wM249txzAMQmpNIKhmEBVLV7zq8QzDICEtgcNnDuPp6kkFzwpU8KxAuVLlyLHlsO/UPqKP\nRrMlfgtvRL2BzbAxoc0EPr7vY8q4l8l9nJbVW9KyekseD3z8hnUbhsGhM4fYemQr2+K3MTdmLkkZ\nSUxoM4E5PeZQrlS53PuWditNWO0wwmqH5SsrD1cPGlVpRKMqjf70fm4ubvS5uw997u7DibQTbIzb\nSN97+t50d0nfcr5sfnAzsSdj6Vy385+OvIiIiIiUVMXqSni1agaZmZCZCVm2LMI7uzFiBPTsCe5a\nlU5ERERE8knjKNdwcnLi2DEDNzez4b60WomIiIiIiL3Yqwl3vvVdHEf16lC5srl0oBrwwhMZGWl1\nCSWa8reW8reOsreW8reW8nd8xaoJFxERERFxBMVqHKWYvBQRERERKaI0jiIiIiIi4qDUhEu+aS7N\nWsrfWsrfOsreWsrfWsrf8TlEE26z2Rg9ejTBwcF06NCBX3/91eqS5Aq7d++2uoQSTflbS/lbR9lb\nS/lbS/k7PodowpcvX05mZibbtm1j+vTpTJw40eqS5Arnzp2zuoQSTflbS/lbR9lbS/lbS/k7Podo\nwrdu3Uq3bt0AaNOmDT/88IPFFYmIiIiI3D6HaMJTUlLw9vbOPXZxccFms1lYkVwpLi7O6hJKNOVv\nLeVvHWVvLeVvLeXv+BxiicKJEycSGBjIwIEDAfD19SU+Pv6q+9SrV0+z4iIiIiJSoO68804OHz6c\n78dxtUMtBS4kJISVK1cycOBAoqOjadKkyXX3sUcYIiIiIiKFwSGuhBuGwdixY4mNjQVg4cKFNGjQ\nwOKqRERERERuj0M04SIiIiIixUmR/2Dm9u3b6dChAwAHDhygbdu2hIaG8tBDD+VuGfree+8REBBA\n69atWb58OQAZGRn079+fsLAwevbsSWJiomWvwZFdmf+ePXsICgoiNDSUv//972RmZgIwf/58AgIC\nCAoK4ttvvwWUv73kJf9Zs2YRGBhIYGAg06ZNA5S/PeQlezD3MejevTvz5s0DlL295CX/NWvWEBQU\nRFBQEOPHjweUv73kJX+999pfVlYWw4YNIywsjDZt2rBy5UoOHz5M27ZtCQsLY+zYsbm9j9577euv\nZG+3912jCJsxY4bh7+9vBAUFGYZhGIMGDTLWrFljGIZhDBkyxFi5cqWRmppq+Pn5GVlZWcbZs2eN\n2rVrG4ZhGDNnzjSmTp1qGIZhLFmyxJgwYYIlr8GRXZt/q1atjKioKMMwDOP55583Zs2aZSQkJBj+\n/v5GZmamkZycbPj7+xsXL15U/naQl/x/++03o1WrVobNZjMMwzBCQkKM2NhY5Z9Pecn+ksmTJxuB\ngYHGvHnzDMPQ3z32kJf8U1JSjMaNGxtJSUmGYRjG9OnTjVOnTil/O8hL/mlpaXrvLQALFy40nnji\nCcMwDOPMmTOGr6+v0bt3b2Pjxo2GYRjG6NGjjWXLlum9twDkNXt7vu8W6Svh9erVY+nSpbn/8vD0\n9CQpKQnDMEhNTcXd3R0nJycA0tLSSE1NxcXFBbh6bfFu3boRERFhzYtwYNfmf/ToUQIDAwEIDg5m\n48aNxMTEEBISgpubG97e3tSrV4/Y2Fjlbwd5yb9WrVp89913uX8OsrKyKFWqlPLPp7xkD/DVV1/h\n4uKSmzXo7x57yEv+UVFR+Pv78+STTxIWFka1atWoXLmy8reDvOSv996CMXDgwNwrqzabDTc3N3bu\n3ElYWBgA3bt3JyIiQu+9BSCv2fv6+trtfbdIN+H9+vXD1fXyAi7jxo1jwoQJNGzYkFOnTtGuXTvK\nlCnD4MGDadiwIa1atcr9L8mUlBTKlSsHgJeXF8nJyZa8Bkd2bf5169Zl06ZNAKxcuZLz589flTNc\nzvrKtd2V/+3JS/4uLi5UrFgRwzB46qmnaNGiBfXr19fPfz7lJft9+/bx+eefM23aNAzDyG1YlH3+\n5SX/xMRENmzYwOuvv86aNWuYPXs2hw4dUv52cKv809PTKV26NPfff7/ee+2sTJkylC1bltTUVAYO\nHMjLL7981b4oV77H6r3Xvm6VfdmyZUlOTsbV1dVu77tFugm/1tChQ9m8eTP79+9n2LBhTJw4kaio\nKKKiooiLi+PIkSMsW7aMmJgYvL29SUlJASA1NRUfHx+Lq3d8Cxcu5LXXXqNz587ccccdVKpUCW9v\nb1JTU3PvcynrK88rf/u4Uf4AFy5cYMiQIZw/f565c+cC6Offzm6U/SeffMKxY8fo2LEjixYtYtas\nWaxdu1bZF4Ab5V+xYkUCAgKoUqUKZcqUISwsjN27dyv/AnBt/hUrViQqKoro6Gi99xaA+Ph4Onbs\nyPDhwxk8eDDOzpdbtZSUlOveY0HvvfbyZ9lfmae93ncdqglPT0/Hy8sLgGrVqnHu3DnS0tLw9PTE\n3d0dDw8PfHx8OHfuHCEhIaxevRowP7xz6b8T5PatWrWKzz77jIiICJKSkggPD6d169Zs3ryZixcv\nkpyczP79+2ncuLHyLwA3yt8wDPr06UOzZs147733cv97TPnb142ynzFjBtHR0WzYsIGRI0fy5JNP\nEh4eruwLwI3yb9GiBfv27SMpKYns7Gyio6Np1KiR8i8AN8pf770F4+TJk3Tt2pXXX3+dkSNHAtC8\nefPcEbhLmeq91/7ymr0933cdYrOeSy9wwYIFDBgwgFKlSuHh4cH8+fOpVasW69ato02bNri4uBAa\nGkqXLl1o27YtI0aMIDQ0FA8PDxYvXmzxq3Bcl/Jv0KABnTt3xsPDg9atWzN8+HCcnJwYP348oaGh\n2Gw2Xn31VTw8PBgzZozyt5Ob5T9s2DCWL1/Opk2byMrKYs2aNQBMnz5d+dvJn/3s34yyt59b/d3z\n2muvER4eDsCgQYNo2LAhfn5+yt9ObpW/3nvt79VXXyU5OZlp06blzie/9dZbjB8/nszMTBo2bMiA\nAQP03lsA8pJ9//797fq+q3XCRUREREQKmUONo4iIiIiIFAdqwkVERERECpmacBERERGRQqYmXERE\nRESkkKkJFxEREREpZGrCRUREREQKmZpwEREREZFCpiZcRERERKSQqQkXESmGhgwZkruF8v79+7n3\n3nt5+OGHadeuHaGhoblbMX/11Vd07NiR0NBQwsLCSEpKIjIykjZt2hAWFsann35q5csQESm2HGLb\nehER+WtGjRrFe++9R48ePfjwww8JDg4mJSWFBQsWkJSURLt27di3bx+HDh3i22+/xdPTk9GjR7N2\n7Vpq1KjBxYsX2b59u9UvQ0Sk2FITLiJSDLVr145x48aRmJjIunXrCA4OZsuWLbmNdU5ODklJSVSu\nXJkRI0ZQtmxZDhw4QFBQEAB33XWXleWLiBR7asJFRIohJycnhg0bxrhx4wgPD6dmzZr4+voyefJk\nUlJSmDlzJm5ubkyZMoX4+HhsNhtdu3bFMAwAnJ01rSgiUpDUhIuIFFMjR47khRdeYO/evdSpU4dR\no0bRvn17UlJSePTRR/H29iYkJISgoCCqVKnCXXfdRUJCAn5+fjg5OVldvohIseZkXLrsISIixUpC\nQgLDhw9n3bp1VpciIiLX0P83iogUQ0uXLiU8PJxp06ZZXYqIiNyAroSLiIiIiBQyXQkXERERESlk\nasJFRERERAqZmnARERERkUKmJlxEREREpJCpCRcRERERKWRqwkVERERECtn/AzZ4UtKU0fmWAAAA\nAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "total_births.plot(title = 'Total birth by sex and year')" ] }, { "cell_type": "code", "execution_count": 117, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namessexbirthsyearprop
0 Mary F 7065 1880 0.077643
1 Anna F 2604 1880 0.028618
2 Emma F 2003 1880 0.022013
3 Elizabeth F 1939 1880 0.021309
4 Minnie F 1746 1880 0.019188
5 Margaret F 1578 1880 0.017342
6 Ida F 1472 1880 0.016177
7 Alice F 1414 1880 0.015540
8 Bertha F 1320 1880 0.014507
9 Sarah F 1288 1880 0.014155
10 Annie F 1258 1880 0.013825
11 Clara F 1226 1880 0.013474
12 Ella F 1156 1880 0.012704
13 Florence F 1063 1880 0.011682
14 Cora F 1045 1880 0.011484
15 Martha F 1040 1880 0.011429
16 Laura F 1012 1880 0.011122
17 Nellie F 995 1880 0.010935
18 Grace F 982 1880 0.010792
19 Carrie F 949 1880 0.010429
20 Maude F 858 1880 0.009429
21 Mabel F 808 1880 0.008880
22 Bessie F 794 1880 0.008726
23 Jennie F 793 1880 0.008715
24 Gertrude F 787 1880 0.008649
25 Julia F 783 1880 0.008605
26 Hattie F 769 1880 0.008451
27 Edith F 768 1880 0.008440
28 Mattie F 704 1880 0.007737
29 Rose F 700 1880 0.007693
30 Catherine F 688 1880 0.007561
31 Lillian F 672 1880 0.007385
32 Ada F 652 1880 0.007165
33 Lillie F 647 1880 0.007110
34 Helen F 636 1880 0.006990
35 Jessie F 635 1880 0.006979
36 Louise F 635 1880 0.006979
37 Ethel F 633 1880 0.006957
38 Lula F 621 1880 0.006825
39 Myrtle F 615 1880 0.006759
40 Eva F 614 1880 0.006748
41 Frances F 605 1880 0.006649
42 Lena F 603 1880 0.006627
43 Lucy F 591 1880 0.006495
44 Edna F 588 1880 0.006462
45 Maggie F 582 1880 0.006396
46 Pearl F 569 1880 0.006253
47 Daisy F 564 1880 0.006198
48 Fannie F 560 1880 0.006154
49 Josephine F 544 1880 0.005978
50 Dora F 524 1880 0.005759
51 Rosa F 507 1880 0.005572
52 Katherine F 502 1880 0.005517
53 Agnes F 473 1880 0.005198
54 Marie F 471 1880 0.005176
55 Nora F 471 1880 0.005176
56 May F 462 1880 0.005077
57 Mamie F 436 1880 0.004792
58 Blanche F 427 1880 0.004693
59 Stella F 414 1880 0.004550
...............
\n", "

1690784 rows × 5 columns

\n", "
" ], "text/plain": [ " names sex births year prop\n", "0 Mary F 7065 1880 0.077643\n", "1 Anna F 2604 1880 0.028618\n", "2 Emma F 2003 1880 0.022013\n", "3 Elizabeth F 1939 1880 0.021309\n", "4 Minnie F 1746 1880 0.019188\n", "5 Margaret F 1578 1880 0.017342\n", "6 Ida F 1472 1880 0.016177\n", "7 Alice F 1414 1880 0.015540\n", "8 Bertha F 1320 1880 0.014507\n", "9 Sarah F 1288 1880 0.014155\n", "10 Annie F 1258 1880 0.013825\n", "11 Clara F 1226 1880 0.013474\n", "12 Ella F 1156 1880 0.012704\n", "13 Florence F 1063 1880 0.011682\n", "14 Cora F 1045 1880 0.011484\n", "15 Martha F 1040 1880 0.011429\n", "16 Laura F 1012 1880 0.011122\n", "17 Nellie F 995 1880 0.010935\n", "18 Grace F 982 1880 0.010792\n", "19 Carrie F 949 1880 0.010429\n", "20 Maude F 858 1880 0.009429\n", "21 Mabel F 808 1880 0.008880\n", "22 Bessie F 794 1880 0.008726\n", "23 Jennie F 793 1880 0.008715\n", "24 Gertrude F 787 1880 0.008649\n", "25 Julia F 783 1880 0.008605\n", "26 Hattie F 769 1880 0.008451\n", "27 Edith F 768 1880 0.008440\n", "28 Mattie F 704 1880 0.007737\n", "29 Rose F 700 1880 0.007693\n", "30 Catherine F 688 1880 0.007561\n", "31 Lillian F 672 1880 0.007385\n", "32 Ada F 652 1880 0.007165\n", "33 Lillie F 647 1880 0.007110\n", "34 Helen F 636 1880 0.006990\n", "35 Jessie F 635 1880 0.006979\n", "36 Louise F 635 1880 0.006979\n", "37 Ethel F 633 1880 0.006957\n", "38 Lula F 621 1880 0.006825\n", "39 Myrtle F 615 1880 0.006759\n", "40 Eva F 614 1880 0.006748\n", "41 Frances F 605 1880 0.006649\n", "42 Lena F 603 1880 0.006627\n", "43 Lucy F 591 1880 0.006495\n", "44 Edna F 588 1880 0.006462\n", "45 Maggie F 582 1880 0.006396\n", "46 Pearl F 569 1880 0.006253\n", "47 Daisy F 564 1880 0.006198\n", "48 Fannie F 560 1880 0.006154\n", "49 Josephine F 544 1880 0.005978\n", "50 Dora F 524 1880 0.005759\n", "51 Rosa F 507 1880 0.005572\n", "52 Katherine F 502 1880 0.005517\n", "53 Agnes F 473 1880 0.005198\n", "54 Marie F 471 1880 0.005176\n", "55 Nora F 471 1880 0.005176\n", "56 May F 462 1880 0.005077\n", "57 Mamie F 436 1880 0.004792\n", "58 Blanche F 427 1880 0.004693\n", "59 Stella F 414 1880 0.004550\n", " ... ... ... ... ...\n", "\n", "[1690784 rows x 5 columns]" ] }, "execution_count": 117, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def add_prop(group):\n", " # integers division floors\n", " births = group.births.astype(float)\n", " group['prop'] = births/births.sum()\n", " return group\n", "\n", "names = names.groupby(['year', 'sex']).apply(add_prop)\n", "names" ] }, { "cell_type": "code", "execution_count": 119, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 119, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.allclose(names.groupby(['year', 'sex']).prop.sum(), 1)" ] }, { "cell_type": "code", "execution_count": 120, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def get_top1000(group):\n", " return group.sort_index(by = 'births', ascending = False)[:1000]\n", "grouped = names.groupby(['year', 'sex'])\n", "top1000 = grouped.apply(get_top1000)" ] }, { "cell_type": "code", "execution_count": 122, "metadata": { "collapsed": false }, "outputs": [], "source": [ "pieces = []\n", "\n", "for year, group in names.groupby(['year', 'sex']):\n", " pieces.append(group.sort_index(by = 'births', ascending = False)[:1000])\n", "top1000 = pd.concat(pieces, ignore_index = True)" ] }, { "cell_type": "code", "execution_count": 123, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namessexbirthsyearprop
0 Mary F 7065 1880 0.077643
1 Anna F 2604 1880 0.028618
2 Emma F 2003 1880 0.022013
3 Elizabeth F 1939 1880 0.021309
4 Minnie F 1746 1880 0.019188
5 Margaret F 1578 1880 0.017342
6 Ida F 1472 1880 0.016177
7 Alice F 1414 1880 0.015540
8 Bertha F 1320 1880 0.014507
9 Sarah F 1288 1880 0.014155
10 Annie F 1258 1880 0.013825
11 Clara F 1226 1880 0.013474
12 Ella F 1156 1880 0.012704
13 Florence F 1063 1880 0.011682
14 Cora F 1045 1880 0.011484
15 Martha F 1040 1880 0.011429
16 Laura F 1012 1880 0.011122
17 Nellie F 995 1880 0.010935
18 Grace F 982 1880 0.010792
19 Carrie F 949 1880 0.010429
20 Maude F 858 1880 0.009429
21 Mabel F 808 1880 0.008880
22 Bessie F 794 1880 0.008726
23 Jennie F 793 1880 0.008715
24 Gertrude F 787 1880 0.008649
25 Julia F 783 1880 0.008605
26 Hattie F 769 1880 0.008451
27 Edith F 768 1880 0.008440
28 Mattie F 704 1880 0.007737
29 Rose F 700 1880 0.007693
30 Catherine F 688 1880 0.007561
31 Lillian F 672 1880 0.007385
32 Ada F 652 1880 0.007165
33 Lillie F 647 1880 0.007110
34 Helen F 636 1880 0.006990
35 Jessie F 635 1880 0.006979
36 Louise F 635 1880 0.006979
37 Ethel F 633 1880 0.006957
38 Lula F 621 1880 0.006825
39 Myrtle F 615 1880 0.006759
40 Eva F 614 1880 0.006748
41 Frances F 605 1880 0.006649
42 Lena F 603 1880 0.006627
43 Lucy F 591 1880 0.006495
44 Edna F 588 1880 0.006462
45 Maggie F 582 1880 0.006396
46 Pearl F 569 1880 0.006253
47 Daisy F 564 1880 0.006198
48 Fannie F 560 1880 0.006154
49 Josephine F 544 1880 0.005978
50 Dora F 524 1880 0.005759
51 Rosa F 507 1880 0.005572
52 Katherine F 502 1880 0.005517
53 Agnes F 473 1880 0.005198
54 Marie F 471 1880 0.005176
55 Nora F 471 1880 0.005176
56 May F 462 1880 0.005077
57 Mamie F 436 1880 0.004792
58 Blanche F 427 1880 0.004693
59 Stella F 414 1880 0.004550
...............
\n", "

261877 rows × 5 columns

\n", "
" ], "text/plain": [ " names sex births year prop\n", "0 Mary F 7065 1880 0.077643\n", "1 Anna F 2604 1880 0.028618\n", "2 Emma F 2003 1880 0.022013\n", "3 Elizabeth F 1939 1880 0.021309\n", "4 Minnie F 1746 1880 0.019188\n", "5 Margaret F 1578 1880 0.017342\n", "6 Ida F 1472 1880 0.016177\n", "7 Alice F 1414 1880 0.015540\n", "8 Bertha F 1320 1880 0.014507\n", "9 Sarah F 1288 1880 0.014155\n", "10 Annie F 1258 1880 0.013825\n", "11 Clara F 1226 1880 0.013474\n", "12 Ella F 1156 1880 0.012704\n", "13 Florence F 1063 1880 0.011682\n", "14 Cora F 1045 1880 0.011484\n", "15 Martha F 1040 1880 0.011429\n", "16 Laura F 1012 1880 0.011122\n", "17 Nellie F 995 1880 0.010935\n", "18 Grace F 982 1880 0.010792\n", "19 Carrie F 949 1880 0.010429\n", "20 Maude F 858 1880 0.009429\n", "21 Mabel F 808 1880 0.008880\n", "22 Bessie F 794 1880 0.008726\n", "23 Jennie F 793 1880 0.008715\n", "24 Gertrude F 787 1880 0.008649\n", "25 Julia F 783 1880 0.008605\n", "26 Hattie F 769 1880 0.008451\n", "27 Edith F 768 1880 0.008440\n", "28 Mattie F 704 1880 0.007737\n", "29 Rose F 700 1880 0.007693\n", "30 Catherine F 688 1880 0.007561\n", "31 Lillian F 672 1880 0.007385\n", "32 Ada F 652 1880 0.007165\n", "33 Lillie F 647 1880 0.007110\n", "34 Helen F 636 1880 0.006990\n", "35 Jessie F 635 1880 0.006979\n", "36 Louise F 635 1880 0.006979\n", "37 Ethel F 633 1880 0.006957\n", "38 Lula F 621 1880 0.006825\n", "39 Myrtle F 615 1880 0.006759\n", "40 Eva F 614 1880 0.006748\n", "41 Frances F 605 1880 0.006649\n", "42 Lena F 603 1880 0.006627\n", "43 Lucy F 591 1880 0.006495\n", "44 Edna F 588 1880 0.006462\n", "45 Maggie F 582 1880 0.006396\n", "46 Pearl F 569 1880 0.006253\n", "47 Daisy F 564 1880 0.006198\n", "48 Fannie F 560 1880 0.006154\n", "49 Josephine F 544 1880 0.005978\n", "50 Dora F 524 1880 0.005759\n", "51 Rosa F 507 1880 0.005572\n", "52 Katherine F 502 1880 0.005517\n", "53 Agnes F 473 1880 0.005198\n", "54 Marie F 471 1880 0.005176\n", "55 Nora F 471 1880 0.005176\n", "56 May F 462 1880 0.005077\n", "57 Mamie F 436 1880 0.004792\n", "58 Blanche F 427 1880 0.004693\n", "59 Stella F 414 1880 0.004550\n", " ... ... ... ... ...\n", "\n", "[261877 rows x 5 columns]" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "top1000.index = np.arange(len(top1000))\n", "top1000" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Analyzing naming trends" ] }, { "cell_type": "code", "execution_count": 124, "metadata": { "collapsed": false }, "outputs": [], "source": [ "boys = top1000[top1000.sex == 'M']\n", "girls = top1000[top1000.sex == 'F']" ] }, { "cell_type": "code", "execution_count": 126, "metadata": { "collapsed": false }, "outputs": [], "source": [ "total_births = top1000.pivot_table('births', rows = 'year', cols = 'names', aggfunc = sum)" ] }, { "cell_type": "code", "execution_count": 127, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesAadenAaliyahAaravAaronAarushAbAbagailAbbAbbeyAbbieAbbigailAbbottAbbyAbdielAbdulAbdullahAbeAbelAbelardoAbigail
year
1880NaNNaNNaN 102NaNNaNNaNNaNNaN 71NaNNaN 6NaNNaNNaN 50 9NaN 12...
1881NaNNaNNaN 94NaNNaNNaNNaNNaN 81NaNNaN 7NaNNaNNaN 36 12NaN 8...
1882NaNNaNNaN 85NaNNaNNaNNaNNaN 80NaNNaN 11NaNNaNNaN 50 10NaN 14...
1883NaNNaNNaN 105NaNNaNNaNNaNNaN 79NaNNaNNaNNaNNaNNaN 43 12NaN 11...
1884NaNNaNNaN 97NaNNaNNaNNaNNaN 98NaNNaN 6NaNNaNNaN 45 14NaN 13...
1885NaNNaNNaN 88NaN 6NaNNaNNaN 88NaNNaNNaNNaNNaNNaN 47 6NaN 9...
1886NaNNaNNaN 86NaNNaNNaNNaNNaN 84NaNNaN 7NaNNaNNaN 50 16NaN 15...
1887NaNNaNNaN 78NaNNaNNaNNaNNaN 104NaNNaNNaNNaNNaNNaN 37 11NaN 13...
1888NaNNaNNaN 90NaNNaNNaNNaNNaN 137NaN 6 9NaNNaNNaN 46 8NaN 18...
1889NaNNaNNaN 85NaNNaNNaNNaNNaN 107NaNNaNNaNNaNNaNNaN 39 9NaN 20...
1890NaNNaNNaN 96NaNNaNNaN 6NaN 140NaNNaNNaNNaNNaNNaN 49 14NaNNaN...
1891NaNNaNNaN 69NaNNaNNaNNaNNaN 124NaNNaN 12NaNNaNNaN 40 10NaN 11...
1892NaNNaNNaN 95NaNNaNNaNNaNNaN 119NaNNaNNaNNaNNaNNaN 53 8NaN 11...
1893NaNNaNNaN 81NaNNaNNaNNaNNaN 115NaNNaNNaNNaNNaNNaN 43 13NaN 21...
1894NaNNaNNaN 79NaNNaNNaNNaNNaN 118NaNNaNNaNNaNNaNNaN 50 15NaN 13...
1895NaNNaNNaN 94NaNNaNNaNNaNNaN 92NaNNaNNaNNaNNaNNaN 54 NaNNaN 15...
1896NaNNaNNaN 69NaNNaNNaNNaNNaN 121NaNNaNNaNNaNNaNNaN 51 15NaN 15...
1897NaNNaNNaN 87NaNNaNNaNNaNNaN 97NaNNaNNaNNaNNaNNaN 58 12NaN 15...
1898NaNNaNNaN 89NaNNaNNaNNaNNaN 120NaNNaNNaNNaNNaNNaN 67 10NaNNaN...
1899NaNNaNNaN 71NaNNaNNaNNaNNaN 87NaNNaNNaNNaNNaNNaN 39 15NaNNaN...
1900NaNNaNNaN 104NaNNaNNaNNaNNaN 112NaNNaNNaNNaNNaNNaN 56 15NaNNaN...
1901NaNNaNNaN 80NaNNaNNaNNaNNaN 87NaNNaNNaNNaNNaNNaN 48 13NaN 13...
1902NaNNaNNaN 78NaNNaNNaNNaNNaN 91NaNNaNNaNNaNNaNNaN 54 11NaN 18...
1903NaNNaNNaN 93NaNNaNNaNNaNNaN 91NaNNaNNaNNaNNaNNaN 58 14NaN 20...
1904NaNNaNNaN 117NaNNaNNaNNaNNaN 80NaNNaNNaNNaNNaNNaN 52 10NaNNaN...
1905NaNNaNNaN 96NaNNaNNaNNaNNaN 73NaNNaNNaNNaNNaNNaN 65 NaNNaNNaN...
1906NaNNaNNaN 96NaNNaNNaNNaNNaN 72NaNNaNNaNNaNNaNNaN 50 11NaN 15...
1907NaNNaNNaN 130NaNNaNNaNNaNNaN 79NaNNaNNaNNaNNaNNaN 65 10NaNNaN...
1908NaNNaNNaN 114NaNNaNNaNNaNNaN 84NaNNaNNaNNaNNaNNaN 57 15NaNNaN...
1909NaNNaNNaN 142NaNNaNNaNNaNNaN 57NaNNaNNaNNaNNaNNaN 67 16NaNNaN...
1910NaNNaNNaN 145NaNNaNNaNNaNNaN 79NaNNaNNaNNaNNaNNaN 74 NaNNaNNaN...
1911NaNNaNNaN 187NaNNaNNaNNaNNaN 77NaNNaNNaNNaNNaNNaN 94 30NaNNaN...
1912NaNNaNNaN 303NaNNaNNaNNaNNaN 90NaNNaNNaNNaNNaNNaN 172 40NaNNaN...
1913NaNNaNNaN 417NaNNaNNaNNaNNaN 121NaNNaNNaNNaNNaNNaN 202 48NaNNaN...
1914NaNNaNNaN 485NaNNaNNaNNaNNaN 99NaNNaNNaNNaNNaNNaN 225 51NaNNaN...
1915NaNNaNNaN 553NaNNaNNaNNaNNaN 124NaNNaNNaNNaNNaNNaN 271 64NaNNaN...
1916NaNNaNNaN 584NaNNaNNaNNaNNaN 146NaNNaNNaNNaNNaNNaN 261 62NaNNaN...
1917NaNNaNNaN 597NaNNaNNaNNaNNaN 136NaNNaNNaNNaNNaNNaN 280 86NaNNaN...
1918NaNNaNNaN 656NaNNaNNaNNaNNaN 120NaNNaNNaNNaNNaNNaN 256 76NaNNaN...
1919NaNNaNNaN 645NaNNaNNaNNaNNaN 147NaNNaNNaNNaNNaNNaN 265 91NaNNaN...
1920NaNNaNNaN 668NaNNaNNaNNaNNaN 98NaNNaNNaNNaNNaNNaN 206 79NaNNaN...
1921NaNNaNNaN 696NaNNaNNaNNaNNaN 134NaNNaNNaNNaNNaNNaN 230 84NaNNaN...
1922NaNNaNNaN 700NaNNaNNaNNaNNaN 142NaNNaNNaNNaNNaNNaN 176 91NaNNaN...
1923NaNNaNNaN 616NaNNaNNaNNaNNaN 129NaNNaNNaNNaNNaNNaN 174 73NaNNaN...
1924NaNNaNNaN 683NaNNaNNaNNaNNaN 96NaNNaNNaNNaNNaNNaN 174 111NaNNaN...
1925NaNNaNNaN 644NaNNaNNaNNaNNaN 128NaNNaNNaNNaNNaNNaN 117 83NaNNaN...
1926NaNNaNNaN 593NaNNaNNaNNaNNaN 105NaNNaNNaNNaNNaNNaN 134 101NaNNaN...
1927NaNNaNNaN 546NaNNaNNaNNaNNaN 103NaNNaNNaNNaNNaNNaN 139 78NaNNaN...
1928NaNNaNNaN 557NaNNaNNaNNaNNaN 92NaNNaNNaNNaNNaNNaN 90 85NaNNaN...
1929NaNNaNNaN 469NaNNaNNaNNaNNaN 78NaNNaNNaNNaNNaNNaN 61 96NaNNaN...
1930NaNNaNNaN 500NaNNaNNaNNaNNaN 77NaNNaNNaNNaNNaNNaN 85 123NaNNaN...
1931NaNNaNNaN 458NaNNaNNaNNaNNaN 71NaNNaNNaNNaNNaNNaN 79 93NaNNaN...
1932NaNNaNNaN 514NaNNaNNaNNaNNaN 57NaNNaNNaNNaNNaNNaN 83 94NaNNaN...
1933NaNNaNNaN 460NaNNaNNaNNaNNaN 64NaNNaNNaNNaNNaNNaN 68 96NaNNaN...
1934NaNNaNNaN 478NaNNaNNaNNaNNaN 60NaNNaNNaNNaNNaNNaN 75 93NaNNaN...
1935NaNNaNNaN 461NaNNaNNaNNaNNaN 60NaNNaNNaNNaNNaNNaN 59 92NaNNaN...
1936NaNNaNNaN 443NaNNaNNaNNaNNaN NaNNaNNaNNaNNaNNaNNaN 70 74NaNNaN...
1937NaNNaNNaN 464NaNNaNNaNNaNNaN 52NaNNaNNaNNaNNaNNaN 64 91NaNNaN...
1938NaNNaNNaN 478NaNNaNNaNNaNNaN 57NaNNaNNaNNaNNaNNaN 55 87NaNNaN...
1939NaNNaNNaN 471NaNNaNNaNNaNNaN 69NaNNaNNaNNaNNaNNaN 56 95NaN 53...
............................................................
\n", "

131 rows × 6865 columns

\n", "
" ], "text/plain": [ "names Aaden Aaliyah Aarav Aaron Aarush Ab Abagail Abb Abbey Abbie \\\n", "year \n", "1880 NaN NaN NaN 102 NaN NaN NaN NaN NaN 71 \n", "1881 NaN NaN NaN 94 NaN NaN NaN NaN NaN 81 \n", "1882 NaN NaN NaN 85 NaN NaN NaN NaN NaN 80 \n", "1883 NaN NaN NaN 105 NaN NaN NaN NaN NaN 79 \n", "1884 NaN NaN NaN 97 NaN NaN NaN NaN NaN 98 \n", "1885 NaN NaN NaN 88 NaN 6 NaN NaN NaN 88 \n", "1886 NaN NaN NaN 86 NaN NaN NaN NaN NaN 84 \n", "1887 NaN NaN NaN 78 NaN NaN NaN NaN NaN 104 \n", "1888 NaN NaN NaN 90 NaN NaN NaN NaN NaN 137 \n", "1889 NaN NaN NaN 85 NaN NaN NaN NaN NaN 107 \n", "1890 NaN NaN NaN 96 NaN NaN NaN 6 NaN 140 \n", "1891 NaN NaN NaN 69 NaN NaN NaN NaN NaN 124 \n", "1892 NaN NaN NaN 95 NaN NaN NaN NaN NaN 119 \n", "1893 NaN NaN NaN 81 NaN NaN NaN NaN NaN 115 \n", "1894 NaN NaN NaN 79 NaN NaN NaN NaN NaN 118 \n", "1895 NaN NaN NaN 94 NaN NaN NaN NaN NaN 92 \n", "1896 NaN NaN NaN 69 NaN NaN NaN NaN NaN 121 \n", "1897 NaN NaN NaN 87 NaN NaN NaN NaN NaN 97 \n", "1898 NaN NaN NaN 89 NaN NaN NaN NaN NaN 120 \n", "1899 NaN NaN NaN 71 NaN NaN NaN NaN NaN 87 \n", "1900 NaN NaN NaN 104 NaN NaN NaN NaN NaN 112 \n", "1901 NaN NaN NaN 80 NaN NaN NaN NaN NaN 87 \n", "1902 NaN NaN NaN 78 NaN NaN NaN NaN NaN 91 \n", "1903 NaN NaN NaN 93 NaN NaN NaN NaN NaN 91 \n", "1904 NaN NaN NaN 117 NaN NaN NaN NaN NaN 80 \n", "1905 NaN NaN NaN 96 NaN NaN NaN NaN NaN 73 \n", "1906 NaN NaN NaN 96 NaN NaN NaN NaN NaN 72 \n", "1907 NaN NaN NaN 130 NaN NaN NaN NaN NaN 79 \n", "1908 NaN NaN NaN 114 NaN NaN NaN NaN NaN 84 \n", "1909 NaN NaN NaN 142 NaN NaN NaN NaN NaN 57 \n", "1910 NaN NaN NaN 145 NaN NaN NaN NaN NaN 79 \n", "1911 NaN NaN NaN 187 NaN NaN NaN NaN NaN 77 \n", "1912 NaN NaN NaN 303 NaN NaN NaN NaN NaN 90 \n", "1913 NaN NaN NaN 417 NaN NaN NaN NaN NaN 121 \n", "1914 NaN NaN NaN 485 NaN NaN NaN NaN NaN 99 \n", "1915 NaN NaN NaN 553 NaN NaN NaN NaN NaN 124 \n", "1916 NaN NaN NaN 584 NaN NaN NaN NaN NaN 146 \n", "1917 NaN NaN NaN 597 NaN NaN NaN NaN NaN 136 \n", "1918 NaN NaN NaN 656 NaN NaN NaN NaN NaN 120 \n", "1919 NaN NaN NaN 645 NaN NaN NaN NaN NaN 147 \n", "1920 NaN NaN NaN 668 NaN NaN NaN NaN NaN 98 \n", "1921 NaN NaN NaN 696 NaN NaN NaN NaN NaN 134 \n", "1922 NaN NaN NaN 700 NaN NaN NaN NaN NaN 142 \n", "1923 NaN NaN NaN 616 NaN NaN NaN NaN NaN 129 \n", "1924 NaN NaN NaN 683 NaN NaN NaN NaN NaN 96 \n", "1925 NaN NaN NaN 644 NaN NaN NaN NaN NaN 128 \n", "1926 NaN NaN NaN 593 NaN NaN NaN NaN NaN 105 \n", "1927 NaN NaN NaN 546 NaN NaN NaN NaN NaN 103 \n", "1928 NaN NaN NaN 557 NaN NaN NaN NaN NaN 92 \n", "1929 NaN NaN NaN 469 NaN NaN NaN NaN NaN 78 \n", "1930 NaN NaN NaN 500 NaN NaN NaN NaN NaN 77 \n", "1931 NaN NaN NaN 458 NaN NaN NaN NaN NaN 71 \n", "1932 NaN NaN NaN 514 NaN NaN NaN NaN NaN 57 \n", "1933 NaN NaN NaN 460 NaN NaN NaN NaN NaN 64 \n", "1934 NaN NaN NaN 478 NaN NaN NaN NaN NaN 60 \n", "1935 NaN NaN NaN 461 NaN NaN NaN NaN NaN 60 \n", "1936 NaN NaN NaN 443 NaN NaN NaN NaN NaN NaN \n", "1937 NaN NaN NaN 464 NaN NaN NaN NaN NaN 52 \n", "1938 NaN NaN NaN 478 NaN NaN NaN NaN NaN 57 \n", "1939 NaN NaN NaN 471 NaN NaN NaN NaN NaN 69 \n", " ... ... ... ... ... ... ... ... ... ... \n", "\n", "names Abbigail Abbott Abby Abdiel Abdul Abdullah Abe Abel Abelardo \\\n", "year \n", "1880 NaN NaN 6 NaN NaN NaN 50 9 NaN \n", "1881 NaN NaN 7 NaN NaN NaN 36 12 NaN \n", "1882 NaN NaN 11 NaN NaN NaN 50 10 NaN \n", "1883 NaN NaN NaN NaN NaN NaN 43 12 NaN \n", "1884 NaN NaN 6 NaN NaN NaN 45 14 NaN \n", "1885 NaN NaN NaN NaN NaN NaN 47 6 NaN \n", "1886 NaN NaN 7 NaN NaN NaN 50 16 NaN \n", "1887 NaN NaN NaN NaN NaN NaN 37 11 NaN \n", "1888 NaN 6 9 NaN NaN NaN 46 8 NaN \n", "1889 NaN NaN NaN NaN NaN NaN 39 9 NaN \n", "1890 NaN NaN NaN NaN NaN NaN 49 14 NaN \n", "1891 NaN NaN 12 NaN NaN NaN 40 10 NaN \n", "1892 NaN NaN NaN NaN NaN NaN 53 8 NaN \n", "1893 NaN NaN NaN NaN NaN NaN 43 13 NaN \n", "1894 NaN NaN NaN NaN NaN NaN 50 15 NaN \n", "1895 NaN NaN NaN NaN NaN NaN 54 NaN NaN \n", "1896 NaN NaN NaN NaN NaN NaN 51 15 NaN \n", "1897 NaN NaN NaN NaN NaN NaN 58 12 NaN \n", "1898 NaN NaN NaN NaN NaN NaN 67 10 NaN \n", "1899 NaN NaN NaN NaN NaN NaN 39 15 NaN \n", "1900 NaN NaN NaN NaN NaN NaN 56 15 NaN \n", "1901 NaN NaN NaN NaN NaN NaN 48 13 NaN \n", "1902 NaN NaN NaN NaN NaN NaN 54 11 NaN \n", "1903 NaN NaN NaN NaN NaN NaN 58 14 NaN \n", "1904 NaN NaN NaN NaN NaN NaN 52 10 NaN \n", "1905 NaN NaN NaN NaN NaN NaN 65 NaN NaN \n", "1906 NaN NaN NaN NaN NaN NaN 50 11 NaN \n", "1907 NaN NaN NaN NaN NaN NaN 65 10 NaN \n", "1908 NaN NaN NaN NaN NaN NaN 57 15 NaN \n", "1909 NaN NaN NaN NaN NaN NaN 67 16 NaN \n", "1910 NaN NaN NaN NaN NaN NaN 74 NaN NaN \n", "1911 NaN NaN NaN NaN NaN NaN 94 30 NaN \n", "1912 NaN NaN NaN NaN NaN NaN 172 40 NaN \n", "1913 NaN NaN NaN NaN NaN NaN 202 48 NaN \n", "1914 NaN NaN NaN NaN NaN NaN 225 51 NaN \n", "1915 NaN NaN NaN NaN NaN NaN 271 64 NaN \n", "1916 NaN NaN NaN NaN NaN NaN 261 62 NaN \n", "1917 NaN NaN NaN NaN NaN NaN 280 86 NaN \n", "1918 NaN NaN NaN NaN NaN NaN 256 76 NaN \n", "1919 NaN NaN NaN NaN NaN NaN 265 91 NaN \n", "1920 NaN NaN NaN NaN NaN NaN 206 79 NaN \n", "1921 NaN NaN NaN NaN NaN NaN 230 84 NaN \n", "1922 NaN NaN NaN NaN NaN NaN 176 91 NaN \n", "1923 NaN NaN NaN NaN NaN NaN 174 73 NaN \n", "1924 NaN NaN NaN NaN NaN NaN 174 111 NaN \n", "1925 NaN NaN NaN NaN NaN NaN 117 83 NaN \n", "1926 NaN NaN NaN NaN NaN NaN 134 101 NaN \n", "1927 NaN NaN NaN NaN NaN NaN 139 78 NaN \n", "1928 NaN NaN NaN NaN NaN NaN 90 85 NaN \n", "1929 NaN NaN NaN NaN NaN NaN 61 96 NaN \n", "1930 NaN NaN NaN NaN NaN NaN 85 123 NaN \n", "1931 NaN NaN NaN NaN NaN NaN 79 93 NaN \n", "1932 NaN NaN NaN NaN NaN NaN 83 94 NaN \n", "1933 NaN NaN NaN NaN NaN NaN 68 96 NaN \n", "1934 NaN NaN NaN NaN NaN NaN 75 93 NaN \n", "1935 NaN NaN NaN NaN NaN NaN 59 92 NaN \n", "1936 NaN NaN NaN NaN NaN NaN 70 74 NaN \n", "1937 NaN NaN NaN NaN NaN NaN 64 91 NaN \n", "1938 NaN NaN NaN NaN NaN NaN 55 87 NaN \n", "1939 NaN NaN NaN NaN NaN NaN 56 95 NaN \n", " ... ... ... ... ... ... ... ... ... \n", "\n", "names Abigail \n", "year \n", "1880 12 ... \n", "1881 8 ... \n", "1882 14 ... \n", "1883 11 ... \n", "1884 13 ... \n", "1885 9 ... \n", "1886 15 ... \n", "1887 13 ... \n", "1888 18 ... \n", "1889 20 ... \n", "1890 NaN ... \n", "1891 11 ... \n", "1892 11 ... \n", "1893 21 ... \n", "1894 13 ... \n", "1895 15 ... \n", "1896 15 ... \n", "1897 15 ... \n", "1898 NaN ... \n", "1899 NaN ... \n", "1900 NaN ... \n", "1901 13 ... \n", "1902 18 ... \n", "1903 20 ... \n", "1904 NaN ... \n", "1905 NaN ... \n", "1906 15 ... \n", "1907 NaN ... \n", "1908 NaN ... \n", "1909 NaN ... \n", "1910 NaN ... \n", "1911 NaN ... \n", "1912 NaN ... \n", "1913 NaN ... \n", "1914 NaN ... \n", "1915 NaN ... \n", "1916 NaN ... \n", "1917 NaN ... \n", "1918 NaN ... \n", "1919 NaN ... \n", "1920 NaN ... \n", "1921 NaN ... \n", "1922 NaN ... \n", "1923 NaN ... \n", "1924 NaN ... \n", "1925 NaN ... \n", "1926 NaN ... \n", "1927 NaN ... \n", "1928 NaN ... \n", "1929 NaN ... \n", "1930 NaN ... \n", "1931 NaN ... \n", "1932 NaN ... \n", "1933 NaN ... \n", "1934 NaN ... \n", "1935 NaN ... \n", "1936 NaN ... \n", "1937 NaN ... \n", "1938 NaN ... \n", "1939 53 ... \n", " ... \n", "\n", "[131 rows x 6865 columns]" ] }, "execution_count": 127, "metadata": {}, "output_type": "execute_result" } ], "source": [ "total_births" ] }, { "cell_type": "code", "execution_count": 128, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([,\n", " ,\n", " ,\n", " ], dtype=object)" ] }, "execution_count": 128, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAJkCAYAAADnQmzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8THf////HZLVlEURtV4XYkiCWEJJMEiETQtXW2ipo\n04qrJRdtVam1tOWiFNWKq8XHXmqrpREksQQRS6yJvaEIEskkJuuc3x/9dn7SLLYwwet+u52b5H3O\nnHme4TZe8573eb9ViqIoCCGEEEIIIQoxMXYAIYQQQgghyioploUQQgghhCiGFMtCCCGEEEIUQ4pl\nIYQQQgghiiHFshBCCCGEEMWQYlkIIYQQQohiSLEshHjhRUZGYmtry7Vr1wxtn332GUuXLn3ic165\ncoVu3bqVRrxC8vPz8fX1xdPTk3v37hnafX19SUlJKXDsiRMnmDp1aqFzJCUl8dtvvwHg4+NDYmLi\nM8kqhBCvOimWhRAvBUtLS4YMGWL4XaVSGTFNya5fv45Wq2Xfvn3Y2toW2PfPqe+bN2/OF198Uegc\nu3btYv/+/cBf1ypT5gshxLMhxbIQ4oWnUqno0KEDVapUYcGCBQX2Xb16lXbt2hl+b9euHVevXmXS\npEm88847dO7cmTZt2rB06VLeeOMNGjduzKFDh1CpVPzxxx906dIFd3d3pk+fDvzVo9ulSxd8fX3p\n0qUL165d48qVKzRt2hRfX19mzpxZ4PlXrFhBmzZt8PLyYujQoeTl5TFs2DDOnz9PSEhIoWsJDQ2l\nQ4cOdO3alTt37hAZGUm/fv0AeP311wkICGDUqFF88803rFq1ii1btgAwefJk/Pz8cHd35/Lly9y+\nfZsOHTrg6+tLu3btOHHiRIHnWbJkCX379qVjx464urqyceNGAKKiovDy8sLHx4d3332XvLw8lixZ\nglqtxsvLi927dxvOMW7cOL7//nsAUlNTad26NQBjx47Fy8uL9u3bs27dOsN5/fz88PX1xc3NjfPn\nz5f4ugkhRFkhxbIQ4oX3d6/q999/z7fffsvFixcf+hiVSkWFChXYvn07vXr1Ytu2bWzevJnPPvuM\n1atXA5CZmcmvv/7KgQMH2Lp1K/Hx8Xz88ceMGDGCPXv2MHr0aD777DNUKhW3bt1i586dfPLJJ4bn\nuHv3LpMmTWLPnj3s3bsXW1tbfvzxRxYuXIiTkxMLFy4slGvQoEHs3r2bwMBAvvrqqwI95NeuXWPV\nqlXMnj2bzz77jP79+xuGinTt2pVdu3bRuXNn1q1bR2xsLFWrVmX79u0sWLCAzMzMQtev1+uJiIhg\nx44dhIaGkpeXR3BwMBs2bCAyMpJatWqxZMkSVCoVdnZ27N27lw4dOhjO8d5777Fs2TIAVq5cycCB\nA9m+fTtXrlxh79697N69m2nTppGWlsaZM2dYvnw5e/bsoWfPnvzyyy/Fvm5CCFGWmBk7gBBClBY7\nOzvmzJlDUFAQHh4eRR7z4HCFli1bAmBra4uzs7Ph56ysLADatGlDuXLlAHBzcyMxMZFTp04xffp0\nvvnmGxRFwcLCAgAHBwfMzAq+pV66dAlnZ2cqVqwIgFqtJjw8nK5duxZ7DT4+PgC4u7uzdevWAvuq\nVq1K5cqVDdfx4LW0atUKgNdee42bN2/SuXNnzp8/T/fu3TE3N2f8+PGFnsvPz8/wGFtbW27cuMHN\nmzfp06cPADqdjk6dOuHo6EijRo0KPd7BwQErKyvOnj3LypUr2bJlC4sXLyYuLg5fX18A8vLyuHLl\nCjVr1mTEiBFUqlSJ69ev4+npWezrJoQQZYn0LAshXipdu3alUaNGhh7RcuXKkZycjF6v5969e1y+\nfLnQY/5ZeP7txIkTZGdnk5eXx8GDB3FxcaFx48Z888037Nmzh/nz5/P2228DYGJS+O3UwcGBM2fO\ncP/+feCvGxGLKjofFBMTA0B0dDTNmzcvsO/B5zA1NUWv1xt+/+cY7cjISGrUqMHvv//OuHHj+Pzz\nzws9V2xsLAC3bt3i/v371KpVi9q1a7N582b27NnDZ599RseOHYu9PoDg4GCmTJlCnTp1sLOzo0mT\nJvj6+rJnzx527txJnz59qF+/Pu+//z5Llizh559/pmbNmobsxZ1XCCHKCvk4L4R44alUqgLF4pw5\nc9i1axcA1atXp1OnTri5uVG/fn0aNGhQ4HH/fPyDP9vY2NC9e3dSU1N55513aNy4Mf/9738JCQkh\nKysLnU7Hd999V+BcD6patSqTJ0/G19cXExMTGjRowIwZM/jzzz+LvQFxxYoVTJw4kcqVK7N06VKO\nHj1aINvfmjZtyrRp02jZsmWhc6lUKpo3b07fvn1ZuHAheXl5TJw4sdBznT9/no4dO5Kens7ChQsx\nMTFh7ty5dOnSBb1ej42NDUuXLuXKlSvF5u3RowcffvghK1asAKBbt25ERkaiVqvJyMigZ8+eVKpU\niYEDB+Ll5UXNmjVp3LgxN27cKPZ1E0KIskSlyC3UQgjxylm6dCl37txh9OjRT3UenU6Ht7c3hw8f\nLqVkQghRtsj3X0II8Yp62l7dAwcO0LZtWz777LNSSiSEEGWP9CwLIYQQQghRDOlZFkIIIYQQohhS\nLAshhBBCCFEMKZaFEEIIIYQohhTLQgghhBBCFEOKZSGEEEIIIYohxbIQQgghhBDFkGJZCCGEEEKI\nYkixLIQQQgghRDGkWBZCCCGEEKIYUiwLIYQQQghRDCmWhRBCCCGEKIYUy0IIIYQQQhRDimUhhBBC\nCCGKIcWyEEIIIYQQxZBiWQghhBBCiGJIsSyEEEIIIUQxpFgWQgghhBCiGFIsCyGEEEIIUQwploUQ\nQgghhCiGFMtCCCGEEEIUQ4plIYQQQgghiiHFshBCCCGEEMWQYlkIIYQQQohiSLEshBBCCCFEMaRY\nFkIIIYQQohhSLAshhBBCCFEMKZaFEEIIIYQohhTLQgghhBBCFEOKZSGEEEIIIYohxbIQQgghhBDF\nkGJZCCGEEEKIYkixLIQQQgghRDGkWBZCCCGEEKIYUiwLIYQQQghRDCmWhRBCCCGEKIYUy0IIIYQQ\nQhRDimUhhBBCCCGKIcWyEEIIIYQQxZBiWQghhBBCiGJIsSyEEEIIIUQxpFgWQgghhBCiGFIsCyGE\nEEIIUQwploUQQgghhChGicVyTk4OgwYNon379nh7e3PixAkuXLiAp6cnarWa4cOHoygKAGFhYbi5\nudGuXTu2bt0KgE6no1evXqjVagIDA7lz5w4ABw8exN3dHU9PT6ZMmfKML1EIIYQQQognU2KxHBYW\nRoUKFThw4ABhYWEMGTKE0aNHM336dKKjo1EUhU2bNnHz5k3mzZvHgQMH+P333xk7diw5OTksXLiQ\n5s2bEx0dzaBBg/jyyy8BGDZsGKtWrWLfvn0cOnSI48ePP5eLFUIIIYQQ4nGUWCyfOXOGgIAAABo2\nbMj169fZvXs3arUagM6dOxMREUFsbCweHh6Ym5tjbW2No6Mj8fHx7N+/3/D4gIAAIiIi0Gq15OTk\n4ODgAIBGoyEiIuJZXqMQQgghhBBPpMRi2dXVld9++w34a+jE7du3uX//vmG/lZUVaWlppKenY2Nj\nU2S7tbV1sW0PtgshhBBCCFHWmJW0c+jQoZw9exYvLy88PDxo1KiRYdwxQHp6Ora2tlhbW6PVag3t\nWq22UHtRbQ+eoyiOjo5cvHjxqS5QCCGEEEKIktSvX58LFy4Uua/EnuXDhw/ToUMH9u7dS+/evXnt\ntddo3749UVFRAGzfvh21Wk2bNm3Yu3cv2dnZpKWlcfbsWVxcXPDw8GDbtm0FjrWyssLCwoJLly6h\nKArh4eGGYR3/dPHiRRRFkc0I28SJE42e4VXe5PV/tV//pKQkzpw5Y/TX4VV87V/1TV5/ef1f1a2k\nztkSe5YbNWrE22+/zfTp0ylXrhyLFy9Gr9cTHBxMTk4OTk5O9O7dG5VKxYgRI/Dy8kKv1zN9+nQs\nLS0JCQkhKCgILy8vLC0tWblyJQA//PADAwYMID8/H41Gg5ubW0kxhBDilRIaGkpMTAzx8fFUqVLF\n2HGEEOKVVmKxbGdnx86dOwu1R0ZGFmp77733eO+99wq0lS9fnrVr1xY6tm3btsTExDxmVCGEePld\nvXqVPXv20KdPH4KDg1m/fj0qlcrYsYQQ4pUli5KIIvn4+Bg7witNXn/jMubrP3/+fIKCgpg7dy4X\nL17kp59+MloWY5B/+8Ylr79xyetfNqkURVGMHaI4KpWKMhxPCCFKVWZmJq+//jqxsbE4ODhw+vRp\nfHx82L9/Pw0bNjR2PCGEeGmVVHNKz7IQQpQRy5Ytw8vLyzAPvbOzMxMnTmTgwIHk5uYaOZ0Q4kVk\nZ2eHSqWS7f9tdnZ2j/0aSs+yEEKUAXq9HmdnZxYuXFjgq1hFUejatSstWrQwrIL6tHJzczE1NcXE\nRPpLhHjZSS1VUHGvxxP3LOv1eoYOHYqnpydqtZqEhAQuXLhg+H348OGGE4eFheHm5ka7du3YunUr\nADqdjl69eqFWqwkMDDTM0Xzw4EHc3d3x9PRkypQpT3XRQgjxMggPD8fS0hJvb+8C7SqVip9++on/\n/e9/zJgxg3v37j3xcyQlJTF27Fhq1KiBm5sbV65cecrUZVdqaipr1qwxdgwhxEugxGI5PDyczMxM\n9u3bx4QJE/j8888ZPXo006dPJzo6GkVR2LRpEzdv3mTevHkcOHCA33//nbFjx5KTk8PChQtp3rw5\n0dHRDBo0yNArMmzYMFatWsW+ffs4dOgQx48ffy4XK4QQZdXcuXMZOXJkkTNfVK9enZ07dxIfH4+D\ngwMhISGcOXPmkc6rKAr79u2jT58+NG/eHJ1OR0xMDO+88w5t27bl999/L+1LMbqUlBQ6duzIwIED\nuXnzprHjCCFecCUWy+XLlyctLQ1FUUhLS8PCwoK4uDjDIiKdO3cmIiKC2NhYPDw8MDc3x9raGkdH\nR+Lj49m/fz8BAQEABAQEEBERgVarJScnxzAmT6PREBER8YwvUwghyq5z585x9OhR+vXrV+wxLi4u\nLF++nDNnzlC9enX8/Pzo2LEjmzZtIj8/v8jHREZG4uXlxZAhQ1Cr1Vy9epU5c+bQoEEDQkND+eWX\nXxgyZAhffvkler0e+Ku4TkhI4LvvvmPgwIHMmjWLkydPFvn1ZE5ODsePHycxMbF0XohScPfuXfz8\n/PDz82PAgAGsXr3a2JGEEC+4EotlDw8PsrKyaNy4MR988AEjRowo8IZpZWVFWloa6enp2NjYFNlu\nbW1dbNuD7UII8ar67rvveP/99ylXrtxDj61RowaTJk3i6tWrDB06lK+++gpHR0f++9//kpqaCkBM\nTAx+fn689957DBs2jHPnzvHRRx9hZWVV4FxqtZojR46wfft23njjDYYNG0a9evXw8/PjxIkTeHt7\nc+HCBbp3707t2rUZMmQIs2bN4t1336Vly5bY2trSv39/1Go1Xbp0YdeuXaU+NjI5OfmRe9Hv3LmD\nn58fAQEBfPPNNwwcOJDly5eXah4hxKunxEVJZsyYgYeHB9OmTePatWv4+voWuCM7PT0dW1tbrK2t\n0Wq1hnatVluovai2B89RnEmTJhl+9vHxkTkIhRAvlXv37rFq1SpOnz79WI+zsLCgf//+9O/fn8OH\nDzNv3jzq1atH48aN+fPPP/niiy8ICgrC3Ny8xPPUrFmTPXv2MHPmTMqXL89HH32Ek5NToeEgFy5c\nIDw8nDNnztC6dWuCg4Np1qwZFSpUICsrixUrVvDRRx9haWnJ6NGjefvttx/63A+TmJhIx44dyc3N\n5bXXXmPQoEH079+f6tWrFzr29u3b+Pn50a1bN7788ktUKhW+vr78+eefnDt3jsaNGz9VFiHEs2di\nYsKdO3eKnbFi8ODBNG3alNGjRz/1c0VGRha5yF5RSpwNY9y4cVhbWzNmzBgyMzNxcXGhYcOGfP75\n53h7ezNs2DD8/PxQq9V06tSJ2NhYsrKycHd35/jx4yxYsACtVsvEiRNZvXo1e/fuZcGCBbRo0YL1\n69fj4OBA165dmTRpUpFLXssdnEKIl92SJUvYvHkzv/7661Of69atWxw4cIAuXbpgaWlZCukej16v\nZ8eOHXz99dfk5eWxdu1aateu/UTnOn36NP7+/kydOpWgoCCioqJYtmwZGzdupH379tSpU4eMjAwy\nMjLIzMzk3LlzDB06lMmTJxco9EePHk2FChWYOnVqaV2mEC+UF6mWelixPGTIEFxcXJ6qWH6S2TBK\nLJbv3bvHkCFDuHPnDrm5uYSGhtKqVSuCg4PJycnBycmJsLAwVCoVixcvZtGiRej1esaNG0ePHj3Q\n6XQEBQVx48YNLC0tWblyJfb29hw6dIjQ0FDy8/PRaDTFvom9SH/BQgjxJHr16sUbb7xBUFCQsaOU\nGr1ez4wZM5g7dy7/93//R8eOHR/r8ceOHaNLly7MmjWL/v37F9iXmZnJli1bSEtLo2LFilSqVIlK\nlSpRpUoVXF1dC/WIHzt2jF69enHx4kVZNly8kl6kWsrExITbt2+zfv165s2bh6mpKdWrV2f+/Pk0\naNCAIUOGkJ6ezs2bN7l16xYuLi6sXLmSChUqUK5cOcaOHcvOnTv5888/GTlyJCNHjiz0HE9SLKOU\nYWU8nhBCPJWsrCzF2tpaSU5ONnaUZ2L37t1KjRo1lC+//FLJz88vtD87O1vR6/UF2g4ePKjY29sr\n69atK5UMer1ecXJyUvbv318q5xPiRfMotRRQKtvTUqlUytq1axVHR0flzp07iqIoypIlSxQnJydF\nURQlKChIcXd3V3Q6nZKfn6+0atVKWb58ueGxCxYsUBRFUeLi4pRy5cop2dnZj/x6lJS/xDHLQggh\nnp3IyEhcXFyoVq2asaM8E76+vsTGxvLWW28RHR2Ns7MzV65cMWxarRYTExPs7OwMW0JCAj///DOB\ngYGlkkGlUjFgwACWL19O+/btS+WcQrxslDLU87xjxw769u1LlSpVAAgKCmLkyJFcuXIFlUrFm2++\nabgZ2sXFheTkZMNju3fvDkCLFi3Izs4mMzMTCwuLp84kxbIQQhjJli1b6Natm7FjPFO1atUiMjKS\n+fPno9fr8fDwoG7dutStWxc7Ozuys7NJSUkhJSWFu3fvYm9vT5MmTUo1Q//+/XFzc2POnDml8h+n\nEKJ0HDt2DHNzc1xcXAwFu62tbaHiXVEUwwQTZmb/f+n6z6ET5cuXN7T//bjSIMWyEEIYgaIobNmy\nhW3bthk7yjNnbm7Of/7znyL3lStXjpo1a1KzZs1n9vx169alSZMm/P777y/9hxMhXiRbt24lMTGR\nZcuWcfToUezt7encuTMhISGEhoZStWpVfv75Z6pWrYqjo6PResClWBZCCCM4efIkpqamODk5GTvK\nK+HvOZelWBai7Pjwww/p378/Li4u5OXlsXjxYjp27Mh//vMfOnTogF6vx97ent9++w2VSmXYivLP\n9tK8obfE2TCM7UW6g1MIIR7HtGnTSE5OZu7cucaO8kpISUnBwcGBpKSkAgtjCfGyk1qqoCeZDaPE\nFfwAli5diq+vL76+vri7u1O+fHni4uLw9PRErVYzfPhww8nDwsJwc3OjXbt2bN26FQCdTkevXr1Q\nq9UEBgZy584dAA4ePIi7uzuenp5MmTLliS9aCCFeRK/CeOWyxM7Ojg4dOpTKfNZCiFfLY/Usf/jh\nh7i6urJlyxZGjx6NWq0mJCQEjUaDu7s7/v7+xMXFodPp8PT05MiRI8yfP5+MjAwmTJjAmjVriImJ\nYc6cObi6urJhwwYcHBwIDAxk2rRpuLq6Fgwnn4aEEC+hW7du0bhxY27duiU3nD1HW7ZsYfz48cTF\nxRW4SUiIl5nUUgU9k57lvx05coQzZ87w3nvvERcXh1qtBqBz585EREQQGxuLh4cH5ubmWFtb4+jo\nSHx8PPv37ycgIACAgIAAIiIi0Gq15OTk4ODgAIBGoyEiIuKxL1gIIV5EW7dupVOnTlIoP2ddu3bF\n3t6eBQsWGDuKEOIF8sjF8vTp05k4cSJQcCoOKysr0tLSSE9Px8bGpsj2v8eHFdX2YLsQQrwKZAiG\ncahUKubPn8+XX37JjRs3jB1HCPGCeKTvoe7du0diYiLe3t7AX8sR/i09PR1bW1usra3RarWGdq1W\nW6i9qLYHz1GUSZMmGX728fHBx8fnkS9OCCGeh7t37zJy5EjKlSvH9OnTsbe3L/bYrKwsdu/ezeLF\ni59jQvG3Ro0aERwczOjRo1m5cqWx4wghjCQyMpLIyMhHOvaRiuXo6Gj8/PwMv7do0YKoqCi8vb3Z\nvn07fn5+tGnThnHjxpGdnU1WVhZnz57FxcUFDw8Ptm3bhpubG9u3b0etVmNlZYWFhQWXLl3CwcGB\n8PDwAkXxg4prF0KIsiAqKop33nmH3r17Y2JigrOzMxMmTCAkJKTIcbF79uyhWbNmhtWpxPM3btw4\nnJ2d2b17Nx06dDB2HCGeqcqVK5fqNGovusqVKwOFO2AnT55c7GMeqVhOTEykfv36ht9nzZpFcHAw\nOTk5ODk50bt3b1QqFSNGjMDLywu9Xs/06dOxtLQkJCSEoKAgvLy8sLS0NHyS/+GHHxgwYAD5+flo\nNBrc3Nye5JqFEMIo8vLymDp1KosWLeKnn36ic+fOAAwdOpSPPvqIxYsXM3/+fLy8vAo8ToZgGF/F\nihWZM2cO//73vzlx4oSMHRcvtZSUFGNHeOHJPMtCCPGYbt26Re/evSlXrhzLli2jRo0aBfYrisK6\ndev4+OOPSU1NpVatWtSqVYvatWuzbds2oqKiSn1JZ/F4FEWha9euqNVqxowZY+w4QggjK6nmlGJZ\nCCEeU0hICIqi8P333xe4h+OfFEUhPT2d69evc+3aNa5fv052djYffPCBfC1aBly8eJG2bdsSFxfH\n66+/buw4QggjkmJZCCFKyd9zJCckJJR4I594McyePZuFCxeybds2GjRoYOw4QggjKanmlFnZhRDi\nMcyfP5++fftKofySGDVqFJUqVcLLy4v169fj4eFh7EhCiDJGepaFEOIRZWRk4ODgQExMDI6OjsaO\nI0rRjh07GDRoEAsWLKBPnz7GjiOEeM6eagW/r776ivbt2+Pm5sbSpUu5cOECnp6eqNVqhg8fbjhx\nWFgYbm5utGvXjq1btwKg0+no1asXarWawMBA7ty5A8DBgwdxd3fH09OTKVOmlNZ1CiHEM/W///0P\nb29vKZRfQgEBAezcuZNRo0Yxc+ZM8vLyjB1JCFFGlNizHBkZyezZs9m8eTOZmZnMmDGD48ePM3r0\naNRqNSEhIWg0Gtzd3fH39ycuLg6dToenpydHjhxh/vz5ZGRkMGHCBNasWUNMTAxz5szB1dWVDRs2\n4ODgQGBgINOmTcPV1bVwOOlZFkKUEbm5uTg6OrJ27Vratm1r7DjiGbl27Rp9+vThxIkTNG7cmKZN\nm9K0aVNatWqFj4+P3JgpxEvqiXuWw8PDadq0KW+++SbdunXjjTfeIC4uDrVaDUDnzp2JiIggNjYW\nDw8PzM3Nsba2xtHRkfj4ePbv309AQADw16f2iIgItFotOTk5ODg4AKDRaIiIiCjN6xVCiFL3yy+/\n4ODgIIXyS6527drExMSQnJzMwoUL8fLyIikpiZEjR9K2bVuio6ONHVEI8ZyVeIPf7du3SUpK4rff\nfuPSpUt069atQNVtZWVFWloa6enp2NjYFNlubW1dbNvf7ZcuXSrt6xJC8NfCGXq9XhZdeEqKojBj\nxgymT59u7CjiOalUqRJt27Y1fDjS6/WsWrWKQYMG0bx5c7755hsaN25s5JRCiOehxGK5atWqNGnS\nBDMzMxo2bEi5cuW4fv26YX96ejq2trZYW1uj1WoN7VqttlB7UW0PnqM4Dy53/c+lCYUQRbt+/TqL\nFi0iLCwMvV7PqFGjCAkJwcrKytjRXkg7d+4kLy/PsEqfePWYmJgwYMAAevXqxbx58/Dy8kKtVlOr\nVi1sbW0NW4cOHahbt66x4wohHiIyMpLIyMhHOrbEYRienp7s2LEDgD///JP79+/j5+dHVFQUANu3\nb0etVtOmTRv27t1LdnY2aWlpnD17FhcXFzw8PNi2bVuBY62srLCwsODSpUsoikJ4eLhhWEdRJk2a\nZNikUBavkvz8fHbv3s2wYcOoVasWbdq04eOPP2bz5s2Fli/V6/WkpaURGRnJW2+9RdOmTbl79y4R\nERFERERw/Phx6tWrx5QpU7h3756RrujFNWPGDD755BMZryooV64cn3zyCefOnaN79+7Ur18fU1NT\nkpKS2Lp1K927dyc/P9/YMYUQD+Hj41OgxizJQ6eOGzNmDHv27EGv1/PVV19Rt25dgoODycnJwcnJ\nibCwMFQqFYsXL2bRokXo9XrGjRtHjx490Ol0BAUFcePGDSwtLVm5ciX29vYcOnSI0NBQ8vPz0Wg0\nTJ06tehwcoOfeAWdOnWKhQsXsn79emrVqsVbb73Fm2++SXJyMtHR0URHRxMTE0P16tXJzc3l3r17\naLVaKlWqhIODA8HBwbzzzjsFhjsBJCYm8tVXX7F582a6detGx44d8fPzK7RUs/j/5ebmMmXKFJYv\nX05CQoIMZxElUhQFtVrNkCFDGDp0qLHjCCEeg6zgJ0QZsG/fPj799FMWLFhAixYtijxm48aNBAcH\nM3LkSPr27VvsFGV5eXkkJiZSvnx5w/AmU1PTR8rxxx9/sHXrViIiItizZw81a9bE19eX6tWrU65c\nOcNWvXp1unTp8sjnfdkkJiYyYMAAqlWrxk8//cRrr71m7EjiBXDo0CF69uxJQkIClSpVMnYcIcQj\nkmJZCCO7fPky7du3Z/DgwSxevJhp06YRHBxs+FpfURRmzZrFnDlz2LRpE61atXouufLz8zl69ChR\nUVHcu3ePrKwswxYfH09ubi6zZ8/G19f3ueQpCxRF4ccff+SLL75g8uTJhISEyPAL8Vj69etHo0aN\nHvrVrhCi7JBiWQgjSk9Pp3379gwbNowPP/yQhIQE+vTpQ/PmzVm4cCGWlpZ8+OGHHDx4kN9++406\ndeoYOzKGvwVpAAAgAElEQVTwV9G4bt06Pv30U5o1a8bMmTNp2LChsWM9UxkZGQwYMIBr166xYsUK\nme1APJErV67QqlUrTp48Sc2aNY0dRwjxCJ5qBT8hxJPLz8+nX79+eHl58e9//xuARo0acfDgQSws\nLHBzcyMgIICkpCT27dtXZgpl+OuNo0+fPpw9exYPDw/at29PSEgI586dM3a0Z+LevXv4+/tTpUoV\nYmJipFAWT6xu3bq89957fPHFF8aOIoQoBdKzLMQzNHr0aI4fP86OHTswNzcvtH/ZsmUkJCQwefJk\nzMxKnMnR6JKTk5k3bx6LFi3C1dWVjz76iC5dumBiUvAzt6IoL9ywheTkZPz9/fHx8WH27NmFrkmI\nx5WWlkbDhg0JDw+nefPmxo4jhHiIpx6G0bJlS8OiI/Xq1WPs2LEMHjwYExMTXFxcWLBgASqVirCw\nMBYtWoSZmRnjx48nMDAQnU7HwIEDuX37NlZWVixdupSqVaty8OBBQkNDMTMzw9/fnwkTJjxWcCHK\nurCwMGbOnMnBgwexs7MzdpxSk5WVxdq1a/nuu++4d+8eLVq04Pbt24YtLS2N6dOnM3r0aGNHfSRJ\nSUl06tSJt99+m0mTJr1whb4ou+bPn8+mTZsIDw+Xf1dClHEl1pzKQ+h0OqVFixYF2rp166ZERUUp\niqIow4YNUzZs2KDcuHFDadq0qZKTk6OkpaUpTZs2VbKzs5VZs2YpkydPVhRFUVavXq2MHDlSURRF\nad68uXLp0iVFURSlS5cuyrFjxwo99yPEE6JM0ev1yq5duxR/f3+ldu3ayrlz54wd6ZnR6/VKTEyM\nsnr1amXXrl1KfHy8cuPGDeXy5ctKvXr1lPnz5xs7Yon0er1y6tQppW7dusrMmTONHUe8hHJycpRG\njRopO3bsMHYUIcRDlFRzPvR73xMnTnD//n00Gg15eXlMmzaNo0ePGhYS6dy5M+Hh4ZiamuLh4YG5\nuTnm5uY4OjoSHx/P/v37GTNmDAABAQFMnToVrVZLTk4ODg4OAGg0GiIiInB1dS2VTwdCPG/5+fls\n3LiRr7/+Gq1Wy6effsqAAQOwtLQ0drRnRqVS4e7ujru7e6F9u3btwtvbm3LlyvHuu+8aIV1BiqLw\n+++/s3v3bi5evMiFCxe4dOkS5cuXN8xMIkRpMzc3Z8KECUyfPh2NRmPsOEKIJ/TQYrlixYp88skn\nvPvuu5w/f56AgIAC+62srEhLSyM9Pd0wVOOf7X8vjlBU29/tly5dKq1rEuK5iomJ4f3336dChQp8\n/vnndO/e/ZUf81q3bl0iIiLw8fGhfPny9O/f3yg5srKyWLFiBbNnz8bMzIy33nqLt99+G0dHR+rX\nr1/gPUuIZ+Gtt95i3LhxHDhwgPbt2xs7jhDiCTy0WG7YsKFhYYQGDRpQpUoVjh07Ztifnp5uWBRB\nq9Ua2rVabaH2otoePEdRHpyn0sfHR5a8FmVGeno6Y8eO5ddff2XOnDm89dZbMi7xAQ0aNCA8PJyO\nHTtiZmaGt7c39+/fN2w2NjbPbCq6ixcvsmLFCr7//ntatmzJ3Llz8fPzk78f8dyZmZnxySef8M03\n37Bp0yZjxxFC/D+RkZFERkY+2sEPG8Pxww8/KMOHD1cURVGuX7+uNG7cWOnSpYsSGRmpKIqifPDB\nB8ratWuVmzdvKk2bNlWysrKUe/fuKY0bN1aysrKUWbNmKZMmTVIURVFWrVplOJerq6ty8eJFRa/X\nK126dFEOHz78WONHhDCmjRs3KrVr11beffdd5e7du8aOU6YdO3ZM+de//qVUq1ZNef3115UmTZoo\nrVu3Vuzt7ZWQkBAlNTX1qZ8jPT1d2bhxozJ8+HClfv36ymuvvaa8//77yqlTp0rhCoR4Ovfv31eq\nV68u/x6FKMNKqjkfOhtGXl4eQ4YM4erVqwDMmDGDKlWqEBwcTE5ODk5OToSFhaFSqVi8eDGLFi1C\nr9czbtw4evTogU6nIygoiBs3bmBpacnKlSuxt7fn0KFDhIaGkp+fj0ajYerUqYWeW2bDEGXR7Nmz\nWbhwIWFhYfJNx1NITU1l7NixbNmyhW+//ZY+ffoU2fOr1Wo5deoUJ06c4MSJE5w+fZrU1FQyMzMN\nW35+Ph4eHmg0GjQaDU2bNpVeZFGmTJ8+nYSEBJYuXWrsKEKIIsgKfkKUkry8PBwcHPjtt99k7tRS\ncuDAAT744ANq167N0KFDuXr1KhcuXDDciJecnIyTkxPNmjWjefPmuLi4UK1aNSpWrEiFChUMf5qa\nmhr7UoQo1r1796hfvz5Hjx7l9ddfN3YcIcQ/SLEsRCnZvHkzX3/9NQcOHDB2lJdKbm4us2fPZv/+\n/dSvXx9HR0fDTXh169Yt8wu2CPEoPv30U7Kzs5k7d66xowgh/kGKZSFKSZcuXejbty+DBg0ydhQh\nxAvmzz//xNnZmfPnz1O1alVjxxFCPECKZSFKweXLl3FzcyMpKYny5csbO44Q4gUUHBxMzZo1mTx5\nsrGjCCEeIMWyEKVg7NixZGdnM3v2bGNHEUK8oBITE/Hw8ODs2bPSuyxEGVJSzflIKyckJydTp04d\nEhMTuXDhAp6enqjVaoYPH244cVhYGG5ubrRr146tW7cCoNPp6NWrF2q1msDAQO7cuQPAwYMHcXd3\nx9PTkylTppTGNQrxTOXk5PDTTz/xwQcfGDuKEOIF1rBhQz744AM6depESkqKseMIIR7BQ4vl3Nxc\nPvjgAypWrIiiKIwaNYrp06cTHR2Noihs2rSJmzdvMm/ePA4cOMDvv//O2LFjycnJYeHChTRv3pzo\n6GgGDRrEl19+CcCwYcNYtWoV+/bt49ChQxw/fvyZX6gQT2PDhg04OzvTqFEjY0cRQrzgpk6dip+f\nH506dSI1NdXYcYQQD/HQYvmTTz4hJCSEGjVqAHD06FHUajUAnTt3JiIigtjYWDw8PDA3N8fa2hpH\nR0fi4+PZv3+/YXnsgIAAIiIi0Gq15OTk4ODgAIBGoyEiIuJZXZ8QpeKHH35g2LBhxo4hhHgJqFQq\nZs6ciZeXFxqNhrS0NGNHEkKUoMRiecmSJVSrVg1/f38AFEUpMJ7DysqKtLQ00tPTsbGxKbLd2tq6\n2LYH24Uoq86dO8fZs2d58803jR1FCPGSUKlUfPvtt7Rp04aAgADS09ONHUkIUYwSJy/9+eefUalU\nREREcPz4cYKCgrh9+7Zhf3p6Ora2tlhbW6PVag3tWq22UHtRbQ+eoziTJk0y/Ozj4yMrponn7scf\nf2To0KFYWFgYO4oQ4iWiUqmYN28ew4cPp0OHDowfP57AwEDMzc2NHU2Il15kZCSRkZGPdOwjz4bh\n6+vLDz/8wCeffMLo0aPx9vZm2LBh+Pn5oVar6dSpE7GxsWRlZeHu7s7x48dZsGABWq2WiRMnsnr1\navbu3cuCBQto0aIF69evx8HBga5duzJp0iTc3NwKh5PZMISR6XQ66tSpw5EjR6hbt66x4wghXkJ6\nvZ7ly5ezePFiEhISGDhwIEOHDsXZ2dnY0YR4ZZRUcz7WslgqlYpZs2YRHBxMTk4OTk5O9O7dG5VK\nxYgRI/Dy8kKv1zN9+nQsLS0JCQkhKCgILy8vLC0tWblyJfDX+M8BAwaQn5+PRqMpslAWoixYuXIl\nbdu2lUJZCPHMmJiYMGjQIAYNGsT58+dZsmQJ/v7+NG7cmB9++IEGDRoYO6IQrzSZZ1mIYuj1elxc\nXJg/fz4dOnQwdhwhxCskLy+P77//nilTpjB27FhCQ0MxNTU1diwhXlpPPc+yEK+i7du3U65cOXx9\nfY0dRQjxijEzM2PEiBEcPnyYrVu30r59e06fPl1q58/OzubSpUvcvHkTrVaLXq8vtXML8bKRnmUh\niuHr60twcDD9+/c3dhQhxCtMr9cTFhbG+PHj6d69O4GBgfj5+RWYWepRKIrCgQMHWLZsGevWrcPK\nygqdTkdmZib379/H0tISe3t7ateuTZ06dahduza1a9fGxsaGChUqUL58eSpUqICdnR2urq6YmEh/\nm3h5yHLXQjymI0eO0LNnTy5evCh3pgshyoTr16+zdu1atm/fTkxMDK1atSIgIABra2vS0tJIS0vj\n3r17ZGRkUL58eaytrbGyssLKyorU1FRWrVqFpaUlgwYNYsCAAdSpU8dwbkVRuH//PsnJyVy7do2k\npCSSkpK4du0aWq2W+/fvo9PpuH//PteuXSMvL48hQ4YQFBRU4DxCvKikWBbiMfXr1w83NzdGjRpl\n7ChCCFFIZmYmkZGR7Ny5k+zsbGxsbAxbpUqV0Ol0aLVaw2ZhYUGfPn1o2bIlKpXqqZ5bURSOHDnC\nzz//zJo1a3Bzc6NPnz44OzvTsGFD7OzsSukqhXh+nqpYzs/PJzg4mMTERFQqFT/88AOWlpYMHjwY\nExMTXFxcWLBgASqVirCwMBYtWoSZmZlhvkidTsfAgQO5ffs2VlZWLF26lKpVq3Lw4EFCQ0MxMzPD\n39+fCRMmPFZwIZ6VK1eu0KpVKy5fvvzYX3MKIcSrRKfTsWHDBrZt20ZCQgIJCQlYWFjQqFEjWrZs\nSUBAAD4+PlSsWNHYUYUo0VMVy5s2bWLLli0sXryYqKgoZs+eDcDo0aNRq9WEhISg0Whwd3fH39+f\nuLg4dDodnp6eHDlyhPnz55ORkcGECRNYs2YNMTExzJkzB1dXVzZs2ICDgwOBgYFMmzYNV1fXRw4u\nxLPyn//8B3Nzc2bMmGHsKEII8UJRFIXk5GQSEhKIiYlhx44dHDlyBHd3dwICAujevTuOjo7GjilE\nIU81z3L37t3p2rUr8FePW+XKlYmIiECtVgPQuXNnwsPDMTU1xcPDA3Nzc8zNzXF0dCQ+Pp79+/cz\nZswYAAICApg6dSparZacnBwcHBwA0Gg0REREFCqWhXjeUlNTWbp0KfHx8caOIoQQLxyVSkX16tWp\nXr06arWaMWPGkJ6ezp49e9i2bRuenp7UqlWLt956iz59+lCvXj1jRxbioR5pURJTU1MGDx7Mxo0b\n+eWXX9i5c6dhn5WVFWlpaaSnp2NjY1Nk+99fZRfV9nf7pUuXSuuahHhiixYtomvXrtSuXdvYUYQQ\n4qVgbW1N9+7d6d69O99//z3R0dGsXbsWd3d36tSpQ9u2bXFxccHZ2RkXFxeqVKny0HPm5ORgZmYm\nM3KI5+KRV/BbsmQJt27dok2bNmRlZRna09PTsbW1xdraGq1Wa2jXarWF2otqe/AcRZk0aZLhZx8f\nH3x8fB41shCPJSMjg++++45t27YZO4oQQryUTE1N8fX1xdfXl3nz5hETE8Px48c5ceIEK1as4PTp\n05iammJjY0PFihWpWLEilSpVQqVScffuXVJSUrh79y5ZWVlUqFABV1dXWrZsadicnJye+gZG8WqI\njIwkMjLykY596Jjl//u//+PatWuMHTuW9PR0XF1dadCgAZ9//jne3t4MGzYMPz8/1Go1nTp1IjY2\nlqysLNzd3Tl+/DgLFixAq9UyceJEVq9ezd69e1mwYAEtWrRg/fr1ODg40LVrVyZNmlRo2WsZsyye\nF71eT69evahSpQqLFy82dhwhhHglKYrCnTt30Gq1ZGZmkpGRQWZmJoqiYGdnR5UqVbCzszNMh3fs\n2DGOHj3K0aNHiY2NJScnh549e9KrVy/at28vqx6KR/ZUN/jpdDoGDx7MzZs3yc3NZezYsTRu3Jjg\n4GBycnJwcnIiLCwMlUrF4sWLWbRoEXq9nnHjxtGjRw90Oh1BQUHcuHEDS0tLVq5cib29PYcOHSI0\nNJT8/Hw0Gg1Tp059rOBClKbx48cTFRVFREQElpaWxo4jhBDiCZw5c4b169ezbt06kpOT6dmzJ0OH\nDqVVq1bGjibKOJlnWYgSrFy5knHjxnHo0CHs7e2NHUcIIUQpOH/+PKtXr+Z///sfVapU4f3336d/\n//5YWVkZO5oog6RYFqIYhw8fJjAwkF27dtGsWTNjxxFCCFHK9Ho9O3fuZNGiRezevZsePXrQq1cv\n/Pz8KFeunLHjiTJCimUhinD9+nXatm3LggUL6N69u7HjCCGEeMZu3LjB6tWr2bBhA/Hx8Wg0Gnr0\n6IFGo6Fy5crGjieMSIplIYrg7e2NRqPh888/N3YUIYQQz1lycjKbN29mw4YNREdH89prr9G6dWvc\n3Nxo3bo1rVu3pkKFCsaOKZ4TKZaF+Idz587RoUMHkpKS5G5pIYR4xeXn55OQkEBsbCxHjhzh8OHD\nnD59mubNm6NWq/H29qZ9+/YF1ogQLxcploX4h4kTJ6LVag3LtwshhBAPun//PjExMURHRxMVFcWR\nI0do1qwZnTp1olOnTrRt2xZzc3NjxxSl5ImL5dzcXIYOHcrVq1fJzs5m/PjxNGnShMGDB2NiYoKL\niwsLFixApVIRFhbGokWLMDMzY/z48QQGBqLT6Rg4cCC3b9/GysqKpUuXUrVqVQ4ePEhoaChmZmb4\n+/szYcKExw4uxJNSFIWGDRuyatUqWrdubew4QgghXgBZWVns27ePnTt3Eh4ezuXLl/Hy8sLNzY1W\nrVrRsmVLatSoYeyY4gk9cbG8ZMkS4uPjmT17NqmpqTRv3pwWLVowevRo1Go1ISEhaDQa3N3d8ff3\nJy4uDp1Oh6enJ0eOHGH+/PlkZGQwYcIE1qxZQ0xMDHPmzMHV1ZUNGzbg4OBAYGAg06ZNw9XV9bGC\nC/GkYmNjGTBgAAkJCbLSkxBCiCeSnJxMVFQUcXFxxMXFcfToUSwtLWnZsiWtWrUyFNC1atWS/2te\nACXVnCUud92nTx969+4N/DX1irm5OUePHkWtVgPQuXNnwsPDMTU1xcPDA3Nzc8zNzXF0dCQ+Pp79\n+/czZswYAAICApg6dSparZacnBwcHBwA0Gg0REREFFksC/EsrFy5kv79+8ublxBCiCdmb29Pnz59\n6NOnD/DXt5ZXr17l6NGjxMXFsXDhQuLi4lCpVNSvX5/KlSsbNjs7uwK/V65cGXt7exo0aICJiYmR\nr0z8U4nFcsWKFQHQarX06dOHL7/8ko8//tiw38rKirS0NNLT07GxsSmy/e/B8EW1/d1+6dKlYjNM\nmjTJ8LOPjw8+Pj6PdYFCPCg/P5/Vq1c/8nrwQgghxKNQqVTUrVuXunXr0rNnT+CvAvratWv88ccf\npKSkkJqaatguX77M0aNHSU1NJSUlhT///JOcnBy6devGG2+8QYcOHWQe6GcoMjLykWuBEotlgKSk\nJHr27Mm///1v+vXrx6effmrYl56ejq2tLdbW1mi1WkO7Vqst1F5U24PnKM6DxbIQTysyMpJatWrR\nqFEjY0cRQgjxklOpVNSpU4c6deo80vEJCQls2bKFr7/+mn79+tGpUycGDhxIly5dsLCweMZpXy3/\n7ICdPHlysceW2Nd/69Yt/P39mTFjBoMHDwagRYsWREVFAbB9+3bUajVt2rRh7969ZGdnk5aWxtmz\nZ3FxccHDw4Nt27YVONbKygoLCwsuXbqEoiiEh4cbhnUI8az9PQRDCCGEKGsaNWrExx9/THR0NBcv\nXiQgIIBvv/2WWrVq8eGHH3L48GG5l8sISrzBb+TIkfzyyy8FeuHmzp3LiBEjyMnJwcnJibCwMFQq\nFYsXL2bRokXo9XrGjRtHjx490Ol0BAUFcePGDSwtLVm5ciX29vYcOnSI0NBQ8vPz0Wg0TJ06tehw\ncoOfKEVZWVnUrFmTkydPUqtWLWPHEUIIIR7J5cuXWb58OcuWLeP27duGb+ptbGywtramXr16hhsL\nnZycMDN76MAB8Q8yz7IQwIYNG/juu+/Ys2ePsaMIIYQQj01RFFJTU0lPTzfcB3bv3j0SExMNNxYm\nJSXRtGlTmjVrhouLi2Gzt7c3dvwy7YlnwxDiZSJDMIQQQrzIVCoVdnZ22NnZFXuMVqvl+PHjnDx5\nklOnTrFu3TpOnTqFmZlZgeLZxcUFZ2fnAhM0iKJJz7J4JaSnp1OnTh0uX75c4puMEEII8bJRFIUb\nN25w6tQpTp06xenTpw1/2tnZFSig27ZtS8OGDV+56VVlGIZ45S1dupRff/2VTZs2GTuKEEIIUSbo\n9XquXr1qKKJPnjxJdHQ05cuXp1u3bnTr1g1PT89XYllvKZbFK+vatWvMmDGD5cuXs3r1avz9/Y0d\nSQghhCizFEXh2LFjbNmyhd9++40LFy6g0Wjo1q0bnTt3fmm/nS2p5nykZWIOHTqEr68vABcuXMDT\n0xO1Ws3w4cMNJw4LC8PNzY127dqxdetWAHQ6Hb169UKtVhMYGMidO3cAOHjwIO7u7nh6ejJlypSn\nvkAh/unq1auEhITQrFkzLC0tOXPmjBTKQgghxEOoVCpatmzJxIkTiY2N5fTp0/j5+bFmzRrq1q2L\nt7c3M2bMYOfOnVy7du2V6NR8aM/y371ylSpV4sCBA7zxxht8/PHHqNVqQkJC0Gg0uLu74+/vT1xc\nHDqdDk9PT44cOcL8+fPJyMhgwoQJrFmzhpiYGObMmYOrqysbNmzAwcGBwMBApk2bVuRy19KzLB7X\nxYsX+eqrr9iwYQPvv/8+o0aNolq1asaOJYQQQrzwdDodu3fvZseOHZw8eZJz585x//59GjduTNu2\nbZk3b56xIz6xp5oNw9HRkV9//ZV33nkHgKNHjxoWEencuTPh4eGYmpri4eGBubk55ubmODo6Eh8f\nz/79+xkzZgwAAQEBTJ06Fa1WS05ODg4ODgBoNBoiIiKKLJaFeFSJiYlMmzaNrVu3Mnz4cBITE6lS\npYqxYwkhhBAvjfLlyxMYGEhgYKChLSUlhYSEBG7fvm3EZM/WQ4vlnj17cuXKFcPvD1bdVlZWhnn+\nHpx65MF2a2vrYtv+br906VKxz3/16lX+9a9/Fbor89atWxw5coSUlBSaNGlCkyZNqFixYqHH37t3\njz/++INq1arx2muvPfXdnXl5eZiYmGBi8kgjWF5Iv/zyC7t27WLatGllpuDMz8/nzp07JCcnk5KS\nQmpqqmGLjY0lIiKCESNGcOHChRKXTxdCCCFE6bGzs6Ndu3bGjvFMPfY8yw8Wienp6YZVZLRaraFd\nq9UWai+q7cFzFMfZ2RkTExPq1KlDy5YtyczMJDY2lszMTFq3bk2VKlWYNWsWiYmJ1KhRA2dnZ0xN\nTbly5QpXrlwhNzeXf/3rX9y+fZvc3FyaNGlC48aNqV+/PjqdjtTUVFJSUkhJSUFRFNq0aYOHhwft\n2rWjcuXKwF83iW3fvp1t27axe/duFEXBxcXFMOm3s7MzVlZWmJqaGrby5cvz+uuvF1lUZ2VlsX37\ndlavXo1OpzOsT968eXNMTU0f96+k1GRmZhIaGsqePXvo1KkTLVu2ZNWqVbRv3/65PL9er+fChQsc\nP36c48ePc+LECZKSkrh16xYpKSlUrlwZe3t77OzsqFy5Mra2tlSuXJl27drx448/FvgQJoQQQghR\nnMjISCIjIx/p2Mcullu0aEFUVBTe3t5s374dPz8/2rRpw7hx48jOziYrK4uzZ8/i4uKCh4cH27Zt\nw83Nje3bt6NWq7GyssLCwoJLly7h4OBAeHg4kyZNKvb5tFotly5dYv/+/SQmJuLi4sLMmTOpV69e\ngV7ivLw8Ll68yOnTp9Hr9Tg4OFC3bl3s7OwMx925c4ezZ89y9uxZLl++TMWKFalVq5Zhgu+8vDwO\nHjzIrFmzOHz4sKHYvX79OhqNhl69erFo0SLMzMw4efIk8fHxxMfHs2rVKu7fv09+fj75+fno9Xq0\nWi0ZGRm4ubnRpk0b2rRpg6WlJWvWrGHjxo00a9aMfv36YWtrS1RUFIsXL+bGjRt4enpibW1NRkYG\nGRkZhvPk5OSQm5tr+FOv11OpUiUqVaqElZUVlSpVolq1ajRs2JBGjRrRqFEjGjZsSHZ2NufOnePc\nuXOcPXuWixcv4uLiQrdu3WjTpo2hmD9x4gR9+/bFzc2NY8eOYWVlxdatW+nZsyejRo3i448/LlD4\n37p1i+joaLKysqhatSpVqlShSpUq2NjYcOvWLcOHlcuXL3Pjxg2AAh8m8vPz0Wq1BbYrV65QtWpV\nWrRogaurK++//z5169alevXqVK1aVZbvFEIIIUSp+Luj8m+TJ08u9thHmjruypUr9O/fnwMHDnD+\n/HmCg4PJycnBycmJsLAwVCoVixcvZtGiRej1esaNG0ePHj3Q6XQEBQVx48YNLC0tWblyJfb29hw6\ndIjQ0FDy8/PRaDRMnTq16HBGvMEvNzeXEydOkJubi5ub2xMVardu3SI2NpbDhw9z+PBh0tPT6d27\nN2+//Ta1atUqdPzNmzfZt28fWVlZBYrgihUrYmlpiYWFBebm5lhYWKBSqcjMzDQUmhkZGdy8eZPE\nxEQSEhJITEwkMTERCwsLQ296kyZNcHBwIC4ujs2bN3Pnzh26du1KrVq1WLhwId9++y0DBw4skCkp\nKYm+fftiY2PD0KFDiY6OZvfu3Vy7dg0vLy+sra25e/cud+7c4e7d/4+9+46L4urDBf4sCEiEBewl\nKAoqInZpAgtYAMVeX7tGiYqxIFFjmphE9JpoNMZoQEUTS/RVE0MQRYwUwYIYC2oiWFGx0IvAAnvu\nH+/N3hABEcEBeb6fz3xkz87OPHMS8cfhzJlUZGRkoFmzZjAxMVH/wNKyZUvIZDL1DxPFxcXQ0NCA\nXC6Hvr6+ejM2NlaP5hMRERG9LlxnuY76u+/Kmqd98+ZN/Pbbb7h48SI++ugjmJmZlbpfYWEhfH19\nceHCBbi4uMDFxQU9evTgSC8RERG9EVgsExERERGV4ZUfSkJEREREVBexWCYiIiIiKgOLZSIiIiKi\nMkhWLKtUKsyePRt9+vSBi4sLbt68KVUUKkVF1x6k6sH+lxb7Xzrse2mx/6XF/q+ZJCuWf/nlFyiV\nSsTExGD16tXw8fGRKgqVgn9hpcX+lxb7Xzrse2mx/6XF/q+ZJCuWo6Oj4e7uDgCwsbHB+fPnpYpC\nRP2ZecsAACAASURBVERERFQqyYrlrKysEo8n1tTUhEqlkioOEREREdFzJFtn2cfHB7a2thgzZgwA\nwNjYGElJSSX2MTMz41xmIiIiIqpWpqamSExMLPU9yR7BZm9vj6CgIIwZMwZnzpxB165dn9unrNBE\nRERERK+DZCPLQgh4eXnh8uXLAIDAwEB06NBBiihERERERKWq0Y+7JiIiIiKSEh9KQkRERERUBhbL\nRERERERlYLFMRERERFQGFstERLXExIkTceTIEQDA9evXMXjwYMycORNOTk5wdHREREQEAODAgQPo\n27cvHB0doVAokJqaivDwcNjY2EChUGDXrl1SXgYRUa0i2dJxRET0cjw9PbF582YMGjQI27dvR58+\nfZCVlYWtW7ciNTUVTk5OiI+PR0JCAoKDg6Grq4vZs2fj2LFjaNWqFQoKCnD27FmpL4OIqFZhsUxE\nVEs4OTlh3rx5SElJwfHjx9GnTx+cOnVKXQAXFxcjNTUVTZo0wdSpU6Gnp4c///wTdnZ2AICOHTtK\nGZ+IqFZisUxEVEvIZDJMnjwZ8+bNg5ubG95++20YGxtj2bJlyMrKwtq1a6GlpQVfX18kJSVBpVLB\n1dUVf68QqqHBmXdERC+LxTIRUS0ybdo0fPLJJ7hy5QpMTEzg6ekJZ2dnZGVlYe7cuZDL5bC3t4ed\nnR2aNm2Kjh07Ijk5GW3btoVMJpM6PhFRrcOHkhAR1SLJycmYMmUKjh8/LnUUIqI6gb+TIyKqJQ4d\nOgQ3Nzd89tlnUkchIqozOLJMRERERFQGjiwTEREREZWBxTIRERERURlYLBMRERERlaFCxfLZs2fh\n4uICAEhMTISDgwMUCgW8vLzU63cGBATAysoKdnZ2CA4OBgDk5eVh1KhRUCgU8PDwQEpKCgDgzJkz\nsLW1hYODA29UISIiIqIa64XF8po1a+Dp6YmCggIAwKJFi+Dn54fIyEgIIXD48GE8evQIGzduRExM\nDI4dO4Zly5ZBqVRi8+bN6NatGyIjIzFlyhR88cUXAIDZs2dj79696idPXbx4sXqvkoiIiIioEl5Y\nLJuZmeHQoUPqEeQLFy5AoVAAAAYOHIiwsDDExsbC3t4eWlpakMvlMDMzw+XLlxEdHQ13d3cAgLu7\nO8LCwpCdnQ2lUom2bdsCANzc3BAWFlZd10dEREREVGkvLJZHjhyJevX+/4P+/rnSnL6+PjIzM5GV\nlQUDA4NS2+VyeZlt/2wnIiIiIqppXvpx1xoa/7++zsrKgqGhIeRyObKzs9Xt2dnZz7WX1vbPY5TG\nzMwMN2/efNmIREREREQVZmpqisTExFLfe+nVMHr06IGIiAgAQEhICBQKBaytrREVFYWCggJkZmbi\n+vXrsLS0hL29PY4cOVJiX319fWhra+PWrVsQQiA0NFQ9rePfbt68CSEENwm25cuXS57hTdv+nrP/\n93x/9n/N3dj/7Pu6urH/2f91dStvcLbCxbJMJgMArF27FsuXL0efPn1QVFSE0aNHo1mzZpg/fz4c\nHR3Rr18/+Pn5QUdHB3PmzMHVq1fh6OiIrVu3Yvny5QCALVu2YOLEibCxsUHPnj1hZWVV0RhEtVJR\nURG2bNkCLy8v+Pn5vdRn4+PjYW9vj8jIyGpKR0RERGWp0DQMExMTxMTEAADat2+P8PDw5/aZOXMm\nZs6cWaJNV1cX+/fvf25fGxsbnD59uhJxiWqnX3/9FW3atMG6detgamqKuLg49OrVq9zPCCEQGBiI\npUuXYsKECZg+fTouXboEPT2915SaiIiI+FASKpWzs7PUEd4omzZtwty5c6Gjo4P3338fq1atKnd/\nGxsbTJ06FWvXrkVERAQ2bNgAR0dHfPDBB68pcd3G//+lw76XFvtfWuz/mkkmhBAv3k0aMpkMNTge\nUYVcv34dffv2xd27d6GtrY3c3Fy0a9cO4eHh6NSp03P7X716FaNHj4adnR02btyIBg0aAAAyMjLQ\npUsX7Ny5E3379n3dl0FERPTGKq/m5MgyUTXbtGkTPD09oa2tDQBo0KAB5s+fj9WrVz+3b2xsLPr2\n7YulS5di+/bt6kIZAAwNDeHv748ZM2aUWFGGiIjonxo2bAiZTMatlK1hw4Yv3Z8cWSaqRtnZ2WjT\npg2uXLmCVq1aqdszMjLUc5dNTEwAADExMRg+fDi2bduGIUOGlHnMd955Bzo6Oti8ebO6LS0tDTt3\n7sTFixcxdOhQDBo0CLq6utV2XUREVHOxfipbWX3DkWUiifz444/o169fiUIZ+N8o8axZs7BmzRoA\nQHh4OIYPH44ff/yx3EIZANatW4fg4GCEhYXhzJkzmDZtGtq1a4e4uDj07t0bmzdvRosWLTBx4kQE\nBQVBqVRW2/URERG96TiyTFRNhBDo3Lkzvvvuu1Jv2njy5AnMzc2xfv16+Pj4YP/+/XBxcanQsY8d\nO4YhQ4agdevWmD17NqZNm4bGjRur33/8+DEOHDiAXbt2QUtLC6Ghoahfv35VXRoREdVgrJ/KVpmR\nZRbLRNXk5MmTmDdvHq5cuaJep/zfFixYgMDAQBw5cgQODg4vdfyEhASYmpqWeKrmv6lUKowfPx4A\nsHfv3nL3JSKiNwPrp7KxWCaqQUaNGoX+/ftjzpw5Ze6Tk5ODx48fw9TUtNpy5Ofnw9XVFdbW1vjq\nq6+q7TxERFQz1NT6SUNDAykpKSVustuxYwcOHjyIoKCg15KhMsVyhR5KQkQVp1Kp8Mknn+Dy5cvY\nsWNHufvq6elV+0NG6tevj19++QX29vZo3bo15s+fX63nIyIiqqiyfvNak/B3skRVqKCgAJMmTcLJ\nkycRExMDfX19qSMB+N8yQiEhIVizZg0OHTokdRwiIqqj/j16+8/XN27cwIABA9CnTx+YmJhg+PDh\nKCgoAADo6Ohg3LhxMDc3R1xcXInXn332Gezt7dXHuXfvHlq1aoWioqIqycyRZaIqkpqaihEjRqB5\n8+Y4ceJEjVu6zcTEBL/++ivc3NxgZGRU4ZsJiYiIqoqLiws0NTXVr9PS0tCtWzcAwNatWzF9+nRM\nmDABRUVF6NWrF44cOYIRI0agsLAQQ4cOxb59+wCgxOvCwkJ89913uH79Ojp16oStW7di2rRpqFev\naspczlkmeknFxcVITU1FUVERiouLUVxcjJSUFEycOBHDhg3D6tWra/SNdCdPnsS4ceOwdetWDB06\nVOo4RERUxV5UP1XV1IeXrdFKm7O8c+dOHDhwAEFBQRBCIDQ0FJcvX8Zff/2Fw4cPY926dZg8eTI0\nNDRw584dtG7dWn2sf77++OOP8ezZM3z11Vdo27YtoqKi1O/9E+csE70GK1aswNdff40GDRpAU1MT\nmpqa0NLSwuLFizF79myp472Qi4sLgoODMWTIEGRmZmLy5MlSRyIioteoJg1E/jPLf/7zHxQXF2Pc\nuHHw8PBAUlJSiff/fY/PP1/PmjUL1tbWcHJyQpcuXUotlCuLxTLRSzp58iQOHTqEAQMGSB2l0qys\nrHDy5Em4ubkhPT2dN/0REZHkQkNDERERga5du+LatWs4e/Ys/vOf/1Tos8bGxrCzs4O3tzc2btxY\npbkq9btilUqFd955Bw4ODlAoFPjrr7+QmJiofu3l5aX+SSAgIABWVlaws7NDcHAwACAvLw+jRo2C\nQqGAh4cHUlJSqu6KiKpRQUEB/vjjD9ja2kod5ZV16tQJUVFR+Pbbb7F8+XIUFxdLHYmIiN5gpU3/\nkMlk6nY/Pz+MGDECffr0wWeffYZRo0YhMTGx1M+Wdqxp06ZBpVJh0KBBVZu7MnOWjx49isDAQOzb\ntw9hYWHYvHkzioqK4OPjA4VCgTlz5sDNzQ22trZwdXVFXFwc8vLy4ODggPPnz+Pbb79FTk4OPv30\nU+zbtw+nT5/G+vXrnw/HOctUw5w+fRpeXl74448/pI5SZR4/fozRo0cjOTkZCxYswPTp06t9OTsi\nIqo+dbF+UqlUeO+999C2bVssXry4zP0qM2e5UiPLurq6yMzMhBACmZmZ0NbWRlxcHBQKBQBg4MCB\nCAsLQ2xsLOzt7aGlpQW5XA4zMzNcvnwZ0dHRcHd3BwC4u7sjLCysMjGIXrvo6OiXftJeTdesWTNE\nRkZi586diIiIgImJCRYvXox79+5JHY2IiOiFsrOz0bhxY9y+fRvvvfdelR+/UsWyvb098vPzYW5u\njlmzZmH+/PklqnF9fX1kZmYiKysLBgYGpbbL5fISbUS1walTp0qs5fimkMlksLe3x4EDBxAbG4vi\n4mL07NkTe/fulToaERFRufT19ZGWloaQkJBqWba1Ujf4rVmzBvb29li5ciXu378PFxcXFBYWqt/P\nysqCoaEh5HI5srOz1e3Z2dnPtf/dVhZfX1/1187OznB2dq5MZKJXJoRATExMld84UNO0bdsW69at\nw7Rp0zBs2DBcvnwZX3zxRYl1MYmIiGqz8PBwhIeHV2jfShXLubm56pFhIyMjFBUVoUePHoiIiICT\nkxNCQkLQr18/WFtb46OPPkJBQQHy8/Nx/fp1WFpawt7eHkeOHIGVlRVCQkLU0zdK889imUhKCQkJ\n0NXVhbGxsdRRXouuXbsiNjYWY8aMwbBhw7B79+4SvykiIiKqrf49ALtixYoy963UDX4ZGRmYPn06\nUlJSUFhYiIULF6JXr17w9PSEUqmEhYUFAgICIJPJsHXrVvj7+0OlUuGjjz7CiBEjkJeXh6lTpyI5\nORk6OjrYs2cPmjZt+ny4OjhBnWqu7du3IywsDHv27JE6ymtVWFgIb29vhIWF4ddff0WHDh2kjkRE\nROVg/VS2ytzgxyf4EVXQjBkz0LNnT8ydO1fqKJLw9/eHr68vIiIi0L59e6njEBFRGVg/lY1P8COq\nRtHR0XX64R3vvvsuZDIZXF1dcerUKbRq1UrqSEREVAojI6Mqe6T1m8bIyOilP8NimagCnj59iuTk\nZFhaWkodRVKenp5IT0/HgAEDEBkZicaNG0sdiYiI/iUtLU3qCG+USi0dR1TXxMTEwNbWlitCAFiy\nZAmGDRuGQYMGlVjthoiI6E3EYpmoAt7Eh5G8Cj8/P/To0QPDhg1Dfn6+1HGIiIiqDYtlogqIjo5+\nIx9GUlkymQzfffcdmjVrBnd3dzx9+lTqSERERNWCxTLRC+Tn5+PixYuwsbGROkqNoqmpiV27dsHO\nzg7W1ta4dOmS1JGIiIiqHItlohc4f/48LCws0KBBA6mj1DiamppYtWoV/Pz80L9/fxw8eFDqSERE\nRFWKq2EQvQCnYLzY+PHj0aFDB4wYMQKXLl2Cr68vNDT4szgREdV+/NeM6AVOnTrFYrkCevXqhdjY\nWAQHByMgIEDqOERERFWCT/AjKodKpUKTJk1w5coVtGzZUuo4tcKFCxcwePBg/PXXX9DX15c6DhER\n0QuVV3NyZJmoHH/99RcMDAxYKL+Enj17om/fvli7dq3UUYiIiF4Zi2Wichw8eBBubm5Sx6h1Vq5c\niY0bNyI5OVnqKLXSuXPncOLECaljEBEROA2DqEwqlQpmZmbYt28frKyspI5T6yxevBiZmZnw9/eX\nOkqtEh8fj759+0IIgYiICFhYWEgdiYjojVdezclimagMv//+OxYuXIhLly5BJpNJHafWSU9PR8eO\nHREeHs6Cr4KSkpJgb2+P//N//g8KCgqwevVqxMbGcu43EVE1q5Y5y6tWrUKfPn1gZWWFnTt3IjEx\nEQ4ODlAoFPDy8lKfMCAgAFZWVrCzs0NwcDAAIC8vD6NGjYJCoYCHhwdSUlIqG4Oo2mzbtg0zZsxg\noVxJRkZG+OCDD7B06VKpo9QK6enpGDhwIBYsWIDx48dj2rRpUCgUmDFjBgcNiIgkVKliOTw8HKdP\nn0ZMTAzCw8Nx69Yt+Pj4wM/PD5GRkRBC4PDhw3j06BE2btyImJgYHDt2DMuWLYNSqcTmzZvRrVs3\nREZGYsqUKfjiiy+q+rqIXkl6ejqCg4MxadIkqaPUanPnzkV8fDzCw8OljlKj5efnY/jw4RgwYAAW\nLVqkbv/mm29w69YtrF+/XsJ0RER1W6WK5dDQUHTp0gXDhw/HkCFDMHToUMTFxUGhUAAABg4ciLCw\nMMTGxsLe3h5aWlqQy+UwMzPD5cuXER0dDXd3dwCAu7s7wsLCqu6KiKrA3r174ebmhkaNGkkdpVbT\n0dGBn58f3n//feTn50sdp0YqLi7G5MmT0bx5c6xdu7bEbzLq16+PAwcOYPXq1YiKipIwJRFR3VWp\nYvnp06eIi4vDgQMHsGXLFkyYMKHErwn19fWRmZmJrKwsGBgYlNoul8tLtBHVJH9PwaBXN27cOLRv\n3x4ODg64e/eu1HFqlJycHIwcORIZGRn44YcfSn3qoYmJCXbu3Inx48fj4cOHEqQkIqrbKvW468aN\nG6NTp06oV68eOnTogPr16+PBgwfq97OysmBoaAi5XI7s7Gx1e3Z29nPtf7eVxdfXV/21s7MznJ2d\nKxOZqMIuXryIlJQU9O/fX+oobwQNDQ3s2bMHX3/9NWxsbLBz504uxwfg3r17GDJkCKytrbFp0yZo\na2uXua+7uzsWLFgAJycnhIWFoU2bNq8xKRHRmyc8PLziUwRFJfz2229iwIABQgghHjx4IMzMzMTQ\noUNFeHi4EEKIWbNmif3794tHjx6JLl26iPz8fJGRkSHMzc1Ffn6+WLt2rfD19RVCCLF3717h5eVV\n6nkqGY/olbz33nti+fLlUsd4I0VERIiWLVuKzz77TBQXF0sdRzIxMTGiRYsWYt26dUKlUlX4c+vX\nrxfGxsbizz//rMZ0RER1T3k1Z6WXjlu6dClOnjwJlUqFVatWwcTEBJ6enlAqlbCwsEBAQABkMhm2\nbt0Kf39/qFQqfPTRRxgxYgTy8vIwdepUJCcnQ0dHB3v27EHTpk2fOweXjqPXLT8/H2+//Tbi4uI4\neldNHj58iLFjx6JZs2bYv38/NDU1pY5UKUqlEpcvX8b58+cRGxuLuLg4WFpaws/PD61bty71M0II\n/Pjjj3j//fcRGBgIDw+Plz5vYGAgPvzwQ4SEhKB79+6vehlERASus0xUYXv37kVgYCBCQ0OljvJG\nKywsxIABA+Dk5IQVK1ZIHeelBQQEYOHChTA1NUXv3r1hZWWFnj174siRI/j2228xe/ZsfPDBB+r1\nkXNycrBr1y589913KC4uxr59+2BpaVnp8x88eBBeXl74+eef0adPn6q6LCKiOovFMlEF9e/fH56e\nnhg3bpzUUd54jx49Qu/eveHv749BgwZJHafCYmNj4eHhgejoaLRv3/659+/fv48PP/wQYWFhWLZs\nGW7cuIHdu3fD2dkZc+fORd++fatk7e5jx45h0qRJmDhxImbNmoVOnTq98jGJiOoqFstEFXDt2jW4\nuLjg7t27qF+/vtRx6oTo6GiMHDkSZ86cQdu2baWO80Lp6eno2bMn1q5di5EjR5a77/nz57Fy5UpY\nWlri3XffhbGxcZXnuXv3LgICArBt2zZ06NABs2fPxsiRI6Gjo1Pl5yIiepOxWCaqgFGjRqFPnz7w\n8fGROkqdsmHDBuzcuRPR0dHQ1dWVOk6ZVCoVhg8fDlNTU3z99ddSxymhsLAQhw8fxvfff49z586h\nY8eOaN++vXqzs7NDu3btpI5JRFRjsVgmeoHY2FiMGDECCQkJNbpgexMJITB+/Hg0aNAA27ZtkzpO\nmdasWYOff/4ZERER5S7zJrXU1FTcuHEDCQkJ6u3EiRP4+OOPMW/evFLXciYiqutYLBO9gJubG0aM\nGIHZs2dLHaVOysnJgY2NDfr06YMuXbqgZcuWaNmyJVq0aIEWLVpIPi0mMjISY8eOxblz58pc6aIm\nS0xMxKRJk2BoaIjAwEC0aNFC6khERDUKi2WicoSHh2PGjBm4fv16jR4xfNPdvXsXP/74I5KTk5Gc\nnIyHDx+qv9bT01MXz61atUKfPn3g6uoKExOTas91+/ZtODo6IiAgAAMHDqz281WXwsJCfP755/D3\n94e/vz+GDh0qdSQiohqDxTJRGYQQcHBwwJw5czBp0iSp41ApVCoV0tLS1MXzvXv3EBkZidDQUBgY\nGGDAgAFwdXWFi4sL5HJ5lZ47NjYWw4YNwyeffII5c+ZU6bGlcurUKUyePBnjxo3DqlWrqmRlDiKi\n2o7FMlEZgoODsXTpUly6dKnWPhyjrlKpVLhy5QpCQ0Nx/PhxnD59Gt27d1cXz7169QIAFBUVobi4\nGEVFRdDX16/wf+fDhw/D09MT27Ztw5AhQ6rzUl67tLQ0uLu7o1evXti0aRPnMRNRncdimagUKpUK\nPXv2hK+vL4YPHy51HHpFeXl5iIqKwvHjxxEaGoorV65AU1MT9erVg6amJjQ1NaGrq4sJEyZgypQp\n6NatW5mjqhs3bsTq1atx+PBh9O7d+zVfyeuRlZWFwYMHw8TEBNu3b0e9evWkjkREJBkWy0Sl2Ldv\nH9auXYuzZ8/yV9F1xI0bN7Br1y788MMP0NfXx+TJk2FiYoL8/Hzk5+ejoKAAf/zxB06fPo2QkJDX\nMidaSs+ePcPIkSPRoEED7Nmzh+szE1GdxWKZqBQ9evTA6tWr4ebmJnUUes1UKhVOnTqFPXv2IC0t\nDTo6Oqhfvz7q168PAwMD+Pj4wMjISOqYr0VBQQHGjx+PvLw87N27F4aGhlJHIiJ67VgsE/1LVlYW\nWrZsifT0dGhpaUkdh0hSRUVF8Pb2xp49ezBr1ix4e3ujSZMmUsciInptyqs5eVcH1UlxcXHo1q0b\nC2UiAPXq1cPGjRtx/vx5pKeno2PHjvD29saDBw+kjkZEJDkWy1QnnTt3DtbW1lLHIKpR2rZti82b\nNyM+Ph4aGhro2rUrFi5ciCdPnkgdjYhIMq9ULD958gTGxsa4ceMGEhMT4eDgAIVCAS8vL/VQdkBA\nAKysrGBnZ4fg4GAA/7trfdSoUVAoFPDw8EBKSsqrXwnRS2CxTFS2li1bYu3atbh27RoAoFOnTvj4\n44+RkZEhcTIiotev0sVyYWEhZs2ahQYNGkAIgUWLFsHPzw+RkZEQQuDw4cN49OgRNm7ciJiYGBw7\ndgzLli2DUqnE5s2b0a1bN0RGRmLKlCn44osvqvKaiF4oNjYWVlZWUscgqtGaNWuG9evX48KFC0hO\nTkaHDh2watUqZGVlSR2NiOi1qXSxvHjxYsyZMwctWrQAAFy4cAEKhQIAMHDgQISFhSE2Nhb29vbQ\n0tKCXC6HmZkZLl++jOjoaLi7uwMA3N3dERYWVgWXQlQxjx49Qk5ODkxNTaWOQlQrtGnTBtu2bUNk\nZCTi4+PRrl07fPzxx3j69KnU0YiIql2lVqHfsWMHmjRpAldXV6xatQpCiBJ3EOrr6yMzMxNZWVkw\nMDAotf3vx9L+3VYWX19f9dfOzs5wdnauTGQitdjYWFhbW3NtZaKXZG5ujt27d+PmzZv48ssv0bFj\nR0yaNAnz58+HmZmZ1PGIiCosPDwc4eHhFdq3UsVyYGAgZDIZwsLCcPHiRUydOrXECENWVhYMDQ0h\nl8uRnZ2tbs/Ozn6u/e+2svyzWCaqCufOneMUDKJXYGpqii1btuDTTz/F119/DQcHBzRq1AiDBw/G\n4MGDYWdnxycCElGN9u8B2BUrVpS5b6WmYURERCA8PBwnT55E9+7d8cMPP8Dd3R0REREAgJCQECgU\nClhbWyMqKgoFBQXIzMzE9evXYWlpCXt7exw5cqTEvkSvC2/uI6oaLVu2xJdffomHDx8iMDAQOjo6\nWLBgAZo1a4Z58+bhzp07UkckInplr/xQEhcXF3z//feQyWTw9PSEUqmEhYUFAgICIJPJsHXrVvj7\n+0OlUuGjjz7CiBEjkJeXh6lTpyI5ORk6OjrYs2cPmjZt+nw4PpSEqpgQAo0aNcK1a9fQvHlzqeMQ\nvZHu3buH7777DgEBAXBzc8OSJUvQvXt3qWMREZWJT/Aj+n8SExPRt29f3Lt3T+ooRG+8zMxM+Pv7\nY/369bC0tMSGDRtgbm4udSwioufwCX5E/8/fN/cRUfUzMDDA4sWLcevWLQwePBiOjo4ICAjgIAgR\n1SoslqlO4c19RK+fjo4O5s2bh8jISGzatAmjR49GWlqa1LGIiCqExTLVKRxZJpJOp06dcPbsWbRp\n0wbdunXDyZMnpY5ERPRCnLNMdUZhYSGMjIzw8OFD9TrfRCSNo0ePYsaMGXBzc8Pq1atLvcmbiOh1\n4ZxlIgBXr15F69atWSgT1QDu7u64fv06jIyM0LlzZ3z77bcoKiqSOhYR0XNYLFOdwSkYRDWLXC7H\n2rVrER4ejoMHD6J3796Ijo6WOhYRUQkslqnO4M19RDVT586d8fvvv+ODDz7A2LFjMWvWLGRkZEgd\ni4gIAItlqkM4skxUc8lkMvznP//BtWvXoKmpic6dO2P//v28b4WIJMcb/F7Snj17UFBQgIkTJ0Jb\nW1vqOFRBz549Q5MmTZCWlgYdHR2p4xDRC8TExODdd99FmzZtsHLlSnTt2hUaGhzfIaLqwRv8qkhC\nQgLmz5+PXbt2oX379ti0aRPy8vKkjkUV8Mcff6Bz584slIlqiT59+uDChQtwcHDAmDFj0Lx5c4wb\nNw7+/v64efOm1PGIqA5hsVxBQgjMmTMHH374IU6cOIF9+/bh6NGjMDU1xVdffYWcnBypI1I5zp07\nxykYRLWMtrY2li1bhoSEBJw/fx4DBw5EVFQUHB0d0aFDB/j4+CAiIoKraBBRteI0jAravXs3vvrq\nK8TGxqJevXrq9kuXLsHPzw8nT57Ee++9h3nz5sHIyKhCx7x//z7y8vLQvn376opNAAoKCmBvb48l\nS5Zg7NixUscholckhMAff/yBoKAgBAUF4fbt23Bzc4OjoyNsbGzQpUsXaGlpSR2TiGqR8mpOFssV\nkJaWhs6dO+Pw4cNljk7++eefWL16NYKCgvDuu+/C29u73EX2Dx48iDlz5kAIAYVCgWXLlqF3wOmf\nkAAAIABJREFU797VdQl1mpeXFx4/fowDBw5AJpNJHYeIqtiDBw8QEhKC06dP48yZM7h79y66d++O\nfv36YfHixdDT05M6IhHVcFU+Z7mwsBCTJ0+GQqGAjY0NgoKCkJiYCAcHBygUCnh5ealPGBAQACsr\nK9jZ2SE4OBgAkJeXh1GjRkGhUMDDwwMpKSmVvLTyCSHw66+/wtHREaNHj8aOHTvw5MmTUvfNyckp\nM8cHH3yAkSNHlvtrfHNzc+zYsQPnz59HRkYGzM3NsXDhQty/f7/EfgUFBZg/fz4WL16MI0eO4M6d\nO3B0dMSIESPg6uqKkydPSv4DghDijZlW8sMPP+DEiRMIDAxkoUz0hmrVqhVmzpyJbdu24erVq3jw\n4AFWrFiB27dvo2vXrvj999+ljkhEtZmohMDAQOHt7S2EECItLU0YGxuLoUOHioiICCGEELNnzxY/\n//yzSE5OFl26dBFKpVJkZmaKLl26iIKCArF27VqxYsUKIYQQP/30k1iwYEGp5ykvXkpKiliwYIHo\n06ePWLFihYiLixMqlUoIIYRKpRLBwcGiV69eolu3buK///2vCAwMFKNHjxYGBgbC2tpaLF26VMyY\nMUMoFArRokULUb9+fSGXy8X48ePFH3/8oT7PqVOnRMuWLUVGRsZL9dGDBw/EokWLhJGRkXj33XfF\nzZs3xa1bt4SVlZUYPny4SE9PL7F/QUGB2LZtmzA3Nxf6+vrC1tZWzJw5U6xfv14cP35cJCQkiLy8\nvJfKUFmffvqpaNWq1Utfc01z8eJF0bhxYxEfHy91FCKSyG+//SbefvttMWfOHJGVlSV1HCKqocqr\nOSs1DSM3NxdCCOjp6SE1NRXW1tZQKpVISkoCAPz6668IDQ2Fm5sbjhw5gs2bNwMARo4ciQ8//BCr\nVq3C0qVLYW1tjczMTNjb2yM+Pv6588hkMvz+++9wcnJSLxlUUFCAb7/9FqtXr8bYsWMxZMgQHD9+\nHEFBQcjNzcWgQYNw5coV5OTkYMWKFRgxYkSJ5YaUSiVOnTqFqKgoNGvWDO3bt0f79u3x9ttvIycn\nB99//z3Wr18PS0tLvP/++1i0aBE++eSTSs91TUlJwfr167FlyxYIIfDxxx9j4cKF5Y5ypqam4urV\nq4iPj0d8fDyuXr2Ke/fu4eHDh5DL5TA2NoaxsTHefvvtEl936dIFDRs2LPO4GRkZ2L59O0aMGIG2\nbduWus+hQ4ewcOFC2NvbQy6X4/vvv6/UdUstPT0dVlZW+PzzzzF+/Hip4xCRhDIyMuDj44MTJ05g\n9erVcHd3h6GhodSxiKgGqbY5y9nZ2Rg2bBg8PT3x/vvv48GDBwCAkydPYvv27XB3d8eVK1ewevVq\nAMDUqVMxZcoUrF69Ghs3boS5uTlUKhXatGmjLrT/Hbx79+54+vQpxo8fj06dOmHlypWwsLDAmjVr\n0KlTpxL737hxA8HBwWjVqhVGjx5d6TU5CwoKsHv3bnz55ZcwNTVFUFDQK/8KPyMjA2lpaWjXrl2l\nj6FSqfDkyRMkJSXh/v37Jf5MSkrCtWvXMGXKFCxevBitWrVSf66oqAhbt26Fr68vevXqhYsXL+LI\nkSPo1q1biePHx8fDxcUFISEhaN++PTp37ozdu3fDycmp0pmloFKpMGzYMLRt2xbffPON1HGIqIYI\nDQ3FunXrEB0djc6dO2PAgAEYMGAAbG1tuW4+UR1XXrFcr9TWCkhKSsLIkSMxd+5cjB8/HkuWLFG/\nl5WVBUNDQ8jlcmRnZ6vbs7Ozn2v/u60sw4YNw5MnT3DmzBlERETA398f/fr1K3XfDh06oEOHDpW9\nJDUdHR288847mD59OlQqVZXMdTU0NHzlkQwNDQ00b94czZs3L/WxzQ8fPsTatWvRpUsXjB07FkuX\nLkViYiIWLVqExo0b4+jRo+jevTv279+PAQMG4L///a+6EE5LS8Pw4cOxbt069Y2GmzZtgqenJy5d\nugRdXd1Xyv6qhBC4fPkyoqOjUVRUBC0tLWhra0NLSwtFRUVISkrCvXv3cO/ePdy6dQstWrTAwYMH\nJc1MRDWLq6srXF1dkZ+fj5iYGBw/fhyLFi1CQkICFAqFung2NzfnPQ5Eb7jw8HCEh4dXaN9KjSw/\nfvwYzs7O+O677+Di4gIAGDp0KHx8fODk5ITZs2ejX79+6m8+sbGxyM/Ph62tLS5evIhNmzYhOzsb\ny5cvx08//YSoqChs2rTp+XA1ZDWM2ubp06dYv349Nm/eDCMjI3z11VcYPnx4iW/+J06cwPjx4/H9\n999jyJAh8PDwQOfOnbFu3boSxxo7dixMTU2xatWq130ZSElJQWhoKI4dO4bQ0FDo6enB2dkZ9evX\nR2FhIQoLC6FUKqGpqQljY2O0bt0abdq0QevWrWFqasqlo4ioQlJSUnDixAkcP34cx48fR3FxMRwd\nHWFnZwc7Ozt0796d30+I3nBVPg1jwYIF+O9//4uOHTuq2zZs2ID58+dDqVTCwsICAQEBkMlk2Lp1\nK/z9/aFSqfDRRx9hxIgRyMvLw9SpU5GcnAwdHR3s2bOn1GXWWCy/mmfPnqFevXpl/noxLi4OQ4YM\ngYWFBWQyGUJCQkqsIQ387wejrl274ujRo+jRo0eJY4eEhOCtt96CnZ1dmaPmRUVFyMjIQOPGjSuU\nWQiBmJgYbNq0CUeOHIGTkxPc3Nzg5uYGU1PTCl45EVHlCCGQkJCA6OhonDlzBqdPn8atW7fQq1cv\njBo1CmPHjkXz5s2ljklEVYzrLFOZEhISsHz5cmzcuBGNGjUqdZ8dO3Zg48aNiImJQUREBHbv3o1f\nf/0VVlZWKCoqQmxsLNq1awdHR0f07t0bjx8/Vt+c+Ndff6FevXowMjKCo6MjHBwc4ODggE6dOkGp\nVKKgoAAFBQXIz89HaGgoNm3ahNzcXHh5eWHatGkVfsALEVF1ycrKQlRUFPbt24egoCD06tUL48eP\nh729PW7evIlr166pN7lcjnfeeQcjRoxA/fr1pY5ORBXEYpleiRACrq6uOHPmDDp16oSJEydi3Lhx\n6tGVwsJCXLhwAadOncL58+fRsmVLWFpawtLSEp06dUKDBg1w48YNnDp1Sr0Sya1bt6CtrQ0dHR31\n1rNnT8ydOxf9+/ev9M2ZRETVKS8vD8HBwdi7dy8uXLiADh06oHPnzrCwsICFhQXu37+Pbdu2IS4u\nDhMmTMDMmTPRtWtXqWMT0QuwWKZXlpaWhtTU1Cp7NLcQgjfQENEb686dOwgMDMT27dthYmICHx8f\nDBkyBJqamlJHI6JSsFgmIiKSQFFREQ4dOoSvvvoKGRkZ8Pb2xtSpU/HWW29JHY2I/oHFMhERkYSE\nEDh16hTWrl2L6OhoeHh4YNCgQRgwYADvzSCqAVgsExER1RB37tzBb7/9hpCQEERFRaFr164YNGgQ\nBg4ciO7du3OKGpEEWCwTERHVQHl5eYiIiEBISAhCQkKQnZ2NgQMHYuDAgbCxsYGuri50dHSgra0N\nbW1t3vxMVE1YLBMREdUCiYmJ6sL54sWLUCqV6mU2lUoljI2N4eDgoF6Ks3PnziygiaoAi2UiIqJa\nTgiBxMREREVFqZfhTElJQcuWLaGnp1dia9y4MZo0aaLe/n5wlEqlgkqlghACb731Ftq2bYuWLVuy\n4KY6j8UyERHRG+jJkyd48uQJcnNzkZOTg5ycHGRnZyMlJQVPnz5Vb+np6dDQ0ICGhgZkMhk0NDSQ\nnZ2N27dvIz09HW3atEG7du3QtGlTGBgYQC6XQy6Xw8DAACYmJujYsSNat27NopreWCyWiYiIqFS5\nubm4c+cObt++jadPnyIrK0u9ZWRk4NatW7hx4wZSU1NhamoKU1NT6OvrQ1dXF7q6uqhfvz4aNGgA\nAwODEptSqcS9e/eQlJSEpKQk3L9/H2+//Tbs7e1hb28Pc3PzUovv8tbhz8/Px/Xr1xEfH4+GDRvC\nyckJenp61d1FVAewWCYiIqJXkpOTg4SEBNy+fRu5ubnIy8tTb7m5ueriOjMzExkZGdDS0kLr1q1h\nbGyM1q1bo1WrVrh9+zaio6MRHR2NzMxM9O7dG8XFxUhNTUVqairS0tLw7NkzNGrUCE2bNlVvxcXF\niI+Px927d2FqagpLS0s8efIEsbGx6N27N1xdXdXL8BUWFqo3pVL53Nc6OjqwsLBAq1atuPIIqbFY\nJiIiohrl4cOHuHDhAnR0dNCwYUM0atQIjRo1gq6uLtLS0vDkyRM8fvwYT548AQBYWlqiY8eO0NbW\nVh8jJycHERERCA0NxYkTJ5CbmwstLS1oa2tDS0tLvf3zdV5eHq5evYrCwkJ06dIFXbp0gYmJCd56\n660SW6NGjdCyZUu0aNGixDnpzcRimYiIiOgfnjx5gitXruDKlStISkpCXl4enj17hmfPniE3Nxcp\nKSl4+PAhHj9+DAMDA7Ro0QKNGjWCkZERDA0NYWRkVOrX2traSE9PR3p6OtLS0pCWlgaVSgU9PT3o\n6+s/dzPm35uuri6USqU6R15eHgoLC9XFe4MGDdCgQQNoaWmpR8uLiooq/KcQAs2aNUOrVq3QqFGj\n50bVi4qKkJGRAR0dHejr60v0X0U6LJaJiIiIKkGlUuHp06dITk5GWloa0tPTkZGRoS6I//1aqVSi\nYcOGMDIyUv+pqampvgGzrO3Zs2fQ1tbGW2+9pZ4P/vdIeG5uLnJzc/Hs2TMUFhZCS0sL9erVe6k/\nhRB4/PgxHj58iJycHLRo0QIGBgbq7M+ePYNcLkd+fj4MDAzQvn17dOjQAe3bt4eenh5UKhWKi4vV\nq6no6upCT08PDRo0gJ6eHoyMjGBtbS31f65Kq5HFskqlgpeXFy5fvgwdHR1s3boVpqamJcOxWJZM\neHg4nJ2dpY5RZ7H/pcX+lw77Xlrsf2m9rv7Py8tDcnIysrKy1CPj+vr60NDQgEqlwoMHD5CQkIAb\nN24gISEBeXl50NDQgKamJjQ1NQH872bLfxb7crkcBw4cqPbs1aW8mrPea86i9ssvv0CpVCImJgZn\nz56Fj48PfvnlF6ni0L/wG6a02P/SYv9Lh30vLfa/tF5X/+vq6qJdu3alvqehoQFjY2MYGxujb9++\n1Z6lNpBswcTo6Gi4u7sDAGxsbHD+/HmpohARERERlUqyYjkrKwtyuVz9WlNTEyqVSqo4RERERETP\nkWzOso+PD2xtbTFmzBgAgLGxMZKSkkrsY2Zmhps3b0oRj4iIiIjqCFNTUyQmJpb6nmRzlu3t7REU\nFIQxY8bgzJkz6Nq163P7lBWaiIiIiOh1kGxkWQihXg0DAAIDA9GhQwcpohARERERlapGr7NMRERE\nRCQlyW7wIyIiIiKq6VgsExERERGVgcUyEREREVEZWCwTEREREZWBxTIRUS0xceJEHDlyBABw/fp1\nDB48GDNnzoSTkxMcHR0REREBADhw4AD69u0LR0dHKBQKpKamIjw8HDY2NlAoFNi1a5eUl0FEVKtI\nts4yERG9HE9PT2zevBmDBg3C9u3b0adPH2RlZWHr1q1ITU2Fk5MT4uPjkZCQgODgYOjq6mL27Nk4\nduwYWrVqhYKCApw9e1bqyyAiqlVYLBMR1RJOTk6YN28eUlJScPz4cfTp0wenTp1SF8DFxcVITU1F\nkyZNMHXqVOjp6eHPP/+EnZ0dAKBjx45SxiciqpVYLBMR1RIymQyTJ0/GvHnz4ObmhrfffhvGxsZY\ntmwZsrKysHbtWmhpacHX1xdJSUlQqVRwdXXF38vpa2hw5h0R0ctisUxEVItMmzYNn3zyCa5cuQIT\nExN4enrC2dkZWVlZmDt3LuRyOezt7WFnZ4emTZuiY8eOSE5ORtu2bSGTyaSOT0RU6/AJfkREtUhy\ncjKmTJmC48ePSx2FiKhO4O/kiIhqiUOHDsHNzQ2fffaZ1FGIiOoMjiwTEREREZWBI8tERERERGVg\nsUxEREREVIZyi2WVSoV33nkHDg4OUCgU+Ouvv5CYmKh+7eXlpV6SKCAgAFZWVrCzs0NwcDAAIC8v\nD6NGjYJCoYCHhwdSUlIAAGfOnIGtrS0cHBw4946IiIiIaqxyi+XQ0FDk5ubi1KlT+PTTT/Hhhx/C\nx8cHfn5+iIyMhBAChw8fxqNHj7Bx40bExMTg2LFjWLZsGZRKJTZv3oxu3bohMjISU6ZMwRdffAEA\nmD17Nvbu3ateTP/ixYuv5WKJiIiIiF5GucWyrq4uMjMzIYRAZmYmtLW1ERcXB4VCAQAYOHAgwsLC\nEBsbC3t7e2hpaUEul8PMzAyXL19GdHQ03N3dAQDu7u4ICwtDdnY2lEol2rZtCwBwc3NDWFhYNV8m\nEREREdHLK/ehJPb29sjPz4e5uTlSU1MRFBSEyMhI9fv6+vrIzMxEVlYWDAwMSm2Xy+Vltv3dfuvW\nraq+LiIiIiKiV1ZusbxmzRrY29tj5cqVuH//PlxcXFBYWKh+PysrC4aGhpDL5cjOzla3Z2dnP9de\nWts/j1EaMzMz3Lx585UukIiIiIioPKampkhMTCz1vXKnYeTm5qpHgY2MjFBUVIQePXogIiICABAS\nEgKFQgFra2tERUWhoKAAmZmZuH79OiwtLWFvb48jR46U2FdfXx/a2tq4desWhBAIDQ1VT+v4t5s3\nb0IIwU2Cbfny5ZJnqMsb+5/9X1c39j37vy5v7H/ptvIGZ8sdWV68eDGmT58OR0dHFBYWYtWqVejV\nqxc8PT2hVCphYWGB0aNHQyaTYf78+XB0dIRKpYKfnx90dHQwZ84cTJ06FY6OjtDR0cGePXsAAFu2\nbMHEiRNRXFwMNzc3WFlZlReDiIiIiEgS5RbLhoaG+Pnnn59rDw8Pf65t5syZmDlzZok2XV1d7N+/\n/7l9bWxscPr06ZeMSkRERET0evGhJFQqZ2dnqSPUaex/abH/pcO+lxb7X1rs/5pJJoQQUocoi0wm\nQw2OR0RERERvgPJqznKnYRARERFR7dSwYUOkp6dLHaNGMTIyQlpa2kt9hiPLRLVAXFwc2rVrByMj\nI6mjEBFRLcE66nll9Ul5fcU5y0Q1mBACK1euxMCBA9GhQwesXLkSOTk5FfpsRkYGPv74Y3zxxRco\nLi6u5qRERERvJhbLRDWUUqnE9OnT8fPPP+PSpUuIiYnB1atXYWZmhg0bNiA/P7/UzxUUFGDdunXo\n0KEDkpOTceLECQwbNgxZWVmv+QqIiIhqvxcWyzt37oSLiwtcXFxga2sLXV1dxMXFwcHBAQqFAl5e\nXuph64CAAFhZWcHOzg7BwcEAgLy8PIwaNQoKhQIeHh5ISUkBAJw5cwa2trZwcHDAZ599Vo2XSFT7\npKenw83NDRkZGYiIiECLFi3Qvn177NmzB8eOHcOJEydgYmKCgQMHYv78+fjmm28QEhKCHTt2oGPH\njggPD8fJkyexbds2hIaGwtjYGLa2tmU+nYhqFqVSidzcXKljEBERXnLO8nvvvYfu3bsjKCgIPj4+\nUCgUmDNnDtzc3GBrawtXV1fExcUhLy8PDg4OOH/+PL799lvk5OTg008/xb59+3D69GmsX78e3bt3\nx88//4y2bdvCw8MDK1euRPfu3UuG41wbqoNu3bqFQYMGYdCgQfjyyy+hqalZ5n7Xrl1DQkICEhMT\nkZCQAAD45JNP4Ojo+Nz+mzdvhq+vL/bu3Yu+fftW6zVQ5RUVFWHw4MFITEzE0aNHYWZmJnUkIqql\nWEc9r1rnLJ8/fx7Xrl3DzJkzERcXp35E9cCBAxEWFobY2FjY29tDS0sLcrkcZmZmuHz5MqKjo+Hu\n7g4AcHd3R1hYGLKzs6FUKtG2bVsAgJubG8LCwl76goneNAUFBRg6dCjeffddrFu3rsxCGQDatWuH\nwYMHw9vbG5s2bUJoaChCQ0NLLZQBYM6cOfjpp58wYcIEbNiwodxvoEePHoWbmxseP378ytdEL2fx\n4sUoLi7GokWL4OjoiHPnzkkdiYioyt25cwcaGhpwcnJ67r3p06dDQ0PjpVetqC4VLpb9/PywfPly\nACjxj6y+vj4yMzORlZUFAwODUtvlcnmZbf9sJ6rrfH190b59e3h7e1fL8V1cXHD69Gns2LEDkyZN\nwrNnz0q8L4SAn58fZsyYgdatW8PV1ZXLDr1GW7duRXBwMPbv3w8vLy/4+/vDw8MDv/32m9TRiIiq\nXP369ZGQkIB79+6p23Jzc3Hq1CnIZDIJk5VUoWI5IyMDN27cUFf/Ghr//2NZWVkwNDSEXC5Hdna2\nuj07O/u59tLa/nmM0vj6+qq30h6zTfSmOHPmDAIDA7Fly5Zq/SbRtm1bREdHQ1NTE3Z2drh16xaA\n//09HDVqFIKCgnDu3Dn4+/ujX79+GDRoUIVX4KDKi4yMxIcffoigoCD1EoFDhgxBcHAwPD094e/v\nL3FCIqKqpampiXHjxmH37t3qtkOHDmH48OEQQqC4uBgLFiyAra0tOnfuDAsLC8TExAAApk2bhqFD\nh8LS0hJLlixBw4YN1dMRAWDAgAEICgoq89zh4eElasxyiQo4fPiwmD9/vvr1kCFDRHh4uBBCiFmz\nZon9+/eLR48eiS5duoj8/HyRkZEhzM3NRX5+vli7dq3w9fUVQgixd+9e4eXlJYQQonv37uLmzZtC\npVKJQYMGiXPnzj133grGI6r1nj17Jjp27Cj279//2s6pUqnExo0bRdOmTYW/v78wNzcXs2bNEvn5\n+SX2mTFjhujXr5/Iy8t7bdnqmlu3bonmzZuLY8eOlfp+QkKCMDMzE2PHjhXXrl17bbmePXv22s5F\nRFWvInUUgCrZXtbt27eFnp6eiIuLExYWFur2/v37i/j4eCGTyURUVJQYO3as+r1Vq1aJIUOGCCGE\nmDp1qhgwYID6vYULF4olS5YIIYRITEwUrVu3FiqVqsJ9Ut41VOjqvvzyS7Fhwwb16xs3bggnJydh\nZ2cnZsyYoQ4TEBAgrKysRK9evcShQ4eEEP/7ZjtmzBjh4OAg+vXrJx4/fiyEEOLMmTPC1tZWWFlZ\niY8//vilgxPVNkVFReLKlSul/uX19vYW48aNkyCVEFFRUcLc3FwEBASU+n5RUZEYM2aMGDZsmFAq\nla853ZsvOztbWFpaim+++eaF+61evVo0adJETJgwQfz555/Vmuu3334T9evXF7///nu1noeIqk9N\nrqP+LpaFEMLS0lLExcWJe/fuCRsbGyGEEDKZTKSmpoq//vpLfPfdd+L9998XvXv3Fn379hVCCDFt\n2jSxYsUK9fFu3LghmjdvLgoLC8WSJUvE559/Xup5K1Ms8wl+RK9BXl4eJkyYgJMnT6J169bw9vbG\n+PHjUb9+fURFRWHcuHG4cuUKGjVqJHXUUimVSgwfPhyGhob44YcfUK9ePakjvTHWr1+PyMhIHDx4\nsELTb7Kzs7Fx40asX78ebm5u8Pb2Rs+ePas008mTJzFu3DgsWrQImzZtwsWLF2vs/5tEVLaaXEfd\nuXMHXbp0QXZ2NtasWYNHjx6hSZMmMDAwgJeXFzQ0NLBjxw58/vnneP/992FpaYk///wTu3btwsmT\nJzF9+nRYWlrCx8dHfUw3Nzd4enrC29sbsbGxaN68+XPn5RP8iGqg1NRU9O/fHw0aNMDjx4/x1Vdf\nYf/+/TAxMcGKFSswbdo0bN68uUYXI9ra2jh48CDS09MxduxYFBQUSB2pRlGpVPj888/x008/vdTn\niouLsXHjRixevLjC89T19fXx4YcfIjExERYWFhg5ciSsra2xbdu2Klmb+ezZsxg3bhz279+PDz74\nAGPGjIGnp2eN/QeXiGq/SZMmYf/+/di3bx8mTJigbo+NjcWQIUMwa9Ys9OrVCz///LP6ibSlfU+a\nO3cuFi9eDFtb21IL5cpisUxUje7evQsHBwc4ODjghx9+gI6ODlxdXRESEoITJ07g/v37GDZsGIYN\nGyZ11BfS1dXFL7/8AplMhuHDhz+3kkZdlZ2djeHDh+PYsWPw9vbGwYMHK/zZkJAQNGzYELa2ti99\nXrlcjmXLluHmzZvw9fXFr7/+itatW2Py5MmYOHEiPDw8YG9vj86dO6NNmzZo0aIFGjduDLlcDl1d\nXfTq1Qtbtmwp8WTHS5cuYejQodixYwecnZ0BAKtWrcLt27d5gyERVbm/BwlatmwJCwsLdOjQQb3g\ng0wmw/jx4xEREYEePXpg0KBBGDBgAO7cuQMhBGQy2XODDB4eHsjNzcXs2bOrNienYRBVj4sXL2Lw\n4MFYsmQJ5s+fL3WcKlNUVITp06cjKSkJQUFB0NfXL/G+SqUqsWLOm+zOnTsYOnQobGxssGnTJly9\nehXu7u7YsWMHBg4c+MLPu7q6YvLkyZg8eXKV5ElKSsLRo0ehq6sLQ0ND9aanpwdtbW1oaWlBW1sb\n9erVQ3R0NPz9/XHixAmMHDkSHh4eeO+997BhwwaMGTOmxHH//PNPODg4IDIyEhYWFlWSlYiqX12r\no2JiYjBr1ixcuXKlzH0qMw2j5s78FjV7Yjr9X/buPKqq6v//+BMVkZQLDuCEAUlqKCopAoJXFBUQ\nZ7PBeRY1yzRLK5OcKvto9VE+mpjlEE5lmlMqJSEiCCph5oRKqYGKA9wQuMg9vz/6eb+SgIDgAXk/\n1jpL3Ofce17nLNfl7b777C0K88MPPyjW1taPdXaLxyk3N1cZP3684ubmpmzbtk1ZsGCB8tJLLynP\nPfecYmpqqnz00UdqRyxzBw8eVBo0aKB8/vnneR7ajIqKUurVq2ecMaggv//+u1K/fv08s4+oISUl\nRfnoo4+Utm3bKl999VWBx61cuVJp06aNzIoiRAVSmeqo4cOHK3Z2dkpEREShxxV0Twq7V9KzLEQp\nUv7/oh7Lly/nu+++w83NTe1IZUZRFObMmcORI0do3bq1cdNoNHTp0oX33nuPMWPGqB2zTPz4448M\nHz6cdevW4evr+8D+n376iVdeeYWdO3fSoUOHfN9j8uTJ1K1bl7lz55Z13FKhKAqDBg1KER+LAAAg\nAElEQVTCwsKCTz75hHr16qkdSQjxEFJHPagkPctSLAtRSjIyMhg1ahR//vknW7dupVGjRmpHUs3Z\ns2fx9vbmf//7H/369VM7Tqm6ceMGzs7ObNiwId9lWu/ZsWMHY8eOZc+ePQ/MVnH79m0cHBw4efJk\nhfp3cuvWLaZOncr27dvp1asXEyZMwMvLq1yttCWE+D9SRz2oTGbD+PDDD+nYsSOurq6sWbOGxMRE\nvLy80Gq1TJo0yfjGISEhuLq64uHhwa5du4B/pssaOHAgWq2WgIAAUlNTgX9WKnN3d8fLy6vC9KoI\nUZikpCQ6duxIzZo1CQ8Pr1AFUFlo1qwZO3bsYPz48URERKgdp1S9+uqrvPTSS4UWyvDP6nsrVqzA\nz8/vgXvw1Vdf4e/vX+H+ndSuXZs1a9Zw4cIF2rdvz7hx42jVqhUffPAB27Zt48KFCxgMBrVjCiFE\n6SpsXMeBAweMK6X8/fffyvvvv6/06dNH+eWXXxRFUZTAwEDl+++/V5KTkxVnZ2dFr9craWlpirOz\ns5Kdna0sXrzYOGH0xo0blddff11RFEVp06aNcuHCBUVRFKVnz57K8ePHiz1+RIjyIj4+XmnUqJHy\n6aef5rvgSGUWFhamWFtbK/Hx8WpHKRVbtmxRmjVrVqyV7e7dg507dyqK8s8iL88884xy+PDhsor5\n2BgMBuXAgQPK22+/rfTs2VOxtbVVatWqpbi7uysHDhxQO54QlZ7UUQ8q6J4Udq8KXVlg3759ODs7\n069fP9LT0/nkk0/48ssv0Wq1APj7+7Nv3z6qVq2Kp6cnpqammJqa4ujoSEJCAocOHeLtt98GwM/P\nj3nz5qHT6dDr9Tg4OAD/TCAdFhZG27Zty/C/BEKUjUOHDjFgwACWLVv2wAwCAnx8fAgODqZbt250\n7NgRe3t74+bi4oK9vb3aEYvs2rVrvPrqq2zbtg1zc/Miv87Hx4cdO3bQt29fFi9ejEajoW7duk/E\neHYTExO8vb2N08zBP0M1du3axbBhw/jtt9+wtLRUL6AQlVzt2rVlmNS/1K5du9ivKbRYvn79Opcu\nXWLnzp1cuHCB3r175xnPYWFhQVpaGunp6Xk+EO9v12g0Bbbda79w4UKxgwuhtoc95CX+MWjQIFq3\nbs2pU6dISkoiKSmJX375hfHjx3PgwAFatWqldsSHUhSFwMBARo4cWaI5kd3c3Pjpp5/w8/PDxMSE\nBQsWPLG/wGrXrs3QoUM5ePAgM2bMkPmZhVDRzZs31Y7wRCi0WK5Xrx7PPfcc1apVo1mzZtSoUYMr\nV64Y96enp2NlZYVGo0Gn0xnbdTrdA+35td3/HgUJCgoy/vzvHgwh1LJp0yZee+01tm/fjoeHh9px\nyr3mzZvTvHnzPG3r1q2jf//+xMbGFvoZUB6EhoZy9uxZNmzYUOL3aNmyJREREXzwwQe8+OKLpZiu\nfFq0aBHOzs6EhYXRrVs3teMIIUQe4eHhhIeHF+3gwsZ17Ny5U+nevbuiKIpy5coVxdHRUenTp49x\n/tAJEyYomzdvVlJSUhRnZ2clKytLuX37ttKiRQslKytLWbx4sRIUFKQoiqJs2LBBmTRpkqIoitK2\nbVvl/PnzisFgUHr27KkcOXKk2ONHhFDL999/rzRq1Ej59ddf1Y5S4U2ZMkXp2bOnkpubq3aUfBkM\nBmXnzp2KjY2NEhcXp3acCmf37t2Kvb29kp6ernYUIYQoVGE150Onjnv77bc5cOAABoOBDz/8EHt7\ne8aNG4der8fJyYmQkBBMTExYtWoVK1euxGAw8O6779K/f38yMzMZMWIEycnJmJmZERoaio2NDTEx\nMUydOpXc3Fx8fX2ZN29evueWKU9EedS7d2+GDBnCyy+/rHaUCi8nJwcfHx+6dOnCBx988MD+rKws\nTE1NqVq16mPPFhERwTvvvMPt27dZtGgRPXv2fOwZngQjR46kVq1aLFu2TO0oQghRIJlnWYhSotfr\nqVevHhcuXJBFGUrJ1atXad++PcHBwfTp0weAuLg4vvjiCzZt2kTjxo1ZsGAB/fv3f6Rxvrdv38bM\nzOyhD+fFxcXx3nvvcfbsWT744AMGDx6sSrH+pLh16xatWrUiNDT0odPtCSGEWh5pnmUhxP+Jjo6m\nWbNmUiiXovr16/Ptt98yduxYFi9eTPv27Rk0aBAODg6cPXuWTz/9lLlz5+Lh4VHk8WWJiYkEBwcz\nefJkunbtSsOGDWnSpAmNGzdm7NixREZG5vlQvH37NsuXL8fV1ZX+/fvTp08fTp8+zbBhw6RQfkS1\na9dm+fLljBkzhtOnT6sdRwghik16loUohtmzZ3P37l0+/PBDtaM8cTZs2MC2bdsYNWoU3bt3z1Ok\nGgwGNm7cyHvvvUezZs3o378/zz//PM7OztSoUQP456nvzZs3s3btWs6fP0/v3r1xdnbmueee47nn\nnsPW1paUlBS++eYbvvrqK7KzsxkyZAjnzp1j9+7d+Pr6Mnr0aLp16yYFchn4+OOP+eyzz3BwcGD0\n6NG8+OKLeWZGEkIINckwDCFKiZubGx999BFdunRRO0qlpNfr+eabb4iMjOTYsWOcOXMGR0dHGjZs\nSHR0NP7+/gwbNowePXpgampa4PsoisLRo0cJDQ3lmWeeYfDgwdSpU+cxXknldPfuXX788UdWr17N\nzz//zKBBg4xzTwshhJqkWBaiFNy8eRN7e3uuX7+OmZmZ2nEEkJ2dzW+//cYff/xB165dy/0UdOL/\nXLt2jXfffZeYmBh27dpFkyZN1I4khKjEZMyyEKXg559/xsvLSwrlcsTMzIx27doxYMAAKZQrGBsb\nG1auXMmIESPw8PDg6NGjakcSQoh8FalYfv755+nSpQtdunRhzJgxJCYm4uXlhVarZdKkScZKPCQk\nBFdXVzw8PNi1axcAmZmZDBw4EK1WS0BAAKmpqcA/D0q5u7vj5eXF3Llzy+jyhCg9+/fvp3v37mrH\nEOKJYWJiwvTp01m6dCl+fn5s375d7UhCCPGAhw7DyMrKomPHjhw7dszY1qdPH9588020Wi0TJ07E\n19cXd3d3evTowdGjR8nMzMTLy4u4uDiWLVvG33//zfvvv8+mTZs4fPgwn332GW3btuX777/HwcGB\ngIAAFixYQNu2bfOGk2EYopxQFIVnnnmGnTt30rJlS7XjCPHEiY2NpV+/fsycOZMpU6aoHUcIUck8\n0jCMX3/9lTt37uDr64uPjw/R0dEcO3YMrVYLgL+/P2FhYcTGxuLp6YmpqSkajQZHR0cSEhI4dOgQ\nfn5+APj5+REWFoZOp0Ov1+Pg4ACAr68vYWFhpXW9QpS68+fPGxfiEUKUPldXV6Kioli8eDGrV69W\nO44QQhhVe9gBNWvWZMaMGYwZM4Zz584ZC997LCwsSEtLIz09HUtLy3zb7z3pnF/bvfYLFy6U1jUJ\nUer2799Pt27dHmlRDCFE4ezs7Ni7dy/e3t7Uq1fPuEiNEEKo6aHFcrNmzXB0dATg2WefpW7duhw/\nfty4Pz09HSsrKzQaDTqdztiu0+keaM+v7f73yE9QUJDxZ29vb7y9vYt1gUKUhn379vHCCy+oHUOI\nJ17z5s354Ycf6NmzJ1u3bqVTp05qRxJCPIHCw8OLvNDVQ8csf/HFFyQkJBAcHMxff/2Fj48Pzzzz\nDG+99RadO3cmMDAQHx8ftFot3bt3JzY2lqysLNzd3YmPjyc4OBidTsecOXPYuHEjBw8eJDg4GBcX\nF7777jscHBzo1asXQUFBuLq65g0nY5ZFOXD37l3q1avHmTNnqF+/vtpxhKgU9u/fz9ChQ9m/fz+t\nW7dWO44Q4glXWM350J7lMWPGMGrUKOMY5a+++oq6desybtw44xjOF154ARMTE1577TU6deqEwWBg\n4cKFmJmZMXHiREaMGEGnTp0wMzMjNDQUgBUrVjBkyBByc3Px9fV9oFAWorw4cuQI9vb2UigL8Rh1\n796d//73v/Ts2ZODBw8an3ERQojHTRYlEeIhPvjgA/7++28++eQTtaMIUeksXbqU5cuXc/jw4TzP\nxQghRGmSRUmEeAT79++nR48eascQolKaMmUKXbt25aWXXuLu3btqxxFCVELSsyxEIdLS0rC1teXa\ntWuYm5urHUeISunu3bsEBATQokULPv/8c7XjCCGeQNKzLEQJ/fjjj3h6ekqhLISKqlWrxqZNm9i7\ndy8rVqxQO44QopJ56AN+QlRmK1euZPz48WrHEKLSs7KyYufOnXh6evLss8/i4+OjdiQhRCUhPctC\nFODcuXP89ttv9OvXT+0oQgjA0dGRTZs2MXjwYCIiItSOI4SoJKRYFqIAISEhjBgxAjMzM7WjCCH+\nP29vb1atWsWwYcMYOHAgiYmJakcSQjzhilQsX7t2jSZNmnD27FkSExPx8vJCq9UyadIk42DokJAQ\nXF1d8fDwYNeuXQBkZmYycOBAtFotAQEBpKamAhAdHY27uzteXl7MnTu3jC5NiJLLzs7m66+/Zty4\ncWpHEUL8S+/evTl9+jTt27fH3d2dadOmcevWLbVjCSGeUA8tlnNycpgwYQI1a9ZEURSmTZvGwoUL\niYiIQFEUtm/fTkpKCkuXLiUqKoq9e/cya9Ys9Ho9y5cvp02bNkRERDB8+HDmz58PQGBgIBs2bCAy\nMpKYmBji4+PL/EKFKI5t27bh7OzMs88+q3YUIUQ+zM3NmTVrFidPnuTOnTs4OjrSvXt3Xn/9dVau\nXElkZCTp6elqxxRCPAEeWizPmDGDiRMn0rBhQwCOHTtmXM3P39+fsLAwYmNj8fT0xNTUFI1Gg6Oj\nIwkJCRw6dAg/Pz8A/Pz8CAsLQ6fTodfrjasx+fr6EhYWVlbXJ0SJfPHFF0yYMEHtGEKIh6hfvz4r\nVqzgxIkTTJs2jaeffpro6GjefPNNWrRoIQWzEOKRFVosf/3111hbWxsXZFAUJc8cdBYWFqSlpZGe\nnp5nZaX72zUaTYFt97cLUV6cPXuWkydPyoN9QlQgjRo1wt/fn+nTp7N69Wqio6Px8fHhs88+Uzua\nEKKCK3TquK+++goTExPCwsKIj49nxIgRXL9+3bg/PT0dKysrNBoNOp3O2K7T6R5oz6/t/vcoSFBQ\nkPFnb29vvL29i3uNQhRLSEgII0eOpHr16mpHEUI8gqCgINzc3Jg8eTJ169ZVO44QohwJDw8nPDy8\nSMcWeQW/Ll26sGLFCmbMmMH06dPp3LkzgYGB+Pj4oNVq6d69O7GxsWRlZeHu7k58fDzBwcHodDrm\nzJnDxo0bOXjwIMHBwbi4uPDdd9/h4OBAr169CAoKwtXV9cFwsoKfeMyys7Np0qQJUVFRODo6qh1H\nCPGIAgMDsbS05OOPP1Y7ihCiHCus5izWoiQmJiYsXryYcePGodfrcXJy4oUXXsDExITXXnuNTp06\nYTAYWLhwIWZmZkycOJERI0bQqVMnzMzMCA0NBWDFihUMGTKE3NxcfH198y2UhVDD1q1bad26tRTK\nQjwh3nvvPdq0acPUqVONz94IIURxFLlnWQ3Ssywety5dujBx4kRefPFFtaMIIUrJtGnTyMnJYenS\npWpHEUKUU4XVnFIsC/H//fDDD7z66qskJibKeGUhniDXr1+nRYsWHD16FHt7e7XjCCHKocJqTlnB\nTwjg9OnTjB07li1btkihLMQTxtramkmTJskiWEKIEpGeZVHppaWl0aFDB2bOnMmoUaPUjiOEKAO3\nb9+mWbNmHDx4kObNm6sdRwhRzsgwDCEKYDAY6NOnDw4ODjKeUYgn3Mcff8zhw4fZtm2b2lGEEOWM\nDMMQogBz5sxBp9OxZMkStaMIIcrY1KlTOXPmDN99953aUYQQFYj0LItKa+vWrbzxxhvExsZiY2Oj\ndhwhxGNw6NAhXnzxRX777Tdq166tdhwhRDnxSD3Lubm5jB49Gi8vLzp16sTJkydJTEzEy8sLrVbL\npEmTjG8eEhKCq6srHh4e7Nq1C4DMzEwGDhyIVqslICCA1NRUAKKjo3F3d8fLy0seuhCPXUZGBhMm\nTODbb7+VQlmISsTT05P+/fvz5ptvqh1FCFFBPLRY3rlzJ1WqVCEyMpL58+fzzjvvMH36dBYuXEhE\nRASKorB9+3ZSUlJYunQpUVFR7N27l1mzZqHX61m+fDlt2rQhIiKC4cOHM3/+fOCfVZU2bNhAZGQk\nMTExxMfHl/nFCnHPunXr6NixoyyII0Ql9OGHH7J//35++ukntaMIISqAhxbLffv25YsvvgAgKSmJ\n2rVrc/ToUbRaLQD+/v6EhYURGxuLp6cnpqamaDQaHB0dSUhI4NChQ/j5+QHg5+dHWFgYOp0OvV6P\ng4MDAL6+voSFhZXVNQqRh8Fg4LPPPuONN95QO4oQQgUWFhYsX76c8ePHc+fOHbXjCCHKuSI94Fe1\nalVGjhzJ66+/zpAhQ/KM6bCwsCAtLY309HQsLS3zbddoNAW23d8uxOPw448/Ym5uTufOndWOIoRQ\nSUBAAG5ubrz//vtqRxFClHPVinrg119/zdWrV+nQoQNZWVnG9vT0dKysrNBoNOh0OmO7Tqd7oD2/\ntvvfIz9BQUHGn729vfH29i5qZCHyda9X2cTERO0oQggVff7557Rq1YoXXngBd3d3teMIIR6j8PBw\nwsPDi3TsQ4vldevWcfnyZWbNmoW5uTlVq1alffv2/PLLL3Tu3Jk9e/bg4+NDhw4dePfdd8nOziYr\nK4tTp07RqlUrPD092b17N66uruzZswetVouFhQXVq1fnwoULODg4sG/fvjxF8f0KaheiJH777TdO\nnDjBSy+9pHYUIYTKrK2tWbVqFf369WP//v04OzurHUkI8Zj8uwP2gw8+KPDYh04dl5mZyciRI0lJ\nSSEnJ4dZs2bRokULxo0bh16vx8nJiZCQEExMTFi1ahUrV67EYDDw7rvv0r9/fzIzMxkxYgTJycmY\nmZkRGhqKjY0NMTExTJ06ldzcXHx9fZk3b96D4WTqOFHKxo4di52dHbNnz1Y7ihCinNi4cSPTpk0j\nLCwMJycnteMIIVQgK/gJAVy7do3mzZtz9uxZrK2t1Y4jhChH1q1bx6xZs/j5559p1qyZ2nGEEI9Z\nYTVnkccsC1HRffHFF7zwwgtSKAshHjBs2DBycnLo1q0bBw4coGnTpmpHEkKUE1Isi0ohOzub//3v\nf+zfv1/tKEKIcmr06NHo9Xp8fHz45ZdfsLOzUzuSEKIckGJZVApff/01zs7OtGrVSu0oQohyLDAw\nEL1eT9euXfnll1+wtbVVO5IQQmVSLIsnVm5uLjt37uTTTz/l/PnzbNmyRe1IQogK4LXXXstTMDds\n2FDtSEIIFUmxLJ44d+7c4csvv+Tzzz+nbt26vPHGGwwcOBBTU1O1owkhKog333zTOCQjPDwcGxsb\ntSMJIVRS6Ap+OTk5DBs2DK1Wi5ubGzt27CAxMREvLy+0Wi2TJk0yPjkYEhKCq6srHh4e7Nq1C/hn\n2rmBAwei1WoJCAggNTUVgOjoaNzd3fHy8mLu3LllfImiMsnIyMDPz489e/awdu1aoqOjefnll6VQ\nFkIU2zvvvMOgQYPo1q0bN27cUDuOEEIlhRbL33zzDdbW1kRERPDjjz8yefJkpk+fzsKFC4mIiEBR\nFLZv305KSgpLly4lKiqKvXv3MmvWLPR6PcuXL6dNmzZEREQwfPhw5s+fD/wzJmzDhg1ERkYSExND\nfHz8Y7lY8WTLzMykb9++NG3alJ07d9KxY0dZpU8I8UiCgoIICAiga9euxMXFqR1HCKGCQovlQYMG\nGXt+DQYDpqamHDt2DK1WC4C/vz9hYWHExsbi6emJqakpGo0GR0dHEhISOHToEH5+fgD4+fkRFhaG\nTqdDr9fj4OAAgK+vL2FhYWV5jaISyM7OZuDAgcYVuapUKfSfthBCFImJiQkLFy7k1VdfpW/fvgwa\nNIgzZ86oHUsI8RgVWlHUrFmTWrVqodPpGDRoEPPnz8dgMBj3W1hYkJaWRnp6OpaWlvm2azSaAtvu\nbxeipHJycnjppZcwNzdn7dq1VK1aVe1IQogniImJCePGjePcuXO0a9cOLy8vxo8fzx9//KF2NCHE\nY/DQB/wuXbrEgAEDmDx5Mq+88gpvvfWWcV96ejpWVlZoNBp0Op2xXafTPdCeX9v971GQoKAg48//\nXsdbVG4Gg4GkpCRmzpzJ3bt32bx5s4xNFkKUmaeeeoqZM2cyfvx4Fi1ahIuLCzVq1MDFxQUXFxfa\ntm1Lly5dqFu3rtpRhRAPER4eTnh4eJGOLXS566tXr+Lt7c3//vc/unTpAkCfPn2YPn06nTt3JjAw\nEB8fH7RaLd27dyc2NpasrCzc3d2Jj48nODgYnU7HnDlz2LhxIwcPHiQ4OBgXFxe+++47HBwc6NWr\nF0FBQbi6uj4YTpa7Fvc5c+YMu3fv5tdff+XkyZP8/vvv1KlTBx8fH1asWEGNGjXUjiiEqEQUReGP\nP/4gPj6e48ePc+zYMeLi4li1ahUBAQFqxxNCFENhNWehxfLrr7/Oli1baN68ubHt888/N85B6eTk\nREhICCYmJqxatYqVK1diMBh499136d+/P5mZmYwYMYLk5GTMzMwIDQ3FxsaGmJgYpk6dSm5uLr6+\nvsybN6/YwcWTz2AwEBcXx/fff8+2bdtIT0+nd+/etGvXjlatWuHk5JRn+I8QQqjt4MGDDB06lL59\n+7Jo0SL5T7wQFUSJi2W1SbFc+SiKQlxcHBs3bmTz5s1YWFjQr18/+vXrR/v27eXBPSFEuXfr1i0m\nTJjA6dOn2bBhAy1btlQ7khDiIaRYFsUSHh7Oxo0b+fzzzzEzMyuz8+Tm5pKamsrVq1e5evWq8bxV\nqlThlVde4aWXXpJfMkKICklRFL7++mveeustFi9ezPDhw9WOJIQohBTLosgOHjzIwIEDadmyJZaW\nlmzZsqXUHpq7desWO3bsYOvWrRw+fJibN29iZWVF/fr1qV+/Ps8//zyvvPIKLi4uMj+yEOKJcOrU\nKXr16sWLL77IggUL5NsxIcopKZZFkURFRdGvXz9CQ0PRarW88MIL1KhRg9DQUKpVK/7K6Dk5Ofz+\n++8cOnSIbdu2ER0djY+PDwMGDKBr167Ur1+/RO8rhBAVSWpqKgMGDMDa2pq1a9dSs2ZNtSMJIf5F\nimVBdnY2kZGRhIeH07ZtWwICAvI8eHLkyBF69erFunXr8PX1Nb6mb9++1K1bN8/8xYqiEBMTw5o1\na7h16xYajQZLS0ssLS0xNzfnzJkzHD9+nJMnT2Jvb4+rqyt9+/bF19dXfkkIISql7OxsJkyYwIkT\nJ/jhhx9o3Lix2pGEEPeRYvkJkZWVRUpKCsnJyfz1118kJyfn2e7evYutrS1NmjShSZMm2NracuHC\nBX788Ud++eUXWrZsSefOnYmNjeX48eP069ePwYMHo9Fo6N27N19++SW9evXKc87MzEx69erF008/\nzUcffcT69etZvXo1OTk5jBo1Cnt7e9LS0oxbRkYGzz77LM8//zytW7emVq1aKt0tIYQoXxRF4eOP\nP2bZsmXMnj2bYcOG8dRTT6kdSwiBFMvlTm5uLnv27CE4OJikpCRjgWtra0vjxo3JzMzMUwTfK4z/\n/vtvGjRoQMOGDfPdqlWrxpUrV7h06ZJxa9SoEf7+/nTr1i3PRPl//fUXGzduJDQ0lISEBDZv3ky/\nfv3yzZuRkYG/vz/Hjx9n4MCBjBkzBi8vLxlXLIQQJXDw4EH+85//cOjQIcaOHcvkyZNp0qSJ2rGE\nqNQeuViOiYlh5syZHDhwgMTEREaOHEmVKlVo1aoVwcHBmJiYEBISwsqVK6lWrRrvvfceAQEBZGZm\nMnToUK5fv46FhQVr1qyhXr16REdHM3XqVKpVq0aPHj14//33ix28PMrOzubSpUv88ccfXL9+HWtr\na2MBXKtWLW7evMnq1av53//+R7169ZgyZQouLi5cuXKFy5cvc+nSJa5cuYK5uXm+xXDdunXL5OGQ\n7Ozsh856kZubS3Z2tvSCCCFEKUlMTGTZsmWsXbuWTp064erqipOTE05OTjRt2lRWJBXiMXqkYnnR\nokWsX7+eWrVqERUVRZ8+fXjzzTfRarVMnDgRX19f3N3d6dGjB0ePHiUzMxMvLy/i4uJYtmwZf//9\nN++//z6bNm3i8OHDfPbZZ7Rt25bvv/8eBwcHAgICWLBgAW3bti1W8MdNURT27t3L7NmzuXDhAubm\n5tSoUYMaNWpgamrK1atXuXHjBo0aNcLOzg5ra2uuX7/OlStXuHLlivFDr3fv3kyZMgU3NzeVr0gI\nIUR5kJ6ezvbt240rk/7+++9cvnyZ5s2b4+HhgYeHBx07dsTR0bFMvtFTFIXz589z4MABcnJysLe3\nx97eHjs7O3nORFQahdWcD52KwNHRka1btzJs2DAAjh07hlarBcDf3599+/ZRtWpVPD09MTU1xdTU\nFEdHRxISEjh06BBvv/02AH5+fsybNw+dToder8fBwQEAX19fwsLC8i2Wy4t7PevJycksWLCAzp07\nk5WVZdyys7OxsbGhUaNGxofg7qcoCrdv3wagdu3ajzu+EEKIckyj0Rh/x96TmZnJiRMnOHz4MHv2\n7GH27NlkZmbSvn172rRpQ5s2bWjbti3PPvssJiYmpKamkpycTEpKCjdv3sTBwYFWrVphYWHxwPly\ncnJISkoiLi6On376ibCwMPR6PT4+PtSsWZMffviBpKQk/vjjDywsLKhTpw4WFhZoNBosLCyoV68e\nWq2WHj160KBBg8d1m4RQzUOL5QEDBpCUlGT8+/1Vt4WFBWlpaaSnp+dZdvj+do1GU2DbvfYLFy6U\nxrWUmF6v59dff+X06dPk5uaiKIpx2717NzExMQQFBTFy5MgSTXVmYmIiRbIQQogiMzc3p0OHDnTo\n0IHXX38dgMuXL3Ps2DF+/fVXvv32W2bPns2VK1fIzc3FysrK+EyLlZUV58+f54nNRNoAACAASURB\nVNSpU9jY2ODs7IytrS0XL17k3LlzXL58mUaNGtG6dWt8fHyYPn06LVq0eKDX2mAwcO3aNW7duoVO\np0On05Genk5ycjI7duxg6tSpNGnShB49euDt7U3r1q2xtbWV51nEE6fYld/9Y2bT09OxsrJCo9Gg\n0+mM7Tqd7oH2/Nruf4+CBAUFGX/29vbG29u7WHlv3LjBjh07SEtLo3r16piZmVG9enUMBgPHjx8n\nJiaGX3/9FUdHR1q2bImpqSkmJibGrWPHjqxfvx5zc/NinVcIIYQoTba2ttja2tKnTx9j2507d4zf\n6v5bbm4u58+fJyEhgeTkZHr27Mmzzz6Lvb19kVZnrVKlCg0aNMi393jSpEncvXuXuLg49u3bx2ef\nfcZvv/1GZmYmrVq1olWrVjRu3JiqVatSrVo149a0aVM6dOiAtbX1o90MIR5ReHg44eHhRTq2SA/4\nJSUl8corr3D48GH69OnD9OnT6dy5M4GBgfj4+KDVaunevTuxsbFkZWXh7u5OfHw8wcHB6HQ65syZ\nw8aNGzl48CDBwcG4uLjw3Xff4eDgQK9evQgKCsLV1fXBcCUcs6zT6di2bRsbN24kMjKSHj160KhR\nI/R6PdnZ2ej1ehRFoXXr1ri5udG+fXuZ4kwIIYR4RNevX+fkyZOcOHGCq1evkpuby927d8nNzUWv\n13PmzBliY2OpXbs2HTp0oF27dtSpUwczM7M8zwHp9Xrjdu/3dn5/z2/fvU2v13P37l3q1atnLPrv\nbQ0bNqRBgwZYW1vL4lgCKIXZMJKSkhg8eDBRUVGcO3eOcePGodfrcXJyIiQkBBMTE1atWsXKlSsx\nGAy8++679O/fn8zMTEaMGEFycjJmZmaEhoZiY2NDTEwMU6dOJTc3F19fX+bNm1es4NeuXWPz5s2E\nhoZy/PhxzM3Neeqpp3jqqacwNzcnKSkJrVbLK6+8Qp8+faQQFkIIIcoJg8HAuXPnOHLkCMePHyc9\nPZ3s7Gzjc0B6vT7PN8H//rmgv5uammJmZmbcqlevTtWqVUlNTSUlJcW4Xb161fhzamoqderUoUGD\nBjRu3LjArW7dujK85AlXoedZDg4O5qmnnqJmzZrodDo2b95MdHQ0vXr1YsiQIXTq1Am9Xs+dO3e4\nc+cOGRkZ2NnZUadOHbXjCyGEEKIcy83NJTU1lb/++ss4e1V+2507d2jUqFGhBXWjRo2KNLxFlE8V\nulgODAw0FsHVqlWjX79+9O7dW6azEUIIIcRjcefOnYcW1CkpKWg0Gho0aIClpSUajQZLS0ssLS0x\nNzc3ji2/tz311FNYWFgYN0tLS55++ukCZ9YSZatCF8vlOJ4QQgghBPDP8JLr169z9epV4+xfaWlp\npKWlkZmZSU5OTp4tIyODv//+2zjTyO3bt/nzzz+5ceMGTz/9NM8884xx3YZ69eoZ/2zQoAEODg55\nZhYTj06KZSGEEEKICiAzM5OkpCQuXrzIH3/8QWpqap7tr7/+4uLFi1SvXh17e3scHBywsbEx9mLf\n2xo2bEjjxo2xtbWVb+OLQIplIYQQQognhKIo3Lhxg4sXL3Lx4kWuX79u7MVOS0vj9u3bpKSkcPny\nZS5fvkyNGjWwtbU1Fs/3/rz/5zp16lTqhxilWBZCCCGEqIQUReHmzZtcvnyZK1euFPhnVlYWjRs3\nxtraGo1Gk2fLb/o9GxubfOf3rqikWBZCCCGEEAXKyMjg8uXLpKamGldr1Ol0pKWlPTD9XkpKCtev\nXzeuHFm/fn1atGjBsmXL1L6MEiuXxbLBYGDSpEkkJCRgZmbGqlWraNq0ad5wUiyrJjw8vNirJYrS\nI/dfXXL/1SP3Xl1y/9VVke5/bm4uN27cMBbPWVlZeVaXrGgKqzmr5Nv6GGzbtg29Xk9UVBQfffQR\n06dPVyuKyEdRl4AUZUPuv7rk/qtH7r265P6rqyLd/6pVq2JjY0Pr1q3p0aNHhS6UH0a1YvnQoUP4\n+fkB4ObmRlxcnFpRhBBCCCGEyJdqxXJ6enqeOQKrVq2KwWBQK44QQgghhBAPUG3M8vTp03F3d2fQ\noEEANGnShEuXLuU5xtHRkfPnz6sRTwghhBBCVBJNmzYlMTEx333VHnMWI09PT3bs2MGgQYOIjo6m\ndevWDxxTUGghhBBCCCEeB9V6lhVFMc6GAfDVV1/RrFkzNaIIIYQQQgiRr3I9z7IQQgghhBBqUu0B\nPyGEEEIIIco7KZaFEEIIIYQogBTLQgghhBBCFECKZSGEqCCGDBnC7t27ATh16hS9evVi7NixdO7c\nmU6dOvHLL78A8O2339K1a1c6deqEVqvlxo0bhIeH4+bmhlarZf369WpehhBCVCiqTR0nhBCieMaN\nG8fy5cvp2bMnq1evpmPHjqSnp7Nq1Spu3LhB586d+e233zh37hy7du3C3NycwMBA9u7dS+PGjcnO\nziYmJkbtyxBCiApFimUhhKggOnfuzJQpU0hNTWX//v107NiRyMhIYwGcm5vLjRs3sLa2ZsSIEdSq\nVYvTp0/j4eEBQPPmzdWML4QQFZIUy0IIUUGYmJgwbNgwpkyZgq+vL7a2tjRp0oRZs2aRnp7O4sWL\nMTU1JSgoiEuXLmEwGOjRowf3ZgitUkVG3gkhRHFJsSyEEBXIyJEjmT17NidOnMDe3p5x48bh7e1N\neno6kydPRqPR4OnpiYeHBzY2NjRv3pzk5GQcHBwwMTFRO74QQlQ4siiJEEJUIMnJyQwfPpz9+/er\nHUUIISoF+U5OCCEqiK1bt+Lr68vcuXPVjiKEEJWG9CwLIYQQQghRAOlZFkIIIYQQogBSLAshhBBC\nCFEAKZaFEEIIIYQoQJGK5ZiYGLp06QJAfHw8Wq2WLl264Ofnx7Vr1wAICQnB1dUVDw8Pdu3aBUBm\nZiYDBw5Eq9USEBBAamoqANHR0bi7u+Pl5SUPqgghhBBCiHLrocXyokWLGDduHNnZ2QBMnTqVZcuW\nceDAAQYMGMDHH3/M1atXWbp0KVFRUezdu5dZs2ah1+tZvnw5bdq0ISIiguHDhzN//nwAAgMD2bBh\ng3Hlqfj4+LK9SiGEEEIIIUrgocWyo6MjW7duNa4AtXHjRlq3bg1ATk4O5ubmHDlyBE9PT0xNTdFo\nNDg6OpKQkMChQ4fw8/MDwM/Pj7CwMHQ6HXq9HgcHBwB8fX0JCwsrq+sTQgghhBCixB5aLA8YMIBq\n1f5vob8GDRoAEBUVRXBwMG+88Qbp6elYWloaj7GwsCAtLY309HQ0Gk2Bbfe3CyGEEEIIUd6UaLnr\nTZs2sXDhQnbv3k3dunXRaDTodDrjfp1Oh5WVVZ72/NoA0tPTsbKyyvc8jo6OnD9/viQRhRBCCCGE\nKJKmTZuSmJiY775iz4axfv16goODCQ8Px97eHoAOHTpw8OBBsrOzSUtL49SpU7Rq1QpPT092794N\nwJ49e9BqtVhYWFC9enUuXLiAoijs27cPrVab77nOnz+PoiiyqbDNmTNH9QyVeZP7X3nvv8Fg4Lnn\nnsPNzU31+1DZ7r1scv/V3uT+q7cV1jlb5J5lExMTDAYDr7/+OnZ2dgwYMAAAb29v5syZw2uvvUan\nTp0wGAwsXLgQMzMzJk6cyIgRI+jUqRNmZmaEhoYCsGLFCoYMGUJubi6+vr64uroWNYYQQjzRfvzx\nR6pWrcrvv//O7du3C/zmTQghxONRpGLZ3t6eqKgoAG7cuJHvMWPHjmXs2LF52szNzdm8efMDx7q5\nuXH48OHiZhVCiCfekiVLmDFjBqGhoRw4cID+/furHUkIISo1WZRE5Mvb21vtCJWa3H91qXX/f/31\nV06ePMnLL79M9+7d2b9/vyo51CT/9tUl919dcv/LJxNFURS1QxTExMSEchxPCCFK1ciRI2nWrBnv\nvPMOv/76K4MGDeLs2bNqxxJCiCdeYTWnFMtCCFEOJCcn4+TkxPnz56lTpw4Gg4GGDRty5MgR7Ozs\n1I4nhCgn6tSpw61bt9SOUWHVrl2bmzdvPtBeWM0pwzCEEBWaoij8/vvvasd4ZMuWLWPw4MHUqVMH\ngCpVqtCtW7dKORRDCFGwW7duqT5zREXeSvIfDSmWhRAV2pIlS2jVqhVJSUlqRymxjIwMVq5cydSp\nU/O0d+vWTVY4FUIIlUmxLISosPbu3ct//vMfXnjhBUJCQtSOU2Jr1qzB09OTZ599Nk979+7d+emn\nnzAYDKrkysnJUeW8QghRnsiYZSFEhZSYmIinpyfffvst9erVo0uXLvz5559Ur15d7WjFYjAYaN68\nOatXr6ZTp04P7H/uuef45ptveP7558s0x+nTp/npp584deoUv//+O6dOneLmzZskJycbh4YIIdQn\ntdGjKej+yZhlIcQTRafT0bdvX4KCgujUqRPPPfccLVq0YNu2bWpHK7YdO3ZgZWWFl5dXvvsfx1CM\n27dv07lzZ+Lj43F0dGTmzJkcOXIEDw8Pjhw5UqbnFkI8OZKSkqhSpQqdO3d+YN+oUaOoUqVKvg/X\nFWTOnDmsX78eoNivLU1SLAshHruzZ8/y1ltvlei1BoOB4cOH4+npSWBgoLF94sSJrFixorQiPjZL\nlixh+vTpmJiY5Lv/ccy3PH/+fPr06UNISAhTp06lR48eNGnSBHd3d2JiYsr03EKIJ0uNGjU4d+4c\nf/75p7EtIyODyMjIAj/nCvLBBx8wdOjQ0o5YbFIsCyEeu6lTp/Kf//yHCxcuFPu18+fP5/r16yxb\ntizPB2///v05efIkp0+fLs2oZSouLo6LFy8ycODAAo/x9vYmOjqazMzMMslw/vx5vv76a+bNm/fA\nPnd3d6Kjo8vkvEKIJ1PVqlV56aWX+Oabb4xtW7dupV+/fiiKQm5uLq+//jru7u60bNkSJycn4yrR\nI0eOpE+fPrRq1YqZM2cycuRIFi9ebHwfRVHo3r17nmdUFixYwLRp01izZg19+/ZlwIABODs7065d\nO06ePFkq11SkYjkmJoYuXboA/4wT9PLyQqvVMmnSJOP4jpCQEFxdXfHw8GDXrl0AZGZmMnDgQLRa\nLQEBAaSmpgIQHR2Nu7s7Xl5ezJ07t1QuRAhRMezevZsLFy4wbtw449drRZWUlMTnn3/Oli1bHhib\nXL16dUaPHs0XX3xRmnHL1JIlS3j99dcxNTUt8BiNRkPr1q05dOhQmWR4++23mTZtGg0aNHhgn5ub\nG0eOHJHxkUKIYhk2bFiez/e1a9cycuRIAM6cOUNKSgrR0dGcPHmS4cOH89FHHxmPzcrK4rfffuOj\njz7CxMQkT6eIiYkJr776KqtWrQL++abxyy+/ZOLEiSiKQkREBMuWLePEiRN4enryySeflMr1PLRY\nXrRoEePGjSM7OxuAadOmsXDhQiIiIlAUhe3bt5OSksLSpUuJiopi7969zJo1C71ez/Lly2nTpg0R\nEREMHz6c+fPnAxAYGMiGDRuIjIwkJiaG+Pj4UrkYIUT5ptfreeONN/j0008ZM2YM69atK1YhNn/+\nfCZNmkTDhg3z3T9+/HjWrVtXZr2wpenPP//kxx9/ZOzYsQ89tqyGYhw8eJDY2FjeeOONfPc3bNiQ\nWrVqce7cuVI/txCi7NwrMh9lexTPP/88VapU4dixY1y6dAmdTkfLli0BcHJyYt68eSxfvpwZM2bw\n3XffkZGRYcxd0PMb9/Tq1YuUlBQSEhLYu3cvzzzzjHEmoXbt2tGoUSNjhtIa4/zQYtnR0ZGtW7ca\nf6EdO3YMrVYLgL+/P2FhYcTGxuLp6YmpqSkajQZHR0cSEhI4dOgQfn5+APj5+REWFoZOp0Ov1+Pg\n4ACAr6+vzCMqRCWxdOlSHB0d8ff3x9XVlSpVqhR5TOz58+fZtm0b06ZNK/AYBwcHOnTowKZNm0or\n8kMZDAa2b99O165dmTx5srFj4WGWLl3KyJEjsbS0fOixZVEsGwwG3njjDT766CPMzc0LPE6GYghR\n8ZTG4h2P6l7v8vr16xk+fLixfefOnQQEBFClShX69etHYGBgnukxa9asWej7Vq1alcDAQL788ku+\n+uqrPM+u/PuzrLS+FXtosTxgwACqVauW74ktLCxIS0sjPT09zwf+/e0ajabAtvvbhRBPtqtXr/Lh\nhx+yZMkS4J8ehGHDhrFu3boivX7+/Pm8+uqr1K5du9DjHteDfllZWYSEhODk5MT8+fMZN24cV69e\npVOnTnkebMlPeno6q1ev5rXXXivSuTp06MD58+eNQ9lKwzfffEO1atV4+eWXCz1OHvITQpTE0KFD\n2bx5M5s2bWLw4MHG9tjYWHr37s2ECRNo164d33//Pbm5uUDRi9uxY8fy/fffc+zYMfr3718m+e9X\n7eGH5FWlyv/V1+np6VhZWaHRaNDpdMZ2nU73QHt+bfe/R0GCgoKMP3t7e+Pt7V3cyEKIcuC9995j\nxIgRNG/e3Ng2dOhQXF1d+fTTTwudH/ncuXPs3LmzSMMBevbsyeTJkzl+/DguLi6lkv3fYmJi6Nev\nHy4uLqxYsYLOnTtjYmLCyy+/zOLFi+nQoQPr16+nW7du+b5+9erVdOvWDXt7+yKdz9TUlJ49e+Li\n4oKjoyN2dnbY2dnh6OjIyy+/XOiY5/zcuXOHd955h02bNj3061Y3N7dijy0XQlRe9z5TGjVqhJOT\nE1ZWVsY6z8TEhFdeeYUpU6bg4uJC7dq16du3L4sXL0ZRlEKHgNzfbm1tjaurK05OTlStWtW4/9/j\nmwv7fAsPDyc8PLxoF6UUwcWLFxV3d3dFURSld+/eSnh4uKIoijJhwgRl8+bNSkpKiuLs7KxkZWUp\nt2/fVlq0aKFkZWUpixcvVoKCghRFUZQNGzYokyZNUhRFUdq2baucP39eMRgMSs+ePZUjR47ke94i\nxhNClHNHjx5V6tevr9y6deuBfZ06dVK+//77Ql8/dOhQZe7cuUU+39y5c5WOHTsqs2fPVv7zn/8o\nq1atUrZs2aKcO3eu2NnzM2DAAGXp0qUF7v/555+Vhg0bKgsWLFBycnLy7MvJyVHs7OyU6OjoYp1T\nr9crZ8+eVfbv36+sWrVKmT17tuLm5qaMGDFCMRgMxXqvmTNnKi+++GKRjr1z545ibm6uZGRkFOsc\nQoiyIbWRoly/fl1xcHBQLl++XOzXFnT/CruvRS6WPTw8FEVRlLNnzyqdO3dWPDw8lDFjxhg/pENC\nQhRXV1elXbt2ytatWxVF+edDdtCgQYqXl5fi4+OjXL16VVEURYmOjlbc3d0VV1dX5b333iv2BQkh\nKo6MjAzFw8NDWblyZb77V65cqQwYMKDA1586dUqxtrZW0tLSinzO9PR05fPPP1fmzJmjTJ06VRk1\napTSv39/xcbGRvH29lZCQ0OVzMzMYl+LoijK1atXFUtLy4fmuXz5stK1a1elYcOGyowZM5Tff/9d\nURRF2bx5s+Lp6Vmic//b33//rbi7uytvvfVWkV/zww8/KLa2tkpKSkqRX+Pq6qocPHiwJBGFEKWs\nstdGK1euVKytrZXPPvusRK8vSbEsy10LIcpMQkICL7/8Mq6urqxevdr4ddn9bt++jZ2dHUlJSfmO\nRx48eDDOzs7MmjXrkfPo9Xq2b99OSEgIx48fZ+jQobz//vsPHQd9v8WLF3PixAm+/vrrIh1/6tQp\n1qxZw9q1a2nSpAm3b9/mww8/ZMCAASW8irxu3LiBl5cX48aNK/ThR/hnOIunpyc//PAD7u7uRT7H\nlClTsLOz480333zUuEKIRyS10aMpyXLXUiwLIUqdoigsX76cOXPmsGTJEoYNG1bo8S+++CI+Pj5M\nmDAhT/vJkyfp2rUriYmJWFhYlGrGixcvMmvWLKpXr87atWuL9BpFUWjZsiVffPEFnTp1Ktb57t69\ny/79+zl48CDz5s3L9z8OJfXnn3/i5eXFhx9+yJAhQ/I9JiMjA3d3dyZNmsTEiROL9f7ffPMN27Zt\nY8uWLaURVwjxCKQ2ejRSLAshVHfz5k3Gjh3LH3/8wcaNG43zXxZmx44dfPzxx0RGRgKQm5vLli1b\nmDNnDuPHj2f69OllkvXvv/+mZcuWrF69Gh8fn4ceHxUVxahRozh9+vQjz0Na2u79x2LNmjXGKTvv\nURSFwYMHU6NGDVavXl3s7OfPn8fb25tLly6VZmQhRAlIbfRopFgWQqiuW7duNG/enCVLlmBmZlak\n1+Tk5NC4cWMiIyOJjo5m4cKF1K1bl9mzZ+Pr61umhemOHTuYPn06CQkJ1KhRo9Bjx4wZQ7NmzXj7\n7bfLLM+jiIqKok+fPtjZ2dGzZ0969uxJhw4d+O9//8v69euJjIwsdE7lgiiKgo2NDfHx8TRu3LgM\nkgshikpqo0cjxbIQQlV3797FysqKK1euFGmxjftNmTKFL7/8Ejc3N2bPnk2XLl0eW+/twIEDcXZ2\nzjNV5b/pdDqefvppTp06le/S0OVFTk4Ohw8fZs+ePezevZsrV65QrVo1oqOjizxVXX569erF6NGj\nS22stRCiZKQ2ejRSLAshVJWQkMCLL77I6dOni/3aa9eucfHiRdzc3MogWeEuX76Mi4sLkZGReeaB\nvt+XX37JDz/8wPbt2x9zukdz+fJlFEWhSZMmj/Q+8+fPJz09nUWLFpVSMiFESdSpU4dbt26pHaPC\nql27dr7LYBdWcxZ7URIhhChIXFwc7du3L9FrbWxssLGxKeVERWNra8t7771HYGAgP//8c7492l9+\n+WWpzMjxuNna2pbK+7i5uTF//vxSeS8hRMnlV+iJsvXQ5a6FEKKoYmNjcXV1VTtGibz66qvodLp8\nZ8Y4deoUSUlJ+Pv7q5CsfOjQoQNHjx7l7t27akcRQojHSoplIUSpeZSeZbVVrVqVL774ghkzZjB/\n/nzi4uIwGAzAP73KI0aMoFq1yvtlnKWlJXZ2dpw4cULtKEII8VhJsSyEKBXZ2dmcPHkSFxcXtaOU\nWLt27di6dSs3b95k2LBhNGjQgGHDhrF27VpGjx6tdjzVubm5ERMTo3YMIYR4rKRYFkKUihMnTuDo\n6MhTTz2ldpRH4uXlxZIlSzh16hRHjhzBy8uLadOmFWm+6Cedu7s70dHRascQQojHqkTFssFgYPTo\n0Xh5eaHVajlz5gyJiYnGv0+aNMn4RGFISAiurq54eHiwa9cuADIzMxk4cCBarZaAgABSU1NL74qE\nEKqoyOOVC2Jvb8+ECROYOXOm2lHKBU9PT8LDw2WWIiFEpVKiYnnfvn1kZGQQGRnJ+++/zzvvvMP0\n6dNZuHAhERERKIrC9u3bSUlJYenSpURFRbF3715mzZqFXq9n+fLltGnThoiICIYPHy5PWAvxBIiN\nja2w45VF0Tg5OWFubi69y0KISqVExbK5uTlpaWkoikJaWhrVq1fn6NGjaLVaAPz9/QkLCyM2NhZP\nT09MTU3RaDQ4OjqSkJDAoUOHjMux+vn5ERYWVnpXJIRQRVxc3BPXsyzyMjExYciQIXzzzTdqRxFC\niMemRMWyp6cnWVlZtGjRggkTJvDaa6/l+VrOwsKCtLQ00tPT86zidX+7RqPJ0yaEqLgyMjJITEzE\n2dlZ7SiijL3yyits3ryZnJwctaMIIcRjUaJ5kBYtWoSnpycLFizg8uXLdOnSJc8HZ3p6OlZWVmg0\nGnQ6nbFdp9M90H6vrSD3Lz/r7e2Nt7d3SSILIcpQfHw8LVu2xMzMTO0ooow1bdqUpk2bsn//fnr2\n7Kl2HCGEKJHw8HDCw8OLdGyJiuWMjAxjz3Dt2rW5e/cuLi4u/PLLL3Tu3Jk9e/bg4+NDhw4dePfd\nd8nOziYrK4tTp07RqlUrPD092b17N66uruzZs8c4fCM/9xfLQojyScYrVy73hmJIsSyEqKj+3QH7\nwQcfFHisiVKCx5pv377NqFGjSE1NJScnh6lTp9KuXTvGjRuHXq/HycmJkJAQTExMWLVqFStXrsRg\nMPDuu+/Sv39/MjMzGTFiBMnJyZiZmREaGprvMreFrdMthCg/hg4dSteuXWUu4kri2rVrNGvWjCtX\nrlCzZk214wghxCMrrOYsUbH8uEixLETF0Lx5c7799lsZs1yJ+Pv7M2zYMAYPHqx2FCGEeGSF1Zyy\nKIkQ4pGkpaVx5coVnnvuObWjiMdIZsUQQlQWUiwLIR7J0aNHadu2LdWqlegRCFFB9evXj0OHDnH9\n+nW1owghRJmSYlkI8Uji4uLk4b5KqFatWvTs2ZMtW7aoHUUIIcqUFMtCiEfyJC5zLYpm8ODBMhRD\nCPHEk2JZCPFIpGe58vL19eXs2bNcvHhR7ShCCFFmpFgWQpTY9evXuXnzJs8++6zaUYQKTE1NGTRo\nkPQuCyGeaFIsCyFKLC4ujnbt2lGlinyUVFZjxoxh5cqV3L17V+0oQghRJuQ3nBCixH7++WcZr1zJ\ntWvXDjs7O7Zu3ap2FCGEKBNSLAshSuTnn39m3bp1TJo0Se0oQmVvvPEGn332mdoxhBCiTEixLIQo\ntj/++IPBgwcTGhqKnZ2d2nGEyvr27UtycjIxMTFqRxFCiFInxbIQolgyMzMZMGAAM2bMoGvXrmrH\nEeVA1apVee2116R3WQjxRCpxsfzhhx/SsWNHXF1dWbNmDYmJiXh5eaHVapk0aZJxfe2QkBBcXV3x\n8PBg165dwD+/bAcOHIhWqyUgIIDU1NTSuRohRJlSFIXAwECaNWvGtGnT1I4jypHRo0ezd+9eLl26\npHYUIYQoVSUqlsPDwzl8+DBRUVGEh4dz4cIFpk+fzsKFC4mIiEBRFLZv305KSgpLly4lKiqKvXv3\nMmvWLPR6PcuXL6dNmzZEREQwfPhw5s+fX9rXJYQoA8uWLSM+Pp5Vq1ZhYmKidhxRjlhaWjJ8+HCC\ng4PVjiKEEKWqRMXyvn37cHZ2pl+/fvTu3Zs+ffpw9OhRtFotAP7+/oSFhfH/2rvzuKjq/Y/jr2EY\nQGSRRUSRUkBEcstyQQExcsvUa0qp1+SWYq6ll7RrXdx+Lt2f6c0S9Rean/hnfQAAIABJREFU92dq\nmmsorqgIormkhvuGPyVXFoFhHRjO74+u88irqOHIEfw8H4/zYB5nRuY9Hw/nfOZ7tsOHD9OhQwd0\nOh0ODg74+PiQkpJCcnIy3bp1A6Bbt27Ex8eb7xMJIZ6KHTt2MH36dDZs2EDNmjXVjiOeQWPGjGHJ\nkiXk5+erHUUIIczGsiL/KD09nbS0NDZv3kxqaio9e/Y0HXYBYG9vT05ODrm5uTg6Oj5wvoODwz3z\nyjNlyhTT45CQEEJCQioSWQjxBLZu3Up4eDjr16/Hy8tL7TjiGeXt7U1gYCDLli1jxIgRascRQohy\nJSQkkJCQ8FivrVCz7OrqSpMmTbC0tMTX1xcbGxuuXbtmej43N5datWrh4OCAXq83zdfr9ffNvzuv\nPL9vloUQlW/Tpk0MGTKEH3/8kYCAALXjiGfc2LFj+eCDD/jggw/kZjVCiGfWfw7ATp06tdzXVmhN\nFhgYyLZt2wC4fv06BQUFhIaGsnfvXuC3Uajg4GDatGlDUlISxcXF5OTkcObMGZo2bUqHDh3YsmXL\nPa8VQjx7NmzYwNChQ9m8ebM0yuKxBAcHY2try6ZNm9SOIoQQZqFRfn/8xB/wySefsGfPHsrKypg1\naxYNGjQgIiICg8GAv78/MTExaDQaFi9ezDfffENZWRmfffYZffr0obCwkPDwcG7cuIG1tTUrV67E\nzc3t/nAaDRWMJ4R4Qj/88AMffvghW7ZsoVWrVmrHEVXIjh07GDZsGCdOnMDe3l7tOEII8UgP6zkr\n3CxXBmmWhVDHmTNnCA4OJj4+nhYtWqgdR1RBQ4YMwcrKioULF6odRQghHkmaZSHEHzJs2DA8PDyY\nPHmy2lFEFZWdnU2zZs343//9X7l5jRDimSfNshDisaWnp+Pr68u5c+ceeHiUEI8rLi6OMWPGkJKS\ngp2dndpxhBCiXA/rOeVUZSHEPRYtWkTfvn2lURZPrEePHgQGBvLpp5+qHUUIISpMRpaFECbFxcU0\naNCA+Ph4XnrpJbXjiGogKyuLZs2asWrVKoKCgtSOI4QQDyQjy0KIx/L999/TvHlzaZSF2Tg7OxMd\nHc37778vd/YTQlRJMrIshABAURRatGjB7Nmz6dq1q9pxRDUTERHBjRs32LhxI5aWFboflhBCPDUy\nsiyEeKTdu3djNBrp0qWL2lFENbRgwQJKS0sZOXKkDIIIIaoUaZaFEADMnTuXcePGodFo1I4iqiGd\nTseaNWs4cuQIM2fOVDuOEEI8NtkXJoTg7NmzHDlyhLVr16odRVRj9vb2xMXF0b59e+rXr094eLja\nkYQQ4pGkWRZC8OWXXzJ8+HBq1KihdhRRzdWtW5ctW7YQEhJCvXr16Ny5s9qRhBDioZ7oMIzbt2/j\n6enJ+fPnuXjxIoGBgQQHB99zTFpMTAytW7cmICCAuLg4AAoLC+nbty/BwcH06NGDjIyMJ/8kQogK\nuXr1KmvWrGHkyJFqRxHPiSZNmrBu3ToGDBjAxIkTuXPnjtqRhBCiXBVulktKSvjggw+oWbMmiqLw\n17/+lZkzZ5KYmIiiKPz444/cvHmTr7/+mv3797N9+3YmTpyIwWBg4cKFtGjRgsTERAYPHsz06dPN\n+ZmEEH9AVFQUo0aNok6dOmpHEc+RwMBAjh07RkZGBr6+vsyaNUsuLSeEeCZVuFkeP348I0aMoG7d\nugAcPXqU4OBgALp37058fDyHDx+mQ4cO6HQ6HBwc8PHxISUlheTkZLp16wZAt27diI+PN8NHEUL8\nUcePH2fHjh2MHz9e7SjiOeTp6UlMTAzJyckcP36cRo0aER0djcFgUDuaEEKYVKhZ/te//kXt2rVN\nl5hSFOWeSwHZ29uTk5NDbm4ujo6OD5zv4OBwzzwhROX75JNPiIqKwt7eXu0o4jnm6+vL6tWr2bx5\nM5s2bcLPz4/ly5djNBrVjiaEEBU7wW/p0qVoNBri4+M5fvw44eHhpKenm57Pzc2lVq1aODg4oNfr\nTfP1ev198+/OK8+UKVNMj0NCQggJCalIZCHEf9ixYweXL18mIiJC7ShCANCqVSu2bdtGQkICEydO\n5B//+AczZ87kzTfflEsaCiHMKiEhgYSEhMd67RPfwa9Tp04sWrSI8ePHExkZSceOHRk+fDihoaEE\nBwfTuXNnDh8+TFFREe3ateP48eNER0ej1+uZPHkyq1atIikpiejo6PvDyR38hHgqysrKaNWqFZMm\nTeKtt95SO44Q91EUhU2bNvHZZ58BEB4ezsCBA6lXr57KyYQQ1dHDek6zXDpOo9EwZ84cIiIiMBgM\n+Pv7069fPzQaDR9++CFBQUGUlZUxc+ZMrK2tGTFiBOHh4QQFBWFtbc3KlSvNEUMI8ZhWrFiBra0t\nffr0UTuKEA+k0Wjo1asXb775JomJiXz33Xe89NJLtGnThnfffZd+/fphY2OjdkwhxHPgiUeWnyYZ\nWRbC/IqKimjcuDErV66kQ4cOascR4rEVFBQQGxvL0qVLOX/+PDNmzKB///5YWMjNaIUQT+ZhPac0\ny0I8Z2bOnMmRI0dYv3692lGEqLC9e/cyfvx4FEXhiy++oGPHjmpHEkJUYdIsCyEAWLNmDR999BH7\n9u3Dy8tL7ThCPJGysjJWr17Np59+SvPmzVm6dCnOzs5qxxJCVEEP6zll35UQz4ktW7YwevRotm7d\nKo2yqBYsLCwYMGAAZ8+epWHDhrz++utkZWWpHUsIUc1IsyzEc2Dv3r2Eh4ezceNGWrRooXYcIczK\n2tqaf/7zn7z++uuEhoaSmZmpdiQhRDVilqthCCGeXYcPHyYsLIxVq1YREBCgdhwhngqNRsM//vEP\nLCwsCA0NJT4+HldXV7VjCSGqAWmWhajGTp06Rc+ePVm8eDGhoaFqxxHiqdJoNMyaNQsLCwtee+01\ndu3aRe3atdWOJYSo4uQwDCGqqatXr9KtWzfmzJlDr1691I4jRKXQaDTMmDGDXr16ERQUxN69e9WO\nJISo4uRqGEJUQ1lZWQQGBhIREcG4cePUjiNEpVMUhXXr1hEZGUlAQACzZ8/G09NT7VhCiGeUXA1D\niOdIQUEBb775Jj169JBGWTy3NBoN/fr148yZMzRu3JiXX36ZGTNmUFRUpHY0IUQVIyPLQlQjpaWl\n9O3bF3t7e5YtWyZ3NhPi3y5fvsy4ceO4cuUK27dvx83NTe1IQohniNlHlktKSnj33XcJDg6mbdu2\nbNq0iYsXLxIYGEhwcDAjR440vWFMTAytW7cmICCAuLg4AAoLC+nbty/BwcH06NGDjIyMCn40IcRd\niqIwYsQIioqK+Pbbb6VRFuJ3GjZsyIYNG+jduzdBQUFcvXpV7UhCiCqiQiPL//rXv0hJSWHu3Lnc\nuXOHFi1a8PLLLxMZGUlwcDAjRoyga9eutGvXji5duvDzzz9TWFhIYGAgR44cYf78+eTl5TFp0iRW\nr17NgQMH+PLLL+8PJyPLQjy2yZMnExcXx549e7C3t1c7jhDPrH/+8598+eWX7Ny5E19fX7XjCCGe\nAQ/rOSt06biwsDD69esH/Ha7UZ1Ox9GjRwkODgage/fu7NixA61WS4cOHdDpdOh0Onx8fEhJSSE5\nOZlPPvkEgG7duvFf//VfFYkhhPi3RYsWsXLlSpKTk6VRFuIRxo0bh6OjIyEhIWzdulVu1COEeKgK\nNcs1a9YEQK/XExYWxvTp0/n4449Nz9vb25OTk0Nubi6Ojo4PnO/g4HDPPCFExaxfv55p06aRlJQk\nx2EK8Zjef/997O3t6dKlCyNGjMDFxQUnJyecnZ1xdXXllVdeQavVqh1TCPEMqPBNSdLS0njrrbcY\nNWoUAwYMYMKECabncnNzqVWrFg4ODuj1etN8vV5/3/y788ozZcoU0+OQkBBCQkIqGlmIaicxMZHh\nw4ezbds2vL291Y4jRJUSFhaGu7s727dv5+zZs9y5c4c7d+5w+fJlPDw8WL58OXXr1lU7phDiKUhI\nSCAhIeGxXluhY5Zv3bpFSEgICxYsoFOnTgD06tWLyMhIOnbsyPDhwwkNDSU4OJjOnTtz+PBhioqK\naNeuHcePHyc6Ohq9Xs/kyZNZtWoVSUlJREdH3x9OjlkWolwnTpwgNDSUFStW0LlzZ7XjCFFtGI1G\npk+fzqJFi/j222/p3r272pGEEE/Zw3rOCjXLH330EWvWrKFx48amefPmzePDDz/EYDDg7+9PTEwM\nGo2GxYsX880331BWVsZnn31Gnz59KCwsJDw8nBs3bmBtbc3KlSsfuPtYmmUhHiw3N5emTZvy+eef\nM3DgQLXjCFEt7d27l0GDBtG/f39mzJiBlZWV2pGEEE+J2ZvlyiLNshAPNnXqVC5dusSyZcvUjiJE\ntZaRkcF7773H9evXGTNmDH/6058eeuigEKJqkmZZiGokMzOTxo0bc+jQIby8vNSOI0S1d/fW2StW\nrGD37t2EhITwzjvv0KtXL+zs7NSOJ4QwA2mWhahGJkyYgF6vZ+HChWpHEeK5k5OTw48//sjq1atJ\nTEykdevWdO7cmc6dO/Pyyy/LFTSEqKKkWRaimrh+/TrNmjUjJSUFDw8PteMI8VzT6/Xs3buXnTt3\nsmPHDtLT02nZsiW1a9fG1dUVFxcXXF1d6d27N56enmrHFUI8hDTLQlQTI0eOpGbNmsyePVvtKEKI\n/5CWlsapU6fIzMwkMzOTjIwMfv31VzZt2sTs2bMJDw9Ho9GoHVMI8QDSLAtRDaSmptKmTRvOnj2L\nq6ur2nGEEI/pl19+ITw8HE9PT7755hu5drMQz6CH9ZwWlZxFCFFBU6dOZfTo0dIoC1HFtGjRgkOH\nDtGyZUtatmzJihUrKCoqUjuWEOIxyciyEFXAqVOn6NSpExcvXjTdKl4IUfUcPnyY0aNH88svv/Di\niy/i7+/PSy+9hJ+fH/Xq1cPd3R13d3ecnJzkkA0hKpEchiFEFVVSUsLu3buZOnUqb731Fh9//LHa\nkYQQZmAwGLhw4QKnT5/m1KlTnDt3jps3b5qmgoIC6tati5eXF97e3nh7e+Pl5YWLiwtarRYLCwu0\nWi1arRYHBwecnZ1xdna+78YppaWl5OXloSgKtWrVqjYNeFlZGQAWFo+3g9xgMHD27FlSUlK4efMm\nDRs2xNfXF29vb2xtbZ9mVFFFSLMsRBViMBjYtWsXa9asITY2lkaNGhEWFsaoUaOwtrZWO54QohIU\nFRVx7do1UlNTuXTpkmnKzs7GaDRSVlaG0WjEaDSSm5tLVlYWWVlZ2NjY4OjoSHFxMXl5eRgMBuzs\n7FAUBUtLSxo1aoSvry+NGjXC1dWVgoIC05Sfn09JSQnw27Wly5uMRiN6vZ7c3FzTZGFhQcuWLXnl\nlVd45ZVXaNWqFY6OjqbfVVpaisFgwMbGptzL6xmNRtPJkUVFRRgMBoqLiykuLiYjI4OzZ8+apgsX\nLlBSUoKrqyt16tTBzc0NNzc3dDrdPVmLi4s5c+YMFy5coGHDhjRv3hx3d3cuX77MhQsXuHz5Mq6u\nrjRo0IC6deveM1lYWJjqcnfKysoyZczMzCQvLw9nZ2fc3NyoXbu2KceDHj+qKTcajWRnZ5v+L7Oy\nsigqKsLV1RV3d3fq1KmDvb19hb/wGI1GUlNTOXPmDKdPn+bMmTOkpaWZanVXzZo18fDwoF69eqaf\nTk5O1KxZEzs7O+zs7LC1tcVoNGIwGEwTUKWv/S/NshDPsNu3b3PgwAH279/P/v37OXbsGM2bNycs\nLIy+ffvywgsvqB1RCFEFKIqCXq8nOzsbGxsb7OzsqFGjhmlbmpGRwYULFzh//jznz5/nzp072Nra\nUrNmTWxtbalRowZWVlamZkyj0Txw0mq12Nvb4+DgYJqKi4s5duwYP//8Mz///DMpKSloNBpTI2Vp\naYlOp6O4uBg7Oztq1apFrVq1sLe3Jzs7m9u3b5OVlYWTkxPOzs7UqFEDa2trrKyssLa2xsnJCT8/\nP5o0aYKfnx++vr5YWVmRnp7OrVu3uH37Nrdv36a0tPSerDqdDj8/P/z9/bGxsbmvZkajkbS0NK5c\nucKNGzfumRRFMdXm7k9nZ2dcXFxMlwW0s7MjKyvL9P7p6ekPfHz79m0sLS1NjbOrqysGg4E7d+6Y\nGmO9Xo+jo6NpL4GzszM2Njakp6dz8+ZNbt26hdFoxMHBgdLSUkpLSzEajZSWlqLVaqlRo4ZpsrGx\noaSkhKKiIgoLC00/69Wrh7+/P02aNMHf358XXnjB9OXl7v+7Xq/n+vXrXLt2zfQzJyeHvLw88vPz\nTT8tLS2xsrJCp9NhZWXFiy++SEJCQqUt7+b2TDbLZWVljBw5kpSUFKytrVm8eDHe3t73hpNmWTUJ\nCQmEhISoHaNaKisr48iRI8TGxhIbG0taWhrt2rUjICCA9u3b06ZNG44ePSr1V5Es/+qR2qvLXPUv\nLS2loKAAa2trdDqd6XCJsrIyU0OfnZ1Nbm4utWrVws3NDRcXFywtLZ/4vZ9FiqKQl5d3TxNtbW1t\naoqdnJxwdHQkKSnpofXPy8sjLy8PnU6HVqvF0tISrVaL0WiksLDQNBUVFaHT6UyNs42NDba2trJ3\n8iEe1nOqtlRu3LgRg8HA/v37OXjwIJGRkWzcuFGtOOI/yAbLPBRF4dq1a5w7d45z585x9OhR4uLi\ncHZ2pmfPnixatIi2bdvet1tS6q8uqb96pPbqMlf9LS0tH3gysoWFBY6Ojjg6OvLiiy8+8ftUFRqN\nBnt7e+zt7e8bGPy9R9X/7mEQ5T0nng7VmuXk5GS6desGQNu2bTly5IhaUYR4qN8fR3Z3l9mdO3fu\ne5yXl3fPN3u9Xk9qaip2dnb4+fnRuHFjWrRowd/+9jd8fHzU/lhCCCGEeAyqNcu5ubn3fOvUarWU\nlZU99pmtonrZtm0bycnJ9+xWujva+rATTRRFwd3dnWHDhj309y9btoy9e/ei1+tNu7Hy8/MpLS29\n53eVlZVRVFRkmgoLCzEYDDg6OpqOpXNycrrnsbu7O02aNDGd9HD3mLGaNWvi5eVlOslFCCGEEFWP\nascsR0ZG0q5dO8LCwgDw9PQkLS3tntf4+Phw6dIlNeIJIYQQQojnhLe3NxcvXnzgc6qNLHfo0IFN\nmzYRFhbGTz/9RPPmze97TXmhhRBCCCGEqAyqjSwrimK6GgbA0qVL8fX1VSOKEEIIIYQQD/RMX2dZ\nCCGEEEIINcnZdEIIIYQQQpRD9WY5NTVV7QjPLam9uqT+6pL6q0dqry6pvxB/jHbKlClT1Hjj3bt3\n88EHH5CUlMTp06dNl9hSFKXC9z0Xj0dqry6pv7qk/uqR2qtL6q++6OhoDh06hJ2dHbVr11Y7znPl\nSWqv2sjykiVLGDp0KCtXrkSj0TB69GgA+YOtBFJ7dUn91SX1V4/UXl1Sf/Xk5eXx9ttvc/z4cSws\nLPjss8/Ytm0b8NstwMXToSgKer3+iWtfac1yQUEBBw8e5MaNGwA4OTnh7e2NTqdj8uTJXL58mR9/\n/BGg3Htzi4opKCjgyJEj3Lp1C0VRcHZ2xsvLS2pfSQoKCvjhhx9ISUkhJycHd3d3qX8lKikpYePG\njVy9epXCwkJcXV1l3VNJCgoKWLRoEYcOHSIvLw83NzdZ9iuRbHfVZzQaAbCyssLR0ZEZM2YwcuRI\nBg0axPjx4wHkZmxPSW5uLhqNBmtra5ycnJ6o9pXyP7Rjxw5atmzJN998wxtvvEFZWRmKonDy5ElK\nS0sBmDRpEkuWLAHkW6457dy5k5YtW7J48WL69u3LjRs3yM/P5/z58xgMBkBq/zRt376ddu3asXPn\nTsaOHcvFixfJycnh9OnTsuxXkuTkZD799FMOHDhAjRo1KCwslHVPJUhKSqJ169Zcu3aNXbt2odFo\nyMvL4/Tp05SUlABS+6dJtrvqKioqYsyYMUyaNIk1a9ZQUFCAwWAgPT2d0tJS+vbtywsvvMC8efMA\n+bJiTkVFRYwdO5ahQ4fy1Vdfcfr06Seu/VNvlg0GA5s3b2b+/PksWbIEd3d3NmzYwODBg1m7di3/\n93//B8Crr76Kv78/BoNBFhozKSkpIS4ujgULFrBo0SICAwNZsWIFbdu2Ze3atVy5cgWQ2j8tJSUl\nfP/998ybN4+YmBhatWpFUlISERER/PDDD7LsP2V3R3SuXbuGh4cHp0+f5tatWwwZMoR169Zx+fJl\nQOr/NBiNRvbt28f8+fP56KOPKCws5MqVKwwYMID169fLsv+UyXZXXYWFhUyaNAlbW1v69evH9OnT\nOXnyJFqtlq1bt5oGqsaOHcupU6coLS2VLytmkp+fz4QJE3B0dGTWrFl89913GAwGnJyc2Lhxo+mL\n+h+t/VNplq9evcqcOXM4c+YMVlZWKIrC4sWL+fXXX8nPzyc1NRVnZ2f8/PyIiYlhxYoVREVFkZ+f\nj5WVlSw0T+Dq1avMnj2b48ePo9Vqsba25sCBAwCMHz+e06dP4+PjQ+PGjYmOjmblypVSezP6ff2L\ni4vx9fU11bR+/fqkp6fTtm1bmjZtyoIFC6T+Zna3/ikpKWRnZwO/NQ59+vShZs2axMTEYDAY8Pb2\nZuHChVJ/M/rPdY/BYGDhwoWMGzcOT09PBg8ezJ07d6hXrx4xMTFSezP7ff2trKzQ6XTExMTIdrcS\n3bx5EwCdTsehQ4cIDw/n5ZdfJjIyks2bN9OjRw8SExPZtWsXAJcuXcLX1xdLS9Vuplxt3D3USFEU\nDh48yHvvvYe3tzevvfYahw8fJjIykgMHDhAfHw/88dqb/WoYP/zwAyNGjMDJyYktW7bg6urK4MGD\nSUpKYsaMGbzxxhvY2dmxZMkS/vKXv+Dj48PatWtp27YtKl2Yo9pYtWoVI0aMoH79+hw8eJA9e/YQ\nFBREamoqDRs2xMPDg4yMDDZu3Eh0dDQ2NjasW7dOam8md+vv4eHBoUOH2L9/P1OmTKFhw4YAfPXV\nV/To0QNfX19atWqFk5MT69ato02bNlJ/M/j98v/TTz9x8OBBOnfuzJYtW+jduzfbt2/nf/7nf2jU\nqBETJ07E1tZWln8z+c/a79mzh+DgYLZt28aQIUMYOHAgderUYdu2bUyYMAE3NzdZ75vRf9Z///79\nTJ48mQMHDjB16lR69Ogh292nKC0tjcjISL7//nv0ej116tTBwsKCEydOEBQURIsWLVizZg1NmjSh\nTZs27Nq1i3nz5nHixAkGDhxIgwYN1P4IVdbd2q9atYr8/Hzc3Nx466238PT0RKvVsnr1agIDA2nV\nqhVarZYDBw4wd+7cP157xUx++eUXRVEU5YsvvlA2bNigKIqijBs3TomJiVEURVESExOV/v37m17f\nr18/5fTp04qiKEpJSYm5YjyX7tY+KipK2blzp6IoinL06FGld+/eyt///nclOjpamTFjhun13bt3\nVzIyMhRFkdqbw4Pqf+zYMaVr167KihUrFEVRlNTUVGXo0KGKoijK8uXLlaVLlyqKIvU3h/Lq37lz\nZ2X58uXK+PHjlWbNmimjR49WJk6cqMyZM0e5efOmoihS/ydV3rqnV69eyqxZs5SPP/5YiYiIML0+\nNDRUuXz5sqIoUntzKG/ZDw0NVWJjY5WTJ0/KdrcSTJs2Tfn73/+uXLp0SZk2bZoycuRIZdmyZcrE\niROVffv2KYqiKLGxsUqnTp0URVEUo9Go7Nq1S83I1cbvaz916lRl1KhRSnZ2tqIov/19vP7660ph\nYaFSVlamXLlyRSktLVV27979h9/HLIdhXLhwgf79+3Pnzh2ys7OJj49n2bJlJCcns3v3br766isK\nCwvJz89n9uzZ9O7dGwcHB9zc3ABkF8QTuFv73NxcLl68yL59+wBo1KgRtra2nDp1iiZNmrBnzx4m\nTZpEaGgozZo1w9HREZDaP6mH1d/R0ZG1a9dSVFTEnj17OHnyJOHh4axatYrWrVsDUv8nVV79fXx8\ncHFxYe3atbi5ubF+/Xq+/vprevbsiVarRafTAVL/J/Godc+hQ4fo06cPp06d4q9//Suvv/46jRo1\nwsXFBZDaP6mH1d/FxYWlS5dy8+ZNsrOz+eKLL2S7a2ZLly4lPDycadOmkZqaynvvvYeXlxfvvPMO\nLi4unDhxAj8/P+bOnQtATk4OAQEBFBcXY2FhwWuvvabyJ6i6yqv9wIEDsbW1NZ20eunSJTp16sTu\n3btp3749Bw4cQKvV0qlTpz/8nk/812I0Glm8eDG5ubnMmTOHadOmERcXx7hx44iKiqJly5YsWLAA\no9HIpEmTWLt2LX/+8595++23n/Stn3u/r/3cuXOZO3cur776Kg0bNiQ5OZkXX3yRnJwcvLy8WLhw\nIUlJSTRr1oywsDC1o1cLj6q/j48Pt2/fJj09nezsbNLS0oiKiuKNN95QO3q18DjLf0FBAT179sTH\nxweAtm3bEhAQoHLyqu9RtW/QoAHZ2dnUr1+f7777jp9//pmAgABZ95jJo+rv5eVFfn4+9vb2REVF\nERsbK9tdM1EUhYkTJ5Kamsrf/vY3ZsyYwYYNG6hduzb//d//jaenJ4GBgezYsYPQ0FB++eUX3nnn\nHW7cuMHChQuxtrZW+yNUWY+qff369QkNDWXr1q0AxMbGsnz5coYMGcLXX3/Nq6++WuH3NsvIsr29\nPYmJifz000/s3bsXPz8/mjZtSnh4OP7+/mi1WkJCQnj11Vf5/PPP5Q/WjO7WPjExkczMTJKSkigs\nLCQkJIQJEyaQl5dHrVq18PHx4b333pONlZk9rP4ff/wxxcXFODs7M3DgQH799VdplM3sYfX/5JNP\nyM7Opm7duqbXy/VMzedR6578/HwcHR3x8vIiLCxM1j1m9qj6Z2dn4+vrS/v27WW7a0YajYbs7GyG\nDRtGq1atGD16NKNGjWLlypUcO3aMGjVq4OrqSl5eHh4eHnz++efMmzePxMREXnrpJbXjV2mPqr2N\njQ1ubm4UFhZSVFREUFAQy5YtY9GiRU/UKIMZmmWtVsuwYcPw8vLjv3YxAAAD7klEQVTi7bffZv78\n+Xh5eXHo0CGmTJlCly5dKCsrw9vbWy5NY2a/r33//v2ZMGECDRs2xMbGhtLSUv70pz9Rv359bGxs\npPZPwePUv169elhaWuLu7q523GrncZd/a2trWf7NTNY96voj9Ze7w5lXWVkZffv2pW3btsBvJ1d2\n796dqKgoxo4dy7lz59i1axdZWVkUFBSg0+lk/W8mj1P7+Ph4srKysLCw4P3332fAgAFmeW+NYsY1\nWUFBAQMHDmTQoEF0796dbdu2Ubt2bYKDg831FqIcBQUFDB48mN69e/POO++wfPlyGjRoIMdFVRKp\nv7qk/uqR2qtL6q8O5d+3UQ4NDSU2Npa6desyY8YMMjMzuX37NrNnz75nr5YwHzVqb9ZmGSAuLo75\n8+cTGxtrOolGVI67td+0aZOcvKECqb+6pP7qkdqrS+qvjjNnzrBs2TLCw8OJioqiadOmfPrpp9L7\nVILKrr3Zm2X47eQDrVZr7l8rHoPUXl1Sf3VJ/dUjtVeX1L/yLVq0iJEjR9KlSxcGDRrEoEGD1I70\n3Kjs2j+VZlkIIYQQojpbunQp169fZ8KECTKaXMkqu/bSLAshhBBC/EGKoshtwlVS2bWXZlkIIYQQ\nQohyyEVHhRBCCCGEKIc0y0IIIYQQQpRDmmUhhBBCCCHKIc2yEEIIIYQQ5ZBmWQghhBBCiHJIsyyE\nEEIIIUQ5pFkWQogq4s9//jNbtmwBfrvd65tvvsnQoUPp2LEjQUFB7N27F4C1a9fy2muvERQURHBw\nMJmZmSQkJNC2bVuCg4NZvny5mh9DCCGqFLmJvBBCVBEREREsXLiQN954g2+//Zb27duTm5vL4sWL\nyczMpGPHjpw8eZILFy4QFxdHjRo1GD58ONu3b8fDw4Pi4mIOHjyo9scQQogqRZplIYSoIjp27MiY\nMWPIyMhg586dtG/fnn379pkaYKPRSGZmJrVr1yY8PBw7OzvOnj1LQEAAAI0bN1YzvhBCVEnSLAsh\nRBWh0Wh49913GTNmDF27dqV+/fp4enoyceJEcnNzmTNnDjqdjilTppCWlkZZWRldunTh7o1aLSzk\nyDshhPijpFkWQogq5C9/+QtRUVGcOHGCBg0aEBERQUhICLm5uYwaNQoHBwc6dOhAQEAAbm5uNG7c\nmBs3btCwYUM0Go3a8YUQosrRKHeHHIQQQjzzbty4weDBg9m5c6faUYQQ4rkg++SEEKKKWL9+PV27\ndmXatGlqRxFCiOeGjCwLIYQQQghRDhlZFkIIIYQQohzSLAshhBBCCFEOaZaFEEIIIYQohzTLQggh\nhBBClEOaZSGEEEIIIcohzbIQQgghhBDl+H/O7B2RWg2mEwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "subset = total_births[['John', 'Harry', 'Mary', 'Marilyn']]\n", "subset.plot(subplots = True, figsize = (12, 10), grid = False, title = 'Number of births per year')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Measure the increase of naming density" ] }, { "cell_type": "code", "execution_count": 129, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 129, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()" ] }, { "cell_type": "code", "execution_count": 131, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 131, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr0AAAFNCAYAAAANXtdcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXzGTfSUjYIUBAWcK+mbAkoIKIrQJ6pYLG\nBYu4VdHr0mvVWrW1V7HWq6X4E/VqqRvGolcFlVRlE5AdZCsxELaEQPZkMjPn98dpBmJCgmwnZ3g/\nH4/vY+bMmcx5zyS1H77zOd/jMAzDQEREREQkgDmtDiAiIiIicrap6BURERGRgKeiV0REREQCnope\nEREREQl4KnpFREREJOCp6BURERGRgKeiVyTArFixgtGjR9O3b19SU1MZP348W7ZsOec5SktLSU9P\nJzU1lQ8++KDOvo8//phHH320ydfIyMjg7bffrvd4bm4u0dHRPylPcXExo0eP/kk/cyLr16+nbdu2\ndR5buXIlgwYNomfPnlx88cUcOHDAv++pp56iR48edOvWjccff9z/eEFBAZdddhm9evUiNTWV5cuX\nn5F8pyMrK4s//OEPVsc4K9577z0yMzOtjiEiFlHRKxJAqqurmTBhAs899xzr169n48aNXHfddVx2\n2WWc6yW5165dy6FDh9i4cSNXXXVVnX2rVq2iqKioyddwOBxnLM+RI0dYtWrVab2G1+tl9uzZjB07\nlrKyMv/jbrebyZMn8+c//5ktW7YwefJkbr75ZgD+7//+j/fee4/vvvuOTZs2sWTJEt59910Abr/9\ndkaNGsXmzZt58803ufrqq6msrDytjKfrTH7mIiLNiYpekQBSUVFBcXExpaWl/seuu+46/ud//geP\nx0NOTg6pqan+fcdvP/bYY0ybNo309HQ6d+7Mtddey6uvvsqoUaPo2LEjf//73xs8ZnZ2NgMGDKBv\n376MGDGCVatWsX37dm6++Wby8/MZMGAAVVVV/uevXLmSOXPm8Pbbb/PII49QUVHB9ddfz0UXXcQF\nF1zAoEGD2L59u//5H374IYMHD6ZXr1489dRTDWZ48sknGThwIP379+eqq65i//799Z5z4403UllZ\nyYABA/D5fHz99ddcdNFF9O3bl8GDB/PZZ58B8Nprr3HJJZcwduxYevXqxSWXXOJ/vdrC9b333qvz\nj4hVq1YRGxvLRRddBMBNN93EF198QVFRER988AHXXXcd4eHhhIaGcuONN/Lmm2/i9Xr5+OOPmT59\nOgB9+/alW7dufPrpp/WyJycnc8899zB48GC6devGX/7yF//vr2/fvqSnp9O/f3/cbjd//etfSU1N\npV+/fowdO5YdO3YA5gxuVlYWaWlppKSkMHPmTDweT4Of5/Lly7nooovo1asX99xzD16vl7feeov0\n9HT/c/Ly8mjXrl291/jmm28YOnQogwYNYvDgwSxYsAAw/2Fwzz33MHDgQPr168eNN95IaWkphw4d\nom3btnzyyScA/OY3v+HSSy+t94+0gwcPcuWVV5KWlkaXLl3IzMykoKDA//k8/vjjjBw5kuTkZB54\n4AH/z/3mN78hJSWFoUOH1vvGodb06dP59a9/7d9+6623mDhxIgALFy5k2LBhDBgwgOHDh7NixYqT\nynPttdfSs2dPPvzwwwaPKSIWMEQkoDz33HNGRESE0aVLF2PatGnGq6++alRUVBiGYRhLliwxevfu\n7X/u8duPPvqo0blzZ6OkpMSorKw04uPjjfvuu88wDMP48MMPje7du9c71tatW43WrVsbu3fvNgzD\nML788kujTZs2RmlpqZGTk1PnWMd77LHHjDvvvNMwDMN47733jLvvvtu/b8aMGf59o0aNMn72s58Z\nXq/XKCkpMXr06GF88sknxu7du42oqCjDMAzj9ddfN6699lrD4/EYhmEYc+bMMcaPH1/vmLm5uf6f\nKSwsNFq1amV8++23hmEYxubNm42WLVsau3fvNubNm2dERkYa27ZtMwzDMB588EFj8uTJdV7r+OMb\nhmHMnz/fGDduXJ3ntG/f3tiwYYMxbtw44+233/Y/vnjxYmPAgAHGgQMHjLCwsDo/M3XqVOOFF16o\nlz05Odm45ZZbDMMwjPz8fCMxMdHYuHGjsWTJEsPlchl5eXmGYRjGF198YaSkpBiFhYWGYRjGa6+9\nZvTs2dMwDMO44YYbjH79+hllZWVGdXW1MWrUKOPFF1+sd6wbbrjBGDx4sFFRUWG43W4jMzPTePnl\nlw232220atXK2LJli2EYhvHII48YDz/8cL2fHzNmjPH3v//dMAzD2LBhg3HHHXcYhmEYjz/+uHH/\n/ff7n/fQQw8ZM2fONAzDMBYtWmS0b9/e+OCDD4yOHTv68x/vT3/6k/HMM8/4t8ePH288++yz/s+n\n9rXz8/ON8PBwY/fu3UZ2drbRq1cvo6yszPB4PMbPf/5zIzMzs95rr1u3zmjbtq3h9XoNwzCMESNG\nGIsWLTK2b99upKamGkVFRYZhGMamTZuMNm3aGOXl5U3m+d3vflfvOCJiLc30igSYe+65h0OHDvHC\nCy/Qpk0b/vCHP9C/f39KSkqa/NlLLrmE6OhowsLCaNu2LePGjQOgS5cuDbYjfPnll1x88cUkJycD\nkJmZSVJSEqtXr26ynaJ2/6RJk7j++uv585//zN13301OTg7l5eWA+VX7LbfcgtPpJDo6msmTJ7N4\n8eI6X8F/9NFHrFixgkGDBtG/f39efPHFOjPFPz4emLPNKSkpDB48GICePXuSnp5OTk4ODoeDMWPG\n0L17d8CcBaydBT4Rn8/X4OMul6vBfSd6HCAoKKjBx2+//XYA/+9l0aJFOBwOOnToQIcOHQD49NNP\nufbaa0lISADghhtuID8/n9zcXBwOBzfccAORkZGEhIRw/fXXN/i+HA4H06ZNIzw8nODgYKZOncri\nxYsJDg7mlltuYe7cufh8Pl5//XV++ctf1vv5a665httvv52pU6eyZs0annzyScD8PX344Yf079+f\n/v378+GHH7J161bA/Lu75pprmDRpEn/729/8+Y931113MWzYMJ577jluu+02Nm3a5P87Afj5z3/u\n/3ySkpIoKiri888/Z9KkSURGRuJyubj55psb/Lvs27cvnTt35qOPPmLr1q3s37+fSy65hMWLF7N/\n/35Gjx5N//79mTp1Ki6Xi127djWZZ8SIEQ3+HkXEOg3/11VEbGnp0qUsW7aM+++/n8svv5zLL7+c\np556itTUVD7//HMSEhLq/J++2+2u8/MhISF1toODgxs9nmEY9YoIn8+Hx+M5YfFWq7Zwffnll5k7\ndy533nkn1113HQkJCeTm5vqf53Qe+7e5z+erl9Hn8/Hggw/6CzC3283hw4cbPXZDBafX68Xj8RAc\nHFwnu9frxeVyNfp6nTp1qtNSUVNTQ2FhIe3ataNjx47s27fPvy8/P58OHTqQlJQEwNGjR4mLi/Pv\na9++fYPHOD6D1+v1Z4yKivI/3tDvwzAMampqGnyNE72vH3/mtX8Ht956K0OHDmXUqFGkpqbSsWPH\nej976623csUVV7Bo0SI+/fRTHnvsMTZs2IDP5+OFF15g7NixAJSVlfnbXgzDYMuWLbRu3Zrly5fX\naaOo9cADD7Bq1SpuvvlmRo8ejcfjqfNew8PD/fcdDgeGYeB0Ouv8rhv7Pd5+++28+uqrdO/e3f+3\n5PP5GDNmTJ3Wnry8PNq3b99knuN/LyLSPGimVySAJCYm8uSTT/LVV1/5H8vPz6e8vJzU1FQSExPJ\ny8ujoKAAwzDIzs4+reONHj2aRYsWsXv3bsCc+d27dy9Dhw5t9OeCgoL8BfeiRYvIysrixhtvpHv3\n7vzjH//w94kahsEbb7wBmCeivfPOO/VOyhs7dixz58719zE/9thj3HDDDQ0e0+v1AjBs2DC2bdvm\nP7Ft8+bNfP3112RkZGAYBkuWLCE/Px+Av/zlL/zsZz9r9P0MGTKEw4cP+1dfePXVV0lLSyM2Npaf\n//znvPXWW1RUVFBdXc3rr7/OlVdeicvl4vLLL2fOnDkAbNiwgS1btpCRkdHgMWo/h7y8PBYvXtzg\nyYljx47l7bffprCwEIB58+bRsmVLUlJSMAyDd955B7fbTVVVFW+88UaD78swDP7+97/7n/f6668z\nfvx4ADp27MhFF13EPffcw2233dZgzvT0dNauXcsNN9zAnDlzOHr0KEeOHGHs2LH8+c9/xu124/P5\nmDFjBg8//DAAs2fPprKyklWrVvHcc8+xevXqeq+7aNEifvWrX3HdddeRmJjI4sWL/b/PhjgcDsaN\nG8e7775LcXExPp+P//3f/z3h8ydPnszatWtZsGABN910E3Ds73vbtm2AOZPer18/qqqqfnIeEbGe\nZnpFAkj37t3Jzs7mkUceIS8vj4iICGJjY5k7dy7dunUD4Je//CWDBg2iTZs2TJgwwT/j6nA4Gj1z\nv6F9PXr04KWXXmLixIl4PB4iIyNZuHChfzmxE73emDFjmDhxIqGhodx3333ceuutvPHGGyQkJHDl\nlVf6T2pyOBzExcUxcOBAKisrueuuuxg5cqT/63qAW265hfz8fIYNG4bD4aBTp068/vrrAPzjH/9g\nzpw5fPzxx7Rt25YBAwbQs2dPvvnmG959913uvPNOKioqcDqdvPbaa6SkpPDNN9/Qvn17srKyyM/P\np0ePHrzyyiuNfh7BwcEsWLCAO+64g/Lyclq2bOkvUidMmMDGjRsZMmQIbrebK6+8kmnTpgHw0ksv\nccstt5CamorD4eDNN9/0f3aXX345t912GxMmTADMYrf2c/jTn/5Et27dyM/Pr5Pj4osv5p577mH0\n6NH4fD6SkpL46KOP/L/bqKgoRowYwZEjR5g0aRJZWVkNvq8uXbowfPhwysrKmDhxItdff71/f1ZW\nFnfddZe/EP6xZ555hrvvvpv/+q//wul08thjj9GpUyceeeQR7rvvPvr374/P56N///4899xzrF27\nlqeffprVq1fTtm1bnn/+eaZMmcK6deuIjIz0v+5vfvMb7rvvPp566imSkpKYPHkyO3fubDBDrcsu\nu4yNGzcyaNAgWrRoQd++fU/4NxkcHMzkyZM5dOgQ8fHxgNn28te//pVrr70WwzAIDg5m4cKFRERE\nnFIeEbGWw2iq8U5E5Dzy2muv8fbbb/sL7+agc+fOvP322wwZMuSUX+PGG2+kR48e/Od//ucpv4bP\n5+OOO+6gc+fO3H///af8Os1ReXk5o0aN4uWXX/b3eotIYDmp9oaVK1c2uKD3/PnzGTZsGMOHD+e2\n22475+uAioicaU3NeJ+vSktLadmyJbt37+aOO+6wOs4Z9dlnn9GxY0dGjx6tglckgDU50/vMM8/w\n5ptvEhUVxbJly/yPV1ZWkpqayqZNmwgLC+MXv/gFU6ZM4YorrjjroUVEREREfoomZ3pTUlJYsGBB\nvVncsLAwli9fTlhYGAAej6fO2bMiIiIiIs1Fk0XvxIkTG1x6yOFwkJiYCMCf//xnysvLufjii898\nQhERERGR03Raqzf4fD7+8z//k507d/L+++83+Jx27drVWaNSRERERORs6Nu3L+vWrWtw32mt0/vL\nX/6S6upqPvjgA3+bw4/t27fPv2C6Hcejjz5qeQbltz7H+ZjfztmV3/qh/Mp/PmYPhPx2H+vXrz9h\n3XrSM721ZzPPnz+fsrIyBg0axKuvvsrIkSMZPXo0AHfffTdXXnnlT6mbm73jrwxlR8pvLTvnt3N2\nUH6rKb+17JzfztnB/vkD2UkVvcnJyf6VG6ZMmeJ/XFefERERERE70GWIm9DQFYvsRPmtZef8ds4O\nym815beWnfPbOTvYP38gO+tXZHM4HJzlQ4iIiIiINFp3aqa3CTk5OVZHOC3Kby0757dzdlB+qym/\nteyc387ZoXnnj4+P91910u4jPj7+J7//01qyTERERETs4ciRIwHz7fupXC5e7Q0iIiIi54FAqslO\n9F7U3iAiIiIi5zUVvU1ozr05J0P5rWXn/HbODspvNeW3lp3z2zk72D9/IFPRKyIiIiIBTz29IiIi\nIueBQKrJ1NMrIiIiImfV9u3bSU9PJyMjg5EjR7J3714eeughRowYQVpaGu+99x5er5f09HQWLVrE\nwYMH6d27N/n5+ZbmVtHbBLv35ii/teyc387ZQfmtpvzWsnN+O2cH++c/GZ9//jnDhg3j888/5/HH\nHyc7O5vc3Fy+/vprvvzyS5588knKy8v529/+xr333su0adN49tlnadeunaW5VfSKiIiIyEm7+eab\niY2NZdy4cbz44oscOXKENWvWkJmZyWWXXYbH4yE3N5dOnToxfPhwCgoKGDt2rNWx1dMrIiIicj44\nUzXZO++8Q2JiIpmZmcyfP59f//rXXHrppfzlL3/B4/Hw1FNPce+997Jp0ybuv/9+BgwYQMeOHZk1\na9YZeBemU+np1RXZREREROSkDRo0iBtuuIGQkBB8Ph/vv/8+b775JiNHjqSsrIyJEyfi8/m45ZZb\nyM7OpkOHDgwdOpTMzEwGDBhgWW7N9DYhJyeHjIwMq2OcMuW3lp3z2zk7KL/VlN9ads5v5+zQvPPb\nvSY73lldvWHlypVkZmY2uK+iooL09HS2bdt2si8nIiIiInLOnNRM7zPPPMObb75JVFQUy5Ytq7Nv\n9erVzJgxg3379pGTk0P37t3rHiCA/lUhIiIiYleBVJOdtZnelJQUFixY0OCLuN1usrOzueCCC35i\nXBERERGRc+Okit6JEycSFNTwOW9paWm0b9/+jIZqTuy+3p7yW8vO+e2cHZTfaspvLTvnt3N2sH/+\nQHZOVm/IysoiOTkZgLi4OPr16+dv8q7942iu2+vWrWtWeZS/eeUL9Pza1ra2tX2ut2s1lzyBlj+Q\n1L6nnJwccnNzm3z+Sa/ekJuby5QpU1i+fHmD+zMzM5kzZ456ekVERESaoUCqyc7q6g21LwQwf/58\n5s6dewoRRURERETOvZMuepOTk/0rN0yZMoXp06fX2b9kyZJ6s7yBwO5fByi/teyc387ZQfmtpvzW\nsnN+O2cH++e3gtPppE+fPvTv398/br311jN+HF2RTUREREQslZOTQ3x8/Fk9hq7IJiIiInIeaK41\nmdPppKCggISEhJP+mVPp6VXRKyIiInIeaK41mdPppHfv3rhcLv9jixcvpmXLlif8mbN+Itv5yO69\nOcpvLTvnt3N2UH6rKb+17JzfztnB3vkdjjMzTkVOTg5r1671j8YK3lOlnl4RERERoRlOAp9Ram8Q\nEREROQ8015rM6XRSWFj4k05kU3uDiIiIiNiK41R7In4iFb1NsHNvDii/1eyc387ZQfmtpvzWsnN+\nO2cH++e3gtfrPevLlYGKXhERERE5D6inV0REROQ8EEg1mXp6RUREREQaoKK3CXbvzVF+a9k5v52z\ng/JbTfmtZef8ds4O9s8fyFT0ioiIiEjAU0+viIiIyHkgkGoy9fSKiIiIiDTgpIrelStXkpmZWe/x\nhQsXMmTIENLS0njllVfOeLjmwO69OcpvLTvnt3N2UH6rKb+17JzfztnB/vkDWZNF7zPPPMP06dOp\nrq6u83hNTQ333nsvixcv5p///Cd//etfOXTo0FkLKiIiIiKBJzc3F6fTyahRo+rtu/HGG3E6nRQV\nFZ32cZrs6V2wYAF9+vRh2rRpLF++3P/4hg0beOCBB/jkk08AuPfee0lLS2Py5Ml1DxBA/SMiIiIi\ndtVca7Lc3Fx69uxJXFwcK1asoGPHjgCUl5fTr18//vWvf1FQUFDnqm1npad34sSJBAUF1Xu8pKSE\n2NhY/3Z0dDTFxcUNvsaaNeZYucrDwq9z+b/lu9m92+DIEfB6m0ogIiIiIoHM5XLxH//xH7z11lv+\nxxYsWMCVV155xgr1+tXsSYqNjaW0tNS/XVpaSosWLRp87tDrWmMkVOELKsUZFAVJIZBs4Nw/BM/6\nJIKLLyQmqT/BrXZQ7c7BF5mP0b2EpND2dChLYEjX7tz6H9fTOa4zOTk51PhqGHjRQMrcZXz1z68I\ncgYxctRIQlwhrFy6khpvDd0HdqewopCcnByKq4sZNWoUg9sNZvua7QBkZGQAx3pvMjIy8Pg8fPPV\nN3X2P//88/Tr16/B59thW/mV/1S3j+9Law55lL955VP+5r1t5/w/fg9W5wm0/I1xPO5o8jknw3j0\n1IrUadOmMW3aNB566CEA3njjDZ5//nmeffbZBp9f+55ycnLIzc1t8vVPasmy3NxcpkyZUqe9oaam\nhl69erFy5UoiIyNJS0tj4cKFtGnTpu4BHA4W7VxE5xad6RDTgdCgUAD2le5jVf4qVu79luV7vqWm\nxqBtWApJQd1oYaQQVpXMmh17WLP/O/K93+Fo+x1GeAGGwwNAqCOaUEcUoa5QHEE1GM4avLhxe90E\nO4NJjEwkMSKRxMhEEsIT2FOyh1X5qwgNCmVw28H0a92PkuoSco/m+kdxdTEtwlrQPqa9fxR/X0x8\nj3jKasooc5ujdVRrhncYzohOI7gg4QIcjmN/JB6fhx+O/sDekr20impFclwyYUFhTf4izpacnBz/\nH7wdKb917JwdlN9qym8tO+e3c3Zo3vmbc3tDamoqpaWlpKam8vrrr5OYmMjVV1/NihUrcDqdFBYW\nnnZ7w0kXvb/4xS9YtmwZ8+fPp6ysjOnTp/PRRx/x29/+Fp/Px80338xtt932kw5+sjwe2LQJlq8p\no7wkhOqKEMrLoawMiopg927417/g6FFIToa2bSEuDmJjzREXBykp0L+/QXDSbr47sIoNBzfQIrwF\nyXHJ/hEfHk9hRSF7S/b6R0l1CVEhUf4RGRzJnpI9fJ33NV/98BWVNZWkdUij2lvNzqKd5BXn0Saq\nDe1j2nOw/CB5xXm0jGhJ57jOtI1ui9PhxODY5xHkDCI6JJrokGiiQqKIDo2mxlvD0aqj5qg+Skl1\nCXFhcbSLbmeOmHa0CGtBXnEeO4p2sLNoJzuKdhDsDObB4Q9y5YVX4nQ4632OK/au4Lnlz+FwOOjX\nqh/9WpujdVTrOoW7iIiIBB47FL3PPPMMBw4cIDExkdjYWGbOnHlui97TcS4/4PJyyM2FffuguPjY\nOHIEtm2D776Dgwehb19zREeDywVOpzmCg6FFC0hIgPh48zYmxnz8+BEdDbVtznnFeSzfs5zIkEhS\n4lPoHNfZP5sN4PV5yS/NZ/eR3ewv23/sc8EsMt1eN2XuMkrdpZRWl1LqLiXEFUJcWBxxYXG0CGtB\ndGg0RZVF7CvdR35JPvml+RRVFtExtiMp8Sl0i+9GSnwK+8v28/g/H8fr8/J4xuP87IKfAZCTm8Pv\nvv4du4p2cV/afbQIa8G6A+tYd3Ada/evxcAgxBWC1+fF4/PgNbyEuEK4sOWF9ErsRe+k3vRO6k3n\nuM5EhkQSGRxJWFCYCmUREREbsUPRu2/fPoYMGULLli3JyckhLi5ORe+pOnoU1q2D9euhstI8kc7n\nM4fbbRbIRUVw+LA5Dh7MISgog5oa/KOiAtq0gY4dzdGhA4SGmq/l9Zoz02AWzPHxx0ZSkjnjHB19\n9t6fYRj8Y9s/eDTnUVxOF1U7qvB08vDQ8Ie4LvU6gl3B9Z5fUFGAx+chyBmEy+HC5XRR7alma+FW\nNh3axOZDm9lUsIkfjv5ARU0F5TXluL1uwoPCcTldGIaBgeH/PfdM7El6h3SGdxxOesd0Wke1PuX3\n05y/JjoZds5v5+yg/FZTfmvZOb+ds0Pzzt/carJaubm59OnTh5KSEgAuvfRS4uLieOeddwDzJLcz\nsXrDKZ/IZldxcZCRYY6TkZNT/7luN+TnQ16eOfbsMR8LCzNnjl0u83klJbB5s1lEFxXBgQOwc6eZ\n4YILoHt3aNUKDKNu8V1Vhb99o7zc3E5ONmen+/Qxb+PizAJ83z7z+Hv2mLPVl1/u4OcX/pwrLriC\nhdsWsi5kHf91/X/hcroafH8Oh4OkyKQG97WKakVGcsMflNfnpaKmAq/hxYEDh8OB0+HE6/Oy4eAG\nlu5Zyrx185i+cDrRodHEhsYSGhRKqCuU0KBQYkJj6NqiK90TutMtvhvdErrRLrqdZo/FNqo91Ryp\nOsKRyiMUVRZxpOoIlTWV+AwfPsOHgXHsvmGc8LHjHz/+sR0bd7DctRyPz9PoqP3fnsvhwulw4nA4\n8Pq81PhqqPHW4DE8eH1eHA4HDhz+5zhx+n+2zuM/2v7xPqfDSYgrpN4IdgbX2d6Wt43qndXH9ruC\nceCo814NDIKcQXV+PtgV3OC2y+HSfx9EAlRycrK/4AVYtGhRnf3eM7TU13k302s1nw/27oXt282W\ni8LCui0WTqdZPEdGHhshIWbP8vr1sGEDbNxoziyXlJizx7WzzWVlsHQpTJgAU6fCxRebbRjFxfDt\nt7B8uXkLZrFdO5KSzCI6Jsbsga69jY4285zW+zV87D6ym/Kacqo91VR5qqj2VnO06qjZi3x4B9uL\ntrPj8A4qairondSb1KRUUlulkpqUSpcWXWgd1breDLXIqTIMg/Kaco5UHvEXrT++LakuMVuOjms7\n+vGtz/ARHx5Pi7AWtAhvQXx4vP/bj9pCsaFCst79hvb/+7FgZzBBzqATjtp/zHp9Xn+x7DN8/v3B\nrmCCncH+cwlqC82GCvGT2TYw/AW12+tucDS2zzCMOu8PzJN/3V43Nd6aOj//422f4atTDIcHhxMZ\nHOlvuap3GxxJdGg0baLa0Da6rX8kRSadcBJAJNAFUk2m9obzhM8Hhw6ZPcfBP6oFCwrg7bfhzTfN\n/uaWLc3bAQNg2DAYOtT8mYMHzdeovT161Cyii4uP3ZaXm0X38cXw8aO2J7q62pzpdrvN2eekJHNm\nunNn87ZDB4iIMI/bWBFdVFnEpkOb2HBwAxsPbmTjoY3kFedxqPwQsWGxtIlqQ4fYDvyi9y+4ptc1\nKoTPM4ZhUFJdwuHKw5RWl1LmLqO8ppxyd3mDt2XuMo5U/XsW9riC9mjVUYKcQbQIb+EvWOvchrUg\nJjSG6FDzBNMT3aqv/dw6fvba7XVT6als9Hdf7i6n1F3KgbID7Cvd5x+HKw+TFJl0rBCOaktyXDK9\nknrRK7FDx2n7AAAgAElEQVQXneI6NXgisEggCKSaTEXvWdCce3OasnMnfPFFDjfdlFGvOD4ZPh+U\nlh4rgouLze3ax0pKzOeEhJgzzyEh5szywYNmoZ2ba66ssWfPscLY4TCfFx4OiYlmgVw72rWDbt3M\nkZJiFtY5OTmMGDmCwopC9pXuY0fRDl5a9RK7j+7mV0N/xS0DbiE69Cw2SZ8mO//9nKnsXp/XX5Ac\nX6iWukspKC/gUPkhc1Qc4kjlkXqzg6XuUgorCimqLCI8KJyEiARiQmNOOLsXGRJJVEgU+zfuZ3D6\n4AYL2+NPNm2u7Py3A803f423hoPlB/1FcH5JPruO7GJzwWY2H9rM0aqj9EjsQcLBBMZkjvEXwx1i\nO9iqGG6un//JsHN2aN757V6THU89vVJHSorZSnEqBS+Ys7K1y7516HD6eWp7l2tqzFnkggJzlrl2\n7NkD774LO3aYBXtUlDmTHBzswuNphcfTCsPoz4UXXsPwoat4Z9l/88Q/n2Rq3+tITepNp7hOdIrt\nRMfYjoQHh59+4POIx+ehsqaSKk8VVZ4qKj2V7CzaiW+3j8MVhymsKORw5WGOVB7xP6fKW1XnZ2p/\nrspTRUVNhX+2rcZXQ0RwhH/Jv9oCNTo0msSIRJIik0iKTOKClhcQFxbn7/uu7QWNComiZURL4sPj\nCXGFnPR7yvHkkNEn4+x9aGJLwa5g/zrsDSmuKmZLwRYWfLKAfaX7WPyvxWwu2ExJdUmd1Wx6J/Wm\nV2IvLfkoYiOa6ZVmyTBg/35zhY2goGPD5zNPDly1yhzLt+6mqP1bRLT7F44WP+CJ/IGKoD1EOuPp\nGNGD7vE96Nu2B4M79+DCJLM/uLkXxDXeGipqKvxf5dbe1n5dX7uGc3FVMR6fp04v5/GjthfT7XWb\nq27UfgVcU05JdYn/q/7aE7AigiMICwrzj/DgcOLD42kZ0ZKE8AQSwhNoEd6C8KDwOs85/mdqx/FF\n7rlqA/B4zJM+a0dlZf3t2pVVauM4HGf/fmio+c1GRIQ5wsPNv2Wn0/xH3fHPl+braNVRNh/azMZD\nG9l0aJO5sk3BZiprKuka35WuLbqSEp9Cp9hOtIpqRVJkEq0izdu4sDgVxtIsBFJNpvYGOS8dPmyu\nYlE79ub72HFwL7uKvye/eiuFjq1URGzFEf8DRsQBghxhxDnbkBjemqjQSEKCgggJCiY0OJjQoCAc\nTh84PebV/xxe/9nvtWfLew0vwc5gWka09I+E8ASAOmsul9WU+U96KnOb9ytqKnA5Xf4TlIJdwf5e\n1eLqYkqqS6jxmjOjtSch1d5GhUTRIryFfw3n2NBY/0lKPx7Hn2kf5AyqM8MaERxBTGiM/6v+6OAW\n+CqjKS111Fnf+vj+7trhdpsnPbZocWyEhtYtLquqzHaWHz92Ms/xeo+1y4SFmbc+n1mw1o6qKrN4\nPX7FE6/X/IdSWJhZVIaFHRvHbwcHm88D8/Zc3He7zWUOKyrM/BUVx5Y39PnM57hcx7LW5nW56n8+\nQUF1++uPP/H0x4+daH9UlIrsM6m4qphdR3axs2gnu4p28UPxD8dadsoPcbD8IA4c9ErqRe/E3nXa\nJRIjElUQyzkVHx/PkSNHrI5xRrRo0YKioqJ6j6voPQ3NuTfnZCi/yeczC+KdOw3W7zjCxt372bH/\nACUVFVR7PFTX1FDtqcFd48HtdlFTFURNtYsat3kWfGiwi9DgoH8PF8Hh1TgjD0NkIUZ4Ib7QQlxB\nDsKdUUQERRMZFE1kcBSlP+SR3G0Y4a4oIlzRhAdFEBruJTjUQ3BYDcGhHnP1DncMVMfiq4yhpiIc\nn89BSAj+UduiUlvsHX/b0GPH31ZV0WgxW1V1rDCqHTExUFWVQ/fuGXUeDwkxT3o8cuTYmtZu97FC\nrbZYbWqc6HlOp/l61dXHimKn81gxWHuc2pMij1/5JCiobjFnl799wzg2S11b1FdWwvLlOYwcmVHn\nM/N46p5weir3KyvNk1AbKoprP9vjR1xc3Qv21N4mJJgnup6oXrPL538iZzJ/YUWhud75v2eHNxds\nZl/pPg6VH6KyppLEyERaRrQkKiSK8KBwIoIj/N+81C5F53K6cDlchAWFERMa4z/ZMiY0hlBXqH9/\n7e2a5WvoMaiH/5sir+HF5XDVWf3DwKCyppJKT6X/tnaVjONHUmQSHWM70iGmwzn5pkx/O3I61NMr\n5z2nE9q3h/btHWRkxAPxQK8mf87nM4uv42cZj591bOrxf1XkEFeYgdcLFR4o8Ryb7asdNTV1l6iL\njDSLuZqaYyti1J4E6HKZxV3t7fH3G7oNDTVnYy+8sG6Bc/w4UeHS0BrVcuY5HHWv9lhr/37o0qX+\n80+3x97jqXuC6vG3VVXUuRCP223uW7/e/Ebl+Av3FBWZrxUfD61bm+cQ1J6E2q2b2bPv9R5bt/x8\n1jKiJaOSRzEqeVS9fdWeagoqCigoL6CipsI/agtRr2EuR+f1efEaXqo8VZRWl5JXnEdJdQkl7hKq\nPdV4Da//OT7DR8m2Elo5Wvm/KQpyBuE1vHXWeAYIDwonPDjcvA0Kx+lw1ll2rspTxaHyQ+QV57G3\nZC/RodH+Avj4246xHekQ24E2UW20JJw0W5rpFRGRU1JZaRa/+/ebJ5/u2HFs5Oaa+46/emViYt3W\nmNqCuXVrcwWXIE3DNGs+w0dBeQF7SvaQV5xHXnEee4r3kFfy79viPA5XHqZ1VGs6xnakc1xneib2\npEfLHvRM7EnnFp0JcuqXLGeX2htEROScq66ue/XKwsK6rTFFReYSh/v3m7PH8fHm0oXdu9cd7dsf\nOwkwJEQ9yc2Z2+smvySfPSV72Fm0k60FW9lauJUtBVvYX7afQW0HMT5lPOO7jadPqz7qZ5YzTkXv\nabB7b47yW8vO+e2cHZTfaj81v8djtkTs3WvOFG/bZl65cvt2sx//+JMAw8OPFccXXHBs9Olj9iBb\nkb+5aY75y93lfJ33NZ/s+ISPd3xMpaeSsV3H0j2hu3/5wsTIRHLX5XL1+Ktt2ybRHD/784l6ekVE\npFkLCjJbIdq0gcGDT/w8j8csfvfuNQvjbdtg2TJ49VXzEu2tWplXoBw40BxDhph90GK9yJBIxqWM\nY1zKOP502Z/YcXgHi3YtIq84j22Ht/kvVrN73W5uXH8j3eK70SOxh789om+rvqTEp9i2GBbraaZX\nREQCgtdrzgx/9505Vq+GNWuga1dITzfHiBFmf7E0b2XuMrYVbuP7wu/ZWriVzQWbWX9gPYfKD9E7\nqTd9W/VlQJsBDG0/lN5JvdUrLH6n3N7g8/mYOXMmGzZsIDQ0lFdeeYWuXbv698+fP58//vGPhIWF\ncfXVV3PPPff8pIOLiIicTW43rF0LS5ea4+uvzVUyRo+GzExztGljdUo5WcVVxWw4uIH1B9ezZv8a\nVu5dSV5xHv3b9GdI2yEMbDuQfq370T2huwrh89QpF70LFizgo48+4tVXX2XlypU8/fTTZGdnA3D4\n8GEGDRrE2rVriY2NJTMzk9mzZ9O/f/+TPrgd2L03R/mtZef8ds4Oym+15prfMMyrOi5ZAl9+Cf/8\nJ7RtC5ddZo7hw82T5Zpr/pNl5/w/NXtxVTGr961mZf5K1h5Yy7oD69hXus/fEtEhpgOto1r7R/uY\n9rSNbnvWTqKz82cfCE65p3fp0qWMGzcOgKFDh7J69Wr/vl27dtG3b1/i/n3WwLBhw/jqq6/qFb0i\nIiLNhcMBvXub4847zZaI1avhk0/g4Ydh61ZzfeoePaB/f/UD20FsWCxjuoxhTJcx/sdKq0vZeGgj\nGw5uIL8kn9X7VnOg/AAHyg7ww9EfABjUdlCd0Ta6rVVvQc6RRmd6p0+fzqRJk/yFb6dOndi9ezdO\np5MjR44wZMgQli5dSlRUFKNGjWLixIk89NBDdQ9g85leERE5fxQWwmefwbvvmrPBY8bAlCkwYYK5\naoTYn2EY5JeahfDxI8QVUqcIHtx2MImRiVbHlZ/olGd6Y2JiKC0t9W/7fD6cTidgXvN49uzZTJo0\niYSEBAYMGEDLli3PYGwREZFzq2VLuO46cxw5Ah98AH/9K0yfbp4Ed8kl5rjwQq0XbFcOh4P2Me1p\nH9OeKy+8EjAL4bziPH8BPHvFbFblryIpMom0Dmlc1P4i0jqk0SOxh3qFbazR31x6ejoLFy7k6quv\nZsWKFfTp08e/z+PxsHr1ar7++muqq6sZNWoUDzzwQIOvk5WVRXJyMgBxcXH069fP3++Sk5MD0Gy3\nn3/+eVvlVf7mtW3n/LX3m0se5W9e+c6X/F26wOLFGRQWwgsv5PDZZ/Dss+alxVNTcxg+HGbNyiAs\nrHnmby55fsr2j9/DuTi+w+Fg97rdJJDA0xc/DcAXX35BXnEeNR1qWLZnGU+88QQF5QX0GtKLPq36\nEL43nJT4FG67+jYigiMszX8+b9fez83NpSmNtjcYhuFfvQFg3rx5rFmzhrKyMqZPn84TTzxBdnY2\nLpeLGTNmcNNNN9U/gM3bG3JycvwfsB0pv7XsnN/O2UH5rRbI+Q3DvOzyJ5/AggWwbh2MHQuTJpkn\nw0VHn9usDbHz59+cs5e5y9h8aLO/X/i7/d+x/uB6Lmp/EWO7jmVsylgKNheQmZlpddTzlq7IJiIi\ncpYcOgQffmgWwF9/bV4pLi3NXBc4Lc1cF1itEIGrpLqEL3d/yWc7P+OzXZ9RUVPBkHZD6vQHJ0Um\nWR3zvKGiV0RE5Byorj62LvCyZeZtZKR5ItwVV8DIkeaSaBKYanuDV+1bVeckuYjgCLondKdbfDe6\nJ3Q37yd0o2uLroQGhVodO6Co6D0NzflrlpOh/Nayc347Zwflt5rymwzDvDzyRx/BwoXmkmhjxkCv\nXuZFMdq2NW/btzdvz9SMsJ0/fztnh/r5fYaPvSV72XF4B9sPb2f74e3sKDLv/1D8A+2i29EtoRsX\nJFzApV0v5ZIul6gQPg2nvHqDiIiInDqHA/r0McfDD5utEIsWmT3B69bB//0f7N8PP/wALhcMGwZD\nh5q3Awacm3WCDQPy82HLFigvhxYtID7+2G1k5NnPEMicDicdYzvSMbZjnbWEAWq8NeQezWX74e1s\nLtjMM0ufYdoH07gs5TIm9ZjEuJRxRIboF3CmaKZXRETEYoYBeXmwYgWsXGnerl9vFsLt2jU+goKg\nstIcVVXH7jc1CgrMmectW8zCtmdPiIoyl2o7cgSKiszRsiUMGgQDBx67TdTytWfNgbIDZH+fzftb\n32fZnmV0bdGV1Fap9E7sTWqrVAa0GaALaTRC7Q0iIiI2YxhQXGzOwv547N177L7PZ144IyzMvD3Z\n0aKFWej27GnO6J4ow7/+BWvWmFeuW7PGHBER5ux1auqxmewLL4RQfSt/RlXUVLC1YCubDm1i46GN\nbDq0iW/zvyU5Lpkrul/BhO4TGNh2IE6H0+qozYaK3tMQaL1FdqP81rFzdlB+qym/tc5mfsOAPXtg\nwwazX3nDBnP861/QteuxQnjIEPOCHj/1xD199o3z+Dws27OMj7Z/xMLtCzladZRLu15KZnImGckZ\nJMcln7Vj24F6ekVEROSMcDjMZdg6djRXpahVVQXff3+sGP71r83tMWPg8sth/Hho3dq63IEiyBnE\nyE4jGdlpJM9c8gw7i3by+b8+59Odn/LA5w8QERxBRnKGvwjuGNvR6sjNhmZ6RURE5Kw4dAg+/dRc\nvWLxYnMmeMIEswgeOBCc+lb+jDIMg+8Lv2dJ7hJycnPIyc0hOjSajE4ZZHbOZHjH4XSK7YQjgBeO\nVnuDiIiIWKqmxly3+OOPzVFUZF7BbsIEuOQSiImxOmHgMQyDLQVb/EXw0j1LcTqcpHdIJ71DOkPa\nDaFjbEdaRbUiyBkYX/43Vnfq31hNOP7aznak/Nayc347Zwflt5ryW6s55g8OhowM+OMfzRUjli0z\nl2WbO9dcp3jMGHjuOXjjjRzsPFfWnD57h8NBr6Re3DHkDt675j323buPr7K+YkL3CWwp2MJdn97F\n4LmDCX8ynDbPtmHgXwfyzNJnrI591gRGWS8iIiK20qUL3HmnOcrL4YsvzBngp5+GRx6Biy82x+jR\n0KqV1WkDg8PhoGt8V7rGd+X6vtf7H/f4PBwqP8S+0n2EB4VbmPDsUnuDiIiINBuGAdu3w+efmyMn\nxzxprrYIHjHCXE9YpCHq6RURERFb8njMtYFri+DVq822iPR0c3m01FS44AKzfUJEPb2noTn15pwK\n5beWnfPbOTsov9WU31p2zv/j7EFB5qWZf/1rWLIEDhyAhx4yL4Tx/vswaZJ5ElyfPnD11fDgg2af\n8JdfQm4uVFRwTnuE7fzZBzr19IqIiIhtREbCuHHmqFVZaZ4ct2MH7NoFy5fDm2+aF8woKDCfk5Bg\nXnmuTRsYPBguugiGDTMvsyznB7U3iIiISECrqDCXSDt82LyE88qVZmH87bfmSXIjRphF9MUXm5dn\nFvs65Z5en8/HzJkz2bBhA6Ghobzyyit07drVv/+DDz7gqaeewuFwcNNNNzFjxoyfdHARERERq3i9\n5gxxTg589hl89RX07n1sJnngQHC5rE4pP8Up9/RmZ2fjdrtZtmwZv//975k1a1ad/ffeey+LFy9m\n6dKlPPvssxQXF5+51M2E3XtzlN9ads5v5+yg/FZTfmvZOf+5zO5ymSfC3XmnedW4Q4fgt7+FkhK4\n6SZzFvgXv4A33jB7iU+GnT/7QNdo0bt06VLG/btpZujQoaxevbrO/uDgYI4ePUplZSWGYQT0Ze1E\nREQksIWFmS0O//3fsGkTrF1rrhP8j39Ajx7mqhEPP2zOCNfUWJ1WfqpG2xumT5/OpEmT/IVvp06d\n2L17N85/Xyx7zpw5PPzww0RGRjJp0iRmz55d/wBqbxARERGbq6kxe4E//dQcO3eaV5G78Ubzcspq\ng2geGqs7G129ISYmhtLSUv+2z+fzF7x5eXm8+OKL/PDDD0RERDB16lTee+89Jk+eXO91srKySE5O\nBiAuLo5+/fqRkZEBHPsaQNva1ra2ta1tbWu7uW4vXWpu/+53Gfzud/DBBzksWwZPPJHB7bfDxRfn\nMH48TJrUPPKeL9u193Nzc2mS0Yj333/fyMrKMgzDMJYvX26MHz/ev2/btm1G3759DbfbbRiGYdx9\n993G3Llz671GE4do9pYsWWJ1hNOi/Nayc347ZzcM5bea8lvLzvntmH3NGsO49VbDiIszjOHDlxgL\nFhhGVZXVqc5PjdWdzsYK4quuuoqwsDDS09OZNWsWs2fPZv78+cydO5fu3btzww03kJaWxogRIygu\nLiYrK6vpKltEREQkgAwYAHPmwA8/mGv/vvACtG0L06dDTg74fFYnFNA6vSIiIiJn3N69MH8+vPUW\n7N5tXjHu+NG/v3ninJxZp7xO79k+uIiIiEigKyyEjRthwwZYv94c27dDWhpccok5UlPB2ej373Iy\nTnmdXqnbKG1Hym8tO+e3c3ZQfqspv7XsnN/O2aHh/C1bQmYm3H03vPoqrFkDe/bAjBnmpZInTzbb\nIe68E1avBs0Vnh0qekVERETOsbg4uOoqeOkl2LEDvvkGEhPh2muhVy/4/e8hL8/qlIFF7Q0iIiIi\nzYRhwPLl5lXg3nvPLI5HjDDH8OHQrRvoWmAnpp5eEREREZvx+WDLFnMW+OuvzREUZLZJ3HQTREdb\nnbD5UU/vaQjE3iI7UX7r2Dk7KL/VlN9ads5v5+xwZvM7ndC7t9n7+9ZbZrvD/PmwdCl07gwPPAD5\n+WfscAFPRa+IiIiITQwdCu+8A6tWQVWVuerD1VfDBx+Y23Jiam8QERERsamjR+Hdd+FvfzOXQrvy\nSpgyBUaNgpAQq9Ode+rpFREREQlw+fnw9ttmC8T335uzwqNGwciR5v3z4WIY6uk9DeotspbyW8fO\n2UH5rab81rJzfjtnB2vzt2sH995rtj7k5ZknvJWUwP33Q0IC9OsH118Pf/wjfPaZeaW4AwfgyBEo\nL4eamsBeIzjI6gAiIiIicma1aAFXXGEOMIvaLVvMK8Nt3Aiffgo7d0J1tTncbvN26lR47TVLo581\nam8QEREREcCc6bXzOsBqbxARERGRJtm54G2Kit4mqLfIWspvHTtnB+W3mvJby8757Zwd7J8/kKno\nFREREZGA12hPr8/nY+bMmWzYsIHQ0FBeeeUVunbtCsDBgwe59tpr/c9dt24df/jDH7j11lvrHkA9\nvSIiIiJyDjRWdza6ekN2djZut5tly5axcuVKZs2aRXZ2NgCtWrViyZIlACxfvpxHHnmE6dOnn+Ho\nIiIiIiKnr9H2hqVLlzJu3DgAhg4dyurVq+s9xzAM7rrrLl5++WUcAdj9bPfeHOW3lp3z2zk7KL/V\nlN9ads5v5+xg//yBrNGit6SkhJiYGP+2y+XC5/PVec7ChQvp3bs33bp1OzsJRUREREROU6PtDTEx\nMZSWlvq3fT4fTmfdOvmtt97iV7/6VaMHycrKIjk5GYC4uDj69etHRkYGcOxfRM11u/ax5pJH+ZtX\nvkDOn5GR0azyKH/zyqf8zXvb7vm1re2T3a69n5ubS1MaPZFtwYIFLFy4kHnz5rFixQqeeOIJPv74\n4zrP6dq1K7t27TrxAXQim4iIiIicA6d8cYqrrrqKsLAw0tPTmTVrFrNnz2b+/PnMnTsXgIKCAmJj\nY8984mbk+H9J2JHyW8vO+e2cHZTfaspvLTvnt3N2sH/+QNZoe4PD4eDll1+u81j37t399xMTE/nu\nu+/OTjIRERERkTOk0faGM3IAtTeIiIiIyDlwyu0NIiIiIiKBQEVvE+zem6P81rJzfjtnB+W3mvJb\ny8757Zwd7J8/kKnoFREREZGAp55eEREREQkI6ukVERERkfOait4m2L03R/mtZef8ds4Oym815beW\nnfPbOTvYP38gU9ErIiIiIgFPPb0iIiIiEhDU0ysiIiIi5zUVvU2we2+O8lvLzvntnB2U32rKby07\n57dzdrB//kCmoldEREREAp56ekVEREQkIKinV0RERETOayp6m2D33hzlt5ad89s5Oyi/1ZTfWnbO\nb+fsYP/8gazRotfn8zFjxgzS0tLIzMxk165ddfavWrWKkSNHMmLECK699lrcbvdZDSsiIiIicioa\n7eldsGABH330Ea+++iorV67k6aefJjs7GwDDMBgwYADvv/8+Xbp0Ye7cuYwcOZILLrig7gHU0ysi\nIiIi58Ap9/QuXbqUcePGATB06FBWr17t37d9+3YSEhJ47rnnyMjI4OjRo/UKXhERERGR5qDRorek\npISYmBj/tsvlwufzAVBYWMiyZcu48847+fzzz/niiy9YsmTJ2U1rAbv35ii/teyc387ZQfmtpvzW\nsnN+O2cH++cPZEGN7YyJiaG0tNS/7fP5cDrNOjkhIYGUlBT/7O64ceNYvXo1mZmZ9V4nKyuL5ORk\nAOLi4ujXrx8ZGRnAsT+O5rq9bt26ZpVH+ZtXvkDPr21ta1vb53q7VnPJc77lt9t27f3c3Fya0mRP\n78KFC5k3bx4rVqzgiSee4OOPPwbA7XZz4YUXsnjxYrp27cqkSZO45ZZbuOyyy+oeQD29IiIiInIO\nNFZ3Nlr0GobBzJkz2bBhAwDz5s1jzZo1lJWVMX36dJYsWcKDDz6IYRikp6cze/bsn3RwEREREZEz\n5ZRPZHM4HLz88sssXbqUpUuX0r17d6ZMmcL06dMByMzMZOXKlXz77bcNFryB4MdfV9iN8lvLzvnt\nnB2U32rKby0757dzdrB//kDWaNErIiIiIhIIGm1vOCMHUHuDiIiIiJwDp9zeICIiIiISCFT0NsHu\nvTnKby0757dzdlB+qym/teyc387Zwf75A5mKXhEREREJeOrpFREREZGAoJ5eERERETmvqehtgt17\nc5TfWnbOb+fsoPxWU35r2Tm/nbOD/fMHMhW9IiIiIhLw1NMrIiIiIgFBPb0iIiIicl5T0dsEu/fm\nKL+17JzfztlB+a2m/Nayc347Zwf75w9kKnpFREREJOCpp1dEREREAoJ6ekVERETkvNZo0evz+Zgx\nYwZpaWlkZmaya9euOvtnz55N7969yczMJDMzk+3bt5/VsFawe2+O8lvLzvntnB2U32rKby0757dz\ndrB//kAW1NjO7Oxs3G43y5YtY+XKlcyaNYvs7Gz//u+++47//d//pX///mc9qIiIiIjIqWq0p3fW\nrFkMHTqUa665BoD27duzd+9e//6ePXvSq1cvDhw4wOWXX86DDz5Y/wDq6RURERGRc+CUe3pLSkqI\niYnxb7tcLnw+n397ypQpzJkzhy+//JJvvvmGjz/++AxFFhERERE5cxotemNiYigtLfVv+3w+nM5j\nP3L33XcTHx9PcHAwl19+OWvXrj17SS1i994c5beWnfPbOTsov9WU31p2zm/n7GD//IGs0Z7e9PR0\nFi5cyNVXX82KFSvo06ePf19xcTF9+vRhy5YtRERE8OWXX3LzzTc3+DpZWVkkJycDEBcXR79+/cjI\nyACO/XE01+1169Y1qzzK37zyBXp+bWtb29o+19u1mkue8y2/3bZr7+fm5tKURnt6DcNg5syZbNiw\nAYB58+axZs0aysrKmD59OvPnz2f27NmEhoZy8cUX8+ijj9Y/gHp6RUREROQcaKzu1MUpRERERCQg\n6OIUp+HHX1fYjfJby8757ZwdlN9qym8tO+e3c3awf/5ApqJXRERERAKe2htEREREJCCovUFERERE\nzmsqeptg994c5beWnfPbOTsov9WU31p2zm/n7GD//IFMRa+IiIiIBDz19IqIiIhIQFBPr4iIiIic\n11T0NsHuvTnKby0757dzdlB+qym/teyc387Zwf75A5mKXhEREREJeOrpFREREZGAoJ5eERERETmv\nqehtgt17c5TfWnbOb+fsoPxWU35r2Tm/nbOD/fMHMhW9IiIiIhLw1NMrIiIiIgFBPb0iIiIicl5r\ntGa3yqcAABcSSURBVOj1+XzMmDGDtLQ0MjMz2bVrV4PPu/XWW3nooYfOSkCr2b03R/mtZef8ds4O\nym815beWnfPbOTvYP38ga7Tozc7Oxu12s2zZMn7/+98za9ases+ZM2cOmzZtwuFwnLWQIiIiIiKn\no9Ge3lmzZjF06FCuueYaANq3b8/evXv9+5ctW8b/+3//j5EjR/L999/z9NNP1z+AenpFRERE5Bw4\n5Z7ekpISYmJi/NsulwufzwfA/v37+e1vf8uLL76oolZEREREmrWgxnbGxMRQWlrq3/b5fDidZp38\n3nvvUVhYyPjx4zlw4AAVFRX06NGD66+/vt7rZGVlkZycDEBcXBz9+vUjIyMDONb70ly3n3/+eVvl\nVf7mtW3n/Mf3pTWHPMrfvPIpf/PetnP+H78Hq/Ocb/nttl17Pzc3lyYZjXj//feNrKwswzAMY/ny\n5cb48eMbfN5rr71mPPjggw3ua+IQzd6SJUusjnBalN9ads5v5+yGofxWU35r2Tm/nbMbhv3z211j\ndWejPb2GYTBz5kw2bNgAwLx581izZg1lZWVMnz7d/7zXX3+dbdu28dRTT9V7DfX0ioiIiMi50Fjd\nqYtTiIiIiEhA0MUpTsPxPSN2pPzWsnN+O2cH5bea8lvLzvntnB3snz+QqegVERERkYCn9gYRERER\nCQhqbxARERGR85qK3ibYvTdH+a1l5/x2zg7KbzXlt5ad89s5O9g/fyBT0SsiIiIiAU89vSIiIiIS\nENTTKyIiIiLnNRW9TbB7b47yW8vO+e2cHZTfaspvLTvnt3N2sH/+QKaiV0REREQCnnp6RURERCQg\nqKdXRERERM5rKnqbYPfeHOW3lp3z2zk7KL/VlN9ads5v5+xg//yBTEWviIiIiAQ89fSKiIiISEA4\n5Z5en8/HjBkzSEtLIzMzk127dtXZ//777zNkyBCGDh3KCy+8cOYSi4iIiIicQY0WvdnZ2bjdbpYt\nW8bvf/97Zs2a5d/n9Xp56KGH+OKLL1i+fDkvvfQSRUVFZz3wuWb33hzlt5ad89s5Oyi/1ZTfWnbO\nb+fsYP/8gSyosZ1Lly5l3LhxAAwdOpTVq1f797lcLr7//nucTicHDx7E6/USEhJydtOKiIiIiJyC\nRnt6p0+fzqRJk/yFb6dOndi9ezdO57EJ4gULFnDHHXcwYcIE/vKXv9TZB+rpFREREZFzo7G6s9GZ\n3piYGEpLS/3bPp+vXlE7ceJErrrqKrKysnjjjTfIysqq9zpZWVkkJycDEBcXR79+/cjIyACOfQ2g\nbW1rW9va1ra2ta1tbf+U7dr7ubm5NMloxPvvv29kZWUZhmEYy5cvN8aPH+/fV1xcbIwcOdKorq42\nDMMwbrvtNuONN96o9xpNHKLZW7JkidURTovyW8vO+e2c3TCU32rKby0757dzdsOwf367a6zubHSm\n96qrrmLx4sWkp6cDMG/ePObPn09ZWRnTp09n6tSpjBw5kuDgYPr27cvUqVObrrJFRERERP5/e/cf\nG3V9x3H8dS21LT8ONn4YIjhQLA6pVgYtd9cebYO0onHRiUr4YaM26VBKhG2JyUwUF0ESZWikISDN\nsmkXf2CTwsDBwg8pLbEqFmIV0JD5A+faSe9atC3eZ38QTpil7Sjt9/v59vlILum319JnL6ffd9v3\n3fUznqcXAAAAnnDJz9MLAAAAeAFDbzfOX5S2Ef3Osrnf5naJfqfR7yyb+21ul+zv9zKGXgAAAHge\nO70AAADwBHZ6AQAAMKAx9HbD9t0c+p1lc7/N7RL9TqPfWTb329wu2d/vZQy9AAAA8Dx2egEAAOAJ\n7PQCAABgQGPo7Ybtuzn0O8vmfpvbJfqdRr+zbO63uV2yv9/LGHoBAADgeez0AgAAwBPY6QUAAMCA\nxtDbDdt3c+h3ls39NrdL9DuNfmfZ3G9zu2R/v5cx9AIAAMDzutzpjcViWrJkierr65WcnKxNmzbp\n2muvjV9fUVGhdevWadCgQUpPT9f69evl8/ku/ALs9AIAAKAfXPJOb2Vlpdrb23XgwAGtXr1aK1as\niF/37bff6vHHH9eePXu0f/9+NTc3a+vWrZe3HAAAALgMuhx6q6urVVhYKEnKyspSXV1d/LqUlBTV\n1NQoJSVFknTmzBmlpqb2YaozbN/Nod9ZNvfb3C7R7zT6nWVzv83tkv39Xtbl0BuJROT3++PHiYmJ\nisViks7++nj06NGSpBdeeEGtra2aPXt2H6YCAAAAl2ZQV1f6/X5Fo9H4cSwWU0JCwgXHv/vd73T8\n+HG98cYbF/13ioqKNGHCBEnSiBEjlJGRodzcXEk//ETk1uNz73NLD/3u6vNyf25urqt66HdXH/3u\nPra9n2OOe3p87u0TJ06oO10+kG3Lli2qqqpSeXm5amtr9dRTT2nbtm3x64uLi5WSkqLnn3/+Rw9g\ni38BHsgGAACAfnDJD2S78847lZKSolAopBUrVmjt2rWqqKjQxo0b9f7772vz5s06cuSI8vPzlZeX\np8rKyj75Bpx0/k8SNqLfWTb329wu0e80+p1lc7/N7ZL9/V7W5XqDz+dTWVnZBe9LS0uLv/3999/3\nTRUAAABwGXW53nBZvgDrDQAAAOgHl7zeAAAAAHgBQ283bN/Nod9ZNvfb3C7R7zT6nWVzv83tkv39\nXsbQCwAAAM9jpxcAAACewE4vAAAABjSG3m7YvptDv7Ns7re5XaLfafQ7y+Z+m9sl+/u9jKEXAAAA\nnsdOLwAAADyBnV4AAAAMaAy93bB9N4d+Z9ncb3O7RL/T6HeWzf02t0v293sZQy8AAAA8j51eAAAA\neAI7vQAAABjQGHq7YftuDv3Osrnf5naJfqfR7yyb+21ul+zv97IeDb2xWEwlJSUKBoPKy8vTJ598\n8qOPOX36tEKhkD7++OPLHgkAAAD0Ro92erds2aKtW7dq8+bNOnjwoFatWqXKysr49XV1dSopKdGX\nX36pPXv2KC0t7YcvwE4vAAAA+kGvd3qrq6tVWFgoScrKylJdXd0F17e3t6uyslKTJ0/uZSoAAABw\n+fVo6I1EIvL7/fHjxMRExWKx+HEwGNS4ceMuf50L2L6bQ7+zbO63uV2i32n0O8vmfpvbJfv7vaxH\nQ6/f71c0Go0fx2IxJSTwGDgAAADYYVBPPigUCqmqqkrz5s1TbW2tbrzxxv/rixQVFWnChAmSpBEj\nRigjI0O5ubmSfviJyK3H597nlh763dXn5f7c3FxX9dDvrj763X1sez/HHPf0+NzbJ06cUHd69EA2\nY4yWLFmi+vp6SVJ5ebneffddtbS0qLi4OP5xeXl52rBhAw9kAwAAQL/r9QPZfD6fysrKVF1drerq\naqWlpWn+/PkXDLyStHv37gsGXi84/ycJG9HvLJv7bW6X6Hca/c6yud/mdsn+fi/r0dALAAAA2KxH\n6w29+gKsNwAAAKAf9Hq9AQAAALAZQ283bN/Nod9ZNvfb3C7R7zT6nWVzv83tkv39XsbQCwAAAM9j\npxcAAACewE4vAAAABjSG3m7YvptDv7Ns7re5XaLfafQ7y+Z+m9sl+/u9jKEXAAAAnsdOLwAAADyB\nnV4AAAAMaAy93bB9N4d+Z9ncb3O7RL/T6HeWzf02t0v293sZQy8AAAA8j51eAAAAeAI7vQAAABjQ\nGHq7YftuDv3Osrnf5naJfqfR7yyb+21ul+zv97Iuh95YLKaSkhIFg0Hl5eXpk08+ueD6qqoqZWZm\nKhgMatOmTX0a6pRDhw45ndAr9DvL5n6b2yX6nUa/s2zut7ldsr/fywZ1dWVlZaXa29t14MABHTx4\nUCtWrFBlZaUkqaOjQ8uXL1ddXZ0GDx6sUCikO+64Q2PGjOmX8P5y6tQppxN6hX5n2dxvc7tEv9Po\nd5bN/Ta3S/b3e1mXv+mtrq5WYWGhJCkrK0t1dXXx6xoaGjRp0iQNHz5cSUlJys7O1r59+/q2FgAA\nALgEXQ69kUhEfr8/fpyYmKhYLBa/bvjw4fHrhg0bpubm5j7KdM6JEyecTugV+p1lc7/N7RL9TqPf\nWTb329wu2d/vaaYLy5cvN6+++mr8eNy4cfG36+vrzdy5c+PHjz76qHnjjTd+9G9ce+21RhIXLly4\ncOHChQsXLn16uemmmy4613a50xsKhVRVVaV58+aptrZWN954Y/y666+/XseOHdM333yjIUOGaN++\nffrtb3/7o3/j+PHjXX0JAAAAoM91OfTeeeed2rlzp0KhkCSpvLxcFRUVamlpUXFxsZ577jkVFBQo\nFovpwQcf1NixY/slGgAAAPh/9PkrsgEAAABO69WLUxw8eFB5eXmSpI8++kjZ2dnKycnRgw8+GH8J\nuLKyMs2YMUOZmZnxpzv79ttv9atf/UrhcFi33XabGhsbe/lt9F3/c889p2nTpikYDKqiosK1/R98\n8IECgYBycnL0wAMPqL29XZK0ceNGzZgxQ4FAQNu2bXNNf0/aJenf//630tLS4u9zQ3tP+9euXauZ\nM2dq5syZWrlypXX9L774ojIzM5WVlaXXXnvNun7p7HON33rrrdqwYYN1/cuWLdP06dOVl5envLw8\nRaNRq/q3b9+uQCCgQCCg0tJSSe64/btrP3ToUPw2z8vLU2pqqv7+97+7or0n/ZI9592L9bvxvNvR\n0aFFixYpHA4rKytLVVVVOn78uLKzsxUOh7VkyZL43ODW8y6kLh/I1pVnnnnGpKenm0AgYIwx5t57\n7zXbt283xhizYMECU1VVZaLRqJk4caLp6Ogw33zzjfnZz35mjDHm2WefNU8++aQxxpi//vWvZtmy\nZZeaccl60n/48GFz0003mba2NvPdd9+ZG264wXz11Veu7J8+fbqpqakxxhjz+9//3qxdu9acPHnS\npKenm/b2dtPc3GzS09NNW1ub4/09aTfGmB07dpiMjAwzfPhw09bWZoxx532ns/5PP/3UTJ8+3cRi\nMWOMMaFQyNTX11vT39jYaKZOnWrOnDljotGoGT9+vDHGntv/nMcee8zMnDnTbNiwwRhjV392drZp\namq64HNt6Y9EImbq1Knx/tWrV5uvv/7a8f7/575jjDGvvvqqWbhwoTHGntu+paXFmvNuZ/1uPe+W\nl5ebRx991BhjzH/+8x8zfvx4c8cdd5i9e/caY4wpKSkxb775pmvPuzjrkn/TO2nSJG3ZsiX+k01q\naqqamppkjFE0GtUVV1whn88nSWppaVE0GlViYqKkC5//t7CwULt27ert7N4n/Q0NDcrNzdUVV1yh\n5ORkTZ06VbW1ta7s//zzzzVz5kxJUjAY1N69e/XOO+8oFAopKSlJfr9fkyZNUn19veP9PWmXzj5F\n3j/+8Q/95Cc/iX+u0+1Sz/qvvvpq7dixI/7fQEdHh1JSUqzpHzlypA4dOqTExER9+eWXSk1NlWTP\n7S9Jr7/+uhITE+O9kj39xhgdO3ZMxcXFys7OVnl5uVX9NTU1Sk9P1/LlyxUOhzV27FiNHj3a8f6e\n3nckqbW1VU888YTWrVsnyZ7b3qbzbmf9bj3vzps3L/4Xu1gspqSkJL333nsKh8OSpFtvvVW7du1y\n7XkXZ13y0HvXXXdp0KAfHge3dOlSLVu2TFOmTNHXX3+tWbNmaciQIZo/f76mTJmi6dOnx//Edf5z\n/Dr1/L496U9PT9e+ffvU0tKipqYmHThwQK2trRc8f7Fb+q+55pr4i4NUVVXFOzt7LmWn+3vSLkmz\nZ8/WT3/60ws+1433nc76ExMTNXLkSBlj9Jvf/EbTpk3TddddZ02/dPaHjhdffFHBYFALFy6UZM/t\nf+TIEVVUVGjlypUyxsRPsjb0nz59Wq2trSotLdXLL7+sHTt2aP369Tp8+LAV/a2trWpsbNTu3bu1\nZs0abd++XX/84x917Ngxx/t7et+XpJdeekn33HNP/P9BTrdLPbvvDB48WPfdd58V593O+t163h0y\nZIiGDh2qaDSqefPm6Q9/+EP8dQvOb3LreRdn9Wqn93wLFy7U22+/rYaGBi1atEgrVqxQTU2Nampq\ndOLECf3zn//Um2++qXfeeUd+v1+RSESSFI1GNWLEiMuVcck667/++uv1yCOPqLCwUEuXLlVWVpZG\njRolv9+vaDQqyT395eXlWrVqlWbPnq0rr7zyR53SD61u6++s/WLceN+5WP93332nBQsWqLW1VevX\nr5dkV78kPfzwwzp58qT27t2rPXv2WNP/5z//WV988YXy8/P1pz/9SWvXrtVbb71lRf/IkSM1ePBg\nlZaWKiUlRUOHDlV+fr4++OADK/pHjRqlkSNHasaMGRozZoyGDBmicDisQ4cOua6/q/v+K6+8ooce\neih+7LZ2qfP7Tk1NjWpra60473Z2+7v5vPvZZ58pPz9fixcv1vz585WQ8MMIFYlEfnR+Pb/VDf24\njEPv6dOnNWzYMEnS2LFjderUKbW0tCg1NTX+Z4oRI0bo1KlTCoVC+tvf/ibp7IMdzv15wEmd9Tc2\nNioSiWj//v0qKyvThx9+qEAg4Mr+rVu36uWXX9auXbvU1NSkgoICZWZm6u2331ZbW5uam5vV0NCg\nqVOnuq6/s/aLcVu71Hm/MUa//OUvlZGRobKysvifHG3pP3r0qO666y5J0qBBg5ScnKyEhARr+p95\n5hnV1tZq9+7dKioq0vLly1VQUGBN/9GjR5Wdna1YLKaOjg7t379fv/jFL6zpnzZtmo4cOaKmpiad\nOXNGtbW1uuGGG1zXf7H/9zQ3N6utrU1XXXVV/GPd1i513m/Tefd/++fMmePa8+6//vUvzZkzR2vW\nrFFRUZEk6eabb46vxJxrsuW8O1B1+Ty9PXHuZL5p0ybdfffdSklJUXJysjZu3Kirr75aO3fuVFZW\nlhITE5WTk6NbbrlF2dnZuv/++5WTk6Pk5GS98sorvf5G+qJ/1KhR+vjjj5WZmamEhAStWbNGw4YN\n069//WvX9aelpWn27NlKTk5WZmamFi9eLJ/Pp9LSUuXk5CgWi+npp59WcnKya/q7au/s4yS5pv38\nrv/tX7RokSorK7Vv3z51dHRo+/btkqTVq1db0X/uvpORkaFAICCfz6e5c+cqHA5rxowZVvRfjE23\n/+LFixUIBJSUlKSioiL9/Oc/14QJE6zpX7VqVXyIvPfeezVlyhRNnDjRFf3d3XeOHj2qiRMnXvA5\nNt13bDnvXqzfjefdp59+Ws3NzVq5cmV8t3fdunUqLS1Ve3u7pkyZorvvvtv1592BjufpBQAAgOdd\ntvUGAAAAwK0YegEAAOB5DL0AAADwPIZeAAAAeB5DLwAAADyPoRcAAACex9ALAAAAz2PoBQAAgOcx\n9AJAP1qwYEH85UgbGhp0++2366GHHtKsWbOUk5MTf1nT119/Xfn5+crJyVE4HFZTU5P27NmjrKws\nhcNh/eUvf3Hy2wAA6/T6ZYgBAD1XXFyssrIyzZ07V5s3b1YwGFQkEtGmTZvU1NSkWbNm6ciRIzp2\n7Ji2bdum1NRUlZSU6K233tJVV12ltrY2HTx40OlvAwCsw9ALAP1o1qxZWrp0qRobG7Vz504Fg0Ht\n378/Psh+//33ampq0ujRo3X//fdr6NCh+uijjxQIBCRJkydPdjIfAKzF0AsA/cjn82nRokVaunSp\nCgoKNG7cOI0fP16PPfaYIpGInn32WSUlJemJJ57QZ599plgspjlz5sgYI0lKSGArDQAuBUMvAPSz\noqIiPf744zp8+LAmTJig4uJi5ebmKhKJ6OGHH5bf71coFFIgENCYMWM0efJknTx5UhMnTpTP53M6\nHwCs5DPnfn0AAOgXJ0+e1OLFi7Vz506nUwBgwODvZADQj7Zs2aKCggKtXLnS6RQAGFD4TS8AAAA8\nj9/0AgAAwPMYegEAAOB5DL0AAADwPIZeAAAAeB5DLwAAADyPoRcAAACe91/kM/Nu36g3zQAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "table = top1000.pivot_table('prop', rows = 'year', cols = 'sex', aggfunc = sum)\n", "table.plot(title = 'Sum of table.top1000.prop by sex and year', \n", " yticks = np.linspace(0, 1.2, 13),\n", " xticks = range(1880, 2010, 10))" ] }, { "cell_type": "code", "execution_count": 132, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namessexbirthsyearprop
260877 Jacob M 21875 2010 0.011523
260878 Ethan M 17866 2010 0.009411
260879 Michael M 17133 2010 0.009025
260880 Jayden M 17030 2010 0.008971
260881 William M 16870 2010 0.008887
260882 Alexander M 16634 2010 0.008762
260883 Noah M 16281 2010 0.008576
260884 Daniel M 15679 2010 0.008259
260885 Aiden M 15403 2010 0.008114
260886 Anthony M 15364 2010 0.008093
260887 Joshua M 15238 2010 0.008027
260888 Mason M 14728 2010 0.007758
260889 Christopher M 14135 2010 0.007446
260890 Andrew M 14093 2010 0.007424
260891 David M 14042 2010 0.007397
260892 Matthew M 13954 2010 0.007350
260893 Logan M 13943 2010 0.007345
260894 Elijah M 13735 2010 0.007235
260895 James M 13714 2010 0.007224
260896 Joseph M 13657 2010 0.007194
260897 Gabriel M 12722 2010 0.006701
260898 Benjamin M 12280 2010 0.006469
260899 Ryan M 11886 2010 0.006261
260900 Samuel M 11776 2010 0.006203
260901 Jackson M 11693 2010 0.006159
260902 John M 11424 2010 0.006018
260903 Nathan M 11269 2010 0.005936
260904 Jonathan M 11028 2010 0.005809
260905 Christian M 10965 2010 0.005776
260906 Liam M 10852 2010 0.005716
260907 Dylan M 10455 2010 0.005507
260908 Landon M 10400 2010 0.005478
260909 Caleb M 10359 2010 0.005457
260910 Tyler M 10357 2010 0.005456
260911 Lucas M 10294 2010 0.005423
260912 Evan M 9655 2010 0.005086
260913 Gavin M 9551 2010 0.005031
260914 Nicholas M 9549 2010 0.005030
260915 Isaac M 9254 2010 0.004875
260916 Brayden M 9046 2010 0.004765
260917 Luke M 8767 2010 0.004618
260918 Angel M 8716 2010 0.004591
260919 Brandon M 8473 2010 0.004463
260920 Jack M 8457 2010 0.004455
260921 Isaiah M 8443 2010 0.004447
260922 Jordan M 8156 2010 0.004296
260923 Owen M 8136 2010 0.004286
260924 Carter M 8101 2010 0.004267
260925 Connor M 7991 2010 0.004209
260926 Justin M 7792 2010 0.004105
260927 Jose M 7656 2010 0.004033
260928 Jeremiah M 7645 2010 0.004027
260929 Julian M 7534 2010 0.003969
260930 Robert M 7471 2010 0.003935
260931 Aaron M 7374 2010 0.003884
260932 Adrian M 7354 2010 0.003874
260933 Wyatt M 7319 2010 0.003855
260934 Kevin M 7278 2010 0.003834
260935 Hunter M 7271 2010 0.003830
260936 Cameron M 7137 2010 0.003760
...............
\n", "

1000 rows × 5 columns

\n", "
" ], "text/plain": [ " names sex births year prop\n", "260877 Jacob M 21875 2010 0.011523\n", "260878 Ethan M 17866 2010 0.009411\n", "260879 Michael M 17133 2010 0.009025\n", "260880 Jayden M 17030 2010 0.008971\n", "260881 William M 16870 2010 0.008887\n", "260882 Alexander M 16634 2010 0.008762\n", "260883 Noah M 16281 2010 0.008576\n", "260884 Daniel M 15679 2010 0.008259\n", "260885 Aiden M 15403 2010 0.008114\n", "260886 Anthony M 15364 2010 0.008093\n", "260887 Joshua M 15238 2010 0.008027\n", "260888 Mason M 14728 2010 0.007758\n", "260889 Christopher M 14135 2010 0.007446\n", "260890 Andrew M 14093 2010 0.007424\n", "260891 David M 14042 2010 0.007397\n", "260892 Matthew M 13954 2010 0.007350\n", "260893 Logan M 13943 2010 0.007345\n", "260894 Elijah M 13735 2010 0.007235\n", "260895 James M 13714 2010 0.007224\n", "260896 Joseph M 13657 2010 0.007194\n", "260897 Gabriel M 12722 2010 0.006701\n", "260898 Benjamin M 12280 2010 0.006469\n", "260899 Ryan M 11886 2010 0.006261\n", "260900 Samuel M 11776 2010 0.006203\n", "260901 Jackson M 11693 2010 0.006159\n", "260902 John M 11424 2010 0.006018\n", "260903 Nathan M 11269 2010 0.005936\n", "260904 Jonathan M 11028 2010 0.005809\n", "260905 Christian M 10965 2010 0.005776\n", "260906 Liam M 10852 2010 0.005716\n", "260907 Dylan M 10455 2010 0.005507\n", "260908 Landon M 10400 2010 0.005478\n", "260909 Caleb M 10359 2010 0.005457\n", "260910 Tyler M 10357 2010 0.005456\n", "260911 Lucas M 10294 2010 0.005423\n", "260912 Evan M 9655 2010 0.005086\n", "260913 Gavin M 9551 2010 0.005031\n", "260914 Nicholas M 9549 2010 0.005030\n", "260915 Isaac M 9254 2010 0.004875\n", "260916 Brayden M 9046 2010 0.004765\n", "260917 Luke M 8767 2010 0.004618\n", "260918 Angel M 8716 2010 0.004591\n", "260919 Brandon M 8473 2010 0.004463\n", "260920 Jack M 8457 2010 0.004455\n", "260921 Isaiah M 8443 2010 0.004447\n", "260922 Jordan M 8156 2010 0.004296\n", "260923 Owen M 8136 2010 0.004286\n", "260924 Carter M 8101 2010 0.004267\n", "260925 Connor M 7991 2010 0.004209\n", "260926 Justin M 7792 2010 0.004105\n", "260927 Jose M 7656 2010 0.004033\n", "260928 Jeremiah M 7645 2010 0.004027\n", "260929 Julian M 7534 2010 0.003969\n", "260930 Robert M 7471 2010 0.003935\n", "260931 Aaron M 7374 2010 0.003884\n", "260932 Adrian M 7354 2010 0.003874\n", "260933 Wyatt M 7319 2010 0.003855\n", "260934 Kevin M 7278 2010 0.003834\n", "260935 Hunter M 7271 2010 0.003830\n", "260936 Cameron M 7137 2010 0.003760\n", " ... ... ... ... ...\n", "\n", "[1000 rows x 5 columns]" ] }, "execution_count": 132, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = boys[boys.year == 2010]\n", "df" ] }, { "cell_type": "code", "execution_count": 133, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "260877 0.011523\n", "260878 0.020934\n", "260879 0.029959\n", "260880 0.038930\n", "260881 0.047817\n", "260882 0.056579\n", "260883 0.065155\n", "260884 0.073414\n", "260885 0.081528\n", "260886 0.089621\n", "Name: prop, dtype: float64" ] }, "execution_count": 133, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prop_cumsum = df.sort_index(by = 'prop', ascending = False).prop.cumsum()\n", "prop_cumsum[:10]" ] }, { "cell_type": "code", "execution_count": 135, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "116" ] }, "execution_count": 135, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prop_cumsum.values.searchsorted(0.5)" ] }, { "cell_type": "code", "execution_count": 138, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "25" ] }, "execution_count": 138, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = boys[boys.year == 1900]\n", "in1900 = df.sort_index(by = 'prop', ascending = False).prop.cumsum()\n", "in1900.values.searchsorted(0.5) + 1" ] }, { "cell_type": "code", "execution_count": 140, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sexFM
year
1880 38 14
1881 38 14
1882 38 15
1883 39 15
1884 39 16
\n", "

5 rows × 2 columns

\n", "
" ], "text/plain": [ "sex F M\n", "year \n", "1880 38 14\n", "1881 38 14\n", "1882 38 15\n", "1883 39 15\n", "1884 39 16\n", "\n", "[5 rows x 2 columns]" ] }, "execution_count": 140, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def get_quantile_count(group, q = 0.5):\n", " group = group.sort_index(by = 'prop', ascending = False)\n", " return group.prop.cumsum().values.searchsorted(q) + 1\n", "\n", "diversity = top1000.groupby(['year', 'sex']).apply(get_quantile_count)\n", "diversity = diversity.unstack('sex')\n", "diversity.head()" ] }, { "cell_type": "code", "execution_count": 141, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 141, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAFNCAYAAAAZy0m9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYVNfWBvB3QLAhYK8g9oZSBEUZmgUssWuiaWLU2BIT\nW5q5MU1iibHF2FKMwRhjTYxePyXJGEEsFDF2RREEO0qVOuf741xGEKQ5zJ7y/p6HR8/UNYtRFnvW\nWVshSZIEIiIiIiIqwkx0AERERERE+oiFMhERERFRCVgoExERERGVgIUyEREREVEJWCgTEREREZWA\nhTIRERERUQlYKBNRMXFxcTAzM8N3331X5PIvv/wSEyZM0NrzODg44MSJE1p7vNKkpaXB09MTXbt2\nxe7du4tcFxgYiBYtWsDFxQWurq7o2rUrhg8fjrt371ZJLA4ODoiKiqqSx9YHgwcPxoULFyp0H39/\nfyQnJ2sthjlz5qBly5ZwcXGBi4sLxo0bBwDIz8/HW2+9hU6dOqFdu3ZYv3695j7r169Hly5d0Lt3\nb8TFxWkuHzRoEC5evKi12IjIcFQTHQAR6SczMzPMmzcP3t7eaNeuHQBAoVBo9TkUCgV0Nco9Ojoa\nd+7cweXLl0uMY/bs2Zg9e7bmsrlz52L69OnYvn271mPRdh71zb59+yp8n5CQEK2+F8LDw7Ft2zZ4\neHgUuXz9+vWIjY3F2bNnkZqail69esHV1RXu7u5YvHgxLl68iF27dmHNmjVYunQpduzYAUdHR3To\n0EFrsRGR4eCKMhGVqGbNmpgzZw7GjRuH3NxcAChSyAQGBmLZsmUlHjs4OGD+/PlwdnaGnZ0dvv/+\ne0ycOBHOzs5wd3fHzZs3Nfdbt24d3Nzc4OjoiB9++EFz+d69e+Hh4QFXV1colUocO3YMAPDxxx8j\nICAATk5OePXVV4vFvWfPHri6usLJyQleXl44efIkLl26hIkTJyIxMRGurq7Iysoq8/X36dNHsyp6\n9uxZ+Pn5wcnJCc7Ozvjpp58AACqVCt27d8eoUaPg5OQEDw8PzX1Ky08BSZLw1ltvwcPDA126dEHn\nzp1x9OhRze2HDh0KR0dHvP/++0Xup1Kp4OnpiVdffRWurq7o0qULVCoVAODSpUvo378/evfuDQcH\nBwwfPhzZ2dkAgBo1auCDDz5At27d4ODggO3bt+P5559Hp06d0LdvX2RmZgIAzp8/j4CAALi5ucHF\nxUXzfUlPT8eYMWPg4uKC7t274/XXXy+xuHVwcEBkZGSpcRZW8ClFnz59cOPGjUrlu7Ds7GxER0dj\n6dKlcHZ2xujRo5GQkABAfn9MmDABZmZmsLW1xdixYxEcHAwAsLCwQFZWFtLT01G9enVkZmZi2bJl\nWLBgQfE3CBGZBomI6AnXrl2TrKysJLVaLXl7e0tz586VJEmSli5dKgUGBkqSJEmBgYHSsmXLNPcp\nfOzg4CDNmTNHkiRJ2rZtm2Rubi6dPn1akiRJGjFihBQUFCRJkiS1bNlSmjFjhiRJkpSUlCQ1atRI\nOnv2rHTp0iWpa9euUnJysiRJknTmzBmpadOmUkZGhrRgwQKpU6dOUn5+frG4z58/LzVp0kS6du2a\nJEmS9Ndff0lNmzaV0tLSJJVKJTk6Opb4egMDA6Uvv/xSc5yZmSm98MIL0syZM6W8vDypdevW0u7d\nuzVxtmjRQgoPD5f+/vtvyczMTDp8+LAkSZK0bt06yc3NrVz5iYyMlMLDw6Xnn39ec5svvvhCGjJk\niCRJkjR+/Hipf//+Jcb7999/S9WqVZNiYmIkSZKkZcuWST4+PpIkSdK8efOkLVu2SJIkSbm5uVK3\nbt2kXbt2SZIkSQqFQlq9erUkSZK0ePFiydraWkpKSpLUarXUvXt3aevWrVJubq7UuXNnKSoqSpIk\nSXr48KHUuXNn6dixY9LmzZulAQMGSJIkSfn5+dLkyZOl2NjYYvEVvL7S4nySQqGQ7t+/L+Xm5lYq\n34Vdu3ZNGjx4sHTp0iVJkuT3rYuLiyRJktSxY0fp+PHjmttu3LhRGjlypCRJkrRz507J1dVVGjRo\nkHT79m1p/vz5UnBwcInxEpFp4IoyET2VQqFAcHAwfvjhB4SEhBRrGZBK+ah81KhRAIDWrVujSZMm\n6Nq1KwCgTZs2ePDggebxp0yZAgBo2rQpAgIC8Oeff+LQoUO4efMm+vTpAxcXF7z88sswNzfHlStX\noFAo4OHhATOz4v99/fXXX+jXrx8cHBwAAH5+fmjUqBEiIiJKjVWSJCxfvlzTz9qjRw80bNgQX3zx\nBS5evIjs7GwMHz5cE+eoUaNw4MABKBQKODo6wtvbG4C8MhodHa3ptS3tOQHAw8MDn332GdauXYt5\n8+Zh586dyMjI0ORGqVQ+9b4tW7ZEt27dAAAuLi6a51y8eDHq16+PpUuXYurUqUhKSkJ6errmfoW/\nL127dkXTpk2hUCjQqlUrJCcn49KlS7h69Spee+01uLi4wNfXF1lZWTh16hS8vLw0q72LFi3C22+/\njdatW5f6Gp8W59NcunSpwvkueD8VcHBwwB9//KFpGZo7dy5iY2MRFxcHtVpd7DnNzc0BACNHjkRk\nZCT27duHtLQ0HDt2DOPGjcPbb7+N4cOHY/ny5aXGTkTGhz3KRFQqOzs7rFu3DuPHjy/S6vBkf3HB\nx/sFqlevrvm7hYXFUx+/cMGrVqthYWGBvLw89O3bF7/88ovmuvj4eLRo0QK7d+9G7dq1S3wsSZKK\nFadqtRp5eXmoVu3p/92V1KNc+P5Pys/PR15eHgAUedyC5zc3Ny8zP4Dcy/v2229j7ty5GD58ODp2\n7KhpAwDw1NcJyK0xheMveK6xY8ciPz8fL7zwAgYPHoyEhIQicZT1fVGr1bC1tUV0dLTmslu3bsHW\n1hY1atTAlStXoFKpNL+UrF69WlN8VyTOp6lsvgv7999/cerUKbzyyitFbmdhYQF7e3skJSVpbpuY\nmAg7O7tizzlnzhwsW7YMISEhSE9Px549exAQEIChQ4eiTZs2pb4GIjIeXFEmojKNHj0aAwcOxIoV\nKzSryg0bNkRERAQA4N69ewgNDS3XYxUuZiVJwqZNmwDIhXBISAj69euHPn364ODBg5pJAwcOHICz\nszOysrJKLbQK7nft2jUA8grzjRs30LNnz3LFVZIOHTrA0tJSMykjKSkJu3btQv/+/SFJEv7991/E\nxMQAADZs2AClUgkbG5sy8yNJEkJCQjBkyBBMmTIF3bt3x+7du5Gfn19qPGU5ePAgPvroI4wZMwYA\ncPz4cc1jlkeHDh1Qo0YNbNmyBQCQkJAAJycnREVFYd26dZgwYQL8/f2xaNEiBAQE4OzZs5WK80nm\n5ubIycmpVL6tra2LPJZCocBbb72lmVyxdu1aODk5oXnz5hg2bBi+//575Ofn4+HDh9i2bZtm9brA\nH3/8gebNm8PJyQk5OTmaXygUCkW5+tuJyHhwRZmISvRkm8WqVauKFHtvvvkmXnrpJXTs2BEODg7w\n8/Mr12MpFArNsUKhQHZ2NlxdXZGbm4uvv/4abdu2BSAXQWPHjtWsBO7duxe1atUqcv8nderUCd98\n8w1GjhyJvLw81K5dG3v37kWdOnVKfE2lvd4CFhYW2LNnD2bOnImPP/4YeXl5WLBgAXx8fKBSqdCo\nUSMsWLAAV69eRaNGjbB58+Zy5UehUGDq1Kl48cUX4eLigrp162LYsGFYtmwZJEkq9XWWFG/BcVBQ\nEEaMGIHGjRvD3t4eo0aNwpUrV4rd52mPb2Fhgd9++w1vvfUWlixZgtzcXHz22Wfo3bs3nJ2doVKp\n0LlzZ9SuXRstW7bEW2+9VWqMT4vzSSNHjoRSqcTvv/9eqXwX5ujoiNWrV2PIkCHIz8+HnZ0dtm7d\nCgCYNm0aYmNjNUXw1KlT4eXlpblvdnY2Pv/8cxw4cACAPLbum2++gbOzM3r16oUuXbo89fUSkfFR\nSJVdtiAiMnEqlQrTpk3D+fPnRYdiEphvItK1UlsvcnNz8corr8Db2xs9e/bE3r17ER0djebNm8PP\nzw9+fn6aGaMbN26Eu7s7evXqVakZmkREhsjYZyLrG+abiHSp1BXlTZs24fTp0/jqq6/w4MEDODk5\nYcGCBUhJSSly0sutW7fg7++PyMhIPHr0CEqlEhEREbC0tNTJiyAiIiIi0rZSV5THjBmDTz/9FMDj\ns9ELRuf4+Phg0qRJSE9Px4kTJ+Dp6QkLCwtYW1ujbdu2OH36tE5eABERERFRVSi1UK5duzasrKyQ\nlpaGMWPGYOHChejRowe+/PJLHD58GK1bt8Ynn3yCtLQ02NjYaO5Xp04dpKSkVHnwRERERERVpcyp\nFwkJCRg5ciRmzJiBsWPHIiUlRVMUjxgxAm+++Sa8vb2RlpamuU9aWhrq1q1b7LGaN29eZH4lERER\nEVFVaNOmjWbqT2WVuqJ8+/Zt+Pv7Y8mSJQgMDAQADBgwACdPngQAhISEwM3NDT169MCRI0eQnZ2N\nlJQUnD9/Ho6OjsUeLykpSTNDlV+6/1qwYIHwGEz1i7ln/k35i/ln7k31i/kX+xUbG/tMRTJQxopy\nUFAQUlJS8Omnn2p6lVesWIFZs2bBwsICTZs2xYYNG2BlZYWZM2fCy8sLarUaQUFBPJFPDxUM3yfd\nY+7FYv7FYv7FYe7FYv4NX6mF8sqVK7Fy5cpil5e0A9ekSZMwadIk7UVGRERERELExQFWVkCDBqIj\nEYtbWJuQgvYZ0j3mXizmXyzmXxzmXixDzf+DB8CAAcD+/aIjEU+nO/MpFAro8OmIiIiIqAJycoCA\nAMDFBfjqK9HRPBtt1J16saJcr149KBQKo/mqV6+e6JSWSKVSiQ7BZDH3YjH/YjH/4jD3Yhla/iUJ\nmDIFsLYGli4VHY1+KHM8nC48ePDAqFaaucUqERERGZqgIOD0aeCffwBzc9HR6Ae9aL0wtpYMY3s9\nREREZNy2bQPeeQcIDweaNRMdjXZoox5joVwFjO31EBERkfGKiAAGDQJCQoBu3URHoz1G06NMumFo\nvVLGhLkXi/kXi/kXh7kXyxDyn5cHTJ4MLFtmXEWytrBQJiIiIjJR33wD1K0LvPyy6Ej0E1svqoCx\nvR4iIiIyPklJgJMTcOQI0LGj6Gi0j60XT7h06RI8PT3h6+sLb29v3LhxA++//z68vLzQu3dv7Nix\nA/n5+fD09MTBgwdx+/ZtODo6IjExUXToRERERDo1ezbw+uvGWSRri1EVyiEhIfDw8EBISAg++eQT\n7NmzB3FxcThy5Aj++usvLFy4EBkZGfj5558xe/ZsvPLKK1i2bBmaN28uOnSdMIReKWPF3IvF/IvF\n/IvD3Iulz/k/dAg4fhyYP190JPrNqArliRMnwsbGBgMGDMDXX3+NBw8eIDIyEn5+fhg4cCDy8vIQ\nFxeHli1bQqlU4u7duwgICBAdNhEREZHOZGUBM2YAq1cDtWqJjka/GVWP8q+//oqGDRvCz88PW7du\nxfz58+Hv749169YhLy8PQUFBmD17Ns6cOYN58+bB1dUV9vb2mDNnzjM/d2HsUSYiIiJ99emnQHQ0\nsHu36EiqljbqMb3YmU9b3NzcMH78eFhaWkKtVmPnzp0IDg6Gt7c30tPTMXLkSKjVakyaNAl79uyB\nnZ0devbsCT8/P7i6uooOn4iIiKhKJSUBK1fKhTKVzahWlPWFvr4elUoFX19f0WGYJOZeLOZfLOZf\nHOZeLH3Mf1AQcP06sH696EiqHleUiYiIiKhc1Grgu++AX34RHYnh4IpyFTC210NERESG76+/gFmz\ngFOnAIVCdDRVj3OUiYiIiKhcvvsOmDTJNIpkbWGhbEL0eZ6jsWPuxWL+xWL+xWHuxdKn/CcnA/v2\nAS+9JDoSw8JCmYiIiMjIbdkCDBoE1KsnOhLDwh7lKmBsr4eIiIgMlyQBTk7AihVAnz6io9Ed9igT\nERERUakiIoCMDEDPJtUZBBbKZTAzM0O3bt3g4uKi+Xr99ddFh1Up+tQrZWqYe7GYf7GYf3GYe7H0\nJf/ffQe89hpgxqqvwjhHuRxUKhXqsamHiIiIDExGBvDrr8C//4qOxDCxR7kMZmZmuHv3LurXr1/u\n++jz6yEiIiLTsWkTsHMnsHev6Eh0jzvz6Yifnx/Mzc01x4cOHUKDBg0ERkRERERUtu++A+bOFR2F\n4TKYbhWF4tm/KkulUiE6OlrzZahFsr70Spki5l4s5l8s5l8c5l4s0flPSgLOnJHHwlHlGMyKMjsZ\niIiIiMrvjz+AgQMBCwvRkRgu9iiXwczMDPfu3avQyXz6/HqIiIjINAweDLz6KvDCC6IjEYNzlHVA\nwQ3RiYiIyMCkpwNHjgADBoiOxLCxUC5Dfn6+0YyGE90rZcqYe7GYf7GYf3GYe7FE5v/QIaBnT8DG\nRlgIRoGFMhEREZGR+e03YNgw0VEYPvYoVwFjez1ERERkOPLzgSZN5K2rW7YUHY047FEmIiIioiLC\nw4HmzU27SNYWFsomhL1q4jD3YjH/YjH/4jD3YonKP9sutIeFMhEREZER+f13YOhQ0VEYB/YoVwFj\nez1ERERkGC5eBPr2BRISnm1XYmPAHmUiIiIi0vjtN3k12dSLZG1hoWxC2KsmDnMvFvMvFvMvDnMv\nloj8s+1Cu1golyEuLg5mZmbw8fEpdt2ECRNgZmaG5ORkAZERERERPXb3LnDmDODnJzoS48Ee5TLE\nxcWhc+fOsLW1xbFjx2Bvbw8AyMjIgLOzM65evYq7d+8W2b1Pn18PERERGacffgD27we2bxcdiX5g\nj7KOmJub44UXXsCWLVs0l+3atQvDhw9nQUxERER6YccOjoXTNoNZUVZ88uxd6dKCir/UuLg4dO3a\nFYcPH8Yrr7yCs2fPAgD69++PFStWoGvXrrh3755BrCirVCr4+vqKDsMkMfdiMf9iMf/iMPdi6TL/\nsbGAhwdw/TpQq5ZOnlLvaaMeq6alWKpcZYpcbXJ1dYWZmRmioqLQsGFDpKWloUuXLkJjIiIiIgKA\nNWuA115jkaxtBrOiLErBinJaWhqWLFmCW7duoWHDhrCxscH06dNhZmZmMCvKREREZHzS0+XtqqOi\nuG11YSa1oqwPXn75ZfTo0QMNGjTgyB0iIiLSCz/9BPj6skiuCjyZrxwU/5va3axZM3Tu3Bnt27eH\nra1tkesMAYt7cZh7sZh/sZh/cZh7sXSRf0kCVq0C3nyzyp/KJHFFuQwODg5ITU3VHB88eLDI9fn5\n+boOiYiIiAgAEBICWFgAJWz3QFpQao9ybm4uXnvtNVy/fh3Z2dn48MMP0alTJwQGBsLMzAyOjo5Y\ns2YNFAoFNm7ciA0bNqBatWr48MMPMXjw4OJPZoA9ypVhbK+HiIiI9NOQIfJIuEmTREeif7RRj5Va\nKG/atAmnT5/GV199hQcPHsDJyQkuLi6YM2cOvL29MW3aNAQEBMDDwwP+/v6IjIzEo0ePoFQqERER\nAUtLy3IFbGyFpbG9HiIiItI/HAlXuirfcGTMmDH49NNPAQBqtRoWFhaIioqCt7c3AGDgwIEICQnB\nyZMn4enpCQsLC1hbW6Nt27Y4ffr0MwVG2sdeNXGYe7GYf7GYf3GYe7GqOv8cCVf1Si2Ua9euDSsr\nK6SlpWHMmDH4/PPPoVarNdfXqVMHKSkpSE1NhY2NTbHLiYiIiEj70tOBH38Epk8XHYlxK/NkvoSE\nBIwcORIzZszAuHHj8M4772iuS01Nha2tLaytrZGWlqa5PC0tDXXr1i3x8QIDA+Hg4AAAsLW1hbOz\n8zO+BP1V8Jtkwa48oo8LLtOXeEzp2NfXV6/iMbVj5p/55zGPje141y7Ax8cXLVvqRzz6cFzw97i4\nOGhLqT3Kt2/fhq+vL7755hv4+fkBAIYOHYo5c+bAx8cHU6dORd++feHt7Y3+/fvj5MmTyMrKgoeH\nB2JiYsrdo1yvXj08ePBAay9KtLp16yI5OVl0GERERGSE0tOB9u2BffsAFxfR0eivKu9RDgoKQkpK\nCj799FP4+fnBz88Pn3/+ORYsWIDevXsjLy8Po0ePRuPGjTFz5kx4eXmhb9++CAoKKlYklyY5ORmS\nJBnNl74WyYV/4yLdYu7FYv7FYv7FYe7Fqqr8r1ghj4NjkVz1Sm29WLlyJVauXFns8pK+8ZMmTcIk\nziYhIiIiqjJ37wLLlwPHj4uOxDSU2nqh9Sfj2DQiIiKiSps1C8jJkSdeUOmqfI6ytrFQJiIiIqqc\n69cBV1fg7FmgSRPR0ei/Ku9RJuPCXjVxmHuxmH+xmH9xmHuxtJ3/jz6Sx8GxSNadMsfDEREREZFY\n//4LHDgAXL4sOhLTwtYLIiIiIj333HNAv37A22+LjsRwaKPu5IoyERERkR6LiJBXlHfuFB2J6WGP\nsglhr5o4zL1YzL9YzL84zL1Y2sr/1q3AhAlA9epaeTiqAK4oExEREekpSQJ27JB34SPdY48yERER\nkZ46cQIYPx44dw5QKERHY1g4Ho6IiIjIiO3YAYwezSJZFBbKJoS9auIw92Ix/2Ix/+Iw92I9a/4l\nCdi+XS6USQwWykRERER6KCoKsLAAunUTHYnpYo8yERERkR567z3AzAwIChIdiWFijzIRERGRESqY\ndjFmjOhITBsLZRPCXjVxmHuxmH+xmH9xmHuxniX/MTFysezsrL14qOJYKBMRERHpmYKT+DjtQiz2\nKBMRERHpEUkCOnQAfv4ZcHMTHY3hYo8yERERkZH5918gNxfo3l10JMRC2YSwV00c5l4s5l8s5l8c\n5l6syuafm4zoDxbKRERERHqCm4zoF/YoExEREemJAweAWbOAc+e4ovys2KNMREREZCTUanmTkYUL\nWSTrCxbKJoS9auIw92Ix/2Ix/+Iw92JVNP+//ALUqAGMGFE18VDFVRMdABEREZGpy8kBPvwQ+P57\nribrE/YoExEREQm2ejWwfz/w3/+KjsR4aKPuZKFMREREJFBaGtCuHfB//wc4OYmOxnjwZD6qEPaq\nicPci8X8i8X8i8Pci1Xe/H/1FdCvH4tkfcQeZSIiIiJB7twBVq0CIiJER0IlYesFERERkSAzZ8p/\nrlolNg5jpI26kyvKRERERAIcOSLvwhcTIzoSehr2KJsQ9qqJw9yLxfyLxfyLw9yLVVr+Hz4EXn4Z\n2LgRaNRIdzFRxbBQJiIiItIhSQKmTgWee07+Iv3FHmUiIiIiHdq8GVi8WD6Br2ZN0dEYL85RJiIi\nIjIgsbGAhwfw559At26iozFunKNMFcJeNXGYe7GYf7GYf3GYe7GezH9uLvDSS8D8+SySDQULZSIi\nIiIdWLwYsLV9PBKO9B9bL4iIiIiqWEoK0KYNcPy4/CdVPbZeEBERERmAtWuBAQNYJBsaFsomhL1q\n4jD3YjH/YjH/4jD3YhXkPzMTWLECeO89sfFQxbFQJiIiIqpC338P9OwJODqKjoQqij3KRERERFUk\nNxdo2xbYtk0eC0e6wx5lIiIiIj32889yocwi2TCxUDYh7FUTh7kXi/kXi/kXh7kX688/VfjiC+CD\nD0RHQpXFQpmIiIioCoSGAjY2QJ8+oiOhymKPMhEREZGWSRLg5gZ89BEwbJjoaEwTe5SJiIiI9NDB\ng0B2NjBkiOhI6FmwUDYh7FUTh7kXi/kXi/kXh7kXJygIGDZMBTNWWgatXN++48ePw8/PDwAQHR2N\nFi1awM/PD35+fti+fTsAYOPGjXB3d0evXr2wb9++qouYiIiISI+FhgIJCexNNgZl9igvWbIEwcHB\nsLKywtGjR/Htt98iNTUVs2fP1tzm1q1b8Pf3R2RkJB49egSlUomIiAhYWloWfTL2KBMREZGRGzwY\nGDoUmDJFdCSmTSc9ym3btsWuXbs0TxQZGYl9+/bBx8cHkyZNQnp6Ok6cOAFPT09YWFjA2toabdu2\nxenTp58pMCIiIiJDc+qU/DV+vOhISBvKLJRHjhyJatWqaY579uyJL7/8EocPH0br1q3xySefIC0t\nDTY2Nprb1KlTBykpKVUTMVUae9XEYe7FYv7FYv7FYe51b9EiYPZsoEYN5t8YVCv7JkWNGDFCUxSP\nGDECb775Jry9vZGWlqa5TVpaGurWrVvi/QMDA+Hg4AAAsLW1hbOzM3x9fQE8fkPxuGqOT506pVfx\n8JjHPOYxj6v2uIC+xGPsx82a+eLPP4Hx41Uo/C3Ql/iM/bjg73FxcdCWcs1RjouLw7hx4xAeHo5e\nvXph1apVcHd3x+rVq5GYmIhZs2ahf//+OHnyJLKysuDh4YGYmBj2KBMREZHJmDQJsLMDFiwQHQkB\n2qk7y72irFAoAADr1q3DjBkzYGFhgaZNm2LDhg2wsrLCzJkz4eXlBbVajaCgoGJFMhEREZGxSkgA\ndu8GLl8WHQlpE3fmMyEqlUrzMQXpFnMvFvMvFvMvDnOvO2+/DVhYAEuXPr6M+RdLpyvKRERERFTc\nnTvA5s3A2bOiIyFt44oyERER0TN46y1AkoBVq0RHQoVpo+5koUxERERUSVevAu7uwPnzQKNGoqOh\nwnSy4QgZjyfHBZHuMPdiMf9iMf/iMPdV76OPgDffLLlIZv4NH3uUiYiIiCohJgYICQHWrhUdCVUV\ntl4QERERVcKgQcDAgfKKMukfTr0gIiIiEuDwYeDCBWDPHtGRUFVij7IJYa+UOMy9WMy/WMy/OMx9\n1ZAk4N13gc8+A0rbX435N3wslImIiIgqYPduICsLGDdOdCRU1dijTERERFRO+fmAoyPw1VdyfzLp\nL46HIyIiItKhXbsAGxtgwADRkZAusFA2IeyVEoe5F4v5F4v5F4e51y5JAoKCgPnzAYWi7Nsz/4aP\nhTIRERFRORw4ILdeDB4sOhLSFfYoExEREZWDlxcwfTpP4jMU7FEmIiIi0oEjR4CbN4ExY0RHQrrE\nQtmEsFdKHOZeLOZfLOZfHOZee774Qp6dXK0CW7Ux/4aPO/MRERERlSI6Gjh9Wp6fTKaFPcpERERE\npXj+ecDDA5g9W3QkVBHaqDtZKBMRERE9xcWL8kl8V68CVlaio6GK4Ml8VCHslRKHuReL+ReL+ReH\nuX92QUFHJaTSAAAgAElEQVTAG29Urkhm/g0fe5SJiIiIShAeDhw6BKxaJToSEoWtF0RERERPyMsD\n3NzkSRecm2yY2HpBREREVAVWrwYaNADGjhUdCYnEQtmEsFdKHOZeLOZfLOZfHOa+cm7cABYuBNas\nARSKyj8O82/4WCgTERERFTJrFjBtGtChg+hISDT2KBMRERH9z4EDwIwZwJkzQM2aoqOhZ8EeZSIi\nIiItefRIHgX39dcskknGQtmEsFdKHOZeLOZfLOZfHOa+YhYtApycgIEDtfN4zL/h4xxlIiIiMnmX\nLskn70VHi46E9Al7lImIiMikSRLg7w8MGADMmSM6GtIW9igTERERPaNffwVu3wZmzhQdCekbFsom\nhL1S4jD3YjH/YjH/4jD3ZUtNBWbPBtauBSwstPvYzL/hY6FMREREJus//5FbLjw9RUeiX+IexiEh\nJUF0GMKxR5mIiIhMUlSUXCSfOydvV02AJEn46fRPmHNwDtYMWoPnuzwvOqRK00bdyakXREREZHLU\nann3vaAgFskF7mfex9R9U3H+7nmEvBICpyZOokMSjq0XJoS9UuIw92Ix/2Ix/+Iw9yVTq+Vtqi0t\ngddeq7rnMaT8H4w9CKd1TmhRpwUiXo9gkfw/XFEmIiIik5GXB0yaBFy5AvzxB2DGJUOsObEGi8IW\nYdPwTejXup/ocPQKe5SJiIjIJGRlAePGyVtV79wJ1K4tOiLx9l3ah8l7JyPstTC0qttKdDhaxTnK\nREREROWQlgYMHiyPgPv9dxbJAHDq1ikE/haIXS/sMroiWVtYKJsQQ+qVMjbMvVjMv1jMvzjMvSw5\nGejXD2jdGti6Ve5N1gV9zn9iaiKGbB2CbwZ9A48WHqLD0VsslImIiMhoJSUB3t6Ajw+wYQNgbi46\nIvHSc9Lx3NbnMMN9BsZ0GSM6HL3GHmUiIiIySlevAv37yyfvvfceoFCIjki8fHU+hm8bjsa1G2Pj\nkI1QGHFSOEeZiIiIqARnzsibicyfL89LJtmSsCVIyUrBrud3GXWRrC1svTAh+twrZeyYe7GYf7GY\nf3FMNffHj8s9yUuXii2S9S3/JxNPYvmx5dgycgsszC1Eh2MQuKJMRERERuPsWWDIEOD774HnnhMd\njf5Iz0nHi7texJpBa2BnYyc6HIPBHmUiIiIyCrduAb16AZ9/Drz0kuho9Mtrv8lbEH4/7HvBkegO\ne5SJiIiIAGRmAkOHAhMmsEh+0vaz23Ek/giip0SLDsXgsEfZhOhbr5QpYe7FYv7FYv7FMZXcq9XA\nK68AHTsC//mP6Gge04f8J6QkYMb+GdgycgusLK1Eh2NwylUoHz9+HH5+fgCAK1euQKlUwtvbG9On\nT9csaW/cuBHu7u7o1asX9u3bV3URExERERXy3nvAvXvAxo0cAVdYZm4mXtz1It72eBs9mvcQHY5B\nKrNHecmSJQgODoaVlRWOHj2KoUOHYu7cufD29sa0adMQEBAADw8P+Pv7IzIyEo8ePYJSqURERAQs\nn9j6hj3KREREpE3ffw8sWgSEhwP164uORn88zHqI535+Dq3rtsYPw36AuZnp7bSijbqzzBXltm3b\nYteuXZonioqKgre3NwBg4MCBCAkJwcmTJ+Hp6QkLCwtYW1ujbdu2OH369DMFRkRERFSaxETgnXeA\n335jkVzY7fTb8PvRD65NXbFp+CaTLJK1pcxCeeTIkahW7fE5f4Ur8zp16iAlJQWpqamwsbEpdjnp\nF33olTJVzL1YzL9YzL84xp77WbPkOcmdOomOpGQi8h+fEg+vH7wwrMMwrBywEmYKno72LCo89cLM\n7HHCU1NTYWtrC2tra6SlpWkuT0tLQ926dUu8f2BgIBwcHAAAtra2cHZ2hq+vL4DHbygeV83xqVOn\n9CoeHvOYxzzmcdUeF9CXeLR5fOIEEBHhix9/1I94SjouoKvna+LYBAHBARhiOQS+8NXsvKcv+dBF\nvlUqFeLi4qAt5ZqjHBcXh3HjxiE8PBxDhw7FnDlz4OPjg6lTp6Jv377w9vZG//79cfLkSWRlZcHD\nwwMxMTHsUSYiIiKty8oCHB2BVauAQYNERyOeJEnYHLMZcw/NxZf9v8R45/GiQ9ILOp2jXPBbybJl\nyzB58mTk5OSgc+fOGD16NBQKBWbOnAkvLy+o1WoEBQUVK5KJiIiItGHRIsDJiUUyANzPvI8pf0zB\nxfsX8eerf6Jb426iQzIq3JnPhKhUKs3HFKRbzL1YzL9YzL84xpj7y5fl3feiowE7Pd+Juarz/39X\n/g8Tf5+IF7q8gIV9F6JGtRpV9lyGiDvzERERkcmQJGDGDHlusr4XyVVJkiR89PdH+DHmR2wesRl9\nWvURHZLR4ooyERERGYQffwS+/BKIigIsLERHI4ZaUuON/W/gROIJ/Pel/6Jh7YaiQ9JbXFEmIiIi\nkxAWBsybB4SEmG6RnJufi8DfAnEj9Qb+Gv8XrKtbiw7J6JmJDoB058lxNaQ7zL1YzL9YzL84xpL7\n2Fhg9Ghg82agmwGdq6bN/D/KfYQR20YgJSsFB146wCJZR1goExERkd5KTgYGDwY++ggYMEB0NGKk\nZadhwJYBsKlhg90v7EZNi5qiQzIZ7FEmIiIivZSTAwQEAK6uwLJloqMRI0+dh6Fbh6KJVRN8O/Rb\n7rRXAdqoO1koExERkd6RJGDCBODhQ2DnTsDcXHREuidJEt7Y/wYuJ1/Gvhf3wcLcRJuzK0kbdSd/\nLTEhxtKrZoiYe7GYf7GYf3EMOfebNgGnTgFbthhukfys+V95fCUOXz+M7WO2s0gWhFMviIiISK/c\nvy/PSt6/H6hdW3Q0Yvx+8XcsPboUR187CpsaNqLDMVlsvSAiIiK98vrrQPXqwOrVoiMRIzIpEgO2\nDMC+F/ehR/MeosMxWJyjTEREREYlPBzYtw84d050JGJcvHcRw34ZhnWD17FI1gPsUTYhhtyrZuiY\ne7GYf7GYf3EMLfd5ecC0afLuezZG0G1Q0fxH3YyC74+++LzP5xjVeVTVBEUVwhVlIiIi0gurVwMN\nGgBjx4qORPf+uf4PRv86GuueW4eRnUaKDof+hz3KREREJFxiIuDkJG9V3aGD6Gh0a//l/QjcE4if\nR/2Mfq37iQ7HaLBHmYiIyEAlJQFnzwJKJVCzlI3WEhKA48fLfjxzc3nnutIeS5/NmiW3XZhSkSxJ\nEn6M+RHvhryL38f9Do8WHqJDoidwRdmEqFQq+Pr6ig7DJDH3YjH/YjH/gFoNXLgAhIY+/kpJAdq2\nBeLjgTffBKZPB2xtH9/n3DlgyRLg998Bb2+gWhlLW/fuAXfuAMHB8k52gOHkftUqYP16ICLCcAv9\nkjwt/7n5udh2dhsWhy2GucIcP434CV0bd9V9gEaOK8pERER6KCcHOHnycVF89KhcBCuV8td77wEd\nOwJmZsCZM3JB3KYN8NprQN++wNq18iryzJlAbCxQt275nvfnn+VV5VmzgHfeqdrXqC179wKLFsk5\nMqYiuSSZuZn4Luo7LAtfhlZ1W2Fp/6UIaBMAhUIhOjR6Cq4oExERaVF0NPDyy4ClJeDjIxfGnp5A\n06al3y8+HvjqK+Cff4DJk4HAwMoVjvHxwPjx8gSJzZuBVq0q9TJ0Ijoa8PcH/vgD6NlTdDRVKykt\nCf4/+aNNvTb4QPkBerYw8hesB7RRd7JQJiIi0oL8fHms2bJlwPLlwIsvAqIWCtVqOYagILlonj0b\naNFCTCxPc+MG0KuXHOfo0aKjqVqxybHwD/bHZNfJeE/5nuhwTIY26k7OUTYhhjZP05gw92Ix/2KZ\nQv7j4gA/P+DAAbnP9qWXxBXJgNzSMWcOsG6dCgoF0K0bMGECcP68uJgKS08HhgwB3njDuItklUqF\nM3fOwGeTD+b1nsci2QCxUCYiIiqno0eBgQPlorjwV48ewNChwJ9/Avb2oqN8rGFDeYX7yhW5B9rX\nV55RfPeuuJhu3waGDQO6dzecPurKOnf3HPpu7oul/ZdiqttU0eFQJbD1goiIqAy5ucAnnwDffgss\nXly8GG7ZEmjdWkxsFZGZKb+On36SX8ugQbp9/r17gddfl1e3P/kEsLDQ7fPrUsjVELy480X8MOwH\nDG4/WHQ4Jok9ykRERFXswgX55LzGjYHvvgOaNBEd0bM7fFjuXR40SO6rrlWrap8vPV1uBTl0SD7B\nUKms2ucTbff53ZjyxxTsfH4nvFp6iQ7HZLFHmSrEFPoE9RVzLxbzL5Yh53/9esDLC5g0SZ7MYGhF\n8tNy7+MDxMQAaWmAi4s8faIq3L0L7NwpP0dODnDqlPEXyZtObcL0/dNx4OUDyL+WLzocekaco0xE\nRPQESQLmzwd275bnIBvjbnE2NnILxtatQEAAsG2b3G/9LO7fl9srCuZH37olT7ZYvBgYOVI7ceuz\nFcdW4Kvwr/D3+L/RsUFHqC6qRIdEz4itF0RERIWo1cCMGfKGIQcOAA0aiI6o6v39N/D883JrydCh\nFb9/wQzozZvlDVN8feWVY0dHeWttYydJEj5WfYytZ7bi0CuH0NK2peiQCNyZj4iISKtyc+Xe3aQk\n4K+/AGtr0RHphp8fsH+/PLItNVXuyS6Ps2flXQX37gUmTgT+/Rdo3rxqY9U3dzLuYPLeyUhMTcSR\nCUfQ2Kqx6JBIi9ijbEIMuU/Q0DH3YjH/YhlK/h89AkaMkE88++9/jaNIrkju3d3lXw7efx/4+uvi\n16vVwLlzwIYN8i8TbdrIq8ft28vbbC9danpF8h+X/oDTOid0atAJYa+FFSuSDeW9T0/HFWUiIjJ5\nly/Lm4S0bw/88INxjy0rTefO8hba/v5yj3bhTVNycuSTGZVK+evdd4GOHeXNTUxNRk4G5hycgwNX\nDmDb6G3wbuktOiSqIuxRJiIikyVJwMaNclG4YIHcmyxyRz19kZsLZGQUvczcHKhTR0w8+uRE4gm8\nvOtleLTwwOqBq2FTw0Z0SPQU7FEmIiKqpNu35bFviYnyKmqnTqIj0h8WFoCtrego9EueOg9BR4Kw\n5uQafD3wa4zpMkZ0SKQDJviBielir5Q4zL1YzL9Y+pb/nBy5vcLZGejaFTh2zHiLZH3LvaG6knwF\nXj94ITQ+FFGvR5W7SGb+DR8LZSIiMgnp6cDy5fJJaD//LG+EERQEWFqKjoz0lSRJ+DbqW3h864Gx\nXcbiwMsH0NzaxM5YNHHsUSYiIqOWliZPZFi7Vh6D9u67QPfuoqMifVcw9i0+JR7BI4LRpVEX0SFR\nBXELayIiolKEhcktFnFxwNGjwK+/skimsu27tA/O65zRqUEnHJt4jEWyCWOhbELYKyUOcy8W8y+W\ntvKfni7POi6P3Fzgww+BUaMe7xjXrp1WwjAofO9XTEZOBqb9MQ0z9s/AL6N/waJ+i1C9WvVKPx7z\nb/g49YKIiPRSYqK8IhwaKv954YJ8ebduj2f59u4N1K9f9H6XLsk7yzVuDJw6Jc/+JSrLvcx7GLhl\nINrXb4+YqTEc+0YA2KNMRER6oGDXt4LCODRU7i329JQLYk9PuWUiLw84ceLx7cLD5dsVVru23JM8\nZQpnIlP53Ei9Af+f/DG843As7LMQCr5xjII26k4WykREpHNZWcDJk48L3qNHgXr1Hq8Ue3oCHTqY\n5q5vpFuX71+Gf7A/prtNxzzPeaLDIS3iyXxUIeyVEoe5F4v5F0ulUuHePeD334F33pGL4Pr1gdmz\n5U0/JkyQV5OvXAE2bZI3AenUiUWyNvC9X7qYWzHw2eSDD5QfVEmRzPwbPvYoExFRlbh+HVi5Up5X\n/OAB4OEhrxZ/9hnQowdgZSU6QjJlB64cwPg947F64Go83+V50eGQnmLrBRERadW//wJLlgD79wMT\nJwLjxsk74FXj0gzpgczcTLxz6B38fvF3bB6xGb4OvqJDoirC1gsiItIboaHAc88B/v5Aly5AbKxc\nMLu4sEgm/RB1MwrdN3RH8qNkxEyNYZFMZWKhbELYKyUOcy8W81911Gpg71657zgwEBgyBLh2DXjv\nPcDWVr4N8y8Ocy/LV+cj6EgQBgQPwEfeH+HnUT+jbs26Vf68zL/h4+/4RERUYbm5wM8/yyvG1avL\nhfGoUYC5uejIiIq69uAaXtn9CizNLRHxegTsbexFh0QGhD3KRERUbhkZwLffAsuWyTvdvfce0K8f\n5xWT/pEkCZtObcI7Ie/gPc/3MKvXLJgp+EG6KdFG3ckVZSIiKtO9e8Dq1cDatYCPjzzJwt1ddFRE\nJbuXeQ9T/piCy/cv489X/0S3xt1Eh0QGir9amRD2SonD3IvF/Ffe9evAzJlA+/bAzZvyCXvbt1es\nSGb+xTHF3B+4cgBO65zQyrYVTkw+IbRINsX8G5tKryi7urrCxkbeB71169Z4//33ERgYCDMzMzg6\nOmLNmjXcApKIyEAVHvE2aRJw5gzQrJnoqIiervDYt59G/IQ+rfqIDomMQKV6lLOystC7d29ERUVp\nLhs6dCjmzp0Lb29vTJs2DQEBARg+fHjRJ2OPMpHW3L8vb/sbGgrExAD5+ZV7nI4dH28Z3KKFdmMk\nwxMaCixaBERGAm+9BUyd+nh6BZG+ikyKxMu7X4ZLExesGbRGJxMtSP8J61GOiYlBZmYmAgICkJeX\nh4ULFyIqKgre3t4AgIEDB+LgwYPFCmUiKi4tDTh+XC5Q4uPLvn1ODhAVBdy48XinszfekCcPVFR+\nvrxSuHUrMGOGvFNaQdGsVMqzcPVhG+Fbt4D16+XX6Okpf+xfo4boqIyHWg3s2ycXyLdvA/PmATt2\nMMek//LV+Vgcthgrjq3AygErMa7rONEhkZGpVKFcu3ZtzJs3DxMnTsTly5cxYMCAItdbWVkhJSVF\nKwGS9qhUKvj6+lb6/mo1cO6cXNDdulX0OoUC6NBBLq5KWpW8dQsICwPi4uQix90dqFmz7Od89Ag4\ncQKIiAAcHOQiqUmT4rdLSJDjun1bLh5dXQFLy8q8yvIpKDDDwoA7d8q+fVycCg5PDLYvWBG+eFHe\nkKGgQC2rY8ncHJgzR3s7nQ0YAMydC0gScOmSnMfQUGD5cuDuXaB378eFc0nft/x84PRpORf37pX9\nfJaWgJub/H2yti79tleuAF9+Cfz6KzB2rFwoz54tvw+dnQEvL7ktoG3b0h/nWd/7xio3V/4lafFi\nuSh+992qGfHG/ItjzLkvPPYt8vVI2NnYiQ6pGGPOv6mo1I/Z9u3bo+3/fjK1a9cO9evXR3R0tOb6\ntLQ02D7ls7rAwEA4ODgAAGxtbeHs7Kx5ExU0vfNYu8c+Pr74+29gw4ZT2L8f6NhRvv7CBfn6so7r\n1vVFWBhw+LAK1taAv78v7O2B69fl6x0cfJGXB3z9tQpTpsi39/QErKxUuH4duHLFF8nJQIcOKjRp\nAvz6qy/OnAEcHFTo2hXo398XCsXj5+vQwRcXLgD79qlw9Srg5OQLd3dgxw4Vxo8HmjaVH796dRVi\nY4HLl33x6JH8+PXqAZs3++LSJaBNG/nx/fyKPn7Hjr5o1w549EgFS8vi+VIqfRETA2zfroJaXTQf\n9+8DSUm+CA8H6tRRwdER6NlTvj4u7nE+ynOcl6fChAnA5Mm+qF5d/Pvl8GH5eOJEX0ycKF+fnAwA\n8vd/yhQVrl0DXFx8oVQCd++qcOaMnP/mzYFWrVRo2LDs19+woS8WLgROnFChRQtg4EBfdO0KXL4s\nX9+xoy8kCQgOViEqCpg5U34/nDsnX798uS/S04ENG1SIiAB69fKFnx/Qt68KHTqI//dmCMcZGcC7\n76rw669At26+WLECqFZNBYUCMDcXHx+PtXdcQF/i0caxJEl479v3sC5yHT569SPM6jUL/xz+B7GI\n1Yv4Ch8X0Jd4jP244O9xcXHQlkr1KK9fvx6nT5/GmjVrkJSUhL59+6J169Z455134OPjg6lTp6Jv\n374YM2ZM0Sdjj7JO5eXJZ6cvXiz/vUePyj1O3bryiqKnJ9C4cem3LViVDAuT+2Y7d5ZXIjt1KvoR\nfkaGvFIcGirv4vWk1q3l+/XoAdSq9fjyglXtsDD5Tycn+Xbt2hVdiU1NBY4dkx//xo2ij61WA2fP\nPl6VVCrlFd2LF+XbHz8O2NnJl1laFr1v/fpyHnr3Bho1Kl/+jElmpvx9O3JE/h4W5KJ+/Yo/Vna2\n3EISFgacPy+/dwrr2lVeLa5Tp/THSUsDNm6UV8A7dpTn+vbpw7m+Jbl3D/j6a+Cbb+QRb++8wxFv\nZFgKj30LHhnMsW9UKm3UnZUqlPPy8jBhwgRcv34dALBkyRLUr18fkydPRk5ODjp37oyNGzcWm3rB\nQln7cnLkdobCaZUk4K+/5I+sW7SQP04dNIiFw5PS0x8X69HRj1tHevcG6tUTHR1VVE6OvFPc4sVA\n7dpywTxiBHeKA+QRb199Bfz0EzB6tNxq07696KiIKubAlQOY+PtEjHMch8/7fI4a1dhET6UTVihX\n+slYKD+VWi2vsJWlYEWvoI80MlJe5X2yV7VzZ/mEnN69H1+mUrFXShTmXnfUamDvXvnEtPv35X8H\nLVuq4O/vKzo0nTtzRh7xtm+fvDr/9ttA06a6j4Pvf3GMIfeFx779OPxH+LXyEx1SuRlD/g0Zd+Yz\nYIVbD8LCgPBweUWsLJaW8olQnp7A/PnlOyGKyJSYmQHDhgFDh8otIosWyW1AO3YAvXqJjk43QkPl\nlfWICHnE26pVHPFGhqnw2LeYqTEc+0Y6xxVlHbl9Wy6ICwrjM2eAbt3kj/oLPu5v2FB0lETGafdu\nYNo04PXXgf/8B7CwEB2R9hWMeFu8WJ4yM28eMH48R7yRYbp8/zKWHl2KPRf2cOwbVRpbL6pYVpa8\nIlNQ4CYmVu5xUlKA5GR5NaugMC7veDQi0o6bN4HXXpPbMYKDjaNH98aNx/8/HTok92ZX1Yg3Il2I\nSIrA4rDFUMWpMN1tOt7s+SYa1GogOiwyUCyUtazwTmdhYcCpU/K0hoL5tq1aVe6EuFq15B/Khac+\niMBeKXGYe7EK8i9JwNq1wEcfyf26M2bIU130jSTJJ+AV/F9082bR6/Pz5S2m09Mf//Lt7S3/Aq6P\nJ+3y/S+OoeQ+NjkW0/ZNw4V7FzCn1xxMdJ0IK0sr0WE9M0PJv7Fij/IzkCR5LFnBSXEFY8QKdjr7\n5BOgZ095pzIiMg4KBTB9OtC/P7BwobxRyYQJwKxZQPPm4uIq2LSloDAODZVHOhYUwf7+RQtghUIe\nhde+vX4WxkTlJUkSvov+Du//+T4+UH6AP178A5bmlmXfkUhHjHJFWZKAy5dL3iksN1ceBRYaKq/w\nFvwg8vSUe4a1sdMZERmG+Hh5/vKPP8qj5EaNks8XKOnEt4cP5ZNuz54tPvO5JG3aPH32eEaGPK+7\noCg+dkwu1At2QFQq5VniLILJmN3JuIPJeycjPiUewSOC0aVRF9EhkZFh68X/5OQ8Ln4LfvDUqiX/\n0GnWrOhtzczkjQw8PeUtkfmDiIju35c3LTl0SJ5G06qV/H9E167yibcFG+P06FG+X6jVauDCBbmV\nq2FD+bHc3IDYWPmxzp59vFlOwcm8DdiGSSbifuZ9HLhyAPMOzcOrTq/iU79PuYpMVcIkCuWsLPmH\nypOj0x48eNxPHBkpf4RasBrj6SnvrEZFsVdKHOZerIrkPzdXPj8hLEzuA3Z0lP9fcXau+LSMgp0k\nQ0PlE4PbtJEfy83NtE7m5ftfHH3I/a30WzgYexCh8aEIjQ/FjdQb8Gjhgfle8+Hj4CM0tqqmD/k3\nZQbZo/zkdsJPerJXLzpa/uFSu3bR21lZyf3E778v/2ljU3UxE5HpsLCQT4rTxtbOZmZyoe3o+OyP\nRWRoCka87Ti3A/1a94OXvRemuk1Ft8bdUM2MfY5kGHS+oty8eelPV3CSSsFHkjyhjoiIyHAUHvE2\nw30G3ujxBke8kRAm0XpBRERE+kmSJFy6f0luq0gIRVh8GLLysoxqxBsZLhbKVCHslRKHuReL+ReL\n+S8uPScd30Z9i2+jvkV6TnqR62pZ1ELPFj3haecJpb0SHep3gKKSZ55rO/c5+TmIuhml6TcOSwhD\nbYva8LT3hNJOCaW9El0adYGZQvDGAXqC732xDLJHmYiIyFTdzbiL1SdWY23EWvg6+GL9c+vR3Lro\nEO+HWQ9x7MYxqOJU+Pyfz5GRm1HpYvnhhYewvVbCvMMnNLFqoil0nZo4aXqIH2Y9RHhCuGbFODIp\nEu3qt4OnnSfGOo7F6oGrYWfDs+fJeHFFmYiISEvuZtxFWEIYQuNDcTO96JaK2XnZ+OvaXxjdeTTm\n9p6L9vXLt4/6jdQbuPbgWlWECwCQICE+JV6zShyfEg+3Zm64/+g+rj64Cvdm7prVbY8WHrCpwbPn\nyTCw9YLoKfLV+Th9+zTCEsKQmJpYqceoaVETPZv35A8GIiqRJEm4knxFU2CGJoTidvpt9LLrBaWd\nEi1tW0KBx6vACoUCfg5+aFqnqcCoy5b8KBnHbxxH/Vr14dLEBRbmFZyLSKQnWChThRhzr1RGTgaO\nJx7X9Mwdu3EMzeo0g9JOiVZ1WxX5YVVeKdkpOHbjGCKSItC2Xlso7ZXo1KBTmb13CoUCnRt2hnsz\nd9S0kIflGnPuDQHzL5Yx5f9e5j0Enw7GP9f/QVhCGKqbV4fSXqn56tKwC8zNzEWHqWFMuTdEzL9Y\n7FEmk5CWnYaIpAhk5GYUuTw9Jx3HbxxHWEIYzt49C6fGTlDaKzHDfQa2jNyitXFEOfk5iL4ZjdD4\nUJy5c6bM2+ep8/DDqR9w5s4ZdGvcDUo7JWxu2aBLRhc0rN1QKzERkW5df3gdy8KXIfh0MIZ2GIox\nncdgxYAVsLexFx0aEVUhriiTzqglNc7fPY98Kb/U20mShAv3Lmj6/C7dvwTnJs6wrVH0hJTq1arD\nrakblPZKuDVz06ze6ouMnAycSDyheR3hN8LR1KoplPZKeNp5FjlhpkCj2o3QxKqJoIiJnk16Tjqu\nPou9exoAABEISURBVLha5u3MFeZoV7+d3m9brJbUOHXrFJYfW479l/djksskvO3xtt63ThCRjK0X\nZBCy87IRfDoYS48uRU5+Trnmaraq20pzBrZrU1dUr1ZdB5FWrXx1Ps7cOaPpZTx391yxfw83Um+g\nXs16RUYtPflD2UxhBuvq1roMnahUt9NvY9XxVVgfuR5NrJqU2Z6UnZ+NxNREuDVz0/zi2L1Z93IV\nznUs61RZa0N2XjYikiI0/0aPJhyFbQ1bTHadjKluU4v9sk5E+o2FMlWIrnulUrNTsSFyA1YcWwHH\nRo541/Nd+Dr4VnoeqCErb+4LVt0LVqHDEsJwP/N+kdvkqnPRsFZDzi2tAPYJVo2rD67iy6Nf4pcz\nv2Cc4zjM6T0Hreu2Lna7kvKfkiWfA1DwXo+5HYN8dRmfNkGCAgp4tPDQ9AT3aN4DtSxqVSr+5EfJ\nOJpwVHMy3qlbp9CxQUfNhAdPe080q9OsUo+tL/jeF4v5F4s9yqQTJe289OTYo5LkqfMwvONw7B23\nFy5NXXQQqeEzU5ihS6Mu6NKoC17v/nqJtyn8/QhLCMPyY8sRnxJv0Gem21S3QS+7XpoCxbmJc7G2\nFBLvVvothMWHaYrbqw+uYqrbVFx44wIa1W5UoceyqWGDgLYBCGgbUKH73cm4oylu3//zfcTciqn0\nCrMCCvRs0RNKOyU+9v0YPZv3RJ3qdSr1WERknLiiTMXk5OcgMimyyKqmlaWVpohR2ithb2Nf5iSJ\nambV9K5v2Fhl5maWuRqnz+5l3nu8spcQiriHcbCztiv26UO7eu0070HXpq563+NqyCRJwsX7FzX/\nB4TGh+Je5j142nlq/i9wb+6OGtVqCI0zJz8H2XnZlbpvTYua/IWMyIix9YK04mHWQ02REpYQptl5\nqeBjfU97T7SwbiE6TDIhyY+ScTOt6KcWakmNc3fPaYrpy/cvw7mJc7EVwJrVaqJH8x6akzxFF3KG\nIjsvW7M1cVhCmOYXZKW9Eko7+f+Bzg07s8WHiAwGC2UqIjM3UzMuLT4lvtj1Sf8moVnXx/12Ofk5\niLoZhWsPr8G9mbtmpc6jhQdPFtMy9qlpX2p2KqJuRuFR7qNilx+7cUxzwqRzE2fYJ9vjxSEvordd\nb9SvVV9QxPrlwaMHCL8RrunPjboZhfb122v+H/C08yy2tXJl8f0vDnMvFvMvFnuUTdzt9Nvyyk98\nGEIT5Bm/BbOEuzftXuxj64tJF9GhWQfNsbnCHDPcZ8C5ibNB97eSabKubg1fB98Sr3vB8QUAj2dt\nB/8ejNUnVuOlXS+hhXULTftQYQoo0KlhJ3jaeaKxVeOqDl+nJKnoFsWhCaG4/vA63Ju7Q2mnxH+8\n/wOPFh7szyUiegJXlPVUYmoijiceR3pOepHLM3MzcSLxBELjQ3E38y562/XWtEjo4yxhIn2Sp86T\ntzaPD8PtjNslXhd+IxwNazWs0ESFRrUbwaOFR4njwwqK1BOJJ/Ao71EJ9646hduq8qV8zUqx0l4J\np8ZO/AWZiIwaWy8MVHxKPGKTY4tcJkHC5fuXEZogr/ikZqeiV4teqFezXpHbWZpbamaPsl+QSPvU\nkhpn75xFaHwoIm9GIic/p8z7xKfEIyIpAm3qtYHSTonedr3xMOuh5t9zTn4OPFp4wKa6jQ5ewWO1\nLWprRqm1rtvaJEczEpHpYqFsAJ7cZCIsPgzZ+dno2KBjsSLX3sZeszrcoUEHrRfB7JUSh7kXSxf5\nz83PRfQteavzgo0qCvp929RtY9JFKt//4jD3YjH/YrFHWTC1pC42kis7v9DOTvGhOHbjGJpYNYHS\nXomANgH4zO8zk/+hSWSMLMwt0KN5D/Ro3gOze80WHQ4REWkBV5QrIC07rchOUscTjyMrL6vIbaqZ\nVYNzE2fNOCVPO080rN1QUMREREREpomtF1UsKS1Jnin6v6kSF+5dgGtTV017RC+74j3ERERERCQe\nC2UtUktqnL97vsguVCnZKUV2o+vetDuqV6suOtRKY6+UOMy9WMy/WMy/OMy9WMy/WOxRLqfCJ9Qd\nTzyOzNzMIten56TjROIJ1K1ZF0p7JbzsvfC+8v0qOaGOiIiIiAyDQa0oS5KEy8mXERofirN3zkJC\n6Y8lSRIu3L+A8IRwNLFqAk87T/Sy61Vs1ml18+pwa+aGpnWaVjo2IiIiItIfRtV6oZbUuHBPLmpT\ns1OLXPco7xFOJp1EWHwYalrUhKedZ7mH5bep2wa97XrzhDoiIiIiE2KQhfKOszs0xxIkxCbHIjTh\n8dzR3v/f3v3FVF3/cRx/4QGPBJzcUJslFkW6kbhi/DscziGZiZarLWXmCGSVG9nAJd241VasKbo5\n6ibGdLFWWRdO2cjIwea/6uBszYgNN625qLEcpzjnoAXU+fwuGie1U53fj+/x+0OejztEDx+eQz7v\nffnw/WaVakHqguv+XfKcZOUvzpdnqecvj51F/DgrZR/a24v+9qK/fWhvL/rba0aeUT44cPC6t5dk\nLFHtylq1r2/XnRl33uzlAAAAADH93xy9AAAAAKxixdzJLR0AAACAGBiUZ5ETJ07YvYRZi/b2or+9\n6G8f2tuL/jMfgzIAAAAQA2eUAQAAcMvhjDIAAACQIAzKswhnpexDe3vR3170tw/t7UX/mY9BGQAA\nAIiBM8oAAAC45XBGGQAAAEgQBuVZhLNS9qG9vehvL/rbh/b2ov/MZ+mgHIlEVF9fr9LSUq1atUrf\nfPONlS+PaTp37pzdS5i1aG8v+tuL/vahvb3oP/NZOih3dnZqYmJCn3/+uVpaWtTU1GTly2OaRkdH\n7V7CrEV7e9HfXvS3D+3tRf+Zz9JB+bPPPtPatWslScXFxfriiy+sfHkAAADgprF0UA6FQnK5XNG3\nHQ6HIpGIlR8C03Dp0iW7lzBr0d5e9LcX/e1De3vRf+az9PZwTU1NKikpUVVVlSQpKytLQ0ND0ffn\n5ORwbhkAAAAJd9999+nixYvTeo1ki9YiSfJ4POrq6lJVVZX6+vq0cuXK694/3cUCAAAAN4ulV5SN\nMdq2bZv6+/slSR0dHVq2bJlVLw8AAADcNDf1yXwAAADATGHZL/OdOXNGq1atkiSdP39eZWVl8nq9\nevbZZ6OPD2xra1NhYaGKiorU2dkpSfrll1+0YcMG+Xw+PfbYYxoZGbFqSbPGte2/+uorud1ueb1e\nPfPMM5qYmJAk7d+/X4WFhXK73Tp69Kgk2lslnv6tra0qKSlRSUmJmpubJdHfKvH0l/64z/u6devU\n3t4uif5WiKd9d3e33G633G63GhsbJdHeKvH0Z9+13uTkpGpqauTz+VRcXKyuri5dvHhRZWVl8vl8\n2rZtW3TuYe+13n/T35K911hgz549Ji8vz7jdbmOMMZs2bTLd3d3GGGOqq6tNV1eXCYfDJjs720xO\nTpqff/7Z3H333cYYY/bt22dee+01Y4wxH374odm+fbsVS5o1bmxfUFBg/H6/McaYl19+2bS2tprh\n4WGTl5dnJiYmTDAYNHl5eWZ8fJz2Foin/7fffmsKCgpMJBIxxhjj8XhMf38//S0QT/8pO3fuNCUl\nJaa9vd0Yw/ee6YqnfSgUMitWrDCBQMAYY0xLS4u5fPky7S0QT/+xsTH23QTo6OgwL774ojHGmJ9+\n+slkZWWZxx9/3Jw8edIYY0x9fb05cuQIe2+CxNvfqr3XkivKOTk5Onz4cHSCT01NVSAQkDFG4XBY\nc+fOVVJSkiRpbGxM4XBYDodD0vX3Xl67dq16e3utWNKscWP777//XiUlJZKk0tJSnTx5UmfPnpXH\n41FKSopcLpdycnLU399PewvE03/p0qX65JNPov8HJicnNW/ePPpbIJ7+knTo0CE5HI5ob4nvPdMV\nT3u/36+8vDzt2LFDPp9Pixcv1sKFC2lvgXj6s+8mRlVVVfTqZCQSUUpKir788kv5fD5J0rp169Tb\n28vemyDx9s/KyrJk77VkUH7yySeVnPznDTQaGhq0fft25ebm6vLlyyovL1daWpo2b96s3NxcFRQU\nRH8EFwqFdPvtt0uSMjIyFAwGrVjSrHFj+3vvvVenTp2SJHV1denKlSvXNZb+7Hztfa9p/7+Jp7/D\n4VBmZqaMMXrppZeUn5+v+++/n699C8TTf2BgQB988IGam5tljIkOFvSfnnjaj4yM6Pjx49q7d6+6\nu7v1xhtv6MKFC7S3wL/1v3r1qm677TY99dRT7LsWS0tLU3p6usLhsKqqqvT6669f98yIa/dY9l7r\n/Vv/9PR0BYNBJScnW7L3WvrAkSlPP/20Tp8+rcHBQdXU1KipqUl+v19+v1+XLl3Sd999pyNHjujs\n2bNyuVwKhUKSpHA4rPnz5ydiSbNGR0eHdu/erdWrV+uOO+7QggUL5HK5FA6Ho39nqvO1f057a8Tq\nL0m//vqrqqurdeXKFb311luSxNd+AsTq/+677+qHH35QRUWF3nnnHbW2turYsWP0t1is9pmZmSos\nLNSiRYuUlpYmn8+nc+fO0T4BbuyfmZkpv9+vvr4+9t0EGBoaUkVFhWpra7V582bNmfPnOBUKhf6y\nx0rsvVb6p/7XNrVi703IoHz16lVlZGRIkhYvXqzR0VGNjY0pNTVVc+fOldPp1Pz58zU6OiqPx6OP\nP/5Y0h+/9DF16Rz/m48++kjvv/++ent7FQgEVFlZqaKiIp0+fVrj4+MKBoMaHBzUihUraJ8Asfob\nY/TEE0/owQcfVFtbW/THQPS3Xqz+e/bsUV9fn44fP666ujrt2LFDlZWV9LdYrPb5+fkaGBhQIBDQ\nb7/9pr6+Pj3wwAO0T4BY/dl3E+PHH3/UmjVrtHfvXtXV1UmSHnrooehRr6mm7L2JEW9/q/ZeSx84\nMrWIAwcOaOPGjZo3b56cTqf279+vpUuXqqenR8XFxXI4HPJ6vXrkkUdUVlamLVu2yOv1yul06uDB\ng1YuadaYar9s2TKtXr1aTqdTRUVFqq2tVVJSkhobG+X1ehWJRLRr1y45nU49//zztLfI3/WvqalR\nZ2enTp06pcnJSXV3d0uSWlpa6G+hf/r6/zv0t8a/fe/ZvXu3KisrJUmbNm1Sbm6usrOzaW+Rf+vP\nvmu9Xbt2KRgMqrm5OXpW9s0331RjY6MmJiaUm5urjRs3svcmSDz9N2zYYNney32UAQAAgBgScvQC\nAAAAmOkYlAEAAIAYGJQBAACAGBiUAQAAgBgYlAEAAIAYGJQBAACAGBiUAQAAgBgYlAEAAIAYGJQB\nwCbV1dXRR6kODg5q/fr1eu6551ReXi6v1xt9JOuhQ4dUUVEhr9crn8+nQCCgEydOqLi4WD6fT++9\n956dnwYA3LIsfYQ1ACB+W7duVVtbmx599FG9/fbbKi0tVSgU0oEDBxQIBFReXq6BgQFduHBBR48e\nVWpqqurr63Xs2DHdddddGh8f15kzZ+z+NADglsWgDAA2KS8vV0NDg0ZGRtTT06PS0lJ9+umn0eH3\n999/VyAQ0MKFC7Vlyxalp6fr/PnzcrvdkqTly5fbuXwAuOUxKAOATZKSklRTU6OGhgZVVlZqyZIl\nysrK0s6dOxUKhbRv3z6lpKTo1Vdf1dDQkCKRiNasWSNjjCRpzhxOzwFAIjEoA4CN6urq9Morr+jr\nr7/WPffco61bt+rhhx9WKBTSCy+8IJfLJY/HI7fbrUWLFmn58uUaHh5Wdna2kpKS7F4+ANzSkszU\npQkAwE03PDys2tpa9fT02L0UAMAN+LkdANjk8OHDqqysVHNzs91LAQDEwBVlAAAAIAauKAMAAAAx\nMCgDAAAAMTAoAwAAADEwKAMAAAAxMCgDAAAAMTAoAwAAADH8B2fzpACtfF4tAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "diversity.plot(title = 'Number of Popular names in top 50%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The last letter revolution" ] }, { "cell_type": "code", "execution_count": 145, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Extract the last letter from the names\n", "get_last_letter = lambda x: x[-1]\n", "\n", "last_letters = names.names.apply(get_last_letter)\n", "last_letters.names = 'last_letter'\n", "\n", "table = names.pivot_table('births', rows = last_letters, cols = ['sex', 'year'], aggfunc=sum)" ] }, { "cell_type": "code", "execution_count": 147, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sexF
year18801881188218831884188518861887188818891890189118921893189418951896189718981899
names
a 31446 31581 36536 38330 43680 45408 49100 48942 59442 58631 62313 60582 68331 67821 70631 73002 73584 72148 79150 70712...
b NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN...
c NaN NaN 5 5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 5 NaN NaN NaN...
d 609 607 734 810 916 862 1007 1027 1298 1374 1438 1512 1775 1821 1985 2268 2372 2455 2953 3028...
e 33378 34080 40399 41914 48089 49616 53884 54353 66750 66663 70948 67750 77186 76455 79938 83875 84355 82783 91151 81395...
\n", "

5 rows × 262 columns

\n", "
" ], "text/plain": [ "sex F \\\n", "year 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 \n", "names \n", "a 31446 31581 36536 38330 43680 45408 49100 48942 59442 58631 \n", "b NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", "c NaN NaN 5 5 NaN NaN NaN NaN NaN NaN \n", "d 609 607 734 810 916 862 1007 1027 1298 1374 \n", "e 33378 34080 40399 41914 48089 49616 53884 54353 66750 66663 \n", "\n", "sex \\\n", "year 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 \n", "names \n", "a 62313 60582 68331 67821 70631 73002 73584 72148 79150 70712 \n", "b NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", "c NaN NaN NaN NaN NaN NaN 5 NaN NaN NaN \n", "d 1438 1512 1775 1821 1985 2268 2372 2455 2953 3028 \n", "e 70948 67750 77186 76455 79938 83875 84355 82783 91151 81395 \n", "\n", "sex \n", "year \n", "names \n", "a ... \n", "b ... \n", "c ... \n", "d ... \n", "e ... \n", "\n", "[5 rows x 262 columns]" ] }, "execution_count": 147, "metadata": {}, "output_type": "execute_result" } ], "source": [ "subtable = table.reindex(colums = [1910, 1960, 2010], levels = 'year')\n", "subtable.head()" ] }, { "cell_type": "code", "execution_count": 148, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "sex year\n", "F 1880 90993\n", " 1881 91955\n", " 1882 107851\n", " 1883 112322\n", " 1884 129021\n", " 1885 133056\n", " 1886 144538\n", " 1887 145983\n", " 1888 178631\n", " 1889 178369\n", " 1890 190377\n", " 1891 185486\n", " 1892 212350\n", " 1893 212908\n", " 1894 222923\n", "...\n", "M 1996 1892700\n", " 1997 1883571\n", " 1998 1909676\n", " 1999 1918267\n", " 2000 1961702\n", " 2001 1940498\n", " 2002 1938941\n", " 2003 1972439\n", " 2004 1981557\n", " 2005 1993285\n", " 2006 2050234\n", " 2007 2069242\n", " 2008 2032310\n", " 2009 1973359\n", " 2010 1898382\n", "Length: 262, dtype: float64" ] }, "execution_count": 148, "metadata": {}, "output_type": "execute_result" } ], "source": [ "subtable.sum()" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "collapsed": false }, "outputs": [], "source": [ "letter_prop = subtable/subtable.sum().astype(float)" ] }, { "cell_type": "code", "execution_count": 152, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 152, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAH0CAYAAAAZsKgjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X10VNW9PvBnXvICkSHApV6VllQxYqzyIjWQQMwUKZiW\nKlbxDSUYoyFtr9QUX35LlwGuhdrVarUWUCSIbWm9BUdBKgtvA9YE0oYaEV8xNFwR8F4qMBMIGTLn\n/P4IGWaSyZnJzNmZs2c/n7Vg5WTmPLPPmTMzO2d/Zx+brus6iIiIiCgu9mQ3gIiIiEhm7EwRERER\nJYCdKSIiIqIEsDNFRERElAB2poiIiIgSwM4UERERUQLYmSIiS2tpaYHdbsfVV1/d47Z58+bBbrfj\nyy+/7HX90tJS/OIXvxDZRCJSHDtTRGR5mZmZ2Lt3L/7nf/4n+LsTJ07g7bffhs1mM1zXZrNFvQ8R\nUSLYmSIiy3M4HLj55pvxu9/9Lvi7DRs24Prrr4eu6wgEArjvvvswceJEXHbZZcjLy0N9fX3wvl1z\nE3/44YeYPn06JkyYgHHjxqGmpqbft4WIUg87U0QkhTvuuAO//e1vg8tr165FaWkpAODjjz/G4cOH\nsXPnTrz//vu48847sWzZsuB9bTYbAoEAbrzxRixbtgyNjY3Ytm0bfv7zn6OhoaG/N4WIUowz2Q0g\nIorF+PHjYbfb8Y9//APDhw+Hz+fDZZddBgDIy8vDkiVLsHz5cuzbtw/btm2Dy+UKW//jjz/Gvn37\ncNdddwV/197ejqamJuTn5/frthBRamFnioik0XV2avjw4bjzzjuDv9+0aROWLFmCn/zkJ7j++usx\nevTosLNYAKBpGrKzs/HOO+8Ef3f48GFkZ2f3W/uJKDVxmI+IpDFnzhy8/PLL+OMf/4jbbrst+Pu/\n//3vmDlzJu69915ceeWVeOWVVxAIBACcrZe65JJLkJmZGay7+uyzzzBmzJiwzhURUTzYmSIiy+v6\nNt7555+PvLw85ObmBs8o2Ww23Hrrrdi+fTvGjRuHkpISTJs2DS0tLdB1PbhuWloaXn31VaxatQpj\nxozB9OnTsWTJEkyaNClp20VEqcGmd/3ZRkRERER9ZnhmStM0VFRUoKCgAG63G83NzRHvd8899+Dh\nhx/u0zpEREREqcCwM+XxeOD3+1FfX49ly5ahqqqqx31WrlyJPXv2BE+lx7IOERERUaow7EzV1dVh\nxowZAID8/Hw0NjaG3V5fX4+//e1vuPfee4NFntHWISIiIkolhlMjeL3esLlaHA4HNE2D3W7HoUOH\nsHjxYrzyyiv44x//GNM6oUaNGsUhQCIiIpLCmDFj0NTUFPE2wzNTLpcLPp8vuBzaKfrTn/6EI0eO\noKSkBD/72c/w+9//Hi+++KLhOqGam5uh63qf/j322GN9XidZuSpnytRWWTJlaqssmTK1VZZMmdoq\nS6ZMbZUlM97cd999t9f+kmFnqrCwEJs3bwYA7Ny5E1dccUXwth/96EdobGxEbW0tHnroIdx+++2Y\nO3eu4TqJamlpMS1LdK7KmaJyVc4UlatypqhclTNF5aqcKSpX5UwRuYbDfLNmzcLWrVtRWFgIAKip\nqcG6devQ2tqK8vLymNchIiIiSll6ksTz0LW1teY3RFCuypmiclXOFJWrcqaoXJUzReWqnCkqV+XM\neHON+i1Jm7TTZrMhSQ9NRERE1CdG/RapLiezbds2aXJVzhSVq3KmqFyVM0XlqpwpKlflTFG5KmeK\nyJWqM0VERERkNRzmIyIiIooiZYb5iIiIiKxGqs6ULGOnqmeKylU5U1SuypmiclXOFJWrcqaoXJUz\nReRK1ZkiIiIishrWTBERERFFwZopIiIiIkGk6kzJMnaqeqaoXJUzReWqnCkqV+VMUbkqZ4rKVTlT\nRK5UnSkiIiIiq2HNFBEREVEUrJkiIiIiEkSqzpQsY6eqZ4rKVTlTVK7KmaJyVc4UlatypqhclTNF\n5ErVmSIi6i8ZGefA5Rqa7GYQkQRYM0VEFIHNZgMAvk8REQDWTBEREREJY9iZ0jQNFRUVKCgogNvt\nRnNzc9jt69evx1VXXYX8/Hw8/fTTwd+PHz8ebrcbbrcbZWVlpjVWlrFT1TNF5aqcKSpX5UxRuSpn\nispVOVNUrsqZInKdRjd6PB74/X7U19ejoaEBVVVV8Hg8AIBAIICHH34Yu3btQlZWFvLy8jBnzhwM\nHDgQAFBbW2tqQ4mIiIisyLBmqqqqCvn5+Zg9ezYAYMSIEThw4EDwdk3TYLfb8cUXX2Dy5Ml45513\n8P7772Pu3LkYOXIkOjo68NOf/hT5+fk9H5g1U0RkYayZIqJQcddMeb1euFyu4LLD4YCmaWdXttux\nYcMGjBs3Dm63GwMHDkRWVhYWLlyILVu2YMWKFbj99tvD1iEiIiJKJYbDfC6XCz6fL7jcdSYq1A03\n3IBZs2ahtLQUa9euxW233YZRo0YBAC6++GIMGzYMhw4dwgUXXNAjv7S0FDk5OQCA7OxsjB07FsXF\nxQDOjmeGLjc1NWHBggW93h7vcujYqRl5APDUU09F3Z6+LovY/u77gNufeHtFHE+qb7+I4ymW7e+S\nitvP91M5Xk+qb7+I4ynW7e/6uaWlBVHpBtavX6+Xlpbquq7rO3bs0EtKSoK3HT9+XC8qKtLb29t1\nXdf1+fPn62vXrtVXrFihV1ZW6rqu659//rk+evRoPRAI9MiO8tAR1dbW9nmdZOWqnCkqV+VMUbkq\nZ0bLBWCZ9ylZMkXlqpwpKlflzHhzjd4PDGumdF1HZWUldu/eDQCoqanBrl270NraivLycjz//PN4\n4YUXkJaWhjFjxuCZZ55BIBDAvHnzsH//fgDAE088gYkTJ/bIZs0UEVkZa6aIKJRRv4WTdhIRRcDO\nFBGFSplJO7vXMVg5V+VMUbkqZ4rKVTlTVK7KmaJyVc4UlatypohcqTpTRERERFbDYT4iogg4zEdE\noVJmmI+IiIjIaqTqTMkydqp6pqhclTNF5aqcKSpX5UxRuSpnispVOVNErlSdKSIiIiKrYc0UEVEE\nrJkiolCsmSIiIiISRKrOlCxjp6pnispVOVNUrsqZRrku11DTMxMhS6aoXJUzReWqnCkiV6rOFBFR\nf/D5jia7CUQkEdZMERF101UvBbBmiog6sWaKiIiISBCpOlOyjJ2qnikqV+VMUbkqZ4rKVTlTVK7K\nmaJyVc4UkStVZ4qIiIjIalgzRUTUDWumiKg71kwRERERCSJVZ0qWsVPVM0XlqpwpKlflTFG5KmeK\nylU5U1Suypkicg07U5qmoaKiAgUFBXC73Whubg67ff369bjqqquQn5+Pp59+OqZ1iIiIiFKJYc3U\nhg0bsGnTJqxevRoNDQ1YunQpPB4PACAQCODSSy/Frl27kJWVhby8PNTV1WH79u3YuHEjampqeqwT\n9sCsmSIii2LNFBF1Z9RvcRqtWFdXhxkzZgAA8vPz0djYGLzN4XDgo48+gt1uxxdffIFAIID09HTU\n1dXh2muvjbgOERERUaoxHObzer1wuVzBZYfDAU3Tzq5st2PDhg0YN24c3G43srKyoq6TCFnGTlXP\nFJWrcqaoXJUzReWqnCkqV+VMUbkqZ4rINTwz5XK54PP5gsuapsFuD+9/3XDDDZg1axZKS0uxdu3a\nmNbpUlpaipycHABAdnY2xo4di+LiYgBnNzR0uampyfB2Ky03NTWZni9i+7tw+83dfhHLKm+/iOMp\nVPfbu0vF7ef7qTyvJ9W3X8RyLNvf9XNLSwuiiVoz1VX/tHPnTixZsgSvv/46gM6zVjNnzsTWrVuR\nnp6OyspKTJo0CVlZWb2uE/bArJkiIotizRQRdRd3zdSsWbOwdetWFBYWAgBqamqwbt06tLa2ory8\nHHPmzEFRURHS0tIwZswYzJkzBwB6rENERESUsvQkieeha2trzW+IoFyVM0XlqpwpKlflTKNcAMF/\nZmUmQpZMUbkqZ4rKVTkz3lyj9wN7UntyRERERJLjtfmIiLphzRQRdcdr8xEREREJIlVnqvvXL62c\nq3KmqFyVM0XlqpwpKlflTFG5KmeKylU5U0SuVJ0pIiIiIqthzRQRUTesmSKi7lgzRURERCSIVJ0p\nWcZOVc8UlatypqhclTNF5aqcKSpX5UxRuSpnisiVqjNFREREZDWsmSIi6oY1U0TUHWumiIiIiASR\nqjMly9ip6pmiclXOFJWrcmZvua4hQ0zPTJQsmaJyVc4UlatypohcqTpTRESi+Y4dS3YTiEgyrJki\nIgoRWi8FsGaKiDqxZoqIiIhIEKk6U7KMnaqeKSpX5UxRuSpnispVOVNUrsqZonJVzhSRK1VnioiI\niMhqWDNFRBSCNVNEFIlRv8VptKKmaaisrMTu3buRkZGBVatW4aKLLgrevm7dOvzqV7+C0+nE5Zdf\njt/85jew2WwYP348Bg8eDAC48MIL8cILL5i4OURERETWYTjM5/F44Pf7UV9fj2XLlqGqqip4W1tb\nGx599FFs27YNb7/9No4fP45Nmzbh1KlTAIDa2lrU1taa2pGSZexU9UxRuSpnispVOVNUrsqZonJV\nzhSVq3KmiFzDzlRdXR1mzJgBAMjPz0djY2PwtszMTOzYsQOZmZkAgI6ODgwYMADvvvsuTp48ienT\np2Pq1KloaGgwtcFEREREVmI4zOf1euFyuYLLDocDmqbBbrfDZrNh+PDhAIBnnnkGJ06cwDXXXIM9\ne/Zg4cKFKCsrw969e3Httdfik08+gd3es99WWlqKnJwcAEB2djbGjh2L4uJiAGd7jd2Xu/R2ezzL\nxcXFpuaFttGsPJHbL2K563cqbr+I40n17e/6nej2d9/PoY8da55M2x/P9nH7+X7an8sijqdYt7/r\n55aWFkRjWIBeVVWFiRMn4qabbgIAfPWrX8Vnn30WvF3TNDzwwAP49NNP8Yc//AGZmZnw+/3QNC14\nxio/Px8bNmzABRdcEP7ALEAnIouxOZ1AIBD2O75PERGQwKSdhYWF2Lx5MwBg586duOKKK8Juv/fe\ne9He3o5XXnkl2HmqqakJ1lYdPHgQXq8X5513XsIbAfT+V6MVc1XOFJWrcqaoXJUzI+Z260iZkmkC\nWTJF5aqcKSpX5UwRuYbDfLNmzcLWrVtRWFgIoLOjtG7dOrS2tmLChAlYvXo1ioqK8K1vfQsAsGDB\nApSVlWHevHkoKioKrhNpiI+IiIgoFXCeKSIiAK5sF3zHfT1+z/cpIgKM+y3sTBERoedknV34PkVE\nQApd6FiWsVPVM0XlqpwpKlflTFG5KmeKylU5U1SuypkicqXqTBERERFZDYf5iIjAYT4iMpYyw3xE\nREREViNVZ0qWsVPVM0XlqpwpKlflTFG5KmeKylU5U1SuypkicqXqTBERERFZDWumiIjAmikiMsaa\nKSIiIiJBpOpMyTJ2qnqmqFyVM0XlqpwpKlflTFG5KmeKylU5U0SuVJ0pIiIiIqthzRQREVgzRUTG\nWDNFREREJIhUnSlZxk5VzxSVq3KmqFyVM0XlqpwpKlflTFG5KmeKyJWqM0VERERkNayZIiICa6aI\nyBhrpoiIiIgEMexMaZqGiooKFBQUwO12o7m5Oez2devWYeLEiZg8eTLmz58PXdejrpMIWcZOVc8U\nlatypqhclTNF5aqcKSpX5UxRuSpnish1Gt3o8Xjg9/tRX1+PhoYGVFVVwePxAADa2trw6KOPYs+e\nPcjMzMRtt92GTZs24fTp02hvb4+4DhEREVGqMayZqqqqQn5+PmbPng0AGDFiBA4cOACgs47gyJEj\nGD58OABg9uzZKC8vxxtvvNHrOmEPzJopIrIQ1kwRkZG4a6a8Xi9cLldw2eFwQNO0YGhXR+qZZ57B\niRMnMG3aNMN1iIiIiFKN4TCfy+WCz+cLLmuaBrvdHrb8wAMP4NNPP8X69etjWidUaWkpcnJyAADZ\n2dkYO3YsiouLAZwdzwxdbmpqwoIFC3q9Pd7l0LFTM/IA4Kmnnoq6PX1dFrH93fcBtz/x9oo4nlTf\nfhHHU6Tt700qbj/fT+V4Pam+/SKOp1i3v+vnlpYWRKUbWL9+vV5aWqrruq7v2LFDLykpCbv97rvv\n1n/4wx/qmqbFvE6XKA8dUW1tbZ/XSVauypmiclXOFJWrcmb3XAAR/yWSaRZZMkXlqpwpKlflzHhz\njd4PDGumdF1HZWUldu/eDQCoqanBrl270NraigkTJmDChAkoKioK3n/BggX43ve+12Od3NzcHtms\nmSIiK2HNFBEZMeq3cNJOIiKwM0VExlJm0s5odQ1WylU5U1SuypmiclXOFJWrcqaoXJUzReWqnCki\nV6rOFBEREZHVcJiPiJTnynbBd9wX8Ta+TxERwJopIiJDvdVLAexMEVEn1kwlIVflTFG5KmeKylU5\nU1SuypmiclXOFJWrcqaIXKk6U0RERERWw2E+IlIeh/mIKJqUGeZTWXV1dbKbQERERBFI1ZmSZexU\nROaiRYukaKfIXJUzReWqnCkqV+VMUbkqZ4rKVTlTRK5UnSkiIiIiq2HNlARcrqHw+Y5yfxEJwpop\nIoqG80xJruuNnvuLSAx2pogompQpQJdl7FRIpsOBgeecY24mFN+nEmWKylU5U1SuypmiclXOFJWr\ncqaIXKk6U0oLBNB24kSyW0FEZDp+W5lkx2E+CYQOQXCfEZmPw3zJxc8DkkHKDPMRERERWY1UnSlZ\nxk5FZYqg+j6VJVNUrsqZonJVzhSVq3KmqFzZMtNsNgx1uUzPNYtUnSkiIiJSTweAoz5fspvRK8Oa\nKU3TUFlZid27dyMjIwOrVq3CRRddFHafkydPYtq0aVi9ejUuueQSAMD48eMxePBgAMCFF16IF154\noecDc4w8ZqyZIhLHle2C73jvb9J8zYnHzwOKxgpTBBkdp06jFT0eD/x+P+rr69HQ0ICqqip4PJ7g\n7Y2NjaioqMDBgweDG3rq1CkAQG1trVntJyISxqgjRf3DAQeGuIbgqPdosptCFuRyDU12E6IyHOar\nq6vDjBkzAAD5+flobGwMu93v98Pj8QTPSAHAu+++i5MnT2L69OmYOnUqGhoaTGus6uPRiYr09WPV\n96ksmaJyUz0zJycn7LjPyclBcXFxwrlGVM6MNzeAAI75jpmaGY0smaJyZcr0+czvZJvdVsMzU16v\nF66Qgi+HwwFN02C3d/bBCgoKeqyTlZWFhQsXoqysDHv37sW1116LTz75JLhOqNLSUuTk5AAAsrOz\nMXbs2OAbXdeGhi43NTUZ3m6l5aamJlPzAAA2G1xDhsB79GhceYsWLQp+sHQ/kKy+/aKef1HbL2JZ\n5e2P93jav38/Fi1aFPz9/gMHsH///h7bH42s29/fx1O8y93Juv29tV+V51/U9nfXX9vf9XNLS0vE\ndoQyrJmqqqrCxIkTcdNNNwEAvvrVr+Kzzz7rcT+3242VK1ciNzcXfr8fmqYhMzMTQOcZrQ0bNuCC\nCy4If2COkces+xw48e43p80J2IGOQIcZzSKyPJstDUAHdF0Pq40KfQ0ZzTHV/b4khhXqYci6rFI3\nHPc8U4WFhdi8eTMAYOfOnbjiiiuiPlhNTQ2qqqoAAAcPHoTX68V5553X1zbTGWaOFQcQQEALmJZH\nZH1n/3BgbRQRiWLYmZo1axYyMzNRWFiIqqoqPPnkk1i3bh2ef/75XtcpKyuD1+tFUVERbrnlFtTU\n1EQc4otHX0/NJzPXrEwRY8WhVNynMmaKylU5U1Suypkicl2uoRg4cJCpmYDa+1T1TBG5hjVTNpsN\ny5cvD/tdbm5uj/uFfnPP6XTipZdeMql5REQJsndOf9Al9Jtj06ZNS2LDKBai/6AkMgOvzWdxkeo5\n4tlvGVlZ8J88Gff6RDIKvn7sALTw23Rdj1ov1XU/EsuoZor1VCR9zRSljq6OFJGStOh3oWRzSjGf\nECWPEzD1kjJmkqozJcvYqahMEVTfp7JkispVN1PcB7cc22/F47SjX4f01NinqZVp5iVlzG6rVJ0p\nIiJz9O8HNyXGDjuGuIYkuxmUBCUlM5PdhJiwZsrCMjLOgd9/osfv49lvVhlzJupPxjVRToROndAb\nvl7EM3p/4nuX2syqGzYDa6YkFakj1f2bSbGwOaMX2RKph5PXWo69c6LVjIwBADr/oCSSgVSdKdXH\nowEAWhyTDxrM06n6PpUlU1SuypmiyLL9ljxONQDogN9/CkAvf1CaRJl9KnmmKKyZIiKilMcz6iQT\n1kxZmFG9R1/2Xfecxx57LHjBY6JUFss8UtHwfUq8WJ8nPhfqkaVmip0pCzOjM5UxIAP+U/6Q33RO\nep+e7kR7e1sizSOyPHam5NDjeYowySrA50JFsnSmpBrmU308Oh7hHSmgs+i2syYhIyND+X0qS6ao\nXJUzRZFl+y19nPbDJKvK7VNJM3syZ4441kwRAJgyTOf3d+9oERERWZk154jjMJ+F9TpEceYUeCz7\nL9owB58DSmUc5pMDa6aoN70dG8k4FlJmmI/O4HXGiIiILEOqzpRK49EZGRnmNMSQE2lp6UKSrbhP\nZc4UlatypiiybL9Mx6kIqu9TWTJFMbutTlPTyDT9U8/UgQ5OAk1ERJQQ1kxZVCw1BGbUTMWaQ9QX\nXZc8un/B/Umd04w1U3JgzRT1JuKxYQfS09LRfqq939sSV82UpmmoqKhAQUEB3G43mpube9zn5MmT\nKCwsxMcffxzzOkSU2nzHffD5fFi0aFGym0Ipw5yvxJM8er0OrQb42631bXTDzpTH44Hf70d9fT2W\nLVuGqqqqsNsbGxtRVFSEf/7zn8HeY7R1EqHKeHTGgP6olxLLavtU9kxRuUIzTfyihMq1GDJlisw1\n+yvxqu9TGTL7fB3aPujXeabq6uowY8YMAEB+fj4aGxvDbvf7/fB4PLjkkktiXoei6znRJpGcHA7A\n6XQkuxlEREIZ1kyVl5fj+9//frBzNHLkSPzzn/+E3R7eB3O73Vi5ciVyc3NjXoc1U70zs34galaS\nxp4ptXU/7kaOHImWlpZe7+9yDUV7e5vplzhizZQc+vI88flQh9XmSTTqtxh+m8/lcsHnO3uaTdO0\nHp2iRNYpLS1FTk4OACA7Oxtjx45FcXExgLOn4FRdjsW2bdui5kV1Zuw52dvL5dRaDmMH9u/fb3i8\ndh++Mas9Zkn2/kz15b5Kdnu53D/LsRL5+Nu2bTP8QzBIN7B+/Xq9tLRU13Vd37Fjh15SUhLxfsXF\nxfrHH3/cp3WiPHREtbW1fV4nWbmJZAKI6V9/Z/WF1fap7JmickVl9vUYi3afeNsZ6/Fv5mtDpudJ\nhHhyY38+nHp6embS2pmMTFG5MmSK/NyK9zjtjeGZqVmzZmHr1q0oLCwEANTU1GDdunVobW1FeXl5\nzOtQ7Hr99gKRzOxARmYGh5MpQR3w+zk5HlkP55myGLNrBzh/CyVDX6+n1XV/s49D1kzJoa/PUyLP\nSXFxsenDwCSGTDVTxgVQZFkOBzBkCM9iEZF64q21AoDt2+s4X5VF9WWCX6t9BkrVmRL114SIXNF/\n+QQCwLFj4ubgSJQs+1SWTFG5KmeKIsv29+dx6hoyxJSzhF22b98e13qdc/h1zlcl+z5Nxcy+TPKb\n6Geg2dsvVWeKiKxvZklJsptAFuM7dgwAkJFxTlLPCnEOPxKFNVMWUl1d3efLb0Tbh7H+NRhtHiCi\nWBkdc4Y1U3Zg0KBB8B7z9ktbYsX3qcR1Pb9ds+J336d9fp7sAHRA1/r23IQ+Dp9X63C5hganRwl9\nXqx2bVmjfgs7UxZiczo7z132gSmdqTNvcnw+yAxxd6ai3MfstsSKr4vEdX8eEu5MAXF1vtmZsiab\nzQYngA7I25mSapgv5cej+9iRMo2J11DrYpl9miKZonL7txYp/gvVsmZKjkyRuWedmdFHS+zabarv\nU6tldqDzmR3q6p+ictZMEZGkzL1QLSVHIt+kMwfnmUpVHQCO+qz7xSojHOazkHhOdZtVMwWHo/OU\n+VF+2FFi4pkbhsN88rDZbLj66qv79Je9kGG+XrJ6kzEgI1iA7gSg2+3oSNZoAIWJdHwMGeKK6dt6\nVhnmY2fKQpLameqWZ7fboes6nyPqM6NjzgnAmZ6OtvbwmdCD65jcqWdnynxdxeR9uUC6sM5UH+qm\nIj0Gn9vkCy0+76LruiUnnGbNVBJyZarxiCTRA1SWfSpLpqjc/j5OOwCc8ht8PT0QCH6NPpRMrydZ\nnqeEMs9cIN303DjaEUvdVH9N7qj6az+ezGQN/bNmivqRExkZA5LdCJJIfxWPEvWF0XCR05nJGdGt\nxG7OGeX+xmE+C7HCMF9XLQS/QkyxcqY7oWs6Ah2BuE/NRxsGiheH+cwX3KcJDLGZWTMVbWi4t/n7\nuuqmApoWsU3UPyI+9yFzkkVjlWE+dqYspO9vKM7ONxHvl+ZkOhxAIACHIwOBwNlaCD5PZCT0IsXs\nTKW+7vt08ODBOBZhaNZoHVM7U71kBrMdtpg+mPk8J0eiz71VOlNSDfOpPh7dk8lfNT/zzZbQjlS8\nZNmnsmSKyk0k05XtgtPZ9UbohM0m7u2ENVMWzbQDx1tb4RoypNfcjKysxB8nTi7X0CgdKaepj6fK\na78/Mw3ZgYzMjLhWZc0UCWbumwulLt9xX8g8sx0AHElsDSWFhl6/NNDFf/Jk/7UnRHV1dQx/bHLO\nKqkZfBGiv3GYz0LiPd1ptB85zEGimDk3UFiWw4F0pxPtp07FnR8xN048/sP1tk9juVRQb/cV8Tyl\n2Wx96irxeU4OmV6jRv0WnoYgImsJBODnZIqUIJ5zov5kOMynaRoqKipQUFAAt9uN5ubmsNs3btyI\nq666CgUFBVi1alXw9+PHj4fb7Ybb7UZZWZlpjVV9PFomsuxTWTJF5cab6cru3ykQZHo9Wel56u9M\nkbkykGmfypIpitltNTwz5fF44Pf7UV9fj4aGBlRVVcHj8QAATp8+jfvvvx+NjY0YOHAgCgsLcd11\n12HQoEEAgNraWlMbSkTWkcgFZkkd1dXVyW5CTByOzok9jx6NPs0DUSSGNVNVVVXIz8/H7NmzAQAj\nRozAgQNYrXFxAAAgAElEQVQHAAC7d+/Ggw8+iD//+c8AgPvvvx8FBQX46le/irlz52LkyJHo6OjA\nT3/6U+Tn5/d8YNZM9cCaKZKF2V9n7pFnB6A5AXQkdPzx+DdfX2qmepuWoD9qpkTM20fmk+k1GvfU\nCF6vF66QGY0dDge0MxOceb1eDB48OHjboEGDcPz4cWRlZWHhwoXYsmULVqxYgdtvvz24DpFsZPnL\nOuVoAKteJOJwhE2PEMS3flKE4TCfy+WCz3f2dL6mabDbO/tfgwcPDrvN5/NhyJAhyM3NxahRowAA\nF198MYYNG4ZDhw7hggsu6JFfWlqKnJwcAEB2djbGjh2L4uJiAGfHM0OXm5qasGDBgl5vj3c5dOzU\njDwAeOqpp6JuT6TlvnPC5RqK117bYFJeZP21/aKff7f72xg06Jzg/uq6T2/3X7RoEaqrq5N+PIk6\n/gHge9d/D62+Vvzlv/8S8/qJ6kuey+XC4sWL++n1FFmyn3+rvZ56CJkeIZZ9b/bx1JVp1vOfyOvJ\n6P0kVZ5/s7c/UaK2v+vnlpaW6I3QDaxfv14vLS3VdV3Xd+zYoZeUlARv8/v9+sUXX6x/+eWXent7\nu37llVfqBw8e1FesWKFXVlbquq7rn3/+uT569Gg9EAj0yI7y0BHV1tb2eZ1k5caTCSDufyIyo2Wb\nvf39kdl9m4wyhwwapMRx2tfnOX3gQNOPqWj3nzt3blzbl4zj3+h5euyxx+LaDiu9nqLtq9Bcs55/\nEceUWe91oWR77VshU6bPKKPHMqyZ0nUdlZWV2L17NwCgpqYGu3btQmtrK8rLy7Fp0yYsXrwYmqah\nrKwM8+fPR0dHB+bNm4f9+/cDAJ544glMnDixRzZrpnoyc94eMzKjZcvm7DW6nAAC0HXjMYjQy6Sk\nMpvNBtiB9LR0tJ+KPvt9/9e3xF87ZbXj32ZLi3oJKKsz2qexPq99e/5jY0Zmqr/Wo+l+ZrU/WO01\naoTX5pMEO1NiOZ02hE5fFG27lOpMnRHLtibng8+J9HQn2tvb+vQ4Vjv+U+GYStnOVB/+oEhFrmwX\nfMd9/X5sWu01aoTX5ktCbn/37q3GavvU5gjvSAFOZGQMsFw7zc51Om2Gb1byHKcd8PsTnxG9P/S2\nT12uoaZnJkL0cdrfc5ElzIRLk1jptd/XTDOmO5Hn/cT8tkrVmSKKhyvbFeFbRR3Q/KfgdrvhTHf2\neONP5IPPSgIBAHZz/vqjxJh6UXJLcoYdZ5yLjFTCYT4L4TCf+TKysowvtOpwdPY4up3i7+vQl1UF\nt8MOQIu8LXIM80VeLxorHf8pd0xFdHY41ozhwL4wJdPeOc2P95h6k3d21U729/Zb6TUaDWumJBH/\nQeXstahVpgNVhD5vvwNId6aHne5Pne13wm7XEQh09HofdqYSf8zeqNGZ6qTrupydqV6yVJCs49NK\nr9FoWDOVhNz+HTvusNwQgrT7NJDKdRMdsGsBDA2ZiDc802nx4U2nKW+8okV6njIGZJiemSiZ6ltk\nYd3XvryZorBmikgQhyPZLRCvA50T7Nojdkqs1ykP1wE4HMjIzEx2Q/rMfyqxDrpsHCq8mIhCcJjP\nQsy+3pkZmb3lyiK+7e+c16hLqm6/ruvIysjCSX9ITZkdgA7oWu/bbIUhGV3XY5oTxyrHf/d2pOox\ndVb4a6g7DvNZT2h9ZX/WTVnlNRoLo36L4eVkiNSkwjXhnHA4nNC0QPivJbmWWtecODLIzs5OdhOS\nQObXUOdwt8wTqyZE4zcx4yHVMF+kv0JttnQ4HIn1CXv769ZmS4+7hkSmsWMRVB6Pl6NuoqNnR+oM\nJxBWV2U5Dkfnm73dmnMZhT5PGRnn4LjvuKmZZpHl9dT/4h/uluO13zPTZdLrXaZjijVTITo7Oqd7\n/VBI3GmL15Cc5QTnEqK+ivxHSAeAoz4L/2XaNftqyF/QZl4w10x+/wlpzvaRunxWfr1LQuqaqdDO\ng91uRyBgbqeqvy/9YLW6gd4yZWLF7a+urkZ1dbWpmb1JZLqN3q5faL3jtPdr9yX7+Y/1cioysd7z\nLyAzhtrBVBJpX8n8uSdKys4z1X0OHTMvIDrENQTHfMcAyH1QyXSgimDF7e/PL18k2kmJ9JqS6Tjt\nj+ffme5E4HSgT4/P15TFO1O9ZKaqHvvK4eh87R8VPzIj0/OkyDxT5o5zd3Wk4hWaabdnWHz+HvOp\nXOMhU92EMatPlWANgdOBsGF2WY59WV5PMpHptW+YGQjAd6zvn4EyHVOsmZKQrvvR5juKARmJTdxH\nRNaSkXEOgMjfXUt0ok4ikkcKDfN1stqlH0K/wt1Z2dG/9R0ynUIVwWrb73INhc93VJJhvk4yD8mI\nfv67lxp0XZcu2mPzNSXvMZWKkjkcLdPzlDLDfDIKna+jI/i/M+HpHEhOHDZLHTZn9w+BDvj9pwCc\nPWNFZHWqlaCIIlVnKmXGow3m+EkVIvepVb8G30Wm45TiY3PYgIgvYSccNkfnlAgmYs2UHKz82u/+\nvtmVaeYfeDIdUyldM+XKdhlOwtfU1CTkcbvnOp2JX/tLVFtlIWL7m5qa4Mp2Yfv27aZnm6m/jlNK\njjRbmsHcUR3QBEwsJer1ROay0ms/JycnbHn7X7cjI/NsHV8yjikr/SFs9vYbdqY0TUNFRQUKCgrg\ndrvR3NwcdvvGjRtx1VVXoaCgAKtWrYppHSO+4z74fD7YbGkRh8GOhXy7YIhrSMy50Rzr9q2FQKDd\nlEyVC1C771OzMrtmvrbyBKW9bbvdntjfLiL2KfVdRxIulVL14x/DZksz9bjn8WQ+Ufs0ntwD+w+c\nOWY6/0ED/O1nL7h97NgxU04chDJqp81ps9QfwmY/V4bv7h6PB36/H/X19Vi2bBmqqqqCt50+fRr3\n338/tm7diu3bt+O5557D//7v/8Lj8aC9vT3iOjHRAKADNg2Gbx59mbqgt85ZJGbVOjz++BLlrhTf\nnTPdCZvdvDf/xYsXdf6gAYDT0h2q7lyuocoUs1LibE4bbHYbMjLOQZrNduZcVwdgB5xOG2yOzn+h\nZxqIQgUQQGeNbtc/hP0h+viSx+M+cVBdXY20tDPHYZT3YbvT3tmZS+3KFuMLHdfV1WHGjBkAgPz8\nfDQ2NgZv+/DDDzFq1CgMHjwYADB58mS89dZb2LFjB6699tqI6/RFILjnz3xo2gFowKIliwCbo49p\nHbBrQJrNdubbdIADOgL2s5elWPyfi5HmTIPfH1sHyOm0IaAD0JxnWtlVXu4E7B3KX0KipaUFgdMB\nwA44nA4EOqK/koYMceGYz3fmRecM7lNnejrSMrIQ3hfpfCbTbDYEAGj92FHJGJCBjtMdvW5TS0tL\n2LLNYTPleOieS6kj0+lEu955PDls6HwN2NGz9koL/0zyt2txfzOax5P5RO1T03I1nOlQpSGei1Fn\nOp1oD3TrPHXlnfncW7TocQBnPmNhA6DH9ViiGe1TZ7oTDrsD7adi72wadqa8Xm/YBRAdDgc0TYPd\nbofX6w12pABg0KBBOH78uOE6ocaMGRPjmYUzT0LXh5EGGHVxe8vs6PZTIDQTgB7Q4Q9E7kgZt7Mj\n5P8zP8X4wSnizIrlMjVAgxZHxtnBlA6/H6cidHJDX54iz1L1lm30mC+++GJcmdFEyxXBcsdUP2aK\nyjXKDL67xfQ+0hE1z0gyjidAnuc/nkxR+9S03DOjP7GIafu78oLHa8hnbLyZfSTi+A8g0CN3zJgx\nvd7fsDPlcrnCLoAY2ikaPHhw2G0+nw/Z2dmG64Ri8SMRERGlAsOaqcLCQmzevBkAsHPnTlxxxRXB\n20aPHo29e/fi6NGj8Pv9eOutt1BQUGC4DhEREVGqMZwBXdd1VFZWYvfu3QCAmpoa7Nq1C62trSgv\nL8emTZuwePFiaJqGsrIyzJ8/P+I6ubm5/bM1RERERP0saZeTISIiIkoFlpq0sz+tWbMGv/jFL5Ld\njLhcfvnlyW5CrwKBANxuNyZPnmzpeWzWrFmDhx9+WEj2li1b8Pzzz1s6V+T2i8wmMkN7ezteeOGF\nZDeDUoiyF4iTaY4imXz++efw+XxxT4nRX0Q+/9OnT7d8bjK+/UhkFYcOHcKqVatQVlaW7KZQipDi\nzJTX68XNN9+M6dOn4/LLL8eKFStMyd2yZQumTp2K/Px8/PnPfzYls62tDbfccgsKCgowYcIE7Ny5\nM+HMkydP4oYbbkBRURHmzZuHQCDx2c9Onz6NsrIyXH311ZgyZYppM9NWVFRg7969mD9/vil5bW1t\nuOmmmzB58mTceuutuOCCC0zJBTq/IDF9+nSMHz/e1DNJos7MiMj9v//7P0yePBm1tbWm5pphzZo1\n+P73v4/vfOc7GD9+PF588UXccMMNyM3NxWuvvZZQ7uzZszFz5kzk5eWZ8pXz06dPY86cOSgsLMTE\niRPx8ssvJ5wJdLb1lltuwTXXXIOxY8fC4/EknNna2orrr78eU6ZMwbx581BYWGhCSzvbWlRUhClT\npuAvf/mLKZmffPIJCgsLUVxcjKKiIhw4cMCU3McffxwffPAB/vM//9OUvNDX5qlTp/D1r3894czv\nf//7eOuttwAAjY2NuP766xPKmzBhAo4cOYLTp0/D5XIFv1F/5ZVX4vTp0wllP/vss7jtttsAAHPn\nzsXy5csTygOA22+/Pfhltg8//BDf/e53E85csWIF3G433G43RowYYWpnWorOVHNzM2655RZs2bIF\nW7ZswS9/+cuEM3Vdx1e+8hX893//NzZu3Igf/OAHJrS088m68MILUV9fjz/84Q9oaGgwJfOyyy7D\nW2+9hYceeijmiUWNrFq1CsOHD8f27dvh8XhM2/7ly5cjLy/PlBcTADz33HO46KKL8Pbbb6O6uhpf\nfPGFKbm6riMtLQ1btmzBK6+8gqeeesqUXECe+Y4OHz6M6667Dk8++STcbrep2WY5ceIEXn/9dTz4\n4INYvnw5NmzYgOeeew41NTUJ5Xq9XmzcuBGvvfYali1blnA7V65ciXPPPRd1dXV488038cgjj+Bf\n//pXwrk2mw2apuHNN9/EG2+8gQULFkDTEpsB9je/+Q3y8vLw17/+FT/+8Y9x+PDhhNvZZdiwYfjr\nX/+Kb33rW6bkvfnmm5g4cSLefPNNLFq0CMePHzcl95FHHkFeXh4eeeQRU/JEvObLy8uDHf2amhrc\nc889CeVdd911eOONN/D222/jwgsvxNatW/HBBx8gNzcXaWlpCWX/4Ac/QFtbG0pLS9HR0WHKH9Oh\n27969WrcfffdCWdWVFSgtrYWP//5z5GTk2NKX6KLFJ2pr3zlK/B4PLjjjjvw+OOPJ9yLBjoP/qKi\nomC+y+Uy5c3vk08+wcSJEwEAo0aNwn333Zdw5scff4wJEyYAAC655BIMHz484cz33nsPmzdvhtvt\nxo033ohAIIAvv/wy4Vyzv8/w0UcfYdKkSQDM23ag8/kfP348AODcc8/FyZMnTcmVha7r2LJlC/x+\nvylnOkWw2WwYO3YsgM557S699FIAQHZ2Nk6dOmVK7ogRIxLK6vLRRx9hypQpAIBzzjkHeXl52Ldv\nX8K5ADB16lQAwL//+78jOzsbR44cSSivpaUF+fn5AIArrrjC1NeU2d/cLisrw+DBgzFjxgz8+te/\nhtNpTmWKyO9dmZX97W9/G3/7299w9OhRvP3228Eri8TrhhtuwOuvv44tW7bg8ccfx5tvvomNGzfi\nxhtvNKW9Dz74INauXYuFCxeaknf11Vfjgw8+wJEjR7B161bMnDnTlNwPP/wQFRUV+K//+q+wiccT\nJUVn6pe//CUmTZqEl156CTfeeKMpB6uu68EhuM8//xwnT57EsGHDEs699NJL8fe//x0AsG/fPtxx\nxx0JZ+bl5aGurg5A51m6RN9Mgc523nrrraitrcWrr76K2bNnY8gQ8y4ebZZvfOMb2LFjBwDztr2L\nyrU9NpsNc+fOxdq1a3H33XdbtjMpy1m+Sy+9FH/9618BdE5g/N5775ky1AMg+H7yxRdf4MSJEwl3\nfsaMGRNsa3Nzsyl/RHZJ9GLe3b366quYMmUK3nzzTdx444342c9+Zkqu3W5P+AxfqMzMTBw6dAgA\n8I9//MOUTLvdjptuugkVFRWYNWtWwsfsZZddhn379uHvf/87SkpK4PP58Oqrr6KkpCThtvr9fvz4\nxz/Gc889h/nz55t2wuOOO+7Aj370I0yfPh0OR18vI9fT/v37ceutt+J3v/sdzjvvvITzQklRgD5z\n5kz86Ec/wiuvvILLLrsMgwYNwunTpxM6NWmz2fCvf/0LU6dOxYkTJ7Bq1SpT2nrvvffirrvuQnFx\nMQKBAH71q18lnFlRUYG77roLkydPRk5ODoYOHWpKO8vLy1FcXAyv14sf/OAHpn3AmPlBVVZWhtLS\nUlx99dUYOXIkMjPNu8p5aDvN/nCVoaNms9mQl5eHOXPm4Mc//jFWrlxparaZOTabzdTny+zn/p57\n7kF5eTmmTJmCtrY2VFdX49/+7d8SzgWAvXv34pprroHX68WKFSsSbm9ZWRnuueceFBUV4Wtf+5qp\nHSCzj/sJEyZg7ty5SE9Ph6ZpePLJJ03JPffcc+H3+/Hwww9j6dKlCefNmDEDy5cvx5QpU3DllVea\ndsZj3rx5GDVqFH7+85+bkud2u9HS0gKbzYbi4mJ8+OGHGDBgQMK5Dz30EGbOnIm7774bn3/+OR56\n6CFTvi1fWlqKRx99FO+9917CWUDncOSpU6dQWVkJTdPwta99zbTL9HCeKbK0HTt2oLW1FdOmTcPe\nvXtRUlKCvXv3JrtZSfH888/jwIEDWLRoUbKbQv3kxRdfxJEjR1BVVSXsMS699FJ8+OGHwvKJ4nXo\n0CHceeed2Lp1a7KbEpUUw3ykrgsvvBBLly7F5MmTMWfOHDz77LPJblJS/PnPf8bTTz8tbNoFsi7R\nZzllOItK6tmwYQOmT5+OxYsXJ7spMeGZKSIiIqIE8MwUERERUQLYmSIiIiJKADtTRERERAlgZ4qI\niIgoAexMERERESWAnSkiIiKiBEgxAzoRqWXNmjXYvHkz2tra0NzcjAcffBA5OTlYvHgxNE1Da2sr\nfv/73yMtLQ0333wzvva1r6GlpQW33HIL9uzZg3feeQff+c538Pjjj+O9997DfffdB13XMWzYMKxe\nvRrt7e24+eaboes6Tp06hRUrVmDMmDHJ3mwikhTnmSIiy1mzZg3+8Ic/4I033sCnn36KmTNn4r77\n7sN1112H8847D0uXLoWu67j99tvxzW9+E83NzTh58iS+/vWv4+DBgxgwYABGjhyJw4cPY+LEiViz\nZg1Gjx6N1atXY9++fSgoKMCaNWuwdu1afPDBBzh16hQKCgqSvdlEJCmemSIiy7HZbBg7diwAYMSI\nETh16hTOP/98/Md//AfOOeccfP7555g8eTKAzlnyBw0ahLS0NJx77rnIzs4OZgCdV4mfP38+AOD0\n6dPIzc3Ftddei7179+K6665DWloaHnnkkSRsJRGlCnamiMiSQi9zous6ysvLsW/fPmRlZaG0tBSa\npvW4XySjR4/GSy+9hBEjRuCtt97Cv/71L2zbtg3nnXcetmzZgh07duD//b//h7/85S9Ct4eIUhc7\nU0RkSaGdJJvNhjvuuANTpkzB+eefj9GjR+PQoUMR79f95+XLl+OOO+5AR0cHbDYbVq9ejaFDh+KW\nW27B8uXL0dHRgccee6yftoqIUhFrpoiIiIgSwKkRiIiIiBLAzhQRERFRAlgzRURJZ7fb8Y1vfAMO\nhyP4u29+85t47rnnhD5uaWkpLr/8clRVVQl9HCJKbexMEZElbNu2DUOHDu3Xx7TZbFG/DUhEFA2H\n+YjIEnr7LsyHH36I6dOnY8KECRg3bhxqamoAdHa+Jk2ahBtvvBGXXnoprrzySmzatAnf/va3MXLk\nSNx///0AAE3TcN9992HixIm47LLLkJeXh/r6+h6P29vjEBFFwzNTRGQJbrc7bJhv69atyM7Oxo03\n3ojf/va3GDduHI4fP46CggLk5eUBABobG4OXgikpKcHSpUuxfft2HD9+HOeffz4eeOAB/POf/8Th\nw4exc+dOAMCyZcuwbNkyvPbaawA6z04FAoEejzNp0iTk5eUhPz+//3cGEUmFnSkisoRIw3wffPAB\n9u3bh7vuuiv4u1OnTqGpqQmjR4/G17/+9eA19S666CJkZ2fD6XRi2LBhcLlc+PLLLzFp0iQMGzYM\ny5cvx759+7Bt2za4XK6wx/n44497PE57ezuamprYmSKiqNiZIiLLCgQCyM7OxjvvvBP83eHDh5Gd\nnY2dO3ciIyMj7P5OZ8+3tNdffx0LFizAT37yE1x//fUYPXo0fvvb34bdR9O0Xh+HiCga1kwRkWVd\ncsklyMzMxO9+9zsAwGeffYYxY8aEdXqM6LqON998EzNnzsS9996LK6+8Eq+88goCgUDwdjMeh4jU\nxs4UESVdb9+oS09Px6uvvopVq1ZhzJgxmD59OpYsWYJJkyZFXC/SckVFBbZv345x48ahpKQE06ZN\nQ0tLC3RdD94/LS3N8HGIiIwYXk5G0zRUVlZi9+7dyMjIwKpVq3DRRRf1uN8999yDYcOGYenSpTGv\nQ0RERJQKDM9MeTwe+P1+1NfXY9myZREntlu5ciX27NkT/AsvlnWIiIiIUoVhZ6qurg4zZswAAOTn\n56OxsTHs9vr6evztb3/DvffeG6w9iLYOERERUSox7Ex5vd6wrxA7HA5omgYAOHToEBYvXoxf//rX\nYZPtGa1DRERElGoMp0ZwuVzw+XzBZU3TYLd39r/+9Kc/4ciRIygpKcHhw4dx8uRJjB492nCdUKNG\njUJzc7NZ20FEREQkzJgxY9DU1BT5Rt3A+vXr9dLSUl3XdX3Hjh16SUlJxPutWbNGf/jhh/u0TpSH\njuixxx5L6Haz12Nm/+aqnCkqV+VMUbkqZ4rKVTlTVK7KmfHmGvVbDIf5Zs2ahczMTBQWFqKqqgpP\nPvkk1q1bh+eff75P65ilpaXF8PZFixYJyWWmNXJVzhSVq3KmqFyVM0XlqpwpKlflTBG5hsN8NpsN\ny5cvD/tdbm5uj/vNnTvXcB0iIiKiVOWorq6uTsYDL1q0CH196OzsbOTk5JiaGUtuPFTOFJWrcqao\nXJUzReWqnCkqV+VMUbkqZ8aba9THMJy0UySbzQazH1pEJhEREZFRH0Oqy8ls27at19tcrqG93pZI\nLjOtk6typqhclTNF5aqcKSpX5UxRuSpnisiVqjNlxOc7muwmEBERkYJSZpiv63I2HOYjIiIis6XM\nMF93SaqdJyIiIgqSqjPVfYyza16pRDtVsozzypIpKlflTFG5KmeKylU5U1SuypmiclXOFJFrOM+U\n9TmRkTEAfv+pZDeEiIiIFCV1zVRXnVQo1kwRERGR2VK2Zopi40x3wpXtSnYziIiIUpJUnanIY5yJ\nj1TKMs4bb2bgdAC+4z5TM6Ox0vanQqaoXJUzReWqnCkqV+VMUbkqZ4rIlaozFVlHshtgaTwjRURE\nJBZrplJc6D7iviEiIopPStZMZTgzkt0EIiIiIrk6U6FjnP6AX0guM62bq3KmqFyVM0XlqpwpKlfl\nTFG5KmeKyJWqM0VERERkNdLWTEWqlwJYF9Qda6aIiIgSl5I1U0RERERWYNiZ0jQNFRUVKCgogNvt\nRnNzc9jt69evx1VXXYX8/Hw8/fTTwd+PHz8ebrcbbrcbZWVlpjVWlrFTq2ZGuoYh96kcmaJyVc4U\nlatypqhclTNF5aqcKSLXcMZLj8cDv9+P+vp6NDQ0oKqqCh6PBwAQCATw8MMPY9euXcjKykJeXh7m\nzJmDgQMHAgBqa2tNbWgo15AhwrJTlsOBRYsWJXxRaCIiIgpnWDNVVVWF/Px8zJ49GwAwYsQIHDhw\nIHi7pmmw2+344osvMHnyZLzzzjt4//33MXfuXIwcORIdHR346U9/ivz8/J4PnEDNVG/1UgDrgrrr\nvq+4f4iIiPrOqN9ieGbK6/XC5To7g7bD4Qh2oADAbrdjw4YN+OEPf4jvfve7GDhwILKysrBw4UKU\nlZVh7969uPbaa/HJJ58E1wlVWlqKnJwcAEB2djbGjh2L4uJiAGdPwfW2HE209VVZ7o1V2sdlLnOZ\ny1zmshWXu35uaWlBVLqB+++/X3/55ZeDyyNGjIh4P03T9DvvvFOvqanR29vb9ba2tuBtV111lX7g\nwIEe60R56Ihqa2uD6/b2Lx5duWaySma0/SOinaJyVc4UlatypqhclTNF5aqcKSpX5cx4c436GHaj\njlZhYSE2b94MANi5cyeuuOKK4G1erxdXX301/H4/bDYbsrKy4HA4UFNTg6qqKgDAwYMH4fV6cd55\n50Xv1SFygTQRERGRlRnWTOm6jsrKSuzevRsAUFNTg127dqG1tRXl5eV4/vnn8cILLyAtLQ1jxozB\nM888g0AggHnz5mH//v0AgCeeeAITJ07s+cARxh5jraNizVTsWDNFRESUOKM+iqUm7bQ5bBg0aBC8\nx7y9rudMdyJwOtDr7ewshAvtTDngwKBBg3DUezSJLSIiIpKPPJN2aoDvuK/Xm7dt22bYkYpXaLFZ\nKmcGEMAx3zFTM3tjxe2XOVNUrsqZonJVzhSVq3KmqFyVM0XkWqszRURERCQZaw3znRmSMmqSUb1U\ntHVVFGl/cR8RERH1jTzDfERERESSkaozNfCcgUJyZRnnlSVTVK7KmaJyVc4UlatypqhclTNF5aqc\nKSJXqs5U24m2ZDeBiIiIKIz1aqbs6HV6hGj1UgDrgbpjzRQREVHi5JlnKuSDP1Kz2JnqO3amiIiI\nEscC9ChkGeeVJVNUrsqZonJVzhSVq3KmqFyVM0XlqpwpIpedKSIiIqIEcJgvxXGYj4iIKHEc5qMQ\nTrhcQ5PdCCIiopTBzhTkGec1J7MDPt/ZCx3LMh6teqaoXJUzReWqnCkqV+VMUbkqZ4rIZWeKiIiI\nKA1BtUoAACAASURBVAGsmUpxve0z7iciIqLYsWaKiIiISBB2piDPOK8smaJyVc4UlatypqhclTNF\n5aqcKSpX5UwRuYadKU3TUFFRgYKCArjdbjQ3N4fdvn79elx11VXIz8/H008/HdM6RERERKnEsGZq\nw4YN2LRpE1avXo2GhgYsXboUHo8HABAIBHDppZdi165dyMrKQl5eHurq6rB9+3Zs3LgRNTU1PdYJ\ne2DDmiln5/X5vF/2cnvvWAsUjjVTREREiTOqmXIarVhXV4cZM2YAAPLz89HY2Bi8zeFw4KOPPoLd\nbscXX3yBQCCA9PR01NXV4dprr424TuzCv75PREREZFWGw3xerxculyu47HA4oGna2ZXtdmzYsAHj\nxo2D2+1GVlZW1HWsSJZxXvMyz07cKct4tOqZonJVzhSVq3KmqFyVM0XlqpwpItfwzJTL5YLP5wsu\na5oGuz28/3XDDTdg1qxZKC0txdq1a2Nap0tpaSlycnIAANnZ2T1u37ZtG4qLi4M/90XX/buv31/L\nTU1Npuc3NTX1ef3IOs/8hd4nVbc/1v2T7OOF22+8LOJ4CpXs7UuV15Pq29+F22/u9otYjmX7u35u\naWlBNFFrprrqn3bu3IklS5bg9ddfB9B51mrmzJnYunUr0tPTUVlZiUmTJiErK6vXdcIeOMo8U0DP\nuh7WTPWd0T7jviIiIopN3DVTs2bNwtatW1FYWAgAqKmpwbp169Da2ory8nLMmTMHRUVFSEtLw5gx\nYzBnzhwA6LEOERERUcrSkyTSQwMI+xft9kj/4lFbWxvXejJkRttXItopKlflTFG5KmeKylU5U1Su\nypmiclXOjDfXqI9hWIBORERERMYse20+gDVTZmDNFBERUeJ4bT4iIiIiQdiZQt+nXWBmcnJVzhSV\nq3KmqFyVM0XlqpwpKlflTBG5lu1MOeBAZkZmcNmV7TK4NxEREVFyWLpmCjhb1xNLvVTo/akTa6aI\niIgSx5opIiIiIkHYmYI847yyZIrKVTlTVK7KmaJyVc4UlatypqhclTNF5LIzRURERJQA1kylONZM\nERERJY41UxSRy8VvSBIRESWKnSnIM85rdqbP55NmPFr1TFG5KmeKylU5U1SuypmiclXOFJHLzhQR\nERFRAlgzleKi7TfuLyIiouhYM0VEREQkiMU7U05kZAwQ/iiyjPPKkikqV+VMUbkqZ4rKVTlTVK7K\nmaJyVc4Ukes0Nc10HfD7O5LdCCIiIqJeGdZMaZqGyspK7N69GxkZGVi1ahUuuuii4O3r1q3Dr371\nKzidTlx++eX4zW9+A5vNhvHjx2Pw4MEAgAsvvBAvvPBCzweOsWYK6KzrYc1UfFgzRURElDijminD\nM1Mejwd+vx/19fVoaGhAVVUVPB4PAKCtrQ2PPvoo9uzZg8zMTNx2223YtGkTpk2bBgCora01bQOc\nToufQCMiIiJlGdZM1dXVYcaMGQCA/Px8NDY2Bm/LzMzEjh07kJmZCQDo6OjAgAED8O677+LkyZOY\nPn06pk6dioaGhoQbGQgEEs4wIss4r/mZTgwcOMjkzE5ybL88maJyVc4UlatypqhclTNF5aqcKSLX\nsDPl9XrDZsl2OBzQNA1A5+mu4cOHAwCeeeYZnDhxAtdccw2ysrKwcOFCbNmyBStWrMDtt98eXCc+\nPCslTgfa2lqT3QgiIiKpGfZUXC4XfD5fcFnTNNjt9rDlBx54AJ9++inWr18PAMjNzcWoUaMAABdf\nfDGGDRuGQ4cO4YILLuiRX1paipycHABAdnZ2L62IrwC9q9dZXFwcdbm4uLhP949luet3ZuV170X3\n9f7RpOr2J2NZxPGk+vZ3/c4K25dK2x+aze23xvETabnrdypuv4jjKdbt7/q5paUF0RgWoG/YsAEb\nN25ETU0Ndu7ciSVLluD1118P3l5eXo7MzEw8/fTTwULnlStXYvfu3Xj22Wdx8OBBTJ06Fe+//35Y\nJwzoWwF6X7CgOlws+5T7jIiIyFjck3bOmjULmZmZKCwsRFVVFZ588kmsW7cOzz//PN555x2sXr0a\ne/bswbe+9S243W68+uqrKCsrg9frRVFREW655RbU1NT06EhZTfdeqkqZosiy/bJkispVOVNUrsqZ\nonJVzhSVq3KmiFzDYT6bzYbly5eH/S43Nzf4c2+F4S+99JIJTSMiIiKyPstfm6+vOGQVjsN8RERE\nieO1+YiIiIgEYWcK8ozzsmZK3UxRuSpnispVOVNUrsqZonJVzhSRy84UERERUQJYM5XiWDNFRESU\nONZMEREREQnCzhTkGedlzZS6maJyVc4UlatypqhclTNF5aqcKSKXnSkiIiKiBLBmKsWxZoqIiChx\nrJkiIiIiEoSdKcgzzitq7Li6utr0TFm2X5ZMUbkqZ4rKVTlTVK7KmaJyVc4UkcvOlOpswKJFi5Ld\nCiIiImmxZirFxbpPr776aqm+LUhERNSfWDNFUW3fvh3FxcXJbgYREZF02JmCPOO8ws4cnTkKtm/f\nblqkLNsvS6aoXJUzReWqnCkqV+VMUbkqZ4rIZWeKAA2Aw5HsVhAREUmJNVMprq/7lPuPiIioJ9ZM\nEREREQli2JnSNA0VFRUoKCiA2+1Gc3Nz2O3r1q3DxIkTMXnyZMyfPx+6rkddx4pkGecV/m07hwMZ\nmZmmRMmy/bJkispVOVNUrsqZonJVzhSVq3KmiFyn0Y0ejwd+vx/19fVoaGhAVVUVPB4PAKCtrQ2P\nPvoo9uzZg8zMTNx2223YtGkTTp8+jfb29ojrkMUFAvAHAsluBRERkVQMa6aqqqqQn5+P2bNnAwBG\njBiBAwcOAOisrTly5AiGDx8OAJg9ezbKy8vxxhtv9LpO2AOzZqpfxLNPuQ+JiIjCGdVMGZ6Z8nq9\ncLlcwWWHwwFN02C322Gz2YIdqWeeeQYnTpzAtGnT8PLLL/e6TnelpaXIyckBAGRnZ/d5w4x0ncLr\nmjtJ1eV4WaX9XOYyl7nMZTWXt23bhurq6qQ9ftfPLS0tiEo3cP/99+svv/xycHnEiBFhtwcCAb2q\nqkq/7rrr9La2tpjW6RLpoQEk/C8etbW1ca0nQ2Z/7UMz2srM/s9VOVNUrsqZonJVzhSVK0MmAEvt\nU6PPx56ni0IUFhZi8+bNAICdO3fiiiuuCLv93nvvRXt7O1555RVknilcjrYOERERUSoxrJnSdR2V\nlZXYvXs3AKCmpga7du1Ca2srJkyYgAkTJqCoqCh4/wULFuB73/tej3Vyc3N7PjBrpvoFa6aIiEhG\nRjVKyWDUHk7ameLYmSIiIhnJ1JkyHOZTRWixmWqZosiy/bJkispVOVNUrsqZonJVzhSVq3KmiFx2\npoiIiMh67EDJd0uS3YqYcJgvxfV9nzoBBKDrmojmEBERxaTr88sqn+txzzNFKupIdgOIiIikwmE+\nyDPOy5opdTNF5aqcKSpX5UxRuSpnisqVJVMU1kxRP3DC5Rqa7EYQERFJgTVTKS6RfarrOqqrq1Fd\nXW1eg4iIiGIgU80UO1MpLpF9mp6eBb//BPcpERH1qyFDXDh2zAfAOp/rnGcqClnGjvt7PNrvPxH3\nurJsvyyZonJVzhSVq3KmqFyVM0XlWj2zqyMlCmumiIiISFmubBdc2a5kNyMMh/lSHPcpERHJJvSz\nq7e+Qn9/NnGYj4iIiEgQdqZg/bFjkZmiyLL9smSKylU5U1SuypmiclXOFJUrS6YorJkiIiIishDW\nTKU47lMiIpINa6aIiIiIFMLOFOQZO1Z5PFr1TFG5KmeKylU5U1SuypmicmXJFKVfa6Y0TUNFRQUK\nCgrgdrvR3Nzc4z4nT55EYWEhPv744+Dvxo8fD7fbDbfbjbKyMlMbTERERKqwB68VO9TlgtPhSHJ7\nIjOsmdqwYQM2bdqE1atXo6GhAUuXLoXH4wne3tjYiIqKChw8eBDbtm1Dbm4uTp06hYKCAvzjH/8w\nfmDWTPUL7lMiIpJN988uXdcj/q4/xV0zVVdXhxkzZgAA8vPz0djYGHa73++Hx+PBJZdcEvzdu+++\ni5MnT2L69OmYOnUqGhoaEm0/ERERKay4uDjZTTBk2Jnyer1wuc5O2e5wOKBpWnC5oKAAI0aMCFsn\nKysLCxcuxJYtW7BixQrcfvvtYetYkSxjxyqPR6ueKSpX5UxRuSpnispVOVNUriyZXbZv3x627HB0\nXgw5Xma31Wl0o8vlgs939mKDmqbBbjeuWc/NzcWoUaMAABdffDGGDRuGQ4cO4YILLuhx39LSUuTk\n5AAAsrOz+9p2Q107qqs329/LTU1Npuc3NTX1eX2zyLr9se6fZB8v3H7jZRHHEwCsWbMGxcXFSd++\nVHk9qb79Xbj95uYBnWd+Qk/LBAJnL4Ysavu7fm5paenRnu6i1kxt3LgRNTU12LlzJ5YsWYLXX3+9\nx/3cbjdWrlyJ3NxcrFy5Ert378azzz6LgwcPYurUqXj//fd7dMJYM9U/uE+Jemez2fDYY4+huro6\n2U0hohC9f3Y5AXQEl/rz88moZsqwM6XrOiorK7F7924AQE1NDXbt2oXW1laUl5cH7xfamero6MC8\nefOwf/9+AMATTzyBiRMnxtQofvCbj/uUqHfJmvyPiIzF+tlllc4U9CSJ9NAAEv4Xj9ra2gS3xrqZ\n3KepkSkqV+XM9PQsw2P8scceiytXlu3ncSpHpqhcq2eK/HyKt61Gj8dJO4lISX7/CcPbFy1a1E8t\nIaJQruz4C8uThdfmS3Hcp0SRGV37q/P2NAwaNAhe75f92Swi5fXlc6s/P594bT4ioj7o/FZPB3y+\no8luChEZTzxgCexMQZ75NkRkiiLL9suSKSpX5Uwj27fXxb2uLNvP41SOTFG5smR26oh+lz4yu63s\nTBER9WD+mzcRpS7WTKU47lOiyIxqpqLVUxGROKyZIiKSjV3Obw8RkXWwMwV5xo5ZM6VupqhclTOD\nNMB33Bf9fjGSZft5nMqRKSr3/7d370FRnecfwL9ndxGMsqI2saZUiXEQsVHHWFFusjUJSsqQGK+N\nVgxiQCe1yM/RdMwETay2mca00xQvFNBM24xtDQZvjDREvJHGtBnsaCqFYkejaTXKolyWvfz+WFm5\nLrDnPbt79nw/M5u47J5n3/c9t3fP++x71BLTLRlfhJgzRURERCT4i5AczJkKcGxTop513Tc6bufM\nmSLynYGet7y1jzJnioiIiEgh7ExBPWPHzJnSbkyl4mo5Zm+Mw4fLWl4t9ed2qo6YSsVVS0ylMGeK\niEhBjXfu+LoIRKQyzJkKcGxTop71ljPlLpeKiMQyGkcAgOsemMGDg2FpsQwohj/kTLEzFeDYpkTd\n6XTBcDg6H7DZmSLyvvb9rbf9rz/8oTPFYT6oZ+xYy+PRWo+pVFytxuzakRJJDfVXKqZScbUcU6m4\naompFOZMEREREfkRt8N8drsda9asQXV1NYKDg1FQUIDHH3+803uamprw9NNPo7CwEBMmTOjXMgCH\n+byFbUrUXbf9QgeEhoYCkr5bAjq3fyLlaGKYr6SkBBaLBWfPnsWOHTuQm5vb6fXz588jMTER//73\nv10N0NcyRER+5/5MyvwlHxF5wm1n6syZM5g7dy4AICYmBufPn+/0usViQUlJCSZMmNDvZfyRWsaO\ntTwerfWYSsXVckylqKX+3E7VEVOpuGqJqRTRZTW4e9FsNsNofHATQb1eD7vdDp3O2QeLjY0d8DJE\nREREgcRtZ8poNKKx8cFNBPvTKRrIMunp6YiIiAAAhIWF9bfM/dLe60xKSurzeVJS0oDe35/n7X8T\nFa9rL3qg75dLrfX3xXMltiet17/9byLiDTcOfIbzQKp/x+ee1I/19/7z9r8Fav0BHR56KBQhBs9y\nfJWqf/u/6+vr+yyD2wT0gwcPorS0FEVFRaiqqsIbb7yBI0eOdHufyWTC7t27ERkZ2e9lmIDuHWxT\nos789SaqRFqkpnOUxwnozz//PEJCQhAXF4fc3Fzs3LkTf/jDH7B3794BLePvuvZStRRTKWqpv1pi\nKhVXazE7ftNXij/XX+mYSsXVckyl4qolplJEl9XtMJ8kScjPz+/0t8jIyG7vq6iocLsMEZE/OHn6\ntK+LQEQ9MACw+roQMvB2MgGObUr0gD/PYUOkRWo6R/F2MkREREQKYWcK6hk71vJ4tNZjKhVXyzG7\nEXQ0VEv9uZ2qI6ZScdUSUymiy8rOFBERANh9XQAiUivmTAU4timRkzHMiMaGxr7f2AW3fyLlqOkc\n5S5nip2pAMc2JXLydF/g9k+kHDWdo5iA3ge1jB1reTxa6zGViqvlmEpRS/25naojplJx1RJTKcyZ\nIiIiIvIjHOYLcGxTefLy8pCXl+frYpAAHOYj8j9qOkcxZ0rD2KbyuNt5SF3YmSLyP2o6RzFnqg9q\nGTvW8ni01mMqFVfLMZWilvpzO1VHTKXiqiWmUpgzReQlI4xGXxeBiIhUgMN8AY5t6rn2ttNq/QMN\nh/nUJykpSVVXO2jg1HSO4jAfEWmaMYxXGX1B7o83Tp48KaYgRApjZwrqGTtW0zc0tdRfLTGViquV\nmJ7MfO4pf6y/t2J2jbvljS1COrJqqT/3ffExlcKcKSIvMBpH+LoIROpn925HlshXmDMV4NimnunY\nblqsf6CRsx9w/XtObt4hpyYJfGo6RzFnioiIVMU5PGjgVWJSBbedKbvdjqysLMTGxsJkMqG2trbT\n66WlpZgxYwZiY2NRUFDg+vu0adNgMplgMpmQkZGhTMkFUsvYsZbHo+XGTEpKEh6zN8ybUEdMpail\n/v6+nTqHB61obLytmvr7e5uqMaZSRJfV4O7FkpISWCwWnD17Fp988glyc3NRUlICAGhra8P69etx\n/vx5PPTQQ4iLi0NaWhpCQ0MBABUVFUILSiRH+6+CdLpgDB06BGbz1z4uERERBQq3OVO5ubmIiYnB\nokWLAADh4eG4evUqAKC6uhobN27EsWPHAADr169HbGwsvv3tb2PFihUYO3YsrFYrfvrTnyImJqb7\nBzNnyiu03qbt89RIegmwP/h7xzpFRESgvr6+03LMmQocxjCjrCRorn/PycmZ4j6oDWo6R7nLmXJ7\nZcpsNsPYYRZovV4Pu90OnU4Hs9mMYcOGuV4LDQ1FQ0MDoqKisGHDBmRkZKCmpgbz5s3D5cuXodN1\nH1FMT09HREQEACAsLMyTuvWq/RJe+/COVp+L4i/1Gejzk6dPuzpSOh1gt3evz5UrV7otHyj1V/K5\nyWTC66+/jry8PL8oT2/PRfyazJ/qo6bnAAC9Hg8NHYqjhw97fPzyl/rwuTLP5VJy+/3444+7fdnu\nkcON9evXOw4cOOB6Hh4e7vp3dXW1IyUlxfU8JyfH8ec//9nR2trqaG5udv19xowZjqtXr3aL3dNH\nA5D98ERFRYVHy6khptbbtK86VVRU9LkteqOcvorracxBIYMc0PXcPv5UTodD/j7gzbKqPWbXuHLa\nseOyaqm/FvZ90THVdI5y91luE9Dj4uJw9OhRAEBVVRUmT57sei0qKgo1NTW4ffs2LBYLKisrMWvW\nLBQVFSE3NxcA8OWXX8JsNmP06NHuPoYoYMmdAdpfWVosnYZNiUQKHhzs6yIQDYjbnCmHw4E1a9ag\nuroaAFBUVITPPvsMd+/eRWZmJg4fPoytW7fCbrcjIyMD2dnZsFqtWLlyJa5cuQIA+PnPf46ZM2d2\n/2DmTHmF1tu05/obEBoaCgOsaG5tRYvF4qqjM7+mGYDV9W5P6x88ZAgsra3QAbBZrX2+X03a21Wv\nBwyGQWhpaXW91lMOWl5ens86lnL3ATVv/77mad5T13XGdRC41HSOcpczxUk7A5zW27Rf9dc5c/7M\nd8w9vt/T+gdyAq27k13Xfbs9AdxXbcDOlO+wM0V9UdM5ipN29qFrsqOWYipFNfXX6YTf8kKp9aSa\nNu1CZAK4GqhlPXl1O9XrYRw+XGxMmdQSU6m4aompFNFlZWeKtM3OxB/RdAAkvSTkBrcUIGw2NN65\n06+3BgcPVbgwROJxmC/Aab1NB1J/h8PBYb5+6tROOmBQ0CC03s+b6lpvufdnkyM4eCgslnuyYgTa\nuvMmT4brRO6D5P/UdI7iMB+RL+mA4JDA+XVSt+EaO2BptQAAQgy9TF2nA/QGvcIl605uR4r8Ae/P\nR/6PnSmoZ+xYy+PR4mN2OekL7PB0K2eHzobQuAJ4EtPdcE2rzdbp+ZAh99vUDthtng+pcttXR0y5\ncXueEsF5fz4ROv6iVCttqvaYSmHOFJEQXaYqENTh6Y/2Wf8Dng5oaurYpgYhl/QpcFlalNsHDYMM\n2LJli2LxSduYMxXgtN6mvqx/b/ki7sbd1aC3ubsGDTLAYmlxu6wBgGHQIDS3trp9nyha3/59qad7\nIvbVlu7Wl9z1IEkSoAN0kg6vbX4tYCfUVRs17aOcZ0rDtN6mA6m/Xg90GaUCILYz1Z4QrZU27Y03\nD35yqXld+VK3tu8wn1u/l+lAznoYMiS4w1VSAwywwqHTwdrTDk9epaZ9lAnofVDL2LGWx6OVitmR\nqONqz+U0QJJ0shKi/b9N3d43XRZu++qI6Tau4PncBqLzcLMVVgA2BaZFYc6U+JhKYc4UkSpZ4bwn\nZyALrFvmkHe5+8WeDjoMNw5s0s+kpCTk5eVBZ+j9NJeUlDSgmES94TBfgNN6m/qq/j3li8iN6S/U\ntE2pqayBpre27zXnpB/raiDrIkiSYIUBvXXy21/h+vUtNe2jHOZTqbCwMH5zUilfDWcQaUnw4OBe\nZ9q3dvhv768TicHOFPx37Lih4R5OnjwpNKa3+GubeoPW8yaUoJZyAupZT77ZTsVOwGlpscj84iK2\nPFrf97W8n7Iz5aeclz6tAAzQ65VL7CUikkMyGBAcEtLPd/c8AWeQLkhWGTyf5kDchKCkbcyZ8kOe\nzM/SG623qa/q39fnsk2ZM6V2kv5+297/UdxAjueeHfsN0OkcsNkeDNBJkuSa00TO+YTr2HfUtI8y\nZ0plmG9DRP7MMMjg7ES1zy6g10Pf230ZhbHCbu9h/hLZc5rw6j/Jx84U1DB2bEBw8GBNj0crFVMJ\nWs+bUEJ7OdUwa7Va1pOcmLa2Lh0Ymw32+50aZbepBzlOvSWeD1wvnTQPaH3fV8vxBPByzpTdbkdW\nVhZiY2NhMplQW1vb6fXS0lLMmDEDsbGxKCgo6Ncy/ujzzz/3i5i6oKAHl847scJiaVGknErxlzb1\nhTlznlEkrpbbtL2cW958E5LOv78DqmU9iY/pnJj2888/F5rU3Zkzxyl4cLDQK/h6PRDS5UbnnvyS\nWqn9SR3rXz3HE0B8Wd0elUpKSmCxWHD27Fns2LEDubm5rtfa2tqwfv16nDhxAidPnsSePXvw3//+\nFyUlJWhtbe1xGX91584dv4jpsFofXDbvSq9H7v/9n7xCeZG/tKkv2O1tisTVcpu6ymmzAX6a32I0\njoDROALvvPMOwsLChMb2p3Xfe46LFYAeOTk5Cid1G4TfENlmA1rbLJD0EiTJ+aW24y+pO3J3dVSp\n/cmf1r+3YypFdFnddqbOnDmDuXPnAgBiYmJw/vx512uXLl3C+PHjMWzYMAQFBSE+Ph6VlZU4c+YM\n5s2b1+MyJIPNBrvdPoBfzZAvKPeNnFz0+m77gS+H/4xhRgRJEhobb6OxsRH/ufIfNDTcQ3DwYJ+V\nyXe8MXuTQp/hygHr/Uut0TgCW7ZsY44VdeO2M2U2m2E0PhiX1uv1sN+/n5HZbMawYcNcr4WGhqKh\nocHtMv6qvr5eFTHhcMDS1gpJL8FguP8N6v4jSJKE/CpCFNW0qQeCBwc7v8EaDM6Haz1Iin4jD+Q2\nNRpHdG7T9isEkvP/W7ZsgSTd//m8zebaDzq+7k2SXnKVsbGhscPp3QoHHACssFhbXFc5HtQnyKMT\ncSCvezVx7t9W6Oy2+/u+85jbfjxu305FH4u9vf4lg8Gj4fTeYrZ/2fHmJNTtxwbXPtjp2CKhvr4e\nBkMIJEnnPP5I0oPX9RKCuwz79snhxvr16x0HDhxwPQ8PD3f9u7q62pGSkuJ6npOT4/jTn/7kdpmO\npkyZ4oDzZmV88MEHH3zwwQcffv2YMmVKr/0lt1+R4uLiUFpaioULF6KqqgqTJ092vRYVFYWamhrc\nvn0bQ4YMQWVlJTZs2ABJknpdpiM1JaoRERER9cbtpJ0OhwNr1qxBdXU1AKCoqAifffYZ7t69i8zM\nTBw+fBhbt26F3W5HRkYGsrOze1wmMjLSO7UhIiIi8jKfzYBOREREFAj8e8IWIiIiIj+n2c5UcXEx\nfvGLX/i6GB554oknfF2EXtlsNphMJsTHx/v1nCPFxcV49dVXFYldVlaGvXv3+nVcJeuvZGwiEVpb\nW/Hb3/7W18WgAKLZyTL8aRqBQHLt2jU0Njb6/fxiSq7/5ORkv4+rZP25b5G/u379OgoKCpCRkeHr\nolCAUMWVKbPZjMWLFyM5ORlPPPEEdu3aJSRuWVkZ5syZg5iYGBw7dkxIzObmZixZsgSxsbGYPn06\nqqqqZMdsamrC/PnzkZiYiJUrV8Im+8aezhnsMzIyMHv2bCQkJPQ62+9AZWVloaamBtnZ2ULiNTc3\nY+HChYiPj8fSpUvxrW99S0hcAKiqqkJycjKmTZsm9EqSUldmlIj7v//9D/Hx8aioqBAaV4Ti4mK8\n8MILePbZZzFt2jTs27cP8+fPR2RkJD788ENZcRctWoTU1FRER0dj3759ssva1taGZcuWIS4uDjNn\nzsSBAwdkxwScZV2yZAmeeuopTJ06FSUlJbJj3r17F8899xwSEhKwcuVKxMXFCSips6yJiYlISEjA\nRx99JCTm5cuXERcXh6SkJCQmJuLq1atC4m7btg0XL17Em2++KSRex32zpaUFjz32mOyYL7zwAior\nKwEA58+fx3PPPScr3vTp03Hz5k20tbXBaDS6flH/5JNPoq1N3l0b3n33XfzgBz8AAKxYsQL5xclL\nIAAACOhJREFU+fmy4gHAiy++iKNHjwJwThL+/e9/X3bMXbt2wWQywWQyITw8XGhnWhWdqdraWixZ\nsgRlZWUoKyvD22+/LTumw+HAI488gr/85S8oLS3F2rVrBZTUubLGjRuHs2fP4v3338cnn3wiJOak\nSZNQWVmJTZs2wWKRfyuFgoICPPzwwzh58iRKSkqE1T8/Px/R0dFCdiYA2LNnDx5//HGcPn0aeXl5\n+Oqrr4TEdTgcCAoKQllZGT744AO88847QuICyl2ZER33xo0bSEtLw86dO2EymYTGFuXevXs4cuQI\nNm7ciPz8fBw8eBB79uxBUVGRrLhmsxmlpaX48MMPsWPHDtnl3L17N0aNGoUzZ86gvLwcmzdvxq1b\nt2THlSQJdrsd5eXlOH78OH784x/LngT5N7/5DaKjo3Hq1Cnk5OTgxo0bssvZbuTIkTh16hS+973v\nCYlXXl6OmTNnory8HFu2bEFDQ4OQuJs3b0Z0dDQ2b94sJJ4S+3xmZqaro19UVITVq1fLipeWlobj\nx4/j9OnTGDduHE6cOIGLFy8iMjISQUFBsmKvXbsWzc3NSE9Ph9VqFfJlumP9CwsLsWrVKtkxs7Ky\nUFFRgbfeegsRERFC+hLtVNGZeuSRR1BSUoLly5dj27ZtsnvRgHPjT0xMdMU3Go1CDn6XL1/GzJkz\nAQDjx4/HunXrZMf85z//ienTpwMAJkyYgIcfflh2zAsXLuDo0aMwmUxYsGABbDYbvv76a9lxRf84\n9IsvvsCsWbMAiKs74Fz/06ZNAwCMGjUKTU1NQuKqhcPhQFlZGSwWi5ArnUqQJAlTp04FAAwbNgwT\nJ04EAISFhaGlpUVI3PDwcFmx2n3xxRdISEgAAAwdOhTR0dGoq6uTHRcA5syZAwD45je/ibCwMNy8\neVNWvPr6esTExAAAJk+eLHSfEj0NTkZGBoYNG4a5c+fi17/+NQwGMZkpSv6IXVTsZ555Bn/9619x\n+/ZtnD592nWbNk/Nnz8fR44cQVlZGbZt24by8nKUlpZiwYIFQsq7ceNG7N+/Hxs2bBASb/bs2bh4\n8SJu3ryJEydOIDU1VUjcS5cuISsrC3/84x873cVFLlV0pt5++23MmjUL7733HhYsWCBkY3U4HK4h\nuGvXrqGpqQkjR46UHXfixIn49NNPAQB1dXVYvny57JjR0dE4c+YMAOdVOrkHU8BZzqVLl6KiogKH\nDh3CokWLMHz4cNlxRfvOd76Dc+fOARBX93Zazu2RJAkrVqzA/v37sWrVKr/tTKrlKt/EiRNx6tQp\nAEBjYyMuXLggZKgHgOt48tVXX+HevXuyOz9TpkxxlbW2tlbIl8h2Og9uQeLOoUOHkJCQgPLycixY\nsAA/+9nPhMTV6XRCb3MWEhKC69evAwD+9re/CYmp0+mwcOFCZGVl4fnnn5e9zU6aNAl1dXX49NNP\nkZKSgsbGRhw6dAgpKSmyy2qxWJCTk4M9e/YgOztb2AWP5cuX45VXXkFycjL0er3smFeuXMHSpUvx\nu9/9DqNHj5YdryNVJKCnpqbilVdewQcffIBJkyYhNDQUbW1tsi5NSpKEW7duYc6cObh37x4KCgqE\nlPXll1/GSy+9hKSkJNhsNvzyl7+UHTMrKwsvvfQS4uPjERERgREj5N9M9+WXX0ZmZiaSkpJgNpux\ndu1aYScYkSeqjIwMpKenY/bs2Rg7dixCBN7ouWM5RZ9c1dBRkyQJ0dHRWLZsGXJycrB7926hsUXG\nkbrce1JufNHrfvXq1cjMzERCQgKam5uRl5eHb3zjG7LjAkBNTQ2eeuopmM1m7Nq1S3Z5MzIysHr1\naiQmJmLMmDFCO0Cit/vp06djxYoVGDRoEOx2O3bu3Ckk7qhRo2CxWPDqq69i+/btsuPNnTsX+fn5\nSEhIwJNPPinsisfKlSsxfvx4vPXWW0LimUwm1NfXQ5IkJCUl4dKlSxg8WP4NuTdt2oTU1FSsWrUK\n165dw6ZNm4T8Wj49PR2vvfYaLly4IDsW4ByObGlpwZo1a2C32zFmzBghOZMAJ+0kP3fu3DncvXsX\nTz/9NGpqapCSkoKamhpfF8sn9u7di6tXr3r9pr7kO/v27cPNmzeRm5ur2GdMnDgRly5dUiw+kaeu\nX7+OH/7whzhx4oSvi9InVQzzkXaNGzcO27dvR3x8PJYtW4Z3333X10XyiWPHjuFXv/qVYtMukP9S\n+iqnGq6ikvYcPHgQycnJ2Lp1q6+L0i+8MkVEREQkA69MEREREcnAzhQRERGRDOxMEREREcnAzhQR\nERGRDOxMEREREcnAzhQRERGRDKqYAZ2ItKW4uBhHjx5Fc3MzamtrsXHjRkRERGDr1q2w2+24e/cu\nfv/73yMoKAiLFy/GmDFjUF9fjyVLluAf//gH/v73v+PZZ5/Ftm3bcOHCBaxbtw4OhwMjR45EYWEh\nWltbsXjxYjgcDrS0tGDXrl2YMmWKr6tNRCrFeaaIyO8UFxfj/fffx/Hjx/Gvf/0LqampWLduHdLS\n0jB69Ghs374dDocDL774Ir773e+itrYWTU1NeOyxx/Dll19i8ODBGDt2LG7cuIGZM2eiuLgYUVFR\nKCwsRF1dHWJjY1FcXIz9+/fj4sWLaGlpQWxsrK+rTUQqxStTROR3JEnC1KlTAQDh4eFoaWnBo48+\nih/96EcYOnQorl27hvj4eADOWfJDQ0MRFBSEUaNGISwszBUDcN4lPjs7GwDQ1taGyMhIzJs3DzU1\nNUhLS0NQUBA2b97sg1oSUaBgZ4qI/FLH25w4HA5kZmairq4OQ4YMQXp6Oux2e7f39SQqKgrvvfce\nwsPDUVlZiVu3buHjjz/G6NGjUVZWhnPnzuEnP/kJPvroI0XrQ0SBi50pIvJLHTtJkiRh+fLlSEhI\nwKOPPoqoqChcv369x/d1/Xd+fj6WL18Oq9UKSZJQWFiIESNGYMmSJcjPz4fVasXrr7/upVoRUSBi\nzhQRERGRDJwagYiIiEgGdqaIiIiIZGBnioiIiEgGdqaIiIiIZGBnioiIiEgGdqaIiIiIZGBnioiI\niEiG/wcHdEHBl0K5WAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "fig, axes = plt.subplots(2, 1, figsize = (10, 8))\n", "letter_prop['M'].plot(kind = 'bar', rot = 0, ax = axes[0], title = 'Male', legend = False)\n", "letter_prop['F'].plot(kind = 'bar', rot = 0, ax = axes[1], title = 'Female', legend = False)" ] }, { "cell_type": "code", "execution_count": 153, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.subplots_adjust(hspace = 0.25)" ] }, { "cell_type": "code", "execution_count": 157, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dnym
year
1880 0.083055 0.153213 0.075760 0.101907
1881 0.083247 0.153214 0.077451 0.101411
1882 0.085340 0.149560 0.077537 0.099000
1883 0.084066 0.151646 0.079144 0.096663
1884 0.086120 0.149915 0.080405 0.093774
\n", "

5 rows × 4 columns

\n", "
" ], "text/plain": [ " d n y m\n", "year \n", "1880 0.083055 0.153213 0.075760 0.101907\n", "1881 0.083247 0.153214 0.077451 0.101411\n", "1882 0.085340 0.149560 0.077537 0.099000\n", "1883 0.084066 0.151646 0.079144 0.096663\n", "1884 0.086120 0.149915 0.080405 0.093774\n", "\n", "[5 rows x 4 columns]" ] }, "execution_count": 157, "metadata": {}, "output_type": "execute_result" } ], "source": [ "letter_prop = table/table.sum().astype(float)\n", "dny_ts = letter_prop.ix[['d', 'n', 'y', 'm'], 'M'].T\n", "dny_ts.head()" ] }, { "cell_type": "code", "execution_count": 158, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.close('all')" ] }, { "cell_type": "code", "execution_count": 159, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 159, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAFECAYAAADcGAMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVOXbB/DvsO+LbO6gCIob5oZJIogLmEuaZqm55pqV\nZfuelrbZa5mauVCWuSWiorkzqKAYbqi5gaIIqCjIvs3Mef94fqImoSLDmeX7ua5zwXHmzDxzO8A9\nz7nP/SgkSZJARERERET/yUTuARARERER6TomzURERERED8CkmYiIiIjoAZg0ExERERE9AJNmIiIi\nIqIHYNJMRERERPQAVSbNGo0GkydPRteuXRESEoKUlJRK7zdx4kS89957j3QMEREREZG+qDJpjoqK\nQllZGeLj4/Hll19ixowZ991n8eLFOHnyJBQKxUMfQ0RERESkT6pMmuPi4hAWFgYACAgIQGJi4j23\nx8fH49ChQ5g0aRJur5HyoGOIiIiIiPRNlUlzXl4eHBwcKvZNTU2h0WgAAJmZmZg5cyZ+/PFH3L2o\nYFXHEBERERHpI7OqbnRwcEB+fn7FvkajgYmJyLP//PNP3LhxA3379sXVq1dRVFSEFi1aVHnM3Ro0\naICMjIyaeh1ERERERJXy9vZGcnLyYz1GlTPNgYGB2Lp1KwDg4MGDaNu2bcVtr7zyChITExETE4N3\n330XI0aMwOjRo6s85m4ZGRmQJImbTNsnn3wi+xiMdWPsGX9j3hh/xt5YN8Zf3q0mGlNUOdM8aNAg\n7Ny5E4GBgQCAiIgIrFq1CgUFBZgwYcJDH0O6JzU1Ve4hGC3GXl6Mv7wYf/kw9vJi/PVflUmzQqHA\nokWL7vk3X1/f++43evToKo8hIiIiItJnXNzESI0ZM0buIRgtxl5ejL+8GH/5MPbyYvz1n0KSJOnB\nd9PCEysUkOmpiYiIiMiI1ETeqXMzzXXq1IFCoTCYrU6dOnKHtFJKpVLuIRgtxl5ejL+8GH/5MPby\nYvz1X5U1zXLIyckxqBno2yslEhEREZH+0rnyDEMr2zC010NERESkbwyyPIOIiIiISNcwaTZSrK2S\nD2MvL8ZfXoy/fBh7eTH++o9JMxERERHRA7CmuZr+/PNPLFiwADExMVXeT19eDxEREZGhYk0zERER\nEVEtYNL8CD7++GM0a9YMAQEB2LBhg9zDeSysrZIPYy8vxl9ejL98GHt5Mf76T++SZoWiZrZHtXHj\nRkRGRuL48eOIj49HYWEhezATERERGQnWND+kV155BXXq1MFnn30GANi8eTO+++471jQTERER6TjW\nNNciExMTaDSain1TU1MZR0NEREREtYlJ80MKCwvDunXrkJubC41Gg99++03uIT0W1lbJh7GXF+Mv\nL8ZfPoy9vBh//Wcm9wD0RXh4OE6cOIGOHTvC2dkZ/v7+rGkmIiIiMhKsadYyQ3s9RERERPqGNc1E\nRERERLWASbORYm2VfBh7eTH+8mL85cPYy4vx139MmomIiIiIHoA1zVpmaK+HiIiISN/URD7G7hlE\nRERERi6nOAeJGYn4O+NvpOelo1hVjGJVMYrKi1BcXoyve32NdnXbyT1MWbE8w0ixtko+jL28GH95\nMf7yYezlpWvxL1eX489//sTw9cPhM98Hjec1xuf7Pkd2cTb83PzwVOOnMMB3AMa2G4sZT85AY8fG\ncg9ZdpxpJiIiIjISV/KuYMnhJVhyZAma1WmGUf6j8H639+Hn6gdTE652XBXWNGuZob0eIiIi0j/X\nC69jypYpiLkYgxdav4ApnaagtXtruYdVa1jTTERERERVysjPQOiKUPT37Y9fBv4Ce0t7uYekl1jT\n/JCUSiUCAwMxatQotG/fHq1atdK5+qRHoc9j13eMvbwYf3kx/vJh7OUlV/wv3bqEoIggjGo7Cl/3\n+poJ82OocqZZo9Fg6tSpSEpKgqWlJZYuXQpvb++K29evX4+vvvoKCoUCI0aMwKuvvgoAaN++PRwd\nHQEATZs2xbJly2pswIrPFDXyONInjz5Ff+jQISxatAht27bFd999h08//ZS/hIiIiEgnpWSnIHRF\nKF7v8jpe6/Ka3MPRe1XWNEdGRiI6OhrLly9HQkIC5syZg6ioKACAWq2Gn58fDh8+DFtbW7Rs2RLx\n8fGwsbFB165dceTIkaqfWM9qmpVKJV566SUkJycDAGJiYvDaa68hKSmpyuN09fUQERGR4TqddRq9\nf++Nj4I+wsQOE+UejuxqIh+rsjwjLi4OYWFhAICAgAAkJiZW3GZqaoozZ87A3t4eWVlZUKvVsLCw\nwPHjx1FUVIQ+ffogNDQUCQkJjzVAXWJtbV3xPZNhIiIi0kXnbp5D6IpQfNHjCybMNajKpDkvLw8O\nDg4V+6amptBoNHcONjFBZGQknnjiCYSEhMDGxga2trZ46623sH37dvz0008YMWLEPceQbmBZiXwY\ne3kx/vJi/OXD2MurtuKflpuG3r/1xqyQWRjlP6pWntNYVFnT7ODggPz8/Ip9jUYDE5N78+zBgwdj\n0KBBGDNmDFasWIHhw4ejWbNmAAAfHx+4uLggMzMTDRo0uO/xx4wZAy8vLwCAk5MT2rXT7ZVmFApF\nlftVuf3DEhwcrBP7x44d06nxcJ/73Oc+97W7f5uujMfY9m/T5vNlFWYh8ONAPO3zNMa3H69Tr1+O\neCuVSqSmpqKmPLCmefPmzYiIiMDBgwcxa9YsbNmyBYCYhe7fvz927twJCwsLTJ06FU8++SSKioqQ\nlJSEBQsWICMjA6GhoTh16tR9yba+1TRXl6G9HiIiItI9uSW56LGiB8KbhePzHp/LPRydo/U+zYMG\nDcLOnTsRGBgIAIiIiMCqVatQUFCACRMmYOTIkQgKCoK5uTn8/f0xcuRIqNVqjB07FkFBQRXH/Dth\nJiIiIqKaUVxejAGrB6BLgy6YFTJL7uEYLK4IqGW6+nqUSmXFqQyqXYy9vBh/eTH+8mHs5aWN+Gsk\nDbae34qZsTPh4+KD3wb9BhMFJyorwxUBiYiIiIxMmboMq06swjfx38DC1ALvBL6DIS2HMGHWMs40\na5mhvR4iIiKShyRJWHF8BT6M+RB+rn54O/BthDYJfaTGBMaKM81ERERERuBG0Q1M3DwRydnJ2DBs\nAzrW7yj3kIwO5/GN1L9b4FDtYezlxfjLi/GXD2Mvr8eJ/7bkbfD/yR/ezt74e8LfTJhlwplmIiIi\nIh1UqirFmzvexMazG/H7oN8R0iRE7iEZNdY0a5mhvR4iIiKqHZ8qP8X+y/uxbug6OFs7yz0cvVYT\n+RiTZi0ztNdDRERE2pecnYwuS7vg6KSjaOTYSO7h6L2ayMdY02ykWNsmH8ZeXoy/vBh/+TD28nqU\n+EuShGlbp+GdwHeYMOsQJs0PacKECfjggw8q9leuXInBgwfLOCIiIiIyRJGnI5GWl4bpXabLPRS6\ni/6VZ9RUL8JHfNnHjx9H3759kZaWBhMTEwQFBeGjjz5Cr169qjyO5RlERET0sPJL89FyYUusHLwS\nQZ5Bcg/HYBhnn2aZElB/f380adIE0dHR8PHxQWZm5gMTZiIiIqJHMTN2Jno06cGEWQexPOMRvPzy\ny1i+fDkiIiIwadIkuYfzWFjbJh/GXl6Mv7wYf/kw9vJ6mPifvH4Svxz/BV/3/Fr7A6JHpn8zzTIa\nMmQI3n33XZw8eRKHDh2SezhERERkINQaNaZsmYKZwTPhYech93CoEvpX0yyzGTNm4Pr16/jtt98e\n6v66/nqIiIhIXpIkYcqWKUjJScG2EdtgamIq95AMjnHWNMuosLAQsbGxWLRokdxDISIiIgMxM3Ym\nDqUfgnKMkgmzDmNN80Pavn07GjdujB49eqBTp05yD+exsbZNPoy9vBh/eTH+8mHs5fVf8V+cuBgr\nklbgrxF/wcHSoXYHRY+EM80PqU+fPrh586bcwyAiIiIDEXUmCp/Ffoa9Y/eyjlkPsKZZywzt9RAR\nEdHj23dpH55d+yz+GvEXOtTvIPdwDB6X0SYiIiLSI+XqcszZNweD1gzCH8/+wYRZjzBpNlKsbZMP\nYy8vxl9ejL98GHt5KZVKHMk8gs5LO0N5SYnEiYno2bSn3MOiR8CaZiIiIiItKi4vxuLExdiTuAff\n9PoGL7Z9EQqFQu5h0SNiTbOWGdrrISIioodXpi5D7996w8XGBQv7LuQFfzJhn2YiIiIiHSVJEl7Z\n+gocLB2wbug6mChYFavP+L9npFjbJh/GXl6Mv7wYf/kw9rVvUeIixKXF4ffBv2Nv7F65h0OPiUnz\nQ1IqlXjyyScxZMgQ+Pn5oUOHDoiOjkbv3r3h6emJN954Q+4hEhERkY7Yc3EPZsbOxMbnN3LREgOh\ndzXNihr6pCwFBz/S/ZVKJXr16oXExET4+/ujb9++yM3NRWxsLHJzc1G/fn1cunQJdevWvXe8rGkm\nIiIyKinZKQhcHog/nv0DPZr0kHs4BCOtaX7UZLcmNWnSBP7+/gAAb29vODk5wczMDC4uLnBwcEB2\ndvZ9STMREREZj7zSPAxcPRAfBX3EhNnAVFmeodFoMHnyZHTt2hUhISFISUm55/b169ejc+fOCAgI\nwA8//PBQx+gzS0vLe/bNzPTuM0cF1rbJh7GXF+MvL8ZfPoy99uUU56DP733Q3bM7pnaaes9tjL/+\nqzLri4qKQllZGeLj45GQkIAZM2YgKioKAKBWq/Hee+/h8OHDsLW1RcuWLTFixAjExsaitLS00mOI\niIiIDNG1gmvo/XtvhDYJxdzec9mH2QBVOdMcFxeHsLAwAEBAQAASExMrbjM1NcWZM2dgb2+PrKws\nqNVqWFhYIC4uDuHh4ZUeo+/+/QOgzz8QwTKWuRg7xl5ejL+8GH/5MPbaczn3MrpFdMPgFoP/M2Fm\n/PVflTPNeXl5cHC4c8WnqakpNBoNTExErm1iYoLIyEhMmzYN/fr1g62t7QOP0VfBwcFISkqq2J8/\nf/49t2dlZdX2kIiIiEhm526eQ6/feuH1Lq9jepfpcg+HtKjKpNnBwQH5+fkV+5Ulv4MHD8agQYMw\nZswYrFix4qGOuW3MmDHw8vICADg5OaFdu3bVfR0673Yt0+1PmnLvz5s3D+3atdOZ8RjT/t11bbow\nHmPbZ/wZf2Pdv/1vujIeQ9hXpirx7FfPYnz78RUJM+OvG/u3v09NTUVNqbLlXGRkJDZv3oyIiAgc\nPHgQs2bNwpYtWwCIWej+/ftj586dsLCwwNSpU/Hkk0/C1tb2P4+554m5jLaslEplxRuMahdjLy/G\nX16Mv3wY+5pTri7HxzEf49fjvyJiYAT6NOvzwGMYf3nVRD5WZdIsSRKmTp1aUZYQERGBw4cPo6Cg\nABMmTMCSJUuwbNkymJubw9/fv6Jk4d/H+Pr6PvTgdTXJrC5Dez1ERETGLDk7GcPXD4ebrRsiBkbA\n3dZd7iHRQ9B60qxNTJqJiIhIX2gkDSKORuDd3e/i46CPMa3zNL1uCGBsaiIfM6mhsZCeubvmh2oX\nYy8vxl9ejL98GPvqkSQJkacj4f+TP5YcWYI9o/bglYBXHjlhZvz1n86tzuHs7GxQn9ycnZ3lHgIR\nERE9IkmSEH0uGp8oP4FCocCXoV+ir09fg8pR6NHoXHkGERERkZyu5F3BiMgRyCnOwcyQmRjYfCCT\nZT3H8gwiIiKiGrQjZQc6/twRYd5hODb5GJ5p8QwTZgLApNlosbZKPoy9vBh/eTH+8mHsq6bWqPFJ\nzCcYu3EsVg9Zjfe6vQcTRc2lSYy//tO5mmYiIiKi2nS98DqGrx8OtaTG4YmHUdeurtxDIh3EmmYi\nIiIyWmdvnEX4ynAMazUMs3rMgpkJ5xMNUU3knXxnEBERkVE6kHYAg9YMwuzQ2Rj3xDi5h0M6jjXN\nRoq1VfJh7OXF+MuL8ZcPY3+vqDNRGLh6ICIGRtRKwsz46z/ONBMREZFRWfj3Qnyx7wv8NeIvdKjf\nQe7hkJ5gTTMREREZja/jvsayo8uwbcQ2NHFuIvdwqJawppmIiIjoIS1OXIyfEn/CvrH70MChgdzD\nIT3DmmYjxdoq+TD28mL85cX4y8fYY7/qxCrM2jsLu0btkiVhNvb4GwLONBMREZFB23JuC17f/jp2\njdqFps5N5R4O6SnWNBMREZHBik2NxdB1QxE9PBqdG3SWezgkE9Y0ExEREf1LdnE2tiVvw5bzW7At\neRvWDV3HhJkeG2uajRRrq+TD2MuL8ZcX4y8fY4j9z4d/xlPLn4LXPC+sPrkaQY2DkDQ5CT2a9JB7\naEYRf0PHmWYiIiLSe8uPLsfcA3Pxfdj3CPYKhpWZldxDIgPDmmYiIiLSawfSDmDg6oHYO3YvWri2\nkHs4pINqIu9keQYRERHprfS8dAxZNwTLBy5nwkxaxaTZSLG2Sj6MvbwYf3kx/vIxxNiXqEoweO1g\nTO04Ff18+8k9nCoZYvyNDZNmIiIi0juSJGHKlilo7NgY73d7X+7hkBFgTTMRERHpnW/jv8WK4ysQ\nPz4edhZ2cg+HdBz7NBMREZFRkSQJn8V+ht+TfsfuUbuZMFOtYXmGkWJtlXwYe3kx/vJi/OVjCLFX\na9SYtnUaNp7diLhxcfB08pR7SA/NEOJv7DjTTERERDqvVFWKUVGjcL3wOpSjlXC0cpR7SGRkWNNM\nREREOi2vNA/Prn0W9hb2+OPZP7hwCT0yrfdp1mg0mDx5Mrp27YqQkBCkpKTcc/uqVavQpUsXPPXU\nU5gyZUrFYNq3b4+QkBCEhIRg/PjxjzVAIiIiMk55pXmYs28OfOb7oIVLC6wbuo4JM8mmyqQ5KioK\nZWVliI+Px5dffokZM2ZU3FZcXIyPPvoISqUS+/fvR25uLqKjo1FSUgIAiImJQUxMDJYtW6bdV0DV\nwtoq+TD28mL85cX4y0efYp9bkotZsbPg/YM3TmWdgnK0EvP7zoepiancQ6s2fYo/Va7Kmua4uDiE\nhYUBAAICApCYmFhxm5WVFQ4cOAArK/GJT6VSwdraGsePH0dRURH69OkDlUqF2bNnIyAgQIsvgYiI\niLQhPS8dm89tRkOHhuhUvxM87Dxq9PHL1eU4fu04krOTcSHnAi7kXMDFWxdx7Oox9PPth/1j96O5\na/MafU6i6qoyac7Ly4ODg0PFvqmpKTQaDUxMTKBQKODm5gYAmD9/PgoLC9GzZ0+cPHkSb731FsaP\nH4/z588jPDwc586dg4nJ/ZPaY8aMgZeXFwDAyckJ7dq1Q3BwMIA7n8i4r5392/+mK+Mxpv3g4GCd\nGo+x7TP+jD/3q97fsXsH4i7H4ZDFIRy8chAdSzviVuktJDskw9HSEV63vODt7I0WHVvARGGClKMp\nMFGYoE3nNnC3dUf6iXQ4WzljYNhA2Jrb3vP4Ko0KSyKX4NjVY7jsfBnxafFwue4CT0dPBAQGoFP9\nTmiR3wJTWk/BkL5DdCIe3NfP/dvfp6amoqZUeSHgjBkz0KVLFwwdOhQA0KhRI6SlpVXcrtFo8Pbb\nbyM5ORmrV6+GlZUVysrKoNFoKmagAwICEBkZiQYNGtz7xLwQkIiISDYH0g5AmapEQVkBCsoKUFhe\niNzSXMRcjIF/XX+MbTcWg/0Gw8bcBoDoj5ycnYxD6Ydw8vpJlGvKIUkSNJIGGkmDYlUxrhVew7WC\na7heeB3XCq+hqLzonudUQIHW7q0R4hWCYK9gBHkGwcXGRY6XT0ZG64ubBAYGYvPmzRg6dCgOHjyI\ntm3b3nP7pEmTYGVlhQ0bNkChUAAAIiIikJSUhAULFiAjIwN5eXmoV6/eYw2Sap5Sqaz4VEa1i7GX\nF+MvL8ZfPrdjf+r6Kby/530czTyKYa2GwdHKEW62brA1t4WdhR2+6fUNvJy87jteoVDAx8UHPi4+\ntT94A8D3vv6rMmkeNGgQdu7cicDAQAAiIV61ahUKCgrQsWNHLF++HEFBQejRowcAYPr06Rg/fjzG\njh2LoKCgimMqK80gIiKi2nO94DrGbRyH6HPReCfwHawZsoadKIgeAfs0ExER6YHk7GRM3TIVBWUF\nGOw3GM/6PYsmzk0e6tiIoxF4c+ebmNRhEt4OfBtOVk5aHi2RbtF6eQYRERHJS61R4/uE7zF732x8\nGPQh/Fz9sP70egQsDUAjx0Z41u9ZTOwwEa42rvcdK0kSPov9DCuOr0DcuDi0cG0hwysgMgysmzBS\nd19dSrWLsZcX4y8vxv/RnM46jacinsKms5uQ8FICpneZjj7N+uDn/j8jY0YG5vaei4s5F+G3wA/f\nHfgOZeqyimPL1eUYv2k8tpzfggPjD+DqyasyvhLie1//MWkmIiLSMaWqUsyKnYVuEd3wYtsXsWf0\nHnjX8b7nPmYmZgj2CsaSAUuwd8xe7L64G60WtsLGMxuRX5qP/qv643rhdShHK2u8vzKRMWJNMxER\nkQ7ZmbITL299GS3dWuL7sO/h6eT50MduT96ON3a8gYz8DAxrNQw/9v0RZiasxCSqibyTSTMREZEO\nSM9Lxxs73sDf6X/jh/Af0M+3X7UeR6VR4djVY+hQr0NFO1giY1cTeSfLM4wUa6vkw9jLi/GXF+Mv\nrP9nPT5TfobJ0ZMxYNUAdFrSCW0WtYFvHV+cnHqy2gkzIMo2OtbveF/CzNjLi/HXfzxnQ0REVIsW\n/b0I/3fw/zCs1TD4e/gjrFkY6tnVQ1PnpnCzdZN7eET0H1ieQUREVEtiLsbghfUvIG5c3H0X9hGR\n9rA8g4iISE+kZKfghfUv4I9n/2DCTKSHmDQbKdZWyYexlxfjLy9jjX9eaR76r+qPj7t/jB5Nesgy\nBmONva5g/PUfk2YiIiItUmvUGL5+OIK9gjG101S5h0NE1cSaZiIiIi36YPcHOHDlALaP3A5zU3O5\nh0NklGoi72T3DCIiIi05knkES48uxckpJ5kwE+k5lmcYKdZWyYexlxfjLy9jir9ao8bk6MmYEzpH\nJ1rJGVPsdRHjr/+YNBMREWnBT4k/wcrMCmPbjZV7KERUA1jTTEREVMMy8jPg/5M/YsfEoqVbS7mH\nQ2T02KeZiIhIB72+/XVMbD+RCTORAWHSbKRYWyUfxl5ejL+8jCH+25K3ITEjER8EfSD3UO5hDLHX\nZYy//mP3DCIiohpSVF6EqVumYuHTC2FjbiP3cIioBrGmmYiIqIa8t+s9XLh1AWuGrJF7KER0F/Zp\nJiIi0hFHM49i2dFlSJqSJPdQiEgLWNNspFhbJR/GXl6Mv7wMNf7l6nKM2zQOX/f6GnXt6so9nEoZ\nauz1BeOv/5g0ExERPaa5B+bCzcYNo/1Hyz0UItIS1jQTERE9hnM3z6Hrsq5InJgILycvuYdDRJVg\nn2YiIiIZaSQNXtr0Ej7u/jETZiIDx6TZSLG2Sj6MvbwYf3kZWvwXJy6GSqPCy51elnsoD2Rosdc3\njL/+Y/cMIiKiaricexkfKz9G7JhYmJqYyj0cItKyKmuaNRoNpk6diqSkJFhaWmLp0qXw9vauuH3V\nqlX4/vvvYWZmhjZt2mDhwoWQJKnKYyqemDXNRESkp1QaFUJ+DcHTPk/j3afelXs4RPQAWu/THBUV\nhbKyMsTHxyMhIQEzZsxAVFQUAKC4uBgfffQRTp48CSsrKwwfPhzR0dEoLy9HaWlppccQEREZglmx\ns2BlZoW3A9+WeyhEVEuqrGmOi4tDWFgYACAgIACJiYkVt1lZWeHAgQOwsrICAKhUKlhZWSEuLg7h\n4eGVHkO6g7VV8mHs5cX4y8sQ4h+bGoufj/yMFc+sgIlCfy4NMoTY6zPGX/9VOdOcl5cHBweHin1T\nU1NoNBqYmJhAoVDAzc0NADB//nwUFhaiV69eWLt27X8e829jxoyBl5cXAMDJyQnt2rVDcHAwgDtv\nLu5rZ//YsWM6NR7uc5/73NeH/ZtFNzHkmyF4q+tbqGdfT/bxPMr+bboyHmPbv01XxmPo+7e/T01N\nRU2psqZ5xowZ6NKlC4YOHQoAaNSoEdLS0ipu12g0ePvtt5GcnIzVq1fDysrqgcdUPDFrmomISI9I\nkoSBqwfC18UX3/b+Vu7hENEj0Hqf5sDAQGzduhUAcPDgQbRt2/ae2ydNmoTS0lJs2LChokzjQccQ\nERHpox8P/YjMgkzMDp0t91CISAZVzjTf3QkDACIiInD48GEUFBSgY8eO6NixI4KCgiruP336dAwY\nMOC+Y3x9fe9/Ys40y0qpVFacyqDaxdjLi/GXl77G/1D6ITz9x9M4MP4AmtVpJvdwqkVfY28oGH95\nab17hkKhwKJFi+75t7sTYLVaXelx/z6GiIhIX2XkZ2DwmsFYNmCZ3ibMRPT4qpxp1uoTc6aZiIh0\nXImqBMG/BKOfbz98GPSh3MMhomqqibyTSTMREVElJEnCuE3jUFBWgLVD1kKhUMg9JCKqJq1fCEiG\n698tcKj2MPbyYvzlpU/xn39oPo5kHkHEwAiDSJj1KfaGiPHXf1XWNBMRERmj3Rd2Y/a+2Tgw/gDs\nLOzkHg4R6QCWZxAREd1l/+X9GLxmMNYMWYOQJiFyD4eIagDLM4iIiGrQ1vNbMWjNIPw++HcmzER0\nDybNRoq1VfJh7OXF+MtLl+O/6sQqjN04Fpue34Te3r3lHk6N0+XYGwPGX/+xppmIiIzeor8X4Yt9\nX2DXi7vQxqON3MMhIh3EmmYiIjJakiRhZuxMrEhagZ0v7kRT56ZyD4mItEDrKwISEREZqqLyIozd\nOBapt1Kxf+x+1LOvJ/eQiEiHsabZSLG2Sj6M/cMrKgL27xdbaipQVvb4j8n4y0tX4p+Wm4ZuEd1g\nYWqB2DGxRpEw60rsjRXjr/8400xEspIkoLgYyMkBsrOBs2eBuDggPh44eRJo2RIwMwPS04GrVwFn\nZ6BRI6BbNyAsDAgKAqyt5X4VpE8OpB3AkHVDMD1gOt7s+qZBLFxCRNrHmmYiqlXFxcC2bcDatcDe\nvcDNm+Lf69QRCXGTJkBgoNg6dgRsbO4cq1YD168DFy4AMTHicY4fB556SiTQYWGAry/AHIj+rVRV\nin2X9yH6XDT+OPEHfnnmF/T16Sv3sIioltRE3smkmYi0LjdXJLnr1gFbtgDt2wPDhgF9+gDu7mKm\nuLqJbk5cVlXLAAAgAElEQVQOsHs3sH27SKLNzO4k0KGhgB0XczNKkiThQs4F7Lm4B1uTt2LPxT1o\n5dYKfX36Ynib4bzgj8jIMGmmalMqlQgODpZ7GEbJGGKfnS1mkWNjxdezZ4GAAODZZ4HBg4G6dbXz\nvJIE/POPSJ7/+gs4dgx44w3g1VfvJM/GEH9dps34n71xFnsu7sHey3ux99JeAEB3z+7o69MXYc3C\n4GrjqpXn1Rd878uL8ZcXu2cQkU6QJODUKSA6WmwnTgBPPinqjX/4QZRZWFpqfxwKBdCqldhmzBDJ\n+iefAD4+wLvvApMmaX8MVPvUGjVmxs7ET4d/Ql+fvujdtDc+D/kcTZ2bsl6ZiGoMZ5qJqFrUatHV\nYv16YNMmkbD26ye27t0BKyu5R3jHsWPARx+J+ufwcJHAW1iIr1ZWQM+eQJcurIXWRzeKbmBE5AiU\nqEqwZsga1LXT0mkMItJrLM8golqlUgFKJfDnn0BUFFCvHjBkCDBwoJjd1fWkMyEBOHoUKC0V7etK\nS4G8PGDDBpE8T5wIjBwpLkgk3Xco/RCGrhuK51s9jy9Cv4CZCU+eElHlmDRTtbG2Sj76GPuSEuCX\nX4BvvhEJ5XPPifpkb2+5R/boKou/RiM+DCxZImqhe/cG7O3vJNalpWJ/yJA7M9VUPTXx/pckCQv/\nXojPYj/Dz/1/xjMtnqmZwRk4ffzdY0gYf3mxppmItCo3F/jpJ2DePFGX/Ouvor2boTExAXr0EFtW\nlqjLVqvvlHBYWADXrgH/93/A+PHiA8OIEaJXtAmXiKpV2cXZGL9pPC7duoT48fFoVqeZ3EMiIiPB\nmWYius/p0yJZXrlSzKy+/TbQpo3co9INly8Dq1YBv/0m2tstWQJ06iT3qIzD3kt7MTJyJIa2HIrZ\nobNhacYpfyJ6OCzPIKIaU1Ym6pQXLRJJ8/jxosbX01PukekmSRIfKt58E3jhBWDWrPt7QkuSWMWw\nbl3dr/euEeXlYu3z25uJiSgWt7YWXy0tqxUIlUaFWbGz8PORn7F8wHKE+4RrYfBEZMiYNFO1sbZK\nProY+wMHxGIjTZsCU6YAgwaJkgRDVNPxv3FD9ILeu1d84PD1FQu5xMSIOulbt0TZx+LFQP36Nfa0\n8srLA44cARIT72yXLolPCba2YhlHa+s7a6SXlIitrAxKMzME29reSaYtLEQtjEp156u3NzB3Lm62\n9savx3/F4sOL4enoiRWDVrA7xmPQxd89xoTxlxdrmonosS1dCrz/PhARATz9tNyj0T+ursCKFcDO\nncDkySJHDAkR28yZQKNGwOzZQLt24kLKUaP0dNY5LU30F/zzT9HDr21bUej+9NOiGba394M/aWk0\nIlCdOt1JpEtLRZ2LmRlgagrJ1BTn1iyEe1gwtnirkDJ1IJYPWI6ujbqy5zIRyYozzURGqqwMmD5d\nzIhGRQHNm8s9Iv13+1daZbndsWPAmDFAw4Zi1rlBg1od2qPRaIArV4AzZ0SPvg0bgPPnRW/BIUPE\n+uQ13EIkpzgHvyX9hsWHF0OtUeOVFqMxblMarFetAz7+WJwCMeM8DxFVD8sziKharl0TuU+dOuKC\nNgcHuUdkHMrKgDlzgAULgB9/FK37dEJhIbB9O7B5s1gB5tw5wNERaNFCNODu109MnZub1+jTSpKE\ng1cOYvHhxYg6E4Vwn3BM6jAJ3T2735lVPnVKrIOemQl88QXwzDN6OlVPRHJi0kzVxtoq+cgVe0kS\nK/j98gsQGSnykE8+Mb6Wabrw3k9MBIYPB7p2BebPFz2ga11eHrBxo3gz7NkjSiaeeQYICBCnHbT0\nSUqpVKLLU12w5uQa/HDoB9wquYXJHSZjTLsxcLN1q/wgSQK2bRNrodvYAF99JdZovy07W9RYnzgB\n3LwpCslzc8VXBwfgs8+AZmxNpwvvfWPG+MtL6zXNGo0GU6dORVJSEiwtLbF06VJ4/2s1g6KiIvTq\n1QvLly9H8/+d323fvj0cHR0BAE2bNsWyZcsqffzX/nrtnhcz2G8wgjyDKr0vUU0rKi/CkcwjaOjQ\nEJ6OnrLVS2okDQDARKGd7DUjA1i2TPRYtrQExo4F/vlHrOZH8ujYUVQ9vP66qHVeuVIs411rtm0D\nXnoJ6NABGDxYvEHq1NH602bkZ2DZkWUYljgM7eq2w8zgmQj3CX/we1+hEL0P+/QB/vgDGD1aJPb2\n9sDhw+JqzHbtAH9/wN1d3OboCDg5iTd7ly6ivOO990TSTURUDVXONEdGRiI6OhrLly9HQkIC5syZ\ng6ioqIrbExMTMXnyZGRkZECpVMLX1xclJSXo2rUrjhw5UvUTKxSYd2BexX6xqhiLDy+Gn6sf5oTO\ngX9d/3vur9KoEHc5DqeyTqFLwy7w9/CHqYlpdV93pYrKi3Ao/RAy8jMqtsyCTAQ0CMBrAa/xIhQ9\nV64ux98Zf2P3hd3YfXE3EjMS0cK1BTILMlFYVoi2Hm3h7+EP7zreyC7ORmZ+Jq4WXkVmfiY0kgbN\nXZujhUsL+Ln5oYVrCzhYOqC4vBhF5UUoKi9CsaoYdhZ2cLVxhZuNGxytHGGiMIFao0ZWURauFVzD\ntcJruJJ3Bedvnse57HM4f/M8krOT4Wrjite7vI4JHSbAzsLuwS/mIeTmigm5xYuB558XyXKHDjyz\nrWs2bBD53HPPiS4bAQFa/EBTWAi89RawZYs45RASoqUnuuN2CcYPh37AtuRtGN56OKZ1ngY/N7/q\nP2hpqUieLS2B9u1Fy5KqTpmkp4vegAcOiBVqWOJBZHS0Xp4xY8YMBAQE4Ln/Fd41bNgQV65cqbg9\nPj4ejRs3xosvvojFixfD19cXCQkJGD16NDw9PaFSqTB79mwEBAQ81ODL1GVYnLgYX+z7AqFNQ/Fu\n4Ls4c+MMNp3bhK3nt8LLyQttPdoi4UoCrhZcRTfPbgjxCkF/3/7wrlP1er5F5UWwNLW8L9FWaVTY\nfWE3Vp5YiU1nN6GlW0t4Onminl091LevDw9bD8w/NB9NnJtg+YDlsLWwfXBUSTaSJOH0jdPYfHYz\njl87juuF13Gt8BquFVxDTkkOWru3RmiTUIQ2CUU3z24VCeqNohs4fvU4jl09htRbqXC1cUVdu7qo\nZ18Pde3qQgEFzt48i9NZp3Hm5hmczjqNovIiWJtbw8bcBjbmNrAys0JBWQGyCrNwo+gGCssLYW9h\nj/yyfDhbOcPDzgMeth6ob18fPnV84OviC18XXzSr0wxnbpzBN/HfICY1BpM6TMKrAa/C3da90teY\nV5qHtNw0pOWlIb80Hz2a9ICLjUvF7aWlYmGS2bNFY4OZM8XFZ6S70tNFF5OEBLHZ2YnJ0X79RDJd\nI9fcJSQAL74oHviHH8QsrBaVqkqx7p91+CHhB9wsvolXOr+CMe3GwMlKu89bpZgY4OWXAQ8P4IMP\nxAWNTJ6JjILWk+YJEybg2WefRVhYGADA09MTFy9ehMm/PtGHhIRUJM0nT55EQkICxo8fj/PnzyM8\nPBznzp277xiFQoHRo0fDy8sLAODk5IR27dohODgY+aX5eG3Ra4g6G4WApwIwwHcAXK65wN3OvaIe\nKPKvSBy7egzX3a5j/en16FTaCaPajcLz/Z4HIGqHAKBJuyb4Ou5rLI9aDpVGhQZtGsDTyROWaZaw\nMLXAYcvDaOTQCAHlAQhpEoLB4YPvOT44OBglqhI88+UzOHfzHHZ9vAtNnZvec7skSfhz659wtXFF\nyP9mbu6+XRf3582bVxFvXRjP4+xrJA2+X/094tLicMzqGErVpehQ0gEt3VoiOCQYHrYeSDmaAkdL\nR4T2CK218ZWry/HEk0/AycoJ+/fur7j99n0rO75h24b4Nv5b/L7pd7jauMLW1xaSJKHwXCE00CCv\nXh5UGpX4ebB1R93WdbHv8j40z2+OoMYh8DJ7F9994Qx3dyUmTgTGjav9/w9d368q/rqwLxZNUeLU\nKeDw4WCcPAmEhSkxYADwzDPVePxbt6CcOBHYuRPBS5YAQ4Y81PGSJAFewLp/1iHndA5cbFzQvXt3\n1LOvhytJV+Bu644eIT3uOb5bUDfEXorFd6u+w75L+9D5qc54LeA1WF+xhqmJqW7Ev7wcyo8+Av74\nA8EeHsD770Pp6AiYmOjE/78292//m66Mx9j2b/+brozH0Pdvf5+amgoA+PXXX7U/09ylSxcMHToU\nANCoUSOkpaXdd7+7k+aysjJoNBpYWVkBAAICAhAZGYkG/+qvVJMXAuYU52DugblYlLgIw1sPxwdB\nHyCvNA9f7v8SG89uxEtPvIQ3nnwDztbOuJJ3BZduXcLl3MvIKclBX5++8HXxfeBzSJKEHw/9iC/2\nfYHfB/8Ofw9/7LqwCzsu7MCOlB3IL81Ha/fWmBkyE6FNQnW+lEOpVFa8wfRZRn4GxkSNQUZ+Boa1\nGob+zfvD38Nfp+P/MLG/WXQTVwuuVuwrFAoooICHnQecrZzveX3XbxXg7aVbsPbkWpQ12oWO7k9h\nSrfnMLDFQHln9XSUvr33T54E5s0TLZKffVasPhgYKNYGqZJaLaavP/kE6N8f+PxzMcP6ACWqEvxx\n4g98n/A9ytXlGNtuLFQaFTILMivK1i7lXsKtklto7tIcfm5+aOnaEtcKr2HdP+vQwL4BhrUahuda\nPQdPp/uXk9SZ+Gs04kLI2bNF2co774irM2u4Q4gu0ZnYGynGX15an2mOjIzE5s2bERERgYMHD2LW\nrFnYsmXLffe7O2levHgxkpKSsGDBAmRkZCA0NBSnTp2qdKa5prtnXC+8ji/3f4mIYxEwMzHDtE7T\n8ErAK6hjXXMXuChTlXj+z+dRrCpGsFcwejftjT7N+qCJUxOsPbUWn8Z+irp2dTEzeCa6e3Wvseel\n+206uwkTN0/ElI5T8EHQBzAzMZ4erhqNuL4pKkp0XwgMFNc4tWibj+hz0Vj7z1rsubgHQZ5BGNpy\nKPr79oeztbPcw6bHkJUFLFkiusKdPCn+z3v1AoKDxZoiFatXF0pwProH/r++DhMXZ+D/5sG66xP/\n+bjZxdk4e+Mszt48i6RrSVh5YiU61OuA6V2mo1fTXv/5ATS3JBdnbpzB6RuncTrrNBwsHfBcq+fg\n4+KjpQhoiSQBu3eLXoApKaL2edw4XjBIZGC0njRLklTRPQMAIiIicPjwYRQUFGDChAkV97s7aVap\nVBg7diwuXboEAPj666/RpZLLwrXZcu5G0Q1YmVnV2AVV/1ZYVggLUwuYm94/I6HSqPDHiT/wWexn\naOjQEC+2fRGDWgy6p+aUHkySJKTnpyMlOwUOlg5o5NgILtYuUCgUKCovwoztM7AtZRtWDl6Jro26\nyj3cWnH2LLBrF6BUArGxopNWz57AK6+IVrr/lleah81nN2PtP2sRczEGrd1bo493H/Rp1ged6neq\n8QtpqfbcuiW6xO3cCcTvU6N5yXF0Kd+H9sX70TZvP4rN7DG/3hysLhuMq9cUMDMTjSUmTgSGDNVg\nf8ZO/HT4J+y/vB+lqlI0d22O5i7N0cK1BYa2HIrmrka60k1CgkieDx4EXntNrP5jbS33qIioBrBP\nsw4rV5cj6kwU1v6zFjtSduDJhk/iuVbPiYu2rF1gZ2FXMYMjSRKu5F3B8WvHkXQtCadvnEZAgwCM\nbDtSa6fXH/c0Ubm6HIfSDyH2UiwUUKCBQwM0sG+A+vb10dChIewtK288W6YuQ3xaPHak7EBydjIs\nTC1gaWoJSzNLWJpa4lrhNZy9eRZnb5yFnYUdmtVphoKyAlzOvYwSVQkaOTZCcXkxgjyDsKDvAjha\nOVb7NcjlUWKfmwusXg0sXy5WMQ4PFzOLwcFieeaHVaIqwb5L+7A9ZTu2p2xHRn4GejbtiT7efdDb\nuzcaOhjPlYIGcYq0pATYsUMsab15M6R69VAY0B6prRrgb28rnLcvQ9M63uJi0zrNYaV2R/TuHHwe\nHYHzTovgYm+P17pOxbjAfuJC11osZ9KL+J86JVYh/OcfsfpPx45yj6hG6EXsDRjjLy8mzXqioKwA\nW89vxdpTa5GQnoCc4hyUqkvhaOkIZ2tn3Cy6CUszS7T1aIu27m3h6+KLXRd3YXvydgxsMRAT209E\n10Zda/QP290/vMXlxdh1YRfqWNdBY8fGqGdf755Sh6LyImTmZyI9Px1HMo9g14Vd2Hd5H5o6N0WI\nVwjMTcyRnp+O9Px0ZORn4EreFdia26JZnWbwcfFBM+dmsLWwRUxqDPZe2ovmLs3R27s3Wrm1Qrmm\nHKWqUpSpy1CqLoWrjSuauzRHc9fm931gKCgrQFpuGorKi9Chfocai0Vte9AvzpwcID5eJMubN4tT\n8OPGia81tYpwel46dqTswPaU7dh5YSfq2dVDH+8+6N+8PwIbBVZ6FuVxXCu4hoT0BIQ2CZW9A43e\n/uHSaIBt2yCt/B2aLVuQ1awe9nZyxwrvAuwtT4aNuQ383Pzg5+qHunZ1cfHWxYqyC7VGDQDo37w/\nBtSbikORXfDrLwr4+YnuHEOGPFS5c43Qq/ivXi1WAXr5ZeD99/W+3lmvYm+AGH95MWnWY2XqMuSW\n5CKnJAdOVk6VthfLKszCr8d/xZIjS6CRNGjq3BQu1i5is6n8a5m6DOezz+P8zfM4n30eKTkpaOve\nFi93fhleTl73PL5G0mBl0kp8GPMhPB09UaYuQ1peGrIKs+Bh5wE7CztcLbiK4vJi1Levj3r29dDa\nrTV6Nu2JkCYhcLVxrfS1SZKEqwVXkZydXDGW3NJcBHsFI7RJKEtV7iJJYsXi+Pg72+XLYmJr4EBg\n5EjAtfIw1xi1Ro3EjERsS96Gzec240LOBYT7hGOA7wD0bNoTdazrVOsDW1ZhFiJPR2LNqTU4knkE\nbTza4HTWaUxoPwHTOk9DA4cGD34QQ6VSidni0tI7X62tgbp172mBJkkSMq4l4/qib9Fw+Z/INivH\nYv9yxHV0R5MWT6Jzg87oVL8TWru3rrJm/WbRTSgUinuu7ygtFStnr1kj2jZ36AAMGwaMGvUQFxka\nk/R08ak1JwdYsUIsLU5EeodJs5GQJAnHrx1HZn4mbhbfxM2im/d+vet7MxMz+NTxEZuLj2iPl6pE\nxLEIdPfsjtcCXkOQZxBiUmPw1s63YG5ijm97f4unGj9V8Xzl6nKk56ejoKwA9e3r39etgaqvrEyU\nS96dJNvZieWUb29t29bcjHJ1pOelI/pcNDad24S9l/aiXF0ON1s3uNu6w83GTXxv4w43W7eK/VJV\nKTLyMyrONqTeSsWJ6ycQ3iwcw1oNQ1izMFibWyMlOwXfJ3yP35N+R1+fvpjWeRo6N+istdUQdU5O\njmicvWgRYGoqGjBbWYmvBQWAQgHpiXa41KQOtthloOz4UYw8UIiU5u44PSocdcOHolPDzv/5gbW6\niouBv/4SzTauXBErFLZpU6NPod8kSTQ///BDYOhQsZz3/9qlEpF+YNJMD62grAArjq/ADwk/oLC8\nEOoLanw/+XsMaTmECbGW3bgBbN0qSi127gQ8PJTo2zcYXbsCTz6p+wuPFJUXIaswC1lFWcgqzML1\nwut3vi+6jqzCLFiZWaG+fX3Ut6+PBvYN0MChAQIaBPxnKcatkltYcngJlh1dhrzSPPT37Y8BzQeg\nR5MesDbX7oVXspwiValE64tPPxWr0c2aJZZ7vsu5G2exYfcCnNm5Cp2um6F3nhvcm/nD/q0PoWhe\nOxfmSZKYTH3zTdGNZfr0qhfaqw69PkWdlSVWFFy8WPw/vvce0KyZ3KN6aHodewPA+MuLSTM9Mo2k\nwdHMo7h5+iZ6h/aWezgGRaUCUlNFl4vbW1KSuJaoRw/RKvfpp4HTp/mL827nbp7D5rObsfncZhy9\nehR+rn6wt7SHnYUd7C3sYW9hjzYebRDiFQJfF9/H/pBX63+49uwRnRhcXUXDZX9/AOIM0tGrR7Hx\nzEZsOrcJmfmZGNFmBEa3G422Hm1rb3yVuHhRLB5oaSlW236Ui04fxCASh+xssariggWiefa8eXpR\n02IQsddjjL+8mDQT1bK8PGD/ftH27fx5MYt844aYgLp1S8waN29+Z/PzEyUXevD3VCfcLLqJczfP\nIb8sHwVlBcgvzUduaS6OZB7Bnot7oJbUCPEKQXfP7mjo0BBOVk73bFZmVrpz5iQvT0zZbt8uZicH\nDYIEID4tHqtOrsLGsxthZWaFgc0HYmDzgejaqKtOtQFUq4GvvhJDnzZN5P1aXnlb/+TmApMmiU8Z\nGzYA9evLPSIi+g9Mmolq2K1boq6zvFyUnJqaitPT164BMTGiE1XnzqLlW6tWgJubmEB0dQXq1JG3\nFtnQSZKECzkXsOfiHuxP24+swizcKrmFnJIc3Cq5hVslt6CRNPcl0eXqcpRrylGmLkO5uhwuNi5o\n5dYKLd1aVnx9nLZrBWUFOHb1GA5nHMbRq0dhY26Dvpcs0WvOapj0DoP5/32Ps2WZ+D3pd6w8sRJW\nZlYY0WYEBvsNRgvXFrqT5P+H5GSxmGB0tGgk8dprgKP+dXrUHkkSvZ0XLhTLNgYEyD0iIqoEk2aq\nNp4mut/Fi0C/fuICKC8v0eFLrRabs7NIlAMCHn/WmLHXnhJVCXJLciuS6GJVsViIyMQc5qbmMDcx\nx47dO2DhbYFTWadwKusU/sn6B3mlefCw9UA9+3qoa1cXrtauKFYVI7c0F7klucgrzUOxqhjmJuaw\nNLOs6C9+o+gGLuVeQiu3VuhQrwM6O7ZE+3lr0Sj2CD4eXg/LPTLgbO0MSZLwQusXMLLtSLSr207n\nE+XKnD8vkuetW8XM87RpgEs1GuEY7Pt/82Zg/Hhg7lxR26KDDDb2eoLxl1dN5J2cFyMCcOCAKE18\n7z2xwh7pJyszK1jZWcHD7r+bDmfVy0Jw5+B7/q1EVYKrBVdxteAqMvMzcaPoBmzMbeBo5QgHSwc4\nWjrC2twa5eryip7iZeoyOFg6oJVbK5grTEXLiakfiAL25M340ckJ8zQqpN5KRROnJjpVelEdPj7A\nr7+K5PnLL8X+yJHAG2+wkQQAcdFCTIzoFalUAl98IVoIEpHB4EwzGb01a0SiHBEhLtQjeiSxscCM\nGaI2Z+5cIDBQ7hHViowMcS3ckiVAnz7iAyfb1EHUeH3+ubiC8vXXxWZjU73HkiRxhbGeL6pCpAtY\nnkH0EFQqUYt8+LC4NsvE5M6WkgKsWyfOrP6vqQHRw0lKEkstHz8upl6fe+6ehUmMRV6e6MA2d65I\nnmfOBDw95R6VDrhwQfRzPnhQzDqHhork2doasLC4/72i0YiE+++/xTEJCWLLywMcHMSsdd26YunG\nMWOA3ux+RPQoaiLvNJIVBejflEql3EPQquPHxQTPU0+JK/6ff16cOU1NFRc2nTkDnDwpEuqEhNpN\nmA099rruseJfXi4+ZXXvDoSHizfY6dNiKT0jTJgBkc+99ZZY2dLLC2jfXpRs3LhR+f2N5v3ftCmw\ndi2wahWwbJlY5tPLSwTMzAywtRVJtIWF+ARvaipu//JLsUrkxInil1RpqehfuXatWMo7NFQkzf/3\nf2Im+hEYTex1FOOv/1jTTAZn40bgpZfElf4zZ4rlgXm1P1VKpQK2bROzf088IVqg/FthIXDihFiZ\nZvFiwNtbXAX3zDM8bX4XBwfgs8+AKVPE2i0tWgCDBgFhYSLPM9p2dYGBosb5breXUTcxEQn07TY9\n//XB63aLnlatxH7PnsCAAeIU2sKFIvEmIq1jeQYZDEkSky9z5wJRUUCnTnKPiHRWUZEoYp87V5zu\nNjcHjh0TbVKeeALw9RWn148fB9LTRcPtLl3E7B/reB5Kaqr4Ody2DYiLA9q1E+UbXbqI2ejKPp/Q\nIygoEFdi5uSIVneuNbu0OpGhYU0z0f+oVGLyLz5e9JNt3FjuEZFOys4GfvxRrOT25JPA22+L1WcA\nUVOakgIcPSpaRDRtKhJkX1824H5MxcXA3r3Ajh1AYqIIsYuLSJ79/cWKgw0aiLVBGjQQE6epqWK7\neFFs5uZixerbW/36Nb/Et97RaIAPPhBXM//6K9Ctm9wjItJZTJqp2gypX2ReHjB0qPgDumaNOE2s\nywwp9nrlyBFg0CAo/fwQPG+eqB+gWqdUKhEUFIzkZPFfcuIEcOWKmNDPyBBfS0tFea+XF9CkidhU\nKnE9wvnz4mtenij/eP11UYJl1CIjxaoz3bsDX3/9nysT8nePvBh/ebFPMxm9jAxxPVbXrsD8+ZwQ\npP+wapUocl+0SJzGZsIsKxMTMYHv6ysu0v03SXrwdZXZ2cDy5cDgweLM0vTposzc9AHtsHNzxUy2\ntXX1x69zBg8W3TRmzwbathVdO159lbXORDWMM82kt/75RyTMkyeLvxFG2ryAqqJWiwbC69eLAls2\nEjY4KhWwYQMwb54o42jcGLCzA+ztxVdTU/Hh+soVsWk0YlXPiRNFXmlw64+cOydmnS9dAn77jdPw\nRP/D8gwyaCUl4tStpyfg7n7vbfv2AUOGAN9+q7Mr1pLcbt4ERowQWdWaNdVb85n0yvnzotVdQQGQ\nny++qlSiWqFRI6BhQ1G+deGCuGj4jz/EJO2bbxrYyQdJEu/5V18V/f/eeuvBU/BEBo5JM1WbLtZW\nZWWJnsn794vt2DFxLdbly2I2qFs3sanVwDvviFWLe/WSe9SPThdjb1AkSZRjzJghPlHNnn1P3Q7j\nLy9div+NG6Jj24IFQN++opmKQXX1uHxZ/AwoFMCKFVBeuKAzsTdGuvTeN0asaSa9o9EAmZniqviz\nZ8VM8u2ttFS0iXvqKdHvNSBAnF5Vq8Xt+/aJlftSU4Ht20VnMKJ7XLokGgVfuSLKMQIC5B4R6TBX\nV7Go4+uviyYUrVuLMo+hQw2k3KtxY2DPHuCbb8TiKuPHi5kHzjoTVQtnmklrbt0SLeD27xcrw168\nCKSliZkcT0/RNqpNG7G1bStaTRnEHyqqfWq1uBL088/vnI7mwiP0iA4cEHmlj4+YfW7YUO4R1aDE\nRK7WmgcAACAASURBVFGukZUlfj5GjRLF3URGguUZVKsKCkQffWvrO5uJiUiOL14UdYIXL4q6wgMH\nxPedO4uZ44AAsZBa48YGdtU6ye/4cWDCBLEk8c8/i5YMRNVUWipWsv7xR9G9bcwYA/owL0liFuOr\nr0S/v9deEz87BlWTQlQ5Js1UbQ+qrZIkUQYRH39nO3dO/G4tLr6zmZkBlpaij2rTpuKrt7dIktu1\n42RfZVjXVkOKi8U66cuWibrlceMearULxl9e+hL/EyfEdaTNmonV093c5B7R47sn9idOiE8FGzcC\nzZuLtc5DQ8UsR03NbBQV3TnFeHvLyABsbe+sZNOggbhK09vbgD6dVE5f3vuGijXNVCMkSUw6HD0K\nJCXd2aysRP/jrl3FtSRPPCES5LuPKysTrUAN/Hcd6Zo9e4BJk8SbMinJAPuGkdzatBFlZR9+KFYt\nXLpUXCxoMNq0ES3pysqAgweBXbuATz8VZ25GjgRmzXq0TwrFxeJxbv8xOXr0Tg/ARo3ubJ07A4WF\nYhWb28vUX7ggSqx69RJbz578mSadxJlmI3fkiCgBvXJFTDC0bSu2Nm0ADw+5R0f0L9nZoh5zxw5R\ndDpggNwjIiOgVIoyjfBw0ebS1lbuEWnRzZsiYV65UvQ4nzbtvxdJKSsDdu4EVq8GoqMBPz/RF/qJ\nJ8TWqtXDLbAiSWIJ+507xRYTI2agu3QRSXZAgHgsrl5Fj0Hr5RkajQZTp05FUlISLC0tsXTpUnh7\ne99zn6KiIvTq1QvLly9H8+bNH+qYmho8CbfL1H78ETh0CCgvv7OpVEDLlkD//iK/aN1azApfuSKu\nFt+xQ3SqGDeOv49Ih0kSsHataHMweLAox9D19dLJoOTmAq+8IiZTf/vNCBqznD4t2jampABz5oiZ\n36ysO9v588CmTSJRHjZMNM6vqdlhlUrMQickiD9qCQnij9YTT4gk+nYi3bgxT3PSQ9N60hwZGYno\n6GgsX74cCQkJmDNnDqKioipuT0xMxOTJk5GRkQGlUglfX98HHlOTgzcW6enid5OLy53a4du1xStX\nimS5pERMCISHixIKc3OxmZqKi6Y3bxaPIUmi3CI6WolXXgnGO+8w96htrGt7RBcuiKv+L14EliwR\nb+DHwPjLS9/jv26d+F07ZYqYeNCn6zaqFfu//hIzz5IkyjXc3ESvvsaNxUxMo0ZaGet9cnNFvczt\nJDohQfx7t26iFrtnT52vi9b3976+03pNc1xcHMLCwgAAAQEBSExMvOf2srIyREVF4cW7lmR70DF3\ne/bkSbiYm6OOmRlczc0R5OSETvb2UOjwm762SBIQGyvOQO/aBfTrd+eaigsXRL9jU1MgKEicLgwN\n/e9roHr2FNu8ecCpU+JxBwwAnn++dl8T0UMpLQXi4oBt28R25QowfToQGflwp3qJtGjoUCAwEBg7\nVpS0/fabgTdsCQ8Xm9wcHe/8MQPEH8m0NFE7s3u3SOzNzcUfwzZtRN9AHx8x06RPn2xIp1WZNOfl\n5cHhrmlIU1NTaDQamPwvO+tayYzPg4652wvu7ripUiG7vBxXSkvx4unTUEkSnnd3xwvu7mhtZ1ft\nF6brcnOBrVvFhctZWYCTE+DsLL5aWwMbNojEeOpU0Rzg37PBOTminOxR6o4VClGe0bo1AATX4Kuh\nR8GZhv+gUomrrhYuFKd8w8JEC7lOnWp0MQbGX16GEP/69cXnuQULxImP6dNFqf3dF0rrIkOIfQWF\nQsx2jxolNkkCzpwR9dCnT4v/oPPnxanaZs3Ef9DIkbIu7GJQ8TdSVSbNDg4OyM/Pr9j/r+S3usdE\nv/02vLy8AABeTk74yd8fjh07YvX16+jx66+wNTXFS+HheN7dHWn/OxVz+02nVCr1bv/aNSA7OxhR\nUcC+fUr4+wPjxwfDywuIi1MiPx/w8AhGXh4wbpwSTzwBhIRU/njHj4t9Dw/deX3c53619yMjgZkz\nEezhAZw9C+XZs+L2Ll10Y3zc534l+9OmBaN/f2D4cCV+/hn49ddghITozviMct/P7979sjIoFy4E\nvv0WwV99BXz+OZTOzoBCoRvj5b7W9m9/n5qaihojVWH9+vXSmDFjJEmSpAMHDkh9+/at9H7BwcHS\n2bNnH+mYBzy1pNZopH05OdLLZ89K7vv3S50TE6XvLl+W0ktKqjxOlxQVSdK2bZI0fbok+flJkqur\nJI0YIUl//ilJ+fnyji0mJkbeARgxxv5f4uIkqWFDSfroI0lSqbT+dIy/vAw1/lFRktS4sSSNGiVJ\n16/LPZrKGWrsH4pGI0lbtkiSv78kdeokSbGxtT4Eo46/DnhQ3vkwqpxpHjRoEHbu3InAwEAAQERE\nxP+3d+fxUdXn4sc/s89kliQkYQmENSyCCyBLQgggqAHErbheK6JIr9qqV622tvXeFr0q9lpr70+p\ndUFrr0vrHihuVVYBQUQEAdnFEAhZZ5LZ55zfH9/JBBBJhCST5Xm/Xt/XZCHJmYdkznO+5/k+X15+\n+WVqa2uZO3duk7/mZBgNBsanpTE+LY0/5ubycXU1L5eVcf+6dUxKS+Pm7GympKdjbEP1z7oO27c3\nlGKuWqX6e06dCi+8ACNHJvXOkBBti66rVawPPADPPQcXXJDsIxLipF18sSqn/a//Ul3X/v531TFN\ntBEGg2q0PXWq+s+5+mr4yU9USZicmEUTtbs+zbXRKC+VlfFESQkBTePm7Gxmd+9OeisW+peVqcV4\nBw82jG++UfstxGLqb3LqVPUCmpbWaoclRPtRVaW27921C15/XbWEEaKDKC6GOXNUO8+bbmrTDR06\nr9JStRrebldtqDIzk31EooV16m20dV1ntdfLkyUlLK6s5NLMTG7OzmZ0C/RPC4fVrPF776mxZ4/a\ndbR794aRna0635x2mrxACnFCK1aoBTmXXgoPP6xOWkJ0MDt2qJbiZ58NCxY0387UohnVLz5+6SW5\nNdAJdOqk+UiHw2GeO3iQPx84QKbFwi3Z2YxPTSXVbMZjMmEzGk+qjV1Vlfp7+tvfVJI8dSoUFame\n6u19I5ClS5cmiuZF6+q0sY9GVSnGU0+pPYmTVI7RaePfRnSm+NfVqRsqW7eqxDnZOVlniv0P8s47\ncOONqg3Kz3/eYq0tJf7J1eJ9mtuLLKuVX/Tuzc9zcnivspI/HzjAA/v24Y3FqIlGAUg1m+lvtzMk\nJSUxhjqdDHI4vpNQ67q6W3P33XDJJWrGoGvXZDyzH0DX4b77VFH1c8+B253sIxKiwcqV8Mtfqum2\nDRugR49kH5EQLc7pVOeSZ5+Fa65RFQC33aZ6PbdQXiZOxkUXqU1TfvYzOPNMtdaivh+0EEfoEDPN\njQnGYlRHo2ytCfLBdj9rS/1sD/g57K7DkBJlYCiVCempXDYojcwqF7f/1EhVFfz5z+1oq9SHHlJT\n4mPHqqSkuLj1dmoS4ng0TTUjf/hhVT/4y1+qQk+jMdlHJkSri8XUn8Pjj6tNpm66SY0f0mtftILi\nYrj9dhg1Ch59VM6jHYiUZzRC19WL05tvqrsvW7bA0KFqr4TRo9UuTqt3hPjgYA1f6NUc7lEDmSHy\nQlnMn9yd8eme9rE74YIFalvAFSvUDN6jj6rt/95+WxXUCdGa/H611/D//I+qY/rlL2HmzPZf0yRE\nM9myBf70J1VGe+GFavZ51KhkH5VICARg/nw143z77XDXXZCSkuyjEqeoQyfNsRh89ZW6yDteB4q6\nOrW9dHEx7N179KK8bt1g82a16244rNYbXXKJqic70ZqjSAR2lnt5c89mXvD50EIhZq1YwexFi8ip\nqlIzZPWjXz/VQ65+DB78w5KCmhrVgmP3bujZE8aMObkZuJdfVnUky5bBgAENH3/rLVVM99RTajXK\nMaS2Knk6ZOx1Xa2Wff551Q0jP1/VB553XptbGdsh49+OSPwbVFaq8v4nnoBeveCOO9T1ZUv9yUjs\nf6A9e+Dee9Vr2/33w7XXnlJ7Ool/cnW4mubaWnj/fTUrvHixSpZLS1Ud2PDhqudxerrqYLFypapE\nmDFD1YeVlanWb6Wl8PnnKqd99VUYMaIJL0C7dkFxMZZFizjtk084LTeXe0ePZt348bxwySWcdeGF\nnOd0ckdaGnk2m1rQtHOnKoNYvBjmzYP9+1VGfmRibTKpjzkcDSMUUn+IwaBqs9Wvn/peNTUqu585\nU7XhMJlUIlJdrZ5cVRV06aKuCtxu9aQWL1aJyb/+dXTCDOoqoXdv1Tz0178Gi0UV0Vks6jiGDVPB\nSU1tsf9P0QlUVMDTT6szv80Gs2erq12pWRaiUV26wD33wJ13qvPef/83/P738Ic/QHyrA5FM/frB\nK6/AmjVqtvnxx9UdtClTkn1kIkmSOtN86aU6oZDKI/1+NTucl6dq8i+8EPr0UWWRu3bBxo1qHD6s\n6vOLik4y34tE1GK5zZth/XpVZFZZqbLvGTPUH8Mxi+i80SjPlZbyp5ISulmt3NGrFxdmZOA48orT\n71fT2prWMKJRlRwHAg3DYlHJclbW0dn81q1qavz111XTZ5tNPdmUFLUKMS1NJc4HD6pp+G7dwOeD\nRYtOvCTb64WSEnVskYgalZXw4ovqCuXqq+GnP1V1K0I01fbtqgTolVfUhdktt6iapzY2qyxEe6Jp\nauHgr36lbtY8/LC0MG8zdF2dn+++GyZPVq9/suC+XWn35RmvvaZjs6n80G5Xi1ZPeuKztBTWrlXj\n00/VzG39N7bbVenE7t1qVrdPHzj99Ibt+s4+u0mlETFd553ycv5UUsKnXi/DnE7yPR7yPB7GpabS\np7n6zX77rXrMylLP4Vi1tXDokHpePXue/M8pKYG//EWNnByVoEciDQm2261euQsK1Dhe83ddl0Sp\nM1mxQp3J16+Hf/93lSx3757soxKiQ/H71WzzY4/BFVeozhvjxska2jbB51O3Bj76CP76V7kl0I60\n+6T5pH60rqsi5i++UGPjRvjsM1XkPGaMmnUdM0YlnMGgmsYOBlUi2LcvDBnSLF3m/bEYn/l8rPF6\nWe31sqqmhm5WKz/KzGRmVhanO51tehHhUbVVoRCsXq1iW1/CYbWqW++ffKJqYdasUbfcu3dXJSPV\n1Wrm2+dTCffo0Woly6hR6iIkLU2S6e/RLuvaVq6E3/5WXXjee6/anKSd7tbQLuPfgUj8m660VHUQ\nfeUV9ZJ7xRVw5ZUnf1NHYt+M3n5btT+54Qa1d3oTeghK/JOrw9U0H1ddnZo5XrlSjbVrweVSs8Rn\nnaXKCx55BHJzWzVJSzGZKExLozC+SlGL71D4xuHDXPjll1iMRqZ36UKOzUY3qzUx+thspP3ALb93\nBwK8VV7OGLeb/NRUTM39PG02+L4/5PrarVgMvvxSlXakp6ukOD1d/V/s2QPr1qnZx9/9ThWVx2Lq\nwiUzUz16POrixe9vGAbD0d8rPV1d2JxxhhoZGc37PMUPt2qVSpZ37lQ7/cyapS6qhBAtrkcPtSTl\n179WHTdefVWtRYtEVPJ81VXqDq3MTyTBxRerSbobb1TNAO68U/2HSJeNDi25M831idiyZSohrqxU\nyVY0qh79fnWyPussGD9ejbw8lYS1Ybqu83ltLR9WVVEaDnMoPsoiEfYGg2RaLIx0uRjhcjHS7eZM\np5OeNttRM9O6rvOJ18sf9u9nWXU1F2VmssHnoyQc5oIuXbgoM5Pz09NxtdU2XnV1UF7eMGpq1Mxk\nSooaDkfDQseqKjUqK1UB+5dfqppzl0stWKxf+Gg0qkenU9WfT58uWzC3hOpqta3ss8+q/5Nf/Qqu\nu052YxCiDdB1dYP11VfVDLTdrhLooiJ1o0/+TFuZrsO778KTT6o7s7NmqRnowYOTfWTiGO2/PCM9\nXc1ETpwIEyaoW/8mk6o/NpnUDOiwYe32NvDxaLrOjkCAz30+NtTWssHn48u6OkKaxlCnk2FOJ/3s\ndt4uL6cyGuX2nj2Z3b17IjneFwxSXF7OOxUVrPP5uCIri5uzsxne0RYk6LpaELlli7p40nU1NE0l\ncq+/rma0L75Y3W2YPFn6AJ+KYFBduD7/vFpcWlSkbjuee+4ptVgSQrQcXVc3Yv/+d/j4Y/j6a1Wd\nWFgI55zT0IhJtJK9e9UaoWefVS2/7rlHnZvkVkCb0P6T5pISyM5Oxo9vc8rDYb7y+/mqro6vAwEm\npqUxIyPjhKUYpaEQz5aW8pfSUnrabNycnc0VWVnYm/Aq2SFqqw4cUGeLl19WZ4v8fLVaJj9fnTna\n6IVEm4h9VZWaFVmxQiXLGzeqC9R/+7eG/X47qDYR/05M4t9yqqsb/qzffVf9mc+dq65/e/SQ2Lea\nUEjdrXvkEXVn9J57YOZMlq5YIfFPovafNCfnR3c4UU3jn5WVPFlSwue1tdyUnc0tPXvS7QT36Trc\ni+ehQ2ox4yefqLFxo1qgOHiw2vqx/rFHj4Y66iRNwSQl9vv3NyTIK1eqOvSxY9VU1Pjx6m2Xq3WP\nKUk63O9+OyPxbz2ffab2t/rHP9SEZ37+Uu66a5JMfLYWTVM7sM2fD2VlLM3LY9Ill6g9Evr3lxno\nViZJs/iObXV1PF5SwitlZVySmckdvXrR3Wrlq7q6xEz27mCQoi5duL57dzwdtaQhFIIdO1Q/4e3b\n1Uz09u0qua6qUv2rXa6GBYj1o0sX1ffQ4WhoV1i/Qc2R79dvZFPfkzsWU48ul/oe9d8rWTXXPp+6\nX/vuu2o3IJ9PJcf1SfLw4bKgT4hOwudTE59PPKFepv7jP9QNpQ5U+di26bqazHn/fVVWuHGjOgcN\nHw7Tpqkd2qQhd4uTpFl8r4pIhKcOHOD/lZQQ0DSGpaQwzOlkqNNJL5uNf5SV8X5VFT/u1o1be/Zk\nYGdb8atpanFi/SLEI0d1tarxPdEIBNQL4ZG7P4LqoV2/qLGqSq3KOfts1cuzvnSkS5fjH5OuN2xA\nU98r+9jHYz8WDKqfdeSiy23b1BTT2LGqNrmoSHUjkVkNITo1XVfthR97TDU8+slPVLv1Xr2SfWSd\nUHm5ep1++221RicnRyXPkkC3GEmaRaPqY3xsz+ilS5eSm5fHkwcO8ExpKSNcLs5NT6cgNZWz3W5s\n0kX/1Om6Spw//bShbOTTT1lqszHJav1uIhyNqsWMR/bKtliOfvvYR5tNtebLzGwYffuqhbVOZ7Ij\n0CZJeUBySfyT58jYb9+udoV+9VVVuTZzphr9+iX3GDuy7/3dj0Zh+XJVR/P662qC5Re/UJMsotl0\njj7N4pScaIOVXnY7D/bvz319+lBcUcHKmhpu3bGD7X4/w10u8lNTOTveFi/X4cAoM5U/jMGgZpWn\nTlUD1Ivja6+pMoljE2OLRWaDhRCtYvBg1SXt8cdVJdfrr6uOrj17qr2LrrtOWuW3GrNZFZ1PngyP\nPgoLF6pF2b17q+R52jQ5N7QRMtMsvsMXjbLW62Wtz8eGeGu8ikiE4fHZ6FndutFXiuGEEKJDicXU\neuHnnoN33oELLlDlG4WFkrO1umhUdYeaP1/tezBuXMPOu8OHS0H6SZDyDNFqKiIRNvh8vF1ezitl\nZZzpcjG7e3dmZmXhlEagQgjRoVRWwl//qrpvgGqHf/nlcNppyT2uTkfXYdMmVYReP7ZtU1tBTp+u\nxsiRam2NOCFJmsVJO5W6wpCmUVxezvMHD7LK62Ws280ot5vRHg+j3G6yrdYTloV0dlLTmVwS/+SS\n+CfPycS+vvHD3/+uSjhSU1XyfNllqrW7vNQ3XbP97gcC6j/ln/9Uo7JSlQDOnKkeZVvI45KaZpEU\nNqORy7p25bKuXSkLh1nj9bLe5+PPBw6w3ufDCHS3Wkk3m+lisZBuNtPTZqOoSxfyPJ4TbtgihBCi\n7TAYVPOfggLVdWPNGrUsY/p0tdb4sstUEi0NelqRwwFTpqjx6KOq7/7ixfD738OcOXDFFaowPS9P\n/lOamcw0i2al6zoHwmEOh8NURaNURqNURSLsDgZZXFHBgXCY6V26cGFGBv0cDr6qq2NzXR1b4n2k\na2MxbEYjdqMRm8FAisnExLQ0Ls/KYrTbLTPYQgjRBmiaqhT4xz9UEm21qvVqQ4fCkCFqdO0qOVur\n27NHNeV+8UW1X8GwYWp1Z3a2ekxPV/sVHDigRkmJ2j33tts6fPG6lGeIdmdfMMiiigqKy8spDYcZ\n6nQmekgPczpJNZsJaRrB+PBGo7xXVcWrZWVEdJ3Ls7KYkZGBy2RCBzRdRwe6Wa30SdZGIkII0Ynp\nOqxfr7pwbN+uSm63blUfHz5c7adUUKA6qKWmJvtoOwldhy1bYPdulRjXJ8mVldCtW0MSnZ0N+/bB\nH/6gdsq9+2649FLV0QPU1dGBA7Brl6qjTk9P7vM6BZI0i5PW3uoKdV1nU11dYlOWiK5jBAyo36V9\nwSB5Hg8/z8mhMDW1Tc9It7fYdzQS/+SS+CdPa8Ze1+HwYbV/x8qVsGqVSqwHDICLLlI7Eg4Z0iqH\n0ma06d/9WExt+f3730NpKZx+ukqU9+wBj0f9xz3xhLoKaqekpll0GgaDgbNcLs5yuXjgOJ8PxGL8\n9dAhbty+nTSzmbtycrgwIwO70Sj9pYUQopUZDKo8Y9o0NUDt4bR+vSrnmDwZevRQ7YivukpNeook\nMpngkkvUWLNGzS7n5qrdCV2uZB9dm3HCmWZN07jlllvYtGkTNpuNZ555hgEDBiQ+X1xczP3334/Z\nbOaGG27gxhtvBGDkyJGkxu/B9O/fn2efffa7P1hmmkUL0HSd4ooK/mf/ftZ5vYR0HavBgCNeJ51l\ntdLbZiPHZqO33U4vm400sxmnyYTriOE0GnGZTNiMxsSsdUTTqIxGKY9EKI9EyLJYGJKS0uSkvCYa\nZXl1NZvr6rAZjYljchiNOEwm9XjE+0FNoyoSoToapSoaxRuL4TQaybBYEsNlMlEeiXAwHE6MsKaR\n63AwKCWFQQ4HmRZLm555F0J0PrEYLF2qym/ffFPtSnjxxWqcdlqHLq0VSdLi5RlvvPEGixYt4rnn\nnmPt2rU89NBDvPXWWwBEIhGGDh3K+vXrSUlJoaCggMWLF+N2uxk3bhwbNmxo8YMXojGarhOO10cH\nNI1D4TD7QyG+CYXYHwzybSiENxajLhaj9phRF4sR1XVc8T7UdZpGutlMZjxhPRAKURmNMtbtJj81\nlTyPh1STiVj858Z0HV8sxqqaGj6qrmar389Yt5sRbjdRXScQixGIH1f98R35MZvRSLrZnBges5m6\nWIzySISKSISKaJTaWIwsi4XuVmtimAwGdgYC7PD7+ToQQAeGpqQwwuVihNvNCJeLYU6nbJUuhGgT\nwmFYtgzeflsNu1115PjZz1TJrRDNocXLM1atWsXU+Pa/Y8eOZf369YnPbd26ldzc3MSM8vjx41m2\nbBk5OTn4/X6KioqIRqM8+OCDjB079pQOUjS/Nl1b1YyMBgN2kwm7yUQa0MNmY7jb3eSvj2gadbEY\nOpBqNn9nVvlQvOXe6poa5n/zDXWxGCaDQQ3AbjSS5/Hw+wEDyPN4sBmNrR778nCYzXV1fF5by7Lq\nav747bfsCgQY5HAkkugRLhdnOJ2kHLNRTf1z6Ug6y+9+WyXxT562GnurFc47T43//V/4/HO1scrp\np8OPfqTWpg0enOyjPHVtNf6i6U6YNHu9XjweT+J9k8mEpmkYjUa8Xm8iYQZwu93U1NQwZMgQ7r77\nbubMmcOOHTuYNm0aX3/9NUaZ1RLtkMVoJO0Ev7vdrFYuzszk4szMVjyqHybTamWS1cqkI1Y9B2Kx\nRCL9eW0tLx06xOa6OsLHXIUbgbNcLsZ6PGq43QxwOKTcQwjRIgwGtcHdyJFw331q7dmECar7xi9+\nATIHJ5LphEmzx+PB5/Ml3q9PmAFSU1OP+pzP5yM9PZ1BgwaRm5sLwMCBA8nIyKC0tJSex6nynz17\nNn379gUgLS2N4cOHJ67Cli5dCiDvt9D79R9rK8fTmd6fNGlS0o9n7YoVAPykkX8/prCQz3w+Xnrv\nPf7i9/PLIUOoi8Xos20buQ4HF02ZwnCXi9JPP8VqNLaJ+Db2fluIf2d+X+Iv7/+Q9//zP2HMmKUs\nWQJXXjmJvn1h2rSljBkD55yT/OOT99vu+/Vv7927l+bSaE1zcXExCxcuZM2aNdx///0sXrwYUDXN\nw4YNY+3atTidTsaNG0dxcTHvvPMOmzZt4oknnuDAgQNMmTKFLVu2fGemWWqahWifDoXDbKytZWNt\nLZ/7fGysrWVPMEg3q5X+djv9HQ762+0McDgSb7eHxYh1sRjb/X6+qqtjdzCIy2Qiy2Ih84iRZbHg\nNJna/HMRoiOKRNR23vPnqxnpe+5Rm99ZLMk+MtEetPhCQF3XE90zABYuXMhnn31GbW0tc+fOZdGi\nRcybNw9N05gzZw4333wz0WiU66+/nn379gHwyCOPkJeX1yIHL07e0qVLE1dlonV1xNhHNY39oRC7\ng0F2BwLfeQzrOn1sNtItFtwmEx6TCY/ZTIrRiMlgwGgwYET13U41m+lrtydGN6v1qFpyXdeJ1A9N\nIxx/Oxbv3W2M12EbgUD8uL6NL/zcHwqx7ZNP6DJ6NCFNS2ykszsY5GA4zCCHg6FOJ/3tdvyaxuFw\nONEt5XD8MabriSS6l83GkJQUTnM61WNKCulmsyTVJ9ARf//bi44Se12Hd9+FRx5Rm6hccw1cf72q\ngW7LOkr826sWXwhoMBhYsGDBUR8bNGhQ4u0ZM2YwY8aMo7+h2cyLL754SgclhGhfzEYj/RwO+jkc\nTDnOjlHVkQjfhELUxFvneaNRfPEOJRqq20j9Y1U0ysbycvYGg+wNBqmJRrEajYkkOQaYDQYs8WE1\nGrHEE2Vd1xPdSzTAZjCQE28tmGOz0cdux+FycVZGBlaj2qrdbjTSx26nn92O+Zg7Ysfjj3cwKY9E\n2BcMst3vZ0V1NX85cIBtfj++WAyzwXDUMWZYLHSzWukaf8yx2Zicns7ZbneHW2gpREszGBr6eVgT\nbgAAFIxJREFUP2/fDs8/D0VFqtfz9dfDjBmQk5PsoxQdkewIKIRo0wKxGGFdTySgZoOhTc/k1rcb\nrJ8ND2saFZEIhyIRDoXDHAqH2R0M8kFlJYciEc5PT2daly6c36ULXa3WZB++EO1SLAbvvw8vvggf\nfKB2hJ48WY1zzlEbrYjOTbbRFkKIduybYJD3KitZUlnJR1VVDExJYWqXLkzr0oWxHo/MQgtxEjQN\ntmyBjz5SY9kyGDpUbXZ36aUwcGCyj1AkgyTN4qRJbVXySOyTq63GP6xprPZ6WVJRwZLKSr4NhZic\nns6UtDSmpKeT20Fa/bXV+HcGnTX24TAsXap2Hnz7bUhPh4sugunTIT8fzCcsVG0+nTX+bUWL1zQL\nIYRoHVajkYlpaUxMS+PhAQMoCYX4V1UV/6qq4oF9+zAaDExJT2dYSgo9bTZ62mz0stnItlqxH7Mp\njRCigdUK55+vxhNPwLp18M47cPvtsGcPTJmi6qMLCqBfP7DZkn3Eoq2SmWYhhGjjdF1nu9/Px9XV\n7AwE+DYUoiTeFaQ0HMZjNtPTaqVXPJnOsdkYmJLCQIeDgQ4H7taaShOinTl4EN57D5Ysgc8+g/37\noVs3yM2FAQNULXRamhqpqWqWesgQteiwA9z46VSkPEMIITo5Tdc5HIkkkuiSUIh9wSA7AwF2BALs\nDARwm0xHJdEDHQ4GpaSQY7OR1gwt8rT4okdrG1+kKURjolH45hvYtQt27oTycqiuVqOmRr3/1Vdq\n4eFZZ8GZZ6rHs85SddN2e7Kfgfg+kjSLkya1VckjsU+uzhZ/Xdc5EA6zw+/n63givcPvZ0d8xjqo\naXS1WulmsdDdaiXHbqdPvD1fX7udnjZbop0fgA5UR6OJLdg3xDe4CWgaUV3HbjTiMBqxG410s1rp\nHf9efex2ettslK9bx4/OO4+sdrDhTUfT2X73W4quqxnqTZvgiy/U2LRJJdn9+6sEevhwGDUKzj5b\nzVCDxD/ZpKZZCCHECRkMhkQN9KTj9NAOxGKUxdvhlYbD7A8G2RcKsaG8nH3BICWhEBpq45n6FNdt\nNnOW08lIt5v7+vRhhNtNhsVCTNcJaRoBTSMQi3EwHOab+Mz3vmCQlTU1bP72W37z6af4NY0cm43+\nDgej3G7yPB7Gut1kSts90cYZDNCjhxpFRQ0fD4XULPSmTbBhg6qb3rhRlXKMGqVKPMxmGDECnM7k\nHb84eTLTLIQQotXVxWJ8EwyyIxDgU6+XtT4fn3q9ZFosDHM6cZlMOE0mnEYjTpMJm9GY2PHRiNrg\nZqjTSUFqKqlSsy3aqGhU7Vq4fn3D2LxZLTgcPVq1wZs+XbYCbw1SniGEEKLD0HSdbX4/2/1+6mIx\n/JpGXXznyLCuH7VzZFjX2Vhby6deL4NSUpiQmsr41FSGOZ30dziwNWF3R/H9wprGypoaFldU8FF1\nNWFNS+zAaY3vcjmre3cuzsho0k6aokE4rBLn1avhlVfg66/h6qth9mxV1iFahiTN4qRJbVXySOyT\nS+KfXM0d/7Cmsd7nY3l1Nau8Xrb7/XwTDNLTZmNQSgr97XYyLRYy6ofZTA+bjX52O55OMEMdiMXU\nTpSRCEs//pjTCgqI6DrR+Lb00fq3448hTWOtz8eHVVUMdDi4ICODovR0PGYzYU0jHN/lcm8wyF9K\nS9kdCPDv2dnM7dGD7tKr7YS+73d/507461/VcLtVycekSVBY2FAPLU6d1DQLIYTo1KxGI+NSUxl3\nRHYR0TT2xEs/9gQClEci7AgEWOP1Uh6JcCAUYk8wiMNopL/DQX+7nR42m0quzWYyLRbSLRbCmoYv\nFlMjGsUfn221GY1qGAykms3kOhzkOhw4ktAvu36h5za/n6/jiz2/9vvZFQhQGg4T1DS6Wa10t1rh\n8GG6l5Zijm9Hbznm0WwwYDEamd6lC/+bm3vCJHg88OPu3dlUW8sTJSWctm4deR4PQ1JSyD2iS0tv\nu112tmxEbi7Mmwe//a2aff7oI3jsMbjqKjjtNNU/euDAhjZ4ffpIOUeyyEyzEEKITkfXdcoiEXYH\nAuwOBjkYDlMRiVAeiVARiVAZjWIzGHCZTLjNZtwmEylGI5H4bGwoPuNaGY2yM56cd7VaGeRw0N1q\nxWEy4Yh3EnEYjRgNhqPKSwBcJhNpZjOpZjNpZjMukynx+Vj83xrgqLIIi9HI/mCQ9T5fYsSAYSkp\nDEpJYVC8nWCuw0G21UpqM7QUbIrqSIRlNTXs8PsT7Q53BAKUhcP0tdsZeEQynW210tVqpavFQler\nFbfJhMFgIBaf/Y7oOiaDgZROvmlPKARr16qxa1dDG7zSUtVLumdPyM5uGOnpaqa6fng8kJWlek3L\nTQApzxBCCCHahKim8U0oxI5AgEPhcKKDSDDeTUSHxELG+hS2NhajOhqlJhqlOhqlNhbDaDBgii92\nNMUT7Uh8hOPJerbVyii3OzF62Wxttn1fIBZjdzCYSKZ3xmfAyyIRysJhDkciBDQNTdfRabhAiOo6\nqcf0Fz8tJYXhLhd97PY2+3xbQzgMJSVw4MDRo6oKfL6G4fXC4cNQVgYul0q0e/RQM9X9+qnRt69K\nuG02tXOizQZGi8aeSIDN/jo219WxxV/LZn8dCwcPYUJ6WrKf/kmTpFmcNKnrTB6JfXJJ/JNL4p88\nbTX2YU3DFL9YqKfpOgfiFyH1M9db6urYWFuLX9MY7nIxwuWiq8WS+FqTwYAJ1RIx9YhZfI/ZjDn+\nufqLErvRiCc+w91aGou/rusENA17/M5Ec9E0lVAfOqSS63371Pbhe/bA3r1woDxGbS8f/oHVhAbX\nEBvkhWoLhj0u2OPEsNsJe1y8/7yDKZPa78WK1DQLIYQQol2zHqf7htFgoJfdTi+7nXOO6S9eFg6z\nsbaWjbW1VEQixHSdGBCLL2asjcUSs/c10SjeWIzoESUvsXhyGtY0Mi0WsiwWsqxWHEYj4Xh5SP2w\nG42kmkyJ5NtjMiXuBBjqH495u/5uwpFvGw0GNh88yJJdu6iKH1viMRKhOv622WAgHP+59W0XHUYj\nOiRm43XAbTLRN74BUd/45kGpJhNWoxHLEXXq1dEo5fGyo3JnhPK+Ecp7RigfHUl8vCwcZpjTSWFq\nKhPSelLgOU36pX8PmWkWQgghRKcTjMU4HIkkRrC+rV68dtxsMBDUNLzxxLsmGsUXi6nkO57AaqgZ\n4iPf1uCoJLf+0WE0kmY2k26xqMd4LXv9Y5rZjMVoRIsn9XWxGLWxGAFNOyo5NwA10Sj7gkH2HjF8\n8daM9XXhUV0nNb6wtf7iIPM4I9tmw9kJ6selPEMIIYQQQohGNEfeKR3JO6mlS5cm+xA6LYl9ckn8\nk0vinzwS++SS+Ld/kjQLIYQQQgjRCCnPEEIIIYQQHZqUZwghhBBCCNEKJGnupKS2Knkk9skl8U8u\niX/ySOyTS+Lf/knSLIQQQgghRCOkplkIIYQQQnRoUtMshBBCCCFEK5CkuZOS2qrkkdgnl8Q/uST+\nySOxTy6Jf/t3wqRZ0zRuuukmxo0bxznnnMOuXbuO+nxxcTFjxoxh3LhxPPPMM036GtE2bNy4MdmH\n0GlJ7JNL4p9cEv/kkdgnl8S//TOf6JNvvfUW4XCYTz75hLVr13LXXXfx1ltvARCJRLjzzjtZv349\nKSkpFBQUcNFFF7Fy5UpCodBxv0a0HdXV1ck+hE5LYp9cEv/kkvgnj8Q+uST+7d8Jk+ZVq1YxdepU\nAMaOHcv69esTn9u6dSu5ubmkpqYCMH78eJYvX87q1auZNm3acb9GCCGEEEKI9uiE5RlerxePx5N4\n32QyoWla4nP1CTOA2+2mpqbmhF8j2o69e/cm+xA6LYl9ckn8k0vinzwS++SS+Ld/J5xp9ng8+Hy+\nxPuapmE0qjw7NTX1qM/5fD7S0tJO+DVHGjBgAAaD4ZSfgDh5L7zwQrIPodOS2CeXxD+5JP7JI7FP\nLol/8gwYMOCUv8cJk+aCggKKi4u5/PLLWbNmDWeeeWbic0OGDGHHjh1UVVXhdDpZvnw5d999NwaD\n4Xu/5kg7d+485YMXQgghhBCiNZxwcxNd17nlllvYtGkTAAsXLuSzzz6jtraWuXPnsmjRIubNm4em\nacyZM4ebb775uF8zaNCg1nk2QgghhBBCtICk7QgohBBCCCFEeyGbmwghhBBCCNGIFkma165dyznn\nnAPAtm3bGD9+PIWFhcyZMyex7/eCBQsYPXo0Y8aMSfRxDgQCzJw5kwkTJnDBBRdQXl7eEofXoR0Z\n+y+++IL8/HwKCwu54YYbCIfDADz99NOMHj2a/Px8Fi9eDEjsm0tT4v/YY4+Rl5dHXl4e8+bNAyT+\nzaUp8Qe1QHnatGk89dRTgMS/OTQl9kuWLCE/P5/8/Hxuu+02QGLfXJoSfznvNr9IJMK1117LhAkT\nGDt2LMXFxezcuZPx48czYcIEbrnllkTeI+fe5vdD4t8s5169mc2fP18/44wz9Pz8fF3Xdf3KK6/U\nlyxZouu6rl9zzTV6cXGx7vP59H79+umRSESvqqrS+/Tpo+u6rj/66KP67373O13Xdf2VV17Rb7/9\n9uY+vA7t2NiPGjVKX716ta7ruv6b3/xGf+yxx/TS0lL9jDPO0MPhsF5TU6OfccYZeigUktg3g6bE\nf/fu3fqoUaN0TdN0Xdf1goICfdOmTRL/ZtCU+Ne799579by8PP2pp57SdV1ee05VU2Lv9Xr1008/\nXa+oqNB1XdcffvhhvaysTGLfDJoS/9raWjnvtoCFCxfqd9xxh67rul5ZWann5OToF110kb5s2TJd\n13X9pptu0t98800597aQpsa/uc69zT7TnJubyxtvvJHI7B0OBxUVFei6js/nw2q1JlrN1dbW4vP5\nMJlMwNGbqUydOpUPP/ywuQ+vQzs29t9++y15eXkAjBs3jmXLlrFu3ToKCgqwWCx4PB5yc3PZtGmT\nxL4ZNCX+vXv35t133038DUQiEex2u8S/GTQl/gCvvfYaJpMpEW+Q155T1ZTYr169mjPOOIM777yT\nCRMm0KNHD7KysiT2zaAp8Zfzbsu4/PLLE7OWmqZhsVjYsGEDEyZMAGDatGl8+OGHcu5tIU2Nf05O\nTrOce5s9af7Rj36E2dzQye7WW2/l9ttvZ+jQoZSVlTFx4kScTidXX301Q4cOZdSoUYnbdEdumFK/\nWYpoumNj379/f5YvXw5AcXExdXV1TdqURmJ/cpoSf5PJREZGBrqu8/Of/5yRI0cycOBA+d1vBk2J\n/+bNm3n55ZeZN28euq4nkgyJ/6lpSuzLy8v5+OOPeeSRR1iyZAl//OMf2bFjh8S+GTQWf7/fT0pK\nCldddZWcd5uZ0+nE5XLh8/m4/PLLeeCBB47a0O3Ic6yce5tfY/F3uVzU1NRgNpub5dzb4gsBf/zj\nH7NixQq2bt3Ktddey1133cXq1atZvXo1e/fu5ZtvvuHNN99k3bp1eDwevF4v0LBZijh5Cxcu5KGH\nHuLcc8+lW7duZGZmfmfzmeNtSiOxbx7Hiz9AMBjkmmuuoa6ujieffBJAfvdbwPHi/+KLL1JSUsLk\nyZN54YUXeOyxx3jvvfck/s3seLHPyMhg9OjRdO3aFafTyYQJE9i4caPEvgUcG/+MjAxWr17NmjVr\n5LzbAvbv38/kyZOZNWsWV1999VEbunm93uNu/Cbn3uZzovgfGdPmOPe2eNLs9/txu90A9OjRg+rq\nampra3E4HFitVmw2G2lpaVRXV1NQUMA///lPQC0YqZ9eFydn0aJF/N///R8ffvghFRUVFBUVMWbM\nGFasWEEoFKKmpoatW7dy+umnS+xbwPHir+s6F198McOHD2fBggWJW0US/+Z3vPjPnz+fNWvW8PHH\nHzN79mzuvPNOioqKJP7N7HixHzlyJJs3b6aiooJoNMqaNWsYNmyYxL4FHC/+ct5tGYcOHeL888/n\nkUceYfbs2QCMGDEiUQ5WH1M597aMpsa/uc69J9wR8FTUH9AzzzzDZZddht1ux2az8fTTT9O7d28+\n+OADxo4di8lkorCwkPPOO4/x48dz3XXXUVhYiM1m46WXXmqpw+vQ6mM/aNAgzj33XGw2G2PGjGHW\nrFkYDAZuu+02CgsL0TSNBx98EJvNxs033yyxbybfF/9rr72Wt956i+XLlxOJRFiyZAkADz/8sMS/\nGZ3o9//7SPybR2OvPQ899BBFRUUAXHnllQwdOpR+/fpJ7JtJY/GX827ze/DBB6mpqWHevHmJ2trH\nH3+c2267jXA4zNChQ7nsssvk3NtCmhL/mTNnNtu5VzY3EUIIIYQQohGyuYkQQgghhBCNkKRZCCGE\nEEKIRkjSLIQQQgghRCMkaRZCCCGEEKIRkjQLIYQQQgjRCEmahRBCCCGEaIQkzUIIIYQQQjRCkmYh\nhBBCCCEaIUmzEEK0Addcc01iO9etW7cyY8YMbrzxRiZOnEhhYWFiW9jXXnuNyZMnU1hYyIQJE6io\nqGDp0qWMHTuWCRMm8Le//S2ZT0MIITqsFttGWwghRNPNnTuXBQsWMH36dJ577jnGjRuH1+vlmWee\noaKigokTJ7J582Z27NjB4sWLcTgc3HTTTbz33nv07NmTUCjE2rVrk/00hBCiw5KkWQgh2oCJEydy\n6623Ul5ezgcffMC4ceNYuXJlIhGOxWJUVFSQlZXFddddh8vlYtu2beTn5wMwePDgZB6+EEJ0eJI0\nCyFEG2AwGLj22mu59dZbKSoqolevXuTk5HDvvffi9Xp59NFHsVgs/Pa3v2X//v1omsb555+PrusA\nGI1SbSeEEC1JkmYhhGgjZs+ezX333ceXX35J3759mTt3LpMmTcLr9fLTn/4Uj8dDQUEB+fn5dO3a\nlcGDB1NaWkq/fv0wGAzJPnwhhOjQDHr9NIUQQoikKi0tZdasWXzwwQfJPhQhhBDHkPt5QgjRBrzx\nxhsUFRUxb968ZB+KEEKI45CZZiGEEEIIIRohM81CCCGEEEI0QpJmIYQQQgghGiFJsxBCCCGEEI2Q\npFkIIYQQQohGSNIshBBCCCFEI/4/O/C/TVO7TowAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dny_ts.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### boy names that became girls' names (and vice versa)" ] }, { "cell_type": "code", "execution_count": 160, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Leslie', 'Lesley', 'Leslee', 'Lesli', 'Lesly'], dtype=object)" ] }, "execution_count": 160, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_names = top1000.names.unique()\n", "mask = np.array(['lesl' in x.lower() for x in all_names])\n", "lesley_like = all_names[mask]\n", "lesley_like" ] }, { "cell_type": "code", "execution_count": 161, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "names\n", "Leslee 1082\n", "Lesley 35022\n", "Lesli 929\n", "Leslie 370429\n", "Lesly 10067\n", "Name: births, dtype: int64" ] }, "execution_count": 161, "metadata": {}, "output_type": "execute_result" } ], "source": [ "filtered = top1000[top1000.names.isin(lesley_like)]\n", "filtered.groupby('names').births.sum()" ] }, { "cell_type": "code", "execution_count": 163, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sexFM
year
1880 0.091954 0.908046
1881 0.106796 0.893204
1882 0.065693 0.934307
1883 0.053030 0.946970
1884 0.107143 0.892857
1885 0.075758 0.924242
1886 0.055556 0.944444
1887 0.067416 0.932584
1888 0.116162 0.883838
1889 0.129213 0.870787
1890 0.099502 0.900498
1891 0.145833 0.854167
1892 0.096070 0.903930
1893 0.123223 0.876777
1894 0.138996 0.861004
1895 0.085603 0.914397
1896 0.102273 0.897727
1897 0.132812 0.867188
1898 0.092308 0.907692
1899 0.090452 0.909548
1900 0.095238 0.904762
1901 0.124464 0.875536
1902 0.128472 0.871528
1903 0.089552 0.910448
1904 0.109890 0.890110
1905 0.124113 0.875887
1906 0.099315 0.900685
1907 0.110749 0.889251
1908 0.123867 0.876133
1909 0.107034 0.892966
1910 0.137931 0.862069
1911 0.097765 0.902235
1912 0.066038 0.933962
1913 0.058427 0.941573
1914 0.059441 0.940559
1915 0.058824 0.941176
1916 0.069368 0.930632
1917 0.064286 0.935714
1918 0.071630 0.928370
1919 0.069049 0.930951
1920 0.053026 0.946974
1921 0.071106 0.928894
1922 0.070267 0.929733
1923 0.088252 0.911748
1924 0.078246 0.921754
1925 0.081382 0.918618
1926 0.086497 0.913503
1927 0.078541 0.921459
1928 0.068780 0.931220
1929 0.075166 0.924834
1930 0.096140 0.903860
1931 0.078234 0.921766
1932 0.073841 0.926159
1933 0.095423 0.904577
1934 0.090514 0.909486
1935 0.116968 0.883032
1936 0.125526 0.874474
1937 0.124736 0.875264
1938 0.123856 0.876144
1939 0.117841 0.882159
......
\n", "

131 rows × 2 columns

\n", "
" ], "text/plain": [ "sex F M\n", "year \n", "1880 0.091954 0.908046\n", "1881 0.106796 0.893204\n", "1882 0.065693 0.934307\n", "1883 0.053030 0.946970\n", "1884 0.107143 0.892857\n", "1885 0.075758 0.924242\n", "1886 0.055556 0.944444\n", "1887 0.067416 0.932584\n", "1888 0.116162 0.883838\n", "1889 0.129213 0.870787\n", "1890 0.099502 0.900498\n", "1891 0.145833 0.854167\n", "1892 0.096070 0.903930\n", "1893 0.123223 0.876777\n", "1894 0.138996 0.861004\n", "1895 0.085603 0.914397\n", "1896 0.102273 0.897727\n", "1897 0.132812 0.867188\n", "1898 0.092308 0.907692\n", "1899 0.090452 0.909548\n", "1900 0.095238 0.904762\n", "1901 0.124464 0.875536\n", "1902 0.128472 0.871528\n", "1903 0.089552 0.910448\n", "1904 0.109890 0.890110\n", "1905 0.124113 0.875887\n", "1906 0.099315 0.900685\n", "1907 0.110749 0.889251\n", "1908 0.123867 0.876133\n", "1909 0.107034 0.892966\n", "1910 0.137931 0.862069\n", "1911 0.097765 0.902235\n", "1912 0.066038 0.933962\n", "1913 0.058427 0.941573\n", "1914 0.059441 0.940559\n", "1915 0.058824 0.941176\n", "1916 0.069368 0.930632\n", "1917 0.064286 0.935714\n", "1918 0.071630 0.928370\n", "1919 0.069049 0.930951\n", "1920 0.053026 0.946974\n", "1921 0.071106 0.928894\n", "1922 0.070267 0.929733\n", "1923 0.088252 0.911748\n", "1924 0.078246 0.921754\n", "1925 0.081382 0.918618\n", "1926 0.086497 0.913503\n", "1927 0.078541 0.921459\n", "1928 0.068780 0.931220\n", "1929 0.075166 0.924834\n", "1930 0.096140 0.903860\n", "1931 0.078234 0.921766\n", "1932 0.073841 0.926159\n", "1933 0.095423 0.904577\n", "1934 0.090514 0.909486\n", "1935 0.116968 0.883032\n", "1936 0.125526 0.874474\n", "1937 0.124736 0.875264\n", "1938 0.123856 0.876144\n", "1939 0.117841 0.882159\n", " ... ...\n", "\n", "[131 rows x 2 columns]" ] }, "execution_count": 163, "metadata": {}, "output_type": "execute_result" } ], "source": [ "table = filtered.pivot_table('births', rows = 'year', cols = 'sex', aggfunc = sum)\n", "table = table.div(table.sum(1), axis = 0)\n", "table.tail()" ] }, { "cell_type": "code", "execution_count": 164, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.close('all')" ] }, { "cell_type": "code", "execution_count": 166, "metadata": { "collapsed": false }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m table.plot(style = {'M', 'k-', 'F': 'k--'})\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "table.plot(style = {'M', 'k-', 'F': 'k--'})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }