import «OrderPQ».Basic namespace OrderPQ -- Let `p` and `q` be prime numbers. variable {p q : ℕ} [hp : Fact p.Prime] [hq : Fact q.Prime] /-- There exists a noncyclic group `G` of order `p * q` if and only if `p` equals `q` or `p` divides `q - 1` or `q` divides `p - 1`. -/ theorem exists_card_eq_prime_mul_prime_and_not_isCyclic_iff : (∃ (G : Type) (_ : Group G), Nat.card G = p * q ∧ ¬IsCyclic G) ↔ p = q ∨ p ∣ q - 1 ∨ q ∣ p - 1 := by constructor · rintro ⟨G, _, h1, h2⟩ contrapose! h2 exact isCyclic_of_card_eq_prime_mul_prime' h1 h2 · rintro (h1 | h2 | h3) · use MulZMod p × MulZMod p, Prod.instGroup rw [Nat.card_prod, nat_card_mulZMod, h1.symm, not_isCyclic_iff_exponent_eq_prime hp.elim] · simp [Monoid.exponent_prod, IsCyclic.exponent_eq_card] · simp [p.pow_two.symm] · exact exists_group_card_eq_prime_mul_prime_and_not_isCyclic h2 · exact mul_comm p q ▸ exists_group_card_eq_prime_mul_prime_and_not_isCyclic h3 /-- Any two noncyclic groups of order `p * q` are isomorphic. -/ theorem nonempty_mulEquiv_of_card_eq_prime_mul_prime_of_not_isCyclic {G1 : Type*} [Group G1] (h1 : Nat.card G1 = p * q) (h1' : ¬IsCyclic G1) {G2 : Type*} [Group G2] (h2 : Nat.card G2 = p * q) (h2' : ¬IsCyclic G2) : Nonempty (G1 ≃* G2) := by obtain (heq | hlt | hgt) : p = q ∨ p < q ∨ p > q := Iff.subst Nat.lt_or_gt (em (p = q)) · rw [← heq, ← p.pow_two] at h1 h2 exact Nonempty.map2 (fun x y => x.trans y.symm) (nonempty_mulEquiv_prod_of_card_eq_prime_pow_two_of_not_isCyclic h1 h1') (nonempty_mulEquiv_prod_of_card_eq_prime_pow_two_of_not_isCyclic h2 h2') · exact nonempty_mulEquiv_of_card_eq_prime_mul_prime_of_not_isCyclic' hlt h1 h1' h2 h2' · exact nonempty_mulEquiv_of_card_eq_prime_mul_prime_of_not_isCyclic' hgt (mul_comm p q ▸ h1) h1' (mul_comm p q ▸ h2) h2' /-- Every noncyclic group of order `p ^ 2` is isomorphic to the direct product of `MulZMod p` with itself. -/ theorem nonempty_mulEquiv_prod_of_card_eq_prime_pow_two_of_not_isCyclic {G : Type*} [Group G] (h : Nat.card G = p ^ 2) (h' : ¬IsCyclic G) : Nonempty (G ≃* MulZMod p × MulZMod p) := _root_.nonempty_mulEquiv_prod_of_card_eq_prime_pow_two_of_not_isCyclic h h' /-- If `p < q`, then for any noncyclic group `G` of order `p * q` there exists a homomorphism `φ` from `MulZMod p` to the automorphism group of `MulZMod q` such that `G` is isomorphic to the semidirect product of `MulZMod q` and `MulZMod p` defined by `φ`. -/ theorem nonempty_mulEquiv_semidirectProduct_of_card_eq_prime_mul_prime (hpq : p < q) {G : Type*} [Group G] (h : Nat.card G = p * q) : ∃ φ : MulZMod p →* MulAut (MulZMod q), Nonempty (G ≃* MulZMod q ⋊[φ] MulZMod p) := _root_.nonempty_mulEquiv_semidirectProduct_of_card_eq_prime_mul_prime hpq h /-- If `p < q`, then every noncyclic group of order `p * q` is isomorphic to the semidirect product of `MulZMod q` and `MulZMod p` defined by any nontrivial homomorphism from `MulZMod p` to the automorphism group of `MulZMod q`. -/ theorem nonempty_mulEquiv_semidirectProduct_of_card_eq_prime_mul_prime_of_not_isCyclic (hpq : p < q) {G : Type*} [Group G] (h : Nat.card G = p * q) (h' : ¬IsCyclic G) (φ : MulZMod p →* MulAut (MulZMod q)) (hφ : φ ≠ 1 ) : Nonempty (G ≃* MulZMod q ⋊[φ] MulZMod p) := by have ⟨_,⟨hφ1,hne⟩⟩ := exists_monoidHom_ne_one_and_nonempty_mulEquiv_semidirectProduct hpq h h' refine hne.elim fun ψ1 => ?_ exact (nonempty_mulEquiv_mulZMod_prime_semidirectProduct_mulZMod_prime hφ1 hφ).elim fun ψ2 => ⟨MulEquiv.trans ψ1 ψ2⟩ end OrderPQ