A First Course in

Machine
Learning

Chapman & Hall/CRC

Machine Learning & Pattern Recognition Series

SERIES EDITORS

Ralf Herbrich and Thore Graepel
Microsoft Research Ltd.
Cambridge, UK

AIMS AND SCOPE

This series reflects the latest advances and applications in machine learning
and pattern recognition through the publication of a broad range of reference
works, textbooks, and handbooks. The inclusion of concrete examples, appli-
cations, and methods is highly encouraged. The scope of the series includes,
but is not limited to, titles in the areas of machine learning, pattern recogni-
tion, computational intelligence, robotics, computational/statistical learning
theory, natural language processing, computer vision, game Al, game theory,
neural networks, computational neuroscience, and other relevant topics, such
as machine learning applied to bioinformatics or cognitive science, which
might be proposed by potential contributors.

PUBLISHED TITLES

MACHINE LEARNING: An Algorithmic Perspective
Stephen Marsland

HANDBOOK OF NATURAL LANGUAGE PROCESSING,
Second Edition
Nitin Indurkhya and Fred J. Damerau

UTILITY-BASED LEARNING FROM DATA
Craig Friedman and Sven Sandow

A FIRST COURSE IN MACHINE LEARNING
Simon Rogers and Mark Girolami

Chapman & Hall/CRC

Machine Learning & Pattern Recognition Series

A First Course in

Machine
Learning

- ~—-SiImon Rogers

A] e
AR TP ;1“} \

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

MATLAB?® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MAT-
LAB?® software or related products does not constitute endorsement or sponsorship by The MathWorks
of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
Version Date: 2011908

International Standard Book Number: 978-1-4398-2414-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Cont.ents

List of Tables xi
List of Figures xiii
Preface xix
1 Linear Modelling: A Least Squares Approach 1
1.1 Linear modelling 1
1.1.1 Defining the model 2

1.1.2 Modelling assumptions 3

1.1.3 Defining what a good modelis. 4

1.1.4 The least squares solution — a worked example 6

1.1.5 Worked example 9

1.1.6 Least squares fit to the Olympics data 10

1.1.7 Summary 11

1.2 Making predictions 12
1.2.1 A second Olympics dataset 12

1.2.2 Summary 15

1.3 Vector/matrix notation 15
1.31 Example.o 22

1.3.2 Numerical example 23

1.3.3 Making predictions L. 24

1.3.4 Summary 24

1.4 Nonlinear response from a linear model 25

1.5 Generalisation and over-fitting 28
1.5.1 Validationdata, 29

1.5.2 Cross-validation 29

1.5.3 Computational scaling of K-fold cross-validation . . . 32

1.6 Regularised least squares 33
1.7 Exercises e e 35
Further readingo 37

2 Linear Modelling: A Maximum Likelihood Approach 39
2.1 Errorsasnoise o 39
2.1.1 Thinking generatively 40

2.2 Random variables and probability, 41

vi Contents

2.2.1 Random variables 41

2.2.2 Probability and distributions 42

2.2.3 Adding probabilitieso 44

2.2.4 Conditional probabilities 44
2.2.5 Joint probabilities 45
2.2.6 Marginalisation 47
227 Aside—Bayes’rule 49

2.2.8 Expectations 50

2.3 Popular discrete distributions00 53
2.3.1 Bernoulli distribution00 53

2.3.2 Binomial distribution 00000 53
2.3.3 Multinomial distributiono 0oL 54

2.4 Continuous random variables — density functions 55
2.5 Popular continuous density functions 58
2.5.1 The uniform density function 58
2.5.2 The beta density function 60
2.5.3 The Gaussian density function 61
2.5.4 Multivariate Gaussian 62
2.5.5 Summary e 65

2.6 Thinking generatively...continued 65
2.7 Likelihood 67
2.7.1 Dataset likelihood 68
2.7.2 Maximum likelihood 69
2.7.3 Characteristics of the maximum likelihood solution . . 71
2.7.4 Maximum likelihood favours complex models 74

2.8 The bias-variance tradeoff 75
2.8.1 Summary 75

2.9 Effect of noise on parameter estimates 76
2.9.1 Uncertainty in estimates 78
2.9.2 Comparison with empirical values 81
2.9.3 Variability in model parameters - Olympics data . . . 82

2.10 Variability in predictions 0oL L. 83
2.10.1 Predictive variability — an example 85
2.10.2 Expected values of the estimators 86
2.10.3 Summaryo 90

2.11 Exerciseso e 90
Further reading 93
3 The Bayesian Approach to Machine Learning 95
31 Acoingame 95
3.1.1 Counting heads e e e e 97
3.1.2 The Bayesian way 98

3.2 The exact posterior 103
3.3 The three scenarios 104

3.3.1 No prior knowledge [104

Contents vii

3.3.2 The fair coin scenario 111
333 Abiasedcoin 114
3.3.4 The three scenarios — a summary 116
3.3.5 Adding moredata 116
3.4 Marginal likelihoods oo 117
3.4.1 Model comparison with the marginal likelihood 118
3.5 Hyper-parameters 119
3.6 Graphical models 120
3.6.1 Summary 121
3.7 A Bayesian treatment of the Olympics 100 m data 122
3.71 Themodel, 122
3.7.2 The likelihood 124
373 Theprior 124
3.74 Theposterior 124
3.7.5 A first-order polynomial 126
3.7.6 Making predictionso 129
3.8 Marginal likelihood for polynomial model order selection . . 131
3.9 Chapter summary 133
3.10 Exerciseso 133
Further reading 137
Bayesian Inference 139
4.1 Non-conjugate models 139
4.2 Binary responses oo 140
4.2.1 A model for binary responses 140
4.3 A point estimate — the MAP solution 143
4.4 The Laplace approximation 149
4.4.1 Laplace approximation example: Approximating a
gamma density 150
4.4.2 Laplace approximation for the binary response model 151
4.5 Sampling techniques 154
45.1 Playingdarts 154
4.5.2 The Metropolis-Hastings algorithm 156
4.5.3 Theartof sampling 164
4.6 Summaryo 165
4.7 Exercises e 165
Further reading oo 167
Classification 169
5.1 The general problem 169
5.2 Probabilistic classifiers oo 170
5.2.1 The Bayes classifier 170
5.2.1.1 Likelihood - class-conditional distributions . 171
5.2.1.2 Prior class distribution 171

5.2.1.3 Example — Gaussian class-conditionals 172

viii

Contents
5.2.1.4 Making predictions 173
5.2.1.5 The naive Bayes assumption 175
5.2.1.6 Example — classifying text 175
. 5.2.1.7 Smoothing 177
5.2.2 Logistic regression L. 179
5.2.2.1 Motivation 180
5.2.2.2 Nonlinear decision functions 181
5.2.2.3 Nonparametric models - the Gaussian process 182
5.3 Nonprobabilistic classifiers 183
5.3.1 K-nearest neighbours 183
5.3.1.1 Choosing K 184
5.3.2 Support vector machines and other kernel methods . . 186
5.3.21 Themargin 186
5.3.2.2 Maximising the margin 187
5.3.2.3 Making predictions 190
5.3.2.4 Support vectors 191
5.3.2.5 Soft margins 192
5326 Kernels 193
5.3.3 Summary 197
5.4 Assessing classification performance 198
54.1 Accuracy -0/1loss 198
5.4.2 Sensitivity and specificity 198
5.4.3 The area under the ROC curve 199
5.4.4 Confusion matrices L. 201
5.5 Discriminative and generative classifiers 203
5.6 Summary e 203
5.7 Exercises 203
Further reading 205
Clustering 207
6.1 The general problem 207
6.2 K-means clustering L. 208
6.2.1 Choosing the number of clusters 210
6.2.2 Where K-means fails 212
6.2.3 Kernelised K-means 212
6.2.4 Summary e 214
6.3 Mixture models 215
6.3.1 A generative process 216
6.3.2 Mixture model likelihood 217
6.3.3 The EM algorithm 219
6.3.3.1 Updatingmg 220
6.3.3.2 Updating pog 221
6.3.3.3 Updating ¥p 222
6.3.3.4 Updating gqng - - - - -« o o o oo 223

6.3.3.5 Some intuition e 224

Contents ix

6.34 Example. 225
6.3.5 EM finds local optima 226
6.3.6 Choosing the number of components 228
6.3.7 Other forms of mixture components 230

6.3.8 MAP estimates with EM 232
6.3.9 Bayesian mixture models 233

6.4 Summary e 234
6.5 Exercises e 234
Further readingo L 237
7 Principal Components Analysis and Latent Variable Models 239
7.1 The general problem 0oL 239
7.1.1 Variance as a proxy for interest 239

7.2 Principal components analysis 242
721 Choosing D 247
7.2.2 Limitations of PCA 247

7.3 Latent variable models 248
7.3.1 Mixture models as latent variable models 248
7.3.2 Summary e 249

7.4 Variational Bayes 0. 249
74.1 Choosing Q(@) 251
7.4.2 Optimising the bound 252

7.5 A probabilistic model for PCA 252
750 QA7) . 254
752 Qx,(Xn) -« « o o o 256

753 Qw,,(Wm) . - o o o 257
7.5.4 The required expectations 258
7.5.5 Thealgorithm 258
7.5.6 Anexample L. 260

7.6 Missing values Lo 260
7.6.1 Missing values as latent variables 262
7.6.2 Predicting missing values 264

7.7 Non-real-valued data 264
7.7.1 Probit PPCA 264
7.7.2 Visualising parliamentary data 268
7.7.2.1 Aside - relationship to classification 272

7.8 Summary e 273
7.9 Exercises 273
Further readingo 275
Glossary 277

Index 283

List of Ta bIeS

1.1
1.2
1.3
14

2.1

5.1

5.2
5.3

Synthetic dataset for linear regression example. 9
Olympics men’s 100 mdata. 11
Olympics women’s 100 mdata. 13
Some useful identities when differentiating with respect to a

VECEOr. e e e e e e e e e e 21
Events we might want to model with random variables. . .. 42
Likelihood and priors for Xpew = [2,0]7 for the Gaussian class-

conditional Bayesian classification example. 174
A binary confusion matrix. 201
Confusion matrix for the 20 class newsgroup data. 202

pal

List of Figures

1.1
1.2
1.3
14
1.5

1.6

1.7

1.8
1.9

1.10
1.11

1.12
1.13

1.14
1.15

1.16

1.17

2.1

2.2

Winning men’s 100 m times at the Summer Olympics since

Effect of varying wo and w; in the linear model defined by
Equation 1.1.
Example loss function of one parameter (w)..
Data and function for the worked example of Section 1.1.5.
The least squares fit (f(x;wo,w;) = 36.416 — 0.013z) to the
men’s 100 m Olympics dataset.
Zoomed-in plot of the winning time in the Olympics men’s
100 m sprint from 1980 showing predictions for both the 2012
and 2016 Olympics.
Women’s Olympics 100 m data with a linear model that min-
imises the squared loss.
Male and female functions extrapolated into the future.
Example of linear and quadratic models fitted to a dataset gen-
erated from a quadratic function.
8th order polynomial fitted to the Olympics 100 m men’s sprint

Least squares fit of f(z;w) = wo + w1z + wa sin (T) to the
100 m sprint data (a =2660,b=4.3).
Training and validation loss for Olympics men’s 100 m data. .
Generalisation ability of 1st, 4th and 8th order polynomials on
Olympics men’s 100 mdata.
Cross-validation.
Mean LOOCYV loss as polynomials of increasing order are fitted
to the Olympics men’s 100 mdata.
The training, testing and leave-one-out loss curves obtained for
a noisy cubic function where a sample size of 50 is available for
training and LOOCV estimation.
Effect of varying the regularisation parameter A for a 5th order
polynomial function.

Linear fit to the Olympics men’s 100 m data with errors high-
lighted.
Dataset generated from a linear model.

12

13

14
14

26

27

28
29

30
30

31

32

34

40
41

xiii

Xiv

2.3
24
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

2.18

2.19

3.1
3.2
3.3
3.4

3.5
3.6

3.7

3.8
3.9

List of Figures

An example of the probability distribution function for a bino-
mial random variable when N =50 and ¢ =0.7.
An example of the uniform pdf.
Effect of increasing the number of samples on the approxima-
tion to the expectation given in Equation 2.25 where p(y) =
U,1). o

Examples of beta pdfs with three different pairs of parameters.

Three Gaussian pdfs with different means and variances. . . .
Example surface (left) and contour (right) plots for two differ-
ent two-dimensional Gaussian pdfs.
Dataset generated from a linear model with Gaussian errors.
Likelihood function for the year 1980.
Model complexity example with Olympics men’s 100 m data.
Data generated from the model given in Equation 2.39 and the
true function.o
Variability in w for 10,000 datasets generated from the model
described in Equation 2.39.
Functions inferred from 10 datasets generated from the model
given in Equation 2.39 as well as the true function.
Two example datasets with different noise levels and the cor-
responding likelihood function.
Ten samples of w using the distribution given in

Equation 2.48. e
(a) Example data set. (b), (¢) and (d) Predictive error bars for
a linear, cubic and 6th order model, respectively.
Examples of functions with parameters drawn from a Gaussian
with mean W and covariance cov{w} for the example data set
shown in Figure 2.17(a).
Evolution of the theoretical and empirical estimates of

—~

Ept1x,w,02) {02} as the number of data points increases.

The binomial density function when N = 10 and r = 0.5.

The binomial density function when N = 10 and r = 0.9.
Examples of the likelihood p(yn|r) as a function of r for two
SCENArIOS. e
Examples of prior densities, p(r), for r for three different sce-
Narios. L e e e e
Examples of three possible posterior distributions p(r|yn). . .
Evolution of p(r|yy) as the number of observed coin tosses
INCTEASES. e
Evolution of expected value (a) and variance (b) of r as coin
toss data is added to the posterior.
The posterior after six and seven tosses.
Posterior distribution after observing 10 tosses and

20008868

54
59

60
61
61
63
66
68
74
76
77
77
81
83

85

86

89

96
97

99

100
102

106

3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17

3.18
3.19

3.20

3.21

3.22

3.23

3.24

3.25

4.1
4.2

4.3

4.4

4.5

4.6
4.7

4.8

List of Figures

Evolution of the posterior p(r|yn) as more coin tosses are ob-
served for the fair coin scenario.
Evolution of Epyy) {R} (a) and var{R} (b) as the 20 coin
tosses are observed for the fair coin scenario.
Evolution of the posterior p(r|yn) as more coin tosses are ob-
served for the biased coin scenario.
Evolution of Epyy) {R} (a) and var{R} (b) as the 20 coin
tosses are observed for the biased coin scenario.
The posterior densities for the three scenarios after 100 coin
tosses and 1000 coin tosses.
Marginal likelihood contours for the coin example.
Graphical model examples.
Graphical model for the Bayesian model of the Olympics men’s
100mdata. e
Olympics data with rescaled = values.
Gaussian prior used for the Olympics 100 m data (a) and some
functions created with samples drawn from the prior (b).

Evolution of the posterior density and example functions drawn
from the posterior for the Olympics data after increasing num-
bers of observations have been added. e
Posterior density (a) and sampled functions (b) for the
Olympics data when all 27 data points have been added. . . .
Posterior density (a) and sampled functions (b) for the
Olympics data when all 27 data points have been added with
more realistic noise variance, 02 =0.05.
Predictive distribution for the winning time in the men’s 100 m
sprint at the 2012 London Olympics.
Dataset sampled from the function ¢t = 52% — 22 + = (a) and
marginal likelihoods for polynomials of increasing order (b). .
Marginal likelihoods for the 3rd order polynomial example with
Yo = agl as 08 isdecreased.

An example of a dataset with a binary response.
The sigmoid function that squashes a real value to always be
betweenOand 1.
Evolution of the components of w throughout the Newton-
Raphson procedure to find the w corresponding to the maxi-
mum of the posterior density.
Inferred function in the binary response example.
Examples of the Laplace approximation to the gamma density
function given in Equation 4.14.
The Laplace approximation for the binary problem..
Decision boundaries sampled from the Laplace approximation
and the predictive probability contours.
A dartboard.

XV

112
113
115
116
117
119
121

123
126

127

128

129

130

131

132

133

140

142

147

148

152
152

xvi

4.9

4.10
4.11
4.12

4.13

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
5.9

5.10
5.11
5.12

5.13
5.14
5.15
5.16
5.17

5.18

5.19

List of Figures

Two examples of random walks where the distribution over the
next location is a Gaussian centred at the current location.
The Metropolis-Hastings algorithm.
Example of the Metropolis-Hastings algorithm in operation. .
Results of applying the MH sampling algorithm to the binary
responsemodel. L L Lo
Two densities that would be tricky to sample from with MH.

Three class classification dataset.
Three class classification dataset with the density contours
for the three class-conditional distributions fitted using Equa-
tions 5.4and 5.5. Lo
Contour plots of the classification probabilities for the Bayesian
classifier with Gaussian class-conditional distributions.
Density contours for Gaussian class-conditionals with the naive
Bayes assumption.o oo oo
Contour plots of the classification probabilities for the Bayesian
classifier with Gaussian class-conditional distributions and the
naive Bayes assumption. 0oL oL
Graphical representation of the predictive probabilities for the
Bayesian classifier on the 20 newsgroups data.
Binary data and classification probability contours for the lo-
gistic regression model described by Equation 5.10.
Cartoon depicting the operation of KNN (K =3).
Binary classification dataset and decision boundaries for K =1
and K =5. e
Second binary classification dataset and decision boundaries for
K=5and K=39...
Using cross-validation to find the best value of K.
The classification margin v, defined as the perpendicular dis-
tance from the decision boundary to the closest points on either
side. . ..o
Illustrating the steps taken to compute the margin.
Decision boundary and support vectors for a linear SVM.

Decision boundary and support vectors for a linear SVM.

Decision boundary and support vectors for a linear SVM with
a soft margin for two values of the margin parameter C. . . .
A binary dataset for which a linear decision boundary would
not be appropriate.
Decision boundary and support vectors for the dataset in Fig-
ure 5.17 using a Gaussian kernel with the kernel parameter
y=1land C=10.
Decision boundary and support vectors for the dataset in Fig-
ure 5.17 using a Gaussian kernel with dlfferent values of the
kernel parameter yand C=10..

158
159
160

162
164

172

173

174

176

176

179

181
183

184
185
186

187
188
191
192
194

194

196

5.20

5.21

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9
6.10

6.11

6.12

6.13

6.14

7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11

List of Figures xvii

ROC curves for the SVMs shown in Figures 5.19(a)

and 5.19(b). L oo 200
ROC curve for the SVM shown in Figure 5.18. 201
Synthetic dataset for clustering examples. 209
Mustration of the K-means algorithm. 211
log D as K increases for the data shown in Figure 6.1. 212
Two datasets in which K-means fails to capture the clear clus-

ter structure. oo o 213
Result of applying kernelised K-means to the data shown in
Figure 6.4(a). o 215
Synthetic dataset for clustering examples. 216
Generating data from two Gaussians. 218
The synthetic clustering data encountered earlier in the chap-

Ber. . e 225
Example of the Gaussian mixture algorithm in action. 227
The data on which K-means failed and the successful mixture
model solution. oo 228
The log likelihood L increases with the number of components,

K. e 229
Result of 10-fold cross-validation for a Gaussian mixture model

on the data shown in Figure 6.8. 229
An example binary dataset with N = 100 objects and D = 10
dimensions. Lo 231
K = 5 clusters extracted from the data shown in Figure 6.13
using the mixture model with binary components. 232
The idea of projection. 240
Examples showing the variance of different projections of two
synthetic two-dimensional datasets.-. 241
Synthetic PCA example where one projected dimension is all

that isrequired. oL 245
Synthetic PCA example where two projected dimensions are
required. Lo 246
Graphical representation of the probabilistic PCA model. . . 253
Synthetic probabilistic PCA example. 260
Variational Bayesian PPCA model with missing values. . .. 262
Graphical representation of probit PCA model. 266
Standard principal components visualisation of the 2005 MP
voting data. Lo 269
Number of votes cast versus distance from the origin (of the
PCAplot). 269
Probabilistic binary principal components visualisation of the

2005 MP voting data.o oo 270

xviii

7.12

7.13
7.14

7.15

List of Figures

Number of votes cast versus distance from the origin for the
probabilistic binary PCA. L

Visualisation of the small parties using the two PCA methods.

Covariance matrix visualisation for the 20 MPs corresponding
to the highest uncertainty.
Example of four of the votes - each MP is displayed as a circle
or square depending on how they voted.

270
271

271

272

Preface

Machine learning is rapidly becoming one of the most important areas of
general practice, research and development activity within computing science.
This is reflected in the scale of the academic research area devoted to the
subject and the active recruitment of machine learning specialists by major
international banks and financial institutions as well as companies such as
Microsoft®, Google®, Yahoo® and Amazon®.

This growth can be partly explained by the increase in the quantity and
diversity of measurements we are able to make of the world. A particularly
fascinating example arises from the wave of new biological measurement tech-
nologies that preceded the sequencing of the first genomes. It is now possible
to measure the detailed molecular state of an organism in ways that would
have been hard to imagine only a short time ago. Such measurements go far
beyond our understanding of these organisms and machine learning techniques
have been heavily involved in the distillation of useful structures from them.

This book is based on material presented in a machine learning course
in the School of Computing Science at the University of Glasgow, UK. The
course, presented to final year undergraduates and taught by postgraduates, is
made up of 20 hour-long lectures and 10 hour-long laboratory sessions. In such
a short teaching period, it is impossible to cover more than a small fraction of
the material that now comes under the banner of machine learning. Our inten-
tion when teaching this course, therefore, is to present the core mathematical
and statistical techniques required to understand some of the most popular
machine learning algorithms and then present a few of these algorithms that
span the main problem areas within machine learning: classification, cluster-
ing and projection. At the end of the course, the students should have the
knowledge and confidence to be able to explore machine learning literature to
find methods that are more appropriate for them. The same is hopefully true
of readers of this book.

Due to the varying mathematical literacy of students taking the course,
we assume only very minor mathematical pre-requisites. An undergraduate
student from computer science, engineering, physics (or any other numeri-
cal subject) should have no problem. This does not preclude those without
such experience — additional mathematical explanations appear throughout
the text in comment boxes. In addition, important equations have been high-
lighted - it is worth spending time understanding these equations before pro-
ceeding.

Xix

XX Preface

Students attending this course often find the practical sessions very useful.
Experimenting with the various algorithms and concepts helps transfer them
- from an abstract set of equations into something that could be used to solve
real problems. We have attempted to transfer this to the book through an
extensive collection of MATLAB® /Octave! scripts, available from the asso-
ciated web page and referenced throughout the text. These scripts enable the
user to recreate plots that appear in the book and investigate changing model
specifications and parameter values.

Finally, the machine learning methods that are covered in this book are
our choice of those we feel students should understand. In limited space and
time, we think that it is more worthwhile to give detailed descriptions and
derivations for a small number of algorithms than attempt to cover many al-
gorithms at a lower level of detail — many people will not find their favourite
algorithms within this book!

MATLAB® is a registered trademark of The MathWorks, Inc.
For product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick MA 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com

Simon Rogers and Mark Girolami

1A free mathematical software environment, available from www.gnu.org/software/
octave/

Linear Modelling: A Least Sqiiies|sf
Approach

An important and general problem in Machine Learning, which has wide ap-
plication, is learning or inferring a functional relationship between a set of
attribute variables and associated response or target variables so that we can
predict the response for any set of attributes. For example, we may wish to
build a model that can perform disease diagnosis. To do this we would use
a dataset comprised of measurements (attributes, e.g. blood pressure, heart
rate, weight etc.) taken from patients with known disease states (responses,
healthy or diseased). In a completely different example, we may wish to make
recommendations to customers. In this case, we could build a i from
descriptors of items a particular customer had previously bought (attributes)
and whether or not the customer ultimately liked the product (response).
This would enable us to predict which objects a customer would like and
hence make recommendations. There are many more important application
areas that we will come across throughout this text.

1.1 Linear modelling

To begin with we will consider, using a practlcal example, th most
straightforward of learning problems, linear modelling ! — learning a lif
lationship between attributes and responses. Figure 1.1 shows the gold medal
winning time for the men’s 100 m at each of the Olympics Games held since
1896. Our aim is to use this data to learn a model of the functional dependence
(if one exists) between Olympics year and 100 m winning time and use this
model to make predictions about the winning times in future games. Clearly
the year is not the only factor that affects the winning time and if we are
interested in using our predictions seriously we may want to take other things

IThe type of modelling we will consider here is often known as regression and was
originally used in the context of genetics by Francis Galton (1877) when studying how
intelligence is passed on (or not, as the case may be) from generation to generation. The
term was then adopted by statisticians who developed Galton’s work within a statistical
context.

2 A First Course in Machine Learning

11.5F

10.5(.

Time (seconds)
[]
[]
[]
L 3

91%80 1900 1920 1940 1960 1980 2000 2020
Year

FIGURE 1.1: Winning men’s 100 m times at the Summer Olympics since
1896. Note that the two world wars interrupted the games in 1914, 1940 and
1944.

into account (the recent form of the main competitors is an obvious example).
However, examining Figure 1.1 we can see that there is at least a statistical de-
pendence between year and winning time (it may not be a causal dependence
— elapsing years are not directly causing the drop in winning times) and this
is enough to help us introduce and develop the main ideas of linear modelling.

1.1.1 Defining the model

We can begin by defining our model as a function which maps our input
attributes, in this case Olympics year, to our output or target values — winning
time. For our attributes, we will use the numerical value of the year — e.g. 1980
— although there are alternative formulations (e.g. years since the first modern
games, 1980-1896 = 84) that would make no real difference to the underlying
assumptions.

There are many fiinetiofis that could be used to define this mapping. In
general, this function will take as an input z (the Olympics year) and will
return ¢ (the winning time in seconds). In other words, t is a function of z.
Mathematically, we will write this as ¢ = f(z). In some cases, all we will need
to know to evaluate our function is z. For example, if f(z) = sin(z) or, say,
f(x) = z, we can compute ¢ for any x. In general, we will need to be more
flexible and it is likely that our model will have a set of associated
ters. For example, t = ax has a parameter called a that needs to be deﬁned
somehow. Learning model parameters from a suitable dataset is a common
theme in Machine Learning. We will use t = f(z;a) to denote a function f(-)
that acts on x and has a parameter a.

Linear Modelling: A Least Squares Approach 3

Comment 1.1 — Linear relationships: The equation:
y=mz + c,

where m and c are constant, defines a linear relationship between = and y. It is
called linear because the relationship between x and y could be visualised as a
straight line. The following equations are nonlinear due to the more complex
forms in which we find the variables z and y:

y=ma’ +c¢ y=sin(z), /y=mz+ec

The values of m and ¢ do not affect the linearity of the relationship. For
example, the following still represent linear relationships between = and y:

y=mz+c’, y==zsin(m)+c.

1.1.2 Modelling assumptions

To help us choose which particular model to use, we need to make some assump-
tions. Our principal assumption at this stage is the following;:

The relationship between r and ¢ is linear (see Comment 1.1).
"This could be stated alternatively as:

The data in Figure 1.1 could be adequately modelled with a straight
line.

Or:
The winning time drops by the same amount every M years.

Examining Figure 1.1 we can see that this assumption is not perfectly satisfied.

However, it is our hope that it is adequate and will produce a model that is useful

in the sense that it can make predictions regarding winning times in the future.
The simplest model that satisfies our assumptions is

t=f(z) ==,

the winning time is equal to the Olympics year. The fact that x takes values greater
than or equal to 1880 and t values less than or equal to 12, and that the winning
time is decreasing as the year increases tells us that this model is inadequate. Adding
a single parameter results in:

t = f(z;w) = we,

where w can be either positive or negative. This enhanced model lets us produce
a straight line with any gradient through the choice of w. This is an increase in
flexibility but it is still limited by the fact that at year 0, the model predicts a
winning time of w x 0 = 0. Looking at the data we can see that this is not realistic -
following the general trend of the data, the winning time at year 0 is actually going
to be quite a large number. Adding one more parameter to the model overcomes
this limitation:

4 A First Course in Machine Learning

Increasing wy Increasing wy
3
3 4 4

I

—
—
//7// .

-3
% 05 1 15 2 % 0.5 1 15 2
T T
(a) Increasing wo changes the point at (b) Increasing w; changes the gradient of
which the line crosses the t axis the line

FIGURE 1.2: Effect of varying wo and w; in the linear model defined by
Equation 1.1.

t = f(z; wo,w1) = wo + wiz. (1.1)

This is the standard equation for a straight line that many readers will have encoun-
tered before. The learning task now involves using the data in Figure 1.1 to choose
suitable values for the two parameters wo and w;. These two parameters are often
known as the intercept (wo, where the line intercepts the t-axis) and the gradient
(w1, the gradient of the line) and the effect of varying them can be seen in Figure 1.2
(MATLAB® script: plotlinear.m) (see Exercise EX 1.1).

1.1.3 Defining what a good model is

In order to choose values of wo and w; that are somehow best, we need to define
what best means. Common sense would suggest that the best solution consists of the
values of wo and wi that produce a line that passes as close as possible to all of the
data points. A common way of measuring how close a particular model gets to one
of the data points is the squared difference between the true winning time and the
winning time predicted by the model. Using x,,t, to denote the nth Olympics year
and winning time, respectively, the squared difference is defined as:

(tn — f(@n; wo, w1))>.

The smaller this number is, the closer the model, at z,, is to t,. Squaring the
difference is important. Without it, we could indefinitely reduce this quantity by
continually increasing f(zn;wo,w1).

This expression is known as the squared loss function, as it describes how much

accuracy we are losing through the use of f(xn;wo,w:) to model t,. Throughout
this text, we will use £, () to denote loss functions. In this case,

Colba. ot 1)) = (b = Floniwo)2 00 A9y

a

Linear Modelling: A Least Squares Approach

30|

25f

FIGURE 1.3: Example loss function of one parameter (w). The dashed line
shows the value of w that minimised the loss (w = 5).

is the loss for year n. Loss is always positive and the lower the loss, the better our
function describes the data. As we want a low loss for all of the N years, we consider
the average loss across the whole dataset, given as

- 'JIVZ Cn (b f(Zn; wo, wn)). (13
GRS el D i
This is the average of the loss values at each of the N years. The lower it is, the
better. We will therefore tune wo and w; to produce the model that results in the
lowest value of the average loss, £. Finding these best values for wo and w; can be

expressed mathematically as

N
o1
argmin i nzzzl Ln(tn, f(2n;wo,w1)).

wo,w1

The term argmin is the mathematical shorthand for ‘find the argument that min-
imises....” In this instance, the argument(s) are the values of wo and w; and the
expression to be minimised is the average loss. Figure 1.3 shows a hypothetical loss
that is a function of a single parameter, w. The value of w that minimises £ is w = 5.
Historically, minimisation of the squared loss is the basis of the Least Squares errors
method of function approximation which dates back to methods developed by Gauss
and Legendre (1809) when predicting planetary motion.

Other loss functions exist that are suitable for regression. For example, a common
alternative is the absolute loss:

Ln = |tn — f(@n; wo,w1)]|.

The squared loss is a very common choice, in part due to the fact that it makes finding
the best values of wo and w, relatively straightforward — we can derive an an:
| solution. However, modern computational power has reduced the importance of
mathematical convenience — there is no longer any excuse for choosing a convenient
loss function over one more suited to the data. This notwithstanding, our aim is to

6 A First Course in Machine Learning

introduce general modelling concepts for which the squared loss will be adequate. It
is worth bearing in mind that others are available and, in many cases, will be more
appropriate.

1.1.4 The least squares solution — a worked example

To recap, our dataset consists of n = 1,..., N observations, each of which con-
sists of a year x, and a time in seconds t.
~ We are going to attempt to find a functional relationship using a linear model
defined as
flz;wo,w1) = wo + wnz (1.4)
and we have decided that we will use the least squares loss function to choose suitable
values of wp and w;. Substituting the linear model into the expression for average
loss and multiplying out the brackets results in

L = Lo (tn, f(Tn; wo,w1))

Z|~
M=

3
1l

(tn o f(.’Itn;’LUo,’UJl))z

Il
2|~
M=

3
Il

(tn — (wo + wizn))?

Il
=
NE

3
il

(wfxfl + 2u1Tnwo — 2wW1Tntn + wg — 2wotn + t?x)

Il
z|=
M=

5

3
Il

—-

(w%:l:,?1 + 2wz (wo — tn) + wé — 2wty + ti) ' (1.5)

i
z| =
M=

1l

.

Comment 1.2 — Turning points: We can find turning points (that might
correspond to minima) of a function, f(w), by searching for points where
the gradient of the function, 5{5(5), is zero. To determine whether or not a
turning point corresponds to a maximum, minimum or saddle point, we can
examine the second derivative, — (S";_fufgw_). If, at a turning point w, the second
derivative is positive, we know that this turning point is a minimum. The
following three plots show three example functions along with their first and

second derivatives:

L D21 (0) P
BinZ

/
/
7 § fw) 9 \ D2 1(
\ 921 (w)
N 3\ D
4 arn /
IR /

v
2] e

7,
N PEIRD)

a D

4 : F(w) 221 (w) ; N

- DT ! . -

15 2 25 3 35 4 485 - -5 -4 -a -2 -1 -2 -1 o 1 2 3
w w w

In general, a function may have several turning points. An interesting spe-
cial case is functions whose second derivative is a positive constant — these
correspond to functions that have only one minimum.

Linear Modelling: A Least Squares Approach 7

Differentiating the loss function: At a minimum of £, the :
with respect to w1 and wo must be zero (see Comment 1.2). T herefore, computmg
the partial derivatives, equating them to zero and solving for wo and w; will give us
a potential minimum. Starting with w1, we know that terms in Equation 1.5 that
do not include w; can be ignored (as their partial derivative with respect to w1 will
be zero). Removing these terms leaves

N
N Z[wfmi + 2wiTpwo — 2wW1Tnty].

n=1

Before we take the partial derivatives, we will re-arrange the expression to make it
a little simpler. In particular, taking terms that are not indexed by n outside of the
sum and re-arranging results in

1 N 1 N
2 2
wi (Z mn) + leﬁ (Z ZTn(wo — tn)) .
n=1 n=1
Taking the partial derivative with respect to w; gives us the following expression:
N N
oL 1 2 2
— = 2w;— n — —tn) | . 1.
B, w15 (T;m) + N (; Zn (wo)) (1.6)

Now we do the same for wo. Removing non wo terms leaves:

N
-]17 Z[wg + 2wiznwo — 2woty].

n=1

Again, we will re-arrange it a bit before we differentiate. Moving terms not indexed
by n outside of the summation (noting that ij:l wé = Nw?) results in

N
wo + 2wow1 — (Z CI)n) — 2w0% (Z tn> .
n=1

Taking the partial derivative with respect to wp results in:
N N
oL 1 2
— =2 2wy — | — = ta |- 1.7
2 o rangy (3on) - % (0] am

Equating the derivatives to zero: We now have expressions for the partial
derivatives of the loss with respect to both wg and w;. To find the values of wo and
w; that correspond to a turning point (hopefully a minimum), we must set these
expressions to zero and solve for wo and wi. It’s easiest to start with the expression
for wo. Setting Equation 1.7 to zero and solving for wp:

1 (& 2 (&

2’I.UQ + leﬁ (Z’En> — N (Ztn> =
N

o = % (o) -

8 A First Course in Machine Learning

Denoting the average winning time as t = —11\7 ZLV:I tn» and the average Olympics
year as T = 71,— Zlnvzl T, we can rewrite our expression for the value of wg at the
turning point (wg) as

_(;1:':85 :

What insight can we gain from this expression? This new expression is a rearrange-
ment of our original model (¢, = wo + wiz,) where ¢, and z, have been replaced
by their average values ¥ and T. Consider the value of our function averaged over
the N data points. This is given by:

N N

1 1

N E f(mn§'w0»w1): N E (w0+w1xn)=wo+wla‘:.
n=1 n=1

The average winning time is given by ¢ so, in using Equation 1.8, we are choosing
wo to ensure that the average value of the function is equal to the average winning
time. Intuitively, matching the averages in this way seems very sensible.

Before we use Equation 1.6 to get an expression for wi (the value of w; at
the turning point — see Comment 1.2), it is worth briefly examining the second
derivatives to ensure that this is a minimum. Differentiating Equation 1.6 again
with respect to w1 and Equation 1.7 again with respect to wp results in:

2L 2N,
ful = N2
8c

Both of these quantities must be positive. This tells us that there will be only one
turning point and it will correspond to a minimum of the loss.

This process has supplied us with an expression for the value of wg — the value
of wo that minimises the loss. This expression depends on w; implying that for any
particular wq, we know the best wp. Substituting our expression for the best wo
value (Equation 1.8) into Equation 1.6 and rearranging, we obtain an expression
that only includes wi terms:

oL 2 (XL, 2 (&,
3—101 = wlﬁ (;fﬂn) + N (;In(wo - tn))

n=1 n=1
N N N N
. 2 2 _2 _2 2
= wl-ﬁ (7; wn> +/tN (njlxn> wlzN (;zn> N (;mntn> .

We can simplify this expression by using Z = (1 /N) Zf:’:l Zr, as before and gathering
together w; terms:

6£ . 1 N 2 —— = 1 N
8—101—21[}1 [(NT;[L‘” — T +2t$_2ﬁ Zl’ntn .

n=1

Linear Modelling: A Least Squares Approach 9

Finally, we can get an expression for T by setting this partial derivative to zero and

solving for ws:
N
N
2o

[()HJ

- N (221:1 mntn) — iz

w1 = I, .
L 2) _ 55
(%50, 23) — 72

1 N
+ 2tz — QN (Z mntn> =0

n=1

1 N
‘zﬁ (Z acntn> — 217

2 |

21

It is helpful to now define some new average quantities. The first, (1/N) Z;V:l x2
is the average squared value of the data and we will denote this x2. Note that this
quantity is not the same as (Z)2. The second is (1/N) 3°%_, &nt, (which, similarly is
not the same as #t). We will denote this as xt. Substituting these into our expression
for wy gives:

A mt mt
(3?)2

Equations 1.10 and 1.8 provide everything required to compute the best param-
eter values. First w; Equation 1.10 is substituted into Equation 1.8 to calculate wg
(MATLAB script: fitlinear.m).

1.1.5 Worked example

Before we fit the linear model to the Olympics data, it is useful to provide
a worked example on a smaller dataset. Assume we observe N = 3 data points,
provided in Table 1.1. The final row also gives the various averages required to
compute Wy and W1: &, , 2t and z2. The three data points are plotted in Figure 1.4.

Substituting these values into Equation 1.10 gives:

41.57 -3 x 11.1
11.67 -3 x 3
8.27

2.67
=31

w1 =

TABLE 1.1: Synthetic dataset for linear regression example.

Ty | tn Tpin T
4.8 4.8 1
11.3 | 33.9 9
17.2 86 25

11.1 | 41.57 | 11.67

W N =3

Wt W =

l/N Zn 1

10 A First Course in Machine Learning

20| 20|
X

15 15|
“ % -

10| 10}

5| X 5

0 1 2 3 4 5 6 0 1 2 3 4 5 6

x xT

(a) The three synthetic data points (b) The least squares fit defined by
described in Table 1.1 flx;wo,w1) =18+ 3.1z

FIGURE 1.4: Data and function for the worked example of Section 1.1.5.

and:
wo=11.1-31x3=18.
Our best linear function is therefore:
flz;wo,w1) = 1.8+ 3.1z,

and it is shown in Figure 1.4(b).

1.1.6 Least squares fit to the Olympics data

The data for the Olympics 100 m dataset (shown in Figure 1.1) is summarised
in Table 1.2.

Applying exactly the same methodology to this -data, we obtain the following
values for wy and wo (note that our final values were worked out in MATLAB - if
you work through, you might get slightly different results due to rounding errors):

20268.1 — 1952.37 x 10.39
3.8130 x 106 — 1952.37 x 1952.37
—16.3
1225.5

= —0.0133
wo = 10.39 — (—0.0133) x 1952.37

= 36.416.

wy =

Therefore, our best linear function is:

The function is plotted in Figure 1.5 (see Exercise EX 1.2). Do these values agree with
the approximations you made in Exercise EX 1.17 (MATLAB script: fitolympic.m)

Linear Modelling: A Least Squares Approach 11

TABLE 1.2: Olympics men’s 100 m data.

n Tp tn Tpln x%
1 1896 | 12.00 | 22752.0 [3.5948x10°
2 1900 | 11.00 | 20900.0 | 3.6100x 106
3 1904 | 11.00 | 20944.0 | 3.6252x10°
4 1906 | 11.20 | 21347.2 | 3.6328x10°
5 1908 | 10.80 | 20606.4 | 3.6405x10°
6 1912 | 10.80 | 20649.6 | 3.6557x106
7 1920 | 10.80 | 20736.0 | 3.6864x10°
8 1924 | 10.60 | 20394.4 | 3.7018x10°
9 1928 | 10.80 | 20822.4 | 3.7172x 106
10 1932 | 10.30 | 19899.6 | 3.7326x10°
11 1936 | 10.30 | 19940.8 | 3.7481x106
12 1948 | 10.30 | 20064.4 | 3.7947x 108
13 1952 | 10.40 | 20300.8 | 3.8103x10°
14 1956 | 10.50 | 20538.0 | 3.8259% 106
15 1960 | 10.20 | 19992.0 | 3.8416x10°
16 1964 | 10.00 | 19640.0 | 3.8573x 108
17 1968 | 9.95 | 19581.6 | 3.8730x106
18 1972 | 10.14 | 19996.1 | 3.8888x106
19 1976 | 10.06 | 19878.6 | 3.9046x 10
20 1980 | 10.25 | 20295.0 | 3.9204x10°
21 1984 | 9.99 | 19820.2 | 3.9363x10°
22 1988 | 9.92 | 19721.0 | 3.9521x 108
23 1992 | 9.96 | 19840.3 | 3.9681x10°
24 1996 | 9.84 | 19640.6 | 3.9840x10°8
25 2000 | 9.87 | 19740.0 | 4.0000x10°
26 2004 | 9.85 | 19739.4 | 4.0160x10°
27 2008 | 9.69 | 19457.5 | 4.0321x10°
(1/N)§jjf=1 1952.37 | 10.39 | 20268.1 | 3.8130x10°

1.1.7 Summary

It is worth recapping the topics covered so far. We have introduced the idea
of creating a model (in particular a linear one) that encapsulates the relationship
between a set of attributes and a set of responses. To enable us to fit (or learn) this
model from data, we defined a loss function as a way of objectively identifying how
good a particular model was. Using the squared loss, we derived exact expressions
for the values of the model parameters that minimised the loss and therefore cor-
responded to the best function. Finally, we applied this technique to two different
data sets. We shall now see how we can use the model to make predictions.

12 A First Course in Machine Learning

115

-
o

Time (seconds)
>
o

9_ 5 L 2 i n i n
1880 1900 1920 1940 1960 1980 2000 2020

Year

FIGURE 1.5: The least squares fit (f(z;wo,w1) = 36.416 — 0.013z) to the
men’s 100 m Olympics dataset.

1.2 Making predictions

Now that we have a model relating the Olympics year to the winning 100 m
sprint time, we can use it to predict the winning time for a year that we have
not yet observed. For example, to predict the winning times at the 2012 and 2016
Olympics, t2°!2 and ¢2°1¢ we plug z = 2012 and z = 2016 into our formula.

f(z;wo = 36.416,w; = —0.0133) = 36.416 — 0.0133z
t*°'% = £(2012; wo,w1) = 36.416 — 0.0133 x 2012 = 9.595
2918 = £(2016; wo,w;) = 36.416 — 0.0133 x 2016 = 9.541

These predictions can be seen in Figure 1.6 (MATLAB script: olymppred.m).
They tell us that based on our linear regression model we might expect a winning
time of 9.595 s in London in 2012. This value is very precise. It seems unlikely that
any model would be able to predict the outcome of such a complex event to such a
high degree of accuracy, least of all one based on nothing more than a straight line.
Our model is not even able to predict data that it has seen very precisely, as can be
seen by the distance of some points to the line in Figure 1.5. Assuming that it will
become more precise into the future seems particularly foolish.

Precise predictions are only of limited use in situations where our model is not
perfect (almost all situations). In general, it is more useful to be able to express
a range of values rather than any particular one. We shall see how to do this in
Chapter 2 and beyond.

1.2.1 A second Olympics dataset

A second dataset, related to the first, is shown in T'able.1.3 and is plotted, along
with the linear model that minimises the squared loss, in Figure 1.7 (see Exercise EX

Linear Modelling: A Least Squares Approach 13

101

£2012

.

96 ® 2016
N

L J
95

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025
T

FIGURE 1.6: Zoomed-in plot of the winning time in the Olympics men’s
100 m sprint from 1980 showing predictions for both the 2012 and 2016
Olympics.

TABLE 1.3: Olympics women’s 100 m data.

2

n Tn tn Tntn T,
1 1928 [12.20 | 23521.6 | 3.7172x10°
2 1932 | 11.90 | 22990.8 | 3.7326x 106
3 1936 | 11.50 | 22264.0 | 3.7481x10°
4 1948 | 11.90 | 23181.2 | 3.7947x10°
5 1952 | 11.50 | 22448.0 | 3.8103%x10°
6 1956 | 11.50 | 22494.0 | 3.8259x10°
7 1960 | 11.00 | 21560.0 | 3.8416x10°
8 1964 | 11.40 | 22389.6 | 3.8573x10°
9 1968 | 11.00 | 21648.0 | 3.8730x 108
10 1972 | 11.07 | 21830.0 | 3.8888x10°
11 1976 | 11.08 | 21894.1 | 3.9046x10°
12 1980 | 11.06 | 21898.8 | 3.9204x 106
13 1984 | 10.97 | 21764.5 | 3.9363x10°
14 1988 | 10.54 | 20953.5 | 3.9521x10°
15 1992 | 10.82 | 21553.4 | 3.9681x10°
16 1996 | 10.94 | 21836.2 | 3.9840x 106
17 2000 | 11.12 | 22240.0 | 4.0000x 108
18 2004 | 10.93 | 21903.7 | 4.0160x 108
19 2008 | 10.78 | 21646.2 | 4.0321x 108
(1/N)ZT’1V=1 1970.74 | 11.22 | 22106.2 | 3.8844x 106

14 A First Course in Machine Learning

12.5

@ 12F

(]

E

o 1.5}

£

oy

£

z

N N L] N
10.5 1940 1960 1980 2000
Year

FIGURE 1.7: Women’s Olympics 100 m data with a linear model that min-
imises the squared loss.

1.6 and Exercise EX 1.7). The model for the women’s data is (remember that you
might find slight differences to these values due to rounding errors):

f(x; wo, wr) = 40.92 — 0.015z.
It is interesting to compare this with the model obtained for the men’s data:
f(z; wo,w1) = 36.416 — 0.013x.

The women’s model has a higher intercept (wo) and a steeper negative gradient
(w1). If we plot the two models together, as seen in Figure 1.8, we see that the
higher intercept and larger negative gradient mean that at some point, the two lines

12~ v -
1p \

@10 .. Female

m \\\ \\\

E 9

£ 8 Male

-S \\\ \\\

2 7|
ol
3500 2000 2100 2200 2300

Year

FIGURE 1.8: Male and female functions éxtrapolated into the future.

Linear Modelling: A Least Squares Approach 15

will intercept. Using our models we can predict the first Olympic games when the
women’s winning time will be faster than the men’s. According to our models this
will be in the 2592 Olympics (the actual answer has been rounded up to the nearest
Olympics year and has been computed in MATLAB using the exact data so you
might find slight differences due to rounding; (see Exercise EX 1.8).

As with the point predictions for individual models, we should not place too much
confidence on this prediction coming about. Not only is the prediction incredibly
precise, it is also a very long time from our last observed data point. Can we assume
that the relationship between winning time and Olympics year will continue this far
into the future? To assume that it can is also to assume that there will, eventually,
be a winning time of 0 seconds and we know that this is impossible.

1.2.2 Summary

In the previous sections we have seern how we can fit a simple linear model
to a small dataset and use the resulting model to make predictions. We have also
described some of the limitations of making predictions in this way and we will
introduce alternative techniques that overcome these limitations in later chapters.
Up to this point, our attributes (x,) have been individual numbers. We will now
see how the linear model can be extended to larger sets of attributes, enabling us to
model more complex relationships.

1.3 Vector/matrix notation

In many applications, we will be interested in problems where each data point is
described by a set of several attributes. For example, we might decide that using only
the Olympics year is unsuitable for a model of Olympics sprint data. A model that
used the Olympics year and each athlete’s personal best might be more accurate.
Using si,s82,...,38 to denote the personal best times for the athletes running in
lanes 1 to 8, a possible linear model might consist of:

t:f(m,sl,,..,ss;wo,...,ws) = wo + wi1T + w281 + w3sz + w4s3

+ws84 + Wwess + wrse + wes7 + woss.

We could go through the analysis of the previous sections to find Wy, ..., ws. After
taking partial derivatives of the loss function, we would be left with 10 equations
that would need to be re-arranged and substituted into one another. This would be
a time consuming exercise and would rapidly become infeasible as the number of
variables we wanted to include increased further — Machine Learning applications
with thousands of variables are not uncommon. Fortunately there is an alternative
— using vectors and matrices.

As this is an area that some readers will find unfamiliar, we shall now devote some
time to describing vector and matrix notation and how to perform mathematical
operations with quantities in vector and matrix form. Readers familiar with these
concepts could jump straight to Section 1.4.

16 A First Course in Machine Learning

Comment 1.3 — Scalars, vectors and matrices: We will follow the stan-
dard convention of representing scalar values by letters (e.g. x), vectors by
bold lowercase letters (e.g. x) and matrices by bold uppercase letters (e.g.
X). Whilst we shall consistently stick to this notation, different communities
have different ways of defining vectors. For example, T is common for a vector
x.

The 9 attributes for each data point (8 personal bests and Olympics year) can
be combined into a single variable by stacking them together to form a vector. We
will denote vectors with bold lower case letters, e.g. x,, (see Comment 1.3). Often
we will need to refer to individual elements within a particular vector or matrix and
will use indices to make it clear which element we’re referring to. For example, the
first element of the vector x,, would be denoted z,1, the ith by z,;.

If we want to show all of the elements in a vector, we write it out in a tabular
fashion, surrounded by square brackets. Here are examples of vectors of length 2 and
4:

N
Tnl Y2

xX. panasd =
" [wnz] Y Y3
Ya

Comment 1.4 — Vector transpose: The transpose of a vector x, denoted
x', is obtained by rotating the vector such that rather than having one column
and several rows, it has one row and several columns. For example:

4
x=| x' =[4,7,11,~2]
11 M » ' ? .

-2

©

It is often a bit clumsy to keep drawing vectors as columns so we will often draw
them as rows, and use the transpose operator (see Comment 1.4) to show that they
should be rotated. If we assume that we have D attributes, we would define x,, as
Xn = [Zn1,--.,Znp|". In the case of our Olympics data, x = [Year, s1, 52,. .., sg] .

Linear Modelling: A Least Squares Approach 17

Comment 1.5 — Matrix/vector dimensions and indexing: If we are
quoting the size (or the dimension) of a matrix or vector, we give two numbers,
starting with the number of rows. For example,

air ai2
A= | a2 ax
azy asz

has dimension 3 x 2. A vector is a special case of a matrix where the second
dimension is 1. For example,

Y1
Y2
K]
Ya

could be thought of as a matrix with dimension 4 x 1.

When indexing elements within a vector, a single number is sufficient (e.g.
y3 for the third element in y above. When indexing a matrix, we will use
two subscripts, starting with the row. For example, az1 represents the item
in the second row and first column of A (above). Note that sometimes we
will also have a subscript denoting the object index. For example, x, is the
vector holding the nth set of attributes. This index, if present, will always|
come first. It should be obvious from the context whether or not this index
is present.

Before we embark on adding additional variables, it is worthwhile to repeat the
analysis of the original model (¢ = wo + wix) in vector form. This will allow us to
compare the expressions we obtain for W and w3 in both cases. The first step is to
combine wo and w; into a single parameter vector w and create data vectors x, by
augmenting each z,, with a 1, i.e.

w = , Xp =
w1 In

The model can be expressed in terms of x, and w as (matrix/vector multiplica-
tion is defined in Comment 1.7):

.
f(@n;wo, w1) =W Xp = Wo + W1Zn.

We can replace any instance of wo + w1z by w'x. For example, our squared loss £
can be expressed as

N
1 T. \2
L= —ﬁ;(tn - w'xn)? (1.12)

In actual fact, we can express this average loss as the following function of various
vectors and matrices which will be easier to manipulate:

L= %(t — Xw) " (t - Xw).

To see how this is equivalent to Equation 1.12, we start by combining all x, into

18 A First Course in Machine Learning

one matrix X, and all t,, into one vector t:

X-lr 1 T t1

X3 1 zo t2
X = . = . . » t:

XN 1zn tN

Comment 1.6 — Matrix transpose: For a matrix, X, the transpose, x7
is formed by turning each row into a column and each column into a row. For
example, if Y = XT, then Y;; = Xjs.

1 4
X=|3 6 i
Sul 46 11 |°

Comment 1.7 — Matrix multiplication: To proceed, we must introduce
the concept of matrix multiplication. Taking the product, AB, of an N x M
matrix A and a P x Q matrix B is only possible if M = P, i.e. the number
of columns in A is equal to the number of rows in B. Assuming that this is
the case, the product, C = AB, is the N x @Q matrix defined such that

Cij = Z AikBg;.
k

It is often helpful to draw the matrices, for example,

b1 bi2 b3]
b2y b2 b3
a1 aiz a11bi1 4+ arz2bz1 a11biz 4 ar2b2z a1r1biz + ajzbas
a1 a2z a11bi1 + a12b21 a11bi2 + a12b22 a11b13 + a12b2a

where we can think of computing elements of C by working simultaneously
across the relevant row of A and column of B.

A special case that we will meet regularly is the inner product between two
column vectors, defined as z = x'y, the result of which is a scalar. Both
vectors must be of the same length and the transpose ensures that the number
of columns in x is the same as the number of rows in y. Applying the same
technique as that for matrices, we see that

z = Zxkyb
k

Therefore, if we perform the matrix multiplication Xw we will end up with a
vector which looks like this:

1 = “wo + wix
1 zo 5 [wo} B wo + W1x2

1 zn Wo + WITN

Linear Modelling: A Least Squares Approach 19

Subtracting this from t will give us:

t1 —wo — w11

tz — Wop — W12
t - Xw=

IN —wo —wiTN

and we can use a single multiplication and transpose to neatly perform the squaring
and summation and obtain our original loss function:

(Xw —t) (Xw — t) = (wo +wiz1 — t1)° + (wo + wizz — t2)> + ...

+(wo +wizn — tn)?

N
= Z(wo + wiZn — tn)?
n=1
N
= D (tn = f(@n; w0, wn))*.
n=1

Therefore, our loss can be written compactly as:

L= ie-Xw-Xw),
and the following loss expressions are all equivalent:
1 1 & 1
T _ T 2 2
L= N(t‘”xw) (t—XW) = N;(tn—w xn) = —ﬁ;(tn —(’LU0+’U)1£L'n))

Comment 1.8 — Transpose of a product: The transpose of a matrix
product, (Xw)', can be expanded by reversing the order of multiplication
and transposing the two individual matrices

(Xw)' =w'X".

To deal with more complex forms, we can apply the same result several times.
For example,

(ABCD)' = ((AB)(CD))"
(CD)"(AB)"
= D'C'B'AT

It will be easier to work with this matrix loss once we have multiplied out the
brackets. Noting that order is important in matrix multiplication (this is implied

by the restriction on sizes discussed in Comment 1.7) and the definition for the
transpose of a product given in Comment 1.8:

= %(XW —)T (Xw — t)

(Xw)" —t")(Xw — t)

I

%(XW)TXW - %tTXw - %(Xw)Tt + %tTt
1
N

Ty T 2 T T I T
- = t+ —t t. 1.14
w X Xw TV X't+ N (1.14)

20 A First Course in Machine Learning

The two terms t" Xw and w' Xt are the transpose of one another (using the identity
for the transpose of a product) and also scalars (satisfy yourself that the result is a
1 x 1 matrix and hence a scalar). This implies that they must be the same and can
therefore be combined.

Differentiating loss in vector/matrix form: We now require the value of the
vector w corresponding to a turning point (minimum) of £. To do this, we must
take the partial derivate of £ with respect to the wvector w. This involves taking
partial derivatives of £ with respect to each element of w in turn and then stacking
the results into a vector. It is worth explicitly doing this in this instance, although
we will see later that we can actually obtain g—fv directly in vector form. In our two

variable case, this vector is
oL
ow | 25|

Jwy

the vector containing the partial derivatives of £ with respect to wo and w;. The two
elements of this vector should be the same as Equations 1.7 and 1.6, respectively. We
can check that our loss is indeed correct by manually differentiating Equation 1.13
with respect to the two parameters. First, we need the multiplied out expression

L= %(waTxW —2w Xt +t"t).

The last term doesn’t include either wo or w1 so we can ignore it. When multiplied
out, the first term is (see Exercise EX 1.3)

woN (Zx) + 2wow: — (Z XnoXm) + wi— (Z X51> ,

where X0 is the first element of the nth row of X, i.e. the first element of the nth
data object and X, is the second (we've started numbering from zero to maintain
the relationship with wo). Similarly, the second term is equivalent to

N
27.00 (Z Xnot) + 2w1% (Z antn) .

n=1 n=1

Combining these and noting that, in our previous notation, X,0 = 1 and Xn1 = zn
results in

N N N
1 1 1
w§+2wow1—1\—/; (E .'I)n> +wa (E .'E%1> 2'w0 < E tn> —2’!1}1N (E :Entn) .
n=1 n=1 n=1

Recalling our shorthand for the various averages and differentiating with respect to
wo and w; results in

~B—L— = 2wo + 2un T — 2t
(9’(1)0

9L ez + 2uns? — 25,
8w1

It is left as an informal exercise to show that these are indeed equivalent to the
derivates obtained from the non-vectorised loss function (Equations 1.7 and 1.6).
Fortunately, there are many standard identities that we can use that enable us

Linear Modelling: A Least Squares Approach 21

TABLE 1.4: Some useful identities when differentiating with respect to a
vector. '

fw) | 5L
wTx X
x'w X
wlw 2w
w'Cw | 2Cw

to differentiate the vectorised expression directly. Those that we will need are shown
in Table 1.4.
From these identities, and equating the derivative to zero, we can directly obtain
the following:
aL 2 o1 2 o7
X"Xw = X't. (1.15)

Comiment 1.9 — Identity matrix: we will regularly come across the iden-
tity matrix In. It is the N X N matrix with ones on the diagonal and zeros

elsewhere.
1
I, =1, 12:[(1)(1)], Is= |0
00

Often, the size of the identity matrix will be obvious from the expression it’s
found in. In these cases, we will omit the size subscript.

A key property of the identity matrix is that any vector or matrix multiplied
by a suitably sized identity matrix is equal to the original matrix or vector.
For example, if y = [y1, ... ,yD]T and Ip is the D x D identity matrix,

00
10
1

.
yip=y, Iy=y.

Similarly, for an N x M matrix,

ail a2 ... a1M

a1 a2 ... a2pm
A =

anNi1 AN2 ... ONM

Aly = A, INA = AL

Multiplying a scalar by an identity results in a matrix with the scalar value
on each diagonal element. An example that crops up a lot is:

0 0 .. 02

22 A First Course in Machine Learning

Comment 1.10 — Matrix inverse: The inverse of a matrix A is defined as
the matrix A~ that satisfies A"!A = I. We don’t provide the general form
for inverting a matrix here, but from school mathematics, a 2 X 2 matrix can
be inverted with the following formula:

_]a b -1 _ 1 d -b
A= [c d]’ A _ad—bc[—c a]
A special case that we will come across regularly is the inverse of a matrix
that only has values on the diagonal (i.e. all off-diagonal elements are zero).

The inverse of such a matrix is another diagonal matrix where each diagonal
element is simply the inverse of the corresponding element in the original. For

example,
an 0 ... 0 ai! 0 ... 0
0 app ... O 0 a2_21 ... 0
A=| |.,Aat= 0 T .
0 O ... app 0 o ... a;,})

It is worth noting that this definition implies that the inverse of an identity
matrix (see Comment 1.9) is simply another identity matrix:

I''=1

The final step in deriving an expression w, the optimum value of w, is re-arranging
Equation 1.15. We cannot divide both sides by X"X (division isn’t defined for
matrices) but we can pre-multiply both sides by a matrix that will cancel the XX
from the left (leaving only an identity matrix; see Comment 1.9). This matrix is
called the matrix inverse of X "X (see Comment 1.10) and is denoted by (X"X)™!.
Pre-multiplying both sides of (1.15) with (X"X)~!, we obtain:

Iw=(X'X)"'X"t.

As Iw = w (from the definition of the identity matrix), we are left with a matrix
equation for W, the value of w that minimises the loss:

Sosadioy

1.3.1 Example

We can check that our matrix equation is doing exactly the same as the scalar
equations we got previously by multiplying it out. In two dimensions,

N N
X™X = [) %n:l Tho Zn:l\} TnoTnl]]
Zn:l Tn1Tno En:l 113,,2,‘1

Using & to denote averages, this can be re-written as

TiZo T°

XTX:N[& “’91“}

Linear Modelling: A Least Squares Approach 23

The identity for the inverse of a 2 x 2 matrix (see Comment 1.10) enables us to
invert this

(XTX)! = 1 1 x? —Tox
= = .
N 22 22 — T1mo ToZ1 | —T1%0 T

We need to multiply this by X "t, which is (jumping straight to the average notation):
N [E] .
.’l)lt
Now, we know that xn¢ is 1 always and redefining x,1 as x,, (to be consistent with
the scalar notation), we need to evaluate:

which is:

~ _[wo] _ 1 22t —T ot
- FE o

exactly as before. wo requires a little more rearrangement and it is easier to work
backwards. Starting from our original expression and substituting this new expres-
sion for w3y

‘lﬁo = Z—‘l/U\lf

- _xt-Tt
=t -T—
T2 - T
_<z_2—if) _xt—-Tt
=t| = — T=
T2 -T T T2 —-T T
122 -1TT-TT+TTL
2T T
_ te?—-T at
2—ZTT

which is exactly the first line in Equation 1.17 as required.

1.3.2 Numerical example

To help those readers who are not familiar with working with vectors and ma-
trices, we will now repeat the synthetic linear regression example we saw in the
previous section. The data in matrix notation is:

1 4.8
3, t=]113
5 17.2

X =

—

24 A First Course in Machine Learning

Examining Equation 1.16 we see that the first quantity we need to calculate is X' X:

11
e [111 39
XX‘[135}X ig ‘[935}'

Using the formula provided above, we compute the inverse as

Twr-1 1 [35 -9
(X X) _Zi[~9 3}'

Multiplying by X7,

Tyy-1yT 1 [35 -9 111] 1 [268-10
(X X) X_24[—9 B]X[135]_24[—606]'
Finally, we multiply this matrix by t:

4.8

_ 1 [268-10 1.8
(X'x)7'x" t:—["]x 11.3 :[]
() 24|60 6 179 3.1

T'herefore, our formula is f(z;wo,w:1) = 1.8 + 3.1z, exactly as before.

1.3.3 Making predictions

Given a new vector of attributes new, the prediction from the model tpew is
computed as:

— w7
thew = W Xnew

1.3.4 Summary

In the previous sections, we have described our linear model in terms of vectors
and matrices. The result is a very useful model — our expression for W makes no
assumptions as to the number of parameters included in W (its length). We can
therefore compute W and make predictions for any linear model of the form:

tn = WiTn1 + W2Tn2 + W3Tnz + ...

This is a powerful tool — many real datasets are described by more than one attribute
and for many, a linear model of this type will be appropriate. We have also learnt
that predictions from this model are very precise and that this is not always sensible.
We shall see how to overcome this in later chapters.

The attributes that make up x, could be measurements of different properties
(e.g. winning times and personal bests). Alternatively, they could be the result of
applying a set of functions to an individual attribute like the Olympics year: zp.
This allows us to extend our armoury beyond models corresponding to straight lines
and is the subject of the next section.

Linear Modelling: A Least Squares Approach 25

1.4 Nonlinear responée from a linear model

At the start of this chapter, we made the assumption that we could model the
relationship between time and Olympics 100 m sprint times using a linear function.
In many real applications, this is too restrictive. Even for the 100 m data it could
be argued that it is far too simplistic — the linear model predicts that in the year
3000, the time will be —3.5 seconds! Fortunately, we can use exactly the same frame-
work we have already described to fit a family of more complex models through a
transformation of the attributes.

The linear model we have seen thus far,

f(z; w) = wo + wi,

is linear in both the parameters (w) and the data (z) (see Comment 1.1). The
linearity in the parameters is desirable from a computational point of view as the
solution that minimises the squared loss can be found exactly via Equations 1.8 and

1.10. Consider augmenting our data matrix X with an additional column, z2:

[1 x, x%
1 1 T2 .’L‘%

Xn = | Tn |, =
|1 zn =%

and adding an extra parameter to w:

resulting in:
' f(z;w) = w'x = wo + urz + waz?.

As the model is still linear in the parameters, we can use Equation 1.16 to find w but
the function we are fitting is guadratié in the data. Figure 1.9 shows an example of
using exactly this method to fit a function quadratic in the data to a suitable dataset
(solid line) (MATLAB script: synthquad.m). Also shown is the function we get if we
try and fit our original linear (in the data) model (dashed line, t = wo + wiz). It
is clear from the quality of the fit to the data that the quadratic model is a more
appropriate model for this data.

More generally, we can add as many powers of = as we like to get a polynoniial
function of any order. For a Kth order polynomlal our augmented data matrix will
be:

29 z} 22 .. zf
z3 z} 2% - ¥

X = L. . (1.18)
=y zk % - 2K

(where z° = 1 and our function can be written in the more general form:

K
flz;w) = Zwka:k.

26 A First Course in Machine Learning

8ot

FIGURE 1.9: Example of linear and quadratic models fitted to a dataset
generated from a quadratic function.

Figure 1.10 shows the effect of fitting an 8th order polynomial function to the 100 m
sprint data that we have seen previously (MATLAB script: olymppoly.m). Compar-
ing with Figures 1.5 and 1.6, does the 8th order model look better than the 1st order
model? To answer this question, we need to be more precise about what we mean
by better. For models built to make predictions, the best model is arguably the one
that produces the best predictions. We shall return to the issue of model selection
in more detail in Section 1.5. However, two things are immediately apparent and
warrant description. First, the 8th order polynomial gets closer to the observed data
than the 1st order polynomial (original model). This is reflected in a lower value
of the loss function: £® = 0.459, £! = 1.358 (where L* is the loss achieved with a
kth order polynomial). In fact, increasing the polynomial order will always result
in a model that gets closer to the training data. Second, the predictions (shown by
the dashed line) do not look sensible, particularly outside the range of the observed
data.

We are not restricted to polynomial functions. We are free to define any set of
K functions of z, hi(x):

hi(z1) ha2(z1) -+ hk(z1)
hi(z2) h2(x2) -+ hi(x2)

ha(en) ha(an) - hic(zn)

which can be anything that we feel may be appropriate for the data available. For
example, there appears to be a slight periodic trend in the 100 m data. A suitable

Linear Modelling: A Least Squares Approach 27

12

11.5F

1"r

10.5

Time (seconds)

9. . R R . R R
60 1900 1920 1940 1960 1980 2000 2020
Year

FIGURE 1.10: 8th order polynomial fitted to the Olympics 100 m men’s
sprint data.

set of functions might be:

hs(x) = sin (a: ; a)

flz;w) = wo + w1z + ws sin (m ; a) .

This model has 5 parameters — wo, wi, w2, a,b. Unfortunately, only the first three
can be inferred using the procedures that we have developed. The last two, a and
b, appear inside a nonlinear (sine) function. As such, taking partial derivatives with
respect to these parameters and equating to zero will not result in a set of equations
that can be solved analytically. There are many ways of overcoming this problem, the
simplest being a search over all values of a and b in some sensible range. However, we
will ignore this problem for now and assume that we know of suitable values. If a and
b are fixed, we can set the remaining parameters (wo, w1, w2) using the expressions
we derived previously. Assuming a and b are fixed (a = 2660,b = 4.3), Figure 1.11
shows a least squares fit using this model. In this case £ = 1.1037 so it is fitting
the observed data better than the 1st order polynomial but not as well as the 8th
order polynomial. The various model components are clearly visible in Figure 1.11:
the constant term (wo = 36.610), the downward linear trend (w1 = —0.013) and the
nonlinear sinusoidal term (w3 = —0.133) causing oscillations. Notice also how the
values for wp and w; are very similar to those for the 1st order polynomial model
(c.f. Figure 1.5) — we have added an oscillating component around our original linear
model.

28 A First Course in Machine Learning

11.5F

11}

10.5f

Time (seconds)

10f

9.5¢

71900 1920 1940 1960 1980 2000 2020
Year

FIGURE 1.11: Least squares fit of f(z;w) = wo + w1 4+ wysin (T) to
the 100 m sprint data (a = 2660,b = 4.3).

1.5 Generalisation and over-fitting

In Section 1.4, we posed the question of which was better, the 1st or 8th order
polynomial. Given that our original aim in building these models was to make pre-
dictions, it makes sense that the best model is the one which is able to make the
most accurate predictions. Such a model will be one that can generalise beyond the
examples we have for training (our Olympics data up to 2008, for example). Ideally,
we would like to choose the model that performs best (i.e. minimises the loss) on
this unseen data but, by the very nature of the problem, this data is unavailable.

Figure 1.10 gave an early indication that we should be very suspicious of using
the loss on the training data to choose a model that will be used to make predictions.
The plot shows an 8th order polynomial fit to the men’s 100 m data which has a
much lower loss on the training data than a 1st order polynomial. At the same time,
the predictions for future Olympics are very poor. For this data, a model based on
an 8th order polynomial pays too much attention to the training data (it over-fits)
and as a result does not generalise well to new data. As we make models more and
more complex, they will be able to get closer and closer to the data that we have
already seen. Unfortunately, beyond a certain point, the quality of the predictions
can deteriorate rapidly. Determining the optimal model complexity such that it is
able to generalise well without # is very challenging. This tradeoff is
often referred to as the bias-variance tradeoff and we will briefly mention this in
Section 2.8.

Linear Modelling: A Least Squares Approach 29

1 10
11
| o 10
8
é 039 3 103
Hos 5
%707 g 102
ol 0.6 E
hod >
o5 o "°
<}
04 - 10°
0.3
0. 10° -
1 2 3 4) 5 6 7 8 1 2 3 4 . 5 6 7 8
Polynomial Order Polynomial Order
(a) Training loss for the Olympics men’s (b) Log validation loss for the Olympics
100 m data men’s 100 m data. When using the

squared loss, this is also known as the
squared predictive error and measures
how close the predicted values are to the
true values. Note that the log loss is plot-
ted as the value increases so rapidly

FIGURE 1.12: Training and validation loss for Olympics men’s 100 m data.

1.5.1 Validation data

One common way to overcome this problem is to use a second dataset, often
referred to as a validation set. It is so called as it is used to validate the predictive
performance of our model. The validation data could be provided separately or we
could create it by removing some data from the original training set. For example,
in our 100 m data, we could remove all Olympics since 1980 from the training set
and make these the validation set. 1o choose between a set of models, we train
each one on the reduced training set and then compute their loss on the validation
set. Plots of the training and (log) validation losses can be seen in Figure 1.12(a)
and Figure 1.12(b), respectively. The training loss decreases ghonotonically as the
polynomial order (and hence modél Eomplexity) increases. However the validation
loss increases rapidly as the polynomial order increases, suggesting that a 1st order
polynomial has the best genéralisation ability and will produce the most reliable
predictions. This hypothesis is easily tested. In Figure 1.13 we can see the data
(labeled as training and validation) and 1st, 4th and 8th order polynomial functions
(MATLAB script: olympval.m). It is clear to see that for this data, had we been
performing this task in 1979, a 1st order model would indeed have given the best
predictions.

1.5.2 Cross-validation

The loss that we calculate from validation data will be sensitive to the choice of
data in our validation set. This is particularly problematic if our dataset (and hence
our validation set) is small. CFéssivalidation is a technique that allows us to make
more efficient use of the data we have.

K-fold cross-validation splits the data into K equally (or as close to equal as
possible) sized blocks, illustrated in Figure 1.14. Each block takes its turn as a

30 A First Course in Machine Learning

4th order

-
s
o

—T

-

Valigation data

N
\

Training data LN n

Winning time (seconds)

M)
8th order
v 1st order

— — i

0 . ,
1880 1900 1920 1940 1960 1980 2000 2020
Year

©o
o
’
/"
’
.
7

FIGURE 1.13: Generalisation ability of 1st, 4th and 8th order polynomials
on Olympics men’s 100 m data.

Training Validation
set set

FIGURE 1.14: Cross-validation. The dataset is depicted on the left as a
pie chart. In each of the K folds, one set of data points is removed from the
training set and used to validate or test the model.

Linear Modelling: A Least Squares Approach 31

0.095

0.09f .

@ 0.085

CV Los
g g

i
(=1
<

o
(=]
D
s

Mean LOO

o
=
>

o
o
5
o

e
o
&l

n
~F
[

3 4 X 5 6
Polynomial Order

FIGURE 1.15: Mean LOOCYV loss as polynomials of increasing order are
fitted to the Olympics men’s 100 m data.

validation set for a training set comprised of the other K — 1 blocks. Averaging over
the resulting K loss values gives us our final loss value. An extreme case of K-fold
cross-validation is where K = N, the number of observations in our dataset: each
data observation is held out in turn and used to test a model trained on the other
N — 1 objects. This particular form of cross-validation is given the name Leave-One-
Out Cross Validation (LOOCV). The average squared validation loss for LOOCV
1S:

e T

el

where W_,, is the estimate of the parameters without the nth training example.

The mean LOOCV error for the Olympics men’s 100 m data can be seen in
Figure 1.15. This plot suggests that a 3rd order polynomial would be best. This
is in disagreement with the value obtained from using the last few data pomts as
a validation set. Disagreement like this is not uncommon —
very difficult problem. However, the two methods do agree on one thing — the model
certainly shouldn’t be 6th order or above.

One drawback of illustrating model selection on a real dataset is that we don’t
know what the ‘true’ model is and therefore don’t know if our selection techniques
are working. We can overcome this by generating a synthetic dataset. Fifty input-
target pairs were generated from a noisy 3rd-order polynomial function and used to
learn polynomial functions of increasing order (from 1st to 7th). Ideally, we hope to
see minimum validation loss for the true polynomial order of 3. A further 1000 input-
target pairs were generated from the true function and are used as an independent
test set with which to compute an additional, independent loss. This very large
dataset will give us a good approximation to the true expected loss against which
we can compare the LOOCV loss.

The results can be seen in Figure 1.16 (MATLAB script: cv.demo.m). As we
have already discovered, the training loss keeps decreasing as the order increases.

32 A First Course in Machine Learning

3.5

.7 v LOOCV Loss

Training Loss

3 :1. 5 6 7
Polynomial Order

FIGURE 1.16: The training, testing and leave-one-out loss curves obtained
for a noisy cubic function where a sample size of 50 is available for training
and LOOCYV estimation. The test error is computed using 1000 independent
samples.

The LOOCYV loss and the test loss decrease as the order is increased to 3 and then
increase as the order is increased further. Either of these validation methods would
have predicted the correct model order. Unfortunately, we will rarely be able to call
upon 1000 independent points from outside our training set and will heavily rely on
a cross-validation scheme, often LOOCV.

1.5.3 Computational scaling of K-fold cross-validation

LOO cross-validation appears to be a good means of estimating our expected
loss from the training data, allowing us to explore and assess various alternative
models. However, consider implementing LOOCV. We need to train our model N
times, which will take roughly N times longer than training it once on all of the
data (it is not exactly the same, as we will be training it on one less data point).
For some models, particularly if we have a lot of data, this might not be feasible.

This simplest way to alleviate this problem is to use K <« N. For example, in
10-fold cross-validation, we would leave out 10% of the data for validation and use
the remaining 90% for training. This reduces the number of training loops from N
to 10 — a considerable saving if N > 10. A popular choice is to use N-fold cross-
validation and repeat it several times with the data partitioned differently into the
N groups, allowing averages to be taken across both folds and repetitions.

Linear Modelling: A Least Squares Approach 33

1.6 Regularised least squares

In the previous section, we discussed how predictions on data that was not
part of the training set could be used to ensure good predictive performance (good
generalisation) and prevent the model from over-fitting. In essence, this stops our
model from becoming too complex. However, there is another way that this can be
done, known as on.

Consider a trivial model, defined by f(x;w) = w'x where w = [0,0,...,0]" -
the model always predicts a value of 0. This is the simplest model possible. Any
change we make to the elements of w increases their absolute value and makes the
model more complex. Specifically, consider the 5th order polynomial model

flz;w) = wo + w1z 4+ woz® + waz® + waz® + wsz®.

If we start with all of the elements of w being zero, the function always predicts
a value of zero. Now imagine we set wo to some non-zero value. The model now
predicts a constant (wo). Leaving wo at its new value, we can set w; to some value.
The model has become more complex and as each additional parameter is given a
non-zero value, the model becomes more complex still. In general, we could consider
that the higher the sum of the absolute values in w, the more complex the model
(note that it is the absolute value — we don’t want the positive values to cancel with
the negative ones). Alternatively, because absolute values tend to make the maths
a bit harder, we could define the complexity of our model as

2
D wi
i

or, in vector form,

T
W w.

As we don’t want our model to become too complex, it makes sense to try and keep
this value low. So, rather than just minimising the average squared loss £, we could
minimise a regularised loss £’ made by adding together our previous loss and a term
penalising over-complexity:

L =L+ w'w s (1.20)

The parameter A controls the trade-off between penalising not fitting the data well
(£) and penalising overly complex models (w'w). We can find the optimal value of
w in exactly the same way as before. Adding the regularisation term to our original
squared loss (Equation 1.14) gives:

R S | 2 TT 1 7 T
= WX Xw - & — ‘
C W Xw Nth+Nt t+ 2w w

Taking partial derivatives with respect to w

oL’ 2t 21

34 A First Course in Machine Learning

Setting this expression to zero and solving for w gives

2 XTXw %th + 22w

N 0

(X"X + NADw = X't.

Hence, the reguarised least squares solution is given by:

W= X'X+ND) X (1.21
Clearly, if A = 0 we retrieve the original solution. We can see the effect of increasing
A with a synthetic example. Figure 1.17 shows 6 synthetic data points. A 5th order
polynomial function can fit the 6 data points exactly and we can see this if we
set A = 0 (in general, N data-points can be perfectly fitted by a (N — 1)th order
polynomial). If we increase A we begin to see the regularisation taking effect. A =
le — 06 follows the general shape of the exact 5th order polynomial but without
as much variability and subsequently is further from the data points. A = 0.01 and
A = 0.1 continue this trend — the function becomes less complex (MATLAB script:
regls.m).

Choosing the value of A presents us with the same over-fitting/generalisation
trade-off we had when choosing the polynomial order. If it is too small, our function
is likely to be too complex. Too large, and we will not capture any useful trends in
the data. Fortunately, we can use exactly the validation techniques introduced in the
previous section to determine the best value of A. In particular, it is common to use
cross-validation to choose the value of A\ that gives the best predictive performance
(see Exercise EX 1.12).

— ' o A=1le—06
i 7

0 02 04 _ 06 08 1

FIGURE 1.17: Effect of varying the regularisation parameter A for a 5th
order polynomial function. ;

Linear Modelling: A Least Squares Approach 35

1.7 Exercises

EX 1.1.

EX 1.2.

EX 1.3.

EX 1.4.

EX 1.5.

EX 1.6.

EX 1.7.

EX 1.8.

By examining Figure 1.1 estimate the kind of values we should expect
for wo and w; (e.g. High? Low? Positive? Negative?).
Write a Matlab script that can find wo and w; for an arbitrary dataset
of xn, ty pairs.
Show that:
N N N
w'X Xw = wg (Z xfﬂ> + 2wows (Z xnlmnz) + wf (Z mig) ,
n=1 n=1 n=1
where
Ti1 Ti12
T21 T22
—|Wo| x_ | ®n za
wy |’
IN1 TN2
(Hint - it’s probably easiest to do the XX first!)
Using w and X as defined in the previous exercise, show that (Xw)' =
w' X" by multiplying out both sides.
When multiplying a scalar by a vector (or matrix), we multiply each
element of the vector (or matrix) by that scalar. For x,, = [Zn1, Tn2]',
t = [tl,. .. ,tN]T, w = [’wo, ‘1,111]T and
x1
x3
X =
XN
show that
Z Xntn = X't
n
and
anxlw = X"Xw.
n
Using the data provided in Table 1.3, find the linear model that minimises
the squared loss.
Using the model obtained in the previous exercise, predict the women’s
winning time at the 2012 and 2016 Olympic games.
Using the models for the men’s and women’s 100 m, find the Olympic

games when it is predicted for women to run a faster winning time than
men. What are the predicted winning times? Do they seem realistic?

36

EX 1.9.

EX 1.10.

EX 1.11.

EX 1.12.

A First Course in Machine Learning

Load the data stored in the file synthdata.mat. Fit a 4th order polyno-
mial function — f(z; w) = wo + w1z + waz? + w3z + waz? - to this data.
What do you notice about w2 and w4? Use 10-fold cross-validation to
choose the polynomial order (between 1 and 4).

Derive the optimal least squares parameter value, w, for the total training
loss:

N
L= (tn—wxa)?.
n=1

How does the expression compare with that derived from the average
loss?

The following expression is known as the weighted average loss:

| X
L= N nz::l an(tn — W'x,)?

where the influence of each data point is controlled by its associated
a parameter. Assuming that each a, is fixed, derive the optimal least
squares parameter value w.

Using K-fold cross-validation, find the value of A that gives the best
predictive performance on the Olympic men’s 100 m data for (a) a Ist
order polynomial (i.e. the standard linear model) and (b) a 4th order
polynomial.

Linear Modelling: A Least Squares Approach 37

Further reading

[1] F. Galton. Regression towards mediocrity in hereditary stature. Anthopological
Miscellanea, 15:246-263, 1886.

The term ‘regression’ was first used in the context of genetics by
Francis Galton. This is one of Galton’s original genetics papers on
regression from 1886.

[2] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, second edition, 2009.

This book includes a detailed chapter on least squares techniques
which would be a good starting point to explore this area further.

[3] K. B. Petersen and M. S. Pedersen. The matrix cookbook.
http://www2.imm.dtu.dk/pubdb/p.php?3274, October 2008.

An excellent free resource that provides many useful matrix identities.
Particularly useful for manipulating, and taking expectations with
respect to, multi-variate Gaussian densities.

Chapter 2 |

Linear Modelling: A Maximum
Likelihood Approach

In the previous chapter, we introduced the idea of learning the parameters of a model
by defining and minimising a loss function. By the end of this chapter, we will have
derived exactly the same equation for the optimal parameter values from a different
starting point. In particular, we will explicitly model the §bigé (the errors between
the model and the observations) in the data by incorporating a ¥grdo ariab
We will demonstrate the considerable advantages of incorporating a noise term into
our model. A large section of this chapter (Sections 2.2 to 2.5) is an introduction to
random variables and P ilit¥ which can be skipped by readers already familiar
with these concepts. :

2.1 Errors as noise

In Figure 1.5 we saw the result of minimising the squared loss function to model
the Olympics 100 m data with a linear model. The linear model appears to capture
an interesting downward trend but is unable to explain each data point perfectly —
there are errors between the model and the true values. These errors are highlighted
in Figure 2.1.

When building our model, we assumed that there was a linear relationship be-
tween years and winning times. This model appeared to capture the general trend
in the data whilst ignoring the sometimes large deviation between the model and
the observed data. From a modelling perspective, ignoring these errors is hard to
defend. If we know they are going to be present we should make an effort to build
them into our model. :

In this chapter we will see the benefits of explicitly modelling these errors. In
particular, it allows us to express the level of uncertainty in our estimate of the
model parameters, w — if we change w a bit, do we still have a good model? This in
turn allows us to express a degree of uncertainty in our predictions — ‘we believe
the winning time will be between a and b’ rather than ‘we believe the winning time
will be exactly ¢.’

39

40 A First Course in Machine Learning

11.5¢

10.5F

Time (seconds)

915880 1900 1920 1940 1960 1980 2000 2020
Year

FIGURE 2.1: Linear fit to the Olympics men’s 100 m data with errors
highlighted.

2.1.1 Thinking generatively

The process that generated this particular dataset is very complex — we couldn’t
even begin to make a near-perfect model of one sprinter and the events surrounding
his preparation and performance, let alone several of them and all of the other
factors. However, it is still useful to think of our modelling problem as a génera-
tive one: can we build a model that could be used to create (or generate) a dataset
that looks like ours? Although we are happy to accept that this isn’t in fact how the
data were generated, we shall see that this is a useful strategy.

How might we go about generating data from our current model? We have an
equation: f(x;w) = w'x that, if we plug in the values for w that we found in the
previous chapter, could be used to generate a winning time for any particular year.
Figure 2.2 shows winning times generated in this way for a number of years between
1920 and 2000. It doesn’t look much like the data in Figure 2.1. To make it more
realistic, we need to add some errors. Examining Figure 2.1, we notice a couple of
important features of the errors:

1. They are different at each year. Some are positive, some negative and they all
have different magnitudes.

2. There does not seem to be any obvious relationship between the size (or
direction) of the error and the year. The error does not appear to be a function
of z, the Olympics year.

If we had a method for generating a random amount of time (in seconds) that could
be either positive or negative and was, on average, roughly the same size as the errors
in Figure 2.1, we could generate one such value for each data point we wished to
generate and add it to w' x. The tools that we will need to incorporate this variability
into our model come from Stat . In the next section we will introduce random
variables and some of the ways in which they can be manipulated. Readers already
familiar with this can jump straight to Section 2.6.

Linear Modelling: A Mazimum Likelihood Approach 41

11 v T T v T T —r

Time (seconds)

-
o
.

95 . , . . . R . .
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

FIGURE 2.2: Dataset generated from a linear model.

2.2 Random variables and probability

Any model we build will be a simplification of the real system that generated
the data we observe. This will lead to a discrepancy between the model and reality
which the tools presented in this section will help us to model and understand. As
we must start with the basics, it may at first seem slightly disconnected from the
particular problem of adding errors to our generated 100 m data and being able to
express uncertainties in our predictions, but the connection will become clearer as
we progress.

2.2.1 Random variables

The equation
y=5xr —2

has two variables, z and y. If we were given a value for one (say y = 8) we could
solve for the other (x = 2). Random variables are very different. They allow us to
assign numerical values to gand snt®. For example, I would like to model the
outcome of a coin toss. As a startmg point, I create a variable called X to which I
will assign the value 1 if the coin lands heads and 0 if it lands tails. X is a random
variable — the ‘variable’ part describes the fact that it can take a number of different
values (in this case, 0 and 1) and the ‘random’ part is so called because we don’t
know what value X will take before the coin toss takes place — we couldn’t express
the outcome as a function of standard variables (e.g. ¥ = 5z — 2). It is a common
convention to use upper-case letters to describe random variables and lower-case
ones for possible values that the random variable can take.
There are two types of random variable and they must be treated slightly differ-
ently. Dis ¢ random variables are the easiest to conceptualise as they are used
for random events for which we can systematically list (or count) all possible out-

42 A First Course in Machine Learning

comes. A discrete random variable could be used to, for example, describe a coin
toss (possible outcomes are 0 and 1) or the rolling of a die (1, 2, 3, 4, 5 or 6). The
collection of possible outcomes is known as the $ample space.

It might seem that being able to systematically write all of the possible events
in order should be true of almost anything. In fact, there are many possible events
for which this is not the case. Taking our Olympics 100 m example and assuming
that the winning time is going to be between 9 and 10 seconds, we could attempt
to systematically write down all possibilities:

9,9.1,9.2,...

at which point, we realise that we’ve missed some out (all the ones between 9 and
9.1 for example) so we start again:

9,9.01,9.02,...,9.1,...
But what about all the ones between 9 and 9.017 Starting a third time
9,9.001,9.002,9.003,...,9.01,. . . etc.

The possible outcomes of this event cannot be systematically listed (after writing
down any two values, someone could point out the missing ones in between). For
events like this, we must use €onkintiéus random variables.

Table 2.1 gives examples of events or quantities that we might wish to model
with random variables and whether or not they are discrete or continuous. We will
now introduce some important concepts through discrete random variables before
extending the ideas to the continuous case.

2.2.2 Probability and distributions

Let Y be a random variable that represents the toss of a coin. If the coin lands
heads, Y = 1 and if tails, Y = 0. To model this event (the coin toss), we need to
be able to quantify how likely either outcome is. For discrete random variables, we
do this by defining the probabilities of the different outcomes. One intuitive way of
thinking about the probability of a particular outcome is to imagine that it represents
the proportion of times this outcome would happen if the event were to be repeated

TABLE 2.1: Events we might want to model with random variables.

Process Discrete or continuous

Toss of a coin Discrete
Roll of a die Discrete

Outcome of a 100 m race Continuous
Failure of a node in a computer network | Discrete
Outcome of a court case - Discrete

Height of a human Continuous

Mass of a pebble Continuous
Score in a football match Discrete

Errors in our 100 m linear regression model | See Exercise EX 2.1.

Linear Modelling: A Maximum Likelihood Approach 43

many times. If a fair (i.e. not biased to land either way) coin were tossed 1000 times,
we might expect to see heads roughly half of the time (and tails the rest of time). It
would seem sensible to define the probability of seeing a head, which we will denote
P(Y = 1), as a half, or 0.5. If the coin doesn’t land as a head, it lands as a tail
(there are only two options in our sample space) and so the proportion of tails must
be one minus the proportion of heads. Therefore, P(Y =0) =1—- P(Y =1) = 0.5.

Conceptualising probabilities as the proportion of times a particular outcome
would occur if an event were repeated many times is not the only way they can be
thought of. It is not always the most natural analogy, particularly for events that
can only occur once. It will be sufficient for our needs, but the reader is encouraged
to investigate this interesting area further.

From our short discussion on proportions, we can write down two important
rules governing probabilities:

e Probabilities must be greater than or equal to 0 (a proportion cannot be
negative) and less than or equal to 1.

e The sum of the probabilities of each possible individual outcome must be equal
to 1.

eg.foracoinn P(Y=1)+PY =0)=1
foradie: PY=1)+PY =2)+---+P(Y=6)=1

I’he mathematical equivalents of these statements are:

YR =y

where the lower case y is used, by convention, to represent values that the random
variable Y can take. Note that we will often need to write summations over the
values that a random variable can take — to keep notation concise, >, will be used
to denote a sum over all of the possible values that can be taken by a random variable
Y.

P(Y = y) is a scalar value - the probability that the random variable Y has
outcome y. This notation can sometimes become unwieldy and so we will sometimes
use the following shorthand:

P(Y =y) = P(y).
The set of all of the possible outcomes (all of the ys) and their probabilities, P(y),
is known as a probability dis tiofi. It tells us how the total probability (1) is
distributed (or shared out) over r all p0551ble outcomes.

Often, we can use Equations 2.1 and 2.2 to define probabilities based on some
fundamental assumptions. For example, in the coin example, we might assume that
the two outcomes are equally likely: P(Y = 1) = P(Y = 0) = r. Plugging this into
Equation 2.2 and remembering that r must lie between 0 and 1 (Equation 2.1), we
can use some algebra to work out the value of r (see Exercise EX 2.2):

PY=0)+P(Y =1) 1
2r =

I

r =

N = =

44 A First Course in Machine Learning

2.2.3 Adding probabilities

Let Y be a random variable for modelling the outcome of rolling a fair die. If we
encode our assumption that the die is fair by assuming that all outcomes are equally
likely, we know enough from the previous section to compute the probabilities of
each possible outcome - 1, 2, 3, 4, 5 or 6. The die is rolled and the result is a 4. If
it is rolled again, what is the probability of the result being lower than 47 Maybe
we are playing a betting game and want to know whether the odds on offer are
acceptable. The outcomes that are lower than 4 are 1, 2 and 3, suggesting that we
need to be able to calculate the probability that the die lands 1 or 2 or 3. If the
die were to be rolled many times, we could compute the proportion of times that
this was the case. The proportion of times the die lands 1 or 2 or 3 is equal to the
proportion of times the die lands 1 plus the proportion of times the die lands 2 plus
the proportion of times the die lands 3. This leads us to the following additive law
of probability:

P(Y <4)=P(Y = 1)+ P(Y = 2) + P(Y = 3).

Exactly the same result applies if the outcomes in which I'm interested are not in
order. For example, the probability that I roll a 1 or a 6 would be P(Y = 1)+ P(Y =
6). It is also not just restricted to individual outcomes. For example, the probability
that I don’t roll a 4 could be computed as

P(Y # 4)

P(Y <4)+ P(Y > 4)
:PW_U+PW_Q+Pw—3+Pw_m+Pw—m

As an aside, it is worth remembering that there is generally more than one way to
compute any probability. In this example, it would in fact be easier to make use of
Equation 2.2 and compute:

P(Y #4)+ P(Y =4) =
P(Y #4) = 1 — P(Y = 4).

2.2.4 Conditional probabilities

Often one event will affect the outcome of another. For example, I toss a coin
and then tell you what the result was (you cannot see the coin). There are two events
-~ the first is tossing the coin, the second is me communicating the outcome of the
coin toss to you. Let’s assume that these two events are represented by two random
variables. X is 1 if the coin lands heads and O if tails. Y is 1 if I tell you heads,
and 0 if I tell you tails. Unless I'm behavmg very strangely, the outcome of Y will
depend on the outcome of X. We can use aBilities to express
the probability that Y takes a particular value glven that X has taken a particular
value. We express this as

which reads as the probability that Y has the outcome y given that X has the
outcome z. As for unconditional probabilities, we will also make use of the following
shorthand:

P(Y =y|X = z) = P(y|z).

Linear Modelling: A Mazimum Likelihood Approach 45

In our example, if we assume that I always tell the truth, the probability that I say
heads if the coin lands heads is 1 (it will always happen)

PY=1X=1)=1.
Similarly for tails
P(Y =0|X =0) = 1.
Using Equation 2.2 and these probabilities, we can deduce P(Y = 0|X = 1) and
P(Y =1|X =0):
PY=0X=1)+PY=1X=1) =1
PY=0X=1)=1-P(Y=1X=1) = 0.
PY=1X=0+PY =0X=0) =1
PY=1X=0=1-P(Y=1X=1) = 0.
‘Things get a bit more interesting if I'm not so truthful. Let’s assume that if the
coin lands tails, I always tell the truth but the proportion of times I tell the truth
if it lands heads is 0.8. This implies that if the coin lands heads I'll say heads with

probability 0.8 and tails with probability 0.2. The full list of conditional probabilities
under this assumption is

PY=1X=1) =08
PY=0/X=1) =02
P(Y=1X=0)=0
P(Y =0|X =0) = 1.

Just as in non-conditional probabilities, Equation 2.2 must be satisfied, i.e.
>, P(Y =y|X =z) = 1. We can check this for the values just computed:

DPY=yX=1)=PY=1X=1)+PY=0X=1)=08+02=1
Yy

SPY =ylX=0)=PY=1X=0+PY=0X=0=0+1=1

Yy

Armed with the conditional probabilities and assuming that P(X = 1) = P(X =
0) = 0.5 (i.e. our coin is fair), we might ask ‘what is the probability that the coin
lands heads and I say heads?’ This is different from P(Y = 1|X = 1); the conditional
distribution assumes that X = 1 has already happened and the only uncertainty that
remains is what will happen with Y, whereas my question concerns both events. If
neither has happened, what is the probability that they will both have a particular
outcome? Other interesting quantities that we may want to evaluate are P(Y = 1)
and P(Y = 0), the probability that I say heads or tails. To compute any of these,
we need to understand probabilities and distributions of more than one variable.

2.2.5 Joint probabilities

Given two (or more) random variables, we may wish to know the probability that
they each take a particular value. Continuing our previous coin tossing example, we

46 A First Course in Machine Learning

might want to know the probability that the coin shows heads and I say heads or the
probability that the coin shows heads and I say tails. These are joint probabilities
and are denoted as

(or, in functional form, p(y,z)). How we deal with these joint distributions depends
on whether or not the random variables are dependent. In our example, Y (what 1
say) depends on X (how the coin lands). This is the case even when I'm not always
being truthful — how the coin lands determines how I decide what to say. If there is no
dependence between the variables (e.g. if two random variables represent different
coin tosses, the outcome of one is unlikely to affect the outcome of the other),
the j6iit proBabiliEY can be computed by multiplying the individual probabilities
together

PlY =y, X =2)=PY =y) x P(X =1z).

The probability that Y takes value y and X takes value z is equal to the prob-
ability that Y takes value y multiplied by the probability that X takes value z.
More generally (and here we switch to the functional form p(yi,...,ys) rather
than P(Y: = y1,...Y; = y;) for convenience), for a family of J random variables
Ya,.... Yy,

P(ynyz,. ., w0) = Py) x plye) x - x Pys) = [[Plws). (25)

. ' S j=1
If the events are dependent, we cannot decompose the joint probability in this man-
ner. However, if we can create conditional distributions, we can decompose the joint
probability using the following definitions:

[S S P S R S

P(Y=yX=a)=P(X=zlY =y)x P(Y =y). (27
So, the probability that the coin lands heads and I say heads is
PY=1,X=1)=PY =1X=1)xP(X=1)=08x0.5=0.4

or, in other words, if we repeated this many times, the proportion of times that the
coin landed heads and I said heads is 0.4. The fact that I occasionally lie when the
coin shows heads has reduced the probability that you will hear heads from 0.5 (if
I were always honest) to 0.4. '

There are four possible combinations of X and Y and hence four possible out-
comes of the event. Equation 2.2 tells us that if we sum the probabilities of all four
of these events we should get 1: '

Linear Modelling: A Maximum Likelihood Approach 47

(Note that Zz,y corresponds to a summation over all possible combinations of x
and y). We can test this by working them all out from Equation 2.6. We already
know P(X =1,Y = 1) = 0.4. The others are

PY=0,X=1)=PY=0X=1)PX=1)=02x05=0.1
PY=1,X=0)=PY-=1X=0P(X=0)=0x05=0
P(Y=0,X=0)=PY =0X =0)P(X=0)=1x05=05.

Adding these together gives 0.4 + 0.1 + 04 0.5 = 1 as required.

Before we move on, we will quickly consider these three values. The first (0.1)
gives the probability that I say tails and the coin lands heads. This has increased from
the truthful case (it would be zero if I always told the truth) because I sometimes
lie if the coin is heads. The second (0) is the probability that I say heads when the
coin is actually tails. This is 0 because I never lie if the coin is tails. T'he final value
is the probability that I say tails and the coin lands tails. This is 0.5 — the coin lands
tails half the time and if it does, I always tell the truth.

2.2.6 Marginalisation

If you recorded the proportion of times I said heads or tails, you would in effect
be computing P(Y = 1) and P(Y = 0). These expressions do not involve X — they
just refer to what I say. P(Y = y) can be obtained by #tar $ing out X from the
joint distribution P(Y =y, X =). This is done by summmg the joint probabilities
over all possible values of X:

P =)= ZP(Y—~y, =z (29)

In our coin example X can take one of two values, so this summation would become
PY=y)=PY =y, X=0+PY=y9,X=1).

In general, for joint probabilities of J random variables, to get P(Y; = y;) the
marginal distribution of one of them is given by:

P(Y; =y;) = P(y;) = Y. Pnow) (2.10)

Y1 oY= 1,¥54119Y7 i .
The summation in this expression looks a bit strange. It is summing over all combi-
nations of the remaining J — 1 variables (y; is missing). For example, if J = 3 and

each variable can take only the values 0 or 1, to compute P(Y: = y1) = p(y1) would
require summation over four different combinations of ¥ and ys,

Y2 Y3
0 0
01
1 0
1 1

48 A First Course in Machine Learning

If J = 4, this increases to 8

<
N

=== E=1]
—_—-0 o= =0 ol
—_ OOk O RO

In general, for binary variables, the number of combinations will be 27~ which
rapidly increases with J. If our random variables have more than two outcomes it
gets even worse (e.g. 67! for a die). Marginalisation is important in some probabilis-
tic areas of Machine Learning and can be very challenging, inspiring approximation
methods such as those that we shall see in Chapter 4.

Returning to our coin example, P(Y = 1) is
PY=1)=> P(Y=1X=z)

—P(Y=1,X=0+PY=1,X=1)

=0404=04
and P(Y = 0) is
P(Y=0)=> P(Y=0,X=xz)
:&Y:QX:m+HY:QX:U
= 0.5+0.1=0.6.

We could also have computed P(Y = 0) by using the value for P(Y = 1) and
Equation 2.2. These probabilities tell us the proportion of times I say heads and
tails. They are different from the proportion of times that the coin lands heads or
tails (P(X = 1) = P(X = 0) = 0.5). This discrepancy is due to the uncertainty in my
communication of the results — in the context of this chapter, I am effectively a source
of noise or errors. A further example of conditional probabilities and marginalisation
is provided in Comment 2.1. ’

Linear Modelling: A Mazimum Likelithood Approach 49

Comment 2.1 — Conditional probabilities and marginalisation — an
example: Let’s assume that we have a fair coin and two dice (one of which
is a little unusual). We will generate a coin toss (X) and a dice roll (Y) using
the following procedure. First, toss the coin. If it gives heads, roll die 1. If it
gives tails, roll die 2. Die 1 and die 2 are different, with probabilities defined
in the following table: ‘

1 5 6
Die 1 ¢ § 1 = PWX=H
Die2 ; 5316 13 =PWX=T1)

So, the probability of rolling, say, a 3 is 1/6 with die 1 and 1/4 with die 2. As
we roll die 1 if our coin showed heads and dice 2 if tails, we have the following
conditional distributions:

P(ylX = H), P(y|X =1),

i.e. the distribution over Y depends on the outcome of X . The joint distribu-
tion is given as (Equation 2.6):

p(y,) = p(y|z)p(z).

We can use this to compute the probability of rolling a 3 and a head:

P(Y=3z=H)=P(Y =3 X =H)P(X =H)=Lx1_1
6 27 12

Alternatively, a 3 and a tail:
P(Y:B,X:T):P(Y:3|X:H)P(X=T):i><%:é_

Perhaps more interestingly, we can compute the marginal distribution for Y.
From our definition (Equation 2.9):

P(y) =Y _ P(y.z) =Y _ P(ylz)P(z).

Therefore, the probability of rolling a 3 is:

P(Y =3) = Y P(Y = 3|x)P(z)

P(Y =3|X = H)P(X = H) + P(Y =3|X = T)P(X = 1)
1 1,1 1_5

T 2t 1%

2.2.7 Aside — Bayes’ rule

Although we won’t need it in this chapter, it is worth introducing Bayes71 rule as
it will feature heavily from Chapter 3 onwards. The left hand sides of Equations 2.6

1Named after the Reverand Thomas Bayes, a British mathematician and Presbyterian
minister, who first proposed this reversing of conditional probabilities.

50 A First Course in Machine Learning

and 2.7 are identical, so we can also equate the right hand sides
PlY =yl X =x)P(X =z) = P(X =z|Y =y)P(Y =y).

Rearranging, we can get an expression for the probability of X conditioned on a
particular value of ¥ (P(X = z|Y = y)) that depends on the probability of Y
conditioned on a particular value of X (P(Y = y|X = z)), which is known as Bayes’
rule:

_ (Y Y| X = .'v)P(X = :c) o
P(X :rlY B oS (2.11)

In our example, this is the probability that the coin landed in a particular way given
(or conditioned on) what I said. This is likely to be of interest to you if you want
to make predictions about how the coin actually landed. Substituting our numerical
values, we can work out P(X = 1Y =1)

PY=1X=1)P(X=1) 08x0.5
P(Y =1) 04

P(X=1Y=1)= =1,
from which we can also deduce that P(X = 0|Y = 1) = 0 (Equation 2.2 again).
Similarly, we can compute P(X = 0|Y = 0)

P(Y =0[X =0)P(X =0) 1x0.5

P(X =0]Y =0) = PO =0) = 55 =083,

from which we can deduce that P(X =1]Y =0) = 0.17.

The first two values give the probabilities of the true coin toss if I say heads
(i.e. Y = 1) and the second two the true probabilities if I say tails (Y = 0). P(X =
1Y = 1) = 1 tells us that my saying heads must mean that heads was the true
outcome of the coin toss. P(X = 0]Y = 0) = 0.83 tells us that if tails is heard, it
is more likely that the coin was tails (probability of 0.83) than heads (probability
of 0.17). Reversing the conditioning in this way is very useful when building models
and is something that we shall return to in Chapter 3 and beyond.

2.2.8 Expectations

When dealing with random variables, it is useful to summarise a distribution
with a value or values that encapsulate its characteristics. An obvious example is
the mean value — the average value that we expect the random variable to take.
The mean is an example of an 8kpedtation. An expectation tells us what value we
would expect some function f(X) of a random variable X to take and is defined (for
discrete random variables) as:

B U0 - T0PE.

For example, if we’re interested in the expected value of X (the mean), f(X) = X
and the expression becomes:

Ep@ {X} =Y 2P().

Linear Modelling: A Maximum Likelihood Approach 51

For a fair die (P(z) = 1/6), the expected value of X would be

2 6 21
EP(x>{X}—Z 6_6+6+ A= =35

Notice from this example that the expected value doesn’t have to be one of the
values that the random variable can take (we can never roll 3.5).

Expected values of other functions are computed in exactly the same manner.
For example, the expected value of f(X) = X? is:

21 _ 1 4

It is important to realise that the expected value of a function of X is not in general
the function evaluated at the expected value of X. Mathematically, Ep(,) {f(X)}
does not necessarily equal f (Ep(,;){X}). As an example, we've just computed
Ep(z) {Xz} = 91/6, which is not equal to (Ep(x) {X})2 = (21/6)2. One situa-
tion where the two are equal is when the function is just a constant multiplied by
X . In this case, doing a little algebra allows us to show that the two are equivalent:

(X) = aXx
Ep@ {f(X)} = > _azP(x)

aZmP(z)
= aEp(y) {X}
f (Epe) {X}).

Another important case is when the function is simply a constant. In this case,
the expectation disappears due to the fact that the distribution has to sum to 1 over
all possible outcomes:

Il

f(X) =a
Epa {f(X)} = ZGP(I)

=a)_ P(z)

A final special case that will prove useful is that the expectation of a sum of
different functions is equal to a sum of the individual expectations:

Ep@) {f(X) +9(X)} = Z(f(m +9(x)) P(z)

Z f(@)P(z) + Zg(w)P(m)

= Em) {F(X)} + Epm {9(X)}.

The two most common expectations that we will come across are the mean
(Ep(z) {X} as defined above) and the ¥ €. Variance is a measure of how vari-
able the random variable is and is defined as the expected squared deviation from
the mean:

52 - A First Course in Machine Learning

Multiplying out the bracket gives us the following convenient expression for the
variance of a random variable:

Ep@) {(X — Ep@ {z})?}
= Ep() {X* — 2XEp(s) {X} + Ep) {2}°}
= Ep) {X?} = 2Ep(o) {X} Ep() {X} + Ep) {X}°.

var{X}

Il

To get from the second to the third line, we have used the fact that
Ep@) {Ep@) {f(X)}}

= Ep(z) {f(X)}. The result of Ep(;) {f(X)} is a constant (all X terms are removed
by the expectation). The outer expectation is the expected value of a constant, which
we have already shown is equal to the constant. Collecting together the Ep(,) {X }2
terms gives:

Random variables with high variance would, on average, take values further away
from their mean than random variables with low variance.

Comment 2.2 — Vector random variables: It will often be necessary
to define probability distributions over vectors. This is nothing more than a
shorthand way of defining large joint distributions. For example, the values
that could be taken on by random variables X1, X2,..., Xy can be expressed
as the vector x = [z1,z2, ..., a:N]T. Using this shorthand:

p(X) :p(zl,xz,...,xN) = P(Xl :$1,X2 ::1:27,_,’XN ::EN)

Even though x is a vector, p(x) is a scalar quantity, just as P(X, = z1, X2 =
zo,...,. XN = .’EN) is.

Expectations are computed for vector random variables (see Comment 2.2) in
exactly the same way. For a random variable X that can take vector values x,
expectations are defined as

Epe {f(x)} =D F(x)P(x)
where the sum is over all possible values of the vector x. Therefore, the mean vector
is defined as
Ep {x} = > xP(x).

When dealing with vectors, the concept of variance is generalised to a &
matrix. This is defined as

Linear Modelling: A Maximum Likelihood Approach 53

If x is a vector of length D then cov{x} is a D x D matrix. The diagonal elements
correspond to the variance of the individual elements of x whilst the off-diagonal
elements tell us to what extent different elements of x co-vary, that is, how dependent
are they on one another. A high positive value between, say, elements x4 and z.
suggests that if x4 increases, so does z.. A high negative value suggests that they
are related but move in opposite directions (x4 increases whilst z. decreases) and a
value of (or close to) zero suggests that there is no relationship between them (they
are independent). We give some examples of covariance matrices and the associated
densities in Section 2.5.4. Just as for variance, the covariance expression can be
manipulated into a more convenient form as follows:

COV{X} = Ep(x) {(x — Ep(x) {X}) (x — Ep(x) {X})T}
= Epg {XXT — 2xEp(x) {x}" + Ep {x} Ep(x) {X}T}

Re-arranging this expression results in:

2.3 Popular discrete distributions

In all of our examples thus far, we have worked with random variables for which
we can list the probabilities of each possible outcome. This is useful for explana-
tive purposes but rapidly becomes infeasible as the number of possible outcomes
increases. In reality, we will often work with well known families of distributions.
Each family is suitable for particular types of events and in general these distri-
butions have parameters that can be tuned to change their characteristics. In this
section we will describe some common discrete distributions that you are likely to
come across in machine learning.

2.3.1 Bernoulli distribution

We have already come across the Bernoulli distribution several times without
realising it. It is used for events like a coin toss that have two possible outcomes. For a
random variable X that can take two values, O or 1 (a binary random variable), where
the probability that it takes the value 1 is defined as ¢, the Bernoulli distribution is:

PX=m=c0-0 e

The Bernoulli distribution is also a special case of the
below) when N = 1.

omiial distribution (see

2.3.2 Binomial distribution

The binomial distribution extends the Bernoulli distribution to define the prob-
ability of observing a certain number of heads in a total of N tosses. More generally,

54 A First Course in Machine Learning

we might think of events that have two outcomes (success or failure). If we have N
such events, the binomial random variable Y can take values from 0 (no successes)
to N (N successes). The probability of observing a particular number of successes
is given by:

r—y-rw = (V)ea-od e

The second part of this expression looks very similar to the Bernoulli expression we
have already seen. In fact, if we define the N binary outcomes as zi,...,znN, the
second part of the binomial expression is the product of the N binomial probabilities:

N
[Q-9 = ¢=n(1- gV 2m=

n=1
=¢'(1-9)"7Y,

where y = 3. xn: the number of successes (a success corresponds to xn = 1). The
first part of the binomial expression is required because there is potentially more
than one set of x1,22,...,zn that corresponds to, say, y = 3. ¢¥(1 — q)V ¥ gives us
the probability of just one of these sets. Summing over all possible sets is equivalent
to multiplying by the number of such sets, given by the combinations function,

(g) (read as N choose y — see Comment 2.3 for details). Figure 2.3 shows an
example of the distribution function when N = 50 and ¢ = 0.7.

2.3.3 Multinomial distribution

Our previous two examples have been distributions over scalar random variables
— we will now look at a distribution that assigns probabilities to vectors of discrete

0.1r

0.05f

0 10 20 30 40 50

Y

FIGURE 2.3: An example of the probability distribution function for a
binomial random variable when N = 50 and ¢ = 0.7 (see Equation 2.18).

Linear Modelling: A Mazimum Likelihood Approach 55

values. The fundamental ideas are exactly the same - the distribution assigns a
probability to every possible vector and the sum of these probabilities must equal
one. As a motivation for vector random variables, imagine you were building a
machine that would produce random documents of N words and you wanted to define
a distribution over these documents. This isn’t as foolish as it might sound - Machine
Learning techniques are often uséd to analyse text data by defining distributions
over documents in just this manner. One way of representing a document would
be with a vector of word counts. Assuming J possible words in our vocabulary,
the vector would be of length J and the jth element would hold the number of
times the jth word appears in the document. The jii distribution allows
us to define a distribution over such vectors. Let Y be a random variable that
represents a document. An instance of this random variable is a vector of word
counts y = [y1,....ys]"; the multinomial distribution defines the probability of y as

Py

T M lle

where ¢; are the parameters of the multinomial distribution and represent the prob-
abilities of the individual words (3_; ¢; = 1).

Comment 2.3 — Combinations: N choose y, written as

(V)
Yy
is mathematical shorthand for the number of ways in which y distinct objects
4
would be 4 — there

1
are 4 ways I can choose one object from four objects — object 1 on its own,

can be chosen from a set of V objects. For example,

object 2 on its own, object 3 on its own or object 4 on its own. g | s 6 —

the possible choices are 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4 or 3 and

4. In general,
(N) _ N!
y YN —y)!

where N! (read N factorial) is

N
[[i=Nx(N-1)x(N-2)x...x1

2.4 Continuous random variables — density functions

We saw at the start of this section that we are unable to systematically write
down all possible outcomes of a continuous random variable. Unfortunately, this
precludes us from assigning probabilities to particular values. To overcome this we
work with the probabilities of the outcome falling within some range or interval. For

56 A First Course in Machine Learning

example, given a continuous random variable X that can take on any value between
minus infinity and infinity it makes sense to try and work out

P(.Z'l <X S.’Ijz)

but not .
P(X = z).

When working with continuous random variables, we need a continuous analogue to
the probability distribution (recall that this, for a discrete random variable, was the
set of outcomes (z) and the probabilities of each outcome, expressed as a function of
z, p(z)). This is provided by a prebability density function (pdf), also denoted
p(x). To compute the probability that X lies in a’particular range, we compute the
definite integral (see Comment 2.4) of p(x) with respect to z over this range

T

Pz, < X <x2) = f 2p(ac)d:lc.

z1

If our random variable may only take values in the range 1 < X < z2, it stands
to reason that the probability that it lies in this range must be 1. This leads us to
the continuous equivalent of Equation 2.2:

/ p(z)dx =1 where z1 < X < . (2.20)

1
Equation 2.1 also has a continuous equivalent,

p(z) >0 (2.21)
that tells us that a pdf can never be negative. Note that there is no upper bound on

the value of the pdf - it is not a probability and so can (and often will) be higher
than 1 for a particular value of z. '

Linear Modelling: A Maximum Likelihood Approach 57

Comment 2.4 — Definite Integrals: When differentiating a function in-
cluding a constant term, the term disappears, e.g.

%(m2 +3) = 2z.

Hence, when we are integrating a function, we have to admit the pos51b111ty
that there might be a constant term

/29:dac=a:2+C.

This is called an indefinite integral as we don’t know the value of C.

8
8

Often we will be interested in us- 7
ing integration to compute the area
under a curve. For example, here
we are interested in computing the 54

o

area under the curve y = 2z be- 3
tween x = 2 and x = 3, as shown 2
in the plot on the right. This is cal- 1
culated as

3
/ 2z dz = [z° + C]3

2

where the []% means take the value of the object inside the brackets when
x = a away from the value when x = b. In this case, this suggests

(3°4+C)—(22+0C)=9—-4+C—-C=5.

This is a definite integral — the constants cancel out and the answer is exact.

Joint and conditional continuous densities: Just as with the discrete case,
we can define joint probability density functions over several continuous random
variables. For example, p(z,y) is the joint density of two random variables X and
Y and p(w) is the density of a vector, w, which could be thought of as the joint
density of p(wo, w1, ...) — random variables representing each element in the vector.
Although we cannot compute P(X = z,Y = y), we can compute

x2 Y2
P(z1 < X <z, SYSyz)=/ / p(z,y) dz dy.

The same applies for conditional distributions, although the conditioning is done on
an exact value (as this event is assumed to have happened). For example, we would

compute
2

Par <X <amlY =)= [plaly =) da.
JIT=Tq
Often we will use the shorthand p(z|y) to describe the density function of X given
that Y = y.

58 A First Course in Machine Learning

Marginalisation: You may have already guessed that to marginalise over a con-
tinuous random variable, we replace the summation from the discrete case with an
integral. For example, the pdf p(y) can be computed from p(y,z) as follows:

p(y) = /xz p(y,z) dz

=z,
where z; < X < z2 describes the sample space of X.

Expectations: Expectations with respect to continuous random variables are per-
formed by integrating over the range of values that the random variable can take:

All of the expressions derived in Section 2.2.8 are identical in the continuous case.
In many practical scenarios, we will not be able to perform this integral — we

may not know the exact form of p(z) or it might simply be impossible to integrate.

However, if we can generate samples from p(z), it can be approximated by

where z; is one of the S samples from p(z). This is an example of a
approximation to an integral which we will see a lot more of in subsequent chapters.

2.5 Popular continuous density functions

Just as for the discrete case, there are several common families of continuous
density functions that we will often come across. In this section, we will describe
three of them.

2.5.1 The uniform density function

The simplest continuous density function is the uniform density function. The
uniform density function, p(y) = U(a,b), is constant between a and b and zero
elsewhere
rfora<y<yd

0 otherwise (2.24)

) = {

An example where a = 3 and b = 8 can be seen in Figure 2.4. We can compute the
value of r for any values of a and b by remembering that the integral of the pdf over
the sample space must be equal to 1 by definition. In this case,

b . b
P(agYSb):I:/ p(y)dy:/ r dy
y=a y

— —=a

i

[yr]s =rb—ra=r(b—a)
l .
b—a’

Linear Modelling: A Mazimum Likelihood Approach 59

0.25
0.2
2015}

a,
0.1

0.05]

Y

FIGURE 2.4: An example of the uniform pdf.

This is quite intuitive — it is the total probability available — 1 — divided by the
length of the interval in which the variables must lie (b—a). We an also easily define
multi-dimensional uniform random variables. For example, if y = [y1,v2]",

rfora<yi<bandc<y, <d
0 otherwise

ply) = {

and we can compute 7 in just the same way:
b d
Pasysbespsd=1=[[rauau
y1=a Jyz=c

/yb [ry2]? dy: = _/b r(d — ¢)dy:

I

= [r(d—wn]l =7r(d—c)(b—a)
_ 1
"Td—ob—-a

Again, this is intuitive — it is the total probability - 1 — divided by the area of the
interval in which the variables must lie (d — ¢)(b — a).

As an aside, Equation 2.23 shows how we can approximate expectations by taking
samples (realisations of the random variable) from the appropriate distribution. We
will demonstrate this approach by computing the expected value of y? analytically
and via sampling. 'The analytical result is given by:

/b) b y2
y'p(y) dy = / dy
v=a v=a b—a

B [ya]b b — a®

3b—a)| 30b-a)

Ep(y) {yz }

a

Substituting a = 0,b = 1 gives:

1
By {v°} = 3-

To compute the sample based approximation, we need to be able to draw samples

60 A First Course in Machine Learning

0.35

0.3f

Expectation
o o
2 9 N
(.'n [*) [¢;]

o
o

0.0

10' 10° 10° 10
Number of Samples

10

FIGURE 2.5: Effect of increasing the number of samples on the approxi-
mation to the expectation given in Equation 2.25 where p(y) = +(0,1). The
dashed line is the true value of 1/3. Note the log scale on the z-axis.

from U(0, 1). In Matlab, the command rand generates samples from this distribution.
If we generate S samples, ys, we can approximate the expectation as:

S
1
B, {v"} =5 D v (2.25)
s=1

Figure 2.5 shows how this approximation improves as we increase the number of
samples from 1 to 10*. The true value, %, is shown as the dashed line (MATLAB
script: approx_expected_value.m). After only 100 samples, the approximation is
reasonably good. Approximating expectations with samples will be used extensively
in later chapters (see Exercise EX 2.4).

2.5.2 The beta density function

The beta density function can be used for continuous random variables that are
restricted to between 0 and 1. The beta density function is defined as:

where o and (8 are parameters that control the shape of the density function; both
must be positive. I'(z) is known as the gamma function and we will omit a discussion
here except to say that it can be computed in MATLAB using the inbuilt function
gamma. Figure 2.6 shows the beta pdfs corresponding to three different sets of pa-
rameters. We will use the beta density function considerably in Chapter 3 and so
will leave more discussion until then.

Linear Modelling: A Maximum Likelihood Approach 61

p(r)
J'i wn D ~ o]

N W

1 M
0 "y
0 02 04 06 08 1

FIGURE 2.6: Examples of beta pdfs with three different pairs of parameters.

2.5.3 The Gaussian density function

Gaussian random variables are used in many continuous applications. One rea-
son is the ease with which the Gaussian pdf can be manipulated in certain useful
situations. The Gaussian distribution is defined over a sample space that includes
all real numbers (i.e. all numbers between —oco and co) and has a pdf for a random
variable Y defined as:

o {____

pylp,o®) st

and is characterised by two variables — the mean (1) and variance (0?). Figure 2.7
shows three Gaussian pdfs with different p, 02 values. The highest value of the pdf is
obtained when y = p and the density is symmetric about this point. The width of the
density is controlled by o2 — the higher the value, the wider the density. If we used
the leftmost Gaussian in Figure 2.7 to generate instances of a random variable, we
would only expect values from a small range around —2. For the rightmost Gaussian,

1.5
pn=-2,0%2=0.1
1
Py p=0,02=03
2
Q,
0.5
w=>50%2=2
% 0 5 10
Y

FIGURE 2.7: Three Gaussian pdfs with different means and variances.

62 A First Course in Machine Learning

we would anticipate values from quite a large range around 5. A common shorthand
for the Gaussian pdf is N'(i,0%). Therefore, if Y has a Gaussian pdf, we could write

p(ylp, 0®) = N(p,0?)

which reads as ‘the density function for the random variable Y is normal with mean
w and variance 0*’ (Gaussian and normal are used interchangeably).

2.5.4 Multivariate Gaussian

The Gaussian distribution can also be generalised to define a density func-
tion over continuous vectors. This multivariate Gaussian density for a vector
x = [x1,... ,:I:D]T is something we will use a great deal in subsequent chapters.
The density function is defined as

P09 = o P {3 WS) (229)

where the mean p is now a vector (of the same size as x), the dth element of which
tells us the mean value of x4 and the variance has become a D x D covariance matrix.
A graphical example is perhaps the best way of getting a feel for this density and
the effects of the parameters g and X. The first example is shown in the top line of
Figure 2.8. In this example, the parameters are:

p=[2 1", == [é(l)]

This is a special case of the multi-variate Gaussian where the two variables (say x:
and z2) are independent. To show this, we note that ¥ = I. So,

p(x) = WGXP {—é(x —) T (x — u)})

Now, I"! = I (see Comment 1.10) allowing us to manipulate this expression
to obtain a product over univariate Gaussian pdfs. Starting with the expression
above (having swapped the I™! for I), we can convert the matrix product inside the
exponential into a sum over the D different elements (see Exercise EX 2.5):

P0) = gy 0 { 50w M-)}

D
Z(fﬂd - Nd)z}
d=1

[N

1
CRRENEE exp{*

Linear Modelling: A Mazximum Likelithood Approach 63

]
1

!
AN
égg’f’é@é‘\“;\
R
s

i\
“s\‘\\‘&%

Zq
(b)

5

4

3

2
o~
8

1

0

-1

-,

-2 -1 0 1 2 3 4 5

FIGURE 2.8: Example surface (left) and contour (right) plots for two dif-
ferent two-dimensional Gaussian pdfs.

64 A First Course in Machine Learning

Comment 2.5 — Matrix determinant: The determinant of a square ma-
trix, denoted |A|, for matrix A is a useful quantity, especially when dealing
with multivariate Gaussians. For large matrices, it is too cumbersome to cal-
culate by hand but it can be done for small matrices. For example, for a 2 x 2
matrix

cd

but for anything bigger than this it is safest to resort to a computer unless the
matrix has a special structure. One special matrix that we will see a lot of is
a square matrix that only has diagonal elements (all off-diagonal elements are
zero). In this case, the determinant is simply the product of these elements.
For example,

A= [a b], |A| = ad — be,

ail 0 ... 0
0 a2 ... 0 : D
A= - . s |Al= H Qdd.
. . . . d=1
0 0 ... app

It is not easy to gain an intuition into what the determinant represents. Its
role in the normalisation constant of the multivariate Gaussian leads us to
think of it as related to the volume of the Gaussian unnormalised Gaussian
(remember that the normalised volume must be equal to 1) and it may be
useful to think of it in this way.

The exponential of a sum is a product of exponentials, allowing us to rewrite the
expression as follows:

1 D 1
= G L ow{ 3o o)

=1

[TI| is the determinant of I, which, from the discussion of diagonal matrices in Com-
ment 2.5, is equal to 1. The other constant term, (27)P/2, could be written as
H5=1 (27)*/? and so our expression can be rewritten as:

2 1)
p(x) = }:[1 WGXP{—Q(M — ptd) }

Each term in the product is a univariate Gaussian (with mean pg4 and variance 1)
and therefore, by the definition of independence, the elements of x are independent.
This result doesn’t just hold for X = I; it holds for any covariance matrix that has
non-zero elements only in the diagonal positions. These diagonal elements will be
the variances of the individual, univariate Gaussians (see Exercises EX 2.5 and EX
2.6 for further exercises and practice at this kind of Gaussian manipulation).

The second row in Figure 2.8 gives another example, with parameters:

1 08
p=[21", 2= [0.8 ;]

Linear Modelling: A Mazximum Likelihood Approach 65

In this example, we could not write the pdf as a product of univariate Gaussians,
suggesting that the elements of x are not indépendent. We can also see the depen-
dence between them in the contour plot (bottom right of Figure 2.8). If z; and z
are independent, p(z2|z1) should not vary with different values of ;. Imagine that
x1 = 3. It looks from the figure that when x1 = 3, vaues for z2 are grouped around
2. If 1 = 1, the values are grouped around 0. Clearly we expect different values
of x2 in both cases and, intuitively, 1 and x, are dependent (MATLAB script:
gauss_surf.m). Experiment with the values in the covariance matrix to see the ef-
fect this has on the surface and contour plots.

A nice feature of the multivariate Gaussian is that the conditional density func-
tion p(z2|r1) is another Gaussian for which we can easily obtain the mean and
variance. We will omit the details here but it is something that we will use often.

2.5.5 Summary

This completes our brief introductipn to random variables and probability. Al-
though we have only skimmed the surface of an enormous subject, the material
presented in the previous few sections is sufficient for us to extend our model to
explicitly measure the discrepancy between predictions and measurements. In the
remainder of this chapter, we will add a random variable to our model that will
model the error between the linear model and our data. Assuming that the random
variable follows a Gaussian density, we will end up with exactly the same equation
for w (the optimum parameter value) as in Chapter 1. However, the inclusion of the
noise term allows us to obtain degrees of confidence in both our parameter values
and predictions.

2.6 Thinking generatively...continued

We now have a sufficient grounding in random variables to be able to handle the
errors in our linear model (as shown in Figure 2.1). In Section 2.1.1 we began thinking
about how we could generate data that looks like the data that we have observed.
In particular, we considered generating the nth winning time from a function of the
form w'x, and then adding a random quantity that we shall call €, - a random
variable.

Our model now takes the following form:

7 _?"—'YWTSCn + €ns : : S A (229)

To complete the definition of this model, we need to decide on a distribution for €.
First, it should be clear that the difference between the model and the actual winning
times is a continuous. quantity. Therefore, ¢, is a continuous random variable. We
also do not just have one random variable, but one for each observed Olympics year.

66 A First Course in Machine Learning

It seems reasonable to assume that these values are independent:

N
ple1,...,en) = H plen).

The final assumption is the form of p(e,). We will assume that this is a Gaussian
(or normal) distribution with zero mean and variance 0. We will not make much
effort to justify this assumption here except to say that this allows ¢, to be both
positive and negative (allows data to lie both above and below the line w'x) and
has interesting modelling properties that link it to the squared loss that we used in
Chapter 1. As for the choice of loss functions discussed in Section 1.1.3, in a real
modelling situation one should be much more careful to properly justify this choice.

Using a normal density for ¢, i.e. p(¢) = N (1, 0?) (see Section 2.5.3) with a mean
(i) of zero and a variance of o> = 0.05 (don’t worry about the particular value here
for now) we obtain a much more realistic looking dataset, shown in Figure 2.9
(MATLAB script: genolymp.m).

Our model now consists of two components:

1. Ad
drift.

2. A random component (€,), sometimes referred to as noise.

isti¢ component (w'x,), sometimes referred to as a trend or

We have already pointed out that we are not restricted to noise from a Gaussian
distribution. We are also not restricted to additive noise. For some applications, a
multiplicative term might be more appropriate (in which case, t = f(x;w)e). For
example, degradation of image pixels is often modelled with multiplicative noise.
However, as we shall see in the following sections, choosing additive Gaussian noise
allows us to obtain exact expressions for the optimal parameter value w.

11 v v

10.5 .

10 *

9.5

Winning time (seconds)

o]

b

1920 1940 1960 1980 2000
Year

FIGURE 2.9: Dataset generated from a linear model with Gaussian errors.

Linear Mbdelling: A Mazimum Likelihood Approach 67

2.7 Likelihood

Our model is of the following form:
tn = f(Xn;W) + €n, €n ’\-’N(O, 02).

As in Chapter 1, we need to find the optimal value of w, W. We also have an
additional parameter o that needs to be set. In Chapter 1 we found the value of
w that minimised the loss. The loss measured the difference between the observed
values of t and those predicted by the model. The effect of adding a random variable
to the model is that the output of the model, t, is now itself a random variable. In
other words, there is no single value of ¢, for a particular x,,. As such, we cannot
use the loss as a means of optimising w and o?.

Adding a constant (w'x,) to a Gaussian random variable is equivalent to an-
other Gaussian random variable with the mean shifted by the same constant:

y=a+2z
p(z) = N(m,s)
p(y) = N(m +a,s)

Therefore, the random variable t,, has the following density function:
p(tn|xna w, 02) = N(WTXTH 02)

Note the conditioning on the left hand side — the density of t, depends on particular
values of x, and w (they determine the mean) and o (the variance).

To see how we can use this to find optimal values of w and o2, consider one of the
years from our dataset — 1980. Based on the model (wo,w;) found in the previous
chapter and assuming again that o® = 0.05, we can plot p(t,|T, = 1980, w,c?) as a
function of t,, as shown Figure 2.10. The solid line shows:

p(ta]xn = [1, 1980]", w = [36.416,—0.0133]", o> = 0.05),

which is a Gaussian density with mean p = 36.416 — 0.0133 x 1980 = 10.02 and
variance o2 = 0.05. Recall that for a continuous random variable, t, p(t) cannot be
interpreted as a probability. The height of the curve at a particular value of t can be
interpreted as how likely it is that we would observe that particular ¢ for £ = 1980.
The most likely winning time in 1980 would be 10.02 seconds (for a Gaussian, the
most likely (highest) point corresponds to the mean). Also shown on the plot are
three example times — A, B and C. Of these, B is the most likely and C the least
likely.

The actual winning time in the 1980 Olympics is C (10.25 seconds). The density
p(tn|Xn,w,o?) evaluated at t, = 10.25 is an important quantity, known as the Tike-
lihood of the nth data pomt We cannot change t,, = 10.25 (this is our data) but
we can change w and o? to try and move the density so as to make it as high as
possible at t = 10.25. The idea of finding parameters that maximise the likelihood
in this way is a key concept in machine learning.

68 A First Course in Machine Learning

D)
)

x = 1930

pltlz)

0.5

9 95 ~10 105 11
FIGURE 2.10: Likelihood function for the year 1980.

2.7.1 Dataset likelihood

In general, we are not interested in the likelihood of a single data point but that
of all of the data. If we have N data points, we are interested in the joint conditional
density:

p(ti, .. tN|X1, ... ,xN,w,ag).

This is a joint density over all of the responses in our dataset (see Section 2.2.5).
We will write this compactly (using vector notation and X as defined in Chapter 1)
as p(t|X,w,o?). Evaluating this density at the observed data points gives a single
likelihood value for the whole dataset which we can optimise by varying w and o2.

The assumption that the noise at each data point is independent (p(e1,...,en) =
I1,, p(€n)) enables us to factorise this density into something more manageable. In
particular, this joint conditional density can be factorised into IV separate terms,
one for each data object:

L= p(t]X w,o)- Hp tnixn,w,o)- HN(W X0) (230)

n=1 : n==1

Note that we haven’t gone as far as saying that the t, values are themselves
completely independent. This is not the case — the t, values are, on average, de-
creasing over time, suggesting a clear statistical dependence between them. If they
were completely independent, it would not b worthwhll ctually trying to model
the data at all. In fact, they are €6i L — given a value for

(the deterministic part of the model) the tn are 1ndependent without them they
are not. If this sounds a bit strange, think of it in the following way: Imagine that we
had values for all of the Olympics years and winning times except one of the ones in
the middle — say 1960. For simplicity, we shall use X, t to denote all Olympics years
and winning times excluding. 1960. If we want to-use X and t to learn something
about ti1960, we are interested in the following conditional distribution:

p(ti960|X1960, X, t).

Linear Modelling: A Maximum Likelihood Approach 69

From the definition of conditional distributions, this is given by:

p(ti960, t|x1960, X)
p(t|X)

p(ti960|x1960, X, t) =
Assuming that the elements of t are independent results in t1960 only depending on
X1960:

p(t1960|x1960) [1, P(tn|Xn
p(t1960|x1060, X, t) = : I, p(tnl;n)(- p(t1960|X1960)-

However, for our model to be of any use, t1960 must, in some sense, be dependent
on the other data. This dependence is encapsulated in the parameter w. The deter-
ministic part of our model captures this dependence. If we know w, all that remains
is the errors between the observed data and w'x,. These errors are assumed to be
independent. Hence, conditioned on w, the observations are independent. Without
a model (and therefore a w), the observations are not independent.

We will now show how we can find the values of w and o2 that maximise the
likelihood.

2.7.2 Maximum likelihood

Equation 2.30 gives us a single value that tells us how likely our dataset is, given
the current model (by model, we mean choice of w and 02). As our dataset is fixed,
varying the model will result in different likelihood values. A sensible choice of model
would be that which maximised the likelihood. In other words, we will select the
model parameters that will make our observations most likel

For analytical reasons, we will maximise the fi# arithim of the likeli-
hood (we will follow the Machine Learning convention of using log(y) to denote the
natural logarithm of y, often denoted elsewhere as In(y)). We can do this because the

estimated arguments w and o2 that maximise the log likelihood will also maximise
the likelihood.

Substituting the expression for the Gaussian density function (Equation 2.27)
and separating the various terms gives us an expression that will be easier to deal

with:
(27rU2exp{ 212(— f(xn;W)) })

- zi: <_— log(2n) — logo — %(tn - f(xn,w))2)

N 1 &
2
= ~5log27r—NlogU— 552 g (tn — f(xn; W)~

Mz

log L =

Substituting our particular deterministic component f(x,;w) = w'x, gives us the
log likelihood expression that we will work with:

N
log L = —% log2m — Nlogo — z:: tn —w'xn)2 (2.31)

70 A First Course in Machine Learning

As for the least squares solution derived in Chapter 1, we can find the optimal
parameters by taking derivatives, equating them to zero and solving for turning
points, in a manner similar to that in Section 1.1.4. For w (noting that wix, =

5
x71w)7

Alog L 1 &
ow :;an(t"_ w)

N
1
= ;E Xntn — xnxnw 0.
n=1

Note that 6—13";5—5 is a vector and so we equate it to 0, a vector of zeros of the same
size. Recall the shorthand matrix/vector forms we used in Chapter 1:

X, 1 x t1

Xy 1z to
x —_— . = . . N t =

x}:, 1 zn tn

In this notation, E _1Xntn can be written as X't and similarly Z xnx,T,w as
X"Xw (see Exercise EX 1.5). This allows us to write the derivative 1n the more
convenient vector/matrix form:

Olog L
ow

Solving this expression for w will lead to an expression for the optimal value:

=L Xt XxTXw) = 0. 2.32
0-2

0

%(th - X"Xw)
X't-X"Xw =0
X'Xw = X"t
w = (X"X)"'X"t.

This is the FHa%H KEHB66A solution for w:

Remarkably, this solution is ezactly that which we have already derived for the least
squares case in Chapter 1 (Equation 1.16). Minimising the squared loss is equivalent
to the maximum likelihood solution if the noise is assumed to be Gaussian. Also, the
noise variance, 0%, does not appear in this expression at all — it scales the likelihood
but doesn’t affect the value of W corresponding to its maximum.

To obtain an expression for o? (assuming w = W) we can follow the same
procedure. Taking partial derivatives and equating to zero results in

oL N 1 T2
%———Jr;‘é(tn—xw =0. (2-34)

(o2

Re-arranging gives 02, the maximum likelihood estimate for o2:

Linear Modelling: A Maximum Likelihood Approach 71

This expression makes perfect sense — the variance is simply the average squared
error. We would prefer this in matrix notation so, using the fact that Zn [t —
x"W)? is equivalent to (t — Xw)"(t — XW),

0% = %(t _X#)T(t - X®) ' (2.36)
= —J%/—(tTt 2" XW + W' X' XW).

This can be further simplified by substituting W = (XTX)—1 X't (note that w' =

t"X(X"X)"! because (X"X)! i#i€ and is therefore equal to its own
transpose):

o7 = %(Jt S tTX(XTX)TIX T 4+ XX X)X TX(X X)X T

= %(tTt 2 X(XTX)TIX e+ 6T X(XTX)TIX)
= %(tTt — ' X(X"X)7'X"t)

-/‘\
0,'

Slenedxe 0 e

Using the Olympics 100 m data, our optimal parameter values (for a 1st order
(linear) polynomial) are:

& = [36.4165, — 0.0133]", o2 = 0.0503.

w is the same as the least squares solution provided in the previous chapter (they are
both computed using the same expression). o2 tells us the variance of the Gaussian
noise that we have assumed is used to corrupt our data. Later in this chapter we
will see that modelling the noise in this way provides several benefits over loss
minimisation. Before we do, we shall first look at some of the characteristics of the
solution.

2.7.3 Characteristics of the maximum likelihood solution

In Chapter 1, we used the second derivatives of the loss function to ensure that
we had found a minimum. We will now do a similar thing with the second derivatives
of the likelihood to ensure that we have found a maximum. Our derivatives are now
with respect to a vector and to examine the second derivatives, we construct the }“I
&ian mnatrix (see Comment 2.6). Each entry in this matrix is the second derivative
with respect to a pair of elements of w. o be sure that we have found a maximum,
we must show that the Hessian matrix is negative definite (see Comment 2.7).

72 A First Course in Machine Learning

Comment 2.6 — Hessian matrix: A Hessian matrix is square matrix con-
taining all of the second order partial derivatives of a function. For example,

the Hessian matrix for a function f(x; w) with parameters w = [w1, ..., wk]|”
would be
awl 6w1 a'wz 3w13‘wK
H Swa 0wy dwj dwadw g
Swg dwy Swgk dw: Swi

We can use the Hessian to tell us something about turning points in f(x; w).
For example, if the Hessian is negative definite (see Comment 2.7) at some
turning point W, then we know that that turning point corresponds to a
maximum.

The Hessian matrix of second order partial derivatives can be computed by differ-
entiating Equation 2.32 with respect to w':

If we substitute x,, = [1, a:n]T, the diagonal elements of this matrix are equivalent
(they differ by multiplication by a constant) to the second derivatives obtained in
Equation 1.9 (see Exercise EX 2.7).

Comment 2.7 — Negative definite matrices: A real-valued matrix H is
negative definite if
x Hx < 0

for all vectors of real values x.

To be sure this is a maximum, we need to determine whether or not this matrix
is negative definite. We can do this by showing that

—%ZTXTXZ <0
o
for any vector z or equivalently (because o® must be positive) that
z2'X'Xz >0

for any vector z. At this stage, it is probably worth showing how this can be done.
We will assume that each x,, is two dimensional so that we can explicitly multiply
out the various terms. To be more general, we will define X slightly differently than
before as:

T
X1 11 Ti12
T
X2 TI21 T22
X = = ,
T
XN ITN1 TN2
Thus, X"X is
N 2 N .
Ty _ Ei=1 Ti1 Zi=1 Ti1Ti2 |-
X' X = N N 2 .
Zi:l Ti2Z41 Zi.—_1 Ti2

Linear Modelling: A Mazimum Likelithood Approach 73

Pre- and post-multiplying by an arbitrary real vector z = [z, 2",

N : N N N
T~ T 2 2
z X Xz = |2 T + 22 Ti2Ti1, 21 Ti1Z42 + 22 Tiz2| 2z
i=1 i=1 i=1

i=1
N N N
2 2 Y 2 2
= 2] E T + 22122 E Ti1Ti2 + 23 E Tio.
i=1 i=1 i=1

Because the first and last terms must be positive, proving that this expression is
greater than zero is equivalent to proving that their combined value is larger than

the middle term:
N N N
2 2 2 2
21 5 ;1 + 23 E Tip > 22122 E Ti1ZT2.
i=1 i=1 i=1

Defining y;1 = 21741 and y;2 = 222 and substituting into our expression gives
N N
2 2
Z(yil + ¥i2) > QZyilyiz-
i=1 i=1

Now, considering some arbitrary 1,

va +yh > 2y
yh — 2yiyi2 + yiz > 0
(v — yi2)2 >0

which will only not be the case if y;1 = y:2 and therefore z;,; = z;2 — something
unlikely to happen in practice. So, if y2 +y% > 2yi1y:2 holds for any i, the summation
of any number of these terms must also satisfy the inequality. Hence, z' X' Xz is
always positive, our Hessian is negative definite and the solution corresponds to a
maximum of the likelihood. .

T'o ensure that our expression for o2 corresponds to a maximum of the likelihood,

we differentiate Equation 2.34 again with respect to o:
8%log L N 3 ~\T ~

‘We can simplify this by substituting the value for o? given in Equation 2.36, resulting
in:

&’logl N 3 5

=~ == _No?

Oo? o2 (02)2 g
__2N
= ;\2’

which is always negative and hence o2 corresponds to a maximum.

74 A First Course in Machine Learning

2.7.4 Maximum likelihood favours complex models

Plugging the expression for o2 (Equation 2.35) into the log likelihood expression
(Equation 2.31) gives us the value of the log likelihood at the maximum:

N o~ 1 —~
logL = '-ElogQW——logaz— — No?
2 2 9202

= —%(1 + log 27) — %log:ﬁ.

This tells us that the maximum value of L will keep increasing as we decrease o2,
Recall that o is the variance of the noise incorporated into the model to capture
effects that the deterministic part of our model (i.e. f(x;w)) cannot. One way to
decrease o2 is to modify f(x;w) so that it can capture more of the variability in
the data — i.e. make it more flexible. For example, revisiting the Olympics men’s
100 m data we can investigate the increase in likelihood as model flexibility (or
complexity) increases by fitting increasingly higher order polynomial functions. Fig-
ure 2.11(a) shows that log L increases as polynomials of increasing order are fitted to
the Olympics men’s 100 m data (MATLAB script: olymplike.m). If we were to use
log L to help choose which particular model to use, it will always point us to models
of increasing complexity. This might seem like a sensible strategy — as o2 decreases,
the deterministic part of our model must be capturing more of the variability in
our data. However, consider the task of predicting the winning time for a year that
we have not yet observed (e.g. 2016). Figure 2.11(b) shows 1st (dashed line) and
8th (solid line) order polynomial fits as well as their predictions for 2016 (shown
as large dark circles). T"he more complex model makes a prediction of a winning
time of close to 11 seconds (it would be one of the slowest ever) whereas the sim-
pler model makes a much more realistic prediction. To the human eye, it looks like
the simpler model has captured the important relationship in the data (the general
downward trend) whilst the more complex model has not. This is a nice example of
the trade-off between generalisation and over-fitting that we saw in Section 1.5. The

20
15| 11.5
)
?O g n
@10 3
"o 105
£
e
5
10|
0! 9.5|
2 4 6 8 10 1880 1900 1920 1940 1960 1980 2000 2020
Polynomial order Year
(a) Increase in log likelihood as the poly- (b) 1st and 8th order polynomial func-
nomial order increases tions fitted to the Olympics men’s 100 m

data. Large dark circles correspond to
predictions for the 2016 Olympics

FIGURE 2.11: Model complexity example with Olyrﬁpics men’s 100 m data.

Linear Modelling: A Maximum Likelihood Approach 75

simpler model is better able to generalise than the more complex one. The more
complex model is over-fitting - we have given the model too much freedom and it is
attempting to make sense out of what is essentially noise. In Section 1.6 we showed
how regularisation could be used to penalise overly complex parameter values. The
same can be done with probabilistic models through the use of pri »
on the parameter values. This will be introduced in the next chapter.

2.8 The bias-variance tradeoff

The tradeoff between generalisation and over-fitting discussed in Section 1.5 is
also sometimes described as the bias-variance tradeoff. Imagine that we had access to
the distribution from which the data were sampled, p(x, t). Using this distribution we
could, in theory, compute the expected value of the squared error between estimated
parameter values and the true values. We would like this value, M, to be as low as
possible. It can be decomposed into two terms called the bias, B, and the variance,
V:

M=DB+V.

The bias describes the systematic mismatch between our model and the process that
generated the data. A model that is too simple will have a high bias (under-fitting).
We can therefore decrease the bias and its contribution to the M by making the
model more complex. Unfortunately, more complex models have higher variance,
thus increasing the V component of M. Finding the correct balance between gen-
eralisation and over/under-fitting can thus also be thought of as finding the correct
balance between bias and variance.

We omit further details here, but more details can be found in the suggested
reading at the end of this chapter.

2.8.1 Summary

In the previous sections we have introduced a number of new concepts. First, we
made a case for explicitly modelling the noise (or errors) in our dataset. Making the
assumption that these errors could be adequately modelled by a Gaussian random
variable, we showed that we could compute a quantity called the likelihood that
describes how likely our data is as a function of our model parameters. This is a
reasonable quantity to maximise when choosing our parameters and maximising the
likelihood and minimising the squared loss give identical expressions for the optimal
parameter values when we assume that the noise is Gaussian. In the remainder of
the chapter we will look at two important benefits of explicitly modelling the noise:
the ability to quantify the uncertainty in our parameters and the ability to express
uncertainties in our predictions.

76 A First Course in Machine Learning

2.9 Effect of noise on parameter estimates

In this section we shall derive expressions for how much confidence we should
place in our parameter estimates — how much could we change the straight line and
still have a good model. If there is a lot of noise (o2 is high) it is likely that we could
tolerate reasonably large changes in w. If there is very little noise, the quality of the
fit will deteriorate rapidly. Before we derive these expressions, it is useful to explore
the variability in W by generating synthetic data. In particular, we shall generate
lots of datasets with the same true w and &2 and see how our maximum likelihood
estimate w varies. Consider the following model:

tn = Wo + WiTn + €n, €n ~ N(0,0°). (2.39)

Assuming that the true parameter values are wo = —2, w; = 3 and the noise variance
is 0% = 0.5%, we can generate as many sets of responses (t1,...,tn) as we like for
a particular set of attributes (z1,...,z~) and compute W for each set. An example
of one such dataset and the true function can be seen in Figure 2.12, where the set
of attributes consists of 20 values drawn from a uniform distribution between 0 and
1, i.e. p(z) = U(0,1). Figure 2.13 shows the results of generating 10,000 datasets
and fitting W in each case. The left panel shows a histogram where the height of
each bar represents the number of datasets that resulted in parameter values within
a particular range and the right panel shows the same information as a contour

0 02 04 06 08 1
T

FIGURE 2.12: Data generated from the model given in Equation 2.39 and
the true function.

Linear Modelling: A Mazximum Likelihood Approach 77

FIGURE 2.13: Variability in w for 10,000 datasets generated from the model
described in Equation 2.39.

FIGURE 2.14: Functions inferred from 10 datasets generated from the model
given in Equation 2.39 as well as the true function (wider, darker line).

plot. We can see a wide variability around the true values in both W and wi. It
is hard from these values to get a feel for how much variability this implies in the
model, so examples of W from 10 datasets as well as the true function are plotted in
Figure 2.14.

If we assume our real data to have been generated by such a process, it is useful
to be able to quantify how variable our resulting estimates are. Unfortunately, we
don’t have access to many datasets from which we can compare values of w. In the
next section we will show how we can quantify this uncertainty using just the data
that are available.

78 A First Course in Machine Learning

2.9.1 Uncertainty in estimates

We showed in the last section that the value we obtain for w is strongly influenced
by the particular noise values in the data. In light of this, it would be useful to know
how much uncertainty there was in W. In other words, is this W unique in explaining
the data well or are there many that could do almost as well?

To progress, we must be very clear about what w and W mean. We have hy-
pothesised a model which was responsible for the data. This model is

T
th =W Xp +€p

where w represents the true value of the parameters and ¢, is a random variable
that we have defined to be normally distributed. This assumption means that the
generating distribution (or likelihood), p(t|X, w, 0?), is a product of normal densi-
ties:

N N
p(t[X, w,0%) = [pltalxaw,0?) = [[N(w xn,0?).
n=1 n=1
In Section 2.5.4, we showed how a product of univariate Gaussian densities could
be written as a multivariate Gaussian density with a diagonal covariance. It will be
neater to work with a single multivariate Gaussian than a product over univariate
ones. In this case, the multivariate Gaussian is:

p(t|X, w,0?) = N(Xw, o°T).

Satisfy yourself that the mean and covariance terms are correct. Now, w is an esti-
mate of the true parameter value w. Computing the expectation (Section 2.2.8) of
W with respect to the generating distribution will tell us what we expect W to be,
on average:

Ep(t|x,w,o’2) {V’c’} = /Wp(t|x,w,a2)dt

Substituting w = (X"X) !XTt into this expression allows us to evaluate the inte-
gral:

Ep(tlx,w,az) {V/O} = (xTx)ﬁle/tp(ﬂwi:(“))dt

Epe1x w0 (W} = (X"X) "X Epex w,02) {t}
E,ex w02 {W} = (XTX) 7' X Xw
Epeix,w,02) {W} = w (2.40)

where we have used the fact that the expected value of a normally distributed
random variable is equal to its mean (E,x,w,02) {t} = Xw because p(t|X,w,0?) =
N(Xw,oI)).

This result tells us that the expected value of our approximation W is the true
parameter value. We will consider this in more detail later in the chapter, but it
means that our estimator is #nbiaded - it is not, on average, too big or too small.

This potential variability in the estimate of W is encapsulated in its covariance
matriz. For our purposes, this covariance matrix provides us with two useful pieces
of information. The diagonal elements (the variances of the individual elements in

Linear Modelling: A Mazimum Likelihood Approach 79

w) tell us how much variability we might expect in the individual parameters — i.e.
how well they are defined by the data. In our experiment above, the parameters
appeared to vary quite a lot, suggesting that they were not defined very well by the
data. The off-diagonal elements tell us how the parameters co-vary — if the values are
high and positive, it tells us that increasing one will require an increase in the other
to maintain a good model. Large negative values tell us the opposite — increasing one
will cause a decrease in the other. Values close to zero tell us that the parameters
are not dependent on one another. For the example described above, it looks (see
Figure 2.13) like increasing w; causes a decrease in wg, so we might expect the
off-diagonal elements in the covariance matrix to be negative.

In Section 2.2.8, we derived a general expression for the covariance matrix (Equa-
tion 2.16). Substituting t and p(t|X, w, 0?) into this expression, and using the pre-
vious result, B, x w,02) {W} = W, gives us:

~ ~~T —~ T
cov{w} = Epx,w,02) {WW } — Eptix,w,02) {W} Epgx,w,02) {W}
= Ep(tlx,w,a2) {‘?’QT} - WWT (241)

where we have used the expectation of W that we derived above. To compute this
quantity, we will start with the first term. It can be expanded by substituting W =
(X"X)™'XTt and all of the terms that do not involve t can be removed from the
expectation:

~~T
Ep 6%, w,02) {WW }

I

Ept1x,w,02) {((XTX)‘let)((XTX)—1th)T}

Il

(X™X) ' X" Epex.w.02) {ttT} X(XTX)"1. (2.42)

Now, p(t|X,w,o?) = N(Xw,o?I). Therefore the covariance of t is, by definition,
o?T and its mean is Xw. By the same line of derivation that allowed us to reach
Equation 2.41, we have:

COV{t} = U2I - Ep(t|x,w,02) {ttT} - Ep(t|X,w,02) {t} Ep(t|X,w,02) {t}T . (243)

Therefore, we can re-arrange this expression to obtain an expression for
TY.
Ep 1% ,w.02) {tt' }:

T T 2
Ep(tlx,w,oz) {tt } Ep(th,W.GE) {t} Ep(tlx,w,a2) {t} +o 1
= Xw(Xw)" + 0’1

= Xww' X" +¢°L

Substituing this into Equation 2.42 gives:
E, (t/%.w.0?) {wa} — (XTX) X Xww X TX(XTX) !
+03(XTX) T XTX(XTX) !
=ww' +02(X'X)7 L (2.44)
Finally, substituting this into Equation 2.41 gives the expression for the covariance
of wW:
cov{w} = ww' 4+ A(XTX) - ww '

= o*(X'X)! (2.45)

80 A First Course in Machine Learning

which is the negative of the inverse of the Hessian matrix of second derivatives
derived previously (Equation 2.38), i.e.

el s e L SR op I e iy

cov() = o*(X"X) 7 = - (S8} (2.46).
“This result tells us that the certainty/uncertainty in the parameters (as described by
cov{w}) is directly linked to the second derivative of the log likelihood. The second
derivative of the log likelihood tells us about the curvature of the likelihood function.
I'herefore, low curvature corresponds to a high level of uncertainty in parameters and
high curvature to a low level. In other words, we have an expression that tells us how
much inforaiation our data gives us regarding our parameter estimates. In fact, our
matrix 0'2(XTX)_l is the negative inverse of something called the Fisher Infor-
mation Matrix (7). The Fisher Information Matrix is computed as the expected
value of the matrix of second derivatives of the log likelihood:

62 log p(t|X, w, o?)

We already know what the bit in the brackets is - it is the Hessian matrix we
calculated earlier, so

T
I Ep(t|x w 02) { X X}
which, because the argument of the expectation is a constant, is just

i _1_xTx | (247)

The .elements of Z tell us how much information (the more negative the informa-
tion value is the more information is present) the data provides about a particular
parameter (diagonal elements) or pairs of parameters (off-diagonal elements). Intu-
itively, if our data is very noisy, the information content is lower. In general, if the
information content is high, the data can inform a very accurate parameter estimate
and the covariance of W will be low (cov{Ww} = Z~'). If the information content is
low, the covariance will be high (see Exercises EX 2.13 and EX 2.14).

As an example, look at the top line in Figure 2.15. The left-hand plot shows the
data and the true function (¢ = 3z — 2) and the right hand plot shows the likelihood
as a function of the two parameters. We can see that the likelihood function has
a low curvature (contour lines are reasonably far apart) because of the large noise
level and, as such, many sets of parameters will result in a reasonable model. A
low curvature should, from Equation 2.46, correspond to high covariance in w. The
Fisher information and covariance matrices are

7= 50.0000 24.3311 cov{®} = 0.0784 —-0.1200
= [24.3311 15.8953 | * <Y | —0.1200 0.2466

It is difficult to know if these correspond to high or low information and covariance
without context. This can be provided by comparing them with those obtained from
the second dataset (second row in Figure 2.15). This dataset has much less noise and

Linear Modelling: A Mazimum Likelihood Approach 81

1—'3.5 ~2 w -15 -1
0

(d)

FIGURE 2.15: Two example datasets with dlfferent noise levels and the
corresponding likelihood function.

the corresponding likelihood curvature is much higher (the contour lines are closer
together). In this case, the information and covariance matrices are:

7 - [1:2500 x 10% 0.6083 x 10° (¥} = 0.0031 —0.0048
= 10.6083 x 10* 0.3974 x 10* | * YW = | _0.0048 0.0099

which have significantly higher (in Z) and lower (in cov{w}) values.

2.9.2 Comparison with empirical values

At the start of Section 2.9 we generated many sets of responses for a set of
attributes using the model (and associated noise distribution) given in Equation 2.39.
If we use W to describe the parameters obtained from the sth dataset, the empirical
covariance matrix can be computed as

s
—_—= 1 ~ o\ ~
cov{w} = 3 E (W — [i)(Ws — fi)"
~ s=1

82 A First Course in Machine Learning
where
s

Using the values shown in Figure 2.13, the emplrical covariance matrix is

UJ |

co/v{\\/fv}— 0.0627 —0.0809
| —0.0809 0.1301

Using Equation 2.45 and the true value of o2 = 0.5%, the theoretical covariance

matrix is
0.0638 —0.0821}

cov{W} = [—0.0821 0.1317

which is very close to our empirical value. Normally, we do not have access to a
bottomless supply of data and so we can use the theoretical covariance matrix to
help understand the variability present in our data. The off-diagonal elements are
negative — increasing one of the parameters forces the other to decrease.

To compute the theoretical covariance matrix, we have used the true noise vari-
ance. If we take one arbitrary dataset, we can estimate the variance (using Equa-
tion 2.35) as 0® = 0.2080 (the true value is 0? = 0.25). The covariance matrix using
the estimated variance is:

cov{®} = 0.0530 —0.0683
—0.0683 0.1095

Because the estimated value of o2 is lower than the true value, the values in this

matrix are lower than those when the true noise value is used. This suggests that

the uncertainty is under-estimated and our predictions will be over-confident. The

systematic under-estimation of noise variance in maximum likelihood is discussed

more thoroughly in Section 2.10.2.

At the start of Section 2.9 we saw that changes in the exact values of the noise
changed the parameter estimates. In reality we cannot generate many datasets with
which to estimate this uncertainty in parameter values. However, we have derived an
expression for the covariance of w that can be used to approximate the uncertainty
in parameters. Before we move on to variability in predictions, we will look at the
uncertainty present in the maximum likelihood estimations from the Olympics data.

2.9.3 Variability in model parameters — Olympics data

Using the now familiar men’s Olympics 100 m data and the standard linear
function
fx;w) =w'x,
we know that the maximum likelihood value of w, W, will be [36 4165, -0.0133]"
(from Equation 2.33). The max1mum likelihood variance value, 0'2 can be computed

using Equatlon 2.37 and is o2 = 0.0503. Using Equation 2.45, and using o2 as an
estimate of o2, we can compute the covariance matrix of the estimate:

5.7972 —0.0030

cov{W} =1 00030 1.5204¢ — 06

Linear Modelling: A Maximum Likelihood Approach 83

12

115

105

Winning time (s)

10

9.5

1900 1920 1940 1960 1980 2000
Year

FIGURE 2.16: Ten samples of w using the distribution given in Equa-
tion 2.48.

Taking the diagonal elements, we can see that the variance of wg (5.7972) is much
higher than the variance in w1 (1.5204e — 06), suggesting that we could tolerate
bigger changes in wg than wi and still be left with a reasonably good model. In part,
this can be explained by the fact that wo has a much higher absolute value. The
negativity of the off-diagonal elements tells us that if we were to slightly increase
either wg or w1, we would have to slightly decrease the other. This is relatively
intuitive — if we were to slightly increase wg, the whole line would move up and the
best value of Wi would have to be decreased slightly (thereby producing a steeper
negative gradient) to pass as close as possible to all of the data points.

Another way to get a feeling for the meaning of cov{w} is to look at the vari-
ability in models that it suggests. To do this, we can assume that W is a random
variable with a Gaussian distribution

w ~ N(W, cov{w}). (2.48)

From this density, we can sample several instances of w and plot the resulting models.
An example of 10 instances is shown in Figure 2.16. We can see that there is very
little change in gradient (w:) across the 10 samples but that this small gradient
change would, if we extrapolated back to year zero, result in quite a large change
of wo. This is reflected by the values in cov{w}, as already discussed. The idea of
having a distribution over model parameters rather than a single best value is very
important in Machine Learning and is introduced in the next chapter.

2.10 Variability in predictions

In Chapter 1 we made some predictions about 100 m winning times in future
Olympics. We argued that these predictions were not very useful as they took the
form of exact values. It would seem more sensible to predict a range of values in which
we think the winning time might fall. If we are quite certain about our prediction,

84 A First Course in Machine Learning

this range might be small; if we are less certain, it might be large. So, as well as
obtaining an indication of the variability of our parameter estimate, w, it makes sense
to provide indications of any variability or uncertainty in our predictions. Suppose
we observe a new set of attributes, Xnew. We would like to predict the output tnew
and in addition, the variability associated with this output, o2,

To predict tnew, we multiply Xnew by the best set of model parameters, w

new = WTxnew- ' (249)
To check that this is sensible, we can compute its expectation:

~T
ELt1x,w,02) {tnew} = E,t1x,w,02) {W} Xnew

T
= W Xpnew

where we have used Equation 2.40. The expected value of our prediction is the
new data attribute multiplied by the true w. In Section 2.2.8 we derived a general
expression for variance. In our case, this is:

U,:,zew = var{tnew} = Ep(tIX,w,a2) {tr2|ew} — (Ep(tlx,w,a2) {tnew})2

To evaluate this expression, we need to first substitute tpew = W Xnew:
Var{tnen} = Ep(eix,ma?) { (F %new)? } = (W %new)?
- E T ~AaT T T
= Ep(t1X,w,02) { XnewWW Xnew ¢ — XnewWW Xnew-
Substituting our now familiar expression for w:
Var{trew} = Xrew(X"X) T XTE (¢ 3 w0.02) {ttT} X(XTX) ™ Xnew — Xrew WW Xnew.

Using the expression for the cov{t} (Equation 2.43) allows us to compute the ex-
pectation and simplify the expression:

var{trew} = Xpeu(X'X) !XT (6%1 + waTXT)X(XTX)_lxnew — XN WW ' Xnew
Tx)-1 T T T
=0 xnew(x) Xnew + xnewww Xnew — Xpew WW Xnew
=0 xnew()(T)-lxnew

Note that by substituting our expression for cov{w} (Equation 2.41), this expression

can be re-written as

Orew = XnewCOV{W }Xnew-

To summarise, our prediction and associated variance are given as:

e
Unew =0 xnew(X X) xnew (251)

o? is the true variance of the dataset noise. In its place, we can use our estimate,

—

o2,

Linear Modelling: A Maximum Likelihood Approach 85

600 ' 1500
400 1000
200 I
500 :1
O B I
= = 0 i
%= _200 e
-500
-400
—600, -1000
3 0 5 13005 0 5
o z
(a) (b)
1000 1000,
500
5 g
3 sl [P S hre
= 90 NI
-500

|
5
80
(&)}

(d)

FIGURE 2.17: (a) Example data set. (b). (c) and (d) Predictive error bars
for a linear, cubic and 6th order model, respectively.

2.10.1 Predictive variability — an example

Figure 2.17(a) shows the function f(z) = 5z® — 22 + z and datapoints
sampled from this function and corrupted by Gaussian noise with mean zero
and variance 1000. In Figures 2.17(b), 2.17(c) and 2.17(d) we can see tnew *
ol for linear, cubic and 6th order models, respectively (MATLAB script:
predictive_variance_example.m).

T'he linear model has very high predictive variance. It is unable to model the
deterministic trend in the data very well and much of the variability of the data is
assumed to be noise. The cubic model is better able to model the trend (it is the
correct order) and this is reflected in its much more confident predictions. The 6th
order model is overly complex - it has too much freedom and can therefore fit the
data well for quite a large range of parameter values. This uncertainty in w feeds
through to increased predictive variability — if we are less sure on the parameter
values, we're going to be less sure of the predictions too. This point can be demon-
strated by computing cov{Ww} for the 3rd and 6th order models and then sampling
functions just as we did in Section 2.9.3. Figure 2.18 shows 20 functions drawn from
a Gaussian with mean W and covariance cov{w} for the 3rd and 6th order models
(the plot is zoomed into a small region of = and the darker line shows the true

86 A First Course in Machine Learning

30 30
20 20
o
B
“
-10
ol
-39 -05 0 0.5 1 -3 -0.5 0 0.5 1
x x

FIGURE 2.18: Examples of functions with parameters drawn from a Gaus-
sian with mean W and covariance cov{w} for the example data set shown in
Figure 2.17(a).

function) (MATLAB script: predictive_variance_example.m). The increased vari-
ability in possible functions caused by the increase in parameter uncertainty is clear
for the 6th order model.

A final interesting point is that for all models, the predictive variance increases as
we move towards the edge of the data. The model is less confident in areas where it
has less data — an appealing property. In Chapter 1 we pointed out that making point
predictions indefinitely into the future (i.e. beyond the range of the training data)
was not very sensible. We now have a model that will make predictions beyond the
range of the training data, but will do so with increasing uncertainty, which is likely
to be more useful. We also observe this effect towards the centre of the data (par-
ticularly Figure 2.17(d)) where there is a small gap (not many instances at around
x = 1). Exercise EX 2.12 gives you the opportunity to investigate this effect further.

2.10.2. Expected values of the estimators

In Section 2.9.1 we computed the expected value of our estimate w. This expec-
tation is taken with respect to the generating density p(t|X,w,o?) = N(Xw,o?I)
and is repeated here:

i

Epiix,w,o2) {W} = Epex) {(XTX)_let}

= X'X)' X Byuix) {t}

= (X'X)'X"Xw

=Iw=w
where we have used the expression for W (W = (X"X) !X"t) and the fact that
the expected value of a Gaussian random variable (t) is equal to the mean of the

Gaussian (Xw). So, the expected value of our estimate, W, is the true value, w.
This is an important property of W; it tells us that W is an unbiased estimator

Linear Modelling: A Maximum Likelihood Approach 87

— it is neither consistently too high nor too low. Another way of thinking about
this is to think back to the experiment at the start of Section 2.9. There, for a set
of attributes zi,...,znN, we generated many sets of responses and looked at how
much influence different particular noise values had on w. Because W is unbiased,
it should, on average, be correct. So, if we took the average of all of the different
w values obtained in our experiment, it should be very close to the truth. In fact,
taking this average we get wg = —2.0007 and w; = 3.0008, which are both very
close to the true values: wo = —2,w; = 3.

We can do the same for the /gstimate of the noise variance, o2. Recall from
Equation 2.37 the expression for o2:

- _ 1 .7 Ty
2=—(t t—t Xw).
7= L #)

Taking the expectation with respect to p(t|X, w,o?) and doing some manipulation
gives:

-3 1 T Ty
Ep(tlx,w,oz) {0'2} = TV_EP(”X'W“’Z) {t t-—t XW}

- %Ep(t,x,w,az) {tTt - tTX(XTX)“IXTt}

1
= NEp(nx,w.a?) {tTt} (2.52)

1 -
_‘NEP(HvavU?) {tTX(XTX) IXTt} .

Comment 2.8 — Matrix trace: The trace of a square matrix A, denoted
Tr(A), is the sum of the diagonal elements of A. For example, if

A1 Az -+ Aip
A1 Az -+ A2p
A= . .)

Ap1 Ap2 -+ App
then

Tr(A) = Z Add-

d=1
It follows that if A = Ip, i.e. the D x D identity matrix,

D
Tr(Ip)=>» 1=D.

d=1

A useful identity that we will often use is that

Tr(AB) = Tr(BA).

88 A First Course in Machine Learning

Comment 2.8 - Matrix trace (continued): Also, the trace of a scalar is
just equal to the scalar value (a scalar could be thought of as a 1 x 1 matrix),
ie.
Tr(a) = a
or, if w = [w1,...,wp]",
Tr(w'w) =w'w

because the result of w'w is a scalar.

We have seen the expectation of the form tt' before but not t't (= t'It) or t' At.
When t is a Gaussian random variable, expectations of the form t' At are given by:

t ~ N(p, X)
By {t"At} = TH(AZ) + n"Ap,
where Tr() is the trace function (see Comment 2.8). For the first term on the right
hand side of Equation 2.52, A = Iy (note that t't = tTINt, where Iy is the N x N

identity matrix) and in the second term, A = X(X"X)™*X". In both cases, p = Xw
and X = o’Iy. Substituting the necessary values into Equation 2.52 gives

Ept1x,w.0?) {1/73} = % (Tr(ale) + WTXTXW)
- L (e XETX)TXT) 4 w XXX K Xw),

since INIn = In. Now, Tr(c?A) = 0°Tr(A) and Tr(In) = N by definition. Using
these, we can simplify the expression to:

— 1 2
E,t1x.w,0%) {02} =0+ N—wawa - %Tr(X(XTX)—IXT) - %WTXTXW
2
=o2- %Tr(X(XTX)_IXT)
=o° (1 - %Tr(X(XTX)"IXT)))

Finally, we need to use the fact that Tr(AB) = Tr(BA) and therefore the first X
inside the trace function can be moved to be the last:

Ept1%,w,02) {02}

o? (1 - -}VTr((XTX)'leX)>

o? (1 - %Tr(lp)>
= (1 - 71\)[-) (2.53)

where D is the number of attributes (the number of columns in X).
Assuming that D < N (i.e. the number of attributes we measure for each data
point is smaller than the number of data points), then our estimate of the variance

Linear Modelling: A Maximum Likelihood Approach 89

0.25

0.245

0.24

0.235¢

E{o?)

0.231

0.225{

0.22
10

10 10 10
N

FIGURE 2.19: Evolution of the theoretical and empirical estimates of
Ept1X,w,0?) {02} as the number of data points increases.

will, on average, be lower than the true variance:
) 2
Ep(tlx,w.az) {0’2} <o".

Unlike W, this estimator is biaséd.

We can see this bias by returning to our synthetic experiment. The average value
of o2 over all of the datasets was 0.2264. The true value, 02 = 0.5% = 0.25. We can
see that the average value is indeed too low. For this example, D = 2 and N = 20,
so our theoretical expected value is

- 2 D 2
Ept1x,w,0?) {02} =0 (1 -) =025(1- 55) =02250

which is close to the observed average.

From Equation 2.53, we notice that one way to decrease the bias is to make
D/N smaller. D is normally fixed, but we can increase N. In Figure 2.19 we can see
the effect of increasing N from 20 to 10,000 (MATLAB script: w_variation.demo.m).

" The theoretical (dashed) curve and the empirical (solid) curve (created by re-running
our previous experiment with different numbers of observations, N) are in close
agreement. and converge towards the true value of ¢ = 0.25 as the amount of data
increases. e

It is possible to provide an intuitive explanation for the bias in o2. The expression
for the ML estimate of o is:

o? = %]- (tTt - thw) . (2.54)

It is possible to rearrange this to be equal to the sum of squared errors between the
predictions and the true responses (see Exercise EX 2.11):

90 A First Course in Machine Learning

This tells us that the closer the model gets to the data, the smaller o2. Now imagine
the true value of w and our estimate w. Which will get closer to the data? The
maximum likelihood estimate, W, is identical to the minimum loss estimate. It is, by
definition, the set of parameters that gets closest to the data and therefore minimises
o2. The value of o2 that we would get if we used the true value w instead of W in
Equation 2.54 would have to be the same or higher than the value we get with w.
Because we are finding the value of w that minimises the noise we will, on average,
end up with a lower level of noise than the true value.

2.10.3 Summary

In the preceding sections, we have covered a lot of material. An introduction to
random variables provided the foundations required to be able to model the errors
between the data and the proposed deterministic model. By explicitly modelling
these errors, we have seen how the least squares solution from Chapter 1 is equivalent
to the solution obtained by maximising a different quantity called the likelihood if the
noise in the data is assumed to be normally distributed. The benefit of the likelihood
approach is the ability to quantify the uncertainty in our parameter estimates and
hence also, crucially, in our predictions. This allows us to move away from exact
predictions (which will certainly be wrong) to ranges of values (e.g. tnew & T2e)-
In most applications this will be much more useful. Finally, we looked at some
theoretical properties of the maximum likelihood parameter values and saw that
although our estimate W is unbiased, o2 is, on average, biased to be too low.

2.11 Exercises

EX 2.1. Would the errors in the 100 m linear regression (shown in Figure 2.1) be
best modelled with a discrete or continuous random variable?

EX 2.2. By using the fact that when rolling a die, all outcomes are equally likely
and by using the constraints given in Equations 2.1 and 2.2, compute the
probabilities of the dice landing with each of the six faces facing up.

EX 2.3. Y is a random variable that can take any positive integer value. The
likelihood of these outcomes is given by the Poisson pdf

Ay
p(y) = aexp{w\}-

By using the fact that for a discrete random variable the pdf gives the
probabilities of the individual events occurring and that probabilities are
additive, (a) compute the probability that Y < 4 for A = 5,i.e. P(Y < 4).
(b) Using the result of (a) and the fact that one outcome has to happen,
compute the probability that Y > 4. (Hint, one of the two events, Y < 4
and Y > 4, has to happen.)

EX 2.4. Y is a random variable with a uniform density, p(y) = U(a,b). Derive
E,) {sin(y)}. Note that [sin(y) dy = — cos(y). Compute E,,, {sin(y)}

=
>
[\
9

EX 2.6.

EX 2.7.

EX 2.8.

EX 2.9.

EX 2.10.

EX 2.11.

EX 2.12.

Linear Modelling: A Mazimum Likelihood Approach 91

for a = 0,b = 1. Modify approx_expected_value.m to compute a sample-
based approximation to this value and observe how the approximation
improves with the number of samples drawn.

. Assume that p(w) is the Gaussian pdf for a D-dimensional vector w given

in Equation 2.28. By expanding the vector notation and re-arranging,
show that using X = oI as the covariance matrix, assumes independence
of the D elements of w. You will need to be aware that the determinant of
a matrix that only has entries on the diagonal (|o?I|) is the product of the
diagonal values and that the inverse of the same matrix is constructed
by simply inverting each element on the diagonal. (Hint, a product of
exponentials can be expressed as an exponential of a sum).

Using the same setup as Exercise EX 2.5 above, see what happens if we
use a diagonal covariance matrix with different elements on the diagonal,
ie.

o2 0 ... 0

0o02...0
> =

0 0 ...0%

Show that for a 1st order polynomial, the diagonal elements of the Hessian
matrix of second derivatives of the log likelihood is equivalent to (they will
differ by a multiplicative constant) the second derivatives in Equation 1.9.

Assume that a dataset of N values, x1, ...,z N, was sampled from a Gaus-
sian distribution. Assuming that the data are 1ID, find the maximum
likelihood. estimate of the Gaussian mean and variance. (Hint, start by
writing down the combined likelihood of all N data-points and note that
the product of an exponential function can be written as the exponential
of a sum.).

Assume that a dataset of N binary values, x1,...,zN, was sampled from
a Bernoulli distribution. Compute the maximum likelihood estimate for
the Bernoulli parameter.

Obtain the maximum likelihood estimates of the mean vector and co-
variance matrix of a multivariate Gaussian density given N observations
X1y, XN

Show that the maximum likelihood estimate of the noise variance in our
linear model,

-5 1

=< (tTt - thv?r) ,

can also be expressed as
1
-5 _ T2
0% =5 ngzl(tn X W),

(Hint, work backwards from the second expression.)

Using predictive_variance_example.m, generate a dataset and remove
all values for which —1.5 < x < 1.5. Observe the effect this has on the
predictive variance in this range.

92 A First Course in Machine Learning

EX 2.13. Compute the Fisher Information Matrix for the parameter of a Bernoulli
distribution.

EX 2.14. Compute the Fisher Information Matrix for the components of the mean
vector in a multivariate Gaussian density.

Linear Modelling: A Mazimum Likelihood Approach 93

Further reading

[1] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

This book is an excellent resource for many machine learning con-
cepts. In particular, it includes a detailed discussion of the bias-
variance trade-off.

[2] J.H. McColl. Probability. Elsevier, 1995.
A very accessible introduction to probability theory.

[3] Paul Meyer. Introductory Probability and Statistical Applications. Addison-
Wesley, 1978.

An excellent resource for introductory probability theory.

[4] J. Rosenthal. A First Look at Rigorous Probability Theory. World Scientific
Publishing Company, 2006.

This is a very accessible book to begin exploring measure theory —
the branch of mathematics that underpins probability theory.

[5] Michael Tipping and Christopher Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society. Series B (Statistical Method-
ology), 61(3):611-622, 1999.

An interesting application of maximum likelihood. Here it is applied to
one of the first probabilistic approaches to the the classical statistical
problem of Principal Components Analysis.

Chapter 3 |

The Bayesian Approach to Machine
Learning o

In the previous chapter, we saw how explicitly adding noise to our model allowed us
to obtain more than just point predictions. In particular, we were able to quantify
the uncertainty present in our parameter estimates and our subsequent predictions.
Once content with the idea that there will be uncertainty in our parameter esti-
mates, it is a small step towards considering our parameters themselves as random
variables. Bayesian methods are becoming increasingly important within Machine
Learning and we will devote the next two chapters to providing an introduction to
an area that many people find challenging. In this chapter, we will cover some of
the fundamental ideas of Bayesian statistics through two examples. Unfortunately,
the calculations required to perform Bayesian inference are often not analytically
tractable. In Chapter 4 we will introduce three approximation methods that are
popular in the machine learning community.

3.1 A coin game

Imagine you are walking around a fairground and come across a stall where cus-
tomers are taking part in a coin tossing game. The stall owner tosses a coin 10 times
for each customer. If the coin lands heads on six or fewer occasions, the customer
wins back their £1 stake plus an additional £1. Seven or more and the stall owner
keeps their money. The binomial distribution (described in Section 2.3.2) describes
the probability of a certain number of successes (heads) in N binary events. The
probability of y heads from NN tosses where each toss lands heads with probability
r is given by:

P(Y =y) = (g)ry(l—r)N—y. (3.1)

You assume that the coin is fair and therefore set » = 0.5. For N = 10 tosses,
the probability distribution function can be seen in Figure 3.1, where the bars corre-
sponding to y < 6 have been shaded. Using Equation 3.1, it is possible to calculate
the probability of winning the game, i.e. the probability that Y is less than or equal

95

96 A First Course in Machine Learning

0.25 ~——————————————

0.2

0.15

p(y)

0.1

0.05¢

0123456789_15

FIGURE 3.1: The binomial density function (Equation 3.1) when N = 10
and 7 = 0.5.

to 6, P(Y < 6):
P(Y<6)=1-P(Y >6) =1—[P(Y =7)+ P(Y =8) + P(Y = 9)
+ P(Y = 10)]
= 1 — [0.1172 4 0.0439 + 0.0098 + 0.0010]
= 0.8281.

This seems like a pretty good game — you’ll double your money with probability
0.8281. It is also possible to compute the expected return from playing the game.
The expected value of a function f(X) of a random variable X is computed as
(introduced in Section 2.2.8):

Ep@) {Ff(X)} =D f(@)P(a),

where the summation is over all possible values that the random variable can take.
Let X be the random variable that takes a value of 1 if we win and a value of 0
if we lose: P(X = 1) = P(Y < 6). If we win (X = 1), we get a return of £2 (our
original stake plus an extra £1) so f(1) = 2. If we lose, we get a return of nothing
so f{0) = 0. Hence our expected return is

FAP(X =1) + f(O)P(X =0) =2 x P(Y <6) +0 x P(Y > 6) = 1.6562.

Given that it costs £1 to play, you win, on avefage, 1.6562 — 1 or approximately
66p per game. If you played 100 times, you’d expect to walk away with a profit of
£65.62.

Given these odds of success, it seems sensible to play. However, whilst waiting you
notice that the stall owner looks reasonably wealthy and very few customers seem to

The Bayesian Approach to Machine Learning 97

be winning. Perhaps the assumptions underlying the calculations are wrong. These
assumptions are:

1. The number of heads can be modelled as a random variable with a binomial
distribution and the probability of a head on any particular toss is 7.

2. The coin is fair — the probability of heads is the same as the probability of
tails - r = 0.5.

It seems hard to reject the binomial distribution — events are taking place with only
two possible outcomes and the tosses do seem to be independent. This leaves r, the
probability that the coin lands heads. Our assumption was that the coin was fair
— the probability of heads was equal to the probability of tails. Maybe this is not
the case? o investigate this, we can treat r as a parameter (like w and o2 in the
previous chapter) and fit it to some data.

3.1.1 Counting heads

There are three people in the queue to play. The first one plays and gets the
following sequence of heads and tails:

H,T,H,H,H,H,H,H,HH,

nine heads and one tail. It is possible to compute the maximum likelihood value of
r as follows. The likelihood is given by the binomial distribution:

P(Y = ylr, N) = (g’) PV~)N, (3.2)

Taking the natural logarithm gives:

L =logP(Y =y|r,N) = log(jg) +ylogr + (N —y)log(l — 7).

0.4 —_——

=
0.35f T

0.3f
0.25f

= 02}
Q

0.1f

0.05¢
ola—s —

FIGURE 3.2: The binomial density function (Equation 3.1) when N = 10
and r = 0.9.

98 A First Course in Machine Learning

As in Chapter 2, we can differentiate this expression, equate to zero and solve for
the maximum likelihood estimate of the parameter:

OL 'y N-y

or r 1—r
y(1-r) = r(N —y)
y=1rN
- Y
r—N.

Substituting y = 9 and N = 10 gives r = 0.9. The corresponding distribution
function is shown in Figure 3.2 and the re-calculated probability of winning is P(Y <
6) = 0.0128. This is much lower than that for r = 5. The expected return is now

2x P(Y < 6)+0 x P(Y > 6) = 0.0256.

Given that it costs £1 to play, we expect to make 0.0256 — 1 = —0.9744 per game —
a loss of approximately 97p. P(Y < 6) = 0.0128 suggests that only about 1 person
in every 100 should win, but this does not seem to be reflected in the number of
people who are winning. Although the evidence from this run of coin tosses suggests
r = 0.9, it seems too biased given that several people have won.

3.1.2 The Bayesian way

The value of r computed in the previous section was based on just 10 tosses.
Given the random nature of the coin toss, if we observed several sequences of tosses
it is likely that we would get a different r each time. Thought about this way, r feels a
bit like a random variable, R. Maybe we can learn something about the distribution
of R rather than try and find a particular value. We saw in the previous section
that obtaining an exact value by counting is heavily influenced by the particular
tosses in the short sequence. No matter how many such sequences we observe there
will always be some uncertainty in r — considering it as a random variable with an
associated distribution will help us measure and understand this uncertainty.

In particular, defining the random variable Yy to be the number of heads ob-
tained in N tosses, we would like the distribution of r conditioned on the value of
Yn:

p(rlyn).
Given this distribution, it would be possible to compute the expected probability of
winning by taking the expectation of P(Y,ew < 6|r) with respect to p(r|yn):

P(Ynew S 6|1/N) = /P()/new S 6|T)p(7“|yN)dT7

where Yew is a random variable describing the number of heads in a future set of 10
tosses.

In Section 2.2.7 we gave a brief introduction to' Bayes’ rule. Bayes’ rule allows us
to reverse the conditioning of two (or more) random variables, e.g. compute p(a|b)
from p(bla). Here we're interested in p(r|y~n), which, if we reverse the conditioning,
is p(yn|r) - the probability distribution function over the number of heads in N
independent tosses where the probability of a head in a single toss is 7. This is the

The Bayesian Approach to Machine Learning 99

0.35 v v . -
sl yn =70, N = 100 |

0.25}f

b‘:O.15-
0.1
{

0.05}

0 0.2 0.4 ?” 0.6 0.8 1

FIGURE 3.3: Examples of the likelihood p(yx|r) as a function of r for two
scenarios.

binomial distribution function that we can easily compute for any yn and r. In our
context, Bayes’ rule is (see also Equation 2.11):

P(yn|r)p(r)
P(yn)

This equation is going to be very important for us in the following chapters so it is
worth spending some time looking at each term in detail.

p(rlyn) = (3.3)

The likelihood, P(ywn|r): We came across likelihood in Chapter 2. Here it has
exactly the same meaning: how likely is it that we would observe our data (in this
case, the data is yn) for a particular value of (our model). For our example, this is
the binomial distribution. This value will be high if r could have feasibly produced
the result yny and low if the result is very unlikely. For example, Figure 3.3 shows
the likelihood P(yn|r) as a function of r for two different scenarios. In the first, the
data consists of 10 tosses (N = 10), of which 6 were heads. In the second, there were
N = 100 tosses, of which 70 were heads.

This plot reveals two important properties of the likelihood. First, it is not a
probability density. If it were, the area under both curves would have to equal 1.
We can see that this is not the case without working out the area because the two
areas are completely different. Second, the two examples differ in how much they
appear to tell us about 7. In the first example, the likelihood has a non-zero value
for a large range of possible r values (approximately 0.2 < r < 0.9). In the second,
this range is greatly reduced (approximately 0.6 < r < 0.8). This is very intuitive:
in the second example, we have much more data (the results of 100 tosses rather
than 10) and so we should know more about r.

The prior distribution, p(r): The prior distribution allows us to express any belief
we have in the value of r before we see any data. To illustrate this, we shall consider
the following three examples:

100 A First Course in Machine Learning

0 0.2 0.4 0.6 OT8 1

"
1

FIGURE 3.4: Examples of prior densities, p(r), for r for three different
scenarios.

1. We do not know anything about tossing coins or the stall owner.
2. We think the coin (and hence the stall owner) is fair.

3. We think the coin (and hence the stall owner) is biased to give more heads
than tails.

We can encode each of these beliefs as different prior distributions. r can take any
value between 0 and 1 and therefore it must be modelled as a continuous random
variable. Figure 3.4 shows three density functions that might be used to encode our
three different prior beliefs.

Belief number 1 is represented as a uniform density between 0 and 1 and as such
shows no preference for any particular r value. Number 2 is given a density function
that is concentrated around r = 0.5, the value we would expect for a fair coin. The
density suggests that we do not expect much variance in r: it’s almost certainly
going to lie between 0.4 and 0.6. Most coins that any of us have tossed agree with
this. Finally, number 3 encapsulates our belief that the coin (and therefore the stall
owner) is biased. This density suggests that » > 0.5 and that there is a high level
of variance. This is fine because our belief is just that the coin is biased: we don’t
really have any idea how biased at this stage.

We will not choose between our three scenarios at this stage as it is interesting
to see the effect these different beliefs will have on p(r|y~).

The three functions shown in Figure 3.4 have not been plucked from thin air.
They are all examples of beta probability density functions (see Section 2.5.2). The
beta density function is used for continuous random variables constrained to lie
between 0 and 1 — perfect for our example. For a random variable R with parameters
a and G it is defined as: '

I'(a) is known as the gamma function (see Section 2.5.2). In Equation 3.4 the gamma

The Bayesian Approach to Machine Learning 101

functions ensure that the density is normalised (that is, it integrates to 1 and is
therefore a probability density function). In particular:

F(a)I'(8) r=1ra—1 gy
L(a+B) /r=0 (1=n) ar,

ensuring that

L@) amny ot g
/T:O F(a)F(ﬁ)r (1) dr = 1.

The two parameters a and (3 control the shape of the resulting density function
and must both be positive. Our three beliefs as plotted in Figure 3.4 correspond to
the following pairs of parameter values:

1. Know nothing: a =1, g =1.
2. Fair coin: a = 50, 8 = 50.
3. Biased: a =5, g =1.

The problem of choosing these values is a big one. For example, why should we
choose a =5, =1 for a biased coin? There is no easy answer to this. We shall see
later that, for the beta distribution, they can be interpreted as a number of previ-
ous, hypothetical coin tosses. For other distributions no such analogy is possible and
we will also introduce the idea that maybe these too should be treated as random
variables. In the mean time, we will assume that these values are sensible and move
on.

The marginal distribution of ynv — P(yn): ‘T'he third quantity in our equation;
P(yn), acts as a normalising constant to ensure that p(r|yn) is a properly defined
density. It is known as the marginal distribution of yn because it is computed by
integrating r out of the joint density p(y~,r):

P(un) = / " plyw.r) dr.

‘T'his joint density can be factorised to give:

r=1
Pew) = [Plunirptr)
which is the product of the prior and likelihood integrated over the range of values
that » may take.

p(yn) is also known as the 18 1 likelihoed as it is the likelihood of the
data, yn, averaged over all parameter values. We shall see in Section 3.4.1 that it
can be a useful quantity in model selection but unfortunately, in all but a small
minority of cases, it is very difficult to calculate.

The posterior distribution — p(r|yn): This po§terior is the distribution in which
we are interested. It is the result of updating our prior belief p(r) in light of new
evidence yn. The shape of the density is interesting — it tells us something about
how much information we have about r after combining what we knew beforehand

102 A First Course in Machine Learning

0 0?2 04 r 0?6 0?8 1

FIGURE 3.5: Examples of three possible posterior distributions p(r|yn).

(the prior) and what we’ve seen (the likelihood). Three hypothetical examples are
provided in Figure 3.5 (these are purely illustrative and do not correspond to the
particular likelihood and prior examples shown in Figures 3.3 and 3.4). (a) is uniform
— combining the likelihood and the prior together has left all values of r equally likely.
(b) suggests that r is most likely to be low but could be high. This might be the
result of starting with a uniform prior and then observing more tails than heads.
Finally (c) suggests the coin is biased to land heads more often. As it is a density,
the posterior tells us not just which values are likely but also provides an indication
of the level of uncertainty we still have in r having observed some data.

As already mentioned, we can use the posterior density to compute expectations.
For example, we could compute

r=

1
E v {P(Yio < 6)} = / P(Yio < 6|r)p(rlyn) dr,

r=0

the expected value of the probability that we will win. This takes into account the
data we have observed, our prior beliefs and the uncertainty that remains. It will be
useful in helping to decide whether or not to play the game. We will return to this
later but first we will look at the kind of posterior densities we obtain in our coin
example.

Comment 3.1 — Conjugate priors: A likelihood-prior pair is said to be

conjugate if it results in a posterior which is of the same form as the prior.
This enables us to compute the

posterior density analytically with- Prior Likelihood
out having to worry about comput- Gaussian Gaussian
ing the denominator in Bayes’ rule, " Beta Binomial
the marginal likelihood. Some com- Gamma | Gaussian
mon conjugate pairs are listed in Dirichlet | Multinomial

the table to the right.

The Bayesian Approach to Machine Learning 103

3.2 The exact posterior

T'he beta distribution is a common choice of prior when the likelihood is a bino-
mial distribution. This is because we can use some algebra to compute the posterior
density exactly. In fact, the beta distribution is known as the €8 € prior to
the binomial likelihood (see Comment 3.1). If the prior and likelihood are conjugate,
the posterior will be of the same form as the prior. Specifically, p(r|yn) will gave a
beta distribution with parameters & and v whose values will be computed from the
prior and yx. The beta and binomial are not the only conjugate pair of distributions
and we will see an example of another conjugate prior and likelihood pair when we
return to the Olympics data later in this chapter.

Using a conjugate prior makes things much easier from a mathematical point of
view. However, as we mentioned in both our discussion on loss functions in Chap-
ter 1 and noise distributions in Chapter 2, it is more important to base our choices
on modelling assumptions than mathematical convenience. In the next chapter we
will see some techniques we can use in the common scenario that the pair is non-
conjugate.

Returning to our example, we can omit p(yn) from Equation 3.3, leaving:

p(rlyn) o< P(yn|r)p(r).

Replacing the terms on the right hand side with a binomial and beta distribution
gives:

p(rlyn) [(;ﬁ)’w(l —r)N_y"’] x [F((Z‘)?(g)) e ~7~)ﬁ—1]. (3.5)

Because the prior and likelihood are conjugate, we know that p(r|yn) has to be a
beta density. The beta density, with parameters § and -, has the following general
form:

p(r) = Kr®7 (1 —)",

where K is a constant. If we can arrange all of the terms including » on the right
hand side of Equation 3.5 into something that looks like 7°~!(1 — 7)Y~ we can be
sure that the constant must also be correct (it has to be I'(6 ++) /(I'(§)I'(«y)) because
we know that the posterior density is a beta density). In other words, we know what
the normalising constant for a beta density is so-we do not need to compute p(yn).
Re-arranging Equation 3.5 gives us:

p(rlyn) o [(ﬁ) I%%%(éﬂl)] X [ry"’r“'l(l —r)N-vv (g _T)B—l]

o TyN+a—l(1 _ T)N—Z’JN+/3'1
o 7'6_1(1 — r)“’*l
where § = yv +aand y = N —yn + 5.
Therefore

[(a+B+N) atyn=-177 _ \B+N-yn
Faront BN sy 77 (3.6)

p(rlyn) =

104 A First Course in Machine Learning

(note that when adding v and 4, the yn terms cancel). This is the posterior density of
7 based on the prior p(r) and the data yn. Notice how the posterior parameters are
computed by adding the number of heads (y,) to the first prior parameter (¢) and
the number of tails (N —yn) to the second (8). This allows us to gain some intuition
about the prior parameters a and (3 — they can be thought of as the number of heads
and tails in a + § previous tosses. For example, consider the second two scenarios
discussed in the previous section. For the fair coin scenario, @« = 8 = 50. This is
equivalent to tossing a coin 100 times and obtaining 50 heads and 50 tails. For the
biased scenario, @ = 5,3 = 1, corresponding to six tosses and five heads. Looking at
Figure 3.4, this helps us explain the differing levels of variability suggested by the
two densities: the fair coin density has much lower variability than the biased one
because it is the result of many more hypothetical tosses. The more tosses, the more
we should know about 7.

The analogy is not perfect. For example, @ and 8 don’t have to be integers and
can be less than 1 (0.3 heads doesn’t make much sense). The analogy also breaks
down when a = 3 = 1. Observing one head and one tail means that values of r = 0
and r = 1 are impossible. However, density 1 in Figure 3.4 suggests that all values
of r are equally likely. Despite these flaws, the analogy will be a useful one to bear
in mind as we progress through our analysis (see Exercises EX 3.1, EX 3.2, EX 3.3
and EX 3.4).

3.3 The three scenarios

We will now investigate the posterior distribution p(r|yn) for the three different
prior scenarios shown in Figure 3.4 — no prior knowledge, a fair coin and a biased
coin.

3.3.1 No prior knowledge

In this scenario (MATLAB script: coin_scenariol.m), we assume that we know
nothing of coin tossing or the stall holder. Our prior parameters are a = 1, 8 = 1,
shown in Figure 3.6(a).

To compare different scenarios we will use the expected value and variance of r
under the prior. The expected value of a random variable from a beta distribution
with parameters a and 3 (the density function of which we will henceforth denote
as B(a, B)) is given as (see Exercise EX 3.5):

p(r) = B(a,f)
E, {R} = —

[

+

5
For scenario 1:

_a 1
a+p3 2

The variance of a beta distributed random variable is given by (see Exercise EX

E, {R} =

The Bayesian Approach to Machine Learning 105

3.6):
. _ ofp
var{R} = CEYOECETED) (3.7)
which fora=(G=11is
var{R} = 1—12

Note that in our formulation of the posterior (Equation 3.6) we are not restricted
to updating our distribution in blocks of 10 — we can incorporate the results of any
number of coin tosses. o illustrate the evolution of the posterior, we will look at
how it changes toss by toss.

A new customer hands over £1 and the stall owner starts tossing the coin.
The first toss results in a head. The posterior distribution after one toss is a beta
distribution with parameters § = a+ynv and vy =8+ N — yn:

p(rlyn) = B(4, 7).
In this scenario, &« = 3 = 1 and as we have had N = 1 tosses and seen yn = 1 heads,

§=1+1=2
y=14+1-1=1.

This posterior distribution is shown as the solid line in Figure 3.6(b) (the prior is
also shown as a dashed line). T'his single observation has had quite a large effect —
the posterior is very different from the prior. In the prior, all values of r were equally
likely. This has now changed — higher values are more likely than lower values with
zero density at r = 0. This is consistent with the evidence - observing one head
makes high values of r slightly more likely and low values slightly less likely. The
density is still very broad as we have only observed one toss. The expected value of
r under the posterior is:
Ep(riyn) {R} = %
and we can see that observing a solitary head has increased the expected value of r
from 1/2 to 2/3. The variance of the posterior is (using Equation 3.7):
R — 1
var{R} = 8

which is lower than the prior variance (1/12). So, the reduction in variance tells
us that we have less uncertainty about the value of r than we did (we have learnt
something) and the increase in expected value tells us that what we’ve learnt is that
heads are slightly more likely than tails.

The stall owner tosses the second coin and it lands tails. We have now seen one
head and one tail and so N = 2, yny = 1, resulting in:

d=1+1=2

The posterior distribution is shown as the solid dark line in Figure 3.6(c). The
lighter dash-dot line is the posterior we saw after one toss and the dashed line is the
prior. The density has changed again to reflect the new evidence. As we have now
observed a tail, the density at r = 1 should be zero and is (r = 1 would suggest that

106 A First Course in Machine Learning

After toss | (H)

3 Prior 3
25 2.5
2 2
— s
E15 = 15
= =
1 Apresmmmmn s .
0.5 0.5
0 0
0 0.2 0.4 r 0.6 08 1 0 0.2 0.4 - 0.6 08 1
(8)a=1,8=1 (b) §=2,v=1
After toss 2 (T) After toss 3 (1)
3 3
2.5 25
— 2 - ~ 2
N .’_,—-’ 5}
w15 L =15 e el
= =
Aol et N 1L ------- A S pR S W .
ost / 7 05
0= 0 h
0 0.2 0.4 - 0.6 0.8 1 0 0.2 0.4 r 06 0.8 1
(c)6=2,7=2 (d) 6 =3,v=2
After toss 1 (H) After toss 10 (H)
3
2.5

p(rlya)

0 0.2 0.4 r 0.6 0.8 1

() 6=4,v=2

FIGURE 3.6: Evolution of p(r|yn) as the number of observed coin tosses
increases.

The Bayesian Approach to Machine Learning 107

the coin always lands heads). The density is now curved rather than straight (as we
have already mentioned, the beta density function is very flexible) and observing a
tail has made lower values more likely. The expected value and variance are now:
1 1
Epriyn) {1} = 5, var{R} = 5.

The expected value has decreased back to 1/2. Given that the expected value under
the prior was also 1/2 you might conclude that we haven’t learnt anything. However,
the variance has decreased again (from 1/18 to 1/20) so we have less uncertainty in
r and have learnt something. In fact, we’ve learnt that r is closer to 1/2 than we
assumed under the prior.

The third toss results in another head. We now have N = 3 tosses, yn = 2 heads
and N — yn = 1 tail. Our updated posterior parameters are:

=oa+tyn=1+2=3
y=p+N-yn=14+3-2=2.

This posterior is plotted in Figure 3.6(d). Once again, the posterior is the solid dark
line, the previous posterior is the solid light line and the dashed line is the prior.
We notice that the effect of observing this second head is to skew the density to
the right, suggesting that heads are more likely than tails. Again, this is entirely
consistent with the evidence — we have seen more heads than tails. We have only
seen three coins, however, so there is still a high level of uncertainty — the density
suggests that r could potentially still be pretty much any value between 0 and 1.
The new expected value and variance are:
Ep(rIyN) {R} = g, var{R} = %

The variance has decreased again, reflecting the decrease in uncertainty that we
would expect as we see more data.

Toss 4 also comes up heads (yny = 3, N = 4), resulting in § = 1+ 3 = 4 and
v =144 -3 = 2. Figure 3.6(e) shows the current and previous posteriors and prior
in the now familiar format. The density has once again been skewed to the right —
we’ve now seen three heads and only one tail so it seems likely that r is greater than
1/2. Also notice the difference between the N = 3 posterior and the N = 4 posterior
for very low values of r — the extra head has left us pretty convinced that r is not
0.1 or lower. The expected value and variance are given by

2 2
Epeyn) {R} = 3, var{R} = 22 = 0.0317,

where the expected value has increased and the variance has once again decreased.
The remaining six tosses are made so that the complete sequence is

Ily,l‘aH)H’Hvar ‘7’1‘7"[‘3H7

a total of six heads and four tails. The posterior distribution after N = 10 tosses
(y~ = 6) has parameters § = 146 =7 and v = 14+ 10— 6 = 5. This (along with the
posterior for N = 9) is shown in Figure 3.6(f). The expected value and variance are

E, iy (R} = % — 0.5833, var{R} = 0.0187. (3.8)

108 A First Course in Machine Learning

0.75 0.06
0.7, 0.05]
. 0.65 f0-04
& —~—
—~ :G
R os > 0.03
0.55 0.02)
05 4 6 8 10 0013 4 6 8 10
Coin tosses Coin tosses
(a) (b)

FIGURE 3.7: Evolution of expected value (a) and variance (b) of r as coin
toss data is added to the posterior.

Our 10 observations have increased the expected value from 0.5 to 0.5833 and de-
creased our variance from 1/12 = 0.0833 to 0.0187. However, this is not the full
story. Examining Figure 3.6(f), we see that we can also be pretty sure that » > 0.2
and r < 0.9. The uncertainty in the value of r is still quite high because we have
only observed 10 tosses.

Figure 3.7 summarises how the expected value and variance change as the 10
observations are included. The expected value jumps around a bit, whereas the
variance steadily decreases as more information becomes available. At the seventh
toss, the variance increases. The first seven tosses are:

H,T,H.HHHT.

The evidence up to and including toss 6 is that heads is much more likely than tails
(5 out of 6). Tails on the seventh toss is therefore slightly unexpected. Figure 3.8
shows the posterior before and after the seventh toss. The arrival of the tail has
forced the density to increase the likelihood of low values of » and in doing so has
increased the uncertainty.

The posterior density encapsulates all of the information we have about r.
Shortly, we will use this to compute the expected probability of winning the game.
Before we do so, we will revisit the idea of using point estimates by extracting a
single value 7 of r from this density. We will then be able to compare the expected
probability of winning with the probability of winning computed from a single value
of r. A sensible choice would be to use E,) {R}. With this value, we can com-
pute the probability of winning — P(Yiew < 6|7). This quantity could be used to
decide whether or not to play. Note that to make the distinction between observed
tosses and future tosses, we will use Y,ew as a random variable that describes 10
future tosses. B

After 10 tosses, the posterior density is beta with parameters § = 7,y = 5. 7 is

therefore:
é 7

T:mzﬁ,'

The Bayesian Approach to Machine Learning

109
After toss 7 (T)
3 . .
25 7 ’ \.‘,\
2 / i
b~ II ‘|
> !
51 5 I,‘ || -‘
& i
I A N O 1
0.5 ;
0 ’l’ 4 1 Y
0] 0.2 0.4 0.6

FIGURE 3.8: The posterior after six (light) and seven (dark) tosses.

T'he probability of winning the game follows as:

10
P()/new < 6|?) =1- Z P(Ynew = ynew|7/'\)
Ynew =7
= 1-0.3414

= 0.6586,
suggesting that we will win more often than lose.

Using all of the posterior information requires computing

Eptriyn) {P(Yoew < 6|7)} .
pression:

Re-arranging and manipulating the expectation provides us with the following ex-
Epriyn) {P(Yhew < 6|7)} = Epriyn) {1 = P(Yoew > 7Ir)}

= 1-Epqriyn) {P(Ynew > 7|7)}

(3.9)
Ynew =10
= 1= Ep(ryn) { Z P(Ynew = ynew|'f‘)}

Ynew=T
Ynew =10

Ynew="7

1- Z EP(TIyN) {P(Ynew = ynew|7')} .

o evaluate this, we need to be able to compute Ep1y 0y {P(Yoew = Ynew|r)}. From

110 A First Course in Machine Learning

the definition of expectations, this is given by:

r=1
Eutrton) (P = teslr)} = [(Voo = tslrp(rlun) dr
T N > Y Nnew— } [F(5+7) §—1 \ —1
— new pYnew (1 _ new ~ Ynew r 1—17r % dr
/r:o [(thew) 77T rore)” 7
Nhew F(5 + ’Y) /T:1 Ynew +5—1 Npew—Ynew+7—1
— new 1 _ new new d . 310
(Ynew) TOT() o | (1=r) r (3.10)

This integral looks a bit daunting. However, on closer inspection the argument inside
the integral is an unnormalised beta density with parameters § + ynew and v+ Noew —
Ynew- In general, for a beta density with parameters a and (3 the following must be

true: r=1p
/—0 %Fr(iﬁ))r"“(l—r)"“dm L
and therefore: o1 I'(a)T'(B)
T a-1yy -1, D@)(B)
/T=0 rt AT = T)

Our desired expectation becomes:

Nnew) F(é + '7) F(é + ynew)F(’)’ + Nnew — ynew)

Eptriyn) {P(Yoew = thewlr)} = (Yoew) T(6)L() L8+ + Noew)

which we can easily compute for a particular posterior (i.e. values of v and §) and
values of Nnew and Ynew.

After 10 tosses, we have § = 7, v = 5. Plugging these values in, we can compute
the expected probability of success: :

Ynew =10

Ep(riyn) {P(Yoew < 6|r)} = 1 - Z Ep(riyn) {P(Yoew = ynew|r)}
Ynew =7
= 1-0.3945
= 0.6055.

Comparing this with the value obtained using the point estimate we can see that
both predict we will win more often than not. This is in agreement with the evidence
— the one person we have fully observed got six heads and four tails and hence won
£2. The point estimate gives a higher probability — ignoring the posterior uncertainty
makes it more likely that we will win.

Another customer plays the game. The sequence of tosses is:

H’HS"I“7"[‘7H7H7H7H’H7HY

eight heads and two tails — the stall owner has won. Combining all 20 tosses that we
have observed, we have N = 20, yv =6+ 8 =14 headsand N —yy =20—-14=6
tails. This gives § = 15 and v = 7. The posterior density is shown in Figure 3.9,
where the light line shows the posterior we had after 10 tosses and the dashed line
the prior. The expected value and variance are:

Ep(riyn) { R} = 0.6818,var{ R} = 0.0094.

The Bayesian Approach to Machine Learning 111

FIGURE 3.9: Posterior distribution after observing 10 tosses (light curve)
and 20 tosses (dark curve). The dashed line corresponds to the prior density.

The expected value has increased and the variance has decreased (c.f. Equation 3.8).
Both behaviours are what we would expect — eight heads and two tails should in-
crease the expected value of r and the increased data should decrease the variance.

We can now recompute Ep-1yy) {P(Yoew < 6]r)} in light of the new evidence.
Plugging in the appropriate values, this is:

Epiriyn) {P(Yoew < 6|7)} = 0.4045.

The new evidence has pushed the density to the right, made high values of r (and
hence the coin landing heads) more likely and reduced the probability of winning.
For completeness, we can also compute P(Ynew < 6|7) = 0.3994.

This corresponds to an expected return of:

2 x 0.4045 — 1 = —-0.1910,

equivalent to a loss of about 20p per go.

In this example we have now touched upon all of the important components
of Bayesian Machine Learning — choosing priors, choosing likelihoods, computing
posteriors and using expectations to make predictions. We will now repeat this
process for the other two prior scenarios.

3.3.2 The fair coin scenario

For the fair coin scenario (MATLAB script: coin_scenario2.m), we assumed
that a = B = 50, which is analogous to assuming that we have already witnessed
100 tosses, half of which resulted in heads. The first thing to notice here is that 100
tosses corresponds to much more data than we are going to observe here (20 tosses).
Should we expect our data to have the same effect as it did in the previous scenario?

Figure 3.10(a) shows the prior density and Figures 3.10(b), 3.10(c), 3.10(d), 3.10(e)
and 3.10(f) show the posterior after 1, 5, 10, 15 and 20 tosses, respectively. For this
scenario, we have not shown the previous posterior at each stage — it is too close to

112 A First Course in Machine Learning

Prior After toss | ()
10 10
8 8
6 26
z s
By = 4
2 2
0 0
0 0.2 0.4 - 0.6 0.8 1 0 0.2 0.4 - 0.6 0.8 1
(a) a =50,8 =50 (b) § =51,y = 50
After toss 5 (1) After toss 10 (H)
10 10
8 8
=6 =N
K >
= S
2, 4 = 4
2 2
GO 0.2 0.8 1 0O 0.2 1
(c) § = 54,v =51 (d) 6 =56,y =54
After toss 15 (H) After toss 20 (H)
10 10
8 8
26 S 6
D &
= =
s 4 = 4
2 2
GO 0.2 08 1 G0 0.2 1
(e) § =59,y =56 (f) 6 = 64,7 =56

FIGURE 3.10: Evolution of the posterior p(r|yy) as more coin tosses are
observed for the fair coin scenario. The dashed line shows the prior density.

The Bayesian Approach to Machine Learning 113

-3

0.56 2‘6)(10

0.55 2.5

0.54 2.4
—A— ——
s

& 053 =23
= g

0.52 2.2

0.51 21

0.5 2

5 10 15 20 5 10 15 20
Coin tosses Coin tosses

(a) (b)

FIGURE 3.11: Evolution of E,(,|y,) {R} (a) and var{R} (b) as the 20 coin
tosses are observed for the fair coin scenario.

the current one. However, in most cases, the change in posterior is so small that the
lines almost lie right on top of one another. In fact, it is only after about 10 tosses
that the posterior has moved significantly from the prior. Recalling our analogy for
the beta prior, this prior includes the evidential equivalent of 100 tosses and so it is
not surprising that adding another 10 makes much difference.

The evolution of E,(,y) {R} and var{R} as the 20 tosses are observed can be
seen in Figure 3.11. We see very little change in either as the data appear compared
to the changes we observed in Figure 3.6. Such small changes are indicative of a
very strong prior density. T'he prior will dominate over the data until we’ve observed
many more tosses - i.e. p(r) dominates p(yn|r) in Equation 3.3. We have created
a model that is stuck in its ways and will require a lot of persuasion to believe
otherwise.

Just as in the previous section, we can work out Ep(ryn) {P(Yhew < 6|7)}. After
all 20 tosses have been observed, we have § = a4+ yv = 50+ 14 = 64 and v =
B+ N —yn =504 20 — 14 = 56. The expectation works out as:

Ep(r|yN) {P(Ynew S 6'7‘)} = 0.7579. (311)

As before, we can also see how much difference there is between this value and
the value obtained using the point estimate 7, P(Ypew < 6|7) (in this case, 7 =
64/(64 + 56) = 0.5333):

P(Ynew < 6|7) = 0.7680.

Both quantities predict that we will win more often than not. In light of what we’ve
seen about the posterior, this should come as no surprise. The data has done little
to overcome the prior assumption that the coin is fair and we already know that if
the coin is fair, we will tend to win (a fair coin will result in us winning, on average,
66p per game — see the start of Section 3.1).

As an aside, consider how accurate our approximation P(Ynew < 6|7) is to the
proper expectation in this scenario and the previous one. In the previous one, the
difference between the two values was

1Ep(riyn) {P(Yoew < 6]7)} — P(Ynew < 6]7)| = 0.0531.

114 A First Course in Machine Learning

In this example, the values are closer:
|Eperiyn) {P(Yoew < 6|r)} — P(Yhew < 6[7)| = 0.0101.

There is a good reason why this is the case — as the variance in the posterior decreases
(the variance in scenario 2 is much lower than in scenario 1), the probability density
becomes more and more condensed around one particular point. Imagine the variance
decreasing to such an extent that there was a single value of r that had probability
1 of occurring with p(r|yn) being zero everywhere else. The expectation we are
calculating is:

r=1
Epriyn) {P(Yoew < 61} = / P(Yaew < 6r)p(rlyn) dr.
r=0

If p(r|lyn) is zero everywhere except at one specific value, say 7, this becomes
Byt iy {P(Yoew < 617)} = P(Yoew < 6[7).

In other words, as the variance decreases, P(Ypew < 6|7) becomes a better and
better approximation to the true expectation. This is not specific to this example —
as the quantity of data increases (and uncertainty about parameters subsequently
decreases), point approximations become more reliable.

3.3.3 A biased coin

In the final scenario we assume that the coin (and therefore the stall owner)
is biased to generate more heads than tails (MATLAB script: coin_scenario3.m).
This is encoded through a beta prior with parameters a = 5, 8 = 1. The expected
value is:

Eyq {r} =5/6,
five coins out of every six will come up heads. Just as for scenario 2, Figure 3.12(a)
shows the prior density and Figures 3.12(b), 3.12(c), 3.12(d), 3.12(e) and 3.12(f)
show the posterior after 1, 5, 10, 15 and 20 tosses, respectively. Given what we’ve
already seen, there is nothing unusual here. The posterior moves quite rapidly away
from the prior (the prior effectively has only the influence of a + 8 = 6 data points).
Figure 3.13 shows the evolution of expected value and variance. The variance curve
has several bumps corresponding to tosses resulting in tails. This is because of the
strong prior bias towards a high r value. We don’t expect to see many tails under
this assumption and so when we do, the model becomes less certain. Once again, we
calculate the true quantity of interest, Ep(ryy) {P(Ynew < 6|7)}. The final posterior
parameter valuesare = a+yn'=5+14=19,y=1+N—-yn =1+20—-14=17.
Plugging these in,
Epiriyn) {P(Ynew < 6|7)} = 0.2915.

The approximation, noting that 7 = 19/(19 + 7) = 0.7308 is
P(Yoew < 6|F) = 0.2707.

Both values suggest we will lose money on average.

The Bayesian Approach to Machine Learning 115

Prior - . After toss 1 (H)
5 8
4
6
3 =
= =4
2 Q
] 2
%oz oa r 06 08 1 % o2
(a) a=5p08=1 (byé=6,y=1
After toss 5 (H) After toss 10 (H)
5 5
4 4
23 23
=)
= [
a2 =2
1 1
% 0.2 % 02 04 06 08 1
()6=9,v=2 (d) §=11,v=5
After toss 15 (H) After toss 20 (H)
5 : 5
4 ' 4
23 ‘g3
> >
= =
=2 =2
1 1
' 0
% 02 04 06 08 1 : 0

(e) d=14,v=7

FIGURE 3.12: Evolution of the posterior p(r|yn) as more coin tosses are
observed for the biased coin scenario. The dashed line shows the prior density
and in the last four plots, the dash-dot line shows the previous posterior (i.e.
the posterior after 4, 9, 14 and 19 tosses).

116 A First Course in Machine Learning

0.9 0.022
0.02
0.85 0018
0.016
—. 08} —
[+ s
- +0.014
m o
0.75 > 0.012)
0.01
0.7
0.008
065 5 10 15 20 0.006 5 10 15 20
Coin tosses Coin tosses

(a) (b)

FIGURE 3.13: Evolution of E,(;|,,) {R} (a) and var{R} (b) as the 20 coin
tosses are observed for the biased coin scenario.

3.3.4 The three scenarios — a summary

Our three different scenarios have given us different values for the expected
probability of winning:

1. No prior knowledge: Ep(ryn) {P(Yoew < 6|7)} = 0.4045
2. Fair coin: Ep(rjyn) {P(Ynew < 6|7)} = 0.7579
3. Biased coin: Ep(riyy) {P(Yeew < 6]r)} = 0.2915.

Which one should we choose? We could choose based on which of the prior beliefs
seems most plausible. Given that the stall holder doesn’t look like he is about to
go out of business, scenario 3 might be sensible. We might decide that we really
do not know anything about the stall holder and coin and look to scenario 1. We
might believe that an upstanding stall holder would never stoop to cheating and
go for scenario 2. It is possible to justify any of them. What we have seen is that
the Bayesian technique allows you to combine the data observed (20 coin tosses)
with some prior knowledge (one of the scenarios) in a principled way. The posterior
density explicitly models the uncertainty that remains in 7 at each stage and can be
used to make predictions (see Exercise EX 3.7 and EX 3.8).

3.3.5 Adding more data

Before we move on, it is worth examining the effect of adding more and more
data. We have seen in each of our scenarios that the addition of more data results in
the posterior diverging from the prior — usually through a decrease in variance. In
fact, if we continue adding more data, we will find that the posteriors for all three
scenarios start to look very similar. In Figure 3.14 we see the posteriors for the three
scenarios after 100 and 1000 tosses. Compared with the posteriors for the three sce-
narios after small numbers of tosses have been observed (Figures 3.6(f), 3.10(d) and
3.12(d)) we notice that the posteriors are becoming more and more similar. This is
particularly noticeable for scenarios 1 and 3 — by 1000 tosses they are indistinguish-
able. The difference between these two and the posteriors for scenario 2 is due to the

The Bayesian Approach to Machine Learning 117

12 30
10 ' 25
a . a Scenario 2—— Scenario 3
~ 8 Scenario 3] * 20
3 Scenario 2—— 3
§ 6 § 15 Scenario 1
E Scenario 1 >
E 4 =10
& S
2 5
K 8
0 07‘«5 1 .6 0.65 07;7 0.75 0.8
(a) The three posteriors after 100 tosses (b) The three posteriors after 1000 tosses

FIGURE 3.14: The posterior densities for the three scenarios after 100 coin
tosses (left) and 1000 coin tosses (right).

high strength (low variance) of the prior for scenario 2 — the prior corresponds to a
very strong belief and it will take a lot of contradictory data to remove that influence.

The diminishing effect of the prior as the quantity of data increases is easily
explained if we look at the expression used to compute the posterior. Ignoring the
normalising marginal likelihood term, the posterior is proportional to the likelihood
multiplied by the prior. As we add more data, the prior is unchanged but the like-
lihood becomes a product (if the normal independence assumptions are made) of
individual likelihood for more and more observations. This increase will gradually
swamp the single contribution from the prior. It is also very intuitive — as we observe
more and more data, beliefs we had before seeing any become less and less important.

3.4 Marginal likelihoods

Fortunately, subjective beliefs are not the only option for determining which
of our three scenarios is best. Earlier in this chapter, when discussing the terms
in Equation 3.3, we showed how the denominator p(yn) could be considered to be
related to r as follows:

p(yn) /T= p(r,yn) dr

Il

/r= p(yn|r)p(r) dr. (3.12)

Now when considering different choices of p(r), we need to be more strict about our
conditioning. p(r) should actually be written as p(r|a, 3) as the density is condi-
tioned on a particular pair of & and 8 values. Extending this conditioning through

118 A First Course in Machine Learning

Equation 3.12 gives

r=1

plunla)= [plunlriprio. 0) dr. (3.13)

The marginal likelihood (so called because r has been marginalised), p(yn|a, 8), is a

very useful and important quantity. It tells us how likely the data (yn) is given our

choice of prior parameters o and 3. The higher p(y~|a, 3), the better our evidence

agrees with the prior specification. Hence, for our dataset, we could use p(yn|a, §)

to help choose the best scenario: select the scenario for which p(yn|a, 8) is highest.
To compute this quantity, we need to evaluate the following integral:

r=1

p(ynla, B) = / p(yn|r)p(r|a, B) dr

L) o
= (o) TG [, ot

This is of exactly the same form as Equation 3.10. The argument inside the integral
is an unnormalised beta density and so we know that by integrating it we will get
the inverse of the normal beta normalising constant. Therefore,

_(N\ TI(a+pB) T'(a+yn)I'(B+ N —yn)
plynle, B) = (yN) T()T(B) T(a+ 3+ N) '

In our example, N = 20 and yn = 14 (there were a total of 14 heads in the 2 sets of
10 tosses). We have three different possible pairs of a and 3 values. Plugging these
values into Equation 3.14 gives

1. No prior knowledge, a = 8 = 1, p(yn|a, B) = 0.0476.
2. Fair coin, @ = 8 = 50, p(yn|a, §) = 0.0441.
3. Biased coin, a = 5,8 = 1, p(y~n|a, 3) = 0.0576.

The prior corresponding to the biased coin has the highest marginal likelihood and
the fair coin prior has the lowest. In the previous section we saw that the probability
of winning under that scenario was B¢y v .a.8) {P(Yaew < 6|7)} = 0.2915 (note that
we're now conditioning the posterior on the prior parameters — p(r|yn, a, 3)).

A word of caution is required here. Choosing priors in this way is essentially
choosing the prior that best agrees with the data. The prior no longer corresponds
to our beliefs before we observe any data. In some applications this may be unac-
ceptable. What it does give us is a single value that tells us how much the data
backs up the prior beliefs. In the above example, the data suggests that the biased
coin prior is best supported by the evidence.

(3.14)

3.4.1 Model comparison with the marginal likelihood

It is possible to extend the prior comparison in the previous section to using the
marginal likelihood to optimise o and 3. Assuming that « and 8 can take any value
in the following ranges:

0< a <50

0< B <30,

The Bayesian Approach to Machine Learning 119

50
as}
401
35(
30f
25}
20
15}

10k

FIGURE 3.15: Marginal likelihood contours (as a function of the prior pa-
rameters, o and (3) for the coin example. Circle towards the top right shows
the optimum.

we can search for the values of a and § that maximise p(yn~|a, 3).

Figure 3.15 shows the marginal likelihood as a and 3 are varied in their respective
ranges. The optimum value is a = 50, 8 = 22, resulting in a marginal likelihood of
0.1694. Choosing parameters in this way is known as Type II Maximum Likelihood
(to distinguish it from standard (i.e. T'ype I) Maximum Likelihood introduced in
Chapter 2).

3.5 Hyper-parameters

The Bayesian analysis presented thus far has all been based on the idea that we
can represent any quantities of interest as random variables (e.g. r, the probability
of a coin landing heads). 7 is not the only parameter of interest in our example. «
and [are also parameters — could we do the same thing with them? In some cases
we can be directed towards particular values based on our knowledge of the problem
(we might know that the coin is biased). Often we will not know the exact value that
they should take and should therefore treat them as random variables. To do so, we
need to define a prior density over all random variables — p(r, a, 3). This factorises
as (see Section 2.2.5):

p(r, o, B) = p(r|a, B)p(a, B).

In addition, it will often be useful to assume that « and 3 are independent: p(a, 3) =
p(a)p(B). The quantity in which we are interested is the posterior over all parameters
in the model:

p(r, o, Blyn)-

120 A First Course in Machine Learning

Applying Bayes’ rule, we have

p(yn|r, o, B)p(r, @, B)
p(yn)

_ pyn|r)p(r, o, B)
p(yn)

_ plyn|r)p(ria, B)p(e, B)

p(yn)

p(’f', «, 18|yN) =

Note that in the second step, we removed a and 3 from the likelihood p(yn|r). This
is another example of conditional independence (see Section 2.7.1). The distribution
over yn depends on a and 8 but only through their influence on r. Conditioned on
a particular value of r, this dependence is broken.

p(a, B) will normally require some additional parameters — i.e. p(a, 3|x), where
K controls the den31ty in the same way that a and B control the density for r. k is
known as a hy because it is a parameter controlling the prior on
the parameters controllmg the prior on r. When computing the marginal likelihood,
we integrate over all random variables and are just left with the data conditioned
on the hyper-parameters:

punl) = [[[plnirintria, Bp(a piw) dr dac dp.

Unfortunately, adding this extra complexity to the model often means that com-
putation of the quantities of interest — the posterior p(r, «, Blyn, k) (and any predic-
tive expectations) and the marginal likelihood p(yn|k) — is analytically intractable
and requires one of the approximation methods that we will introduce in Chapter 4.

At this point, one could imagine indefinitely adding layers to the model. For
example, K could be thought of as a random variable that comes from a density
parameterised by other random variables. The number of levels in the hierarchy
(how far we go before we fix one or more parameters) will be dictated by the data
we are trying to model (perhaps we can specify exact values at some level) or how
much computation we can tolerate. In general, the more layers we add the more
complex it will be to compute posteriors and predictions.

3.6 Graphical models

When adding extra layers to our model (hyper-parameters, etc.) they can qu1ckly
become unwieldy. It is popular to describe them graphically. A & e
a network where nodes correspond to random variables and edges to dependenmes
between random variables. For example, in Section 2.2.4 we introduced various prop-
erties of random variables through a model that consisted of two random variables —
one representing the toss of a coin (X') and one representing how I say the coin landed
(Y). The model is defined through the conditional distribution P(Y = y|X = z) and
is represented graphically in Figure 3.16(a). The two nodes are joined by an arrow to
show that Y is defined as being conditioned on X. Note also that the node for Y is

The Bayesian Approach to Machine Learning 121

(a) (b) (c)

FIGURE 3.16: Graphical model examples. Nodes correspond to random
variables with the shaded nodes corresponding to things that we observe.
Arrows describe the dependencies between variables and the plates describe
multiple instances. For example, in (b), there are N random variables Y;, (n =
1,...,N) and each is dependent on a random variable X,,. (c) is a graphical
representation of the model used in the coin example with the addition of a
prior on o and (3 parameterised by k.

shaded. This is because, as far as the listener is concerned, this variable is observed.
The listener does not see the coin actually landing and so doesn’t observe X. Imag-
ine that the procedure was repeated N times; we now have 2N random variables,
Xi,...,Xny and Yi,...,Yn. Drawing all of these would be messy. Instead we can
embed the nodes within a plate. Plates are rectangles that tell us that whatever is
embedded within them is repeated a number of times. The number of times is given
in the bottom right corner, as shown in Figure 3.16(b).

Figure 3.16(c) shows a graphical representation of our coin toss model. It has a
single (observed) random variable that represents the number of heads in N tosses,
yn~. This is conditioned on a random variable R which depends on random variables
o and (. Finally, @ and are dependent on the hyper-parameter «.

More information on graphical models can be found in the suggested reading at
the end of the chapter.

3.6.1 Summary

In the previous sections we have introduced many new concepts. Perhaps the
most important is the idea of treating all quantities of interest as random variables.
"I'o do this we must define a prior distribution over the possible values of these quan-
tities and then use Bayes’ rule (Equation 3.3) to see how the density changes as
we incorporate evidence from observed data. T'he resulting posterior density can be
examined and used to compute interesting expectations. In addition, we have shown

122 A First Course in Machine Learning

how the marginal likelihood (the normalisation constant in Bayes’ rule) can be used
to compare different models — for example, choosing the most likely prior in our
coin tossing example — and discussed the possible pitfalls and objections to such
an approach. Finally we have shown how the Bayesian method can be extended by
treating parameters that define the priors over other parameters as random vari-
ables. Additions to the hierarchy such as this often make analytical computations
intractable and we have to resort to sampling and approximation based techniques,
which are the subject of the next chapter.

3.7 A Bayesian treatment of the Olympics 100 m data

We now return to the Olympics 100 m data. In the previous chapters we have
fitted a linear (in the parameters) model by minimising the squared loss and then
incorporated an explicit noise model and found optimal parameter values by max-
imising the likelihood. In this section, we will give the data a Bayesian treatment
with the aim of making a prediction for the 2012 Olympics in London. This will
involve several steps. First, we will need to define the prior and likelihood (as we
did in the coin example) and use these to compute the posterior density over the
parameters of our model, just as we computed the posterior over r in the coin ex-
ample. Once we’ve computed the posterior, we can use it to make predictions for
new Olympics years.

3.7.1 The model

We will use the kth order polynomial model that was introduced in Chapter 1
with the Gaussian noise model introduced in Chapter 2:

tn = Wo + Wi1Tn 4+ WoTs + -+ + WKTE + €n,
where ¢, ~ N(0,02). In vector form, this corresponds to

T
th =W Xn + €n

where w = [wo, ..., wk]" and X, = [1,zn,22,...,2X]". Stacking all of the responses
into one vector t = [t1,...,tn]" and all of the inputs into a single matrix, X =
[x1,X%2,..., xN]T (just as in Equation 1.18), we get the following expression for the

whole dataset:
t =Xw+e,

where € = [e1,...,en]".

In this example, we are going to slightly simplify matters by assuming that we
know the true value of o2. We could use all of the methods introduced in this chapter
to treat o® as a random variable and we could get analytical results for the posterior
distribution but the maths is messier which could detract from the main message.

The. Bayesian Approach to Machine Learning 123

N

FIGURE 3.17: Graphical model for the Bayesian model of the Olympics
men’s 100 m data.

Substituting these various symbols into Bayes’ rule gives:
p(t|w,X,0°, A)p(w|A)
p(t|X,02,A)
p(tlw, X, 0%)p(w|A)

p(t|X,02,A)

p(wlt,X,0%,A) =

where A corresponds to some set of parameters required to define the prior over
w that will be defined more precisely below. The graphical model can be seen in
Figure 3.17. Expanding the marginal likelihood:

p(t|w, X, 0%)p(w|A)

t,X,0%,A) = '
POVIE 0% B) = o i, X, 02)p(wIA) dw

(3.15)

We are interested in making predictions which will involve taking an expectation
with respect to this posterior density. In particular, for a set of attributes Xnew
corresponding to a new Olympics year, the density over the associated winning time
tnew iS given by:

D(tnew|Xnew, X, t,06%,A) = / p(tnew|xne;,,w,¢2)p(w|t, X,0%,A) dw. (3.16)

Notice again the conditioning on the right hand side. The posterior density of w
does not depend on wge, and so it does not appear in the conditioning. Similarly,
when we make predictions, we will not be using A and so it doesn’t appear in
P(tnew|Xnew, W, 0%). Predictions could also take the form of probabilities. For example,
we could compute the probability that the winning time will be under 9.5 seconds:

Ptnew < 9'5fxneW>X7t,Uz’A) = /P(t"‘?W <95]xnm’w’dz)p(w]t,x,a?‘, A) dW

124 A First Course in Machine Learning
3.7.2 The likelihood

The likelihood p(t|w, X, 0?) is exactly the quantity that we maximised in the
previous chapter. Our model tells us that

t=Xw+e

where € ~ N/(0,0°Iy). This is a Gaussian random variable (€) plus a constant. We
showed in Section 2.7 that this is equivalent to the Gaussian random variable with
the constant added to the mean. This gives us our likelihood:

p(tlw, X, 0?) = N(Xw,d’In),

an N-dimensional Gaussian density with mean Xw and variance o2Iy. The analo-
gous expression in the coin example is the binomial likelihood given in Equation 3.2.

3.7.3 The prior

Because we are interested in being able to produce an exact expression for our
posterior, we need to choose a prior, p(w|A), that is conjugate to the Gaussian
likelihood. Conveniently, a Gaussian prior is conjugate to a Gaussian likelihood.
T'herefore, we will use a Gaussian prior for w. In particular,

p(wlﬂ'()’ 20) = N("”Ov EO)’

where we will choose the parameters o and Xo later. This is analogous to Equa-
tion 3.4 in the coin example. From now on we will not always explicitly condition on
1o and T in our expressions, i.e. for brevity, instead of writing p(w|t, X, o2, po, o)
we will use p(w|t, X,0?) (see Exercise EX 3.10).

3.7.4 The posterior

We now turn our attention to computing the posterior. As in the coin example,
we will use the fact that we know that the posterior will be Gaussian. This allows us
to ignore the marginal likelihood in Equation 3.15 and just manipulate the likelihood
and prior until we find something that is proportional to a Gaussian. As a first step,
we can collect the terms in w together and ignore any term that does not include
w:

p(wlt,X,0?) o p(tlw, X, 0?)p(w|po, Zo)

- WW exp (—%(t = Xw) " (o’1) " (t — Xw))

gy 0 (5 (% — 50 "S5 (w = o))
o exp (= 5t~ X" (¢ = X)) (5 (w = o) "5 (= o))

= e {3 (S50 - Xw) (6= Xw) + (w - o) 35 - uo)) |

The . Bayesian Approach to Machine Learning 125

Multiplying the terms in the bracket out and once again removing any that don’t
involve w gives:

1 _
p(w]t, X,UQ)O(exp{——;- (— %tTXw + ?wTXTXw + WTEO 'w— QMgE(?lw)}.
(3.18)

We know that the posterior will be Gaussian. Therefore we can remove the constants
(i.e. terms not involving w) and re-arrange an expression for a multivariate Gaussian
to make it look something like the expression we have above:

p(w[t, X, 02) = N(ptw, Zw)
1 Ts—1
X exp —ﬁ(w —pw) X (W — pw)
1 - -
x exp {—5 (wT2w1w — Q[LI,,Ewlw)}) (3.19)
The linear and quadratic terms in w Equation 3.18 must be equal to those in Equa-

tion 3.19. Taking the quadratic terms, we can solve for 3.:

1

T Ty T Tg—1
w'E) w —w X' Xw+w B, 'w
o

Il

=w' (iszx 4 25‘) w
ag

o gl R
B = (X% 453"

Similarly, equating the linear terms from Equations 3.18 and 3.19 (and using our
new expression for 3,) we can get an expression for fiy:

—2uL e tw = —-%tTXw - 2335w

pwZa'w

1 _
;tTXw + ugzo 'w
pLEL = X 4 iz
o
_ 1 _
I"’IVEWIEW = (;itTX_I'“gEO 1) Xw
1 -
g
it = Sl g e Dl | L e

because 1 = T, due to the fact that is must be symmetric. Therefore,

p(W|t,X,O‘2j :N(MW9 2:w), (321)

126 A First Course in Machine Learning

1 —
11.5
.
1{fee
“ oo o o
.
10.5¢ .
.
(X} . °
.
10} . ‘e .
. .o...
.
9'50 5 10 15 20 25 30

FIGURE 3.18: Olympics data with rescaled x values.

where
1 o1 !
-1 .
1 -

(see Exercise EX 3.12), These expressions do not look too far away from things
we have seen before. In particular, compare Equation 3.23 with the regularised least
squares solution given in Equation 1.21. In fact, if 1o = [0,0,...,0]", the expressions
are almost identical. Given that the posterior is a Gaussian, the single most likely
of w is the mean of the posterior, pw. This is known as the BiARIHIUN
: i (MAP) estimate of w and can also be thought of as the maximum
val e of the joint density p(w,t|X, 0%, A) (the likelihood multiplied by the prior).
We have already seen that the squared loss considered in Chapter 1 is very similar
to a Gaussian likelihood and it follows from this that computing the most likely
posterior value (when the likelihood is Gaussian) is equivalent to using regularised
least squares (see Exercise EX 3.9). This comparison can often help to provide
intuition regarding the effect of the prior.

3.7.5 A first-order polynomial

We will illustrate the prior and posterior with a 1st order polynomial as it is
possible to visualise densities in the two-dimensional parameter space. The input
vectors also have two elements, x, = [1, »]". To aid visualisation, we will rescale
the Olympics year by subtracting the year of the first Olympics (1896) from each
year and then dividing each number by 4. This means that z, is now 0, 72 is 1, etc.
The data with this new x scaling is plotted in Figure 3.18.

Returning to the fairground, the first step in our analysis is the choice of prior
parameters pto and Xg. For pg, we will assume that we don’t really know anything
about what the parameters should be and choose po = [0,0]". For the covariance

The. Bayesian Approach to Machine Learning 127

6
4
2
-2
-4
-6 q
=20 -10 0 10 20) 5 10 15 20 25 30
K/ x
(a) Prior density (b) Functions created from parameters

drawn from the prior

FIGURE 3.19: Gaussian prior used for the Olympics 100 m data (a) and
some functions created with samples drawn from the prior (b).

we will use the following:

0 5

T'he larger value for the variance of wo is due to the fact that we saw in the maximum
likelihood estimate that the optimal value of wo was much higher than that for w;.
We have also assumed that the two variables are independent in the prior by setting
the off-diagonal elements in the covariance matrix to zero. This does not preclude
them from being dependent in the posterior. The contours of this prior density can
be seen in Figure 3.19(a). It’s hard to visualise what this means in terms of the
model. To help, in Figure 3.19(b) we have shown functions corresponding to several
sets of parameters drawn from this prior. T'o create these, we sampled w from the
Gaussian defined by po and ¥ and then substituted these into our linear model —
t, = wo + wiZn. The examples show that the prior admits the possibility of many
very different models.

Using 0% = 10 for illustrative purposes (MAT'LAB script: olympbayes .m), we can
now compute the posterior distribution when we observe one data point. Using the
data point corresponding to the first Olympics, our data is summarised as x = [1,0]",
X = [1,0], t = [12]. Plugging these values along with our prior parameters and
% = 10 into Equations 3.21-3.23, we obtain the posterior distribution shown in
Figure 3.20(a). The posterior now has much more certainty regarding wo but still
knows very little about w;. This makes sense — we’ve provided a data point at ¢ = 0
so this should be highly informative in determining the intercept but tells us very
little about the gradient (one data point alone could never tell us much about the
gradient). Some functions created with samples from this posterior are shown in
Figure 3.20(b). They look quite different from those from the prior — in particular,
they all pass quite close to our first data point.

Figures 3.20(c), 3.20(d) and 3.20(e) show the evolution of the posterior after
2, 5 and 10 data points, respectively. Just as in the coin example, we notice that
the posterior becomes more condensed (we are becoming more certain about the
value of w). Also, as it evolves, the posterior begins to tilt. This is indicative of a

o = [100 0]

128 A First Course in Machine Learning

(a) Posterior density (dark contours) af-
ter the first data point has been observed.
The lighter contours show the prior den-
sity

[o>]

20 -10 0 10 20
wo

(c) Posterior density (dark contours) af-

ter the first two data points have been

observed. The lighter contours show the

prior density

n
&

s

e,

-1

15 20

(e) Posterior density (dark contours) af-
ter the first 10 data points have been
observed. The lighter contours show the
prior density. (Note that we have zoomed
in)

10 15 20 25 ‘30
x

(b) Functions created from parameters
drawn from the posterior after observing
the first data point

=]

20 -10 0 10 20
won

(d) Posterior density (dark contours) af-

ter the first five data points have been

observed. The lighter contours show the

prior density

(f) Functions created from parameters
drawn from the posterior after observing
the first 10 data points (these data points
are highlighted)

FIGURE 3.20: Evolution of the posterior density and example functions
drawn from the posterior for the Olympics data after increasing numbers of

observations have been added.

The . Bayesian Approach to Machine Learning 129

0.5
| mx
|
—) R \QQ' [2)
=1 B \\'&%i’/
i i 10 S e ¥ina
i H .
i | =
-
9%
-05 i o \
8 () 5 10 15 20 25 30
z
(a) Posterior density (dark contours) af- (b) Functions created from parameters
ter all data points have been observed. drawn from the posterior after observing
The lighter contours show the prior den- all data points

sity. (Note that we have zoomed in)

FIGURE 3.21: Posterior density (a) and sampled functions (b) for the
Olympics data when all 27 data points have been added.

dependence developing between the two parameters — if we increase the intercept
wo we must decrease the gradient. Recall that in the prior we assumed that the two
parameters were independent (3¢ only had non-zero values on the diagonal) so this
dependence is coming entirely from the evidence within the data. To help visualise
what the posterior means at this stage, Figure 3.20(f) shows a set of functions made
from parameters drawn from the posterior. When compared with Figure 3.20(b) we
see that the posterior density is beginning to favour parameters that correspond to
models suited to our data. Finally, in Figure 3.21(a) we see the posterior after all
27 data points have been included and in Figure 3.21(b) we see functions drawn
from this posterior. The functions are really now beginning to follow the trend in
our data. There is still a lot of variability however. This is due to the relatively
high value of 02 = 10 that we chose to help visualise the prior and posteriors. For
making predictions, we might want to use a more realistic value. In Figure 3.22(a)
we show the posterior after all data has been observed for o = 0.05 (this is roughly
the maximum likelihood value we obtained in Section 2.7.2). The posterior is now
far more condensed - very little variability remains in w, as can be seen by the
homogeneity of the set of functions drawn in Figure 3.22(b). We will now turn our
attention to making predictions.

3.7.6 Making predictions

Given a new observation Xpew, we are interested in the density:
2
P(tnew|Xnew, X, t,07).

Notice that this is not conditioned on w - just as in the coin example, we are
going to integrate out w by taking an expectation with respect to the posterior,

130 . A First Course in Machine Learning

-0.03,

-0.04

-0.05]

wy

-0.06]

0905 T 15
o

(a) Posterior density (dark contours) af-

ter all have been observed. The lighter

contours show the prior density. (Note

0 5 10 15 20 25 30

(b) Functions created from parameters
drawn from the posterior after observing
all data points

that we have zoomed in)

FIGURE 3.22: Posterior density (a) and sampled functions (b) for the
Olympics data when all 27 data points have been added with more realis-
tic noise variance, o2 = 0.05.

p(w|t, X, 0?). In particular, we need to compute:
p(tnewlanW7 X, t, 02) = Ep(w|t,x,02) {p(tnew|xnew» w, 02)}

/p(tnew|xnew, w, 0'2)p(W|t, X, 0’2) dw.

This is analogous to Equation 3.9 in the coin example.
P(toew|Xnew, W, %) is defined by our model as the product of Xnew and w with
some additive Gaussian noise:

p(tnewlxnew, w, 0'2) = N(XnTeWW, 0’2).

Because this expression and the posterior are both Gaussian, the result of the expec-
tation is another Gaussian. In general, if p(w|p,) = N (u, X), then the expectation
of another Gaussian density (N (XjewW,o?) is given by:

p(tnew|xneWa X, t, 02) = N(XIewHw, o® + anewzwxnew)~
For the posterior shown in Figure 3.22(a), this is:
Ptnew|Xnew, X, t,02) = N(9.5951,0.0572)

and is plotted in Figure 3.23.

This density looks rather like the predictive densities we obtained from the max-
imum likelihood solution in Chapter 2. However, there is one crucial difference. With
the maximum likelihood we chose one particular model: the one corresponding to the
highest likelihood. T'o generate the density shown in Figure 3.23, we have averaged
over all models that are consistent with our data and prior (we averaged over our
posterior). Hence this density takes into account all uncertainty that remains in w
given a particular prior and the data.

The Bayesian Approach to Machine Learning 131

2

1.5

)

p<tnew‘3$1ew,.

0.5f

85 9 95 10 10.5

tn(‘,w

FIGURE 3.23: Predictive distribution for the winning time in the men’s
100 m sprint at the 2012 London Olympics.

3.8 Marginal likelihood for polynomial model order
selection

In Section 1.5 we used a cross-validation procedure to select the order of polyno-
mial to be used. The cross-validation procedure correctly identified that the dataset
was generated from a 3rd order polynomial. In Section 3.4 we saw how the marginal
likelihood could be used to choose prior densities. We will now see that it can also
be used to choose models. In particular we will use it to determine which order
polynomial function to use for some synthetic data.

The marginal likelihood for our Gaussian model is defined as:

p(tX, pro, o) = / p(tX, W, 0?)p(w]pso, o) dw.

This is analogous to Equation 3.14 in the coin example. It is of the same form as
the predictive density discussed in the previous section and is another Gaussian,

p(t|X, po, Bo) = N (Xpo, 0 Iy + XX '), (3.24)

which we evaluate at t — the responses in the training set. Just as in Section 1.5,
we will generate data from a noisy 3rd order polynomial and then compute the
marginal likelihood for models from 1st to 7th order. For each possible model, we
will use a Gaussian prior on w with zero mean and an identity covariance matrix.
For example, for the 1st order model

10
o = 10,07, %= [1|

132 A First Course in Machine Learning

19X 10
800 1
°
600) g
£08
400 ;E
200 3 06
« 0 5
< 0.4
—200 =
—400]| 0.2
-600,
0 —
_3005 5 s 1 2 3 4 5 [7
- T Polynomial order
(a) Noisy data from a 3rd order polyno- (b) Marginal likelihood for models of dif-
mial ferent order

FIGURE 3.24: Dataset sampled from the function t = 522 — z? 4z (a) and
marginal likelihoods for polynomials of increasing order (b).

and for the 4th order model

10000
01000
po = [0,0,0,0,0]", To=[00100
00010
00001

The data and true polynomial are shown in Figure 3.24(a) (MATLAB script:
margpoly.m). The true polynomial is ¢ = 52 — 2 + x and Gaussian noise has been
added with mean zero and variance 150. The marginal likelihood for models from 1st
to 7th order is calculated by plugging the relevant prior into Equation 3.24 and then
evaluating this density at t, the observed responses. The values are shown in Fig-
ure 3.24(b). We can see that the marginal likelihood value is very sharply peaked at
the true (3rd) model order. The advantage of this over the cross-validation method
is that, for this model, it is computationally undemanding (we don’t have to fit sev-
eral different datasets). We can also use all the data. However, as we have already
mentioned, calculating the marginal likelihood is, in general, very difficult and we
will often find it easier to resort to cross-validation techniques.

The marginal likelihood is conditioned on the prior parameters and so changing
them will have an effect on the marginal likelihood values and possibly the highest
scoring model. To show the effect of this, we can define ¥y = o2l and vary o2.
We have already seen the result for 0§ = 1. If we decrease o2, we see higher order
models performing better. This can be seen in Figure 3.25. Decreasing og from
1 to 0.3 results in the 7th order polynomial becoming the most likely model. By
decreasing o we are saying that the parameters have to take smaller and smaller
values. For a 3rd order polynomial model to fit well, one of the parameters needs
to be 5 (recall that ¢t = 52% — 2% + z). As we decrease o0&, this becomes less and
less likely and higher order models with lower parameter values become more likely.

The Bayesian Approach to Machine Learning 133

103

x 107 x 10 x 10
6| 9 1
8|
5
- - 7] 08|
o o <
E g E
= 4 = 6 =
E s £°°
— 3| _ —
E Za 2
& g4
s2 59]
E 2 2
2|
i 0.2]
1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5
Polynomial order Palynomial order Polynomial order
2 _ 2 _ 2
(a) 0§ = 0.7 (b) 0 =0.4 (c) 0§ =03

FIGURE 3.25: Marginal likelihoods for the 3rd order polynomial example
with Xg = 021 as 02 is decreased.

‘I’his emphasises the importance of understanding what we mean by a model. In this
example, the model consists of the order of polynomial and the prior specification
and we must be careful to choose the prior sensibly (see Exercise EX 3.11).

3.9 Chapter summary

This chapter has provided an introduction to the Bayesian way of performing
Machine Learning tasks — treating all parameters as random variables. We have
performed a Baysesian analysis for a coin tossing model and the linear regression
model introduced in Chapters 1 and 2. In both cases, we defined prior densities over
parameters, defined likelihoods and computed posterior densities. In both examples,
the prior and likelihood were chosen such that the posterior could be computed an-
alytically. In addition, we computed predictions by taking expectations with respect
to the posterior and introduced marginal likelihood as a possible model selection
criteria.

Unfortunately, these expressions are not often analytically tractable and we must
resort to sampling and approximation techniques. These techniques are the founda-
tions of modern Bayesian inference and form an important area of Machine Learning
research and development. T'he next chapter will describe three popular techniques

point estimates, Laplace approximations and Markov-chain Monte Carlo.

3.10 Exercises

EX 3.1. For o, 3 = 1, the beta distribution becomes uniform between 0 and 1. In
particular, if the probability of a coin landing heads is given by r and a

134

EX 3.2.

EX 3.3.

EX 3.4.

EX 3.5.

EX 3.6.

EX 3.7.

EX 3.8.

A First Course in Machine Learning

beta prior is placed over r, with parameters o = 1,3 = 1, this prior can
be written as follows:

p(r)=1 (0<r<1)

Using this prior, compute the posterior density for r if y heads are ob-
served in N tosses (i.e. multiply this prior by the binomial likelihood and
manipulate the result to obtain something that looks like a beta density).

Repeat the previous exercise for the following prior, also a particular
form of the beta density:

(r) = 2ro<r<i
P =1 0 otherwise

What are the values of the prior parameters o and 8 that result in p(r) =
2r?
Repeat the previous exercise for the following prior (again, a form of beta
density):
(r) = 3r’0<r<i1
PI") =1 0 otherwise
What are the prior parameters here?

What are the effective prior sample sizes (« and 3) for the previous three
exercises (i.e. how many heads and tails are they equivalent to)?

If a random variable R has a beta density

_F(a+ﬁ)ra—-l _ 8-t
" Tore’ 7

derive an expression for the expected value of 7, E, ;) {r}. You will need
the following identity for the gamma function:

p(r)

I'(n+ 1) = nl'(n).

Hint: use the fact that

e -1 _ I(a)l'(b)
/,_:0 T (1—-7‘)b _F(a—-l-b)dr

Using the setup in the previous exercise and the following identity:

var{r} = E,) {7‘2} — (Epn {’"})2)

derive an expression for var{r}. You will need the gamma identity given
in the previous exercise again.

At a different stall, you observe 20 tosses, of which 9 were heads. Compute
the posteriors for the three scenarios, the probability of winning in each
case and the marginal likelihoods.

Use Matlab to generate coin tosses where the probability of heads is 0.7.
Generate 100 tosses and compute the posteriors for the three scenarios,
the probabilities of winning and the marginal likelihoods.

EX 3.9.

EX 3.10.

EX 3.11.

EX 3.12.

The Bayesian Approach to Machine Learning 135

In Section 3.7.4 we derived an expression for the Gaussian posterior for a
linear model within the context of the Olympic 100 m data. Substituting
po = [0,0,... ,O]T, we saw the similarity between the posterior mean

1 (11) et
uw=—<;xx+zo) Xt

o2

and the regularised least squares solution
-1
%= (X'X+NAT) Xt

For this particular example, find the prior covariance matrix 3o that
makes the two identical. In other words, find 3¢ in terms of).

Redraw the graphical representation of the Olympic 100 m model to
reflect the fact that the prior over w is actually conditioned on o and
3o.

In Figure 3.25 we studied the effect reducing o2 had on the marginal
likelihood. Using Matlab, investigate the effect of increasing o3.

When performing a Bayesian analysis of the Olympic data, we assumed
that o2 was known. If instead, we assume that w is known and an inverse

Gamma prior is placed on o?:

o’la.f) = o (@) ew {- 5},

the posterior over o2 will also be inverse Gamma. Derive the posterior
parameters.

The Bayesian Approach to Machine Learning 137

Further reading

(1]

3]

[4]

(5]

[6]

Ben Calderhead and Mark Girolami. Estimating Bayes factors via thermody-
namic integration and population mcmc. Comput. Stat. Data Anal., 53:4028-
4045, October 2009.

An article by the authors describing a novel approach for calculating
the marginal likelihoods (Bayes factors) in models where it is not
analytically tractable.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman & Hall/CRC, second edition, 2004.

One of the most popular textbooks on Bayesian inference. Provides a
detailed and practical description of Bayesian inference.

Michael Isard and Andrew Blake. Contour tracking by stochastic propagation
of conditional density. In Furopean Conference on Computer Vision, pages 343—
356, Springer, 1996.

An interesting example of the use of Bayesian methods in the field of
human computer interaction. The authors use a sampling technique
to infer posterior probabilities over gestures being performed by users.

Michael Jordan, editor. Learning in Graphical Models. MIT Press, 1999.

An introduction to the field of graphical models and how to use them
for learning tasks.

Christian Robert. The Bayesian Choice: From Decision- Theoretic Foundations
to Computational Implementation. Springer, second edition, 2007.

Tian-Rui Xu et al. Inferring signaling pathway topologies from mulitple pertur-
bation measurement of specific biochemical species. Science Signalling, 3(113),
2010.

A paper showing how Bayesian model selection via the marginal likeli-
hood can be used to answer interesting scientific questions in the field
of biology. It is also an interesting example of large-scale Bayesian
sampling.

Chapter 4 |

Bayesian Inference

In the previous chapter we introduced the key concepts required to adopt a Bayesian
approach to Machine Learning. Within the Bayesian framework, all unknown quan-
tities are treated as random variables. Each parameter is described by a distribution
rather than an individual value. Uncertainty in our parameter estimates is naturally
channeled into any predictions we make. We saw two examples of prior and likeli-
hood combinations that were conjugate, meaning that the posterior would be of the
same form as the prior and could be computed analytically. Examples where we can
justify the choice of a conjugate prior and likelihood combination are rare. In the
remainder, we cannot compute the posterior and must resort to approximations. In
this chapter, we will introduce three such approximation techniques.

4.1 Non-conjugate models

In the previous chapter we saw two models for which exact Bayesian inference
was possible. In the first case, we were modelling the tossing of a coin and the
combination of a beta prior and binomial likelihood meant that we could state that
the posterior would also belong to the beta family. In the second example, a Gaussian
prior coupled with a Gaussian likelihood resulted in a Gaussian posterior. The fact
that we knew the form of the posterior meant that we didn’t need to calculate a
normalisation constant (the denominator in, for example, Equation 3.3). As long
as we could find something proportional to the density of interest (i.e. proportional
to a beta or a Gaussian), we could be certain that the normalisation would take
care of itself. The beta-binomial and Gaussian-Gaussian combinations are not the
only conjugate prior-likelihood pairs that we can use. 1'wo other popular examples
are the multinomial-Dirichlet and the gamma-Gaussian for discrete and continuous
data, respectively.

For many models, it is not possible (or not justifiable from a modelling perspec-
tive) to pick a conjugate prior and likelihood and we are forced to approximate.
In this chapter, we will introduce three approximation techniques through a binary
classification problem. Binary classification is a common problem within Machine
Learning and one for which no conjugate prior and likelihood combination exists.
The three techniques that we will look at are: a point estimate, an approximate
density, and sampling. All three are widely used within machine learning.

139

140 A First Course in Machine Learning

5
o
8 .o i
o
o DCFDU o
o 4 o
& 0 ® o o
°
°®
i o.‘o °%
[°
° . o
°
-] “
—55 0 5
I

FIGURE 4.1: An example of a dataset with a binary response. Each object
is defined by two attributes (z; and z7) and a binary target, t = {0, 1}. Points
with t = 0 are plotted as circles and those with ¢ = 1 as squares.

4.2 Binary responses

Figure 4.1 shows a dataset that looks a bit different from those we have seen so
far. Each object is described by two attributes, z; and z2, and has a binary response,
t = {0, 1}. The objects are plotted with a symbol that depends on their response: if
t = 0, the point is plotted as a circle and if t = 1, as a square. We will use this data
to build a model that will enable us to predict the response (0 or 1; circle or square)
for a new object. This task is known as classification — we want to be able to classify
objects into one of a set of classes (in this case there are two classes). Classification
is one of the major problems within Machine Learning and we will introduce several
other classification algorithms in Chapter 5.

4.2.1 A model for binary responses
We will work with the following vector and matrix representations of our data:

x|

1
Tn1 w1 X2
Xp = , W= , X = .
Tn2 w2 .

XN
Our model (with parameters w) will allow us to predict thew for some new obervsation
xnew-
Just as in our Olympics example in Section 3.7, we will need to compute the
posterior density over the parameters of the model. According to Bayes’ rule this is
given by:

Bayesian Inference 141

where the marginal likelihood p(t|X) is given by:
p(e%0= [p(tIX,wp(w) dw

Prior: We shall use a Gaussian density for the prior, p(w). In particular, p(w) =
N(0,5°I). To be consistent, given that p(w) depends on 0%, we will denote the
prior as p(wloz). In previous chapters, the choice of a Gaussian density was often
motivated by analytical convenience. Given that we are not going to be able to rely
on conjugacy in this chapter, we are not restricted in our choice of prior density.
However, our interest in this chapter is in the methods required to overcome non-
conjugacy and for that, a Gaussian will suffice. Readers are recommended to try
the methods introduced in this chapter with different forms of prior density, p(w)
exercises.

Likelihood: To make headway with the likelihood, p(t|X, w), we start by assuming
that the elements of t are conditionally independent (see Section 2.7.1), conditioned
on w:

N
p(tIX, w) = [p(talxn, w).
n=1

tn is a binary variable indicating the class (0 or 1) of the nth object, x,. In the
Gaussian Olympics example in the previous chapter, we treated t, as a Gaussian
random variable with mean w'x, and variance o2, but this is only appropriate for
real-valued t,. Instead, we can model ¢, as a binary random variable — a single
coin toss for each n. Rather than a mean and variance, this random variable is
characterised by the probability that the class is 1 (the probability of belonging to
class 0 is 1 minus the probability of belonging to class 1). To avoid confusion, we will
denote this random variable 1}, (to distinguish it from the actual instance, t, that
we observe). Therefore, we can write each of the n likelihood terms as a probability:

N
p(tIX, w) =] P(In = talxn, w). (4.2)

n=1

This likelihood function will be high if the model assigns high probabilities for class
1 when we observe class 1 and high probabilities for class 0 when we observe class 0.
It has a maximum value of 1 where all of the training points are predicted perfectly.

Our task is now to choose a function of x, and w, f(xn;w), that produces a
probability. A popular technique is to take a simple linear function (e.g. f(x,;w) =
wan) and then pass the result through a second function that squashes its output
to ensure it produces a valid probability. One such squashing function is the sigmoid
function shown in Figure 4.2. As w'x increases, the value converges to 1 and as it
decreases, it converges to 0. The sigmoid function is defined as:

| PB W . ow

A First Course in Machine Learning

142
9
?0.8
&
2
| 0.6
B
]
O
+ 04
—
~
— 0.2
G —
-5 0 5
WTX

FIGURE 4.2: The sigmoid function that squashes a real value (e.g. w'x) to

always be between 0 and 1.

This expression gives us the probability that 7, = 1. In our likelihood we require
the probability of the actual observation, some of which will be zero. Because 15, can
only take the value 0 or 1, we can easily compute P(1,, = 0|x,w) using Equation 2.2:
= 1— P(1% = 1|Xn,w)
1
1+ exp(—wTx,)

exp(—w'x,) ' (4.4)

1+ exp(—wTx,)

P(T, = 0|x,,w)

We combine Equations 4.3 and 4.4 to produce a single expression for P(1},

tn|Xn, w) as follows:
P(Tn = tn|xn, W) = P(Ty, = 1%, w)" P(1), = 0|xn,

’

)1—tn

where the observed data (t,) switches the relevant term on and the other off
Substituting this into Equation 4.2 gives us the likelihood for all n training

points:
p(t]X, w) Ty = 1|xnw)t” P15, = O|xn,w)1_t"

i

11—:‘[(1 + exp(— wan))t” (1 ingg(vj;ﬁn,zn))l " (4.5)

The posterior: This definition of the likelihood combined with the Gaussian
prior we chose earlier is all we need, in theory, to work out the posterior density,

If

Bayesian Inference 143

p(w|X, t,0%). Once we have the posterior density, we can predict the response (class)
of new objects by taking an expectation with respect to this density:

1
P(tnew = 1|Xnew, X, t) = Ep(w|X,t,02) { 1 T exp(—-WTXnew) } .
In practice, this is not straightforward. The posterior is not of any standard form.
To be able to evaluate it at a particular w, we would need to evaluate both the
numerator and denominator of Equation 4.1. The numerator is fine — we could
evaluate the Gaussian prior density at w and the likelihood that we’ve just defined
and multiply the two values together. The denominator is the problem, as we cannot
analytically perform the integration required to compute the marginal likelihood:

z = p(t|X,02) = /p(th,w)p(w|02) dw ‘

In other words, we have a function g(w; X, t,02) = p(t]X, w)p(w|o?) which we know
is proportional to the posterior, p(w|X,t,0%) = Z 'g(w; X,t,0?), but we do not
know the constant of proportionality, Z~! (note that this constant is traditionally
defined as Z~! rather than Z). We are left with three options:

1. Find the single value of w that corresponds to the highest value of the
posterior. As g(w;X,t,0?) is proportional to the posterior, a maximum of
g(w; X, t,0?) will also correspond to a maximum of the posterior. Z~! is not
a function of w.

2. Approximate p(w|X,t,o?) with some other density that we can compute an-
alytically.

3. Sample directly from the posterior p(w|X,t,c?), knowing only g(w;X,t,0?).

The first option is not very Bayesian — we will have to make predictions for new
objects based on a single value of w and not a density. It is, however, easy to do and
this makes it a popular technique. The second option leaves us with a density that
is easy to work with (we can choose any density we like) but if the chosen density
is very different from the posterior, our model will not be very reliable. The final
option allows us to sample from the posterior (and hence get good approximations
to any expectations that we might require) but can be difficult.

These are the three options that are open to us in any problem where we can-
not directly compute the posterior density. All three options have good and bad
points and the choice of one over another will depend on the specifications (and
computational limitations) of the problem at hand. We will now describe each in
turn.

4.3 A point estimate — the MAP solution

In the previous section we showed that whilst we could not compute the posterior
density p(w|X, t,0?), we could compute something proportional to it, g(w; X, t,c?).
This is equal to the prior multiplied by the likelihood. The value of w that maximises

144 A First Course in Machine Learning

g(w; X, t,0?) will also correspond to the value at the maximum of the posterior. This
will be the single most likely value of W (under the posterior) and is a sensible choice
if we decide to use a point estimate. Chapter 2 was devoted to finding the value of
w that maximised the likelihood. The idea here is very similar except now we are
maximising the likelihood multiplied by the prior. This solution is the maximum a
posteriori estimate (MAP) estimate that we first saw in Section 3.7.4 and is common
within machine learning.

Comment 4.1 — The Newton—Raphson method: The Newton-Raphson
method (also known as the Newton method) is a general method for finding
points where functions are equal to zero, i.e. finding points where the function
f(z) = 0. Given a current estimate of the zero point, z,, we update it by
moving to the point where the tangent to the function at x, passes through
the z-axis. This point can be computed by approximating the gradient as a
change in f(z) divided by a change in z. Defining 8f(z)/0z as f'(x):

e =L
(@n = zni1)f'(zn) = flzn)
f(zn)

Tn4+1 = Tpn —

f(zn)

The method can also be used to find minima and maxima, as these are simply
points where the gradient passes through zero. Therefore, we simply replace
f(z) with its derivative f'(z) and f'(z) with its derivative f''(z):

_ fl(=n)

TS T)

This is readily extendable to functions of a vector — say x. In this instance,
f'(zx) is replaced by the vector of partial derivatives evaluated at x, and
1/f"(zn) is replaced by the inverse of the Hessian matrix (see Comment 2.6)
- 8%f(x)/0x0x" - evaluated at x = x,.

As with finding the maximum likelihood solution, it is easiest to find the value
of w that maximises log g(w; X, t) rather than g(w; X, t):

log g(w; X, t) = logp(t|X, w) + log p(w|o?).

Unlike the maximum likelihood solution for the linear model, we cannot obtain an
exact expression for w by differentiating this expression and equating it to zero.
Instead, we can use any one of many optimisation algorithms that start with a guess
for w and then keep updating it in such a way that g(w;X,t) increases until a
maximum is reached. The Newton-Raphson procedure (see Comment 4.1) is one
such method that updates w using the following equation:

The new version (w’') of w is calculated by subtracting the inverse of the Hessian
(see Comment 2.6) multiplied by the vector of partial derivatives. For any starting

Bayesian Inference 145

value of w, this iterative procedure will update w until it reaches a point where
the gradient is zero. l'o.check that the point we have converged to corresponds to
a maximum, we can check the Hessian to ensure that it is negative definite, just as
we did for maximum likelihood in Section 2.7.3.

In order to compute the vector of first derivatives we first expand our expression
for log g(w; X, t) using Equations 4.2 and 4.5:

N
log g(w; X, t) = Zlog P(1T% = ta|xn, w) + log P(W|‘72)

n=1

— il 1 b exp(—w'x,) ot
N — B\TT exp(—wTxy) 1+ exp(—wTxp)

+ logp(w|02)

To stop this expression from becoming too complicated, we will use the following
shorthand: .

1+ exp(—wTxy)’

Therefore, assuming that w is D-dimensional, we have the following expression:

P, = P(T5, = 1|lw,x,) =

N
log g(w; X, t) = logp(wl|o?) + Z log Pt" + log(1 — P,)' ™™

n=1
= ~§ log 2r — Dlogo — 217WTW
N
+) tnlog Po+ (1 —ta)log(l — Pn),
n=1

where the first three terms are the log of the (Gaussian) prior. 1o find the vector of
partial derivatives, we can use the chain rule (see Comment 4.2) to give an expression
in terms of the partial derivatives of Pp:

dlogg(w; X,t) _ 1 th OP, 1—1t, 0(1 — P,)
ow = “’+Z P.ow " 1-P. ow
1 tn OP, 1—t, 0P,
—‘?W*L;(P_naw'l—maw)’ (4.7)
where we have used the chain rule a second time to turn —3(1 Pn) into —%:

(1 - Py) o(1 — P,) 0P,
ow o°P, Oow
oP,
ow ’

146 A First Course in Machine Learning

To calculate %}iﬁ‘ we can use the chain rule once more:

0P, 3 (1+exp(—w'xn)) 7' 8 (1 + exp(—w'xn))
Ow 8 (14 exp(—w'x,)) ow
= - a7 exp(l—wT NE exp(—w ' Xn)(—Xn)
exp(—w'x,)
(T+exp(—wTxn))2 "
1 exp(—w'x,)
1+ exp(—wTx,) 1+ exp(—wTx) Xn
= Pno(1 = Po)xn. (4.8)

Comment 4.2 — The chain rule: When taking partial derivatives, it is
often convenient to use the chain rule. The chain rule states that:

9f(g(w)) _ 91 (g(w)) dg(w)
ow dg(w) ow

As an example, let
flw) =t,log P,

where
1

Pp = .
" T 14 exp(—wTx,)

To compute 6’;5:") , we can use the chain rule as follows:

8f(w) _ 8f(w) 8P _ tn OPa

ow 8P, 6w P, dw

Substituting Equation 4.8 into Equation 4.7 gives us the required vector of partial
derivatives:

dlogg(w; X, t 1 N
—"8(—“,—‘)— = _'0_—2W+Z(xntn(1_Pn)_xn(l_tn)Pn)
n=1
= w+2xn(t — P+t Pp)
1
n=1

To compute the Hessian matrix of second derivatives, we differentiate this again

with respect to w'. Noting that 254 ap S)T we obtain the following expression:

8% log g(w; X, t) 1 il oP,
owowT T o7 ;"" ow'
= ——I - anx P.(1- Py). (4.10)

One thing to notice from the Hessian is that because 0 < P, < 1, it will be
negative definite for any set of x, and for any w (see Section 2.7.3). Therefore,

Bayesian Inference 147

2
1.5 w2 .7
w
5
0.5} 1
R 4 " 6 8
Iteration

FIGURE 4.3: Evolution of the components of w throughout the Newton-
Raphson procedure to find the w corresponding to the maximum of the pos-
terior density.

there can only be one optimum and it must be a maximum. Whatever value of w
the Newton-Raphson procedure converges to must correspond to the highest value
of the posterior density. This is a consequence of the choice of prior and likelihood
function and changing either may result in a harder posterior density to optimise.

We now have everything we need to perform the Newton-Raphson procedure and
find a potential optimal value of w. Starting with w = [0,0]" and setting ¢2 = 10,
the procedure converges (the change in w becomes insignificant) after only nine
iterations (MATLAB script: logmap.m). The evolution of the two components of w
over this period can be seen in Figure 4.3. Following the previous chapters, we will
call the value of w that corresponds to the maximum w.

Using W we can compute the probability that the response equals 1 for any x. In
particular, if we observe Xnew, & new set of attributes, the probability that it should
be given a response of 1 (it belongs to the square class) is given by

1 +'exp(—WTXnew)

P(Thew = 1{Xnew, W) = (4.11)
Given that there are two possible responses (or classes) for this new object, a
sensible strategy might be to assign it to the square class (Thew = 1) if the probability
is greater than 0.5 and to the circle class (Thew = 0) otherwise. In this case, the set
of x values that correspond to P(l = 1|x,w) = 0.5 will form a line that can be
thought of as a decision boin — points on one side of the line will belong
to one class, and points on the other side to the other class. To plot the decmon
boundary, we make use of the fact that P(T" = 1|x,W) = 0.5 implies that W'x = 0
(see Exercise EX 4.5). If we expand this expression, we can obtain the decision

148 A First Course in Machine Learning

3]

__55 Tol 5 s 4 3 2 A T 0 1 2 3 4
(a) The data and the line where P(T = (b) The contours show P(T = 1|x,w),
1|x, w) = 0.5. If we took 0.5 as a thresh- the probability that a new object should
old, new points above the line would be be classified as a square, as a function of
classified as squares, below as circles X

FIGURE 4.4: Inferred function in the binary response example.

boundary as a function of 1 and z2:

~T
0=wx

= w1T1 + w22

Waky = —WiT]
’ljl\l.’lil

T2 = ——<,
w2

which is plotted in Figure 4.4(a). If we want to split the two classes with a straight
line, this seems like quite a reasonable choice. In Figure 4.4(b) we plot contours of
P(T = 1|x, W) as a function of x (MATLAB script: logmap.m). Close to the squares
the probability is 1 (the squares are objects for which ¢,, = 1) and close to the circles
it is 0. Between the two groups of data, the probability is around 0.5, reflecting the
fact that objects here would be equidistant from both groups.

I'he outcome of this optimisation is that we have a model with which we can
make predictions. The model is based on a point estimate, w, of the parameters that
we have obtained by finding the value of w that corresponds to a maximum of the
posterior, p(w|X, t, o). This MAP solution is common in Machine Learning because
it is reasonably easy to find W in this way. One could follow the steps described
above for any prior and likelihood combination and find an optimuin value. The
optimisations will not always be as well behaved as this - in some problems, the
posterior might have several maxima (and maybe even some minima). It would be
difficult to know if the maximum we had found using Newton-Raphson was the
global op

In Chapter 3 we have already seen the advantage of maintaining a density over
w rather than collapsing onto a point estimate. With this in mind, we will now move
onto our second option when faced with a posterior we cannot compute exactly -
finding a density that approximates p(w|X,t,0?%).

Bayesian Inference 149

4.4 The Laplace approximation

There are various approximation methods used within Machine Learning to re-
place tricky posterior densities with approximations that are easier to handle. The
most popular is the Laplace approximation.! The idea is to approximate the density
of interest with a Gaussian. Given the ease with which we can manipulate Gaussians,
this seems to be a sensible choice — the expectations required to make predictions are
likely to be easy to calculate given a Gaussian posterior. However, we should always
bear in mind that our predictions will then only be as good as our approximation.
If our true posterior is not very Gaussian, our predictions will be easy to compute
but not very useful.

The Gaussian density is defined by its mean and (co)variance. Using a Gaus-
sian to approximate another density amounts to choosing suitable values for these
parameters. 1o motivate the choices of parameters made by the Laplace approxi-
mation, imagine that, rather than having two parameters, our model only has one
— w — and that we know @ — the value corresponding to the highest value of the
posterior. Our first step is to approximate log g(w; X, t, o) using a Taylor expansion
(see Comment 4.3) around the maximum, @:

dlogg(w; X, t,0%)| (w—)
ow s 1
N 9% log g(w; X, t,0%)| (w —)2
ow? " 2!

w

logg(w;X,t,az) I~ logg(ﬁ;X,t,Uz) +

+ ...

‘The second term is the first derivative (i.e. the gradient) evaluated at the maximum
point and must therefore be zero. Discarding this and ignoring terms of 3rd order
and above, we are left with the following expression:

logg(ﬁ); X,t,&z) a log g(ﬁ; X,‘t,'az) - g(w = 1’13')2\, (4.12)

where v is the negative of the second derivative of log g(w; X, t,0?) evaluated at

w = w:)
B 9% log g(w; X, t,0?%)
N Ow?

Now, the Gaussian density is defined as:
1 1 2
Varo TP T3z W T g

the log of which is equal to:

1
log(K) — 5oz (W~ 1)?,

where K is the normalising constant. This looks very similar to Equation 4.12 with

ITechnically, it is actually a saddle-point approximation but has come to be known as the
Laplace approximation within Machine Learning. In Computational Statistics, the Laplace
approximation is a name given to something else entirely.

150 A First Course in Machine Learning

p = wand o? = = 1/v. This is the Laplace approximation — we approximate the poste-

»]

rior with a Gaussian that has its mean at the posterior h ¢ (w) and has variance
inversely proportional to the curvature of the posterior (lts second derivative) at its
mode.

Comment 4.3 — Taylor expansions: The Taylor expansion is a way of
approximating a function. The approximation is always made ‘about’ some
value — the approximation will tend to diverge from the true function as we
move away from that value. The definition of the Taylor series of f(w) about
W is:

ow™ | .
w

oy = 35 o= 0" 9" (w)
n=0

where a:;{l)(,f”) _ is the nth derivative of f(w) with respect to w, evaluated at

w. Whenn = Ou: this derivative is simply the function f(w). If we only compute
a finite number of terms, we will have an approximation to the function. A
first order approximation would just include terms n = 0 and n = 1 — an
nth order approximation includes all terms up to and including term n. For
example, we can approximate f(w) = exp(w) at @ = 0:

2

exp(w) = exp(w) 1 exp(w) +Z 57 exp() + .

2!

Now, exp(w) = 1, so:

’lU2 103

exp(w)—l+ +—+ al

The approximation will get better -
and better as we add more and
more terms. This can be seen in the
figure on the right.

This idea is easily extended to multivariate densities. In particular, the Laplace
approximation to our true posterior p(w|X, t,o?) is:

p(WIX, t,0%) = N(p, E),

where p is set to W and X is the negative of the inverse Hessian:

4.4.1 Laplace approximation example: Approximating a
gamma density

Before we look at what this approximation looks like in the binary response
example it is useful to look at an example where we know the true density (see also

Bayestan Inference 151 -

Exercises EX 4.1, EX 4.2 and EX 4.3) (MATLAB script: lapexample.m). This will
allow us to see how good or bad the approximation is. The following is the gamma
density for a random variable Y:

{e 3

p(y|a,ﬂ) = %y“_l exp{—0By}. (4.14)

We will investigate how good the Laplace approximation is to this density. The
gamma density has an analytic expression for its mode which means we do not need
to go through an optimisation procedure similar to that in the last section. The

mode, ¥, is defined as:
a—1

T8

The Laplace approximation to p(y|a, 3) takes the form of a Gaussian:
p(yle, B) = N (u,0%).

The mean p will be equal to the mode of p(y|a, 8), which we've already defined. To
find the variance, o2, of the approximating Gaussian, we need to find the second
derivative of log p(y|c,) with respect to y. This is computed as follows:

log p(yle, B) = alogB — log(I'(a)) + (. — 1) logy — By
dlogp(yle,B) a-1 p
> =
Y Yy
0? log p(y|a, B) _ a-1
dy? o

o? will be equal to the negative inverse of this quantity evaluated at y = 7. In
particular:
2 ij\z _ a—1
T T a1 5
In Figure 4.5 we can see two examples of p(y|a, 3) and the corresponding Laplace
approximation. In the first, p(y|a, B) looks rather like a Gaussian and the approx-
imation is pretty good. In the second, p(yla,B) does not look very much like a
Gaussian and the approximation is not accurate. In both cases the approximation
gets worse as we move away from the mode. This is because the approximation is
based on the characteristics of the function at the mode. We will see this property

again as we return to the binary response model

4.4.2 Laplace approximation for the binary response model

Returning to our binary response model, we had to compute both the mode,
w, and the Hessian for the Newton-Raphson procedure. We therefore already have
everything we need for the Laplace approximation to the posterior p(w|X,t,o?).
In Figure 4.6(a) we can see the approximate posterior and in Figure 4.6(b) we can
see the same approximation on top of g(w;X,t), the unnormalised posterior. As
for the gamma example in the previous section, the shape of the approximation is
pretty good around the mode but diverges considerably from the true posterior as we
move away from the mode. This is to be expected — the Laplace approximation only

152 A First Course in Machine Learning

0.05

100 0 0.02 0.04 y 0.06 0.08 0.1

(a) p(yla,B) (solid line) and approxi- (b) p(y|e, B) (solid line) and approximat-
mating Gaussian (dashed line) for a = ing Gaussian (dashed line) fora = 2, 8 =
20, 8 = 0.5 100

FIGURE 4.5: Examples of the Laplace approximation to the gamma density
function given in Equation 4.14.

o (3}
3° 3°
-1 -1
-2 -2
-3 -3
—4 —4
55 0 5 -5 0 5
w1y w
(a) Laplace approximation to the poste- (b) Laplace approximation to the poste-
rior rior and the true unnormalised posterior

(lighter lines)

FIGURE 4.6: The Laplace approximation for the binary problem.

matches the shape (curvature) at the mode. We can also sample values of w from
the approximate posterior and look at the decision boundaries that they correspond
to. Twenty such boundaries are plotted in Figure 4.7(a). There appears to be a
lot of variability in these boundaries, although all of them seem to split the classes
reasonably well.

The final step is to use the approximate posterior to compute predictions. We
now have a density over w rather than a single value and we know, from Chapter
3, that we compute a prediction by averaging over this density. In particular, we
should be calculating the expected value of P(Thew = 1|Xnew, W) with respect to the
approximate posterior over w (which we’ve denoted as N'(u, X)):

P(Thew = 1xnew, X, t,02) = Bz {P(Thew = 1[Xnew, W)} -

Bayesian Inference 153

o o
a uﬂ
o
o E‘b .
| >~
g 0
[]
®
O. :‘ ° %
L]
E—y 2 0 2)
Ty
(a) Twenty decision boundaries corre- (b) Contours of P(Thew = 1|xnew, 72),
sponding to instances of w sampled from computed by using a sample based
the Laplace approximation to the poste- approximation to Ear(,) P(Thew =
rior 1]xnew, w)

FIGURE 4.7: Decision boundaries sampled from the Laplace approximation
and the predictive probability contours.

Unfortunately, we cannot compute the integral over w required in this expectation.
This might suggest that our choice of approximation was not sensible — we still
cannot make predictions. However, we can easily sample from N (u,3) and so (see
Equation 2.23) we can approximate the expectation with:

Seqs

P(Tew = Iixnew,x t g) = Ns Z 1+ exp(--WTXnew)

(4 15)

where w, is the sth of N, samples drawn from the approximate posterior. Using
N, = 1000, the contours of P(Thew = 1|Xnew, X, t,0°) can be seen in Figure 4. 7(b)
(MATLAB script: loglap.m). Compare this with Figure 4.4(b). There is a big dif-
ference ~ the contours are no longer straight lines. Averaging over the posterior
density for w has had the effect of smudging the decision boundaries. The proba-
bilities are now closer to 0.5 in all areas except those very close to the data objects.
The model based on the point estimate, shown in Figure 4.4(b), could be said to
be over-confident — take x1 = —3, x2 = 5 as an example. According to the predic-
tions produced by the point estimate (Figure 4.4(b)), an object with these attributes
would have a probability of approximately 1 of being a square despite the fact that
it is quite distant from the other square objects. Compare this with the probability
of approximately 0.6 given by the expectation with respect to the Laplace approx-
imation to the posterior (Figure 4.7(b)). This value seems much more reasonable.
Another way to understand the uncertainty that should be present in areas like this
is to look at Figure 4.7(a) — there is very large variability in the possible decision
boundaries at 1 = —3, x2 = 5. Some of these boundaries would classify this object
as a square, some as a circle — the probability that it is a square, given the data that
we have seen, is not 1.

In this section we have seen again that we should be wary of using point es-
timates. I'he Laplace approximation shown here can be used to approximate any

154 A First Course in Machine Learning

density (over real-valued random variables) for which we can find the mode and
compute the second derivative. The approach assumes that the posterior can be
reasonably approximated by a Gaussian, something that is not always the case (see
Figure 4.5). In our binary response model, the approximation did not allow us to
compute the expectation necessary for making predictions exactly. However, the ease
with which we can sample from a Gaussian meant that it was straightforward to
obtain a sample-based approximation to the expectation. In the next section, we
will extend this idea through the introduction of a technique that will enable us
to sample directly from p(w|X,t,0%) despite the fact that we cannot compute the
normalisation constant. The ability to generate these samples will allow us to use a
sample-based approximation to the expectation without having to approximate the
posterior.

4.5 Sampling techniques

The Laplace approximation in the previous section provided us with a method .
for approximating the posterior density p(w|X,t,o?). Our interest in the posterior
density is primarily to allow us to take all the uncertainty in w into account when
making predictions. We do this by averaging over all potential values of w through
the following expectation:

P(Thew = Uxnew, X, £,0%) = Byuix.e.02) {P(Thew = 1Xoew, W)}

Even substituting our approximation to the posterior into this expression, we could
not analytically compute the integral required in this expectation. Fortunately, it
was easy to sample from the Gaussian approximation, enabling us to use the sample
based approximation given in Equation 4.15. In this instance, the benefit of making
the approximation was that it enabled us to easily generate samples. In this secticn,
we will look at a technique that enables us to cut out the approximation step and
sample directly from the posterior. A set of samples from the true posterior gener-
ated in this way could be substituted directly into Equation 4.15 to compute the
desired predictive probability, P(Ihew = 1|Xnew, X, t,0%). We're going to introduce a
popular sampling technique known as the algorithm. How-
ever, before we go into this, it is perhaps useful to get more comfortable with the
idea of sampling through a less abstract example.

4.5.1 Playing darts

In the game of darts, players take turns to throw three darts at a board like
that shown in Figure 4.8. The darts are sharp and embed themselves into the board.
The player receives a certain number of points for each dart, depending on where
the dart lands. The scores from the three darts are added together and subtracted
from the player’s current total. Each player starts the game with the same total
(normally 501) and the winner is the player who gets to zero first. The majority of
the board is split into 20 segments and if the dart lands in the white parts of these
segments, the score is equal to the number shown around the edge. If the dart lands

Bayesian Inference 155

5 20

14 13
11 6
8 10

FIGURE 4.8: A dartboard.

in one of the shaded areas, the score is either double (lighter, outer shaded area) or
triple (darker, inner area) the segment score. The circle in the centre of the board is
known as the bull’s-eye (50 points) and the circle around this as the bull (25 points).
There is one slight complication to the rules — the player must get to zero with a
double. So, for example, if a player currently has a total of 40, they could win by
throwing a double 20 (the lightly shaded area just below the ‘20’ label) or a single
20 (anywhere in the white bits of the ‘20’ segment) followed by a double 10, etc. We
will assume that the player does indeed need to score 40 to win, and has only one
dart left with which to do it. In other words, they need to hit the double 20 — what
is the probability that they will succeed?

Assume that there exists some probability density function defined over the
position that the dart will land. In other words, when a player is aiming for, say,
double 20, the position at which the dart will land could be considered as an instance
of some random variable. We will use the vector y to describe this position and
therefore the density will look something like p(y|A). A ought to depend (at least
to some extent) on where the player is aiming. The extent to which this dependence
exists depends on the players skill. For a professional trying to hit double 20, we
might expect the density to be tightly concentrated around the double 20 area. For
a poor player, aiming might make very little difference to where the dart ends up.
So, A depends on the skill of the player and the strength of their technique — making
p(y|A) very hard to define.

At this point it would be easy to give up. But, taking a step backwards, we
are not directly interested in p(y|A), just the probability that the player throws a
double 20. Do we need to be able to write down an analytic expression for p(y|A) to
work this out? Before we answer this, let us satisfy ourselves that we could work it
out if we could write down p(y|A). Define the random variable T' = f(y) where f(y)
is 1 if y is inside the double 20 region and zero otherwise. T' depends on y and hence
depends on A. So, we're interested in the following probability: P(T° = 1|A). This is
nothing more than an expectation. In particular, it looks rather like the expectations

156 A First Course in Machine Learning

we had to compute for the binary response model in the previous section:
P(I'=118) = Byia) (f0)) = [£0)p(v18) dy. (4.16)

In theory, if we could write down p(y|A), we could work this out. However, we have
also seen that we can compute quantities like this with a sample-based approxima-
tion. In particular, if ys is the sth of Ns; samples from p(y|A), our approximation
would look like:

1
P(I'=118) ~ 5> f(¥s)-
S s=1

So, we do not need to be able to write down p(y|A) to be able to compute P(1' =
1|A) as long as we can sample from it. Fortunately, sampling from p(y|A) is pretty
easy — we get our player, some darts and a board and we ask the player to aim for
double 20. The position of each dart thrown is a sample from p(y|A). If we record
ys for each of N, throws, we can compute the sample-based approximation given in
Equation 4.16. In fact, in this case it works out as just the proportion of times the
player throws a double 20).

We can explicitly relate this procedure to our binary response model. First, the
quantity of interest in the darts case, P(1' = 1|A), is analogous to the predictive
probability in the binary response model: P(Thew = 1|Xnew, X, t,0?). In both cases
to compute this quantity, we must take an expectation with respect to some density:
our darts distribution p(y|A) is analogous to p(w|X,t,o%) - the posterior density
over our parameters. In the darts case, we approximated this expectation by drawing
samples directly from the posterior (despite the fact that we couldn’t write it down).
In the binary response case, we approximated the posterior with something we could
sample from and then sampled. We will now see how we can sample directly from
p(w|X,t,0%) (see Exercise EX 4.4).

4.5.2 The Metropolis—Hastings algorithm

In this section, we will introduce the Metropolis-Hastings® (MH) algorithm.
Rather than go into too much detail we will introduce it as a recipe, describing the
steps involved without proving why they work. References to further reading are
provided at the end of the chapter.

Recall that we are attempting to sample from p(w|X,t,0°) so that we can
approximate the following expectation:

P(Thew = 1|Xnew, X, t,0%) = Ep(wix.t,02) {P(Trew = 1|Xnew, W)}

/P(Tnew = 1[Xnew, W)p(W|X, t,0°) dw,

with
1 &
P(T = l|xnew,X,t,02) ~ —1\7; ;P(me = 1|xnew, Ws).

2Named after Nicholas Metropolis and W. Keith Hastings ~ a physicist and statistician,
respectively, who developed the technique to tackle problems in an area of physics known
as statistical mechanics.

Bayesian Inference 157

Metropolis-Hastings generates a sequence of samples w1, Wz, ..., Ws_1,Ws,...,Wn,.
Generating a sample (say w;) consists of two steps. In the first step, we need to
propose a new sample — a candidate for w;. This is performed by proposing a move-
ment from the previous sample (w;_1). Second, the proposed sample is tested to see
whether or not it should be accepted. If accepted, it becomes our new sample w. If
it is not accepted, our new sample.is set to be equal to the previous one: ws = wy_;.
This is continued until we have collected what we believe to be enough samples.

Now, if our proposal is based on a movement from the previous sample, what
do we do for our first sample w;? It turns out that it doesn’t matter where we
start — wy can be anything. As long as we sample for long enough, our sampler is
guaranteed to converge to the distribution of interest. So, we can pluck a w; from
anywhere (sampling it from the prior would probably be a sensible choice), set the
Metropolis—Hastings algorithm off, wait for it to converge to the correct distribution
and then harvest as many samples as we need. A word of caution: the sampler is
guaranteed to converge in theory. In practice, it is important to use one (or ideally
more) of the methods available to test convergence before we start harvesting sam-
ples. We will now look at the proposal and acceptance steps in more detail.

Proposing a new sample: Assume that we have already sampled s — 1 values
using the MH scheme. We will propose a sample based on a movement from w,_;.
Calling our proposed sample w; (we can only call it w, once it has been accepted),
we need to define a density:

P(Ws|Ws-1).

"This density does not have to have any connection with the posterior p(w|X, t, o?)
from which we’re trying to sample. We are free to define it as we please. In practice,
the choice will have an impact on how long it will take the MH sampler to converge.
A common choice is to use a Gaussian centred on the current sample, w,_;:

p(Wilws—1,X) = N(we_1,X)

Sampling a sequence of values like this creates what is known as a ¥andém walk. In
Figure 4.9 we show two such walks (MATLAB script: randwalks.m). One starts from
10

01] whilst the other starts from w; = [2, 2]7

w1 = [0, 0]" and has covariance & = [

and has covariance X = 0(')1 0(.)1] . The latter walk moves less distance in each step
due to the smaller diagonal (variance) elements in the covariance matrix. As we have
already mentioned, the Gaussian is a popular choice for the proposal density. One
reason is the ease with which we can sample from it - choosing a proposal distribution
that was hard to sample from would make things unnecessarily complicated. Another
reason is that it is symmetric: moving to w; from ws_; is just as likely as moving
from W, to w,_1:
P(WalWao1,5) = p(wam1 [, 5).

We will see the advantage of this as we move on to the acceptance step.
Accepting or rejecting: We now have W, a candidate for w,. We must now

decide whether we should accept it or reject it. To do this, we compute the following
ratio:

158 A First Course in Machine Learning

-5}

j

)

10

FIGURE 4.9: Two examples of random walks where the distribution over
the next location is a Gaussian centred at the current location. The two walks
have different covariance matrices, shown in the plot.

p(Waor[X. £, 07) p(WilwWs_1,5) i1

This is the ratio of the posterior density at the proposed sample to that at the
old sample multiplied by the ratio of the proposal densities. The symmetry of the
Gaussian proposal distribution discussed above allows us to ignore this last term,
as it is always equal to 1. The first term is the ratio of posterior densities evaluated
at the two different parameter values. We cannot compute the densities exactly
because we cannot normalise them. However, because we are interested in a ratio,
the normalisation constants cancel. So, we can substitute the ratio of posteriors
with the ratio of the priors multiplied by the ratio of likelihoods. This leads us to
the following expression:

oo 9WiXt,0%) _ p(Wilo?) p(t[%s,X)
g(ws—1;X,t,02) p(ws—1|o?) p(tjws—1,X)

This ratio will always be positive, as the density functions are always positive. If it is
1 or greater, we accept the sample (w; = W;). If r is less than 1, we accept the sample
with probability equal to . In other words, if we propose a set of parameters that
corresponds to a higher value of the posterior density than w,_1, we always accept
it (r > 1). If we.propose a set that corresponds to a lower value of posterior density,
we accept it sometimes, but not always. The algorithm is depicted in Figure 4.10.
Notice that we have described the accept/reject step in more detail. If r < 1, we
should accept with probability r. This is achieved by drawing a value (u) from a
uniform distribution between 0 and 1. Because it is uniform, the probability that u
will be less than or equal to r is equal to r. Hence, we accept the proposal if u < r
and reject otherwise. The whole process is best illustrated with an example.

Figure 4.11 shows the Metropolis-Hastings algorithm in action, sampling from
an arbitrary density (indicated by contours) (MATLAB script: mhexample.m). The

Bayesian Inference 159

s=1

Choose w

'

s=s8+1

Y

Gencrate w,

from p(wq|lw._)

v

] Compute acceptance
W, = W, X We = We_}
ratio r

_ !

Yes— > 17

T
¥
Go.norate uw fl‘()lll
U, 1)

¥

FIGURE 4.10: The Metropolis-Hastings algorithm.

starting point, wi, is shown in Figure 4.11(a). Our proposal density is Gaussian
with 3 = I. From the starting point, the first proposal is made, w3, shown in Fig-
ure 4.11(b). The proposal causes an increase in posterior density and is therefore
accepted: wa = Wa. This acceptance is indicated by the solid line in Figure 4.11(b).
The next proposal, w3, causes a slight decrease in posterior density but is accepted
nonetheless (remember that if the proposal causes a decrease, there is still a prob-
ability of acceptance). This is shown by the new solid line in Figure 4.11(c). The
next proposal, Wa, causes a large decrease in the posterior density value. Such a
proposal is highly unlikely to be accepted (the ratio is much less than 1) and in this
instance it isn’t. This is represented by the dashed line in Figure 4.11(c). Hence,
w4 # Wyq and is instead set to wa = w3. This process continues in Figures 4.11(d)
and 4.11(e), by which time we have 10 samples. Along the way, three proposals were
rejected and in each of those instances the sample is set to be equal to the value
of the previous (accepted) sample. Continuing this process, we can see the first 300
accepted samples in Figure 4.11(f). These samples look reasonably consistent with
the density contours — samples seem to be more concentrated towards the centre of
the density and very sparse around the edges.

The density we are sampling from in this example happens to be a Gaussian.
So, we can go some way towards convincing ourselves that we are indeed sampling
from the correct density by computing the mean and covariance of the samples and
seeing if they correspond to the mean and covariance of the actual density. The

160

wn

A First Course in Machine Learning

[

w2

5

o

(b) After one sample

0
Wy

(d) After four samples

0
W

go @
Wie
=3 0 5
wy
(a) Starting point
30 s
=3 0 5 55
w)
(c) After three samples. w3 was ac-
cepted, wy rejected (dashed line)
5 5
30 S0
=3 0

(e) After 10 samples

(f) The first 300 samples
FIGURE 4.11: Example of the Metropolis-Hastings algorithm in operation.

wy

Bayesian Inference 161

actual mean and covariance are given by:

11 3 04
H= [1} 8= [0.4 3]
After Ns = 10,000 samples, we can compute the sample-based approximations to
the mean and covariance (u’,S’) as follows:

1 - ,
W= S we, 8= S (we -) (we —)

These work out as:

¢+ [0.9770 g — 3.0777 0.4405
1.0928 |’ ~ 1 0.4405 2.8983

which are both very similar to the true values.

Before we move on to applying MH to our bi ponse model, we need to
discuss two related concepts — burn=iri and ¢ Srgence. As we can start our
sampler from anywhere (there is no restriction on w;), we don’t necessarily know
if we are starting the sampler in an area that we should be generating samples
from (it might be an area of very low posterior density). Therefore, the first few
samples may not be representative and should be discarded. This period between
the starting point and convergence of the sampler is known as the burn-in period.
Sadly, it is not possible to conclusively determine how long this period should be.
In the example described above, it is no more than a couple of samples, but in some
applications it could easily be hundreds or thousands. To overcome this problem we
need a method for determining convergence. T'his is not convergence to a particular
value, but convergence to a particular distribution. In other words, are the samples
we are seeing coming from the correct distribution?

A popular method is to start several samplers simultaneously from different
starting points. When all of the samplers are generating samples with similar char-
acteristics (mean, variance, etc.), it suggests that they have all converged to the
same distribution — the one we are trying to sample from.

We will now return to our binary response model. Using the MH scheme de-
scribed above, we generate 10000 samples from p(w|X,t,o?) (MATLAB script:
logmh.m). Our proposal density is a Gaussian with ¥ = +°I where v*> = 0.5. In
Figure 4.12(a) we show every 10th sample (plotting all 10,000 samples makes for a
very crowded plot) along with the posterior contours. The samples and the contours
look reasonably coherent. If we like, we can use the samples to create marginal pos-
terior densities for the two individual parameters. Recall from Section 3.4.1 that to
marginalise w, from the posterior we would need to integrate (sum if the random
variable is discrete) over all values w2 could take:

p(wllx,t,oz) = /p(wl,w2|X,t,(r2) dwa,

where p(wi1,w2|X,t,0%) is another way of writing p(w|X,t,o?). To get a sample-
based approximation we take each of our samples, w;, and ignore wz. In other
words, if we throw away the value of w2 from each sample, we are left with a set
of samples from p(w:|X,t,o?). In Figures 4.12(b)-4.12(d), we show three popular

162 A First Course in Machine Learning

s 5

0
w

(a) 1000 of the MH samples along with
the posterior contours

2000 4000 6000 8000 10.000
Samples

(c) All of the w; samples plotted against
iteration, s

5

Z2
(=]

>

5

(e) Predictive probability contours. The
contours show the probability of classify-
ing an object at any location as a square.
The probability of classifying an object
as a circle at any point is 1 minus this
value

“ l
l
|

LLER

-2 0 2

(b) Histograms of the samples for both
wi (black) and we (grey)

24

(d) Continuous densities fitted to the w;
and wy samples

5

5 0 5

(f) Decision boundaries created from 20
randomly selected MH samples

FIGURE 4.12: Results of applying the MH sampling algorithm to the binary

response model.

Bayesian Inference 163

ways of visualising these samples. In the first, (Figure 4.12(b)) we have split the
range of possible values into 20 sections and counted the number of samples that
fall in each section. The black bars show the numbers for w; and the grey bars for
wae. If we were to take the number of samples falling into a particular section and
divide it by the total number of samples, the numbers obtained could be thought of
as the posterior probabilities that.the wi (or wy) falls into each of these sections. In
the second example (Figure 4.12(c)), we have just plotted all 10,000 samples for w;
(a similar plot for w2 looks almost identical). This plot gives us confidence that the
sampler has converged very quickly. If it hadn’t, we might see an overall increasing
or decreasing trend. In Figure 4.12(d) we show two continuous density functions
that have been fitted to the samples. This is, in itself, a Machine Learning task for
which there are various possible solutions. If the samples looked like they had come
from a Gaussian, we could fit Gaussian densities to the two sets of samples (see
Exercise EX 2.8). In this example, we have used a more general technique known
as kernel density estimation. This can be performed in Matlab using the ksdensity
function. We won’t go into any more detail here — the important point is that
there are many ways to visualise the samples and it is possible to turn them into
(approximate) continuous density functions.

Finally we turn our attention back to the predictive probability, P(Thew =
1|Xnew, X, t,0°). When using the Laplace approximation, we approximated this

quantity by drawing samples w1, ..., wy_ from the approximate posterior and then
computing:
1 1
P(Tnew = 1|Xnew, X, t,0%) = — .
(The |Xne) N, ; 1 4 exp(— W] Xnew)

We now have a set of samples from the true posterior, p(w|X,t,0?) and we can use
them in exactly the same way. Figure 4.12(e) shows the predictive probability con-
tours computed using these true posterior samples. Remember that these contours
give the probability of classifying an object at any particular location as a square.
‘The shape of the contours looks rather like the shape in Figure 4.7(b), which is not
very surprising, as we saw in Figure 4.6(b) that the Laplace approximation didn’t
look too different from the true posterior. The only noticeable difference is that the
contours in Figure 4.12(e) are slightly less tightly curved around the areas in which
the data lie. This suggests that the probability reduces rather more slowly as we
move away from the squares. The MH sampler is sampling from the true posterior
and so the contours in Figure 4.12(e) should be considered closer to the truth than
those for the Laplace approximation in Figure 4.6(a). This comparison is really just
giving us an indication of how good the Laplace approximation is at making predic-
tions. Figure 4.12(f) shows the decision boundaries corresponding to 20 of the MH
samples picked at random (c.f. Figure 4.7(a)) (see Exercises EX 4.6, EX 4.7 and EX
4.8).

164 A First Course in Machine Learning

4 4
3| 3|
2] 2
1 1
§ 0| §]
-1 -1
-2 -2
-3 -3
—~4 -4
s 0 5 s 0 5
wi wq
(a) A bi-modal density (b) A density with high parameter corre-
lation

FIGURE 4.13: Two densities that would be tricky to sample from with MH.

4.5.3 The art of sampling

The Metropolis-Hastings algorithm seems to work well for our binary response
model. This will not always be the case — sampling methods (like MH) can be tricky
to use. The difficulty lies in the (often unknown) shape of the density from which
we are attempting to sample. Consider the density shown in Figure 4.13(a). This
density has two modes, one at w = [—1 — 1|7 and one at w = [2,2]". MH likes to
move towards the modes as these are moves that increase the posterior density and
are therefore always accepted. Imagine w, somewhere near the mode at w = [2, 2]T.
To move from here to the mode at w = [—1, —l]T would require many downhills in a
row. Although this is possible, it is incredibly unlikely. This is where the relationship
between the theory and practice of algorithms like MH breaks down. In theory, we
will move from the top of one mode to the top of the other at some point in the
future (just because it is unlikely doesn’t mean that it won’t happen eventually). In
practice, we might get very old while we wait. We will happily explore one of the
modes without ever realising that the other exists.

A second problem is illustrated by the density in Figure 4.13(b). Here, we have
a density with only one mode, but the two variables w; and ws are very dependent
or highly correlated. If the value of w; is known, it is possible to narrow w, down to
quite a small range. Densities such as this make it very difficult to choose proposal
distributions: p(W,|w;s_1). Pick any position on the density in Figure 4.13(b) and
imagine proposing a movement based on a Gaussian density with a diagonal covari-
ance matrix (as we used in all of our examples) which would have circular contours
when plotted. The density shown in Figure 4.13(b) is far from circular and because
the shape of the proposal density is so different from the shape of the density we
are attempting to sample from, many samples will be rejected: the vast majority
of moves that we sample from our proposal will involve moving steeply down the
probability gradient. B

These are not the only problems. For example, how do we know when we have
taken enough samples? How do we know how many samples we need to discard at
the beginning? Fortunately, there are ways to overcome all of these problems: more
sophisticated algorithms, ways of choosing proposal densities, quantities that we can

Bayesian Inference 165

evaluate that indicate convergence, etc. Further details are provided in the suggested
reading.

4.6 Summary

The motivation for this chapter was the desire to do things in the Bayesian way
when we are not able to compute the distributions of interest analytically. We have
shown examples of three general techniques. First, finding the highest point of the
posterior (the MAP estimate). 'This is a single value, and single values are not very
Bayesian but it incorporates the prior and could therefore be considered a step up
from the maximum likelihood solution. The second approach was to approximate the
posterior with another density. We chose the Laplace approximation, which approx-
imates the posterior with a Gaussian. In many applications, this density could be
used to compute the required expectations (predictions) analytically. In our binary
response application, the expectation was not analytically tractable, but sampling
from a Gaussian is easy and so we approximated (again) with a sample-based ap-
proximation. The third approach involved using the Metropolis-Hastings algorithm
to generate samples from the true posterior which could be used to compute expec-
tations. This comes at additional computational cost, but (in theory at least) we get
predictions that reflect the true posterior.

4.7 Exercises

EX 4.1. For a data set consisting of N observations x, (each of which is D-
dimensional) and real valued targets t,, a linear regression model is de-
fined as:

p(tn|Xn, w) = N(W %, 1)
Making the standard IID assumption and assuming a Gaussian prior over
the D-dimensional parameters w, show that the Laplace approximation
is equal to the true posterior.

EX 4.2. In Chapter 3 we computed the posterior density over r, the probability
of a coin giving heads, using a beta prior and a binomial likelihood.
Recalling that the beta prior, with parameters e and 3, is given by

ko) = ot (=)

and the binomial likelihood, assuming y heads in N throws, is given by
p(y|r, N) = (]%) r¥(1 —r)NY

compute the Laplace approximation to the posterior. (Note, you should

166

EX 4.3.

EX 4.4.

EX 4.5.

EX 4.6.

EX 4.7.
EX 4.8.

A First Course in Machine Learning

be able to obtain a closed-form solution for the MAP value, 7, by setting
the log posterior to zero, differentiating and equating to zero).

Plot the true beta posterior and the Laplace approximation computed in
Exercise EX 4.2 for various values of «, 8, y and N.

Given the expression for the area of a circle, A = mr?, and using only
uniformly distributed random variates, devise a sampling approach for
computing 7.

Re-arrange the logistic function:

1

P(Tnew - l!xneW7‘?V) - 1+ exP("wanew)

to show that P(Thew = 1|Xnew, W) = 0.5 implies W Xnew = 0.

Assume that we observe N vectors of attributes x;,...,xn; and associ-
ated integer counts t1,...,tn. A Poisson likelihood would be suitable:

Vin exp{—V,}

p(tn [Xn, W) =
tn!

where V,, = exp(wan)

Assuming a Gaussian prior on w, derive the gradient and Hessian needed
to use a Newton-Raphson routine to find the MAP solution for the pa-
rameters w.

Derive the Laplace approximation for the model in Exercise EX 4.6.

Implement a Metropolis-Hastings sampling scheme for the model of Ex-
ercise EX 4.6 and compare the posterior with the Laplace approximation
derived in Exercise EX 4.7.

Bayesian Inference 167

Further reading

(1]

2]

(3]

(4]

(5]

(6]

(7]
(8]

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael Jordan.
An introduction to mcmc for machine learning. Machine Learning, 50:5-43,
2003.

A tutorial introduction to MCMC techniques from the specific point
of view of Machine Learning.

Siddhartha Chib. Understanding the Metropolis-Hasting algorithm. The Amer-
ican Statistican, 49(4):327-335, 1995.

An excellent tutorial on the Metropolis—Hasting algorithm. A good
starting point to look deeper into this family of algorithms.

Arnaud Doucet, Nando de Freitas, and Neil Godron, editors. Sequential Monte
Carlo Methods in Practice. Springer, 2010.

We have not covered sequential Monte Carlo techniques in this book,
but they are becoming increasingly popular for performing Bayesian
inference in complex models, particularly models with a temporal
component, like target tracking.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman and Hall/CRC, second edition, 2004.

This is an excellent resource for practical Bayesian inference. In par-
ticular, it provides a solid introduction to other sampling techniques
as well as procedures for determining if Metropolis-Hastings and
other sampling algorithms have converged.

W.R. Gilks, S. Richardson, and D. Spiegelhalter, editors. Markov Chain Monte-
Carlo in Practice. Chapman and Hall/CRC, 2005.

An edited volume providing several interesting practical sampling
examples.

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 73(2):123-214, 2011.

A recent paper by the authors describing a sophisticated Metropolis
algorithm for sampling from distributions with complex forms.

Jun Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2008.

Carl Rasmussen and Christopher Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

168

(9]

[10]

[11]

A First Course in Machine Learning

In this chapter we briefly mentioned the non-parametric Gaussian
process as an alternative to the parametric model. This book pro-
vides a comprehensive introduction to the use of Gaussian processes
for both classification and regression.

Simon Rogers, Richard Scheltema, Mark Girolami, and Rainer Breitling. Prob-
abilistic assignment of formulas to mass peaks in metabolomics experiments.
Bioinformatics, 25(4):512-518, 2009.

A paper by the authors that described an alternative Bayesian sam-
pling method (Gibbs sampling) being applied to the problem of de-
tecting metabolites in mass spectrometry experiments.

Michael Tipping and Alex Smola. Sparse Bayesian learning and the relevance
vector machine. Journal of Machine Learning Research, 1:211-244, 2001.

An example of both regression and classification based on a linear
model. The Laplace approximation is used in the classification ex-
ample.

Christopher Williams and David Barber. Bayesian classification with Gaussian
processes. IFEFE Transactions on Pattern Analysis and Machine Intelligence,
20(12):1342-1351, 1998.

One of the first papers to use Gaussian processes for classification.
A good introduction into some real approximate Bayesian inference.

Chaptver 5

Classification

In the previous chapters, we have introduced many of the main concepts that un-
derpin Machine Learning methods. We have seen how, for a particular model, we
can choose parameters and make predictions based on oberved data. This has been
done in three ways — finding the parameters that minimise a loss function, finding
those that maximise a likelihood function and by treating the parameters as random
variables. We will meet some of these approaches again in this and subsequent chap-
ters as we tackle the main algorithmic families that make up the field of Machine
Learning: classification, clustering and projection.

In this chapter we will deal with classification. The field of machine learning can
boast of many classification algorithms and this set grows on a daily basis. We have
chosen to introduce just four algorithms here. The four comprise a broad foundation
to classification techniques in general and knowledge of these will enable the reader
to solve a wide range of classification problems and explore the rest of the literature.

The four algorithms that we cover can be split into two types — those that produce
probabilistic outputs and those that produce non-probabilistic outputs. Both types
have their advantages and the choice will always be dataset dependent.

5.1 The general problem

Typically, we will be presented with a set of N training objects, xi1,...,xn.
Each is a vector with dimension D. For each object we are also provided with a
label t,, that will describe which class object n belongs to. This label will typically
take an integer value. For example, if there are two classes in our data, t, = {0, 1}
or t, = {—1,1}. More generally, if there are C classes, t, = {1,2,...,C}. Our task
is to predict the class thew for an unseen object Xnew.

It is worthwhile drawing parallels between this setup and the one we saw in
Chapters 1 to 3. In those chapters, we were provided with a set of objects z1,...,zn
and associated real-valued labels. For many examples, the objects were Olympics
years and the labels (responses) winning times for the men’s 100 m sprint. Our aim
was to predict the winning time for future Olympics games. The classification setup
is very similar — it is just that in classification the response variable is an integer
indicating a particular class rather than a real value. In fact, we have already seen
an example of a classifier in Chapter 4. The binary response model is a well-known
binary classification algorithm known as logistic regression.

Classification algorithms have been used successfully in many domains. Two
particularly challenging examples are automatic disease diagnosis, where we are in-

169

170 A First Course in Machine Learning

terested in predicting whether a patient is healthy or unhealthy based on medical
observations and text classification, where we are interested in classifying docu-
ments into topics or as relevant/irrelevant for a particular user. These two examples
illustrate the diverse applications in which classification techniques can be found.
Different domains have their own associated problems. In the first example, how
do we handle the uneven cost of making errors? In the second, how do we handle
complex data objects like text? We will address both of these issues in later sections.

5.2 Probabilistic classifiers

Probabilistic and non-probabilistic classifiers differ in the type of output they
produce. In the probabilistic case, the output is the probability of a new object
belonging to a particular class. Expressing the training data in matrix and vector
form (X, t), this probability, for class c is:

As a probability it must satisfy the following constraints:

0 S P(qwnew = clxﬂeWax)t) S 1

Il
[

C
Z P(Tnew = C|xneWyx>t)

c=1

At first glance, obtaining a probability as an output may seem unnecessary. After
all, we just said that our task was to predict the class Thew. If we are primarily inter-
ested in an assignment, then we might choose a non-probabilistic classifier. However,
in many applications, the probability is useful, as it provides a level of confidence in
the output. For example, consider a disease diagnosis application with two classes,
healthy (0) and diseased (1). Providing the probability P(Trew = 1|Xnew, X, t) is much
more informative than simply stating that trew = 1. P(Thew = 1|Xnew, X, t) = 0.6 and
P(Thew = 1|Xnew, X, t) = 0.9 both suggest that Xnew should be classified as diseased,
but in the former case, the model is much less certain. Perhaps more tests are re-
quired before a decision can be made.

5.2.1 The Bayes classifier

Our first probabilistic classifier is known as the Bayes classifier, taking its name
from the equation on which it is based. Given a set of training points from C classes,
our aim is to be able to compute the predictive probabilities (Equation 5.1) for each
of C potential classes. These probabilities can then form the basis of a decision
making process (e.g. assign Xnew to the class with the highest probability) or be used
to compute an expectation.

From Bayes’ rule (see Section 2.2.7 and Chapters 3 and 4), we can obtain an
expression for the predictive probability:

Classification 171

P(Xnew|Thew = ¢, X, t) P(Thew = c|X, t)

P(Xnewlx, t) .
The marginal likelihood, p(xnew|X, t), can be expanded to a sum over the C' possible
classes, resulting in the following equation that defines the Bayes classifier:

P(jvnew = Clxnéw,xvt) =

We are left with the task of defining p(Xnew|Thew = ¢,X,t) and P(Thew = ¢|X,t),
the likelihood of xnew belonging to the cth class and the prior probability of the cth
class. We will now discuss each of these in turn.

5.2.1.1 Likelihood — class-conditional distributions

The likelihood term in Equation 5.2, p(Xnew|Thew = ¢, X,t), is a distribution
specific to the cth class (it is conditioned on Thew = ¢), evaluated at Xnew. 10 create
a Bayes classifier we need to define C of these class-conditional distributions. It is
common to use the same type of distribution for each class, although there is no
reason why this has to be the case. As with any choice of distribution, our decision
should be based on the type of data being modelled and any additional knowledge
we have about this data. Once we have chosen the distribution for the cth class, we
are left with the job of choosing its parameters. For example, if we choose a Gaussian
distribution, we need to choose the mean and (co)variance. Any parameters required
to define the distribution for class ¢ will be set using just the training data for class
c. This stage in itself could be thought of as a Machine Learning problem and we
will discuss it further in Section 5.2.1.3.

5.2.1.2 Prior class distribution

The second quantity in Equation 5.2 is P(Tnew = ¢|X, t). This is the probability
that the object belongs to class ¢ conditioned on just the training data: X,t. It
enables us to specify any prior beliefs in the class of xnew before we see it. This
allows us to account for uneven class sizes. For example, perhaps there is a class
¢ that is extremely rare. Before we see the data we might like to bias against this
class (choose P(1hew = c|X,t) to be very low) so that we will only classify Xpew as
belonging to it if it has a very high likelihood. Alternatively, class ¢ may be very
rare but we always want to detect it — it may be crucial not to misclassify these rare
instances. In this case, we might set P(1hew = ¢|X,t) to be high. This will result in
more potential X,ew vectors being classified as class ¢. Of course, some of them will
be incorrect (they truly belong to a different class) but we will not miss many that
really belong to class c. These issues can also be resolved when we make a decision
based on the set of predictive probabilities. We will discuss these issues at length in
Section 5.4.

Regardless of our motives, the only technical restriction in the choice of p(Thew =
c|X,t) is that they are positive and > P(Thew = ¢|X,t) = 1. Two popular choices
are:

1. Uniform prior: P(Thew = ¢|X,t) = é

172 A First Course in Machine Learning

6 —
4r O ¢ o o]
o &% 2?%0 o
2} :. <° 0.(,0 0
~ ® 0% %
o«
8 O °° -‘
[) a
-2 1 4 f.:h
i
-4} m B
B
2 0 2 4 6
T

FIGURE 5.1: Three class classification dataset.

2. Class size prior: P(Thew = ¢|X,t) = %ﬂ, where N is the number of objects in
the training set and N, is the number of objects in the training set belonging

to class c.

Note that although we have written the prior as being conditioned on X and t it
is not necessarily dependent on them. Neither example above uses X in the prior
definition and only the second example uses t (through N.).

5.2.1.3 Example — Gaussian class-conditionals

The data shown in Figure 5.1 has been generated from three classes. Each train-
ing object consists of a two-dimensional attribute vector Xn = [Zn1,Zn2]" and an
associated label t, = {1,2,3}. Class 1 is plotted as black circles, class 2 as white
diamonds and class 3 as grey squares. Given that the attributes are real valued, we
will use Gaussian class-conditional distributions:

p(xn‘tnz c,x,t) SN(”C’zc) (53)

where p. and . need to be chosen based on the training points associated with
class c. We will denote these points as X°. This is itself a Machine Learning task — we
have some data (X°) and wish to infer something about the parameters of a model.
In this example we will find the parameters p. and 3. that maximise the likelihood
of the observations X°. As an alternative, we could use a Bayesian approach. For
example, defining a prior density for these parameters, p(p., X.), we could compute
a posterior from Bayes’ rule:

P(XE| e, Ze)p(pre, Te)
p(Xe)

and then compute the likelihood of xnew by taking the following expectation:

P(pte, Be|XE) =

p(xnewlrl‘new =C, X» t) = Ep(u,;,E,‘|X") {p(xnewlllac, Ec)} .

Classification 173

Assuming that the choice of prior p(pc, 3.) is conjugate with the Gaussian likeli-
hood, the posterior and expectation could both be obtained analytically. Performing
this analysis in a Bayesian manner is likely to be most useful when there is little
data, and hence our estimates of u. and 3. are uncertain. See Exercises EX 5.1 and
EX 5.2.

The maximum likelihood estimates for the mean and covariance of a Gaussian
given a set of N data points can be obtained by differentiating the log likelihood with
respect to each parameter, setting to zero and solving (just as we did in Chapter
2 for the linear model). Omitting the details (see Exercise EX 5.3), the maximum
likelihood estimates are:

| N

Be = ngn (5.4)
1 T

3. = FG 7Z:l(xn - ﬂ'c)(xn - Il'c) s (5.5)

where the summations are only over the data instances from the cth class. The
three class-conditional distributions are shown (along with the data) in Figure 5.2
(MATLAB script: plotcc.m).

We are left with the task of deciding on the prior: P(Thew = ¢|X, t). As mentioned
carlier, a common choice is P(lrew = ¢|X,t) = MN*, the proportion of training
points in class c¢. In our example, there are N. = 30 in each class and therefore
P(Thew = ¢|X,t) = %

5.2.1.4 Making predictions

Armed with the class-conditional distributions and the prior, we are able to make
predictions. As a worked example, we will compute the posterior class probabilities
for Xnew = [2,0]7. We summarise the various quantities that we need to compute

FIGURE 5.2: Three class classification dataset with the density contours for
the three class-conditional distributions fitted using Equations 5.4 and 5.5.

174 A First Course in Machine Learning

TABLE 5.1: Likelihood and priors for Xpe, = [2,0]" for the Gaussian class-
conditional Bayesian classification example.

C | p(Xnew|Thew = ¢, b, Be) | P(Thew = ¢|X, t) | p(Xnew|Thew = €, thers Be) P(Thew = ¢|X, t)
1 0.0138 1 0.0046
2 0.0061 i 0.0020
3 0.0002 —2— 0.0001

(o,
D
o

(a) P(Tnew = 1|XHEW7xv t) (b) P(Tnew = 2|xnew, X, t) (C) P(Tnew = 3|xneWy Xa t)

FIGURE 5.3: Contour plots of the classification probabilities for the
Bayesian classifier with Gaussian class-conditional distributions.

and their values for Xnew in Table 5.1. The final column gives us the numerator of
Equation 5.2. To convert these values into probabilities we have to divide each value
by the sum of the three values: 0.0046 + 0.0020 + 0.0001 = 0.0067. The resulting
probabilities are:

P(,I;‘new -]-lxnew, x, t) = 0.6890

P(Thew = 2|Xnew, X, t) = 0.3024

P(Thew = 3|Xnew, X, t) = 0.0087,

from which we can see that Xn.w is approximately twice as likely to belong to class 1
(black circles) than class 2 (white diamonds) and is very unlikely to belong to class
3 (grey squares).

By evaluating the classification probabilities over a grid of many Xnew values,
we can draw the contours of the classification probabilities. These can be seen in
Figure 5.3 (MATLAB script: bayesclass.m). For each class the model assigns a
high probability to the area of the space populated by training points of that class.
However, there are some odd effects. T'ake 5.3(a) as an example: It has a high prob-
ability > 0.9 in the area around the middle left of the plot where most class 1 (black
circles) data is located. However, it also has a high probability in the bottom right
of the plot where there is no class 1 data (or data from any class). Similarly, the
contours for class 2 (Figure 5.3(b)) give a high probability in the middle-right of the
plot where there is no data belonging to class 2. These effects can be explained by
noticing the steepness of the class-conditional contours for class 3 (Figure 5.2) when
compared with those for classes 1 and 2. Its density decays so much faster than those
for classes 1 and 2 that to the right of class 3, the density functions for both classes
1 and 2 are higher. This is an unfortunate property — it does not seem sensible to

Classification 175

label points to the bottom right of the plots as belonging with high probability to
either class 1 or 2. It would be far better if, as in the binary response model we saw
in Chapter 4, the probabilities would become less certain as we move away from the
vicinity of the data.

5.2.1.5 The naive Bayes assumption

In the previous example, we used two-dimensional Gaussians for the class-
conditional distributions. These distributions were able to capture dependencies
between the two attribute variables for each class. For example, we can see how
the class-conditional distribution for class 3 was able to capture the strong depen-
dency that exists between x; and x2 for the training data in class 3. Fitting a two-
dimensional Gaussian involves choosing five parameter values: two for g and three
for ¥ (X is symmetric so the two off-diagonal elements must be equal). This was
perfectly feasible given that we had 30 training points in each class. Problems arise
when the number of dimensions starts increasing. In general, fitting a D-dimensional
Gaussian requires D + D + %‘1) parameters (D for the mean and D + @
for the covariance matrix). For 10 dimensions, it is likely that 30 data points would
not be sufficient to fit the resulting 65 parameters reliably.

A common way to partly overcome this problem (lack of data can only be com-
pletely solved by getting more data) is to make the naive Bayes assumption: the
D-dimensional class-conditional distributions can be factorised into a product of
D univariate distributions. In other words, conditioned on a particular class, the
dimensions (e.g. 1 and z2) are independent. A univariate Gaussian requires two
parameters — p and o”. Therefore, fitting D of these requires 2D parameters — 45
fewer in 10 dimensions than a single 10-dimensional Gaussian. The price we pay for
this decrease in number of parameters is a decrease in model flexibility. In our Gaus-
sian example, it means that we are restricting the shapes of the class-conditional
distributions to be aligned with the axis — they cannot model any within-class de-
pendencies. This is clear from Figure 5.4, where we see the density contours for the
class-conditional distributions when we make the naive Bayes assumption:

2
P(xnltn = k, X, t) = [[p(@naltn = k, X, t).
d=1

Comparing this with Figure 5.2 it is clear that the model for class 3 no longer
accurately reflects the characteristics of the data. Figure 5.5 shows the classification
probability contours for the three classes (MATLAB script: bayesclass.m). It is
interesting to note that although we know that the class-conditional distribution for
class 3 is not particularly appropriate, the classification contours are still reasonable
(notwithstanding the lack of uncertainty as we move away from the data).

5.2.1.6 Example — classifying text

Machine learning is widely used to perform automatic text classification. Learn-
ing from data makes a lot of sense within this domain — it is not straightforward to
manually build a set of rules or models that could be used to classify text but at the
same time there is a lot of data with which a classifier could be trained.

The 20 newsgroups dataset is a popular benchmark dataset on which to evaluate
new algorithms. It consists of approximately 20,000 documents, each of which is

176 A First Course in Machine Learning

T2
o

FIGURE 5.4: Density contours for Gaussian class-conditionals with the
naive Bayes assumption.

(a) P(Thew = 1|Xnew, X, t) (b) P(Thew = 2|Xnew, X, t) (¢) P(Thew = 3|Xnew, X, t)

FIGURE 5.5: Contour plots of the classification probabilities for the
Bayesian classifier with Gaussian class-conditional distributions and the naive
Bayes assumption.

a post to one of 20 newsgroups. Considering each of these 20 newsgroups as a
different class, we will build a classification system that can automatically assign a
new document to one of these 20 classes. The groups cover a diverse set of topics
including sport, computing and religion.

The algorithms that we have introduced work with numerical data and we there-
fore need a way of encoding a document as a vector of numerical values. The most
common way of doing this is to use the bag-of-words model. If the total number of
unique words in all documents (the vocabulary) is M; each document is represented
as an M-dimensional vector. The vector for the nth document, x,, is made up of
the counts of the number of times each word appéars. Znm is therefore the number
of times word m appears in document n.

Given that the vocabulary is likely to be large, we will make the naive-Bayes
assumption. T'herefore our class-conditional distribution can be decomposed into a

Classification 177

product over the words in the vocabulary:

: M
p(xn|ln =c,...) = H p(Zam|Tn =c,...).
m=1

T'his assumption means that the-number of parameters we require to define each
class-conditional will be roughy equal (depending on the choice of distribution func-
tion) to the number of words. Adding any form of dependency between words would
cause an explosion in the number of parameters that we would have to fit. For ex-
ample, if we looked at pair-wise dependencies, we would need on the order of M?
parameters. Given that a typical vocabulary might include some 50,000 words, this
is already a significant challenge.

The bag-of-words model also assumes that the ordering of the words is not
important. For example, x,, would be identical for the following two sentences despite
the fact that the second is nonsense:

1: The quick brown fox jumps over the lazy dog.
2: Dog quick lazy the jumps fox brown the over.

This assumption is not too restrictive: if our classifier is given a document that
includes many instances of the word ‘baseball’ it is likely that this document is
about sport regardless of the particular ordering of the words. Note that the bag-of-
words model ignores ordering but does not necessarily imply independence. We could
still define class-conditional distributions that allowed for dependencies between the
elements of x,.

We will use multinomials (introduced in Section 2.3.3) for the class-conditional
distributions. The multinomial distribution for the vector x, is defined as:

P(xnlq) = (i) H q“""" : (5.6)
: et nm!) 220 : -
where s, = 271;[:1 Znm and q = [g1, - - ., qM]T are a set of parameters, each of which
is a probability (3, gm = 1). Note that the multinomial distribution automatically
makes the naive Bayes assumption through the product over m.

There will be one multinomial (and hence one q) for each class. Therefore, we
need to determine the value of q. (the vector of probabilities for the cth class) based
on the set of training objects — x,, — corresponding to class ¢. We can do this with
maximum likelihood (see Exercise EX 5.4), resulting in:

N,
Zn:l Tnm
M N..
D omie1 2omet Tnm!
where the summations over n just include objects from class C. Defining the prior

distribution P(1hew = ¢|X,t) = cr we could make predictions using Equation 5.2.
However, before we do that there is a problem that needs to be addressed.

qcm =

5.2.1.7 Smoothing

It is quite feasible that a particular word (say m) will never appear in documents
from one class (say ¢) - not many religious newsgroup posts are likely to mention

178 A First Course in Machine Learning

‘baseball’. This will result in gcm = 0. Look back at Equation 5.6 — if any one or more
gem is zero with nonzero Znm, the product szl gzrm will be zero. In other words, if
we are trying to compute the classification probability for a new document Xnew that
happens to include word m, the likelihood (p(Xnew|Thew = ¢,qc)) will equal zero and
hence P(Thew = C|Xnew, X, t) = 0. A document including a word that doesn’t appear
in any of the training documents will have probability 0 of belonging to all classes.
This is another example of over-fitting to the training data and we can overcome
this by placing a prior density on q that encodes the belief that all probabilities
are greater than 0. Once we have defined this prior, we can set q with the MAP
estimate (see Chapter 4) rather than the maximum likelihood estimate. We could
also take expectations with respect to the posterior density of q (see Exercises EX
5.5 and EX 5.6).

A suitable prior density for a vector of probabilities is the Dirichlet density,
defined as:

H F(= 1 Hq (5.7

We will simplify this further by assuming that a,, = o —i.e. the parameter used
to define the Dirichlet is the same for each word. The MAP estimate can be obtained
by maximising the prior multiplied by the multinomial likelihood (or the log of this
product). Omitting the details here (see Exercise EX 5.7), the MAP estimate for

Gem 18t

p(qcld)

a— 14+ Tom
M(a—1)+ZM~12n 1 Tnm’

Once again, summations are only over the training objects from class ¢. For a > 1,
gem > 0 and the issue of zeros is no longer a problem. This technique is often referred
to as smoothing — if we keep increasing «a, each word probability g.» will get closer
and closer to '1\'1/1‘ This could also be considered as another example of regularisation
(see Section 1.6).

The newsgroup data has been split into training and test sets holding ~ 11,000
and = 7,000 documents, respectively. Setting o = 2, using Equation 5.8 to determine
q. and setting the prior classification probability to 1/20 (a uniform prior over the
20 classes) we can compute the classification probabilities using Equation 5.2 where
P(Xnew|tnew = ¢, X, t) is given by Equation 5.6 with x,, substituted for Xnew-

For each of the =~ 7,000 X,ew vectors, we have a set of 20 probabilities. The
simplest way to evaluate how well the classifier is working is to assign each Xpew to
the class for which it has the highest probability and compare these assignments
to the known labels. If we do this, we find that the classifier is correct 78% of the
time — not bad given that we have used the simplest possible model and have not
attempted to optimise it in any way.

Figure 5.6 provides a graphical representation of the classification probabilities
for the =~ 7,000 test points (MATLAB script: newspred.m). Each row corresponds to
a single test point and the rows are ordered by true class. Each column corresponds
to a predicted class. For example, the values in column 10 give the probabilities of
test points being classified as belonging to class 10. The block-like structure present
tells us that the algorithm is doing reasonably well - the probabilities are high where
they ought to be. A plot like this also allows us to see whether there is any pattern

(5.8)

Gem =

Classification 179

Index of test point

5 10 15 20
Class

FIGURE 5.6: Graphical representation of the predictive probabilities for the
Bayesian classifier on the 20 newsgroups data. Each row corresponds to one
test point and the test points are ordered by true class. The whiter the colour,
the higher the probability.

in the errors being made. For example, it seems that a large number of test points
belonging to class 19 (the penultimate block) are wrongly classified as belonging
to class 17. These two classes are from the newsgroups talk.politics.guns and
talk.politics.misc and so it is not surprising that there might be some confusion
here — many popular words will be shared by the two classes. Another example is the
confusion between classes 20 and 16 for data points whose true class is 20. These two
are {rom talk.religion.misc and soc.religion.christian, which are also clearly
related. An analysis of the types of mistakes being made by classification algorithms
will often enable us to improve performance. In this example, it may be sensible to
consider whether classes 16 and 20 should be amalgamated into a larger class. If
not, it might suggest that we should attempt to obtain more data (documents) from
these two classes.

There are several ways to analyse the results being produced by a classification
algorithm. We will look at these in more detail later in this chapter (Section 5.4).
In the meantime, we will move on to our second probabilistic classifier.

5.2.2 Logistic regression

Although we called it a binary response model, Chapter 4 was entirely devoted
to a binary classifier known as logistic regression. In Chapter 4 we didn’t really
discuss it from the viewpoint of classification but as a model for which analytical
Bayesian inference was not, possible. However, everything that one would need to

180 A First Course in Machine Learning

use this method is there in Chapter 4 and we will not reproduce it here. There are,
however, a couple of points that are worth discussing — the motivation for what we
called the ‘squashing function’ and generalisations to this type of model.

5.2.2.1 Motivation
In Chapter 4 we motivated the logistic likelihood,

1

P(,I‘new = 1|xneW1w) = 1 +8Xp(—WTXnew)7

by arguing that we wanted to use our familiar linear model (wa) but needed to
transform it so that the output was a probability (0 < P(Thew = 1|Xnew, W) < 1).
Whilst there is nothing wrong with this as a motivation, the use of the logistic
likelihood is usually more formally derived as a result of modelling the log-odds ratio.
This is the log of the ratio between P(Ihew = 1|Xnew,; W) and P(Tnew = 0|Xnew, W):

lo P(Tnew = llxnew’ W)
& P(,[‘new = leneWa W)

There are no constraints on this value - it can take any real value. If P(Thew =
1|Xnew, W) < P(Thew = 0|Xnew, W) the log ratio will take on a large negative value
and if P(Thew = 1|Xnew, W) > P(Thew = 0|Xnew, W) it will take a large positive one.
Therefore, this quantity is a sensible candidate for modelling with our familiar linear
model:

 P(Toew ‘=‘1‘Xnew,'W\) L o e
log (P(T;wew = Oixnevuw)) N T (59)

With a bit of re-arranging, and noting that
P(j;\ew = 0|xneW1W) =1- P(,I‘new = llxnew,w),

we can obtain an expression for P(Thew = 1|Xnew, W):

P(,l'new = 1|xnew, W) T
1 = new
o8 (P(,Fnew et leneWa W) WX

P(,l‘new = 1|Xnew,w) = exP(wa)
P(/-l‘new = 0|Xnew>w) -
P(:[‘new = llxnewvw) = eXP(WTXne)

1-—- P(:l;\ew = llxnew’ W)
P(Thew = 1|Xnew, w)(1 + exp(wanew)) = exp(wanew)
exp(W ' Xnew)
1+ eX}')(WTxnew)
1
1+ exp(— W Xnew)

P(/I‘new = 1Ixnew, W) =

P(,Iz'new = 1|xnew’w) =

By using the logistic likelihood for P(Thew = 1|Xnew, W), we are actually modelling
the log-odds ratio with a linear model. In the statistics community approaches like
this are known as generalised linear models - linear models that are passed through
some transformation to model the quantity of interest.

Classification 181

o

T a oo v o
a0,
) A *
3 umn; 8, fﬁ;fu 3
2 ’. .unl?“nhu * % -. 2
§'1 .’ ..u u::“. X S]
..-.' .:- N ':.. *
0 .o o‘ﬁ. g . .‘.:.'. ‘= % 0
LI O
-1 d « * -1
o® .
-2 . . . -2
3= o 2 4 5 S = 0 2 4 6
I Ty
(a) Dataset that might be better mod- (b) Classification probabilities for a
elled with a nonlinear decision boundary model with up to second order terms (see

Equation 5.10). These are based on a
point estimate of the parameters — W —
obtained using a Newton—Raphson opti-
misation

FIGURE 5.7: Binary data and classification probability contours for the
logistic regression model described by Equation 5.10.

5.2.2.2 Nonlinear decision functions

The decision boundaries for individual w values in Chapter 4 were all straight
lines. The probability contours obtained with the Laplace approximation and the
Metropolis-Hastings algorithm were curved as the result of averaging over many
straight lines. By expanding x, to include terms like z2, we can obtain non-linear
decision boundaries in logistic regression in a manner similar to the way we obtained
nonlinear regression functions in Chapter 1. For example, the data in Figure 5.7(a)
shows a binary classification dataset that may require a nonlinear decision boundary.

Using z1 and z» to denote the individual attributes (x = [z1,22]"), we could use
the following model for the log-odds ratio:

1 (P(rrnew = 1|xnewaw)
og T
P(Inew = leneWyw)

) = wo + w11 + Waka2 + W3TT + Waz (5.10)

T'o show that this is able to produce nonlinear decision boundaries, we find the MAP
estimate W of the parameters, assuming a Gaussian prior p(w|o?) = N(0,0°I) (see
Section 4.3). We could, of course, submit this model to the more Bayesian treatments
introduced in Chapter 4 if desired.

Plugging W into the logistic likelihood allows us to compute the classification

probabilities:
1

1 4 exp(—W T Xnew)

P(Clvnew = 1|xnewy‘?/) =

Evaluating this over a grid of xne» values enables us to plot contours of the prob-
ability of belonging to class 1 over the space of attributes. The nonlinear decision
boundary can be seen in Figure 5.7(b) (the training points have been greyed out a
little to make the contours easier to see) (MATLAB script: nonlinlogreg.m). This
is an appealing property of logistic regression but it is important to remember that

182 "~ A First Course in Machine Learning

the problems of over-fitting and poor generalisation we saw when making the linear
model more and more complex in Chapter 1 are just as troublesome in the classifi-
cation domain. Remember that this is for a single value of w: we obtained nonlinear
decision boundaries in the Laplace and Metropolis-Hastings cases in Chapter 4, but
only by averaging over many different straight lines.

5.2.2.3 Nonparametric models - the Gaussian process

Throughout this book, we have restricted ourselves to models of the form wix.
This model has a set of parameters w in which it is linear. For any particular
expansion of x (e.g. adding squared terms), this function belongs to a particular
family of functions. For example, if we had squared terms, it is a member of the
quadratic family. The choice of a family places restrictions on the flexibility of the
function — if we choose wo + w1z, we can only model things with straight lines.
If we choose wo + w1z + waz? 4+ waz®, we can only model things with cubic (3rd
order) polynomials. Models such as these are known as parametric, as they belong
to a particular parametric family and the particular function within that family is
determined by a set of parameters w.

It is worth briefly mentioning a very flexible alternative — nonparametric models.
Rather than being defined as a function of some parameters (e.g. f(x;w)), non-
parametric models are defined in a more general manner. For example, a popular
nonparametric model is the Gaussian process (GP). In parametric models, we place
a prior distribution on the parameters w which in turn implies a prior distribution
over the output values of the function. With a GP we place the prior distribution
directly onto the output values of the function. Note that nonparametric does not
mean that the GP does not have any parameters, but that it does not assume a
parametric form for the function.

The GP is characterised by two functions — a mean function p(x) that describes
the average function value as a function of the attribute z (z can be a scalar or a
vector) and a covariance function ¢(X.,Xm) that defines how similar the function
output at x,, should be to that at x,,,. In practice, the mean function is often assumed
to be 0.

For any finite set of N data points, the Gaussian process essentially becomes
an N-dimensional Gaussian distribution with mean p = [u(x1),...,u(xn)]" and
covariance matrix:

e(x1,x1) e(x1,%x2) ... c(xX1,%XN)
c(x2,x1) e(x2,%2) ... e(x2,xn)
c(xn,%x1) c(XN,X2) ... c(XN,XN)

Sampling a vector from this Gaussian gives a value for the output of the function at
each of the N data objects.

GPs have become increasingly popular within Machine Learning due to their
flexibility — a GP is not restricted to a particular parametric family. They can be
thought of as a replacement for a parametric model in any particular algorithm. For
example, we could have used a GP to model the Olympics data, or as a replacement
for w'x, in the logistic regression algorithm. We will omit further discussion here,
but the reader is encouraged to investigate the use of GPs in the Machine Learning
literature.

Classification 183

5.3 Nonprobabilistic classifiers

We now turn our attention to nonprobabilistic classifiers. Rather than providing
a probability of class membership, P(Thew = ¢|Xnew, X, t), their output is an assign-
ment of an object to a class: thew = ¢. We will look at two different algorithms
— K-nearest neighbours and the Support Vector Machine. Both are very popular
within Machine Learning due to their excellent empirical performance. The Sup-
port Vector Machine will also provide us with an introduction to the area of kernel
methods.

5.3.1 K-nearest neighbours

Our first approach, K-nearest neighbours (KNN), is very popular due to simplic-
ity and excellent empirical performance. It can handle both binary and multi-class
data and makes no assumptions about the parametric form of the decision bound-
ary. KNN does not have a training phase and is best described through the simple
process used to classify new objects, Xnew-

Consider our normal scenario — we have N training objects, each of which is
represented by a set of attributes x, and a label t,,. To classify Xpew with KNN,
we first find the K training points that are closest to Xnew. tnew is then set to be
the majority class amongst these neighbours. This is illustrated in Figure 5.8. The
training data consists of data points belonging to one of two classes (grey circles and
white squares). I'wo test points are indicated by black diamonds and in both cases,
the dotted circles enclose their K = 3 nearest neighbours. The neighbours of test

D / E] ’ Test poin\t'A

FIGURE 5.8: Cartoon depicting the operation of KNN (K = 3). Circles and
squares denote the training points and diamonds the test points. Test point
A will be assigned to the ‘square’ class and B to the circles.

184 A First Course in Machine Learning

point A include two from the square class and one from the circle class and so it will
be classified as belonging to the square class. All of the neighbours of test point B
belong to the circle class to which B is therefore assigned.

One drawback of the K-nearest-neighbours (KNN) approach is the issue of ties
— two or more classes having an equal number of votes. For example, if K =
in Figure 5.8, we will always have four neighbours belonging to each class and no
majority. One option is to assign the class randomly from the set of tied classes.
This may not always he sensible as it means that the same Xnew may be assigned
to different classes if it is tested more than once. For binary classification, a neater
solution is to always use an odd number of neighbours. More generally we can weight
the votes according to distance such that the votes from closer points have greater
influence, making ties highly unlikely.

In Figure 5.8 we have used Euclidean distance to determine which points are
neighbours of the test point. However, we are free to choose any distance measure
we like. KNN is therefore very flexible — it can be used for any data type for which we
can define a distars- * - ., ¢« .1 Fwamrles of other data tvpes for which
KNN has been useri o« contiing inchmde strin: .

uit 1,» B Piinnges

5.3.1.1 Choosing K

Once we have some data and have chosen a suitable distance measure, the only
thing that remains is the choice of K. If K is too small, our classification can be
heavily influenced by noise. This is demonstrated in Figure 5.9(a) (MATLAB script:
knnexample.m) where we have plotted the decision boundary (consisting of points
equidistant from a single neighbour in each class) for some binary data with K = 1.
Whilst the majority of the boundary looks reasonable, there are three ‘islands’ that
look like the result of over-fitting. Each island gnarls a large area of input space
on what looks like the wrong side of the decision boundary. The three points in the
centre of the islands are likely to be noise (i.e. misiabeled points). This problem is
easily rectified by increasing K. Figure 5.9(b) shows the same data along with the
K = 5 decision boundary. 'l inclusion of more neighbours has had the effect of
regularising the boundary. removing the three islands.

°o 4 oo o - L]
o~
g1 800: ° 0’ & .
o © @ [.
-3 o, ©
0 % 8 g 8
o g oo
-1 o R 3%° o °
o
=2 o
o
Q - —
-2 0 2 4
T "
(a) Decision boundary when K = 1 (b) Decision boundary when K =5

FIGURE 5.9: Binary classification dataset and decision boundaries for K =
1 and K = 5. '

Classification 185

-2 0 2 4 -2 0 2 4

(a) Decision boundary when K =5 (b) Decision boundary when K = 39

FIGURE 5.10: Second binary classification dataset and decision boundaries
for K =5 and K = 39.

We have seen that a very small value of K can be dangerous. What happens
if K gets too big? As we increase K, we are using neighbours from further away
from Xnew. Up to a point, this is useful. It has a regularising effect that reduces the
chance of over-fitting. However, if we go too far, we will lose the true patterns in
the data that we are attempting to model. Consider this extreme example: in some
hypothetical training data there are Ny = 50 and N; = 10 points from classes 0 and
1, respectively. Given that N1 = 10, no test point can have more than 10 neighbours
belonging to class 1. Therefore, if K > 21, Xnew can never be classified as belonging
to class 1 — we have smoothed to such an extent that everywhere belongs to class 0!
A less extreme example can be seen in Figures 5.10(a) and 5.10(b), where we show
a dataset that has 50 points in class 0 (white circles) and only 20 points in class
1 (grey squares). The K = 5 decision boundary in Figure 5.10(a) looks reasonable
whilst the K = 39 boundary in Figure 5.10(b) is being pushed up into the top right
corner as the larger class exerts its influence.

Datasets with uneven numbers of objects in each class are known as imbalanced
and are common in Machine Learning and something we must be aware of when
we undertake any classification analysis. We will discuss this particular problem in
more detail in Section 5.4.

The most popular method for choosing K is cross-validation (see Section 1.5.2).
In previous sections when ¢ was continuous, we used cross-validation to optimise the
squared loss. We now need something suitable for our discrete (classification) t. We
will discuss various other measures in Section 5.4 but for the moment we will use
the simple measure that we used with the newsgroups data in Section 5.2.1.6 — the
proportion of times the classifier makes a mistake. Figure 5.11(b) shows how the
percentage error (0/1 loss) changes as K increases for the synthetic data given in
Figure 5.11(a) (MATLAB script: knncv.m). Ten-fold cross-validation was used and,
to remove the effect of any particular partitioning of the data into the 10 folds, the
entire process was repeated 100 times. The errors plotted are therefore an average
of 10 x 100 = 1000 fold errors. As K increases, the classification error drops to a
minimum corresponding to K = 5 and then starts increasing (with a little bump at
K =17).

186 A First Course in Machine Learning

0.11
4 - -
. = 0.1
3 a .ﬂ g
° L] a e a
2 o . > 0.09
° 8o = 0 O
~ [} %o o
a 1 ozoo:oi;oo o0 ® o %0008
o ° °g°°° ° s E
0 o ®°g°0 o 2007
1 o o TR0} we
- AN 0.06
R 0 2 4 0 10 20 30
Zy K
(a) Binary classification dataset. Note (b) Average cross-validation error as K
the class inbalance: the grey squares class is increased '

has fewer members than the white circles

FIGURE 5.11: Using cross-validation to find the best value of K. Ten-fold
cross-validation was used and the reported error is averaged both over the
folds and over 100 different partitions of the data into folds.

5.3.2 Support vector machines and other kernel methods

Our second nonprobabilistic classifier is the Support Vector Machine (SVM).
SVMs are binary classifiers (although multi-class extensions have been proposed)
and have been used successfully across a wide range of Machine Learning applica-
tions. Their success is due to their excellent empirical performance and for many
applications they are hard to beat. They have been found to be particularly useful
in applications where the number of attributes is much larger than the number of
training objects. This is because the number of parameters that must be set for the
SVM is related to the number of training objects and not the number of attributes.

The standard SVM uses a linear decision boundary, given by w'Xnew + b, to
classify new data objects. Objects lying on one side of the line are put into class
trew = 1 and objects on the other side into tnew = —1 (note that the class labels are
{1, —1} rather than {0, 1}).

The SVM decision function for a test point Xnew is therefore given as:

v = SigN(W Xoew £ B) (5
The learning task involves choosing the values of w and b based on the training
data. This is achieved by finding the parameters that maximise a quantity called
the margin. This is much the same way that we minimised the loss in Chapter 1,
maximised the likelihood in Chapter 2 and found the MAP solution in Chapter 3.

5.3.2.1 The margin

The margin is defined as the perpendicular distance from the decision boundary
to the closest points on either side. This is illustrated in Figure 5.12, where the
margin is denoted by +.

Classification 187

(a) The decision bound- (b) A non-optimal decision boundary
ary that maximises the
margin

FIGURE 5.12: The classification margin v, defined as the perpendicular
distance from the decision boundary to the closest points on either side.

The toy examples in Figures 5.12(a) and 5.12(b) demonstrate why the margin
is a sensible quantity to maximise. Intuitively, the boundary corresponding to the
larger margin (Figure 5.12(a)) looks more sensible. In particular, the decision bound-
ary in Figure 5.12(b) will classify points towards the top left and bottom right as
belonging to the white and black classes, respectively, whereas common sense would
suggest the opposite. Notice how in Figure 5.12(b) the margin is computed as the
distance between the decision boundary and a different set of training points than
in Figure 5.12(a). The margin is defined as the distance between the boundary and
the closest points, the set of which will change as the boundary does.

5.3.2.2 Maximising the margin

It is easiest to compute the margin using one point from each class. Figure 5.13
shows how this is done. x; and x; are the closest points from the two classes. 2y
(i.e. double the boundary) is equal to the component of the vector joining x; and
X2 in the direction perpendicular to the boundary.

The vector joining x; and x; is given by x; — x2 and the direction perpendicular
to the decision boundary is given by w/||w]||. The inner product between these two
quantities gives us the quantity that we require:

27 = wT(xl — Xg).

1
[lwl|

Our decision function, taew = sign(w ' Xnew+b), is invariant to scaling its argument
by a positive constant. This means that we can multiply w'Xnew + b by a positive
constant A and the output of the sign function will be unchanged. Therefore, we can
decide to fix the scaling of w and b such that w'x + b = +1 for the closest points

188 A First Course in Machine Learning

X1 — X2

FIGURE 5.13: Illustrating the steps taken to compute the margin, ~. 27 is
equal to the component of the vector x; — x2 in the direction perpendicular
to the boundary.

on either side. This restriction allows us to simplify our expression for +:

1 T
2—): = —W (X1 — X2
Wl)

1 T T
= '”—“-,—‘—'(W X1 —W X2)

1
= W(wal +b—w'xs—b)

1

= '”—vv—|—|(1+l)

_ 1 '
Y= Wl (5:12)

Comment 5.1 — Constrained optimisation with Lagrange multipli-
ers: At various points in this book we will need to perform constrained
optimisations — finding the values of a set of parameters that maximise
(or minimise) an objective function but that also satisfy some constraints.
This can be done using Lagrange multipliers. In particular, we make a
new objective function which includes the original plus an additional term
for each constraint. The form of these terms is chosen such that the opti-
mum of the new function is equal to the optimum of the constrained problem.

For example, suppose we wish to minimise f(w) subject to the constraint
g(w) < a:

argmin f(w)
w
subject to g(w) < a

The new objective function is produced by adding a Lagrangian term of the
form A(a — g(w)) and optimised over both w and the Lagrange multiplier A:

argmin f(w) — A(g(w) — b)

w,

subject to A > 0.

Classification 189

Comment 5.1 - Constrained optimisation with Lagrange multipli-
ers (continued): We are not going to go into the details of how this works
here. Whenever we perform constrained optimisation, we will state the neces-
sary Lagrangian terms without any further details. For more details, see the
suggested reading at the end of this chapter.

To maximise the margin we must therefore maximise ||_v1v| There are, however,
some constraints. Recall that we decided that, for the closest points in class 1,
w'x, + b= 1. Therefore, w has to be chosen to satisfy w'x, + b > 1 for all points
in class 1. Similarly, it must satisfy w'x, + b < —1 for those in class —1. Defining
the labels as 1 allows us to express these two sets of constraints succinctly as:

tn(W'xn +b) > 1.

T'herefore, our learning task is to find the largest value of v = ”vlv—” that satisfies
these N constraints (where N is the number of points in the training set). It will
actually be easier to minimise £||w||> and so we shall do this instead. Formally, our
optimisation problem has become:

.1 2
argmin = ||w||
- 2
subject to tn(wan +b) > 1, for all n.

This is the first time we have come across a constrained optimisation problem. To
solve it, we need to incorporate the constraints into the objective function through
a set of Lagrange multipliers. Lagrange multipliers add a new term in our objective
function for each constraint such that the optimum of the new objective function
corresponds to the optimum of the original, constrained problem. In our case, we
need N Lagrangian terms. Each has an associated Lagrange multiplier, which is
itself constrained to be positive. Without going into any more details of Lagrange
multipliers, our new objective function is:

N
] 1
ar‘;gvlgm §wTw - Zl an(tn(W x, +b) — 1)
e

subject to «a, > 0, for all n,

where we've used the fact that ||w||? = w'w. At an optimum of this new objective
function, the partial derivatives of the objective function with respect to w and b
must be zero. These derivatives are:

N
o
W — Z antnxn
=1

9 N
% = —Zlantn.

Equating these two expressions to zero gives us the following two identities that

Il

©

190 A First Course in Machine Learning

must be satisfied at the optimum:
N
W = Zantnxn (513)
n=1

N
> ot = 0. (5.14)
n=1

Substituting the first of these identities back into the objective function gives us a
new objective function which must be mazimised with respect to the a,, rather than
w:

N
%wTw - Z an(tn(W' Xn +b) — 1)

n=1
N N N N
= = (Z amtmx;rn> (Z antnxn) — Zan (tn (Z amtmx;xn + b) — 1)
m=1 n=1 n=1 m=1
N N N N
= = Z amantmtnx;xn — Z amozntmt"x,Tnx71 - Zantnb—l- Zan
n,m=1 n,m=1 n=1 n=1
N 1 N
= Zan ~3 Z amantmtnx,Tnxn
n=1 n,m=1

where we used the fact that 25:1 antn = 0 to remove the third term in the penul-
timate line. This expression is known as the dual optimisation problem and has to
be maximised subject to the following constraints:

N
an > 0, Zantn =0,

n=1

the second of which comes from Equation 5.14. Notice that w doesn’t feature at all
in this optimisation problem.

This optimisation problem is a constrained quadratic programming task,
quadratic because of the aman, term. There is no analytical solution but it is
reasonably straightforward to solve numerically. For example, the Matlab function
quadprog solves problems such as these.

5.3.2.3 Making predictions

Given a set of optimal a,, how do we go about making predictions? Our decision
function, tnew = sign(W' Xpew +), is based on w and b, not a,. To convert it into a
function of a,, we substitute the expression for w given in Equation 5.13, resulting
in:

n=1

N
tnew = sign (Z Ot Xy Xnew + b) : (5.15)

To find b, we will use the fact that for the closest points, t,(w'x, + b) = 1. Substi-
tuting Equation 5.13 into this expression and re-arranging allows us to calculate b

Classification 191

\ —

FIGURE 5.14: Decision boundary and support vectors for a linear SVM.

(note that 1/t, = tn):

N
b=t — Z ArmbmXmXn (5.16)
m=1
where z, is any one of the closest points. This gives us everything we need to be
able to classify any Xnew-

5.3.2.4 Support vectors

The set of points closest to the maximum margin decision boundary are known
collectively as the support vectors. The name comes from the fact that they define,
or support, the decision boundary. As the decision boundary is found by maximising
the margin and as the margin only depends on the closest points, we could discard
all of the other data and end up with just the same decision boundary. This is
reflected by the fact that, at the optimum, all of the o, that do not correspond to
support vectors will be zero. If they were non-zero, they would have an influence
on the decision function (see Equation 5.15). In many applications, this will lead to
a sparse solution — the decision is a function of only a small subset of the training
examples. For large problems, this can be a very useful feature. Consider classifying
a test point using KNN when the training set consists of several thousand objects.
To find the set of neighbours, distances must be computed between the new object
and all of the training objects. For an SVM trained on the same data, the decision
function might just involve a small subset of the training data.

Figure 5.14 shows a binary dataset and the resulting decision boundary (w'x +
b = 0, where w = Zgzl antnXn) along with the three support vectors (large grey
circles) (MATLAB script: svmhard.m). These are the only points for which an, > 0
and hence the only points that need to be used when classifying new data.

Although it could be considered efficient to base our decision on (in this case)

192 A First Course in Machine Learning

FIGURE 5.15: Decision boundary and support vectors for a linear SVM.
The support vector from the grey square class appears to be exerting too
much influence.

only three of the training points, it will not always be a good thing. To illustrate
why, consider Figure 5.15 (MATLAB script: svmhard.m). This is the same data that
we saw in Figure 5.14 with one difference — the support vector from the class denoted
by grey squares has been moved closer to the other class. Moving this single data
point has had a large effect on the position of the decision boundary. This is another
example of over-fitting — we are allowing the data to have too much influence. To
see why this happens, we need to look at our original constraints:

tn(W X, +b) > 1. (5.17)

This means that all training points have to sit on the correct side of the decision
boundary. This type of SVM is known as a hard margin SVM. It will sometimes
be sensible (and lead to better generalisation performance) to relax this constraint.
Fortunately, this is straightforward using a soft margin.

5.3.2.5 Soft margins

To allow points to potentially lie on the wrong side of the boundary, we need to
slacken the constraints in our original formulation. In particular, we need to adapt
Equation 5.17 so that it admits the possibility of some points lying closer to (or on
the wrong side of) the decision boundary. ‘To achieve this, the constraint becomes:

tn(W Xn +b) > 1~ £n, (5.18)

where £, > 0. If 0 < ¢, < 1, the point lies on the correct side of the boundary but
within the boundary of the margin. If £&, > 1, the point lies on the wrong side of the

Classification 193

boundary. Our optimisation task becomes:

N
1
argmin §WTW +C Z &n
w n=1

subject to &, > 0 and tn(wan +b) >1—¢&, foralln.

The new parameter C controls to what extent we are willing to allow points to sit
within the margin band or on the wrong side of the decision boundary. If we follow
the same steps that we took for the hard margin class we find that this change in
the model has only a very small effect on the maximisation problem. Omitting the
details (see Exercise EX 5.8), we now need to find the maximum of the following
quadratic programming problem:

N N
1
argvrvnax Zan -3 Z anamtntmxlxm
n=1 n,m=1
N
subject to Zantn =0 and 0 < a, <C, for all n.
n=1

The only difference is an upper bound (C) on «,. The influence of each training
point in our decision function is proportional to a,. We are therefore imposing an
upper bound on the influence that any one training point can have. For the example
in Figure 5.15, the support vector from the grey class had a, = 5.45. Setting C
to 1 would result in a change in the decision boundary (some other a., will have
to become non-zero from the grey square class), moving it back towards the other
objects in the grey square class. This is exactly what happens, as we can see from
Figure 5.16, where we plot the decision boundary and support vectors for C = 1 and
C = 0.01 (MATLAB script: svnsoft.m). As C decreases, the maximum potential
influence of each training point is eroded and so more and more of them become
active in the decision function.

Using a soft margin gives us a free parameter (C) that needs to be fixed. As
with K for KNN, we can set this using cross-validation. The procedure and error
measure are identical to those for KNN and so we omit details here. A final practical
point is the computation of b. We can no longer use any support vector to compute
it, as they will not all satisfy t,(w'x, +b) = 1. Support vectors within the margin
band (or on the wrong side) will have t,(w'xn +b) < 1. To overcome this problem,
find the support vector with the highest value of w'x, or > . amtmxTT,,vxn), and
compute b from Equation 5.16.

5.3.2.6 Kernels

Our study of SVMs thus far has been restricted to linear decision boundaries.
The soft margin allows training points to reside on the wrong side of the decision
boundary but this will not help if the data, like that shown in Figure 5.17, is more
complex. When we wanted a nonlinear function from linear regression, we added
some terms to x and extended w. With SVMs, we take a very different approach.
The model remains the same (a linear decision boundary) but for data that has been
transformed into some new space. The transformation is done in such a way as to
make the transformed data classifiable with a linear decision boundary.

194 A First Course in Machine Learning

(a) C =1 ' (b) C = 0.01

FIGURE 5.16: Decision boundary and support vectors for a linear SVM
with a soft margin for two values of the margin parameter C. The influence
of the stray support vector has been reduced.

3
° (]
2.
o © %
O-
1 o I oo
[] - L]
[a\] []
8 O . T ° 1
n " o
-—1r o ©00©° o
o oo
-2} o °
3) -1 0 1 2 3
I

FIGURE 5.17: A binary dataset for which a linear decision boundary would
not be appropriate.

To illustrate this idea, consider the data in Figure 5.17. The data cannot be
separated by a straight line. However, if, instead of representing each data point
by x, = [xnl,xnz]T, we represented them by their distance from the origin, z, =
x2, 4+ z2,, we could separate them with a straight line: the points in the circle class
look consistently further from the origin than those in the square class. Using zn
instead of x, in the SVM, we do not need to modify the algorithm at all. When we
have a test point, Xpew, we compute 2pew and then classify it in the normal manner.
In general, we will use ¢(x,) to denote a transformation of the nth training object.

Perhaps the most important characteristic of the SVM framework is that we
never actually have to perform the transformations. In our objective and decision
function, the data Xn,Xm,Xnew appear exclusively within inner (or dot) products:

Classification 195

X} Xom, Xn Xnew €tc. We never see an x on its own. After applying the transformation,
we need to calculate these inner products in the new space: ¢(x») " ¢(xm). We could
explicitly transform each data point and compute the inner products of the trans-
formed space. However, we do not actually need to think in terms of transformations
at all. Instead, if we can show that some function k(Xn, Xm) = ¢(xn) (xm) for some
transformation ¢(-), we are free to use k(Xn,Xm) in our expression in place of any
inner product in the original space. Functions that correspond to inner products in
some space are known as kernel functions.

Our optimisation and decision function (soft margin version) re-written to in-
clude kernel functions are:

N N
1
argmax - Amlntmk(Xn,Xm
N
subject to E antn =0 and 0< a, < C, for all n.

1l
-

n

N
thew = sSign (Z antnk(xny xnew) + b) .

n=1

T'here are plenty of off-the-shelf kernel functions (each equivalent to an inner product
after some transformation) that we can use. The following are probably the three
most popular:

linear k(xn,Xm) = X, Xm
Gaussian k(Xn,Xm) = exp {—'y(xn = Xm) (%Xn — xm)} (5.19)

polynomial k(Xn,Xm) = (1 +X2xm)”.

The linear kernel is equivalent to the SVM that we have been using thus far.
The Gaussian and polynomial kernels are more flexible and both have additional
parameters () that must be set by the user — normally via cross-validation.

The results of using a Gaussian kernel for the data shown in Figure 5.17 can be
seen in Figure 5.18 for v = 1 and C = 10 (all o, < C so this is effectively a hard
margin) (MATLAB script: svmgauss.m). The decision boundary looks reasonable.
For the original SVM, we could compute the decision boundary exactly as it consisted
of the values of x that satisfied:

w'x+b=0.

We can no longer compute w as it would be given by En ontnd(xn) and we do
not necessarily know ¢(x,) (we only know k(Xn,Xm) = ¢(Xn) @(xm)). Therefore,
to draw this decision boundary, we have had to evaluate) omtnk(Xn,Xnew) OVver a
grid of Xnew values and then use the Matlab contour function to draw the contour
corresponding to Y. antnk(Xn, Xnew) = 0.

What happens if we change v? Modifying v changes the (implicit) transformation
¢(x5) which will in turn change the kind of decision boundaries we might expect
to see when we view them in the original space (remember that they will be linear
in the transformed space). For the Gaussian kernel, increasing v has the effect of

196 A First Course in Machine Learning

FIGURE 5.18: Decision boundary and support vectors for the dataset in
Figure 5.17 using a Gaussian kernel with the kernel parameter v = 1 and
C = 10.

increasing the complexity of the decision boundaries in the original space. This is
clear when we compare Figures 5.19(a) and 5.19(b), where we have used v = 0.01
and v = 50, respectively (MATLAB script: svmgauss.m). In Figure 5.19(a), the
decision boundary is too simple - it is not able to curve rapidly enough in the
original space to surround just the data from the square class. Conversely, when
v = 50 (Figure 5.19(b)) the decision boundary has too much flexibility, resulting in a
decision boundary that looks far too complex. In both cases, it is also worth noticing
that the number of support vectors has increased dramatically (c.f. Figure 5.18) and
the solution can no longer be considered sparse.

This model complexity problem is exactly the same as the one we encountered
in Chapter 1. There we found that increasing the polynomial order beyond a certain
point resulted in poor predictions for our Olympics 100 m model. Here, models that
are too simple (Figure 5.19(a)) or too complex (Figure 5.19(b)) will also produce bad
predictions. In the too simple case, it looks like the model will predict a grey square
too often and in the too complex case, the opposite. Just as in Chapter 1, we must
be careful to set v such that the complexity is just right, using, for example, cross-
validation. To make matters worse, the parameters C and « will affect the model in
a coupled manner. We cannot optimise one and then optimise the other; we must
do both at the same time. This is particularly problematic if our training dataset
is large (N is high). The SVM solves an N-dimensional optimisation problem. For
large N this might be very time consuming and a cross-validation based search over
two parameters (C,) will result in performing this optimisation many times.

The SVM is not the only algorithm that can be kernelised. Many Machine Learn-
ing algorithms can be expressed in such a way that the data only appear inside inner
products. This means that in a large number of algorithms, we can solve complex
problems (e.g. fit highly nonlinear decision boundaries) without any additional algo-
rithmic complexity. We will see another example when we look at clustering in the
next chapter. We can also kernelise our other nonprobabilistic classifier, KNN. KNN

Classification 197

z2

-
N
w

FIGURE 5.19: Decision boundary and support vectors for the dataset in
Figure 5.17 using a Gaussian kernel with different values of the kernel param-
eter v and C = 10.

requires the computation of distances between Xnew and each x,. This distance can
be expressed as:

(Xnew — xn)T(xnew — Xn)-
If we multiply this out, we obtain just inner products:
xIeWxnew — QXIeWXn + xlxn.
Replacing this with its kernelised equivalent,
k(Xnew, Xnew) — 2k(Xnew, Xn) + k(Xn, Xn),

gives us kernelised KNN.

5.3.3 Summary

In the previous sections we have described four popular classification algorithms
and described how each can be used. These four algorithms provide a solid base from
which one can experiment with data and explore the literature of other classification
techniques.

Being able to apply a particular algorithm is only part of a classification analysis.
It is also crucial to be able to reliably assess how well a particular classification is
performing and that is the focus of the final section in this chapter.

198 A First Course in Machine Learning

5.4 Assessing classification performance

In the following discussion we shall assume that we are interested in assessing
performance based on the predictions for some set of N independent test examples,
X1,...,%xn, with known labels t7,...,t%, to distinguish them from the labels pre-
dicted by the classifier - t1,...,tn. These could be from a completely independent
dataset or could be the data held out in a particular cross-validation fold.

5.4.1 Accuracy — 0/1 loss

When we have needed to express a measure of performance we have used raw
classification accuracy, also known as 0/1 loss. It is given this name as, for a particu-
lar test point, the loss is either O or 1, depending on whether the prediction is correct
(tn = t3) or incorrect (tn # t;,). When averaged over the N objects in the test set,
this quantity gives the proportion of objects for which the classifier is wrong. This
could be interpreted as an estimate of the probability that some random test point is
incorrectly classified. Clearly, the lower this value the better. Although widely used,
this measure does have some drawbacks. In particular, it is not always easy to place
this quantity in context — i.e. how good is 0.27 Consider two hypothetical binary
classification problems: In the first we observe roughly the same number of objects
from each class and in the second, 80% of the objects we see come from class 1 and
20% from class 2. In the former case, an average 0/1 loss of 0.2 might represent
very good performance. In the latter, it does not; we could always classify objects
as belonging to class 1 and get an average loss of 0.2. We should therefore be very
careful using 0/1 loss in applications where the classes are imbalanced. We will now
introduce an alternative that overcomes this problem.

5.4.2 Sensitivity and specificity

Imagine a binary classification task that involves detecting disease. ¢ = 0 corre-
sponds to a healthy patient (x) and ¢t = 1 to a diseased patient. If we are attempting
to detect a rare disease, 0/1 loss is a bad idea — diagnosing everyone as healthy
will give us a very low 0/1 loss. Analysing two quantities known as sensitivity and
specificity is a better idea. 'To compute sensitivity and specificity we need to extract
four summary values from our classification results. These are the numbers of:

e True positives (1T'P) - the number of objects with t;; = 1 that are classified as
t, = 1 (diseased people diagnosed as diseased).

e True negatives (1'N) — the number of objects with ¢, = 0 that are classified
as t, = 0 (healthy people diagnosed as healthy).

e False positives (FP) — the number of objects with ¢;, = 0 that are classified as
t, = 1 (healthy people diagnosed as diseased).

e False negatives (FN) — the number of objects with ¢}, = 1 that are classified
as t, = 0 (diseased people diagnosed as healthy).

Given these values, we compute sensitivity as:

Classification 199

and specificity as:

Both values lie between 0 and 1.

Broadly speaking, these two quantities tell us how good we are at detecting
diseased and healthy people, respectively. The sensitivity is the proportion of the
diseased people (1'P + F N) that we correctly classify as being diseased (1'P). Speci-
ficity is the proportion of all of the healthy people (1'N + FP) that we correctly
classify as being healthy (T'N).

Considering our rare disease example, if we diagnosed everyone as healthy we
would have a specificity of 1 (very good — we diagnose all healthy people correctly)
but a sensitivity of 0 (we diagnose all unhealthy people incorrectly), which is very
bad. Ideally we would like S. = S, = 1 - perfect sensitivity and specificity. This is
unrealistic in all but the most trivial applications and we need a way to define how
optimal a pair of sensitivity/specificity values are. For example, is S, = 0.9, S, = 0.8
better or worse than S, = 0.8, S. = 0.97 The answer will be application dependent.
In our rare disease diagnosis, we do not want to mis-diagnose any diseased people
but are probably happy to tolerate diagnosing some healthy people as diseased (they
are likely to be subject to more tests and later discovered to be healthy). As such,
we might be happy to reduce S, in order to increase S.. In other applications, we
may have completely the opposite pressures.

It is often convenient to be able to combine sensitivity and specificity into a
single value. This can be achieved through evaluating the area under the receiver
operating characteristic (ROC) curve.

5.4.3 The area under the ROC curve

In many classification algorithms we are provided with a real valued output
that is then thresholded to give a classification. For example, in (binary) Bayesian
classification and logistic regression we are provided with P(Thew = 1|Xnew, X, t) — a
value between 0 and 1. In the SVM, we are provided with a real value that is then
thresholded at 0 (passed through a sign function). We could use any threshold we
liked for any of these algorithms to obtain a hard classification. For example, we
may decide that if P(7,, = 1|x,,X,t) > 0.7 then x, should belong to class 1. For
the SVM we might decide to threshold at 0.2 rather than 0, making it slightly less
likely that x, will be classified as belonging to class 1.

The receiver operating characteristic (ROC) curve lets us examine how the per-
formance varies as we change this threshold. The sensitivity and specificity are cal-
culated for a range of threshold values and sensitivity is plotted against the comple-
mentary specificity or false positive rate (1 — Sp), giving a curve that will typically
look like those shown in Figure 5.20 (MATLAB script: svmroc.m). These curves are
for the too simple and too complex models shown in Figures 5.19(a) and 5.19(b)
evaluated on an independent test set of 1000 objects. We know that we want to
make S. and S, as high as possible. Therefore, the closer the curve gets to the top
left of the plot (S. = 1,1 — S, = 0), the better. If the curve hits the top left corner,

200 A First Course in Machine Learning

1 1
0.8 0.8
06 0.6
B o
04 04
0.2 0.2
0 0 .
) 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1
1-8, 1-5,
(a) ¥y =0.01 (b) v =50

FIGURE 5.20: ROC curves for the SVMs shown in Figures 5.19(a) and
5.19(b).

it tells us that there is a threshold we can choose that will classify the data perfectly.
The curve will always start at Se = 0,1 — S, = 0, corresponding to a threshold that
never classifies anything as belonging to class 1, and finish at S, = 1,1 - S, = 1,
corresponding to a classifier that never classifies anything as belonging to class 0
(=1 in the SVM case). As the classifier gets worse, the curve will get closer to a
straight line from (0,0) to (1,1). This is equivalent to randomly guessing the class.

Based on the plots in Figure 5.20, the SVM with v = 50 gets closer to the top left
corner and so is better than the one with v = 0.01. We can quantify this performance
by computing the area under the ROC curve (known as the AUC). A classifier that
is able to perfectly classify the data will have an AUC of 1 (the curve will go straight
up the left hand side and then straight across the top); a classifier that is guessing
randomly will have an AUC of 0.5 (the curve will be approximately a straight line
from (0,0) to (1,1), as mentioned in the previous paragraph). The two curves in
Figure 5.20 have AUCs of 0.8348 and 0.9551, respectively. In Figure 5.21, we show
the ROC curve for v = 1 (the SVM plotted in Figure 5.18). The AUC in this case
is 0.9936 — the best of the three, as we would expect.

The AUC is, in most applications, a better way of evaluating performance than
the 0/1 loss. It takes class imbalance into account through its use of sensitivity and
specificity. One drawback is that it does not generalise to the multi-class setting.
One way of using it within a multi-class problem is to analyse the results of the
classification as several binary problems. For example, if we have three classes, we
might do three ROC analyses where each one looks at the binary problem created
by considering class ¢ against the rest. This would provide useful information about
each classifier but it is not clear how the three AUC values could be combined. We
will now look at one final performance analysis tool that is easily generalised to (and
very useful for) multi-class classification.

Classification 201

O.BL

ol

0.2¢

0 0.2 0.4 0.6 0.8 1

FIGURE 5.21: ROC curve for the SVM shown in Figure 5.18. The curve is
hard to see because either 1 — S, = 0 or S, =1 for most threshold values.

TABLE 5.2: A binary confusion matrix.

True class
1 | 0

‘ 1[TP| FP
Predicted class 0 ' FN| TN

5.4.4 Confusion matrices

"The four quantities (1'P,I'N, FP, FN) introduced in Section 5.4.2 are often use-
fully visualised in a table. In the case of two classes, this table will have two rows and
two columns. The rows correspond to predicted class (t) and the columns to true
class (t*). The structure of this table is illustrated in Table 5.2 and it is known as a
confusion matriz. Confusion matrices for binary problems just summarise these four
values. However, where confusion matrices really come into their own is in multi-
class problems. A confusion matrix for the 20 class newsgroup data would have 20
rows and 20 columns and would let us explore in detail what the algorithm was
getting right and what it was getting wrong. This table can be seen in Table 5.3.
At first glance, it looks rather unwieldy, but it is reasonably straightforward to ex-
tract useful information. For example, the high values on the diagonals tell us that
on the whole, the classifier is doing pretty well. High off-diagonal elements tell us
about mistakes that are being made regularly within the data. For example, 68 doc-
uments belonging to class 20 are incorrectly classified as belonging to class 16 — a
phenomenon we already discussed in Section 5.2.1.6. Similarly, a large number of
documents belonging to class 19 are incorrectly classified as belonging to class 17.
This analysis not only lets us uncover where the mistakes are being made (details
not available if we simply compute the 0/1 loss) but they also provide suggestions
for how to improve performance. In Section 5.2.1.6 we saw that classes 20 and 16
were very similar, as were classes 19 and 17. Perhaps it is too difficult to distinguish

202

Confusion matrix for the 20 class newsgroup data.

TABLE 5.3

True class

20
47

A First Course in Machine Learning

68

19

92

19

95

185

18
12

325

19

18

325

16

16

376

15

336

21

14
10

324

17

10

13

18

28

1
9
2
0
1
45
260

12

1
0
0
0
0
360
3

11

0
1
0
4
382
0
0

10

5
35
4
2
0
1
5

46

21

235
3
5
0
1
3
9

42

12

(o]

36
277

15
303
22

33
209
60

10
30

296

12

21

242

39

10

O ANm
Dl SRS e M e pi

sse[d paloIpald

14
15
16

17
18
19
20

- Classification 203

between them. Class 20 appears to be the class that is misclassified most often and
so if we wanted to improve performance perhaps we should concentrate here ~ maybe
we could collect more data or consider combining it with another class.

5.5 Discriminative and generative classifiers

In our discussion, we subdivided classifiers into probabilistic and nonprobabilistic
approaches. Another common way of partitioning classifiers is to split them depend-
ing on whether they are generative or ¢is Generative classifiers define
a model for each class and then assign new objects to the model that suits them best.
On the other hand, discriminative classifiers explicitly define a decision boundary
between classes. The Bayesian classifier (Section 5.2.1) is an example of a gener-
ative classifier and the SVM (Section 5.3.2) and logistic regression (Section 5.2.2)
examples of discriminative classifiers.

5.6 Summary

In this chapter we have introduced four popular classification algorithms — two
that provide probabilistic outputs and two that provide hard classifications. In the
space available to us it is impossible to do them all justice - whole books have been
written on SVMs and other kernel methods alone. However, the material presented
here should be enough for the reader to be able to implement and experiment with
these algorithms. In addition, it should provide enough background knowledge about
the general problem of classification and the various types of classification algorithm
that the reader can explore other algorithms and place them into some kind of
context.

In addition to describing algorithms, we have also looked at how we might eval-
uate whether a classifier is doing well and some of the problems we might come up
against. Again, we have only scraped the surface. There are many other performance
measures favoured by different application areas and plenty of other problems that
we might come up against.

5.7 Exercises

EX 5.1. Assuming X, = I for all classes, compute the posterior density p(u.|X°)
for the parameter u. of a Bayesian classifier where the set of training
objects in class c¢ is given by xi,...,Xn,.. Assume a Gaussian prior on

p(pe).

204

EX 5.2.

EX 5.3.

EX 54.

EX 5.5.

EX 5.6.

EX 5.7.

EX 5.8.

A First Course in Machine Learning

Using the posterior computed in the previous exercise, compute the ex-
pected likelihood

P(Xnew[Thew = ¢, X, t) = Ep(u, m.1%7) {P(Xnewltte, Ze)}

Compute the maximum likelihood estimates of u, and X, for class ¢
of a Bayesian classifier with Gaussian class-conditionals and a set of N,
objects belonging to class ¢: x1,...,xn,.

Compute the maximum likelihood estimates of g¢m. for class ¢ of a
Bayesian classifier with multinomial class-conditionals and a set of N,
M-dimensional objects belonging to class ¢: x1,...,Xn..

For a Bayesian classifier with multinomial class-conditionals with M-
dimensional parameters q., compute the posterior Dirichlet for class ¢
when the prior over q. is a Dirichlet with constant parameter o and the
observations belonging to class ¢ are the N, observations x1,...,Xn..

Using the posterior computed in the previous exercise, compute the ex-
pected likelihood

P(Xnew[Thew = ¢, X, t) = Epq.1x¢) {P(Xnew|ac) }
Compute the MAP estimate of gen, for the setup described in Exercise EX
5.4.

Derive the dual optimisation problem for a soft margin SVM.

Classification 205

Further reading

[1]

8]

(4]

[5]

(6]

Ken Binmore and Joan Davies. Calculus: Concepts and Methods. Cambridge
University Press, 2002.

Includes good descriptions of the use of Lagrangian terms in optimi-
sation.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

A comprehensive introduction to Support Vector Machines and other
kernel techniques.

Richard Duda, Peter Hart, and David Stork. Pattern Classification. Wiley-
Interscience, second edition, 2000.

A comprehensive textbook on the subject of classification.

T. Furey et al. Support vector machine classification and validation of cancer
tissue samples using microarray expression data. Bioinformatics, 16(10):906—
914, 2000.

One of the first papers to apply the Support Vector Machine to very
high dimension microarray data. Also describes a simple feature se-
lection technique.

Brian Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 1996.

A classic pattern recognition textbook from the late 1990s.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

An accessible introduction to kernel techniques with examples of their
use in many applications. This is a broader and more practically
minded text than the other by the same authors.

Chaptér 6

Clustering

Thus far we have been concerned with hee In all tasks, we have
been provided with a set of data objects x1,...,xn5 and thelr associated labels (or
targets) t1,...,tn. For example, objects consisting of Olympics years and targets
corresponding to 100 m winning times; objects consisting of documents and targets
consisting of document categories. It is the presence of the targets, t,,, that makes
the tasks supervised.

Sometimes we will just be supplled w1th objects x, without labels. The analysis

of this kind of data requires #ifistp 3d Machine Learning techniques. At first

glance it is perhaps hard to understand what can be done with such data. There is
certainly not much that can be done if we were told just the years of the modern
Olympics.

In this and the following chapter, we will see two families of techniques that are
used extensively in Machine Learning for exactly these unsupervised scenarios. In
this chapter, we will look at the first: clustering. In particular we will consider two

clustering methods — K-means and mixture models.

6.1 The general problem

The aim of cluster analysis is to create a grouping of objects such that objects
within a group are similar and objects in different groups are not similar. There are
many ways of defining what it means for two objects to be similar and many ways of
performing the grouping once similarity is defined. Before we look at some in more
detail, we shall first motivate cluster analysis with some examples.

Customer preference: Imagine you run a large online store and would like to
personalise users’ shopping experiences. Your motives are not entirely altruistic —
you hope that by improving their shopping experience, users will buy more. One
way to do this is to provide each user with a set of unique recommendations that
they see when they access your site. You do not directly know each user’s personal
preferences and tastes but you do have lots of data — records of all purchases made
by each user. This is classic machine learning territory — no fundamental model but
lots of data.

Assuming that we can define a measure of similarity between customers based
on their purchasing history, we could use cluster analysis to group customers into K
groups. Within each group, customers have similar shopping patterns. Differences

207

208 A First Course in Machine Learning

between customers in the same group could form the basis of a recommender system.
For example, customers A and B are in the same cluster because they share a number
of purchases — perhaps they both have an interest in a particular sport. However,
customer A has additionally bought several items that customer B has not. On the
strength of their similarity, it might make sense for customer B to be recommended
these items.

A recommender system could also be created by clustering the items basedron

the customers they were bought by. If items 1 and 2 were both bought by customers
A, D, E and G then they could be considered similar. Customers could then be
recommended items that were similar (in this sense) to items they had already
bought.
Gene function prediction: A large proportion of research effort in molecular
biology involves categorising genes into particular functional classes — i.e. what role
does a particular gene play; what is its purpose? One potential source of information
is mRNA microarray data — numerical values describing how active each gene is
in a particular biological sample. For a collection of genes, this activity can be
measured over time. If genes are clustered based on this representation, we obtain
a grouping of genes such that genes in a particular group exhibit similar behaviour
over time. Consider one such group (cluster) consisting of 10 genes. Half of the genes
have known function, whereas the function of the other half is unknown. Given no
additional evidence, it might be reasonable to assume that the unknown half have the
same or similar function as those for which function is known. This will not always
give the correct function, but it is a good starting point for additional analysis.

In this example, the structure present in the data exposed by cluster analysis
has allowed us to make some prediction about the objects. It is interesting to note
that this problem could alternatively be considered as a supervised classification
problem where the genes with known function form the training set (the class labels
consist of the different functions) and the unknown as a test set to be labeled by the
algorithm.

6.2 K-means clustering

Consider the data shown in Figure 6.1. It consists of 100 objects, x1,...,X100,
each represented by two attributes: x = [x1,z2]". When we plotted classification
data, objects belonging to different classes were plotted with different symbols. Now
we have no class information — all of the dots look the same.

If you were to partition these objects into groups by hand such that groups
contained similar objects, you might come to the conclusion that there were three
groups. Most objects fall quite obviously into one of these three groups, although
there are a few that are more ambiguous (e.g. the point at x ~ [2.5, —1]7).

By clustering the data in this manner, we have implicitly defined what ‘similar’
means — similar objects are those that are close to one another in terms of squared
distance (i and j are similar if (x; — x;)"(x; — X;) = (@1 — 2j1)% + (@i2 — 22) is
low). Provided with no additional information about the data or the purpose of the
cluster analysis, this is a reasonable measure of similarity. There are other ways of

Clustering 209

6 L]
4t e,
N L . .
8 o - ‘e .
-2 . ce oL
4 . ‘ -
: -.... M
i —— 0 1 2 3 4 5
Xy

anee, (x; —x;)TA(xi — x]) Both of these dlstances are sultable for real-valued
data For data of other types (for example, text), different distance measures would
be required.

To develop an algorithm that can perform this grouping automatically, we need
to define what a cluster is more formally. K-means defines a cluster as a representa-
tive point, just like one of the data objects. The point is defined as the mean of the
objects that are assigned to the cluster (hence the name K-means). We will use px
to define the mean point for the kth cluster and z,x as a binary indicator variable
that is 1 if object n is assigned to cluster k and zero otherwise. Each object has
to be assigned to one, and only one cluster, i.e. >, znx = 1. This leads us to the
following expression for pux:

v:v_'z:ﬁzvhkxn'b : C : :

i S Znk - 5 (61)
Each object is assigned to the cluster to which it is closest, i.e. the cluster k that
gives the minimum value of (X, — k)" (xn — ux) (or some other suitable distance).
This is a circular argument: the clusters are defined as the centres of the points
assigned to them, and the points are assigned to their closest clusters. If we know the
clusters, u1, ..., K, we can compute the assignments, but without the assignments
we cannot compute the clusters. K-means clustering overcomes this problem with
an iterative scheme. Starting with initial (random) values for the cluster means,

Hi,..., LK
1. For each data object, x,, find k that minimises (x,, — px)" (%X — p) (i.e. find
the closest cluster mean) and set z,x = 1 and z,; = 0 for all j # k.

2. If all of the assignments (z,x) are unchanged from the previous iteration, stop.
3. Update each py with Equation 6.1.

4. Return to 1.

210 A First Course in Machine Learning

Figure 6.2 illustrates the operation of the algorithm for the data shown in Fig-
ure 6.1 (MATLAB script: kmeansexample.m). Figure 6.2(a) shows the initial guesses
for the means (large symbols) with the data objects given the symbol corresponding
to their closest mean. The means are now updated according to Equation 6.1 and
Figure 6.2(b) shows the means moving to their new locations. Now that the means
have changed, the objects must be re-assigned and the new assignments as well as
the resulting change in the means can be seen in Figure 6.2(c). Figures 6.2(d) and
6.2(e) show the status after three and five iterations, respectively. After eight itera-
tions, the algorithm has converged and the final assignments (the clustering) can be
seen in Figure 6.2(f). The point at x,, = [2.5, —1]" appears to be incorrectly assigned
— this is simply due to the scaling of the axis.

This iterative scheme is guaranteed to converge to a local minimum of the fol-
lowing quantity:

Z Z znk(xn ﬂk)T(xn - p'k); e (6‘2)
n=1k=1 RN :

which can be interpreted as the total distance between the objects and their respec-
tive cluster centres. However, it is not guaranteed to reach the lowest possible value
(the global minimum). Whether it does or not will depend on the initial guesses of
the cluster means. For K-means, this problem can never be totally overcome unless
we evaluate every possible way of assigning all N points to K clusters, which is in-
feasible for even small values of N and K. A more common way to partly overcome
this limitation is to run the algorithm from several random starting points and use
the solution that gives the lowest value of the total distance.

6.2.1 Choosing the number of clusters

In order to use K-means, we need to choose a value of K — the number of
clusters. Determining the number of clusters is a common problem in cluster analysis.
Recall that K-means produces a clustering that corresponds to a local minima of
Equation 6.2. Unfortunately, in much the same way that likelihood turned out to
be a poor model selection criteria (recall that it monotonically increases as models
become more complex, e.g. Figure 2.11(a)), D is no good either. Figure 6.3 shows
log D as K is increased (MATLAB script: kmeansK.m). For each value of K we used
50 random initialisations of the algorithm and the boxplots show the median value,
the 25th and 75th percentiles and any outliers. It is clear that log D (and hence
D) decreases as K is increased. As K increases, large clusters will be broken down
into smaller and smaller parts. 1'he smaller each cluster, the closer each point will
get (on average) to its cluster mean, reducing its contribution to D. Taken to the
extreme case of K = N, it is possible to get D = 0 when each cluster contains just
one object and pr = xn,.

There is no straightforward solution to this model selection problem. To over-
come it, it is often useful to look beyond the clustering to the overall aim of the
analysis. For example, in the introduction to this chapter, we mentioned a recom-
mendation system that clustered customers. The grouping is done in order to obtain
a compact representation of the data and provide customer-product recommenda-
tions. Therefore, it makes sense to choose the number of clusters that produces the

Clustering

6 o .
4 * ..
.' ® ..
8o ®
2 Py % Qe . L]
a ? 905 00 o e
O o o
¢ 00@0 o
2 00 00 o 08
® 0%%0 0
-4 09 6 000 8 o o’
o °%q> QX%
-6 g
22 0 2 4
z

6

(a) Data and initial random means.
Means are depicted by large symbols.
Each data object is given the symbol of

its closest mean

6
4
2
N oo.ﬁo‘
8 ot o8
o o o °
0% o
) 00 9 o
"Ry
A0
® o o
- o oi%&oe%m
= 0 2 4
1

(c) Objects re-assigned to new means and

means updated again

6 -
[]
-
4 . .l.
2 A Y
o ° © o %
(2}
8 Obe :.. .é .
o o ..fo
-2 00 00 g ¥
SRRY, ©
L o
-4 o OT%O 08 %W)
5 0 a:2 4
1

(e) Means updated after five iterations

211
T oy
4 \\\ ‘~’\: .0.
| 2K & S
2 o \‘% Se P
g 0009 o0))
L R 3 R
o ¢ OOQO“ o J
_ 00 ‘
2 <> 0%008
- P00 o« ¢ o
4 o 0%()(» 06 %%
Al O
2 0 2 4 6
)

(b) Means updated according to assigned
objects

6 L]
4 * %
op " "
® °
2 ° @o o ®
N oo o ¢ e
8 0. o
P" o 00@0
-2 00 09 g 08
4 00%08 4
- o % %R0 7 Qo0
B .5
2 0 2 4 6
T

6
-
4 ’, _'.l_
L]
P L
2 L]]
MK 3 s "a
g oo, %o
Ol (R & °
[L) °
o ° 4
-2 000 08
® 0%0 Vs ©
—4 OOO 8 4
0 ‘:goo o7 %
5 0 2 4 6
T1

(f) Means updated after eight iterations.
Algorithm has converged

FIGURE 6.2: Illustration of the K-means algorithm. Data objects are repre-
sented as small symbols, means as large symbols. Objects are given the symbol
of the mean to which they’re assigned.

212 A First Course in Machine Learning

7
6.5
6' ——
3
55
s S .
ol S HE g
4 N ;
L L
4 —_— " M M "
] 2 3) 5 6 7 8 9 10

FIGURE 6.3: log D (where D is defined in Equation 6.2) as K increases
for the data shown in Figure 6.1. Each boxplot is the result of 50 random
initialisations of the K-means algorithm.

best recommendations, perhaps on some validation data. Similarly, clustering is a
popular choice for féatureé selection in classification — clustering features based on
their values across objects rather than clustering objects (X' rather than X). In
this instance, K should be chosen to give the best classification performance.

6.2.2 Where K-means fails

Figure 6.4 shows two datasets on which K-means has failed to extract what
looks like the true cluster structure. In both cases, the objects in the true clusters
do not necessarily conform to our current notion of similarity (distance). In the first
example, Figure 6.4(a), the data exist in concentric circles. It is clear that standard
K-means can never work in this setting, as the means of both circles are in the same
place. In the second example, Figure 6.4(b), the clusters are stretched in such a way
(check the scaling of the axes) that objects at the top of the right hand cluster are
closer to the mean of the left hand cluster (the means are shown in this plot as large
symbols).

In the next section, we will cluster the data in Figure 6.4(a) by kernelising the
K-means algorithm. For the data in Figure 6.4(b) we will turn, from Section 6.3
onwards, to an alternative clustering method: mixture models.

6.2.3 Kernelised K-means

We can extend K-means using the kernel substitution trick that we introduced
in Chapter 5. At an abstract level, the idea is the same: rather than making the
algorithm more complex, we will transform the data into a space in which our
simple algorithm works. We shall highlight this approach using the data shown in
Figure 6.4(a).

We have seen that rather than actually performing the transformation of the
data, kernel methods use kernel functions to directly compute inner (dot) products

Clustering 213

15
1.5
~ i'h- -l'l*"\.‘ g "_‘ . . ':
1 \.ﬁf’:‘*“}f‘-’ l' h 10|
ey e e
sl Ve s g
o - @ .
S o § ' "’."&: :
8 o . =
o 0
-0.5]
-5|
-1
-10

FIGURE 6.4: Two datasets in which K-means fails to capture the clear
cluster structure.

in the transformed space. As such, any algorithm where the data objects, x1,...,xn,
only appear as inner products (xiij, etc.) can be given the kernel treatment, making
it more powerful without any significant additional cost. Key to the operation of K-
means is the computation of the distance between the nth object and the kth mean:

dnk = (Xn — pr) ' (Xn — pi),

where the mean, p, is calculated according to Equation 6.1. Substituting this into
the expression for d,x gives:

T 1 N
dn.k == (— T Z kaxm) <X'n -~ Zrkx'r>)
m=1 Nk r=1

where N, = Z,I:/:] Znk, the number of objects assigned to cluster k.
Multiplying out this expression results in the data (x,) only appearing in product

terms:

dnk = x) nXn — E zmkx Xm + N2 E E zmkzrkxmxr
k

m=1r=1

All that remains is to replace the inner products with kernel functions to give a
kernelised distance:

1
dn;c-—K(xn,xn)-———— § jzka(xn,xm) + =5 § § zmkzrkK(xm,xr)

m=1 r=1 e :

This distance is purely a function of the data and the current assignments; the cluster
means do not appear. In fact, it is not, in general, possible to actually compute the
cluster means in the transformed space. The original expression for the mean of
cluster k is:

: m“l

N
Zn:1 ZnkXn
I-l'k = N

25:1 Znk

214 A First Course in Machine Learning

and the kernelised version is:

N

Hk = Zn:l an¢(xn)
=

n=1%nk

Within this expression, data objects appear on their own and not as inner products.
In Chapter 5 we discussed how, for most kernel functions, we cannot compute the
transformation (x, — ¢(xn)); we can only compute inner products in the trans-
formed space (¢(xn)' ¢(xm)). If we are unable to compute the transformation, we

cannot compute f1i.

Equation 6.3 suggests the following procedure for kernelised K-means:
1. Randomly initialise 2,k for each n (see below).
2. Compute dn1,...,dnk for each object using Equation 6.3.
3. Assign each object to the cluster with the lowest d,k.
4. If assignments have changed, return to step 2, otherwise stop.

In standard K-means, we initialised the algorithm by randomly setting the means
K1, .., pxi. In kernel K-means we do not have access to the means and we therefore
initialise the algorithm via the object-cluster assignments, z,x. We could do this
completely randomly - for each n set one z,x to 1 and all of the others (zni, | # k)
to zero but, given that we know K-means to be sensitive to initial conditions, it
might be better to be more careful. Alternatively, we could run standard K-means
and use the values of z,x at convergence. This has the advantage that we can be
sure that objects within the same cluster will be reasonably close to one another
(something that we cannot guarantee if we set them randomly). A second alternative
would be to assign N — K +1 objects to cluster 1 and the remaining K — 1 objects to
their own individual clusters. The performance of each iteration scheme will depend
on the particular characteristics of the data being clustered.

Figure 6.5 shows the result of applying the kernel K-means algorithm to the data
shown in Figure 6.4(a) (MATLAB script: kernelkmeans.m). In this case, we have
initialised by assigning all but one object to the ‘circle’ cluster and the remaining
object to the ‘square’ cluster. A Gaussian kernel was used with v = 1 (see Equa-
tion 5.19). Figure 6.5(a) shows the assignments one iteration after initialisation. As
the algorithm progresses through 5, 10 and 30 iterations (Figures 6.5(b), (c) and
6.5(d), respectively) the smaller cluster grows to take up the central circle. At con-
vergence (Figure 6.5(d)), we can see that the algorithm has captured the interesting
structure in the data.

Not only does kernel K-means allow us to find clusters that do not conform to
our original idea of similarity, it also opens the door to performing analysis on other
data types. We can cluster any type of data for which a kernel function exists and it
is hard to find a data type for which there does not. Obvious examples are kernels
for text (each object is a document) and kernels for graphs or networks. The latter
is used widely in computational biology.

6.2.4 Summary

In the previous sections we introduced the K-means algorithm and showed how
it could be kernelised. One of the great advantages of K-means is its simplicity

Clustering 215

‘ “‘!?«a
1 o "Nw SQ “’}“

o, 5’ i

»ﬁ 5 g ond “le

T
0 0.5 1 1.5
Z1
(a) Kernel K-means after one iteration (b) After five iterations
15 15

o PN :ﬁm ,,{i'h Y

B P NN
’!

A on "h
i 9%%;«\»5{%%0 o7l

0 0.5 1 15
I

(c) After 10 iterations (d) At convergence (30 iterations)

FIGURE 6.5: Result of applying kernelised K-means to the data shown in
Figure 6.4(a).

— it is very easy to use and poses no great computational challenge. However, its
simplicity is also a drawback: assuming that a cluster can be represented by a single
point will often be too crude. In addition, there is no objective way to determine
the number of clusters if our aim is just to cluster (remember that we mentioned
how the number of clusters could be chosen as the one that gave best performance
in some later task like classification). To overcome some of these drawbacks, we will
now describe clustering with statistical mixture models. These models share some
similarities with K-means but offer far richer representations of the data.

6.3 Mixture models

In Figure 6.4(b) we showed a dataset for which the original K-means failed.
The two clusters were stretched in such a way that some objects that should have
belonged to one were in fact closer to the centre of the other. The problem our
K-means algorithm had here was that its definition of a cluster was too crude. The

216 A First Course in Machine Learning

characteristics of these stretched clusters cannot be represented by a single point and
the squared distance. We need to be able to incorporate a notion of shape. Statistical
mixture represents each cluster as a probability density. This generalisation leads
to a powerful approach as we can model clusters with a wide variety of shapes in
almost any type of data.

6.3.1 A generative process

In Section 2.1.1 we motivated a probabilistic treatment of the linear model de-
scribed in Chapter 1 by creating a process by which the data could have been
generated. In that case, we combined (by adding them together) a deterministic
function of the form w'x, with a Gaussian random variable with zero mean and
variance o2. Data generated in this way was qualitatively similar to our real data.
Note that we never tried to claim that this was the process by which the data was
generated; it was merely an abstraction that would allow us to build a better model.
We will use much the same motivation to move from K-means to statistical mixture
models.

Our synthetic clustering dataset is reproduced in Figure 6.6. How could we gen-
erate data that looks like this? The data in Figure 6.6 does not look like samples
from any density function that we have encountered. There appear to be three dis-
joint regions in which data are concentrated. None of the density functions that we
have seen can produce data with this complex structure, However, each of the three
regions looks simple enough to generate on its own. In fact, they all look a bit like
samples from two-dimensional Gaussians.

Assuming that the data was generated by three separate Gaussians suggests a
two step procedure for sampling the nth data object, x,:

1. Select one of the three Gaussians.

2. Sample x,, from this Gaussian.

6 ™ - :

4T ' Sl
N ..= LY ¢ * *
N 0%. . -. .- .

_o} .o L. .

-4 . o.o T ..

-6 — e ——

FIGURE 6.6: Synthetic dataset for clustering examples.

Clustering 217

Both of these steps are straightforward. Step 1 involves choosing one value from
a discrete set, like rolling a die. Lo do this, we just need to define the probability
of each outcome, 7k, subject to the constraint >« T = 1. Having chosen which
Gaussian to sample from, the second step is straightforward.

To illustrate this process, we will sample some data from a setup with K = 2
Gaussians. As in K-means, we will use z,x as an indicator variable. If we choose the
kth component as the source of the nth object, we set z,x = 1, and z,; = 0 for all
j # k. We will use px and X to denote the parameters of the kth Gaussian.

The density function for x,, given that it was produced by the kth component
(znk = 1), is a Gaussian with mean and covariance g and X, respectively:

p(Xnlznk = 1, i, Bk) = N (pk, Bi)

For our example, we will use the following means and covariances for the two
components:

pr=[3,3]", &, = [(1) g] pe =[1,-3]", = = [g (1’] (6.4)

Finally, we need to define 7. Assuming that component 1 is more likely than com-
ponent 2, we will use 71 = 0.7, 72 = 0.3. Figure 6.7 shows the first 50 generated data
object and the density functions of the two Gaussians (MATLAB script: mixgen.m).
For the first point, k = 2 is chosen and the object sampled from the second (lower)
component — Figure 6.7(a). Figure 6.7(b) shows the first five objects (the most re-
cent is always denoted as a larger circle). We notice that all but the first one have
come from the first component. This is not surprising as the first component is more
likely than the second: m; > m2. Figures 6.7(c) and 6.7(d) show the first 10 and 50
data objects, respectively. If we compare Figure 6.7(d) with Figure 6.6, we can see
that, although the datasets are different, they share certain qualities. In particular,
it looks like the data in Figure 6.6 could have been generated in a similar manner to
the generative procedure shown in Figure 6.7.

The generative procedure that we have described is the generative procedure for
a mixture model — the data are assumed to have been sampled from a mizture of
several individual density functions. Mixture models find a wide variety of uses in
data modelling as fitting a set of simple distributions is often more straightforward
than fitting one more complex one. Within the context of clustering, each individual
component can be viewed as a cluster — all objects for which z,x = 1 are in the
kth cluster. Our learning task is to infer, from the observed data, the component
parameters (pk, Xx) and the assignments of objects to components. As with K-
means, this is a circular argument: the component parameters would be easy to
compute if we knew the assignments and the assignments would be easy to compute
if we knew the component parameters. Without either, it is hard to know where
to start. The answer comes in the form of the Expectation-Maximisation (EM)
algorithm — an iterative maximum likelihood technique that is used for a wide range
of models and has parallels with the K-means algorithm we introduced earlier in
the chapter.

6.3.2 Mixture model likelihood

To derive the steps required in the EM algorithm, we need an expression for the
likelihood. To keep this as general as possible, we will work with p(xn|znk = 1, Ak)

218 A First Course in Machine Learning

o]

[s]

-2 o] 2 4 -2 [o] 2 4
1 z

(c) The first 10 objects (d) The first 50 objects

FIGURE 6.7: Generating data from two Gaussians.

where Ay denotes the parameters of the kth density (not necessarily Gaussian). In
addition, A will denote the collection of the parameters of all of the mixture com-
ponents A = {Aq,...,Ak} and we will collect all of the 7 together into a vector,
m={m,...,TKk}.

We require the likelihood of the data objects x, under the whole model:
p(xn|A,). To obtain this expression, we start with the likelihood of a particular
data object conditioned on z,, = 1:

P(Xn|2nk = laA) = p(Xn|Ak)-

To obtain p(x,|A,), we need to get rid of z,x. To do this, we first multiply both
sides by p(znk = 1), which we have defined as m:

p(%n|Ak)P(2nk = 1)
P(xn|Ak) Tk

P(Xn|znk = 1,A)p(znk = 1)
P(Xn, znk = 1|A,)

Summing both sides over k (marginalising over the individual components) yields

Clustering 219

the likelihood:

K . K
X:p(xn,zn;c =1|A,7) = Zp(xn|Ak)7fk
k=1 k=1

K
p(xn|A,) = Z TEep(Xn | Ak).

k=1
Making the standard independence assumption, we can extend this to the likelihood
of all V data objects:

6.3.3 The EM algorithm

We shall now demonstrate the use of the EM algorithm to maximise the likeli-
hood given in Equation 6.5. It is normally easier to work with the logarithm of the
likelihood and so taking the natural logarithm of Equation 6.5 gives:

N K
L =logp(X|A,7) = Z longkp(onk, k). (6.6)
n=1 k=1
The summation inside the logarithm makes finding the optimal parameter values,
i, Xk, ™, challenging. The EM algorithm overcomes this problem by deriving a
lower bound on this likelihood (a function of X, A and = that is always lower than
or equal to L). Instead of maximising L directly, we instead maximise the lower
bound.
To obtain a lower bound on L we can use the following relationship between logs
of expectations and expectations of logs, which is a known as Jensen’s inequality:

log Ep(2y {f(2)} 2 Ep(a) {log £(2)}, R (6.7)
i.e. the log of the expected value of f(z) is always greater than or equal to the
expected value of log f(z).

In order to use Jensen’s inequality to lower bound our likelihood, we need to
make the right hand side of Equation 6.6 look like the log of an expectation. To do
this, we multiply and divide the expression inside the summation over k by a new
variable, qnk:

N K
L= Z log Z Tep(Xn |k, Ek)gﬁli.
n=1 k=1 Ink
If we restrict g,k to be positive and satisfy the summation constraint Z,ﬁ;l gnk = 1
(i.e. , gnk is some probability distribution over the K components for the nth object),
we can re-write this as an expectation with respect to gnk:

N K
T D(Xn ok, 2
S log S guk %k_)

n=1 k=1 k

N
- S, [t B0

L

qnk

n=1

220 A First Course in Machine Learning

Applying Jensen’s inequality, we can lower bound this expression:

L= ZlogEqk{w‘“"—zk)} ZEm{ MM}.

n=1 qn dnk

The right hand side of this expression is the bound (we will denote it B) that we
shall optimise. Expanding the expression gives us something more manageable:

Eq,., {log _—mp(xzmk’ Zk) }
nk

K
5 et 2. B

1 k=1 dnk

K N K N K
D gnklogmi+ D> > gak logp(xnlpk, Tk) = D Y gnk log gni-

lk= n=1k=1 n=1k=1

B =

M=

n=1

M=

n

Mz

n

Il

-

(6.8)

Values of gnk, ™, pi, Xk that correspond to a local maxima of this bound will also
correspond to a local maxima of the log likelihood, L.

As we mentioned earlier, the EM algorithm produces an iterative procedure.
This will involve updates for each of the quantities in the model that we will repeat
until convergence. To obtain each update we will take the partial derivative of the
bound B with respect to the relevant parameter, set it to zero and solve. We will
now do this for each parameter in turn.

6.3.3.1 Updating 7

Only the first term of B contains 7, (the partial derivative of all other terms with
respect to mx is zero). mx is a probability and therefore), mx = 1. Hence, the opti-
misation with respect to 7 is constrained. As we saw for the SVM in Section 5.3.2.2,
we can use Lagrangian terms to incorporate constraints into our objective function
(in this case, B). The relevant part of B along with the suitable Lagrangian term
(and associated Lagrange multiplier \; see Comment 5.1) is: -

N K K

B = zzgnklognk - A (Zﬂ'k - l) +
n=1k=1 k=1

Taking partial derivatives with respect to m, setting to zero and re-arranging results

in:

6_8 _ 21};’=1an -\ =
87rk Tk

N
Zan = ATk. (6.9)
n=1

Clustering 221

The final step requires computing A. To do this, we sum both sides over k:

K N K
ZZan =)\Zﬂ'k
k=1n=1 k=1
N
n=1
A= N

where we have used the fact that Z,'f:l gnk = 1 and Z{f:l mr = 1 by definition.
Substituting A = N into Equation 6.9 gives us the expression for mg:

1 N
Tk = —N";an

We will discuss the intuition behind this and the other expression in Section 6.3.3.5.

6.3.3.2 Updating p

Next, we will look at pi. Only the second term of B includes px. If we explicitly
write p(xn |k, Xk) as a multivariate Gaussian (e.g. Equation 2.28) and expand we
obtain:

N K
= 1 1 Tg—1
B=)_ D aulog (WGXD (-5(’% — 1) Bg (% —w))) +

n:l] k:ll K 1 N K
=-3 2:) ; gni log ((2m)*|Z4]) - 5 52 j/;lan(xn — 1) "B (i —)

The first term does not involve pux and can therefore be ignored. Making use of the
following identity (see Table 1.4):

f(w) =w'Cw, % = 2Cw,

and using the chain rule, we can take the partial derivative of B with respect to pux:

OB AN 0o =) B = gm) 9 (o~ pe)
Ok 2 —~ n 0 (Xn — k) 0 px

N
= Z anzgl(xn - I—"k)

n=1

222 A First Course in Machine Learning

Equating to zero and re-arranging gives us an expression for pug:

Il
=)

N
> kT (xn — k)
n=1
N N
> au T ke = > aak T
n=1 n=1

N N
Zanxn = MKk Zan
n=1 n=1

N
pp, = =y Tk Xn (6.10)

Eﬁ:l Gnk

6.3.3.3 Updating 3,

Third, we will look at Xk. As with p1x, we only need to look at the p(x,|tk, k)
term of B. We have already seen this term expanded to:

| &
-3
Ignoring the constant (2r) part of the first term, we are left with:

1 N K
B==32 2 anelog (i) -

To take partial derivatives with respect to the matrix X, we need two more useful
identities. First:

N K

o ((20)11) = 5 303 2w oo) 25 G =)+

n=1k=1

Tfo

MI'—‘

N K
Z Z Gnk(Xpn — uk)TEEI(Xn —pE)+ ...
ne1k=—1

Olog|C| _ ~T\-1
e =€)
and
8a'C™'b _
aC
Using these two identities, we take partial derivatives with respect to Xi:

—(c")~'ab"(CT)".

oB
—6Ek = 2ankzk + = Zanzk (x" [lak)(xn “k) Ek :

n*l

Note that as it is a covariance matrix, X is symmetric and therefore | = k.
Equating this expression to zero and re-arranging gives:

- Zanzk + - Z anzk Hk)(xn - I’l‘k)Tzlzl = O

17,77]

N
1 - 1 _ _
5 Z Qnk 2 ' = 3 Zanzk l(x" - “k)(xn - ﬂk)TEk]

n=1 n=1

Clustering 223

Pre- and post-multiplying both sides by ¥ allows us to cancel all of the Z;lz

N ' : N
kD @k Bk = Tk D quk(Xn —) (xn — pi) Sy 1Tk

n=1 n=1

N N
kD ank = > gnr(Xn — k) (X0 — k)"
n=1

n=1

5, = Lonet Dok (Xn = Hi)(xn =)" (6.11)

221:1 Ank

6.3.3.4 Updating ¢«

Finally, we need to derive an update for gnx. This appears in all three terms in
B. In addition, it is subject to the constraint Z,’;l gnk = 1 and so, like the update
for 7, we will need a Lagrangian term (see Comment 5.1). The bound, complete
with Lagrangian term is:

N K N K N K
= 3> gqurlogmi + ZZ Gnk 1og p(Xn ek, Bk) = Y Y gnk log gnk
n=1k= n= =1 =1k=
1k IK 1k n 1
A (Zan - 1) .
k=1

Taking partial derivatives with respect to g,k gives:

oB
Bor log i + log p(xn|pk, k) — (1 + log gnk) — A

Comment 6.1 — The product rule of differentiation: The product rule
is used when we need to differentiate a product of two functions of the same
variable with respect to the variable. For example, if

f(a) = g(a)h(a),
the product rule states that

0

For example, to differentiate aloga with respect to a, this gives

a x % +1 x log(a) =1 + log(a).

where we have used the product rule (see Comment 6.1) to differentiate the
gnk l0g gni term. Setting to zero, re-arraging and exponentiating gives us an ex-
pression for gpk:

1+ loggnk + A = logmy + log p(xn |k, L)
exp(log gnk + (A + 1)) = exp(log 7k + log p(xn|pak, ik))
gnk exp(X + 1) = mep(Xn|ptk, Xk)- (6.12)

224 A First Course in Machine Learning

As with the update for mx, to find the constant term (in this case, exp(A + 1)), we
sum both sides over k:

K K
exp(A + I)Zan = Zﬂkl’(xnll‘kvzk)
k=1 k=1
K
exp(A+1) = Z‘l(kp(onk,Ek)- (6.13)
k=1

Substituting Equation 6.13 into Equation 6.12 gives us our expression for gn:

P(%n| ptx, Sk
gk = Pttty B) (6.14)

K
zjtl mip(Xn|p, Bj)

6.3.3.5 Some intuition

The four update equations are:

1 N
Tk = TV'Zan (6.15)
n=1
ZNAI QnkXn
py = Smslen (6.16)
Z,]:lzl dnk
ot Tk (X — k) (3 — pix)”
3, = &n=l < (6.17)
Zn:1 qnk
quie = P Xelitn, Ze) (6.18)

S mp(Xnlp,)

The first three expressions rely heavily on gnx: 7k is the mean value of g,k for a par-
ticular k, pr is the average of the data objects weighted by ¢nx and Xy is a weighted
covariance. What does ¢,k represent? Equation 6.18 can provide some intuition. At
first glance, it looks a lot like Bayes’ rule with a prior 7, a likelihood p(xn |k, Xk)
and a normalising constant obtained by averaging over the k components. In fact,
it could be interpreted as computing a posterior probability of object n belonging
to class k (it looks very similar to the Bayesian classification version of Bayes’ rule
given in Equation 5.2). In particular,

p(znk = Ume)p(Xn|pr, Xk)
S K P(2n; = 1m;)p(%nl s, T5)

For particular values of the model parameters 7, 1, ..., thx, X1,. .., XK, qnk tells
us the posterior probability of object n belonging to component k. In light of this,
Equations 6.15, 6.16 and 6.17 make sense. Equation 6.15 is the average of all posterior
probabilities of belonging to class k or, in other words, the expected proportion of
the data belonging to class k. Imagine a scenario where the components are so
distinct that the posterior probabilities are all either 1 or 0. In this case, mx is
just the proportion of the data assigned to component k. gy and 3 are the mean
and variance of the data objects where each object is weighted by the posterior
probability of belonging to component k — objects that have a high probability of

P(znk = lxpn,m, A) = = Qnk- (6.19)

Clustering 225

belonging to component k& have a strong influence on the mean and variance of
component k.

Keeping the previous discussion in mind, we can split the four updates into two
sets. The first set consists of updating our current estimates of the model components
7k, ke and X with gk, the assignment probabilities, fixed. In the second step, we
update the assignments g,k to reflect the new values of the model parameters. This
procedure is very similar to the K-means algorithm introduced earlier. Updating
qnk 1s analogous to updating z,x in K-means and updating pg, Xk, 7 is analogous
to updating px in K-means. The key difference is that we are computing posterior
probabilities of cluster memberships rather than making hard assignments and the
fact that we are inferring the component covariances (although this is a design choice
— we could simply make the assumption that X, = I). Replacing g, with z,% in
Equation 6.16 gives us exactly the mean update from K-means, Equation 6.1.

The four update equations make up an example of the EM algorithm. The first
three updates, mg, ftk, Xk, make up the so-called ‘M’ (maximisation) step where the
bound is maximised conditioned on the values of gnx. The update of ¢,k is known
as the ‘E’ (expectation) step as it actually involves computing the expected value of
the unknown assignments, 2.k, although we have not derived them in this way. The
reader is encouraged to explore other uses of EM in the literature to see alternative
derivations.

6.3.4 Example

The synthetic data we have used throughout this chapter is reproduced in Fig-
ure 6.8 and we will use it to illustrate the operation of the EM algorithm we derived
in the previous section (MATLAB script: gmix.m). Much like K-means, we must
specify the number of components we expect to see a priori and in this case we will
use K = 3. Unlike K-means, there is a useful measure that we can use to infer this
from the data and we shall come to this in due course.

FIGURE 6.8: The synthetic clustering data encountered earlier in the chap-
ter.

226 A First Course in Machine Learning

Before we can start performing the updates provided in Equations 6.15 to 6.18
we need to initialise some of the parameters. We do this by randomly choosing
the means and covariances of the three mixture components. The three resulting
Gaussian pdfs are plotted in Figure 6.9(a). In addition, before we can compute gn«
using Equation 6.18, we need to initialise mx. We do this by assuming a uniform
prior distribution over the three components: 7y = 1/K. We now have all we need
to compute gnx through Equation 6.18 (the ‘E’ step) and then subsequently update
Tk, Uk, Bk using Equations 6.15, 6.16 and 6.17, respectively (the ‘M’ step). The
resulting Gaussians can be seen in Figure 6.9(b). We notice that after only one
iteration, the Gaussians are beginning to reflect the cluster structure in the data.
After this first large step, progress becomes a little slower. In Figure 6.9(c) we
see the Gaussians after five EM iterations — the top right component has become
more distinct (completely separated from the other two) whilst the other two are
gradually diverging. Two iterations later, these two components have moved apart,
as can be seen in Figure 6.9(d) and from here it is only a few iterations until the
algorithm converges — updating gnx and the model parameters causes no change in
their values. The converged solution can be seen in Figure 6.9(e) where the distinct
cluster structure is clearly visible. Finally, in Figure 6.9(f), we can see the evolution
of the bound B and the log likelihood L. Both increase as required.

Often we are not interested in the Gaussians themselves but the assignments of
objects to components — the clustering. These are provided by the values of gnx —
the posterior probability of objects belonging to components. If we want a single
assignment of objects to components, we can assign each object to the component
for which it has the highest posterior probability. It is worth pointing out that hard
assignment like this might not always be sensible. Consider an object (object n) that
has the following values of ¢, at convergence:

gn1 = 0.53, @n2 =0.45, ¢n3 = 0.02

If we must assign it to a particular component, number 1 is most appropriate but
in doing so, we are throwing away useful information about the relationship object
n has with component 2.

At this point, you could be forgiven for wondering why we have bothered deriv-
ing this rather complex way of doing something that K-means seemed to do in a
much more straightforward manner — the clusterings produced by K-means and the
mixture model are almost identical and K-means can be kernelised. In the next two
sections, we will see that mixture models have some key advantages over K-means
due, predominantly, to their probabilistic nature.

Before we move on we will revisit the data that motivated our move from K-
means to the mixture model (Figure 6.10(a)). Using K = 2 and the update equations
derived in this section, we can apply a mixture model to this data and the result is
seen in Figure 6.10(b). It is clear that the mixture model has successfully extracted
the interesting cluster structure.

6.3.5 EM finds local optima

As with K-means, the solution to which the EM algorithm will converge will de-
pend upon the specific initialisation. It is only guaranteed to reach a local maximum
of the likelihood and not necessarily the global maximum. In fact, there will always

Clustering

T2
o

-2 0 2 4
T

(a) The three randomly initialised Gaus-
sian mixture components

Qe
O]

T2
=)

(c) The three components after five iter-
ations of the EM algorithm

A
O

T2
o)

(e) The three components at convergence
of the EM algorithm

227

T2
o

-3 —

-2

(b) The three components after one iter-
ation of the EM algorithm

6

4

So -

-2

(d) The three components after seven it-
erations of the EM algorithm

~S!

2 4 10 12

. 6 . 8
Iteration
(f) The evolution of the bound B (solid
line, Equation 6.8) and log likelihood L
(dashed line, Equation 6.5)

FIGURE 6.9: Example of the Gaussian mixture algorithm in action.

228 A First Course in Machine Learning

15 15
10 ol 10|
. .
5 F Mo et X e e 5
® *' "&*' e
Ny * . R’h‘ G- . 8
0 0
-5 o -5
o
-10 -10 -5 0 -10 -10 -5
Iy Z1
(a) Synthetic cluster data on which K- (b) The converged mixture model with
means failed (objects labeled according K = 2 Gaussian components

to the K-means solution)

FIGURE 6.10: The data on which K-means failed and the successful mixture
model solution.

be more than one global maximum as redefining the component labels must result in
the same likelihood (renaming gk, Xk as, say, pj, 3;). As for K-means, we cannot
solve this problem analytically and have to resort to running the algorithm from
many starting points. We can use the likelihood (Equation 6.5) to evaluate which of
the converged solutions is better (as we did with D, Equation 6.2, in K-means).

6.3.6 Choosing the number of components

As with K-means, we have to specify the number of clusters by choosing the
number of components. We saw earlier that this choice, within the context of K-
means, was nontrivial — the only quantity at our disposal was the total distance
between objects and their cluster centres and this kept decreasing as the number
of components increased. The same problem eliminates the use of the log likelihood
L (and the bound B) for the mixture model. Figure 6.11(a) shows how the log
likelihood L increases with the number of mixture components K. To understand
why this is the case, consider the clustering with K = 10 shown in Figure 6.11(b).
Each of the three original components (Figure 6.9(e)) is now represented by several
smaller components. Imagine these Gaussians plotted in 3D (as we did in Figure 2.8).
Because their volume must equal 1 (they are densities), the smaller the area they
occupy in the input space (i.e. the smaller the ellipses in Figure 6.11(b)) the higher
they must be. The likelihood for the dataset, which is the product of the heights at
each of the data objects (or the sum of the log of the heights for the log likelihood,
L), will be higher. As we add more and more components, the area they need to
take up decreases and the likelihood increases still further.

Fortunately, we can overcome this problem by computing the likelihood on a
validation set using, for example, cross-validation. The results of performing a 10-
fold cross-validation can be seen in Figure 6.12 (MATLAB script: gmixcv.m). The
line and bars show the mean and standard deviation of the likelihood on the held-
out data. The results are not conclusive in the sense that they strongly suggest a

Clustering 229

-350]|

Z2
(=]

-2

-4

~550)

-6

(a) The increase in model likelihood as (b) An example of the model at conver-
the number of components increases gence for K = 10

FIGURE 6.11: The log likelihood L increases with the number of compo-
nents, K.

particular number of components but they do give us an indication that the likely
number lies somewhere between, say, three and eight. In our experience, this is
about as much precision as one can expect with this quantity of data but it offers a
considerable advantage over K-means, where it is hard to get any indication of how
many clusters are present.

Of course, if the clustering is just one step in a larger analysis, we can use some
other figure of merit (classification accuracy, for example) to choose the number
of clusters. In addition, recently developed nonparametric techniques enable the
number of components to be sampled within a Markov-chain Monte Carlo scheme
(like the Metropolis-Hastings method described in Chapter 4). Such techniques are

}

QL —42L

—44}

—46f

2 4 6 8 10 12

K

FIGURE 6.12: Result of 10-fold cross-validation for a Gaussian mixture
model on the data shown in Figure 6.8.

230 A First Course in Machine Learning

beyond the scope of this book but the interested reader is referred to the growing
body of literature in this area given in the reading list at the end of the chapter.

6.3.7 Other forms of mixture components

The second advantage of mixture models over K-means is their immense flexi-
bility. In particular, p(Xx|...) can take the form of any probability density. In the
previous example we used (and derived updates for) a Gaussian. Many other forms
of components are regularly used. We will demonstrate this with a binary dataset
but before we do that, it is worth spending a little more time with the Gaussian as
it often appears in slightly different forms.

In particular, it is often necessary to put restrictions on the mixture component
covariance matrix as there is not enough data to reliably estimate a full covariance
matrix. For example, if we had 10-dimensional data rather than 2-dimensional data
we would need a lot more data to be able to estimate the 55 parameters required in
each covariance matrix. T'o overcome this, it is common to assume that the covariance
matrix has only diagonal elements. You should recall from Chapter 2 that this is
equivalent to assuming that the dimensions are independent. The only difference
to the EM algorithm is in the update for 3, which can now be separated into an
update for the variance of each dimension d, 74 (see Exercise EX 6.1). An even
more extreme case is when the covariance is assumed to be isotropic (diagonal, with
the same value on each diagonal element), ¥y = o7I. Once again, the only difference
to the algorithm is in the update for Xy (see Exercise EX 6.2).

We will now briefly describe a mixture model for binary data. Each data object,
X5, is a collection of D binary values. For example, in D = 10 dimensions, an
example data object might be:

Xn = [0,1,0,1,1,1,0,0,0, 1].

An example 10-dimensional dataset is shown in Figure 6.13. Each row represents
one data object. Assuming that the dimensions are independent within a particular
component, p(X,|...) could be represented as a product of Bernoulli distributions
(see Section 2.3.1):

D
p(xalp) = [pis? (1 = pra)' ™, (6.20)

d=1
where py = [px1,...,pkp] .is a vector of dimension-specific probabilities for the kth

component (i.e. 0 < prqg < 1). There will be two differences to our EM algorithm.
First, when updating ¢, Equation 6.18 becomes:

Gk = T(kp(x"h)k) (621)

K
Zj:1 7;p(Xn |P;)

where p(x,|pk) is given by Equation 6.20. Second, an update for px will replace the
updates for pi and Xy (Equations 6.16 and 6.17).
T'o derive this update, we can extract the data-dependent term from the bound

Clustering 231

Dimensions

FIGURE 6.13: An example binary dataset with N = 100 objectsand D = 10
dimensions. Each row represents one data object.

B (Equation 6.8). This term becomes:

qnk log p(xn|pk) + .

I

=

N
— Z qn klongz""(lfpkd)le”d + ...

Keeping only pirq terms results in:

:
i

(2ndlogpra + (1 — xya) log(1 — pra)) + . ..

TMx
Mc

&
i

1

N
B = ank (Tnalog pra + (1 — Tna) log(1 — pra)) + ...

n=1

Taking partial derivatives with respect to prq gives us:

Setting to zero and re-arranging gives us an update for piq; setting to zero and
solving gives (see Exercise EX 6.3):

Z,’:': GnkTnd
Prd = SES——— (6.22)

Enﬁl ank

which is the weighted average of the dth data dimension, much like the update for s

232 A First Course in Machine Learning

]
el 000000 |

1 2 3 4 5 8 7 8 9 10

FIGURE 6.14: K = 5 clusters extracted from the data shown in Figure 6.13
using the mixture model with binary components.

in the Gaussian mixture (Equation 6.16). Our new EM algorithm involves iterating
between updating ¢.x from Equation 6.21 (the ‘E’ step) and updating px and mx
using Equations 6.22 and 6.15, respectively. Just as with the Gaussian example, we
need to initialise mx and the component parameters which, once again, we do by
setting mx = 1/K and randomly setting each prq to a value between 0 and 1. Using
K = 5 and running the algorithm until convergence gives the clusters shown in
Figure 6.14, where each block is one cluster (MATLAB script: binmix.m). We can
see clear cluster structure — for example, in cluster 1 (top), all objects have a 1 in
dimension 9 and an 0 in dimensions 10, 7 and 2.

In much the same way, we could derive an EM algorithm for many other com-
ponent densities (see Exercise EX 6.6).

6.3.8 MAP estimates with EM

If we have a limited quantity of data, it might be useful to be able to regularise
the parameter estimates obtained via EM. A straightforward way to do this is by
multiplying the likelihood by suitable prior densities for the parameters and obtain-
ing the MAP estimate (the value of the parameters that maximise the posterior;
see Section 4.3). For example, in the binary example described above, we might use

Clustering 233

independent beta priors (see Section 2.5.2) for each of the parameters pxq:

. : F(Ot+,3) a—l —1
(P1,..., Pk, B) = (1 —pra)’ 1.
p(p prla 1:[“!:—[1 OROR Pkd

This adds an extra Pra term in the bound B. The relevant terms are now:

B = (a—1)logpra + (8 — 1) log(1 — pka)
N .
+ Y ank (znalogpea + (1 = Tna) log(1 — pra)) + ...

n=1

Taking partial derivatives, setting to zero and solving in the normal way gives (see
Exercise EX 6.4:

a—1+ z,’:’zl GnkTnd
a+ﬁ—2+Zf=1an
Note that @ = B = 1 recovers Equation 6.22. The regularising effect is clear. If
Znd = 1 for all n or x,,4 = O for all n, Equation 6.22 would give pxq = 1 and pxq = 0.
If a new data object did not have .4 = 1 (or 0), it would have a likelihood of 0
of belonging to this cluster regardless of its values in the other D — 1 dimensions.
Equation 6.23 overcomes this problem by effectively bounding pxq to minimum and
maximum values of:

Pkd = (623)

a—1
at+pB-2’
and
a—1+ N
a+B—-2+ N
respectively.

Map solutions can be obtained via EM for many prior and likelihood combina-
tions. See Exercise EX 6.5 for another example.

6.3.9 Bayesian mixture models

Obtaining point estimates that correspond to the maximum likelihood or MAP
solutions via EM is not the only way to cluster with a mixture model. In particular,
it is possible to use a Markov chain Monte Carlo scheme to sample cluster assign-
ments and the associated component parameters. This has various advantages, not
least the fact that it is possible to get around the problem of fixing the number of
components (as mentioned at the end of Section 6.3.6). The result is not a single
clustering but many samples from a distribution over clusterings. In a pure mod-
elling sense, this is a good thing — we are explicitly acknowledging the fact that
there is uncertainty present in the number of clusters (components) and the associ-
ated assignments. In the presence of such uncertainty, insisting on a single clustering
comes with all the pitfalls of any other point estimate. However, it is comes with
problems of interpretability. For many applications it is hard to imagine how we can
use a distribution over clusterings and often people resort to picking the sampled
clustering that has maximum likelihood. MCMC approaches to mixture models are
useful when the desired end result can be expressed as an expectation with respect
to the distribution over clusterings. For example, if we want to compute the prob-
ability that two objects, x,, and X, are in the same cluster, we can simply count

234 A First Course in Machine Learning

the number of samples in which they are and divide this by the total number of
samples. We could not calculate this quantity using a maximum likelihood or MAP
solution via EM.

6.4 Summary

In this chapter we have provided an introduction to clustering through two fam-
ilies of algorithms: K-means (including kernel K-means) and mixture models. The
simplicity of K-means (and the flexibility of kernel K-means) makes it a popular
approach. The diverse range of different component models available means that
mixture models (and subtle variants) are appearing in more and more applications.
These techniques also have drawbacks — in particular, the K-means algorithm and
the EM algorithm for mixture models are both only guaranteed to reach local optima.
In other words, they will reach an optimum of their respective objective function
but it will not necessarily be the global optima (the overall best solution). In both
cases, the particular solution that is reached depends on the initialisation - different
random values of puxr and X will lead to different clusterings.

It is also important to remember that there are many other approaches available
that we could never have covered in a single chapter and the reader is strongly
encouraged to investigate other popular methods, for example: hierarchical clustering
(widely used in computational biology), spectral clustering and functional clustering.

6.5 Exercises

EX 6.1. Derive the EM update for the variance of the dth dimension and the kth
component, o4, when the cluster components have a diagonal Gaussian
likelihood:

D
p(xnlznk = 1’H’C17 (R 7#KD,0%17 e 7UI2CD) = HN(”kdyalzcd)
d=1
EX 6.2. Repeat Exercise EX 6.1 with isotropic Gaussian components:
D
P(Xnlznk = 1, pr, 0%) = | [Mpera, 0%)
d=1

EX 6.3. Derive the EM update expression for the parameter pxq given in Equa-
tion 6.22.

EX 6.4. Derive the MAP EM update expression for the parameter pxq given in
Equation 6.22. Assume a Beta prior with parameters « and (.

Clustering 235

EX 6.5. Derive the MAP update for a mixture model with Gaussian components
that are independent over the D dimensions:

D
P(Xnlznk = 1, k1, -, kD, 0k, -+, 0kp) = | [N (ikas oka),
d=1

assuming an independent Gaussian prior on each ukq with mean m and
variance s.

EX 6.6. Derive an EM algorithm for fitting a mixture of Poisson distributions.
Assume you observe N integer counts, x1,...,&n. The likelihood is:

N K Tn o
p(x]A) = HZ"’“M

|
n=1k=1 Tn'

Clustering 237

Further reading

(1]

2]

(3]

[4]

(5]

(6]

8]

David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet allocation. Journal
of Machine Learning Research, 3:993-1022, 2003.

This paper describes a complex mixture-type model for text data.
The model is based on a more complex generative process than that
described in this book. This particular model has proved to be very
popular in the Machine Learning and Information Retreival literature.

Igor Cadez, David Heckerman, Christopher Meek, Padhraic Smyth, and Steven
White. Model-based clustering and visualization of navigation patterns on a web
site. Data Mining and Knowledge Discovery, pages 399-424, 2003.

Mixture models can be defined with any type of component density.
Here, a model is developed that uses Markov chains as the component
densities, parameterised by a set of transition probabilities. The model
is used to analyse internet browsing behaviour.

Guojun Gan, Chaogun Ma, and Jianhong Wu. Data Clustering: Theory, Algo-
rithms, and Applications. Society for Industrial Mathematics, 2007.

Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31:651-666, 2010.

A recent tutorial paper providing an overview of the clustering prob-
lem and various clustering algorithms.

Anil K. Jain and R.C. Dubes. Algorithms For Clustering Data. Prentice Hall,
1988.

A clustering textbook that is now out of print but available free from
the authors’ website: http://www.cse.msu.edu/~jain/Clustering_
Jain_Dubes.pdf

Anil K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM
Computing Reviews, pages 264-323, 1999.

A review of clustering techniques with discussions of applications in
areas such as information retreival, image segmentation and object
recognition.

G. McLachlan and D. Peel. Finite Mizture Models. Wiley, 2000.
A comprehensive description of statistical mixture models.

Carl Rasmussen. The infinite Gaussian mixture model. In In Advances in Neural
Information Processing Systems 12, pages 554-560, 2000.

238 - A First Course in Machine Learning

One of the first papers to describe the use of a Dirichlet Process
for overcoming the problem of fixing the number of components in a
mixture model.

Chapt‘er 7 |

Principal Components Analysis and
Latent Variable Models

In the previous chapter we introduced two unsupervised methods that could be
used to perform clustering — the partitioning of data objects into a finite number of
disjoint groups such that objects in the same group share some similarity. We now
turn our attention to a second class of unsupervised methods that could broadly be
classed as projé techniques.

We will see how these methods can be used to take datasets in very high dimen-
sions and project them down to a smaller number of dimensions for, for example,
visualisation and feature selection. These techniques fall within the larger scope of
latent variable models and we shall use the visualisation example to help provide an
introduction to this area.

7.1 The general problem

Our starting point is a dataset of N objects, y,. Each object is an M-dimensional
vector. The number of parameters in many models increases with the number of di-
mensions, M. Therefore, if M is large, it can make parameter estimation challenging.
Also, data in many dimensions is difficult to visualise. For these reasons, it is often
useful to transform the M-dimensional representation y, into a D-dimensional repre-
sentation X, . This process is known as projection. We are projecting M-dimensional
data into D-dimensions in a manner that will hopefully preserve the properties of
interest.

Figure 7.1 illustrates this problem in a more familiar setting. Both Figure 7.1(a)
and Figure 7.1(b) show projections (shadows) of a three-dimensional object (a hand)
onto a two-dimensional surface. In Figure 7.1(c) we see the idea of projection in a
more mathematical setting. Here, some two-dimensional data (y,) has been pro-
jected onto one dimension. The projected dimension happens to be one of the origi-
nal two dimensions, but this is not necessary. 1o draw an analogy with Figures 7.1(a)
and 7.1(b), the original objects y, correspond to the hand, and x, to the shadow.

7.1.1 Variance as a proxy for interest

When performing the projection, we would like to retain as much of the interest-
ing structure in our data as possible. What do we mean by interesting? Figures 7.1(a)

239

240 A First Course in Machine Learning

is doesn't look
like a hand!

A two-dimensionat
projection

FIGURE 7.1: The idea of projection. (a) and (b) A hand (three-dimensions)
being projected onto a table (two-dimensions) by a light. (¢) Two-dimensional
data y,, being projected into one dimension x,,. In this case, the projection is
aligned with one of the original axes. This will not necessarily be the case.

and 7.1(b) are both projections of the same ‘data’. It is fairly clear in this case that
the projection in Figure 7.1(a) maintains more of the characteristics of the original
object (the hand) than Figure 7.1(b). In general, however, we will not be aware of
the structure in the original representation and so cannot use this to optimise our
projection.

In Figure 7.2(a) we can see a cloud of data points that have been generated from
a single Gaussian distribution. The data has been projected onto two lines, A and
B. Each line gives a different one-dimensional representation of the two-dimensional
data. Note that, unlike in Figure 7.1(c), the lines do not correspond to either of
the original dimensions. The representation in either one-dimensional space (the
position on either line) is given by a linear combination of the original dimensions.
In particular, 2, = wiYn1 + Waynz (where yn = [yn1,yn2]") or, in vector notation,
Tn = W'y, where w = [w;, mg]T. '

Principal Components Analysis and Latent Variable Models 241

3 10 T B
\«—B
\ .
2 5 R -
A . e,
1 . ° «° P
x .. Se * . « *
- » g o8 o L Sl
0 '/ ° DIy i,
R A
0% =8.35 : =3 A
-1 _5 .'.. °
' . o x
2 s) e e—
o R
~10p-~ L T—
-3 | o2 =17.37
\ 1
-3 -2 -1 0 1 2 3 -10 -5 0 5 10
(a) Data from a single, elongated Gaus- (b) Data from two Gaussians
sian

FIGURE 7.2: Examples showing the variance of different projections of
two synthetic two-dimensional datasets. In both cases, two different one-

dimensional projections are shown (labeled A and B) as well as the variance
of the data in each projection (02).

We can compute the variance of the data in each one-dimensional space as:

&
0% = N ;(a:n - ;LI)Z,

and it is obvious that will be higher for projection A than for projection B. Given
no other information, if we must project into one dimension, we should probably
choose A. Put another way, if we are forced to throw one of A and B away, it feels
safer to throw away the information present in B.

Figure 7.2(b) gives a more interesting example. We now have data that exhibits
cluster structure. Projecting onto A preserves this cluster structure whilst projecting
onto B does not. Cluster structure is an interesting property and so it looks like the
projection onto A will be of more interest than that onto B. The variance of the
data after projection A is more than double that for projection B. This is due to the
cluster structure — all points are a large distance from the mean. If cluster structure
is present in the data, using the projection with the highest variance is likely to
preserve this structure.

For this reason, variance is seen as a good quantity to maximise when deciding
on projection directions. It is the quantity that is maximised in the most popular
projection technique, Principal Components Analysis.

242 A First Course in Machine Learning

7.2 Principal components analysis

Principal Components Analysis (PCA) is perhaps the most widely used statisti-
cal technique for projecting data into a lower-dimensional space. It is very popular
within Machine Learning for visualisation and feature selection. PCA defines a linear
projection: each of the projected dimensions is a linear combination of the original
dimensions. That is, if we are projecting from M to D dimensions, PCA will define
D vectors, wq, each of which is N-dimensional. The dth element of the projection,
Tnd (Where X, = [Tp1,... ,an]T), is computed as:

T
Tnd = Wa¥n.

The learning task is therefore to choose how many dimensions we want to project
into (D) and then pick a projection vector, wy, for each.

PCA uses variance in the projected space as the criteria to choose wy. In par-
ticular, w; will be the projection that makes the variance in the z,; as high as
possible. The second projected dimension is also chosen to maximise the variance
but w, must be orthogonal to w; (w{xs = 0). The third component, w3, must
maximise the variance and be orthogonal to both w; and wa, etc. In general:

wiw; =0, Vj #i.

This set of constraints tells us that if we set D = M, performing PCA amounts to
rotating a rotation of the original data, without any loss of information.

In addition, PCA imposes the constraint that each w; must have a length of 1,
w]w; = 1. This does not restrict the technique, as it is only the direction of each w
that is important.

The problem that PCA solves in order to find the projections, wi,...,wp, can
be derived in a number of ways. We are going to do it by deriving an expression for
the variance of 1, as this is perhaps the most intuitive. The reader is encouraged
to explore other approaches within the Statistics and Machine Learning literature.

Before we start the derivation it is useful to make the assumption that each of
the original dimensions has zero mean:

1 N
vV — — n:0-
v an::ly

This can be enforced by subtracting the mean, y, from each y,,.

We shall start by finding a projection into D = 1 dimension. In other words, we
are only interested in finding one w vector. In this case, the projection results in a
scalar value, x,, for each observation given by:

T
Tn =W Yn.
"The variance, o2, is given by:

s 1 2
N > (zn —2) . (7.1)

n=1

Principal Cdmponents Analysis and Latent Variable Models 243

We can simplify this expression due to our assumption that ¥ = 0:

‘ N
i:NZ:

Equation 7.1 becomes:
1 X
2 —_ —
Iz = N Z

Substituting the definition of x,, gives:

N
or = Z w'yn)?
"y
Z yny-ln—w
, N

o2 = wTCw, (7.2)

ZIH

where C is the sample covariance matrix, defined as:
&
- T
= 5 2 =N -9,
n=1

but where y = 0 in our case. Note that this expression tells us that we didn’t lose
anything by transforming our data to force y to be 0. C would be the same whether
we did this or not.

Our aim is to find the value of w that maximises o2 and therefore also maximises
w'Cw. We could keep increasing w' Cw by increasing the value of the elements
in w and this is why w is constrained to have a length of 1, w'w = 1. As with
the constraints in the SVM optimisation in Chapter 5 and the EM derivation in
Chapter 6, we can incorporate this constraint into our optimisation through the use
of a Lagrangian term (see Comment 5.1). In particular, we wish to find the w that
maximises

L=w'Cw-Aw'w-—1)

Taking partial derivatives with respect to w, equating to zero and rearranging gives

% =2Cw—-Aw =0
ow
Cw = \w (7.3)

(where we have incorporated the factor of 2 into the constant A).

244 A First Course in Machine Learning

Comment 7.1 — Eigenvectors and eigen values: The eigenvec-
tor/eigenvalue equation for some square matrix A is given as:

)\iu,-, = Alli. (74)

The solutions to this equation are pairs of eigenvalues (\;) and eigenvectors

(us).

The figure on the right provides
some intuition for this equation.
Multiplying an M-dimensional
vector u by an M x M matrix B
results in another M-dimensional
vector. Therefore, we can con-
sider the matrix B as defining
a rotation of the vector u. Dif-
ferent B matrices will produce
different rotations. The solutions Bu
to Equation 7.3 for a particular
matrix A are the vectors u for
which applying the rotation A
only results in a change in the
length of u. The magnitude of this
change is given by the scalar A.

Au = Au

In general, if the matrix A has M rows and M columns, there are M eigen-
vector/eigenvalue pairs that solve Equation 7.4. The M eigenvectors will be
orthogonal. We are not going to go into the detail of how to solve the eigen-
value/eigenvector equation. Routines for doing it are common, for example,
the eigs function in Matlab.

Equation 7.3 is of a very common form, known as the eigenvector/eigenvalue
equation (see Comment 7.1). Comparing Equation 7.3 with Equation 7.4, we can
see that the projection w that maximises the variance is one of the eigenvectors of
the covariance matrix C. However, there will be M of these; how do we know which
one corresponds to the highest variance? Our expression for o2 is:

2 T
o =w Cw

Remember that w'w = 1, and we can therefore multiply the left hand side of this
expression by w'w:

T T
o*w'w =w' Cw.

Removing a w' from each side leaves us with something that looks very similar to

7.3:
olw = Cw,

telling us that given an eigenvalue/eigenvector pair (A, w), A corresponds to the
variance of the data in the projected space defined by w. If we find the M eigenvec-
tor /eigenvalue pairs of the covariance matrix C, the pair with the highest eigenvalue
corresponds to the projection with maximal variance, wi. The second highest eigen-
value corresponds to wa, the third to wj, etc.

To summarise, performing PCA on a set of data obJects, yi,--.,¥YN, requires

Principal Components Analysis and Latent Variable Models 245

performing the following steps (the expressions in parentheses are the corresponding
matrix operations if we define Y = [y, ... ,yn]"):

1. Transform the M-dimensional data to have zero mean by subtracting ¥y from
each object where y = —11\7 271:1:1 Yn-

2. Compute the sample covariance matrix C = % Zf:’zl ynys (or C = —}VYTY).

3. Find the M eigenvector/eigenvalue pairs of the covariance matrix. This can
be done using, for example, the eigs function in Matlab.

4. Find the eigenvectors corresponding to the D highest eigenvalues, wy,...,wp.

5. Create the dth dimension for object n in the projection, z,q4 = w;yn (or
X =YW, where W = [wy,...,wp], i.e. the M x D matrix created by plac-
ing the D eigenvectors alongside one another and X is the N x D matrix
defined as X = [xy,... ,xN]T).

To see a simple example of this, we can look back at Figure 7.2. In both plots,
the directions we chose to project onto were the principal components. As we were
working in two dimensions, there was a maximum of two components (a 2 x 2 co-
variance matrix has only two eigenvectors; it is impossible to have more than two
orthogonal directions in two dimensions). When looking at these plots, remember
that the procedure only defines the direction of the lines we have projected onto.
We have moved the lines down a bit (for A) and left a bit (for B) to aid visualisation.

Figure 7.3 shows a more complex example (MATLAB script: pcaexample.m).
Here, we have generated a dataset where each object is drawn from one of three
clusters (see Figure 7.3(a)). We then make the data more complex by adding an
additional five dimensions whose values are drawn from A (0, 1):

Yna ~N(0,1), d=3,...,7, n=1,...,N.

In other words, there is structure in the first two dimensions and noise in the re-
mainder. This might correspond to a real example where we have measured various

8 = 3 v
-
6 - 20) .
4 *' e
LI5S P .-‘ T e -y
s) A
2 o oo & Abﬁ*
o 3 20 o L
£ o o L0 ‘5 S0 Raw (X 1] MA
_ - AT A
2 L] 1 LT] .. A
10
-4 A b A
A
A & x -2 » A
-6l © A &R 5 -y
A
- -5 0 5 % 2 4 6 8 "o -5) 5 10
Y d Tt

(a) First two dimensions of (b) The seven eigenvalues (c) The data projected onto
the data objects yn, (variances of the projected the first two principal compo-
dimensions) nents

FIGURE 7.3: Synthetic PCA example where one projected dimension is all
that is required. The data objects y, are seven-dimensional. The first two
dimensions have the cluster structure shown in (a). The remainder are made
up of values sampled from N(0,1).

246 A First Course in Machine Learning

attributes of some objects, but do not know a priori which, if any, are interesting.
After mean-centering the data, Figure 7.3(b) shows the values of the seven eigenval-
ues of the covariance matrix,°C = Y'Y, ordered by magnitude. Recall that these
values correspond to the variance in each of the D potential projection dimensions.
We can see that the highest eigenvalue is far higher than any of the others - it looks
like we could capture most of the variance in our original seven-dimensional space
with just one projected dimension. This might seem strange given that our original
cluster structure was in two dimensions. However, looking back at Figure 7.3(a),
the cluster structure is really only one-dimensional, as the clusters all lie on the line
Yn1 = Yn2. One projected dimension will suffice. Plotting the data in the first two
projected dimensions makes this clear (Figure 7. 3(c)) The first projected dimension
ZTn1 holds all the cluster structure.

This example shows us an important feature of PCA. The eigen-spectrum (mag-
nitudes of the eigenvalues; Figure 7.3(b)) gives us some indication of how many
interesting features there are in our data. In particular, Figure 7.3(b) tells us that
we are unlikely to gain much by using two projected dimensions rather than one.

A second example can be seen in Figure 7.4 (MATLAB script: pcaexample2.m).
Figure 7.4(a) shows a different cluster structure in the first two dimensions (the
other five dimensions are constructed as in the previous example). We now have
four clusters in an orientation that could not be explained using only one dimension.
There is no single linear projection that would keep all of the clusters separate. We
would therefore expect more than one large eigenvalue. Figure 7.4(b) shows that
this is indeed the case — the first two eigenvalues are now both much higher than
the remainder. The data projected onto these first two components can be seen in
Figure 7.4(c) and it is clear that the cluster structure is preserved in the reduced
space.

Before we proceed, it is worth reiterating a couple of important points from these
examples. First, remember that in both examples we added five ‘random’ dimensions.
Hence, the problem is not as trivial as Figures 7.3(a) and 7.4(a) suggest. Second,
although we have labeled the data objects differently when plotting them (circles,
squares, etc.) this information is not used by PCA - it is unsupervised. Finally, the
fact that we happened to put the cluster structure into the first two dimensions is

N /} N L
e - 7 4 °
°
T 20608 & Ltan e . S o
AR S - ala 2 A LS
4 § & o the 3 A48Ty %93
K . RS T o 4 [
= 5 A 8 wen ® -
3 [

e g et 444t -z".'-.'- 6% s
of ‘. [J 2 Y - & ?@Q‘ $
J’. A 4 1 - * $

¢
[I
] -2 0 2 4 6 K 2 4 6 6 -4 2 0 2 4 6
Yn1 d Tni

(a) First two dimensions of (b) The seven eigenvalues (c) The data projected onto
the data objects y,, (variances of the pro;ected the first two principal compo-
dimensions) nents

FIGURE 7.4: Synthetic PCA example where two prOJected dimensions are.
required.

Principal Components Analysis and Latent Variable Models 247

irrelevant. If we shuffled up the columns of Y (i.e. re-ordered the dimensions), the
result would be exactly the same.

7.2.1 Choosing D

In the previous section we used the eigen-spectrum (and our knowledge of the
data) to inform how many dimensions we should project into. In general, our choice
of D will be very application specific. For example, if we are performing PCA as a
visualisation step that lets us see our high-dimensional data, then we are restricted to
the number of dimensions we can visualise in a practical way: normally a maximum
of three.

For other uses, the eigen-spectrum provides some useful information but its
interpretation is highly subjective (we will not always get plots that send as clear
a message as Figures 7.3(b) and 7.4(b)). If PCA is being used as part of a larger
system, it is important to consider more objective measures. For example, a common
use of PCA is as a feature extraction technique prior to classification. If the data
used in Figure 7.4 was actually a four class classification problem, consisting of a
data matrix Y and some labels t, it might be sensible to perform the classification
with the projected data X rather than the original data Y. In this case, D should
really be chosen to be the value that gives the best classification performance via,
perhaps, cross-validation.

7.2.2 Limitations of PCA

PCA has been successfully applied in many application areas but, like all models,
it has clear limitations. In particular, it implicitly makes two assumptions about the
data:

1. The data are real-valued.
2. There are no missing values in the data.

Many problems will give rise to data that fulfils both of these criteria but just
as many will not. For example, missing values are a common occurrence in scien-
tific data where quantities being measured go outside the dynamic range of the
measurement equipment. Datasets of purchasing records (whether someone bought
something or not) are binary and not real-valued. An obvious example that fails
both criteria is a dataset of movie ratings. Imagine a matrix with a row for each
viewer and a column for each movie. The value in the ith row and jth column is the
rating that the ith viewer gives to the jth movie. Typically, this value will be an
integer (0 to 5 stars; not real-valued) and it is highly unlikely that a single viewer
would be able to watch and rate each movie, so many values will be missing.

In the remainder of this chapter, we shall use these limitations of classical PCA
as an opportunity to introduce the general concept of latent variable models and
how we can perform inference or learning within these models. We should stress
that there are many types of and uses for latent variable models beyond the PCA-
like domain — we’ve already seen one — mixture models — in Chapter 6. However,
addressing the limitations of classical PCA gives us a good route in. We will also
use this opportunity to introduce Variational Inference — a method of approximat-
ing an intractable posterior density that has become very popular throughout the

248 A First Course in Machine Learning

Machine Learning community in recent years due to its appealing combination of
good empirical performance and low computational overhead.

7.3 Latent variable models

In many applications there will be characteristics of the objects of interest that
are not provided in the data we are given. These latent variables (also known as
hidden variables) can be placed into two categories:

1. Variables corresponding to a real feature of the object that have not been
measured (e.g. maybe the technology to measure it is not available).

2. Abstract qualities that do not really exist but arise from our modelling as-
sumptions and might be useful.

There are many examples of the former in the analysis of biological data. Consider
a biological system consisting of three molecular species: A, B and C. A and C are
easy to measure whilst B, for whatever reason, is not. In other words, A and C are
observed whilst B is hidden. In this situation, we can explicitly model B as a hidden
variable and use the data for A and C to learn something about B.

We are more interested in the second type of latent variable in this chapter. PCA
is a good example — we observe some M-dimensional vectors, y», and use these to
construct a set of D-dimensional vectors, X,. The input vectors are likely to be
measurements of something that actually exists in the world. The x,,, however, are
latent variables that we have created based on assumptions within our model — they
do not necessarily exist ‘in the wild’. We created them in the hope that they might
be more useful than the original variables for, for example, visualisation.

We shall return to PCA-like models in due course. First, it will be useful to take
a model that we have already seen and place it into the latent variable framework.

7.3.1 Mixture models as latent variable models

In Section 6.3, we introduced mixture models as a powerful clustering technique.
By means of an introduction, we described a procedure for generating data that
involved, for each data object we wished to generate, choosing one of K possible
components and then sampling the object from this component. We introduced a
set of indicator variables, znk, where z,r = 1 if the nth object was generated by the
kth component. These indicator variables are latent variables — they do not neces-
sarily exist in reality — that enabled us to build the mixture models. When deriving
the algorithm for inferring the parameters of the mixture model, we did not explic-
itly use z,%, although in Equation 6.19 we showed that the g,.r parameters could be
interpreted as the posterior probability that object n was generated by component
k: p(znk = 1|Xn, w, A). Our model definition implied the existence of a set of latent
variables and we were able to learn something about the values they might have
taken.

Principal Components Analysis and Latent Variable Models 249

7.3.2 Summary

At the start of this chapter, we introduced PCA as a tool for projection of M-
dimensional data into a D-dimensional space (where D < M). This can be useful for
visualisation (when D < 2) or as a more generic unsupervised pre-processing tool
before other analyses (classification, clustering, etc.). There are some drawbacks to
PCA (ability to handle just real-valued data, inability to cope with missing data)
which we will overcome in the remainder of this chapter. To set the scene for this,
we have shown that PCA is one of a family of techniques known collectively as latent
variable models, to which the mixture models introduced in Chapter 6 also belong.
To be able to perform inference within a probabilistic PCA model, we will need to
make some approximations. We have already seen ways of doing this in Chapter 4,
and here we will introduce another technique, Variational Bayes.

7.4 Variational Bayes

Variational Bayes (VB) is an approximate inference technique that has be-
come popular within Machine Learning due to its good empirical performance and
relatively low computational cost. Like the Laplace approximation introduced in
Section 4.4, it allows us to approximate an intractable posterior with something
tractable. The parameters of the approximate posterior are optimised to make the
approximation as close to the true posterior as possible.

Although VB is used to construct an approximate posterior, it is not its primary
motivation. The posterior approximation appears when we attempt to maximise the
log marginal likelihood.

Consider a very general case where we have some data Y and a model that
implies some parameters/latent variables 8. Note that we are lumping all model
parameters and latent variables into the same symbol (8). Within a Bayesian frame-
work, the distinction between how we deal with latent variables and parameters
becomes a little blurred: they are all things that we do not know so we treat them
all as random variables. The marginal likelihood, p(Y), is defined as:

CopY) = ;/p(Y,B)dG._ ‘ (7.5).
In this expression, we have omitted conditioning on all things that are constant. This
could include the model type, prior parameters, hyper-parameters, etc. All of these
things are model /problem specific, so we stick with this general expression but will
be more precise when examining particular examples. An example of a more specific
version of this equation is given in Section 3.4, where we first encountered marginal
likelihoods.

Note that this expression is also commonly given with the joint density p(Y, 8)
broken up into its constituent parts:

oY) = [p(Y10)p(0)db.

250 A First Course in Machine Learning

The marginal likelihood computed in Equation 7.5 is therefore the result of averaging
the likelihood (p(Y|@)) over all values of the parameters (and latent variables),
weighted by the prior, p(8). This expression can be maximised with respect to all
of the things on which the whole expression is conditioned (model structure, prior
parameters). Unfortunately, maximising it is almost always very difficult due to the
integral over the potentially high-dimensional parameter space. One way in which
we can make progress is to lower bound the log marginal likelihood in a manner
similar to that which we used in the EM derivation in Chapter 6. There, we used
Jensen’s inequality (see Equation 6.7), which we will repeat here:

log B,y {f(2)} 2 By {log f(2)}.

‘The log marginal likelihood is given by:

logp(Y) = log/p(Y,O)dG.

We start by introducing an arbitrary distribution over 8, Q(8) into the right hand
side: o(Y0)

logp(¥) = log [Q(6)7550)
Recall from Equation 6.7 that Jensen’s inequality tells us that the log of an expec-
tation is always greater than the expectation of a log. The right hand side of our
expression can be interpreted as an expectation (of p(Y,0)/Q(0)) with respect to
Q(0), so we use Jensen’s inequality to construct a lower bound, £(Q):

deo.

_ p(Y 0)
logp(Y) = tog [@(0)2502) o
9) .
> / Q(6) log Q(e) d6 = £(Q). (7.6)

Computing the difference between the true log marginal likelihood and our new
bound reveals how we can obtain an approximate posterior:

log (¥) - £(Q) = logp(¥) — [@(©)10g 250D ao

Q)
= 10gp(Y) — [@(0)1os XKL o
= 10gp(Y) - [Q)10 "5 do ~ [Q@) 0gp(x)d6
— logp(Y) - [Q)10 g”(e('o))do log(Y) [Q(6)d6
— logp(Y) - [Q)10 g”g('o))do log p(Y)
logp(Y) ~ £(@) = ~ [O)10g BJ a0 = —KLIQ@)Ib(EIY)] (1)

The final expression is known as the Kullback-Leibler (KL) divergence between the
posterior, p(60|Y) and Q(0); see Comment 7.2.

Principal Components Analysis and Latent Variable Models 251

| Comment 7.2 — Kullback-Leibler divergence: It is often important to
be able to quantify the difference between two probability distributions. For
example, if we are trying to find an approximate posterior that is similar to
the true posterior, we need to define what we mean by similar! The Kullback-
Leibler divergence is one such quantity that appears in the derivation of Vari-
ational Bayesian techniques. It is defined for discrete and continuous distri-
butions as:

KL{g(z)||p(2)] = /q(w) log% dz (continuous)

KL[q(z)|Ip(z)] = Zq(ac) log% (discrete)

x
For continuous distributions it is almost always intractable to compute due
to the integral over a potentially high-dimensional space.
An important property of the KL divergence is its asymmetry —
KL[q(z)||p(z)] # KL[p(z)||g(z)]. KL divergence is always less than or equal
to zero with the maximum value of zero being reached when p(z) = ¢(z).

The left hand side of Equation 7.7 must always be greater than or equal to
zero (remember that £(Q) is a lower bound on log p(Y)). The KL divergence is
a measure of dissimilarity between two distributions that takes the value 0 if the
two distributions are identical and is otherwise less than zero. Maximising £(Q) by
varying @ reduces the negative of the KL divergence and therefore has the effect of
making Q(#) more and more similar to the true posterior p(8|Y). If Q(8) and p(0|Y)
are identical, the bound is equal to the true log marginal likelihood (see Exercise EX
7.1).

7.4.1 Choosing Q(0)

We have seen that if we maximise the bound with respect to Q(8), we are
making Q(0) a better and better approximation to the posterior. We need to choose
the form of Q(6) and it makes sense to choose it in such a way that makes it
relatively straightforward to maximise the bound given in Equation 7.6. There is a
clear trade-off here — more complex forms for Q(@) are likely to make the bound
harder to optimise but will provide us with a better approximation. Simple forms
for Q(@) will potentially make optimisation easy but the resulting approximation
will probably be poor. A popular assumption is to assume independence across the
different parameters/latent variables with 6:

ooy =JlaEy - (18

where each [= 1... L is a different individual or set of parameters or latent variables.
For example, a model may have M vectors of parameters w,, and N latent variable
vectors x,, collectively known as W and X, respectively. We might decide to assume
independence across these sets of parameters:

QW,X) = Qw(W)Qx(X).

252 A First Course in Machine Learning

We could go one step further and assume that either or both of these distributions
was independent over its M (or N) components:

M N
Qw(W) = [T Qw..(wm), and/or Qx(X) =[] @x.(xn).

m=1 n=1

Going even further, we could, for example, assume independence across the D-
dimensions of x,:

N D
Qx(X) = [] [Qena(@na)-
n=1d=1

Given that the parameters are likely to be dependent in the true posterior, the
more independence assumptions we make, the worse our approximation is likely to
become. This is an example of the tradeoff we just mentioned: greater independence
assumptions will make the bound easier to optimise but will result in a poorer
approximate posterior.

7.4.2 Optimising the bound

If we construct Q(0) in the manner described by Equation 7.8, the bound is
optimised by distributions of the form:

- o (Y,)

where the expectation is over all of the individual distributions making up the prod-
uct in Equation 7.8 except the lth one.

The expression is not as ominous as it appears at first glance. The denomina-
tor is simply a normalising constant that will often be defined by the form of the
terms involving @; in the numerator. For example, the presence of linear (O,Tb) and
quadratic (8] A8;) terms suggests that Q;(8;) is Gaussian, for which we know the
normalising constant.

Computing each Q;(8;) requires taking an expectation with respect to each other
Qk(0k). Much like the EM algorithm in Chapter 6, this means that we will require
an iterative procedure to optimise our approximate posterior.

7.5 A probabilistic model for PCA

To illustrate Variational Bayes, we will start with a probabilistic PCA-like model.
Assume that we observe n = 1... N M-dimensional input vectors y,,. We would like
to find a D-dimensional representation x, (where D < M). We will link y, and x,
with the following model:

Yo =Wx, +Vv

where W is an M x D matrix and v is an M x 1 noise vector. The graphical

Principal Components Analysis and Latent Variable Models 253

g

FIGURE 7.5: Graphical representation of the probabilistic PCA model.

representation (see Section 3.6) of this model can be seen in Figure 7.5. We will
make the following prior assumptions:

p(xn) = N(0,1Ip)

M
p(W) = [p(wnm)

p(wm) = N(0,1Ip)
P(Ynm) = N(W;xn:T—l)

baTa—le—bT

et F = ——

where W = [w1,...,wn]" and for convenience we have defined a precision rather
than variance parameter for the noise: 7 (77! = o).

We will now use Variational Bayes to infer an approximate posterior over

X = [x1,...,xn]", W and 7. The first step is to decide how we shall decompose

Q(W, X, 7). We will do the following:

N M
Q(W,X,7) = Q-(7) [H Q. (xn)] [H Qwn <wm)] :

n=1 m=1

i.e. assume independence across the three sets of parameters (for brevity, we will refer
to the latent variables x,, as parameters from now on) and additionally independence
across the various vector components of X and W.

To obtain expressions for each Q;(0;), we need, from Equation 7.9, to take expec-

254 A First Course in Machine Learning

tations of log p(Y, 8). In our example, this is (making the standard IID assumption):

M N
p(Y, X, W,7) = p(rla,b) [H p(wm)w [H P(%n)p(yn|W, Xn, T)

n=1
M N
logp(Y, X, W, 7) = logp(rla,b) + > _ logp(wm) + Y _ log p(xn)
m=1 n=1

N
+ Y log p(yn|W,%n, 7).

n=1

Because of our assumption that the noise vector v has diagonal covariance, the final
term on the right hand side can be further expanded to each individual element of
Yn:

log p(Y, X, W, 7) = logp(rla,b)
AM

+ Z log p(Wim)

m=1

N
+) log p(xn)

n=1

N A
+y > log p(ynm|Wm, Xn, T), (7.10)

n=1m=1

where
P(Ynm |Wm, Xn, T) = N(W:nxm 7'—1)-

We will now define each component of the approximate posterior in turn.

7.5.1 Q(7)

From Equation 7.9 we know that:

Q- (1) x exp (Eqgy (x)ow(w) {log p(Y, X, W,7)}).

Any terms within the expectation that do not include 7 can be ignored as they will
be swallowed up by the normalisation constant. The only terms that do depend on
7 in Equation 7.10 are the first and the last. Writing these terms in full gives us:

logp(Y,X,W,7) < alogb+ (a— 1)logT — br — logI'(a)

NM NM T T 2
—Tlog2w+ 5 lOgT—ig;(ynm_wmxn)

Removing new terms that do not depend on 7 leaves (and remembering that exp(A+
B) = exp(A) exp(B)):

Q- (1) x exp (Egy x)oww) {logp(Y, X, W, 1)})

o exp ((a —1)log7T —br + N2M log T)

T : :
cexp (—EEQMQMM {z S — w;xm}) |

n

Principal Components Analysis and Latent Variable Models 255

Bearing in mind that:

Epa) {f(a) + 9(a)} = Epa) {f(@)} + Ep(a) {9(a)},

we can take the expectations of all of the terms in the summation separately. Also
y2,, is the observed data and therefore:

a 2 2
EQy., (x0)Qu (W) {Unm} = Ynm-
We are left with:

.,
exp (-5 >~ (Vi + B, e Quy () { ~2Wi3n + X W WX |)) ‘

n,m

At first glance, this still looks difficult, but consider the following expectation:
Epa)p) {f(a)f(0)}

Writing it out in full gives us:

Ep (o) (@) ()} = / / p(a)p(b) £ (a) £ (b) da db
- / / p(a)f(a) dap(b) f(b) db

/ Ey) {£(a)} p(6)£(b)
= Epa) {f(a)} Epw) {F(b)} (7.11)

Using this result, we can evaluate the first argument inside our expectation:

T T
EqQ.., x,)Quw,, (Wn) {—QWan} = —2Eq,, (x,) {Xn} Equ., (wm) {Wn},

which is the expected (mean) value of x, multiplied by the expected value of w,,.
Before we continue, it is worth introducing a more useful notation as we are going
to see a lot of expressions like this. From now on, we will denote expectations such
as this as:

, Eq, 6 {f(60)} = (f(61)) -
The first term in the expectation becomes:

T
EqQ,., (x0)Qum (W) {—2Wan} = =2(Xn) (Wm).

The second term is a bit trickier. We cannot write it as f(x»)g(Wm) so we have to
do the expectations one at a time:

T T T T
EqQ,. (x0)Quwn, (Wam) {memexn} = Eq,, (xu) {xn <mem> xn}

- (3wt

Putting everything back together, we have:
NM

Q-(7) x exp ((a—l)logT—bT+ log T

- 22: (yim —2(wn)" (xn) + <x,T1 <wmw;> xn>)) .

n,m

256 A First Course in Machine Learning

T'his can be written as:

Q- (1) x ¢ P exp{—7f}, (7.12)
where
NM
e =a++ T
f=b+ % Z (uim - 2(wn)T (xn) + <x;rL <wmw;> xn>)

The form of Equation 7.12 tells us that Q,(7) is a gamma distribution, with param-
eters e, f. If you are unsure of why this is the case, take the log of a gamma density
with parameters e and f and remove terms that do not depend on 7 - you will get
the right hand side of Equation 7.12.

I'o summarise:

QT(T) = F(e’ f)
We will now derive Qx,, (X») and Qw,, (Wm) — once we know the forms of these we
will be able to compute the expectations required to calculate e and f.

7.5.2 Qx,(xn)

The steps required to obtain Qx,, (x») are much the same as those we needed
to get Q- (7). To start with, we extract the terms we need from logp(Y,X, W,),
ignoring everything that does not involve xj:

M
Qx,, (Xn) x exp (EQW(W)QT(T) {logp(xn) + Z p(ynmlwm,Xn,T)})

m=1

Note that the expectation should also be with respect to all Qx,(x:) for all | # n.
However, there are no x; terms in our expression and subsequently the expectations
vanish. Expanding the two terms in the expectation and removing non x, terms,
we have:

1
Qx, (%n) o< exp (EQWM)QT(r) {—-iXan

1
— 57‘ Z (—2ynmx;r,wm + xlwmw;xn) })
m

X exp (—%xlxn — % () Z (—Zynmx,Tl (Wm) + xl <wmw,Tn> xn)>

m

o exp (——% (xl [ID + (1) Z <wmwjn>:| Xn — 2(7) x) Zynm (wm)))

The presence of the linear and quadratic terms within the expectation tells us that
this is a Gaussian:

an (Xn) = N(I‘l‘xn) Exn)

Principal Components Analysis and Latent Variable Models 257

Equating coefficients lets us read off expressions for py, and X, :

xli),?jxn _ xI [ID + (1) Z <wmw2-n>J Xn
B, = [ID +(n> <wmwfn>] B (7.13)

— 2} 55 e, = =2(T) X D Ynm (W)
fo, = (T) Do D Ynm (Win) . (7.14)

Note that the expression for the covariance matrix ¥, has no dependence on n. It
can be computed once and used for all x,,.

7.5.3 Qw, (Wm)

The method for computing Qw,, (W) is essentially identical to that for com-
puting Qx,, (x,). We start by removing everything that doesn’t have a w,, term:

N
Qw,. (Wm) o exp (EQX(X)Q-r(T) {logp(wm) + Y D(Ynm|Wm, Xn, T)})

n=1

Once again, the expectations with respect to Qw, (w;) for all | # m vanish. Expand-
ing, noticing that w. x, = X, Wp:

1T
Qwi (Wm) o< exp (EQX(X)QT(T) {~§mem

_ %T Z (~2ynmw;xn + w,Tnxanwm> }>

n

X exp (—%W,anm_ - % () Z (~2ynmw,Tn (Xn) + w:n <xnxl> wm)>

n

L. T T T
o exp (—5 <wm [ID + (7) Xn: <x,,,xn>] Wi — 2(7) W, Xn:ynm (xn)>>
This is clearly another Gaussian:

QW-m (Wm) = N(I"l'wrn ’ Ew"l)

Bw,, = [ID + (7) Z <xnxl>} *

n

fiwnm = (T) D D Ynm (Xn)
n

As with Xy, , the covariance matrix X, has no dependence on m and so can be
computed once for all wy,.

258 A First Course in Machine Learning

7.5.4 The required expectations

Each of the components of our approximate posterior, Qx,, (Xn), Qw,, (Wm), Q- (T),
depends on expectations (e.g. (x») and (W, w,,)) with respect to the other com-
ponents. As all of the components are well known distributions, these expectations
are all standard results. Qx,, (x») and Qw,, (W) are both Gaussian and therefore:

<xn> = Hx,, <xnx1Tx> = 3x, + px, Nl,,
(Wm) = Hwn, <WmWJ—n> = Eum + Bwon HL,”

Q-(7) is a gamma distribution so:

(T)Z}"

The final expectation we need is <x,TL <wmw,Tn>xn>. This is of the form (zTAz>,
which, if p(z) = N(u, X), is equal to:

<zTAz> = Tr(AZ) + p' Ap
Therefore:

<xl <wmw;rn> xn> =Tr (<wmw,Tn> Exn) + II«I,,, <wmw;> Hx,

7.5.5 The algorithm

We now have everything we need to obtain an approximate posterior Q(W, X,)
using variational Bayes (VB). We must first initialise the various parameters. We will
start by initialising (7) = a/b (its expected prior value) and then sample each (w,)
from A(0,1Ip) and compute <wa> =Ip+{wm) (wm)T. We can now compute fix,,
and Xy, and hence (x,) and (xnx,,). We proceed as follows:

1. For all n, compute Xy, and pix, and update (x,) and (xnx,Tl>.

2. Using the new values of (x,) and (Xnx,,), compute ftw,, and X, and update
{(wm) and <wmw,Tn> for all m.

3. Compute (x, (WmwW,) x,) for all n and m.

4. Compute e and f and update (7).

5. If not converged, return to 1.

To check convergence, we can either monitor how much the various parameters
are changing or compute the bound, £(8) (Equation 7.6), which will increase until
convergence and then remain unchanged. The bound is given by:

p(Y,X, W, 1)

Q(X.v Wv T) dQ(X7 W7 T)

LX,W,7) = /Q(X,W,T) log

_ [Q) logp(-) dQ() - / Q) log Q() dQ().

Principal Components Analysis and Latent Variable Models 259

Making use of the independence assumptions and noting that both expressions are
expectations with respect to Q(-), we can further decompose these two terms as:

/ Q()logp(-) dQ(-) = Eq, () {logp(rla, b)}

N
+ Eo, o {logp(xa)}

n=1

Z Eq.,, (w..) {logp(wm)}

N M
+D) Eay, (x)@un (wa) @ () 1108 PUnm [Xn, Wi, 7)1},

n=1m=1

"~ and:

/ Q()1og () dQ() = Eq. (r) {log @-(r)}

N
+ Z EQx,, (xn) {lOg an- (x")}

n=1

M
+ > Equ,. (wn) {108 Qw., (Wm)} .

m=1

It is left to the reader (see Exercise EX 7.2) to show that these individual terms give
the following bound (each line corresponds to one of the expectations, in the same
order as above):

L(X,W,7) = alogb+ (a —1) b(r) —logI'(a)

(log 7) —
,@10g2 —%Z((D) + oo, i,)
MD 1;(

log 27 — T(Bw,,) + ul,,.uwm)

NM NM 1 T .2
- log 2w + 5 (log) — 5 (T) Z <(ynm — W Xn) >

n,m

—(elog f + (e — 1) (log 7) — f (7) — log I'(e))

ND ND 1
— (——2 10g27'r— 2 - §Zlog|2X1,|)

MD
—(— 5 log 27 ————Zlog|2wm)

where
<(ynm - WI’LX‘VL)2> - y?tm - 2ynm <xn>T <Wm> + <x;rz <WmWI1> xn> y

all of which we have already computed. The only term in the bound that we have
not seen before is (log 7). We are forced to approximate this term and can do so by

260 A First Course in Machine Learning

-850,
o o e -1000) 15 P e
8 6 %80 . 4 @ o
¢ 8 —~
¢ LY. N » % g = ! £4, o %s0 0
4 e “ i 1050 0 s " a Sedd e
o ¢ I
5 o 4] S o a"wip °
2 ° ¥ -1100 8 aguy > (N}
‘ A < -05 ‘ L]
S 4 oA D 4 ' o P a2
Toe® gAY e ot
SRIN
oo, 9’%.& -1 (AN
° %
- N 1200 R
4 2 0 T 6 =8 0 10 20 30 40 80 % 3 0 i 2

Ynt Iterations Loy

(a) First two dimensions of (b) Evolution of the lower (c) The posterior mean of the
the data objects yn bound £{X, W, 1) latent variables

FIGURE 7.6: Synthetic probabilistic PCA example.

sampling. If we take S samples, 7%,...,7°, the approximation is given by:

5
1 : s
(log 1) = 3 E log 7°.

s=1

7.5.6 An example

Figure 7.6(a) shows a dataset generated in the same manner as that used in the
example depicted in Figure 7.4 (MATLAB script: ppcaexample.m). The first two
dimensions are shown, in which there is clear cluster structure. T'o this, an additional
five dimensions are added (ynm ~ AN(0,1)). The evolution of the bound, £(X, W,),
as the algorithm progresses (with D = 2) can be seen in Figure 7.6(b). The bound
increases monotonically until it converges, which is after only a small number of
iterations. In Figure 7.6(c) we can see the posterior means of the latent variables.
These are analogous to the standard PCA projections (see, e.g. Figure 7.4(c)). It is
clear that the cluster structure is captured in the latent space.

7.6 Missing values

One of our motivations for moving to a probabilistic representation was its ability
to handle missing values. In the model we defined in the previous section, the easiest
way to achieve this is to only define the model for the data that we observe. To this
end, we introduce a new set of binary variables z,,, which are equal to 1 if we
observe feature m for object n and 0 otherwise. Collecting all of the z,.. together

Principal Components Analysis and Latent Variable Models 261

into a matrix Z, we have:

M

. N M
p(Y, X, W,7|Z) = p(|a,b) [H p(wm)} [H p(xn) [T p(gnm|Wom, 30, 7) 7
m= N n=1 Nm:1
logp(Y,X, W, 7|Z) =logp(r]|a,b) + Z log p(wm) + Z log p(xn) (7.15)

m=1 n=1

-+

M=
M=

Znm Ing(ynm|Wm,xn77')-

n=1 1

3
il

Il

The binary variables act as switches, only switching on the terms for which we
observe data. Note how everything is conditioned on Z. It is left as an exercise (see
Exercise EX 7.3) for the reader to follow the steps detailed in the previous section
to derive the necessary variational distributions. These are:

Qx, (Xn) = N(an,yzxn)

-1
¥, = [ID + () Z Znm <wmw;>}
Mx, = (1) Xx, Z ZnmYnm (Wm)
Qw,.(Wm) = N(ptw,,, Zw.,)
-1
Yw., = [ID + (1) Z Znm <xnx1>}
Hw,, = (T> Ewn, Z ZnmYnm (xn>
Q-(m) = I'(e, f)
e =a+ % Z Znm
F =023 2 (3 — 20w) + (Wi) 30))

In the previous section, we noted that the equations for X, and ¥, _, had no
dependence on n and m, respectively, and therefore did not have to be computed
for each n and m. Due to the presence of 2, in both expressions, this is no longer
the case and a different X, must be computed for each x, (and a X,,., for each
W,). Both x,, and w,, are D-dimensional and so for large N, M or D, this is
a considerable additional computational overhead. In Section 7.4.1 we mentioned
the possibility of making additional independence assumptions when defining the
components of the approximate posterior. In particular:

D
Qx., (xn) = [| Qepa (zna)

d=1

would result in us having to work with scalar variances rather than the D x D
covariance matrices, 3, . This would represent a considerable computational saving
but would come at the cost of a poorer approximation to the posterior.

262 A First Course in Machine Learning

“ £ 2
L] . 15 e 1)
[] - A .
6 "y % Iy AM A
¢ mam 3 e na g
) '™ L a A
4 P a 05| L Y 05| e
g . 3 ‘ g
= .é £ 0 - S0
e . -0.5] [} " -0.5] []
3 s 2 4 b
o * A 4 o o
o s A 4 B I T i
“fa - N -

4 6 =
Ynt Xy Ty

(a) First two data dimen- (b) Posterior means of (c) Effect of missing values
sions the variational posteriors on the covariance of Qx,, (xn)

Qx,, (Xn)

FIGURE 7.7: Variational Bayesian PPCA model with missing values. The
data is the same as that shown in Figure 7.6 with each value of y,,,, removed
with a probability of 0.05.

Figure 7.7 gives an example of the Probabilistic PCA model with missing values
(MATLAB script: ppcamvexample.m). Figure 7.7(b) shows the posterior means of the
variational posteriors Qx,, (X»). The data is the same as in the previous examples
(cluster structure in the first two dimensions, shown in Figure 7.7(a), noise in the
remaining 5), with each observation ¥, removed with probability 0.05. As we might
expect, the effect of removing data is that the cluster structure becomes less distinct.
The individual covariance matrices make this effect easy to visualise. In Figure 7.7(c),
we have visualised the covariance matrices as ellipses for three objects belonging
to the ‘circle’ class. The ellipses show us the level of uncertainty that the model
ascribes to the values of the latent variables. Object 1 has no values missing in
the two dimensions that encode the cluster structure and sits comfortably with the
other objects of the same class. Object 2 is missing its value for y,2 and hence
the information that determines whether it is in the circle or diamond class (see
Figure 7.7(a)). This is reflected in both its mean and covariance in Figure 7.7(c) —
the model places it halfway between the two groups, but this allows the possibility
that it could be in either. Finally, object 3 is missing values for both y,1 and yn2 —
all of the non-noise features. The model places it close to the origin (remember that
the prior p(x,) = N(0,Ip)) but with very high uncertainty - it could belong to any
group.

It is clear that the covariance information shown in Figure 7.7(c) is a useful
output of the model. It is important to know if there is a high level of uncertainty
about the position, x,, of an object in the latent space. In other words, if we just saw
Figure 7.7(c), we could potentially deduce that we should not draw any serious con-
clusions about the position of object 3 — the covariance is high because many values
are missing. In Section 7.7.2 we shall see an interesting example where covariance
information is useful.

7.6.1 Missing values as latent variables

In the previous section we saw how the VB framework allowed us to solve the
problem of missing values — we only included the observed values in our model.

Principal C’omponents Analysis and Latent Variable Models 263

The increased uncertainty that should be present when many values are missing
is naturally handled through the individual covariance matrices, ¥, . Individual
covariance matrices come with an additional computational load which may, in some
cases, be prohibitive. Alternatively, it is possible to consider the missing values as
additional latent variables. Introducing the superscripts h and o to denote hidden
and observed, respectively, this corresponds to the following joint log likelihood:

M N
logp(Y, X, W,7|Z) = logp(rla,b) + > _ logp(wm) + Y _ logp(xn)

m=1 n=1
N M

+ Z Z Znm logp(yZmlwmaxn7 T)
n=1m=1
N M

+ 30 (1= zam) 10g p(Yrm [Wim, X, 7).

n=1m=1

In addition, we require ;another set of variational posteriors: Qyﬁtm (yﬁm). We will
omit the derivation of the VB algorithm here but will just state the important
results. First, the additional variational posteriors:

Qyr (Ynm) =N ((wm>T (xn), (T>—1))

Therefore, <y:’;m> = (wm)T (Xn). Qx..(Xn) is given by a Gaussian with parameters:

3., |:ID + (1) Zznm <wmw,Tn> + () Z(l — Znm) <mefn>} -

m

[ID + (1) Z <wmwjn>} _ (7.16)

m

Ho = (1) B, D (20mym + (1= 20m) (Y)) (W)

Il

() T, S Yom (Wim)

where y;, is a vector with elements y;,,, and <y,’im> depending on whether the par-
ticular parameter is observed or not. Qw,, (Wm) and Q. (7) follow similarly.

It is clear from Equation 7.16 that the covariance of Qx,, (x») no longer depends
on n and so we no longer require specific covariance matrices for each object. In
fact, one can view the resulting VB algorithm as identical to our original VB PCA
algorithm where we insert the value that the model expects for ynm (i.e. (Wm)" (%Xn))
into each missing value. This gives us a large computational saving but we lose the
object specific covariance matrices, ¥, . All objects have the same covariance in
the latent space, regardless of how many values are observed/missing because the
expected values of the unobserved data, <yﬁm>, are given the same influence as the
actual observations. If there are very few missing values, this is unlikely to be a
problem. If there are many, it should be avoided.

264 A First Course in Machine Learning

7.6.2 Predicting missing values

One of the benefits of considering the missing values as latent variables is that it
automatically imputes the missing values. However, we can still achieve this with the
original missing value model. In particular, the expected value of y?,, with respect
to the variational posteriors is:

Eq() {y,’im} = Eq() {wan + f}
= (Wm>T (xn)
where € A'(0,771). The variance of the predicted value is given by:
2
h h
Eq() {(ynm)z} —Eq() {ynm}

(o6n (wmw)) (7)™ = ()T (W) (W) (3cn)

var{y,’:m}

As an example, consider object 2 in Figure 7.7(c) ~ using these expressions, the
missing value y”, has a mean of 0.5839 and a variance of 5.4070.

7.7 Non-real-valued data

Wanting to handle non-real-valued data was the second motivation we discussed
in Section 7.2.2 for moving to a probabilistic representation. In our derivation for VB
PPCA, we used a Gaussian likelihood. Using the same steps, we can use VB inference
for PCA-like models with alternative likelihoods. An interesting dataset that consists
of both non-real data and missing values is the voting history of British members of
parliament (MPs) available from the Public Whip (http://www.publicwhip.org.
uk). British MPs are appointed for a parliament at a general election. A parliament
typically lasts four or five years, in which time there will be > 1000 divisions (votes)
in which they may take part. Each division consists of a binary choice (the MP is
either for or against whatever is being proposed). MPs do not have to vote — they
can abstain or they might simply not be present in parliament on a particular day.
Hence, the data is both non-real valued (binary) and contains many missing values.

As we have already seen in Chapter 4, likelihoods for binary data normally
come with analytical problems. Rather than going over the material in that chapter
again, we will now show an alternative approach based on introducing an auxiliary
(or hidden) variable. It is not our intention to suggest this is the only way of solving
this problem for PPCA-like models but it is a good example of a more general
technique for handling binary likelihoods. An alternative probabilistic binary PCA
algorithm is given in the suggested reading at the end of this chapter.

7.7.1 Probit PPCA

We potentially observe M votes for N MPs. For each vote, assuming the value
is not missing (i.e. znm = 1), we observe ynm = 1. As before, we will assume

Principal Components Analysis and Latent Variable Models 265

that there exist some D-dimensional unobserved latent variables x, which are then
projected by a set of vectors wy,. In our previous examples, we used a Gaussian
likelihood for p(Ynm|Wm,X»). To model the binary MP data, we will use the probit
likelihood instead. The probit function (also known as the normal cdf function) is

defined as: .
o(2) ﬁ/ exp{—%mz} dx

and transforms a real-valued argument, z, into the range 0 to 1 (like the sigmoid
function we used for logistic regression in Chapter 4). In particular, we will define:

and

P(ynm = —=1|Wm,Xn) =1 — P(Ynm = 1|Wm,Xn).

Unfortunately, if we tried to derive variational posteriors Qx,, (x»), etc., we would
discover that they were not of any recognisable form. At this point, we make use
of a slightly odd trick. We start by introducing a new set of (real-valued) variables,

dmn:

P(Gnm|Wm, Xn) = N(W:—nxn, 1),
which we link to the observed data ynm, through the following likelihood:

P(ynm =]-IQnm) = 6(Qnm > O)

and
P(ynm = —1|gnm) = 6(gnm < 0).

"l'o justify this choice, consider the joint distribution over gnm and ynm:

p(ynm = laQnmlwmyxn) = P(ynm =]-IQnm)p(Qnmlwmvxn)-

Choosing P(ynm = 1|¢nm) = (gnm > 0) means that if we marginalise over gpm, we
get. back to our original probit likelihood (Equation 7.17):

P(ynm = llwm7xn) = /p(ynm = lvqnm|wm7x‘n) dqnm

= /P(ynm = IIQnm)p(Qnm|Wm7xn) dgnm

/ 6(Qnm > O)N(wjnxna 1) dQnm

Il

/ N(W,Tnxn, 1) dgnm
0

= /00 N(0,1) dgnm

—wl
W Xn,

WX

= / N(0,1) dgnm = (W xn).
— 00

This suggests that we can think of the probit likelihood as the result of a model

with an additional parameter, ¢,m, that has been integrated out. It turns out that

if the parameter is left in (we treat ¢,m, as a latent variable and infer its value) the

266 A First Course in Machine Learning

N M

FIGURE 7.8: Graphical representation of probit PCA model.

VB algorithm becomes quite simple, even though there are an additional N x M
parameters. The graphical representation of this model can be seen in Figure 7.8.

Collating all of the gnm into an N x M matrix Q gives us the following starting
point for VB:

logp(Y,X, W, Q)

M N
log [H p(wm)] [H p(xn)]

N M
Znm Znan.
X I:H H p(yannm) p(Qnmlwm, xn) }

n=1m=1

M N
> logp(wm) + D _ logp(xn)
n=1

m=1
N M

+ Z Z Znm [10g P(Ynm |@nm) + 10g P(@nm[Wm,Xn)] -

n=1m=1

For our variational approximation, we need Qx,, (X») and Qw,, (W) as before and,
additionally, Qg,....(gnm). Gathering together the terms involving x,, and w;,, we
notice that they are identical to the terms in our real-valued model but with y,m
replaced by gnm, which has a variance of 1 rather than 77!. Therefore, we already
know what the respective variational distributions will be:

Qx, (xn) = N(px,, Ex,) .
-1
2x,,, - [ID + Z Znm <wmw; >j|
2x,,_ Z Znm ((In.m) (Wm) .

Hx,,

Principal Components Analysis and Latent Variable Models 267
Qe (W) = Nt B
Ywn, = [ID + Z Znm <xnxl>] h
Borm = By D zom (anm) (%n)

For Qq,... (gnm) we need to do a bit of work. Recalling Equation 7.9, we know that
Qa,m (gnm) will be given by:
Qam (gnm) X exp (Eq., (xn)Qw,n (W) {108 P(Unm |gnm) + 108 D(gnm | W, xn)})

Isolating terms only involving ¢nm, we have:

Qqnm (qnm) X p(ynml(Inm) exp {_%(qgm — 2¢nm (wm>T (xn))}

which is p(Ynm |gnm) multiplied by a Gaussian:

Qg (qnm) p(ynm|qnm)N(<wm>T (xn),1).

For the time being, we shall assume that ynm, = 1. Therefore, we have:

Qo (@nm) < 8(gnm > OWN ((Wm) T (xn) 1)
= N*((Wm) " (xa) , 1)
where N'*(-) is used to denote a Gaussian truncated (see Comment 7.3) such that

@nm must be positive. If ynm = —1 we end up with N~ ((W,,) T (x,,), 1) — a Gaussian
with the same mean truncated such that gn,m must be negative.

Comment 7.3 — Truncated Gaussian densities: A truncated Gaussian
density is a Gaussian density with an additional restriction placed on the
random variable. We will only be interested in Gaussian densities truncated
above or below the origin.

14
The figure on the right shows a

standard Gaussian density (with
mean 0.5 and variance 1) as well 1t A-(05,1) N*(0.5,1)]
as the positively and negatively
truncated densities. The truncated
densities have the same shape as 0.6
the standard density but are both
higher. This is because they must
still integrate to 1 over their re- 0.2
duced range. 0

12 ']

08

0.4

268 A First Course in Machine Learning

Comment 7.3 - Truncated Gaussian densities (continued): Sampling
from a truncated Gaussian is fairly straightforward — one can just sample
from the un-truncated density and throw away samples that do not fulfil
the necessary constraint. The expected values of positively and negatively
truncated Gaussians are given by:

p(@) = N'* (1, 0%), (w)=u+%
p(z) = N7 (%), (z) = *%

where N,(0,1) is the standard Gaussian pdf evaluated at a and ¢(a) is the
standard normal cdf function evaluated at a.

To compute Qx,, (x») and Qw,,, (W), we need {gn.m). This is the expected value
of a Gaussian truncated to be positive or negative (depending on the value of ynm).
General expressions to compute this are given in Comment 7.3. Defining pnm =
(wm)T (xn) and o = 1, these are:

Nt (0,1)

nm = 1: nm) = Mnm + IV Hnm \M)

’) = b & TG)
NH! (01 1)
Ynm = =11 (gam) = pam — — 7"

This completes the expressions required for the VB algorithm. In the next section,
we shall show an example of the algorithm in operation.

7.7.2 Visualising parliamentary data

The motivation for developing this model was the vote data for members of
parliament. We shall look at data for the UK parliament that sat between 2005
and 2010. To show the benefit of sensibly handling the missing values and using a
suitable likelihood, we will compare the model with the simplest approach we could
use for visualising this data — standard, nonprobabilistic principal components where
we will use a value of zero for the missing values (i.e. a value halfway between the
possible votes, +1) and not make any concessions to the fact that the data are not
real-valued.

To get a feel for the complexity of the problem, the dataset consists of voting
records for some 657 MPs and 1288 divisions (votes). The average number of votes
attended per MP is 853 (66%). The most active MP voted 1237 times (96%) and
the least active 20 times (1.6%).

The result of running standard PCA on the data can be seen in Figure 7.9(a).
Clear cluster structure is present in the latent space. In Figure 7.9(b) we label the
MPs on the plot by their party affiliation and it becomes clear that the cluster
structure corresponds to the three main political parties (Labour, Conservative and
Liberal Democrats). The cluster structure present is not surprising as MPs often
vote according to party affiliations. However, it is reassuring that it appears clearly
in the first two principal components.

Some MPs seem to also be being pulled towards the origin. This could be inter-
preted as a measure of rebelliousness — these MPs do not vote as often along party

Principal Components Analysis and Latent Variable Models

25,

Component 2

-30 -20 -10 20 30 40

0 10
Component 1

(a) MPs plotted onto the first two prin-
cipal components

« Labour
o Conservative
20f] ~ Liberal Democrat| X
+ Others :
A
N5 ok
ey &
g o
= 10 ot
o) t
<% o)
E 5
(@]
o 0|
-5
-10 L
-30 -20 -10 30 40

0 10 20
Component 1

(b) MPs labeled according to party affil-
iations (only three main parties shown)

FIGURE 7.9: Standard principal components visualisation of the 2005 MP
voting data. Each point corresponds to an MP.

lines. However, unfortunately, what it is showing is that these MPs simply do not
vote very often. To illustrate this, we can plot the number of votes made against
distance from the origin in this PCA plot, as shown in Figure 7.10. It is clear that
the large number of missing values is having an unhelpful effect on the analysis —
position in the latent space is a function of both political preference and attendance.

The results of using the VB binary PCA algorithm can be seen in Figure 7.11(a)
(MATLAB script: mpvis.m). This plot shows (x,) and cluster structure is again
clearly present. In Figure 7.11(b) we can see the MPs labeled according to party

1200

g

800

400

Distance from origin
3
(=)

200

0 200 400 600

800 1000 1200 1400

Number of votes

FIGURE 7.10: Number of votes cast versus distance from the origin (of the

PCA plot).

270 A First Course in Machine-Learning

2.5 25 °
2 2| o g° ° 00 o
o, :ﬁs ® ° o °
15} 15 Voo © ﬂ’&
- St)
o 1 . o 1 f‘g’g;od% % Qu
e . 3 LA . o
8 o kg 8 o °on .Y
. o g o
- @
of L -,@ 0 & o8
5)
-0.5 05— G
= Conservative
-1 “M = Liberal Democrat
+_Others
-1.50—— et wd 1
-2 -15 -1 £S5 . 05 Al 15 2 -2 -1.5 -1 -05 0 05 1 1.5 2
P Tny
(a) The posterior mean latent variables (b) MPs labeled according to party affil-

iations (only three main partics shown)

FIGURE 7.11%1: thablhchc bmary principal components visualisation of
the 2005 MP vot Pty earaads v an S

)]

(4]

D

()

Distance from origin
N

Py

0 500 1000 1500
Number of votes

FIGURE 7.12: Number of votes cast versus distance from the origin for the
probabilistic binary PCA.

affiliations. Once again, the cluster structure corresponds to the different political
parties. Because we are modelling the missing values correctly, we no longer get
the pull towards the origin. To demonstrate this, Figure 7.12 shows the number of
votes cast versus distance from the origin — the very clear relationships present in
Figure 7.10 are no longer so pronounced. The variations we can see in Figure 7.11(a)
show political tendencies and not attendance tendencies.

This point is well illustrated by considering some of the smaller parties within the
parliament. Figure 7.13 highlights the position of four small parties — the Democratic
Unionist Party (DUP), Plaid Cymru (PC), Scottish National Party (SNP) and the
Social Democratic and Labour Party (SDLP). In the traditional PCA analysis, it

Principal Cqmponents Analysis and Latent Variable Models 271

“[ouwe
o PC PN
201 + SNP o
+ SDLP [l 25
Others .
AN 15 2|
]
= 15| =2
g 10| 4.: B
5 1
=% o K &
g A 8 o4 K
S .
0| 0 .
A > DUP o
5 o |)
SNP
-1 SDLP
-10! 33 —3 ‘. . Others|
-40 - =2 -10 0 10 20 30 40 =15, At e A
-2 -15 -1 -0.5 . 1 1.5 2
Component 1 oy
(a) Visualisation of smaller parties in tra- (b) Visualisation of smaller parties in VB
ditional PCA binary PCA

FIGURE 7.13: Visualisation of the small parties using the two PCA meth-
ods.

looks like the DUP members’ votes sit within the cluster of Conservative MPs (see
Figure 7.9(b)) and, to a lesser extent, PC and SNP members sit with the Liberal
Democrats. However, comparing with the output of the binary PCA algorithm, we
can see that the DUP form their own coherent cluster, away from the Conservatives,
whilst the SNP and PC members form a very tight cluster of their own. It looks like
the position of these groups in the original PCA was heavily influenced by the poor
modelling of the missing data.

Finally, because of the way we have chosen to model the missing values, we have
an individual covariance matrix Xy, for each MP. In Figure 7.14 we visualise, with
ellipses, the covariance matrices of the 20 MPs for which the model is least certain.
These MPs tend to be those who cast the least votes. It is clear that there is no real

J

-2 -15 -1 -0.5 0 0.5 1 15 2
Tn1

FIGURE 7.14: Covariance matrix visualisation for the 20 MPs cor-respond—
ing to the highest uncertainty.

272 A First Course in Machine Learning

pattern to where they are located — the model does not pull MPs who do not vote
often towards the origin.

Much more interesting analysis could be done with this data but is beyond
the scope of this book. The important point is that a model based on sensible
assumptions that can correctly handle missing values (the binary probabilistic PCA)
is likely to be able to give us more insight into interesting variability amongst the
MPs than using basic PCA.

7.7.2.1 Aside — relationship to classification

Before we finish, it is worth trying to get an intuitive feel for how this model
works. On the face of it it appears rather complex but perhaps the easiest way to
look at it is as a classification model. The training data consists of labels for M
classification tasks (one for each vote) but no input features. The model infers a set
of latent observations (the x,) and M classification functions (defined by the wy,)
such that we can satisfy as many of the classification labels as possible. Figure 7.15
shows four example votes (input features) and the corresponding decision boundary

0
Zni

(c) Vote 4 . (d) Vote 20

FIGURE 7.15: Example of four of the votes — each MP is displayed as a
circle or square depending on how they voted (light grey vote if they didn’t
vote). ' '

Principal Components Analysis and Latent Variable Models 273

in the latent space. MPs are plotted at their posterior mean position and labeled
according to how they voted (circle/square for £1, light grey dot for missing value).
The model has positioned the MPs in the latent space and constructed decision
boundaries in such a way as to enable as many of the classification labels to be
satisfied as possible. It is not always possible to satisfy all of the labels — see, for
example, the circles to the right of the boundary in vote 1.

7.8 ‘Summary

In this chapter, we have used principal components analysis (PCA) and some
probabilistic variants to introduce the concepts of latent variable models and the
inference technique variational Bayes. There are many other latent variable models
being used for diverse applications — the field of Information Retrieval is particularly
full of them — and our hope is that the techniques introduced here will enable the
reader to understand some of these more application-specific models.

Variational Bayes (VB) is an increasingly popular inference technique within
the field of Machine Learning. With any posterior approximation technique we are
making a tradeoff between accuracy of approximation and computational difficulty.
The empirical evidence suggests that VB finds a good balance between tractability
and accuracy. It is important to remember that other methods can be used for
performing inference in latent variable models — we saw the EM algorithm in Chapter
6 being used for a mixture model. Also, the use of the auxiliary variable trick with
the probit likelihood is certainly not the only way we can overcome tricky binary
likelihoods — we saw alternatives in Chapter 4.

7.9 Exercises

EX 7.1. Show that the bound given in Equation 7.6 is maximised (i.e. equal to the
true log marginal likelihood) when (@) is identical to the true posterior
p(0|X).

EX 7.2. Compute each term in the lower bound, £(8), for the probabilistic PCA
model given in Section 7.5.

EX 7.3. Compute the components of the variational posterior for the probabilistic
PCA model with missing values described by Equation 7.15.

Principal Components Analysis and Latent Variable Models 275

Further reading

(1]

2]

(4]

(5]

(6]

(7]

Christopher M. Bishop. Variational principal components. In Proceedings Ninth
International Conference on Artificial Neural Networks, ICANN’99, pages 509—
514, 1999.

An example of a probabilistic principal components model where the
inference is performed using variational Bayes. A prior is used to
encourage sparsity in the latent dimensions which goes some way
towards avoiding having to choose the size of the latent space.

L.'T. Jolliffe. Principal Component Analysis. Springer, second edition, 2002.
A comprehensive textbook on principal components analysis.

Michael Jordan, Z. Ghahramani, 1I'.S. Jaakkola, and L.K. Saul. An introduction
to variational methods for graphical models. Machine Learning, 37:183-233,
1999.

Arto Klami and Samuel Kaski. Probabilistic approaches to detecting dependen-
cies between data sets. Neurocomputing, 72:39-46, 2008.

An interesting latent variable model that extends the ideas of proba-
bilistic PCA into the scenario where two data sets are being analysed
together. Also provides an example of the EM algorithm and varia-
tional Bayes.

S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models.
Neural Computation, 11(2):305-345, 1999.

An excellent, accessible review of linear Gaussian models giving many
examples.

Michael Tipping. Probabilistic visualisation of high-dimensional binary data. In
Proceedings of the 1998 Conference on Advances in Neural Information Process-
ing Systems II, pages 592-598, Cambridge, MA, USA, 1999. MIT Press.

A probabilistic binary PCA algorithm using the logistic likelihood we
saw in Chapter 4 and an EM-like inference algorithm.

Michael Tipping and Christopher Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society. Series B (Statistical Method-
ology), 61(3):611-622, 1999.

An interesting application of maximum likelihood. Here it is applied to
one of the first probabilistic approaches to the the classical statistical
problem of principal components analysis.

Glossary

Analytical solution An analytical solution to a particular mathematical problem
(e.g. optimising a quantity or evaluating an integral) is one in which the
solution can be obtained exactly. Many of the problems that we will deal
with will not have analytical solutions, necessitating the use of iterative
algorithms or sampling techniques.

Biased An estimator (e.g. o? in Chapter 2) is said to be biased if, on average, it
does not equal the true value.

Binomial distribution A popular probability distribution that describes the num-
ber of successes in a set of binary trials.

Burn-in When generating samples using MCMC, it is common to throw away the
first N as the algorithm may not have converged and hence these are not
representative. Determining N is not straightforward.

Conditional independence Two (or more) random variables A and B are said
to be conditionally independent if their joint distribution, conditioned on
C, can be factorised as P(A4,B | C) = P(A | C)P(B | C). Conditional
independence does not imply unconditional independence.

Conditional probabilities Conditional probabilities are used to describe the
probability of events that depend on the outcome of other events. For ex-
ample, if the value of the random variable A depends upon the value of the
random variable B, we can write the probability of A given the value of C
as P(A| C).

Conjugate A prior and likelihood are said to be conjugate if they result in a pos-
terior of the same form as the prior.

Continuous random variables Random variables defined on a sample space that
cannot be systematically enumerated. For example, random variables de-
fined over all real numbers.

Convergence (sampler) A sampler is said to have converged when the samples it
is generating are all coming from the same distribution. Before the sampler
has converged, the samples should not be used.

Covariance Covariance is the generalisation of variance to the distributions over
several variables. The covariance matrix describes how the different variables
co-vary — how they are related.

Cross-validation A technique used for validation and model selection. The data
is randomly partitioned into K groups. The model is then trained K times,
each time with one of the groups left out.

277

278 A First Course in Machine Learning

Decision boundary A line separating two classes in a classification problem.

Deterministic Something that is not random. For example, our model in Chapter
1, t = w'x, is deterministic. The same value of x will always give the same
value of t.

Discrete random variables Random variables defined over a sample space that
can be systematically enumerated.

Discriminative classifier A classifier that explicitly defines (and optimises) deci-
sion boundarys between the classes.

Expectation For a (discrete) random variable, X, the expected value of some func-
tion of X, f(X), is defined as:

E,x) {f(X)} =) P(a)f(a).

This can be thought of as an average weighted by how likely the differ-
ent values of X are. For continuous random variables, the summation is
exchanged for an integral.

Feature selection In some classification problems it is useful to reduce the number
of attributes. This process is known as feature selection. Common techniques
for feature selection are scoring functions (pick the attributes/features) with
the highest scores, clustering (cluster the attributes and use the cluster
means as the new attributes) and projection techniques such as principal
components analysis.

Fisher information The Fisher information is a measure of how much information
a random variable provides about a particular model parameter.

Function A way of defining a relationship between two or more variables. For
example,

t = f(x)

tells us that t depends on z — if we know = we can compute ¢.

Generalisation Generalisation is the ability to take something that has been learnt
from one set of objects and apply it to previously unseen objects. For ex-
ample, our Olympic model in Chapter 1 is generalising well if it makes good
predictions for future Olympic sprints. In other words, an algorithm that
exhibits good generalisation performance is one that is able to make good
predictions on previously unseen data.

Generative model A generative model defines a process that could have generated
the observed data. Thinking in terms of potential generative processes is
often a useful abstraction when building models.

Global optimum For a function that can have many maxima (or minima), the
global optimum is described as the highest (or lowest).

Graphical model A graphical representation of a probability distribution in which
nodes correspond to random variables and directed edges to dependency
relationships. '

Glossary 279

Hessian matrix The matrix of second derivatives of a function with respect to
each pair of variables. Developed and named after Ludwig Otto Hesse, a
19th centutry German mathematician.

Hyper-parameter A parameter controlling the prior over another parameter in
an hierarchical Bayesian model.

Information theory The quantitative study of information. In particular, the in-
formation content of a random variable is linked to its probability distribu-
tion. A distribution that is very uncertain has a high information content.

Joint probability The joint probability of two random variables A and B is the
probability that they each take a specific value. For example, the probability
that A takes value a and B takes value b. This is written as P(A = a, B = b).

Likelihood The value of the density function {or distribution if the data are dis-
crete) of the data, conditioned on any model parameters, evaluated at the
data. This is a single numerical value, which is optimised with respect to
the model parameters to produce the maximum likelihood solution.

Linear A functiont = f(z) is said to be linear if it satisfies the following conditions:

f(x1+z2) = f(21) + f(22)
f(az) = af(x)

A common example is f(z) = wz.

Mahanalobis distance The Mahanalobis distance between two objects x, and
Xm 18 defined as:
(Xi — Xj)TA(Xi — Xj).
Substituing A = I, we recover the standard squared Euclidean distance.
The matrix A creates a warping of the space such that distances are not
the same in all directions. The set of points that have a particular squared
Euclidean distance away from, say, x,, form a circle. The set of points a
certain Mahanalobis distance away from x, form an ellipse, the shape of
which is defined by A. '

Marginal likelihood The denominator of Bayes’ rule. A useful quantity for model
comparison and choice.

Marginalisation The act of removing a random variable from a joint distribution
by summing (or integrating if it is continuous) the joint distribution over
all possible values that the random variable can take. For example:

P(A=a)=> P(A=a,B=b).
b

Maximum likelihood A popular parameter estimation scheme, where parameters
are chosen that maximise the likelihood of the observed data.

Maximum a posteriori A popular way of choosing point estimates for parameter
values that extends maximum likelihood by adding a regularising prior term.

Metropolis—Hastings A popular algorithm for generating samples from a density
that does not require evaluation of the normalising constant.

280 A First Course in Machine Learning

Model complexity A term used to describe how complex a model is. For example,
t = wo + wiz is less complex than t = wg + wiz + w2x2_ and as such, is not
able to find as complex patterns in data.

Model selection Model selection is the task of selecting which model to use for
a particular task. The model choices could all come from the same family,
although they don’t have to. For example, if we wish to use a polynomial
function t = Z,’fzo wiz¥, choosing a suitable value for K is a model selection
problem.

Model A mathematical description of a process. For example, in Chapter 1 we
proposed the model t = wo + wix to represent the winning time in a 100 m
sprint in Olympic year z.

Mode 'The mode of a distribution over some random variable is the most likely
value.

Monotonic function A monotonic function is one that increases or decreases in-
definitely. A common example is log(z) that always increases as z increases.
This has the useful property that the value of x that minimises f(x) will
also minimise log(f(x)).

Monte Carlo approximation An approximation to an expectation performed by
drawing samples from the appropriate distribution. An expectation of the
form:

E, (f(2)} = / F@)p(z) de

is approximated by:

S
By 1/(2)} = g /),
s=1

S

where ', ... 2% are S samples from p(z).

Multinomial distribution A popular distribution over vectors of integers. For
example, if I role a die N times and record the number of times I obtain
each face value in a six-dimensional vector, this vector could be modelled
as a random variable with a multinomial distribution.

Natural logarithm The logarithm to the base e, referred to here as log but often
referred to as In.

Noise Variability in data that is assumed to be not of interest for the problem
at hand. For example, random fluctuations brought about by measurement
error.

Over-fitting A model is said to be over-fitting if it is too complex and is using
its surplus complexity to fit to noise. Over-fitted models usually generalise
badly.

Parameters Variables used to define a model. For example, the model
t = wo + w1z

has two parameters — wo and w;.

Glossary 281

Partial derivatives Taking partial derivatives of a function of several variables
involves differentiation with respect to each variable whilst treating other
variables as constant. For example, if the function t = f(z,y) is defined as

t = 222 —|—3y3 + zy,

the partial derivatives with respect to = and y are:

of(z,y)

“or r +y
6f(a:,y) _ 2
—8y =9y" +=x

Plate In graphical models, a shorthand used to show that there are several in-
stances of a particular type of random variables.

Polynomial A polynomial function t = f(z) has the form ¢t = Zszo wizk. Com-
mon examples are the first order (or linear) polynomial ¢ = wo + wiz =
E,lczo wiz® (called first order because the highest power to which z is raised
is 1) and quadratic (second order) polynomial ¢t = wo 4+ wix + woa® =

32, wrak. Note that 2° = 1.

Posterior distribution The posterior distribution is the distribution over our pa-
rameter values after we have observed some data.

Precision In hierarchical Bayesian models it is often convenient to work with the
precision rather than the variance. The precision is defined as:

Hence a Gaussian with mean p and variance o2

using precision 7 as:

can also be represented

N, 7 h.

Prior distributions Distributions describing our knowledge parameter values be-
fore any data has been observed.

Probability density function A probability density function (pdf) describes how
the probability mass of a continuous random variable is distributed across
its sample space. Probability density functions must always be positive and
the integral of the probability density function over the sample space must
be equal to 1.

Probability distribution A function or set of values that describes the charac-
teristics of a random variable.

Probability The probability of an event taking place is a number between 0 and
1 that describes how likely the event is to take place.

Projection algorithms A family of Machine Learning algorithms that project
data from M dimensions into D dimensions (D <« M). Projection tech-
niques are useful for visualisation (with D = 2) and can also be used for
data pre-procesing for, for example, classification.

282 A First Course in Machine Learning

Quadratic A quadratic function ¢t = f(z) is a polynomial function where the
highest power to which z is raised is 2. For example, t = z? and t =
wo + w1z + woxz? are both quadratic functions.

Random events Events for which we cannot (or do not want or need to) define a
deterministic model. For example, rolling a die or tossing a coin. Although
we do not know the outcome of such events, it is likely that we will know
the relative likelihoods of different outcomes.

Random variable A variable that stores the result of a random event. For exam-
ple, if we toss a coin and assign the variable X the value 1 if the coin lands
with the heads face up and 0 if it lands with the tails face up is a random
variable.

Random walk A sequence of samples where each depends on the previous one.

Regularisation Regularisation is the act of placing restrictions on parameter val-
ues to limit the maximum complexity of a model.

Sample space The space of possible values that can be taken by a random variable.
In other words, the set of the possible outcomes of a particular random event.

Statistics Statistics describes the collection of techniques and principles concerning
the collection and interpretation of data.

Supervised learning Machine learning tasks where one is provided with a set of
data objects and some associated labels.

Symmetric matrix A square matrix X is symmetric if z;; = x;; for all 7, <. If this
is the case, then it follows that X7 = X.

Unbiased An estimator (for example, W) is said to be unbiased if, on average, its
value is equal to the true value.

Unsupervised learning Learning algorithms that do not require targets or labels.
Examples include clustering and projection.

Validation data Data that is used to help choose model type and parameters that
is not directly used to train the model.

Variance Variance is the expected squared difference between the random variable
and its mean. '

Index

absolute loss, 5
attributes, 1, 84, 208
auxiliary variables, 265

bag-of-words, 176

Bayes’ rule, 49, 98, 120, 140, 170
Bayesian classifier, 170

Bayesian inference, 139
Bayesian Machine Learning, 98
Bernoulli distribution, 53, 230
beta distribution, 60, 100
bias-variance trade-off, 75
Binomial distribution, 53, 95

causality, 2
chain rule (differentiation), 146
classification, 140, 169
discriminative versus generative,
203
non-probabilistic, 183
probabilistic, 170
text, 175
classification accuracy, 198
clustering, 207
similarity measures, 209
combinations, 55
confusion matrix, 201
conjugate prior, 102
non-conjugate models, 139
covariance, 52, 78
Gaussian, 62
cross-validation, 29, 131, 185, 196, 228
computational scaling, 32
leave-one-out, 31

decision boundary, 147
definite integrals, 57
dependence, 46

Dirichlet distribution, 178

Eigenvectors and eigenvalues, 244

evidence, 105
expectation

with respect to posterior, 109
expectations, 50

continuous, 58

for predictions, 98, 152

with respect to posterior, 129

Fisher information, 80
function, 2
linear, 1
polynomial, 25
quadratic, 25

Gaussian, 61

likelihood, 124

noise, 66, 69

process, 182

truncated, 267
generalisation, 28, 34, 74, 75, 196
generative model, 40, 216
graphical models, 120, 253

plates, 121

hyper-parameters, 119

independence, 46
in Variational Bayes, 251
multivariate Gaussian, 64
information theory, 80

Jensen’s inequality, 219, 250

K-means, 208

K-nearest neighbours, 183
kernel density estimation, 163
kernel K-means, 212

kernel KNN, 196

kernel methods, 186, 193, 212
Kullback-Leibler divergence, 251

283

284

Lagrange multipliers, 188, 223
Laplace approximation, 149

for logistic regression, 151
latent variables, 248
likelihood, 67

binary, 142

classification, 171

in Bayes’ rule, 99

log, 69
linear

nonlinear responses, 25
linear model, 85
linear modelling, 1, 25
logistic regression, 179

margin, 186
maximisation, 187
soft, 192

marginal distribution, 101

marginal likelihood, 101, 117, 141, 171,

249
matrix, 16
determinant, 64
Fisher information, 80
Hessian, 72, 80, 144
identity, 21
inversion, 22
multiplication, 18
notation, 15
symmetric, 71
trace, 88
transpose, 18
maximum likelihood, 69
bias of estimator, 86, 88
bias of variance estimate, 82
maximum-a-posteriori, 126, 143, 178,
232
Metropolis-Hastings, 154
minimum loss, 6
equivalence to Gaussian ML, 70
missing data, 260
mixture model
likelihood, 217
mixture models, 207, 215
Bayesian treatment, 233
model assumptions, 3
model complexity, 33, 196
model selection, 25
difficulty, 31

Index

K-means, 210
via marginal likelihood, 117
with likelihood, 74
with loss, 28
Monte-Carlo, 58
mRNA data, 208
multinomial distribution, 54, 177
multivariate Gaussian, 62
covariance, 62, 78
independence, 62

Naive Bayes, 175

Naive Bayes classifier, 175

Newton-Raphson, 144

noise, 39, 76, 82, 85
additive, 66
Gaussian, 85

nonlinear responses, 27

normal, see Gaussian

over-fitting, 28, 33, 34, 74, 75, 196, 228

parameter, 2
point predictions, 12, 110
posterior approximation
Laplace, 149
sampling, 156, 163
posterior distribution, 101
exact computation, 103, 120
expectation with respect to, 109
sampling from, 127
predictions, 1
uncertainty, 84, 85
Principal Components Analysis, 242
prior distribution, 75, 99
choice, 111
conjugate, 139, 173
strength, 113, 116
probability, 39
conditional, 44
joint, 45
probit, 265
projection, 239

random variable, 41
continuous, 42, 55
density, 55
discrete, 41
distributions, 42
marginalisation, 47

marginalisation, continuous, 58

vectors, 52
regression

logistic, 179
regularisation, 33, 75
ROC analysis, 199

AUC, 200

sampling, 59, 153, 154
burn-in, 161
convergence, 161
from posterior, 153
visualising output, 163

sensitivity and specificity, 198

sigmoid, 142

smoothing, 177

squared loss, 4
matrix form, 19
minimising, 6

Support Vector Machines, 186

Taylor expansion, 150
turning points, 6

uncertainty, 48

Index

in parameters, 39, 76, 78, 80, 82,

148

in predictions, 39, 83, 85, 152

uniform distribution, 58

validation, 29
variance, 51
reduction in posterior, 105
Variational Bayes, 249
vector, 16

differentiation with respect to, 20

indexing, 17
inner product, 18
transpose, 16

285

	1.pdf
	2.pdf

