
Video Background Music Generation
with Controllable Music Transformer

Shangzhe Di∗
Beihang University

Beijing, China
dishangzhe@buaa.edu.cn

Zeren Jiang∗
Beihang University

Beijing, China
zeren.jiang99@gmail.com

Si Liu†
Beihang University

Beijing, China
liusi@buaa.edu.cn

Zhaokai Wang
Beihang University

Beijing, China
wzk1015@buaa.edu.cn

Leyan Zhu
Beihang University

Beijing, China
leyan.zhu@buaa.edu.cn

Zexin He
Beihang University

Beijing, China
jacquesdeh@buaa.edu.cn

Hongming Liu
Charterhouse School
Godalming, Surrey, UK
lclcpg2018@gmail.com

Shuicheng Yan
Sea AI Lab
Singapore

Yansc@sea.com

ABSTRACT
In this work, we address the task of video background music gen-
eration. Some previous works achieve effective music generation
but are unable to generate melodious music tailored to a particu-
lar video, and none of them considers the video-music rhythmic
consistency. To generate the background music that matches the
given video, we first establish the rhythmic relations between video
and background music. In particular, we connect timing, motion
speed, and motion saliency from video with beat, simu-note density,
and simu-note strength from music, respectively. We then propose
CMT, a Controllable Music Transformer that enables local con-
trol of the aforementioned rhythmic features and global control of
the music genre and instruments. Objective and subjective eval-
uations show that the generated background music has achieved
satisfactory compatibility with the input videos, and at the same
time, impressive music quality. Code and models are available at
https://github.com/wzk1015/video-bgm-generation.

CCS CONCEPTS
• Applied computing→ Sound and music computing.

KEYWORDS
Video background music generation, Transformer, Music represen-
tation
∗Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/10.1145/3474085.3475195

ACM Reference Format:
Shangzhe Di, Zeren Jiang, Si Liu, Zhaokai Wang, Leyan Zhu, Zexin He,
Hongming Liu, and Shuicheng Yan. 2021. Video Background Music Gen-
eration with Controllable Music Transformer. In Proceedings of the 29th
ACM International Conference on Multimedia (MM ’21), October 20–24, 2021,
Virtual Event, China. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3474085.3475195

Input Video

Generated Background Music

Motion Speed

Motion Saliency

Timing

Rhythmic Features

Instruments

Genre

User-defined Features

Controllable
Music

Transformer

User

Figure 1: An overview of our proposed framework.We estab-
lish three rhythmic relations between video and music. To-
gether with the user-defined genre and instruments, the ex-
tracted rhythmic features are then passed to a carefully de-
signed Controllable Music Transformer to generate proper
background music for a given video.

1 INTRODUCTION
Nowadays, people can conveniently edit short videos with video
editing tools and share their productions with others on social
video-sharing platforms. To make a video more attractive, adding
background music is a common practice, which, however, is not so
easy for those without much knowledge of music or film editing. In
many cases, finding proper music material and make adjustments
to make the music fit for a video is already very difficult and time-
consuming. Not to mention the copyright protection issue that is

ar
X

iv
:2

11
1.

08
38

0v
1

 [
cs

.M
M

]
 1

6
N

ov
 2

02
1

https://github.com/wzk1015/video-bgm-generation
https://doi.org/10.1145/3474085.3475195
https://doi.org/10.1145/3474085.3475195
https://doi.org/10.1145/3474085.3475195

causing increasingly broader public concern. Therefore, automati-
cally generating appropriate background music for a given video
becomes a task of real-world significance, yet it is barely studied
in the multimedia community to the best of our knowledge. There
are some previous works [27] [4] [10] tackling music generation
based on deep learning models, However, none of them takes into
account the music-video rhythmic consistency.

In this paper, we address the task of video background music
generation. Instead of adopting a costly data-driven practice as in
tradition, i.e. collecting paired video and music samples for train-
ing models, we explore the rhythmic relations between video and
background music and propose a transformer-based method free
of reliance upon annotated training data. In Fig. 1, we provide an
illustration of this task and an overview of our method.

A video may contain diverse visual motions of different patterns.
For example, a man in a video is walking, fast or slowly, and he
may suddenly stop. To generate proper background music for such
a scene, we should consider the speed and change of the motion.
In particular, we establish three rhythmic relations between the
video and background music. Firstly, for a video clip, fast motion
(e.g., in a sport) should correspond to intense music, and vice
versa. Accordingly, we build a positive correlation betweenmotion
speed and simu-note density, where motion speed refers to the
magnitude of motion in a small video clip calculated by the average
optical flow, and simu-note density is the number of simu-notes per
bar. A simu-note [25] is a group of notes that start simultaneously,
as shown in Fig. 3. Secondly, distinctive motion changes, such
as shot boundaries, should correspond to strong musical beats
or music boundaries, making the audience feel both visual and
auditory impact at the same time, leading to a more rhythmic video.
Therefore, we align the local-maximummotion saliency with
simu-note strength, where local-maximummotion saliency labels
some rhythmic keyframes and simu-note strength is the number of
notes in a simu-note. Thirdly, it is more harmonious to sync the
epilogue and the prologue between the video and the generated
background music. That is to say; the background music should
appear and disappear smoothly along with the start and end of the
video. Thus, we extract timing information from the given video,
and take it as the position encoding to guide the music generation
process, namely beat-timing encoding.

We build our music representation based on compound words [9]
(CP). We group neighboring tokens according to their types to
construct 2-D tokens for note-related and rhythm-related tokens.
These rhythmic features are added as additional attributes in the
token. Furthermore, we add music genres and used instruments
as initial tokens, as shown in the bottom part of Fig. 1, in order to
customize the music generation process to match the given video.
We use linear transformer [12] as the backbone of our proposed
pipeline to model the music generation process, considering its
lightweight and linear-complexity in attention calculation. During
training, we use the Lakh Pianoroll Dataset (LPD) [4] to train our
model on music modeling, where we provide the above musical
features directly. For inference, the visual features are obtained
from the video and used to guide the generation process.

In summary, our contributions are threefold. 1) For our task
video background music generation, we propose the Controllable
Music Transformer (CMT) model, which makes use of several key

relations between video and music, but does not require paired
video and music annotated data during training. 2) We introduce
new representations of music, including note density and strength
of simu-notes, which result in better-generated music and a more
controllable multi-track generation process. 3) Our approach suc-
cessfully matches the music to the rhythm and mood of a video,
and at the same time, achieves high musical quality. We put a demo
video of an input video and our generated music in the supplemen-
tary material for demonstrative purposes.

2 RELATEDWORK
Representations of music. Most previous works on symbolic
music generation take the music represented in MIDI-like event se-
quences [10] [16] as input. REMI [11] imposes a metrical structure
in the input data, i.e., providing explicit notations of bars, beats,
chords, and tempo. This new representation helps to maintain the
flexibility of local tempo changes and provides a basis upon which
we can control the rhythmic and harmonic structure of the music.
Compound words [9] (CP) further converts REMI tokens to a se-
quence of compound words by grouping neighboring tokens, which
greatly reduces the length of the token sequence. In this paper, we
employ a representation based on CP. We categorize music tokens
into rhythm-related tokens and note-related tokens. We add genre
and instrument type as initial tokens to provide global information
of the music, and density and strength attributes to enable local
control of the generation process.

Music generation models. Some recent models [25] [23] [19]
use autoencoders to learn a latent space for symbolic music and
generate new pieces. Some [27] [4] consider piano rolls as 2-D
images and build models based on convolution networks. Since
music and language are both represented as sequences, the trans-
former and its variants are also frequently used as the backbone of
music generation models [10] [11] [3] [9]. Apart from generating
symbolic music, some models generate audio directly in waveform
[15] [5] [14] or indirectly through transcription and synthesis [7].
Our model is based on linear transformer [12], which implements
a linear attention mechanism to reduce time complexity.

Composingmusic from silent videos. Previous works onmu-
sic composition from silent videos focus on generating the music
from video clips containing people playing various musical instru-
ments, such as the violin, piano, and guitar [6] [21] [22]. Much of
the generation result, e.g., the instrument type and even the rhythm,
can be directly inferred from the movement of human hands, so
the music is to some extent determined. Comparably, our method
works for general videos and aims to produce non-determined gen-
eration results. In addition, there is currently no dataset of paired
arbitrary videos and music specifically for this video background
music generation task. In some existing audiovisual datasets like
[1] [13], the videos often contain noise like human speech or simply
do not involve music. Due to the lack of annotated training data,
traditional supervised training methods based on audiovisual data
do not function regarding this task. To the best of our knowledge,
no existing work focuses on generating music from arbitrary video
clips. This paper proposes to generate background music based on
motion saliency, visual beats, and global timing of the video, along
with user-defined music genres and instruments.

25 26 27 28 29 30 31 32 33 34 35
Time (s)

60

72

84

Pi
tc

h
(M

ID
I)

Example Video Frames Motion Speed Motion Saliency

Generated Music (Piano Track) Simu-note Density (Piano Track) Simu-note Strength (Piano Track)

Figure 2: Rhythmic relations between a video clip and the background music generated using our method. Shown here are
the original video and its rhythmic features (top), as well as our generated music and its corresponding features (bottom). Our
method constructs rhythmic relations between the video and music, and use them to guide the generation of music.

Simu-note NoteBar

Simu-note Density = 3Simu-note Strength = 2

MM

31

14

Figure 3: Illustration of simu-note density and strength.
Simu-note density stands for the number of simu-notes in a
bar, and simu-note strength stands for the number of notes
in a simu-note.

3 ESTABLISHING VIDEO-MUSIC RHYTHMIC
RELATIONS

One would expect to hear romantic music when watching a roman-
tic film or intense music for a shooting game video. Rhythm exists
not only in music but also in videos. It can reflect how visual mo-
tions in a video or note onsets in music are distributed temporally.
To make the generated background music match the given video,
we analyze and establish the rhythmic relations between video and
music.

Below in Sec. 3.1, we first build a connection between time in
the video and musical beat. Based on this connection, in Sec. 3.2,
we establish the relation between motion speed and note density.
In Sec. 3.3, we build the relation between motion saliency and note
strength. These established relations between video and music will
be used to guide the generation of background music that matches
rhythmically with the given video.

In the left part of Fig. 2, we show a video clip and the generated
background music. The generated music has a large simu-note
density when motion speed is high (as shown in the middle of
Fig. 2), and a large simu-note strength when a salient visual beat
occurs (as shown in the right part of Fig. 2).

3.1 Video Timing and Music Beat
Formally, we consider a video 𝑉 ∈ R𝐻×𝑊 ×𝑇×3 that contains 𝑇
frames. We aim to convert the 𝑡th (0 < 𝑡 ⩽ 𝑇) frame to its beat
number with the following equation:

𝑓𝑏𝑒𝑎𝑡 (𝑡) =
𝑇𝑒𝑚𝑝𝑜 · 𝑡
𝐹𝑃𝑆 · 60 , (1)

where𝑇𝑒𝑚𝑝𝑜 is the speed at which the backgroundmusic should be
played, and 𝐹𝑃𝑆 is short for frame per second, which is an intrinsic
attribute of the video. We take 1

4 beat (one tick) as the shortest unit.
Also, we can convert the 𝑖th beat to the video frame number

based on its inverse function:

𝑓𝑓 𝑟𝑎𝑚𝑒 (𝑖) = 𝑓 −1𝑏𝑒𝑎𝑡 (𝑖) =
𝑖 · 𝐹𝑃𝑆 · 60
𝑇𝑒𝑚𝑝𝑜

. (2)

These two equations serve as the basic block to build the rhythmic
relation between the video and music.

3.2 Motion Speed and Simu-note Density
We first divide the entire video into 𝑀 clips, with 𝑀 defined as
follows:

𝑀 =

⌈
𝑓𝑏𝑒𝑎𝑡 (𝑇)

𝑆

⌉
, (3)

where𝑇 is the total number of frames in the video, and we set 𝑆 = 4,
which means the length of each clip corresponds to 4 beats (one
bar) in the music. Then we calculate the motion speed based on the
optical flow in each clip.

Optical flow is a useful tool for analyzing video motions. For-
mally, an optical flow field 𝑓𝑡 (𝑥,𝑦) ∈ R𝐻×𝑊 ×2 measures the dis-
placement of individual pixels between two consecutive frames
𝐼𝑡 , 𝐼𝑡+1 ∈ R𝐻×𝑊 ×3.

In analogy to distance and speed, we define optical flow mag-
nitude 𝐹𝑡 as the average of the absolute optical flow to measure
the motion magnitude in the 𝑡 th frame:

𝐹𝑡 =

∑
𝑥,𝑦 |𝑓𝑡 (𝑥,𝑦) |
𝐻𝑊

, (4)

andmotion speed of the𝑚th (0 < 𝑚 ⩽ 𝑀) video clip as the average
optical flow magnitude:

𝑠𝑝𝑒𝑒𝑑𝑚 =

∑𝑓𝑓 𝑟𝑎𝑚𝑒 (𝑆𝑚)
𝑡=𝑓𝑓 𝑟𝑎𝑚𝑒 (𝑆 (𝑚−1))+1 𝐹𝑡

𝑓𝑓 𝑟𝑎𝑚𝑒 (𝑆)
. (5)

As for music, we manipulate simu-note density to connect with
themotion speed. Here, a simu-note [25] is a group of notes having
the same onset:

simu-note𝑖, 𝑗,𝑘 = {𝑛1, 𝑛2, ..., 𝑛𝑁 }, (6)

where 𝑖 denotes the 𝑖th bar, 𝑗 denotes the 𝑗th tick (4 ticks is 1 beat)
in this bar, 𝑘 denotes the instrument, and 𝑛 denotes a single note.
Compared with notes, the concept of simu-note focuses more on
the rhythmic feature since no matter it is a seventh chord or a ninth
chord, it is one simu-note.

Moreover, a bar can be expressed as a group of non-empty simu-
notes:

𝑏𝑎𝑟𝑖,𝑘 = {simu-note𝑖, 𝑗,𝑘 |simu-note𝑖, 𝑗,𝑘 ≠ ∅, 𝑗 = 1, 2, ..., 16}, (7)

where 𝑗 = 1, 2, ..., 16 as we divide a bar into 16 ticks. The simu-note
density of a bar is then defined as:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 =
��{ 𝑗 |∃𝑘 ∈ K, simu-note𝑖, 𝑗,𝑘 ∈ 𝑏𝑎𝑟𝑖,𝑘

}�� . (8)

Then, we statistically analyze the distribution of both 𝑠𝑝𝑒𝑒𝑑𝑚
and𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 in a batch of videos and themusic in the Lakh Pianoroll
Dataset. We separate the value range of 𝑠𝑝𝑒𝑒𝑑𝑚 to 16 classes, the
same as the number of classes of 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, based on the correspond-
ing percentage of density levels. For example, when there are 5%
bars with a 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 16 in the training set, we classify the top
5% 𝑠𝑝𝑒𝑒𝑑 as 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 16. Since the𝑚th video clip has the same
length as the 𝑖th bar, we replace the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 with classified 𝑠𝑝𝑒𝑒𝑑𝑚
in inference stage to build the relation, as discussed in Sec. 4.2.

3.3 Motion Saliency and Simu-note Strength
The motion saliency at the 𝑡th frame is calculated as the aver-
age positive change of optical flow of all directions between two
consecutive frames.

We then obtain a series of visual beats [2] by selecting frames
with both local-maximum motion saliency and a near-constant
tempo. Each visual beat is a binary tuple (𝑡, 𝑠) where 𝑡 is its frame
index and 𝑠 is its saliency. As shown in Fig. 2, 𝑠 will have a large
value when a sudden visible change occurs.

As shown in Fig. 3, we define the simu-note strength as the
number of notes in it:

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖, 𝑗,𝑘 = |simu-note𝑖, 𝑗,𝑘 |. (9)

Intuitively, simu-note strength denotes the richness of an ex-
tended chord or harmony, giving the audience a rhythmic feeling
along with its progression. The higher simu-note strength it has,
the more auditory impact the audience will feel. We establish a
positive correlation between visual beat saliency and simu-note
strength so that a distinct visual motion will be expressed by a clear
music beat, making the video more rhythmic.

Video FramesMusic MIDI

User-defined
Initial Tokens Simu-note

Compound Words

R

BAR

DEN

R

BEAT

DEN

STR

N

INST

PITCH

DUR

Simu-note Density

Simu-note Strength

Motion Speed

Motion Saliency

Training

Genre Piano Bar Beat Note Note Bar

Inference

Transformer
Decoder

Beat-Timing
Encoding ⨁

Compound Word
Embedding

TimingAbsolute Beat

Generated Music

Rhythmic Relations

Figure 4: Illustration of the proposed CMT framework. We
extract rhythmic features from MIDI music (in training) or
the video (in inference), and construct compound words as
the representation of music tokens. The compound word
embedding is then combined with beat-timing encoding,
and fed into the transformer for sequence modeling.

4 CONTROLLABLE MUSIC TRANSFORMER
On top of the above established video-music rhythmic relations, we
propose a transformer-based approach to generate background mu-
sic for given videos, termed Controllable Music Transformer (CMT).
The overall framework is shown in Fig. 4. We extract rhythmic
features from both video and MIDI, which is indicated in the above
section. In the training stage, only rhythmic features from MIDI are
included. In the inference stage, we replace the rhythmic feature
with that from the video to perform controllable music generation.

4.1 Music Representation
We design a music token representation for controllable multi-
track symbolic music generation. Inspired by PopMAG [18] and

CWT [9], we group related attributes into a single token to shorten
the sequence length.

As shown in Fig. 4, we consider seven kinds of attributes: type,
beat/bar, density, strength, instrument, pitch and duration. We sep-
arate those attributes into two groups: a rhythm-related group
(denoted as R in Fig. 4) including beat, density and strength, and a
note-related group (denoted as N in Fig. 4) including pitch, duration
and instrument type that the note belongs to. Then we use the type
attribute (the R/N row of Fig. 4) to distinguish those two groups.
To make computational modeling feasible, we set note-related at-
tributes to 𝑁𝑜𝑛𝑒 in the rhythm-related token and vice versa, as
shown in Fig. 4 with the blank attribute. Each rhythm token has a
strength attribute to indicate the number of following note tokens.
Besides, the density attribute is monotonically decreasing in each
bar, indicating the number of remaining simu-note in that bar. The
embedding vector for each token is calculated as follows:

𝑝𝑖,𝑘 = Embedding𝑘
(
𝑤𝑖,𝑘

)
, 𝑘 = 1, ..., 𝐾, (10)

𝑥𝑖 =𝑊𝑖𝑛
[
𝑝𝑖,1 ⊕ ... ⊕ 𝑝𝑖,𝐾

]
, . (11)

Here𝑤𝑖,𝑘 is the input words for attribute𝑘 at the 𝑖𝑡ℎ time step before
embedding, and 𝐾 is the number of attributes in each token. Here
𝐾 = 7.𝑊𝑖𝑛 is a linear layer to project the concatenated embedded
token to 𝑅𝑑 . Here 𝑑 = 512 is a pre-defined hyper-parameter for the
embedded size. 𝑥𝑖 ∈ 𝑅𝑑 is the embedded token.

Besides, we take the genre and instrument type of each music
as initial tokens and apply an independent embedding layer for it.
The embedded size is the same as ordinary tokens.

4.2 Control
After finishing training, it is expected that the CMT model has
already understood the meaning behind strength and density at-
tributes. Thus, we only need to replace those two attributes when
appropriate in the inference stage to make the music more harmo-
nious with the given video.

Density replacement. To make the density of the generated
music match the density of motion speed of the video, we replace
the density attribute on each bar token with the corresponding
video density extracted from the optical flow. Since the CMT model
has already learned the meaning of density in the bar token, it will
automatically generate the corresponding number of beat tokens
in this bar, making the density controllable.

Strength replacement. Likewise, we take advantage of the in-
formation from the visual beats of the video to control the strength
of the generated simu-notes. If the CMTmodel predicts a beat token
after or at the given visual beat, we replace that beat token with
the given visual beat and its strength. Then, the CMT model will
automatically predict the corresponding number of note tokens in
this beat, making strength controllable.

Hyper-parameter𝐶 for control degree.We also need to con-
sider the trade-off between the compatibility of music with the
video and its melodiousness. This is because the more constraint
we put in inference, the more unnatural music we will get. To deal
with this problem, we design a hyper-parameter 𝐶 to indicate the
control degree on the generated music. The larger the𝐶 is, the more
constraint will be added in inference. This means we will get a piece

of music from scratch when 𝐶 equals 0 and get full compatibility
when 𝐶 equals 1. Users can set 𝐶 according to their own needs.

Beat-timing encoding. In order to leverage the time or length
information from the video, we add a beat-timing encoding on the
token embedding both in training and inference. This design tells
the CMT model when to start a prologue and when to predict an
EOS token. Beat-timing encoding indicates the ratio of the current
beat number to the total beat number in the given video. Specifically,
we divide the value range of that ratio into 𝑀 bins (classes) with
the same width and use a learnable embedding layer to project it
to the same dimension as the token embedding. Then we add them
together to form the input for our CMT model.

Assuming 𝑖 is the index of the token, 𝑏𝑒𝑎𝑡𝑖 is the beat number
generated at the current step and 𝑁𝑏𝑒𝑎𝑡 = 𝑓𝑏𝑒𝑎𝑡 (𝑇) is the total
beat number of the video, and 𝑇 is the total frame number of the
video, we compute beat-timing encoding according to the equations
below:

𝑡𝑖 = Embedding𝑡
(
𝑟𝑜𝑢𝑛𝑑

(
𝑀
𝑏𝑒𝑎𝑡𝑖

𝑁𝑏𝑒𝑎𝑡

))
, (12)

®𝑥𝑖 = 𝑥𝑖 + 𝐵𝑃𝐸 + 𝑡𝑖 , (13)
where 𝑡𝑖 ∈ 𝑅𝑑 is beat-timing encoding for the token 𝑖 , 𝑥𝑖 is the
embedding vector explained in Equation (11), and 𝐵𝑃𝐸 is beat-
based position encoding explained in Equation (14) and (15). We set
𝑀 = 100 to separate each video into 100 bins. ®𝑥𝑖 is the final input
fed into the CMT model.

Moreover, instead of using the traditional position encoding, we
introduce a beat-based position encoding for each token. In partic-
ular, each token within the same beat will get the same position
encoding. It is in line with the semantic information of the music
sequence since multiple notes in the same beat will be converted
to the same audio segment eventually, regardless of their order in
the sequence.

Beat-based position encoding of the 𝑖-th beat 𝐵𝑃𝐸 is computed
as follows:

𝐵𝑃𝐸 (𝑏𝑒𝑎𝑡𝑖 , 2𝑛) = 𝑠𝑖𝑛(
𝑏𝑒𝑎𝑡𝑖

100002𝑛/𝑑𝑚𝑜𝑑𝑒𝑙
) (14)

𝐵𝑃𝐸 (𝑏𝑒𝑎𝑡𝑖 , 2𝑛 + 1) = 𝑐𝑜𝑠 (𝑏𝑒𝑎𝑡𝑖

100002𝑛/𝑑𝑚𝑜𝑑𝑒𝑙
) (15)

where𝑑𝑚𝑜𝑑𝑒𝑙 = 512 is themodel hidden size, and𝑛 ∈ [0, ..., 𝑑𝑚𝑜𝑑𝑒𝑙/2)
is the index of 𝑑𝑚𝑜𝑑𝑒𝑙 . Beat-based position encoding will be added
on each embedding vector 𝑥𝑖 in Equation (13) eventually.

Genre and instrument type. In our method, there are 6 genres
(Country, Dance, Electronic, Metal, Pop, and Rock) and 5 instru-
ments (Drums, Piano, Guitar, Bass, and Strings). We take each from
them respectively as the initial token for our CMT model. Users can
choose different genres and instruments by using different initial
tokens in the inference stage to generate the background music
that matches up with the emotion of the video.

The above-mentioned controlling strategies will be combined to-
gether in the inference stage. The more detailed inference algorithm
is illustrated in Algorithm 1.

4.3 Sequence Modeling
The sequence of music tokens (as explained in Sec. 4.1) is fed into
the transformer [24] model to model the dependency among el-
ements. We employ the linear transformer [12] as our backbone

Model Data Without Control With Control
No. - 1 2 3 4 5 6 7 8

Density - - ◦ - - ◦ • ◦ •
Strength - - - ◦ - ◦ ◦ • •

Beat-timing encoding - - - -
√ √ √ √ √

Pitch Histogram Entropy 4.452 3.634 2.998 3.667 3.573 3.617 3.496 4.044 4.113
Grooving Pattern Similarity 0.968 0.677 0.714 0.647 0.778 0.810 0.773 0.678 0.599
Structureness Indicator 0.488 0.219 0.227 0.215 0.223 0.241 0.268 0.211 0.200

Overall Rank ↓ - 5.000 5.000 5.333 4.000 2.667 3.667 4.667 5.667

Table 1: Objective evaluation for each controlling attribute on melodiousness. - means that the attribute is not added during
training. ◦ denotes that the attribute is only added in training but not controlled in the inference time. • means that we not
only add it during training but also control that attribute with the corresponding rhythmic feature from a given video in
inference.

√
denotes that we add beat-timing encoding in both the training and inference stage. See Sec. 5.3 for details.

Algorithm 1 Inference stage
Set initial genre and instrument tokens
repeat

Predict next tokenwith given beat-timing from the video based
on sampling strategy
if next token is bar then
Replace its density attribute with prob of C

end if
if next token is after visual beat then
Replace next token with visual beat and its strength with
prob of C

end if
Append next token to music token list

until EOS token predicted
return music token list

architecture, considering its lightweight and linear-complexity in
attention calculation.

The multi-head output module, following the design of [9], pre-
dicts 7 attributes of each music token in a two-stage way. In the first
stage, the model predicts the type token by applying a linear projec-
tion on the output of the transformer. In the second stage, it uses
type to pass through 6 feed-forward heads to predict the remaining
6 attributes at the same time. During inference, we adopt stochastic
temperature-controlled sampling [8] to increase the diversity of
the generated tokens.

5 EXPERIMENTS
We perform an ablation study on three control attributes on music
generation we propose in this work. Both objective and subjec-
tive evaluations are conducted. Objective evaluations focus on the
quality of the generated music itself, where we generate ten music
pieces for each genre using all the instruments in the initial tokens
for each video. Then we calculate the average on each objective
metric. For subjective evaluation, we designed a questionnaire and
invited users to evaluate the quality of the generated music as well
as its compatibility with the corresponding video.

5.1 Dataset
We adopt the Lakh Pianoroll Dataset (LPD) [4] to train our CMT
model. LPD is a collection of 174,154 multi-track pianorolls derived
from the Lakh MIDI Dataset (LMD) [17]. We use the lpd-5-cleansed
version of LPD, which goes through a cleaning process and has all
tracks in a single MIDI file merged into five common categories
(Drums, Piano, Guitar, Bass, and Strings). We then select 3,038 MIDI
music pieces from lpd-5-cleansed as our training set. The selected
pieces fall into six genres (Country, Dance, Electronic, Metal, Pop,
Rock) from the tagtraum genre annotations [20].

5.2 Implementation Details
Following the design in [9], we choose the embedding size for each
attribute based on its vocabulary size, i.e. (32, 64, 64, 64, 512, 128, 32)
for (type, beat, density, strength, pitch, duration, and instrument) at-
tributes respectively. Those embedded attributes are concatenated
together and projected to model hidden size in Equation (11).

As for the model settings, we use 12 self-attention layers, each
with 8 attention heads. The model hidden size and inner layer size
of the feed-forward part are set to 512 and 2,048, respectively. The
dropout rate in each layer is set to 0.1. The input sequence length
is padded to 10,000 with ⟨𝐸𝑂𝑆⟩ token.

We set the initial learning rate to 1e-4 and use Adam as the
optimizer. We train our model for 100 epochs on the LPD dataset,
taking approximately 28 hours on 4 RTX 1080Ti GPUs. The objec-
tive metrics are computed with MusDr [26].

5.3 Objective Evaluation
Here we analyze the contribution of each of the controllable at-
tributes.We adopt some of the objectivemetrics from [26], including
Pitch Class Histogram Entropy that assesses the music’s qual-
ity in tonality, Grooving Pattern Similarity that measures the
music’s rhythmicity, and Structureness Indicator that measures
the music’s repetitive structure. Note that the overall quality is not
indicated by how high or low these metrics are but instead by their
closeness to the real data. Finally, we sort each metric among the
eight models in Tab. 1 and take the mean of the ranking results
among the three metrics mentioned above as the final criterion,
namely Overall rank.

For each model with control in Tab. 1, we generate 10 MIDI for
each genre using all five instruments for each video. To make a
fair comparison, we generate the same number of MIDI with the
same length of the controlled counterparts for each model without
control.

In Tab. 1, we first statistically analyze the objective metrics on
the LPD dataset. The generated music should be close to music in
the dataset to be more natural regarding the adopted metrics. Then
we train a model without our proposed three rhythmic features,
i.e., experiment No.1 in Tab. 1, serving as a baseline model for
comparison. Then we add each rhythmic feature one by one, i.e.,
experiment No. 2, 3, 4 in Tab. 1. Density and beat-timing encoding
help improve the overall structures of the music. Strength makes
it easy for the model to learn the combination of different pitch
classes to form a simu-note, leading to a better pitch histogram
entropy. When we combine those three proposed rhythmic features,
as shown in experiment No.5, we take all the advantages and get a
higher score on each metric than the baseline model, indicating an
improvement in overall melodiousness. However, when we try to
control those attributes with the given video, i.e., experiment No. 6,
7, 8 as shown in Tab. 1, we observe a degeneration on structures of
the music. It is reasonable since we force the generated music to
align with the rhythm from the video. Thus, in Sec. 5.4, we conduct
a user study on hyper-parameter 𝐶 , in order to find the trade-off of
the structures degeneration and the music-video compatibility.

To sum up, the highest overall rank for experiment No. 5 demon-
strates that the rhythmic features we extract from the music not
only make the controlling workable in inference but also improve
the overall melodiousness of the generated music because the ex-
tracted density and strength prompt the CMT model to learn the
underlying pattern of the rhythm of the background music. In
other words, the rhythmic feature makes it easy for the network to
converge and thus improves the structures of the music.

5.4 Subjective Evaluation
The best way to evaluate a music generation model today remains
using user study. Besides, objective metrics do not consider the
extent to which the video and music are matched. Therefore, we
design a questionnaire for subjective evaluation of our model and
invite 36 people to participate. 13 among them have related expe-
rience in music or basic understanding of music performing and
are considered professionals. Each participant is asked to listen to
several pieces of music (in random order) corresponding to one
input video, rate based on subjective metrics introduced below, and
rank them based on their preferences. As the music can be long,
the questionnaire may take around 10 minutes to complete.

We select several subjective metrics [9] to evaluate the melodi-
ousness of our music: 1) Richness: music diversity and interesting-
ness; 2) Correctness: perceived absence of notes or other playing
mistakes. (i.e., weird chords, sudden silence, or awkward usage
of instruments); 3) Structuredness: whether there are structural
patterns such as repeating themes or development of musical ideas.

Moreover, in terms of the compatibility of the music with the
given video, we choose the following metrics for evaluation: 1)
Rhythmicity: howmuch the rhythmof the generatedmusicmatches
with the motion of the video. For example, an intense sports vlog

Model Baseline Matched Ours
Melodiousness ↑ 3.4 4.0 3.8
Compatibility ↑ 3.4 3.7 3.9
Overall Rank ↓ 2.3 1.9 1.8

Table 2: Subjective evaluation on melodiousness and com-
patibility with the video with 𝐶 = 0.7. Our music reaches
comparable performance comparedwithmatched data from
training set, especially in compatibility with the video.

with large movements should be matched up with fast-paced mu-
sic. A clam and smooth travel vlog with gentle movements should
be matched up with slow-paced music. 2) Correspondence: how
much the major stress or the boundary of the generated music
matches with the video boundary or the visual beat. For instance,
rhythmic motion, such as dancing, and some obvious video bound-
aries should be accompanied by major stress to improve musicality.
3) Structure Consistency: the start and the end of the generated
music should match up with those of the video. Similarly, music and
video should both have a prologue, epilogue, and episode, so those
structures should be matched to make the video more harmonious.

To take all those subjective metrics into account and give a
comprehensive evaluation of the generated background music, we
ask participants to rank those videos based on the overall quality,
and then we take the mean of the rank as the final result, namely
Overall rank.

We first experiment on different levels of hyper-parameter 𝐶 to
choose an appropriate value for the trade-off issue between com-
patibility with the video and melodiousness of the generated music.
We choose a given video, and for each𝐶 value, we run the inference
stage and generate one music clip. All music clips are included in
the questionnaire to be evaluated by the participants. The result
is shown in Tab. 3. Although when 𝐶 = 1.0, we get better com-
patibility between the video and the music, it is detrimental to the
melodiousness of the music, especially on the correctness metrics,
leading to a lower overall rank. It is reasonable since the constraint
on the rhythm will force the model to generate some relatively
unnatural notes. Considering the overall rank, we eventually take
𝐶 = 0.7 as our pre-defined hyper-parameter.

Then, we evaluate our music in terms of melodiousness and
compatibility with the given video. The baseline model is the one
without using any controllable attributes. Moreover, we design an
algorithm to match a video with music from the training set based
on our proposed rhythmic relations. Specifically, given a video and
a music piece, we calculate their matching score (𝑀𝑆) as:

𝑀𝑆 (dm, dv, sm, sv) = 1

𝑀𝑆𝐸 (dm, dv) +𝑀𝑆𝐸 (sm ⊙ 1(sv), sv) .
(16)

Here, dm and dv are simu-note density extracted from the music
and the video and are truncated to the same size. Likewise, sm and
sv are extracted simu-note strength with truncation. 𝑀𝑆𝐸 is the
mean squared error, ⊙ denotes the Hadamard product, 1(·) maps
each positive element to 1 and non-positive element to 0. We then
manually select one from the top-5 matched music based on the
video style.

(a) barbeat loss (b) duration loss (c) pitch loss (d) instrument loss

Figure 5: The loss curve for the baseline model and the CMTmodel. The blue line is the baseline model, and the red line is our
proposed CMT model. Our method shows an increased converging speed with the help of density, strength, and beat-timing
encoding. For a better demonstration, we perform exponential smoothing on each loss with 𝛼 = 0.9.

Metrics 𝐶

0.0 0.3 0.7 1.0

Melodiousness
Richness ↑ 3.6 3.4 3.8 3.7

Correctness ↑ 3.2 3.7 3.7 2.8
Structuredness ↑ 3.6 3.6 3.6 3.3

Compatibility
Rhythmicity ↑ 3.2 3.5 3.7 3.7

Correspondence ↑ 2.6 3.3 3.7 4.1
Structure Consistency ↑ 2.9 3.9 3.8 3.8

Overall rank ↓ 3.1 2.2 2.1 2.6

Table 3: Subjective ablation study for different 𝐶 values on
melodiousness and compatibilitywith the video.Weobserve
that higher 𝐶 leads to higher compatibility, while lower
𝐶 leads to better melodiousness. The overall performance
reaches its peak when 𝐶 is set to 0.7.

Attribute Density Strength Time
Control Error 0.107 0.001 0.028

Table 4: The error rate for density, strength, and time con-
trol. Our method demonstrates impressive performance in
controlling the three rhythmic features of the music.

We choose three video clips from different categories (edited,
unedited, and animation video) and provide the generated music of
ours, baseline andmatched in the questionnaire. They are randomly
shuffled, so the participants do not know which one is generated
by the model and which one is selected from the dataset.

Tab. 2 demonstrates that our generated background music even
surpasses the matched music overall. The matched music shows
better compatibility than our baseline, indicating that our proposed
rhythmic relation is valuable and beneficial for the overall musi-
cality of the video. Although the melodiousness of our composed
music is still below the real one in the training set, the excellent com-
patibility compensates for those weaknesses, making the generated
background music more suitable than human-made music.

5.5 Controlling Accuracy
We evaluate the accuracy of the proposed three controllable at-
tributes. We recalculate those three attributes in the music and take
the L2 distance between the rhythmic feature from the video and
our music as the control error. Then, errors of density, strength and
time are normalized by the average number of simu-notes per bar,
average number of notes per simu-note and the total video time,
respectively, to eventually form the error rates. As shown in Tab.
4, our results are impressive. The control error for music density
is around 0.1 while the average number of simu-notes per bar is
9.9, which means in each bar the beat number will approximately
fluctuate only one beat with the given video density. The strength
control error shows that the majority of the simu-notes will have
the exact same number of notes as the given video strength.

5.6 Visualization
We visualize the loss curves for the rhythm-related attributes and
the note-related attributes on both the baseline model and our CMT
model. The results are shown in Fig. 5. It is obvious that our CMT
model has a faster converging process on each attribute, especially
on the beat attribute. That is to say, our extracted rhythmic feature
make it easy for the model to grasp the crucial knowledge in music,
resulting in a more fetching generated music.

6 CONCLUSION
In this paper, we address the unexplored task – video background
music generation. We first establish three rhythmic relations be-
tween video and backgroundmusic. We then propose a Controllable
Music Transformer (CMT) to achieve local and global control of the
music generation process. Our proposed method does not require
paired video and music data for training while generates melodious
and compatible music with the given video. Future studies may
include exploring more abstract connections between visual and
music (e.g., emotion and style), utilizing music in the waveform, and
adopting unsupervised audiovisual representation learning from
paired data.

ACKNOWLEDGMENTS
This research is supported in part by National Natural Science
Foundation of China (Grant 61876177), Beijing Natural Science
Foundation (4202034), Fundamental Research Funds for the Central
Universities.

REFERENCES
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George

Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016.
YouTube-8M: A Large-Scale Video Classification Benchmark. arXiv preprint
arXiv:1609.08675 (2016).

[2] Abe Davis and Maneesh Agrawala. 2018. Visual rhythm and beat. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.
2532–2535.

[3] Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and
Julian McAuley. 2019. LakhNES: Improving multi-instrumental music generation
with cross-domain pre-training. arXiv preprint arXiv:1907.04868 (2019).

[4] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. 2018. Musegan:
Multi-track sequential generative adversarial networks for symbolic music gen-
eration and accompaniment. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

[5] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Don-
ahue, and Adam Roberts. 2018. GANSynth: Adversarial Neural Audio Synthesis.
In International Conference on Learning Representations.

[6] Chuang Gan, Deng Huang, Peihao Chen, and Joshua B Tenenbaum. [n.d.]. Foley
music: Learning to generate music from videos. ([n. d.]).

[7] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna
Huang, Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. 2018. En-
abling Factorized Piano Music Modeling and Generation with the MAESTRO
Dataset. In International Conference on Learning Representations.

[8] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious
case of neural text degeneration. arXiv preprint arXiv:1904.09751 (2019).

[9] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. 2021. Compound
Word Transformer: Learning to Compose Full-SongMusic over Dynamic Directed
Hypergraphs. arXiv preprint arXiv:2101.02402 (2021).

[10] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis
Hawthorne, Noam Shazeer, Andrew M Dai, Matthew D Hoffman, Monica Din-
culescu, and Douglas Eck. 2018. Music Transformer: Generating Music with
Long-Term Structure. In International Conference on Learning Representations.

[11] Yu-Siang Huang and Yi-Hsuan Yang. 2020. Pop Music Transformer: Beat-based
modeling and generation of expressive Pop piano compositions. In Proceedings
of the 28th ACM International Conference on Multimedia. 1180–1188.

[12] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. 2020. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings
of the International Conference on Machine Learning (ICML).

[13] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. 2017.

The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017).
[14] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain,

Jose Sotelo, Aaron Courville, and Yoshua Bengio. 2016. SampleRNN: An uncondi-
tional end-to-end neural audio generation model. arXiv preprint arXiv:1612.07837
(2016).

[15] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[16] Christine Payne. 2019. MuseNet. OpenAI Blog 3 (2019).
[17] Colin Raffel. 2016. Learning-based methods for comparing sequences, with appli-

cations to audio-to-midi alignment and matching. Ph.D. Dissertation. Columbia
University.

[18] Yi Ren, Jinzheng He, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu. 2020. Pop-
mag: Pop music accompaniment generation. In Proceedings of the 28th ACM
International Conference on Multimedia. 1198–1206.

[19] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck.
2018. A hierarchical latent vector model for learning long-term structure in
music. In International Conference on Machine Learning. PMLR, 4364–4373.

[20] Hendrik Schreiber. 2015. Improving Genre Annotations for the Million Song
Dataset.. In ISMIR. 241–247.

[21] Kun Su, Xiulong Liu, and Eli Shlizerman. 2020. Audeo: Audio generation for a
silent performance video. arXiv preprint arXiv:2006.14348 (2020).

[22] Kun Su, Xiulong Liu, and Eli Shlizerman. 2020. Multi-Instrumentalist Net:
Unsupervised Generation of Music from Body Movements. arXiv preprint
arXiv:2012.03478 (2020).

[23] Andrea Valenti, Antonio Carta, and Davide Bacciu. 2020. Learning Style-Aware
Symbolic Music Representations by Adversarial Autoencoders. arXiv preprint
arXiv:2001.05494 (2020).

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. 6000–6010.

[25] Ziyu Wang, Yiyi Zhang, Yixiao Zhang, Junyan Jiang, Ruihan Yang, Junbo Zhao,
and Gus Xia. 2020. Pianotree vae: Structured representation learning for poly-
phonic music. arXiv preprint arXiv:2008.07118 (2020).

[26] Shih-Lun Wu and Yi-Hsuan Yang. 2020. The Jazz Transformer on the Front
Line: Exploring the Shortcomings of AI-composed Music through Quantitative
Measures. In ISMIR.

[27] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. 2017. MidiNet: A convolutional
generative adversarial network for symbolic-domain music generation. arXiv
preprint arXiv:1703.10847 (2017).

	Abstract
	1 Introduction
	2 Related Work
	3 Establishing Video-Music Rhythmic relations
	3.1 Video Timing and Music Beat
	3.2 Motion Speed and Simu-note Density
	3.3 Motion Saliency and Simu-note Strength

	4 Controllable Music Transformer
	4.1 Music Representation
	4.2 Control
	4.3 Sequence Modeling

	5 Experiments
	5.1 Dataset
	5.2 Implementation Details
	5.3 Objective Evaluation
	5.4 Subjective Evaluation
	5.5 Controlling Accuracy
	5.6 Visualization

	6 Conclusion
	Acknowledgments
	References

