TV-Shows Subtitles Analysis & Recommender System
Big Data Class Project 2014

Final Report

Claire Musso Nassim Drissi EI Kamili
Florian Simond Nils Bouchardon
Grigory Rozhdestvenskiy Simon-Pierre Génot
Khalil Hajji Raphaél von Aarburg

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



1. Project Achievements

i. Crawling

We first needed to select the adequate platform to crawl. We decided to use tvsubtitles.net
since there was no limitations or whatsoever for our purposes. We used python scripting and
successfully obtained the desired subtitles which we cleaned from duplicates by using once
again python scripting.

We also wanted some other kind of metrics for our subtitle analysis like IMDB-ratings, plots of
the TV shows, posters and other meaningful informations to be displayed. When they were
available, we obtained them from omdbapi.com.

In total, we gathered subtitles and information on about 1121 shows.

ii. Preprocessing

We successfully parsed and reconstructed full sentences from subtitles files. We performed
part-of-speech tagging, and selected only meaningful words for our analysis. That is, we kept:
adjectives, comparatives, superlatives, singular and plural nouns, proper nouns, verbs in all their
forms. We performed lemmatizing on these to reduce the size of the vocabulary: verbs were
mapped to their infinitive form and noun to their singular. We also removed out of the dictionary
words. Subtitles are handmade, and therefore contain a lot of mistakes, and misspelled words.
Moreover, oral language is not as strict as the written language and therefore we also have a lot
of non-existing words. We filtered the words using a dictionary, to keep only a good set of words.
According to the creator of the LDA, removing words that appear in more than 90% of the shows
helps the algorithm to give good results, so we also performed this step. Once that was done,
we indexed all remaining words and counted their occurrences in a given show. In the end each
show was represented by the vector of frequencies for each word in vocabulary.

In summary, after PoS filtering we had a raw vocabulary of around 550’000 words and reduced it
to 54’000 words.

iii. Processing

In this part of the project our goal was to extract topics from the subtitles to be able to model our
TV series. This problem, part of a subject called Topic Modelling, has gotten a lot of attention
recently. The first paper by Deerwester [1] published in 1988 proposed the first solution to
discovering topics in a corpus of documents : LSI. Later other solutions were proposed including
pLSI [2]. The most recent technique and the most advanced is LDA, or Latent Dirichlet
Allocation. Proposed by Blei and al. in 2003, this technique has been applied in many domains,
including scientific topics, images or Twitter data.

The technique is based on a generative model that describes how documents inside the corpus
are generated:




T
e

Source :http://en.wikipedia.org/wiki/File:Smoothed LDA.png

M

In this model, K denotes the number of topics, N — the number of words inside a document, and
M — the number of documents in the corpus. In this mixture model where the topic distribution
and the per-topic word distribution are assumed to follow the Dirichlet prior.

In the previous image, alpha is the parameter of the Dirichlet prior on the per-document topic
distributions, beta is the parameter of the Dirichlet prior on the per-topic word distribution
(hyperparameters). Theta is the word topic distribution for document (one per document). Phi is
the word distribution (one per topic). Z is the topic variable for each word, and W is the word
itself (both z and w are sampled for each word).

Now that we have specified a model for generating documents, our job is to infer the
parameters to learn the topics.

Blei’s orginal paper used Variational Inference to do this, but other methods have been proposed,
most notably Gibb’s sampling, which is a MCMC optimization technique (Markov Chain Monte
Carlo).

In past years, many advances have been made to scale this algorithm in a parallelized fashion,
notably using Map-Reduce and Hadoop. This is a hard problem as there is a lot a shared
information between different mappers in the algorithm. Nevertheless, using various
optimization, some teams were able to propose efficient solutions. The first, lead by a team of
Yahoo! labs, successfully parallelized Gibb’s sampling [4]. More recently, a solution called Mr
LDA was proposed for Variational Inference [5].

Variational Inference, though more complex than Gibb’s sampling, permits a better level of
precision by allowing the optimization of the alpha parameter. This is why we have chosen this
version of LDA to implement in our case.

We designed our algorithm using Hadoop based on [5], and managed to recreate a running
version of the algorithm. We put a lot of efforts in optimizing and improving the performance of
our algorithm to be able to run multiple tests. At the first version of our code, we needed 35
minutes to run one job, and as we needed around 40 iterations for the algorithm to converge, the
whole algorithm took us around 23 hours. At the end, we succeeded to decrease the running
time by a factor of 10 to end up with 3 minutes by job which gives 2 hours for the whole
algorithm.


http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFile%3ASmoothed_LDA.png&sa=D&sntz=1&usg=AFQjCNEvWyXimI9uBxxhNeGOClZTktlZlA

iii. Recommender System

The recommender system was the last part of our project, its aim was to visualize the results of
our LDA processing in an understandable way.

The user inputs a certain number of TV shows he wants a recommendation for, let’s call this set
T. For each show x in T, we compute the similarity of x with all the available TV shows in our
database, sort those result (by similarity) and output k recommendations with maximum
similarity. By doing so, we obtain for each show in T, a list of k recommendations.

We finally pick the k TV shows, among all those lists, that have the maximum similarity value.
We reject all TV shows that were originally in X (ensuring that the user cannot be recommended
a TV show for which he asked a recommendation).

The similarity between TV-shows X,Y € T' (represented in this case in their vector form, namely

their topic distribution) is computed as:

sim(X,Y) = fp((_nﬁm

If requested by the user, the result is then sorted by IMDB rating.

2. Results

i. Raw
The raw results can be found in the repository of the projects under the processing/results/
subfolders.
In here, you will find different files :
- vocabulary: the mapping of all different words from subtitles to numeric ids
- shows: the mapping of all shows to numeric ids
- lambda: topics distribution over vocabulary (each column is one topic)
- gamma: topic proportions for each show (one show per line)
- alpha, gradient: LDA parameter files (can be disregarded)

ii. LDA results :

We have obtained results we consider to be very good. After testing the results for a number of
different choices for the number of topics, we settled on 25. Below we have included some of the
topics we have obtained, based on names we have given them by analysing their bag of word
representations :




1 Vice 14 Police case / Investigation / Law

2 College Life 15 British

3 Vampire / Supernatural 16 Army

6 Music 17 Family

7 Power 18 Medical

8 Cartoon / (Family) 19 Noisy

9 Space / Science 20 Sexy

10 Dance / Contest 21 Relationship

11 Dynasty 22 Comics / Technology
12 Space War / Science Fiction 23 Politics

13 Magic 24 Crime / Murder

25 Police / Action

It is interesting to notice that most topics seem obvious and could correspond to the IMDB
classification (Medical, Army, Relationship...). Others are more subtle. For example, our
algorithm recognized a whole class of shows that had a particularity in their scripts : TV Shows
from the U.K. ! It should be noticed however that topic naming is just done for demonstrational
purposes. The topics discovered by LDA in general don’t represent some particular theme that
can be easily named. The topic is the distribution over all 55,000 words in the vocabulary, so it’s
impossible to convey all information that this distribution represents in one name.

In our example, the algorithm divided one of the most common topic in TV Shows: police and
crime. There are 3 topics that are related to this theme, but they differ slightly: it looks like one
describes crime and murder, legal investigations, or just police action. These results are very
encouraging.

Below we included the top 10 words from a topic that we’ve called “Police/Action”. And the
shows that have the biggest proportion of this topic. We named the topic just by looking at the
top words, and later found that these shows can be really described well as Police/Action.

Words : Shows :
car The Bridge
cop The Shield
gun Dark Blue

detective Day Break

police The Chicago Code
shoot The Good Guys
phone Southland
brother Adam-12
streat K-Ville

steal NYC 22



In order to visualize what all this information means, we have created the 5-nearest neighbors
graph of the results, that we show below :

Police, Investigation, Law :

Law & Order Medical ’
Brooklyn DA Dr. House
Justice Grey's Anatomy

ER...

Politics :
House of Cards
The Kennedy's
Politcal Animals...

Benefits...

Sexy - e "X
2 Broke Girls b B, 3 ’: i
Sex and the City o e S o 5 y 4
Friends with f o .

8 Space, Science

Wonders of the solar system
Wonders of the univers

Police, 5 o Poli Acti
Sttt . S “ olice, Action
Investigation, 30 "% . a8 crime, Murder ; ’
erson of Interest
Law Politics White Collar...

This graph, very useful in our case, was constructed in the following way : each node is linked to
it's 5 closest neighbors in terms of cosine similarity. This means that for every node, every one
of it's neighbor will be in the output of our recommender system. Because there are so many
shows and links, we have spatialized our graph in such a clustered fashion using a force field
visualisation technique (using Gephi). Each color represents the top topic of the node.

The first observation on this graph is that the nodes are very well clustered into topics. For
example, the Medical topic only has two links that point outside of it.



The second observation is that for the topics that are all related to Police, Crime, etc, they are
very close together : indeed the algorithm has put the shows in separate clusters, but still gives
many links going from one to the other. This is good because it means that our method is
sufficiently flexible.

A surprising observation though comes from the complete separation of the Space & Science
topic with the Space & Sci-Fi topic. We could have forseen them to be close together, but it
seems this separation does make sense as the shows in each category have very little in
common.

ii. Website

We choose to implement a GUI for our recommender under a website form. We implemented
the back end with the Play! Framework which is coded in Java while the front end is made of
with HTML and CSS.

It works as follow. It opens on an index page on which you can select the shows you want the
recommendations for. Once it is done, you click the recommend button and a list of most similar
shows to the given ones appears. One can then refine those results by ordering them in function
of their IMDB ratings, can view a show presentation page by clicking the name of the latter or do
the same with a topic.

iii. Visuals

We tried to get the most from our results in order to present them in a fancy way. To do so, we
have created different visuals.

First, we created a pie chart displayed on every show page which highlight the proportion of
topics in the show. We also created a cloud of words for every show/topic. The latter presents a
bag of the most important words of a given show/topic by printing them in function of their
importance in the show/topic. Note that for a show, the colours used in the pie charts are re
used in the cloud of words in order to identify which topic a word belongs to.



3. Examples of Results
Below, we give some examples of recommendations :

e Game of Thrones :

Title Similarity IMDB Rating
Crusoe 90.4 % 6.9
Krod Mandoon and the 90.36 % NA

Flaming Sword of Fire
1066 The Battle for Middle 89.49 % NA
Earth
Divine? The Series 89.01 % NA
Kung Fu 87.93 % 7.8
Roar 86.81 % 7.5
Neverwhere 85.84 % 7.3
The Pillars Of The Earth 84.46 % 8.2
Rome 83.69 % 9.0
Poltergeist The Legacy 83.54 % NA
Atlantis 83.27 % 6.5
Reign 81.94 % 7.9
Ancient Rome - The Rise and 81.49 % NA
Fall of an Empire

Kings 80.69 % 8.3
Thor & Loki Blood Brothers 80.58 % NA




e Dexter:

Title Similarity IMDB Rating
The Glades 86.32 % 7.5
Rizzoli and Isles 83.12% NA
CSI Miami 82.5% NA
Killer Insctinct 82.45% 7.4
Crossing Jordan 81.92% 6.9
The Forgotten 80.45% 5.8
CSINY 78.99% NA
Saving Grace 78.3% 6.9
Criminal Minds 78.07% 8.2
Profiler 77.73% 7.3
(O] 77.64% 7.9
Castle 77.34% 8.4
Body Of Proof 75.37% 7.0
Hawaii Five-0 75.29 % 7.5
Criminal Minds? Suspect 73.94 % NA

Behavior



http://www.google.com/url?q=http%3A%2F%2Flocalhost%3A9000%2Fassets%2Fresults%2Fshows%2Fshow890.html&sa=D&sntz=1&usg=AFQjCNH0GDaUyyj9PKIKud_n7KGLF8CBcg

e The Simpsons :

Title Similarity IMDB Rating

Men Behaving Badly 99.39 % 6.7

Beavis and Butt-Head 99.22 % 7.6

The Cleveland Show 99.03 % 5.6

Family Guy 98.04 % 8.5

The Penguins Of 97.59 % 7.7
Madagascar

Robot Chicken 97.45 % 7.8

American Dad! 97.32 % 7.7

Futurama 97.28 % 8.7

My Name Is Earl 95.2 % 7.9

South Park 95.2 % 8.9

Raising Hope 94.98 % 8.0

Neighbors From Hell 94.75 % 6.0

The Ren & Stimpy Show 93.94 % 7.6

Clerks 93.63 % 7.4

Key And Peele 93.46 % 8.2

10



4, References

1.

Deerwester, S., et al, Improving Information Retrieval with Latent Semantic Indexing,
Proceedings of the 51st Annual Meeting of the American Society for Information Science
25, 1988, pp. 36—40.

Thomas Hofmann, Learning the Similarity of Documents : an information-geometric
approach to document retrieval and categorization, Advances in Neural Information
Processing Systems 12, pp-914-920, MIT Press, 2000

Blei, David M.; Ng, Andrew Y.; Jordan, Michael | (January 2003). "Latent Dirichlet
allocation". In Lafferty, John. Journal of Machine Learning Research 3 (4-5): pp. 993-1022.
doi:10.1162/jmIr.2003.3.4-5.993.

Smola, Alexander, and Shravan Narayanamurthy. "An architecture for parallel topic
models." Proceedings of the VLDB Endowment 3.1-2 (2010): 703-710.

Zhai, Ke, et al. "Mr. LDA: A flexible large scale topic modeling package using variational
inference in MapReduce." Proceedings of the 21st international conference on World Wide

Web. ACM, 2012

11


http://www.google.com/url?q=http%3A%2F%2Fwww.cs.brown.edu%2Fpeople%2Fth%2Fpapers%2FHofmann-NIPS99.ps&sa=D&sntz=1&usg=AFQjCNG9EKgHKU46WCbzGkaZAbXjb6PEpA
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.brown.edu%2Fpeople%2Fth%2Fpapers%2FHofmann-NIPS99.ps&sa=D&sntz=1&usg=AFQjCNG9EKgHKU46WCbzGkaZAbXjb6PEpA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvances_in_Neural_Information_Processing_Systems&sa=D&sntz=1&usg=AFQjCNGlkEkSMs3Hfkf2Nrl1FQUYRk0tkA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvances_in_Neural_Information_Processing_Systems&sa=D&sntz=1&usg=AFQjCNGlkEkSMs3Hfkf2Nrl1FQUYRk0tkA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMIT_Press&sa=D&sntz=1&usg=AFQjCNHzt8JkdbXJQ38C0AhPqemK0G5gFA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMichael_I._Jordan&sa=D&sntz=1&usg=AFQjCNEj3kl41LGTQGj603daNODIjql4bw
http://www.google.com/url?q=http%3A%2F%2Fjmlr.csail.mit.edu%2Fpapers%2Fv3%2Fblei03a.html&sa=D&sntz=1&usg=AFQjCNFaBHEs_QnVST6mUoEUkvoPWKi6ww
http://www.google.com/url?q=http%3A%2F%2Fjmlr.csail.mit.edu%2Fpapers%2Fv3%2Fblei03a.html&sa=D&sntz=1&usg=AFQjCNFaBHEs_QnVST6mUoEUkvoPWKi6ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJournal_of_Machine_Learning_Research&sa=D&sntz=1&usg=AFQjCNERGTQKkFWtep8_BVCVW3abO7P3EQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDigital_object_identifier&sa=D&sntz=1&usg=AFQjCNECl8qk62MeuFtlicLakNs338eojA
http://www.google.com/url?q=http%3A%2F%2Fdx.doi.org%2F10.1162%252Fjmlr.2003.3.4-5.993&sa=D&sntz=1&usg=AFQjCNGAyxPs1fCcI8alX9PyErH2LGpyJw

