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Abstract

We trained an artificial neural network model to classify images
of four distinct tourist attractions of Tsinghua University. A sixteen-
layer convolutional neural network was applied and with some image
augmentations the model, trained on a rather limited training dataset,
has successfully reached an accuracy of approximately 80 percent.

1 Introduction

Throughout the history of mankind, inventors have been dedicated to cre-
ate machines that can think. And the invention of electronic computer has
sharply shortened the distance towards that great aspiration and several ap-
proaches towards artificial intelligence (AI) have been proposed. The idea of
composing several simpler functions to form a mathematical function map-
ping some set of input values to output values to create an AI was first
proposed back in the 1940s [McCulloch and Pitts, 1943]. Such approach,
now known as deep learning, was presumed to be preciously valuable since
neuroscience suggested that a single deep learning algorithm may be able to
solve many different tasks [Von Melchner et al., 2000]. It is even presumed
now to be the only viable approach towards building AI systems that can
operate in complicated, real-world environments [Goodfellow et al., 2016].
With the advent of general purpose GPUs, deep learning works perfectly
with large models and large datasets. And the combination of deep learn-
ing and big data has dramatically improved the state-of-the-art of speech
recognition, computer vision, motion planning, natural language processing
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and other fields [LeCun et al., 2015]. Deep learning has now outperformed
competing AI systems [Goodfellow et al., 2016].

Convolutional neural networks(CNN) [LeCun et al., 1989] employ convo-
lution operation in at least one layer of an neural network, which reduces
the scale of matrix multiplications and hence brings about the capability of
processing larger input. It has been proved potent in many fields of arti-
ficial intelligence especially in computer vision, where it was first used to
read checks [LeCun et al., 1998] and is now the forerunner of many con-
tests [Krizhevsky et al., 2012].

We exploited CNN to build an image classification service that can clas-
sify images of four tourist attractions in Tsinghua University: the Audito-
rium, the Old Gate, the Main Building and Tsinghua School. Even with a
limited set of training data we have achieved an accuracy no less than 80
percent. With more labeled training data the model can be extended to clas-
sify more landmarks and have better accuracy, which can be later embedded
in intelligent applications such as tour guide systems and augmented reality
applications.

2 Image Classification

Machine learning algorithms were defined by [Mitchell, 1997] as a computer
program that learns from experience E with respect to some class of tasks T,
whose performance P improves with experience E. Among the various tasks,
classification, especially image classification (along with object recognition) is
one of the most common ones. Modern image classification [Ioffe and Szegedy,
2015,Krizhevsky et al., 2012] and object recognition [Taigman et al., 2014]
is best accomplished with deep CNN. We built a deep convolutional neural
network with 16 layers and 1212708 parameters that classifies input images
into 4 categories.

2.1 Training Data

Most of our training data was retrieved by a web crawler1 from Microsoft
Cognitive Service. Some of the photos were taken manually. The dataset
was stratified sampled into a training set and a validation set in respect of a
ratio of approximately 3:1. The detailed constitution of the dataset is listed
in Table 1.

1See Section 6
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Category Training Validation
The Auditorium 77 23
The Old Gate 107 40

Tsinghua School 74 25
The Main Building 27 10

Total 285 98

Table 1: Constitution of the dataset.

2.2 Augmentation

Our neural network takes an input of 150 pixels × 150 pixels with three
channels, therefore all images were first resized to fit the model. All pixels
were then applied a mapping to be rescaled from {n ∈ N | 0 ≤ n ≤ 255}3 to
{x ∈ R | 0 ≤ x ≤ 1}3. To make up for the limited set of inputs, all images
were randomly sheared, zoomed and performed horizontal flips so that the
network will not be fed with duplicated inputs.

2.3 Network

The neural network we applied is a simplified version of VGG-16 [Simonyan
and Zisserman, 2014]. The overall structure of the network is illustrated
in Figure 1, while layer detail of each component is shown in Figure 2. In
general, the neural network represents a mapping from {x ∈ R | 0 ≤ x ≤
1}3×150×150 to {x ∈ R | 0 ≤ x ≤ 1}4.

Conv Block 1 Conv Block 2 Conv Block 3 Fully-connected Classifier Class150x150 Image

Figure 1: Overview of the neural network.

As is shown in Figure 2a, 2b and 2c, the network begins with a cascad-
ing of a similar structure: In the first stage, the network performs several
convolutions in parallel to produce a set of linear activations. In the second
stage, each linear activation is run through a nonlinear activation function, in
this case the rectified linear activation function, which is called the detector
stage. In the third stage, we use a pooling function to modify the output of
the layer further [Goodfellow et al., 2016]. Rectified linear units, or ReLU,
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(a) Conv Block 1

Conv Block 2: 32 output filters

Convolutional2D

ReLU Activation

MaxPooling2D

(b) Conv Block 2

Conv Block 3: 64 output filters

Convolutional2D

ReLU Activation

MaxPooling2D

(c) Conv Block 3
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Droupout
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Figure 2: Detailed model of the neural network.

uses the activation function

g(z) = max{0, z}

and the overall activation of a conv block would be

h = g(W⊤x+ b).

ReLUs are similar to linear units so they are easy to optimize. Max pooling
[Zhou and Chellappa, 1988] replaces the output of the network at a certain
place with the maximum output within its rectangular neighborhood, which
helps to make the representation become approximately invariant to small
translations of the input [Goodfellow et al., 2016].

After all convolution operations, the tensor was then flattened to a column
vector, which represents features the net extracted. Then we applied fully-
connected dense layers, which simply takes the form of

ŷ = W⊤h+ b.

Typically, as the neural network becomes more complicated, the training er-
ror decays but the generalization error increases, causing overfitting [Good-
fellow et al., 2016], which is illustrated in Figure 3. In this case the training

4



dataset is too small compared with the deep neural network, so it is prone for
the model to overfit. We introduced two layers of dropout [Srivastava et al.,
2014] that randomly remove units form the net to avoid overfitting.

Figure 3: Relationship between capacity and error [Goodfellow et al., 2016].

As the output, we would like to get a probability distribution over all
categories, based on which reason a softmax output layer was chosen. The
final result would be

ŷ = P(y = 1 | x).

The softmax layer first predicts unnormalized log probabilities zi = log P̃ (y =
i | x) by

z = W⊤h+ b

and then normalizes it with the softmax function

softmax(z)i =
exp(zi)∑
j exp zj

.

As we shall see in next subsection, softmax function works well when maxi-
mizing the log-likelihood.

2.4 Cost Function

Our objective, same as the objective of any other supervised learning, is
to maximize the maximum likelihood, which attempts to make the model
distribution match the empirical distribution drawn from the training set.
Here we use the cross-entropy function

Hy′(y) = −
∑
i

y′i log yi
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and attempts to minimize it. As can be proved mathematically, minimiz-
ing the cross-entropy function defined above is equivalent to minimizing the
Kullback-Leibler divergence, which in turn is equivalent to maximizing the
maximum likelihood [Goodfellow et al., 2016].

2.5 Training

The neural network can be depicted as a parametric function f(X;θ), and
our objective is to optimize the parameter θ to minimize the cost function.
Generally, the cost function and the layers of a typical neural network are
all differentiable, which makes neural networks capable of exploiting an al-
gorithms gradient descent. By continuously move from a point x to another
point x′ where

x′ = x− ϵ∇xf(x)

our algorithm will eventually get to an approximative minimal or minimum
of the cost function. The chain rule of calculus

∇xz = (
∂y

∂x
)⊤∇yz

enables the back-propagation algorithm to update every parameter in the
neural network to obtain a minimal. It is obvious that the choice of ϵ is
essential because if ϵ is too large the algorithm may oscillate near a minimal
and if too small it will take a long time to converge. In particular we adopted
Adam [Chilimbi et al., 2014] which is a derivative of the classical stochastic
gradient descent algorithms that adopts adaptive momentum that simply
put changes ϵ dynamically to build an efficient and scalable deep learning
training system.

After 5,000 iterations, both the training error and the validation error
which reflects the generalization error came to a relative low rate. The process
of how the training error and the validation error evolves through iterations
is plotted in Figure 4.

2.6 Evaluation

The trained model correctly predicts 80 percent of the samples in the ran-
domly sampled validation set and performed satisfyingly in real-world tests
in our live demonstration.

After training, the error on the training set and that on the validation set
did not seem to converge at that time but in order to avoid overfitting the
training was terminated. But there exists possibility that the training error
and the generalization error could be further lowered.
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Figure 4: The evolvement of training error and validation error.

Compared with other typical applications of deep neural network, our
dataset is definitely too limited that can not utilize the full potential of deep
neural networks. Other approaches, like support vector machine [Boser et al.,
1992] or traditional computer vision methods like manual feature extraction
might perform better or equally given the same task and training set.

3 Future Work

Since neither the training error or the generalization error seems to have
reached a minimum value, the first step to improve the model would be
retraining it with more iterations. Since our deep feedforward neural network
has more than 1,200,000 parameters, with this high capacity the network also
requires a dataset with big data scale to have better generalization ability.
Correspondingly, if the dataset is enlarged, the network can be made deeper
with more convolutional layers and larger fully-connected linear and rectified
linear layers.

Another significant regularization method of training a neural network
is using a strategy called greedy layer-wise pretraining [Hinton, 2007] which
takes the advantage of pretrained models and makes them fit into your train-
ing set, assuming that a pretrained model has a better feature extraction
function. Layer-wise pretraining and other regularization methods like im-
age augmentations can be applied as well.

One state-of-the-art technology of image classification is object detection
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[Krizhevsky et al., 2012], in which face recognition [Taigman et al., 2014] is
a hot topic in industry. Object detection requires not only categories but
also strong geometric information. Generally object detection has the same
basic structure of image classification but the last layer is replaced with a
regression layer based on the insight that “networks which to some extent
encode translation invariance, can capture object locations as well” [Szegedy
et al., 2013].

4 Conclusion

By building a functioning image classification network we have verified that,
convolutional neural network, or deep neural network in general, is a power-
ful approach towards artificial intelligence, and would be the foundation of
intelligent services and systems. Compared with traditional attempts, neural
networks relieves engineers from writing “hard code” for each specific task
by learning through experience itself, which reflects its intelligence. We have
also recognized that large training data is essential to neural network and
big data is and will for a long time be an important field of computer science
and engineering.
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6 Supplementary Materials

An online demonstration of our network can be found at http://img.mobsafe.
cc/ where you can upload a photo and see the result. All source codes,
datasets and trained models are hosted on iCenter GitLab at http://gitlab.
icenter.tsinghua.edu.cn/BDMI_Group1/AI_Neural_Network/.
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