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Bregmanized Nonlocal Regularization for Deconvolution and Sparse
Reconstruction∗

Xiaoqun Zhang†, Martin Burger‡, Xavier Bresson†, and Stanley Osher†

Abstract. Bregman methods introduced in [S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, Multiscale
Model. Simul., 4 (2005), pp. 460–489] to image processing are demonstrated to be an efficient
optimization method for solving sparse reconstruction with convex functionals, such as the �1 norm
and total variation [W. Yin, S. Osher, D. Goldfarb, and J. Darbon, SIAM J. Imaging Sci., 1 (2008),
pp. 143–168; T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2 (2009), pp. 323–343]. In particular,
the efficiency of this method relies on the performance of inner solvers for the resulting subproblems.
In this paper, we propose a general algorithm framework for inverse problem regularization with
a single forward-backward operator splitting step [P. L. Combettes and V. R. Wajs, Multiscale
Model. Simul., 4 (2005), pp. 1168–1200], which is used to solve the subproblems of the Bregman
iteration. We prove that the proposed algorithm, namely, Bregmanized operator splitting (BOS),
converges without fully solving the subproblems. Furthermore, we apply the BOS algorithm and
a preconditioned one for solving inverse problems with nonlocal functionals. Our numerical results
on deconvolution and compressive sensing illustrate the performance of nonlocal total variation
regularization under the proposed algorithm framework, compared to other regularization techniques
such as the standard total variation method and the wavelet-based regularization method.
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1. Introduction. We consider a general inverse problem formulation for image restora-
tion. The objective is to find the unknown true image u ∈ R

n from an observed image (or
measurements) f ∈ R

m defined by the forward model

f = Au+ ε,

where ε is a white Gaussian noise with variance σ2 and A is an m×n linear operator, typically
a convolution operator in the deconvolution problem or a subsampling measurement operator
in the compressive sensing problem.
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Since inverse problems are typically ill-posed, it is standard to use a regularization tech-
nique to make them well-posed. Regularization methods assume some prior information about
the unknown function u such as sparsity, smoothness, or small total variation (TV). A well-
known example of a regularized inverse problem is the Tikhonov regularization model, which
consists of solving the following optimization problem:

min
u∈Rn

(
μ

2
||u||2 + 1

2
||Au− f ||2

)
,

where μ > 0 is a scale parameter which balances the trade-off between the regularity of the
restored image u and the fidelity to the observed image f , and || · || denotes the �2 norm. The
notation || · || for the �2 norm will be used throughout the paper.

Other examples of regularized inverse problems are image denoising problems, where A
is considered as the identity or an embedding operator. A successful edge preserving image
denoising model is the Rudin–Osher–Fatemi (ROF) model proposed in [44]. This model uses
the TV regularization functional since images are assumed to have bounded variation, which
is the case for piecewise constant images. A discrete form of the ROF model can be defined
as follows [6]:

min
u∈Rn

(
μ|∇u|1 + 1

2
||Au− f ||2

)
,

where ∇u is the weak gradient of u and |∇u|1 is the TV of u, in other words, the �1 norm of
the length vector of ‖∇u‖ at each point.

Regularization based on sparsity properties with respect to a specified basis, such as frames
or dictionaries, has become popular recently. Suppose that an image is formulated as a column
vector (signal) of size n, and D ∈ R

n×m is a given frame or a dictionary matrix; there are two
different formulations for solving the problem: analysis-based or synthesis-based [22]. The
analysis-based model is formulated as

(1.1) u∗ = argmin
u

(
μ|D∗u|1 + 1

2
||Au− f ||2

)
,

where D∗ denotes the conjugate transpose matrix. On the other hand, the synthesis-based
method consists of solving the problem

(1.2) α∗ = argmin
α

(
μ|α|1 + 1

2
‖A(Dα) − f‖2

)
,

and the solution is u∗ = Dα∗. If D is an orthogonal basis, then the two models are equivalent.
The analysis-based model (1.1) is largely used for inverse problems, such as the wavelet-
vaguelette decomposition model defined in [18]. Usually, a scale-dependent shrinkage is em-
ployed to estimate the image wavelet coefficients. The synthesis-based model has been applied
to wavelet-based deconvolution (for example, in [16] and [24]), and recently it has received
a lot of research interest in the area of compressive sensing problems [10]. Several efficient
algorithms, such as iterative soft thresholding (IST) [16], l1 ls [36], gradient projection for
sparse reconstruction (GPSR) [25], fixed-point continuation (FPC) [31], and linearized Breg-
man [39, 7, 8, 47], are proposed for solving this formulation. Compressive sensing, also known
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as compressed sampling, originates from approximation theory and has recently received a lot
of interest in different research areas. In a probabilistic setting, compressive sensing argues
that if signals can be expressed with a small support in a proper basis, then they can be
reconstructed from a number of measurements significantly below the Nyquist–Shannon limit
by using convex optimization. See [11, 43] for an introduction. The crucial observation is that
objects having a sparse representation in a certain basis must be spread out in the sensing
domain, such as Fourier or Gaussian measurements. Therefore, many efforts are devoted to
finding the best basis for natural signals/images to fit the theory of compressive sensing, such
as curvelets [9], contourlets [17], and trained dictionaries [1]. The advantage of wavelet meth-
ods is that they can efficiently represent classes of signals containing singularities. However,
results via shrinkage in the wavelet domain are usually unsatisfactory due to amplified noise
and produce undesirable artifacts. Furthermore, it is difficult to choose a proper basis for
different images.

In this paper, we make two main contributions. First, we propose a general algorithm
framework for an equality constrained convex optimization formulation

(1.3) min
u

J(u) subject to (s.t.) Au = f,

where J is a general convex functional. This problem (1.3) is shown to cover a wide range
of signal and image processing tasks for various choices of the convex functionals J and A,
including �1 basis pursuit [48] and image restoration by TV [38]. The algorithms proposed in
this paper are based on the Bregman iteration introduced in [38] and the proximal forward-
backward operator splitting method [26, 14, 31]. Note that if there is noise present in the
measurements, we can use a discrepancy stopping criterion as in the original Bregman itera-
tion [38], that is, ‖Auk − f‖ ≤ σ with the same algorithm. The principle of our algorithms is
to maximally decouple the minimization functionals. More specifically, the overall algorithms
consist of two forward (explicit) gradient steps (one is the Bregman iteration step) and an
implicit step equivalent to the ROF model [44], which we can often solve efficiently. The
proposed algorithms can be also interpreted as inexact Uzawa methods used for linear sad-
dle point problems [50, 28]. However, the convergence of our algorithm does not seem to be
directly implied by classical convergence analysis. Therefore we will present a proof of the con-
vergence in this paper. The second contribution of this paper is investigating the application
of nonlocal total variation (NLTV) for compressive sensing and deconvolution. Our experi-
ments show that the proposed NL regularization model can recover almost all the details of
a textured image without explicitly choosing a basis compared to the above dictionary-based
sparse representation algorithms. Our investigation demonstrates that the NLTV regulariza-
tion itself sparsifies textured images and that the Bregman iteration is an effective method
for sparse recovery.

The paper is organized as follows. In section 2, we briefly review some related optimization
techniques: Bregman iteration, operator splitting, and linearized Bregman. We then present
the general algorithm that we call Bregmanized operator splitting (BOS) with convergence
analysis for solving the problem (1.3). In section 4 we present the NL regularization and the
application of our proposed algorithm and a preconditioned one. An updating strategy for the
weight function in the NLTV term is discussed. Finally, in section 5 we present the numerical
results for deconvolution and compressive sensing reconstruction.
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2. Related work.

2.1. Bregman iteration. In this section, we introduce the Bregman iteration method for
solving the problem (1.3). It is well known that this problem is difficult to solve numerically
when J is nondifferentiable. An efficient method for solving this constrained minimization
problem is to use the Bregman iteration, initially introduced to imaging in [38] to improve
the ROF denoising models [44].

The Bregman iteration scheme is based on the Bregman distance. The Bregman distance
of a convex functional J(·) between points u and v is defined as

(2.1) Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉,

where p ∈ ∂J is a subgradient of J at the point v. Bregman distance is not a distance in the
usual sense because it is generally not symmetric. However, it measures the closeness of two
points since Dp

J(u, v) ≥ 0 for any u and v, and Dp
J (u, v) ≥ Dp

J(w, v) for all points w on the
line segment connecting u and v. Using the Bregman distance (2.1), the original constrained
minimization problem (1.3) can be solved by the following iterative scheme:⎧⎨

⎩
uk+1 = minu

(
μDpk

J (u, uk) + 1
2‖Au− f‖2

)
,

pk+1 = pk − 1
μA

T (Auk+1 − f),

where μ > 0. By a change of variable, we obtain a two-step Bregman iterative scheme [38]:

(2.2)

⎧⎨
⎩ uk+1 = minu

(
μJ(u) + 1

2 ||Au− fk||2
)
,

fk+1 = fk + f −Auk+1.

It is shown in [38] that the sequence uk weakly converges to a solution of (1.3), and the residual
||Auk − f || of the sequence generated by (2.2) converges to zero monotonically. Recently,
Bregman iteration has been used successfully in sparse reconstruction problems due to its
speed, simplicity, efficiency, and stability; see, for example, [32, 38, 30, 48].

2.2. Forward-backward operator splitting. Operator splitting methods have been exten-
sively studied in the optimization community, e.g., [26, 46, 14, 20, 28]. They aim to minimize
the sum of two convex functionals:

(2.3) min
u

(
μJ(u) +H(u)

)
,

where μ > 0. In [14], Combettes and Wajs proposed using the forward-backward proximal
point iteration technique for general signal recovery tasks. The proximal operator of a convex
functional J of a function v, which was originally introduced by Moreau in [37], is defined as

(2.4) ProxJ(v) := argmin
u

(
J(u) +

1

2
||u− v||2

)
.

By classical arguments of convex analysis, the solution of (2.3) satisfies the condition

0 ∈ μ∂J(u) + ∂H(u).
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For any positive number δ, we have

0 ∈ (u+ δμ∂J(u)) − (u− δ∂H(u)).

This leads to a forward-backward splitting algorithm:

(2.5) uk+1 = ProxδμJ (u
k − δ∂H(uk)).

Also in [14], a general convergence was established for the generic problem. More specifi-
cally, in the case of H(u) = 1

2 ||Au − f ||2, the algorithm converges when 0 < δ < 2
‖ATA‖ . The

algorithm (2.5) for the solution of the minimization problem (2.3) can be reformulated as the
following two-step algorithm:

(2.6)

{
vk+1 = uk − δAT (Auk − f),

uk+1 = argminu

(
μJ(u) + 1

2δ ||u− vk+1||2
)
.

The main advantage of this algorithm is that the two functionals are decoupled. Fur-
thermore, the proximal minimization (2.4) is strictly convex, and thus there exists a unique
minimizer. In practice, the proximal operator solution (2.4) has well-known solutions for
some models. For example, when the regularization functional J is the �1 norm of u, i.e.,
J(u) = |u|1, then the solution is obtained by a soft shrinkage operator [14, 31, 7] as follows:

(2.7) u = shrink(v, μδ) = sign(v)max{|v| − μδ, 0}.
When the regularization functional J is the TV norm of u, i.e., J(u) = |∇u|1, then the solution
can be determined, e.g., by Chambolle’s projection method [12], the split Bregman method
[30], or by graph cuts in the anisotropic case [32, 15, 29].

2.3. Linearized Bregman. The idea of the linearized Bregman iteration is to combine
Bregman iteration and operator splitting to solve the constrained problem (1.3) for sparse
reconstruction. The algorithm in a simple formulation is as follows:

(2.8)

{
vk+1 = vk − δAT (Auk − f),

uk+1 = argmin
(
μJ(u) + 1

2δ ||u− vk+1||2
)
.

The difference between linearized Bregman and the operator splitting method (2.6) is in
the way we update vk+1. These methods solve different problems. In fact, Cai, Osher, and
Shen proved the following propositions in [7].

Proposition 2.1. If the sequence uk converges and pk is bounded, then the limit of uk is the
unique solution of

(2.9) min

(
μJ(u) +

1

2δ
||u||2

)
s.t. Au = f.

In the case of �1 sparse approximation, algorithm (2.8) can be written as follows:{
vk+1 = vk − δAT (Auk − f),

uk+1 = shrink(vk+1, μδ).
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As μ → ∞, the solution of (2.9) tends to the solution of (1.3); even better, it was proved in
[47] that, for μ large enough, the limit solution solves the original problem:

min |u|1 s.t. Au = f.

3. General algorithm framework.

3.1. Bregmanized operator splitting (BOS). In this section, we present the proposed
algorithm. Our goal is to solve the general equality constrained minimization problem (1.3)
by the Bregman iteration and operator splitting introduced in sections 2.1 and 2.2. First, the
equality constraint in (1.3) is enforced with the Bregman iteration process:

(3.1)

⎧⎨
⎩ uk+1 = minu

(
μJ(u) + 1

2 ||Au− fk||2
)
,

fk+1 = fk + f −Auk+1.

The first subproblem can sometimes be difficult and slow to solve directly, since it involves
the inverse of the operator A and the convex functional J . The forward-backward operator
splitting technique is used to solve the unconstrained subproblem in (3.1) as follows: for i ≥
0, uk+1,0 = uk,

(3.2)

⎧⎨
⎩

vk+1,i+1 = uk,i − δAT (Auk+1,i − fk),

uk+1,i+1 = minu

(
μJ(u) + 1

2δ ||u− vk+1,i+1||2
)

for a positive number 0 < δ < 2
||ATA|| . Ideally we need to run infinite inner iterations to obtain

a convergent solution uk+1 for the original subproblem. Nevertheless, the convergence and
error bound with arbitrary finite steps is unclear. Therefore, we propose using only one inner
iteration, which leads to Algorithm I.

Algorithm I (Bregmanized operator splitting).

(3.3)

⎧⎪⎪⎨
⎪⎪⎩

vk+1 = uk − δAT (Auk − fk),

uk+1 = argminu

(
μJ(u) + 1

2δ ||u− vk+1||2
)
,

fk+1 = fk + f −Auk+1,

which is equivalent to

(3.4)

⎧⎨
⎩ uk+1 = argminu

(
μJ(u) + 1

2δ ||u− ((1− δATA)uk + δAT fk)||2
)
,

fk+1 = fk + f −Auk+1.

3.2. Connections with existing methods. The above algorithm can be interpreted as
an inexact Uzawa method [50, 28] applied to the augmented Lagrangian [42] of the original
problem as follows:

(3.5) L(u, p) = μJ(u) +
1

2
‖Au− f‖2 − 〈Au− f, p− f〉,



BREGMANIZED NONLOCAL REGULARIZATION FOR INVERSE PROBLEMS 259

where p is a Lagrange multiplier of the original problem (1.3). Note that we use a change of
variable for the Lagrange multiplier p to get the same formulation as the BOS algorithm. If
we apply an inexact Uzawa method [50] and Moreau–Yosida proximal point iteration [34] on
this formulation, we get the following algorithm:
(3.6)⎧⎨
⎩ step 1: uk+1 = minu

(
μJ(u) + 1

2 ||Au− f ||2 − 〈Au− f, pk − f〉+ ||u− uk||2D
)
,

step 2: pk+1 = pk − (Auk+1 − f),

where D is a positive definite matrix. The sequence (uk, pk) generated by (3.6) gives{
μsk+1 + (D +ATA)uk+1 = Duk +AT pk,

pk+1 = pk − (Auk+1 − f),

where sk ∈ ∂J(uk). When D = 1
δ − ATA and when we change the variable pk to fk, we get

the BOS algorithm defined in (3.3).
Most analysis for inexact Uzawa methods is available for linear saddle point problems

with strong convexity assumptions [50, 28]. Other available analysis based on the augmented
Lagrangian methods [28, 42] is also different from ours due to the maximally decoupled struc-
tures. Note that the presented algorithm is different from the split Bregman algorithm [30]
in the manner of splitting, for the latter can be recast as a Douglas–Rachford algorithm
[19, 20, 45]. On the other hand, this algorithm can be generalized to a large range of convex
minimization problems. A more detailed study of the BOS algorithm framework and theo-
retical connections to proximal point algorithms and augmented Lagrangian methods will be
presented in a forthcoming paper.

3.3. Convergence analysis. In this section, we prove the convergence of the proposed
BOS algorithm. In the following, we assume that the convex function J of (1.3) is closed,
proper, semicontinuous, and convex.

Theorem 3.1. Let the sequence (uk, fk) be generated by Algorithm I given in (3.4). If
0 < δ < 1

‖ATA‖ , then every accumulation point of uk is a solution of (1.3).

Proof. We first consider a Lagrangian formulation of the original constrained problem
(1.3):

L(u, p) = μJ(u)− 〈Au− f, p− f〉 and Au = f.

Note that we use a change of variable for the Lagrangian multiplier, p − f instead of p as
above.

We let u be an optimal solution of (1.3) and p be a Lagrangian multiplier, respectively,
and we denote

(3.7) s = − 1

μ
AT (f − p).

Then we can see that s is a subgradient of J at u by the Lagrangian function. Therefore, the
overall optimality conditions are as follows:

(3.8)

{
μs+AT (f − p) = 0,

Au− f = 0.
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We let (uk, fk) be the sequence generated by (3.4) and sk+1 ∈ ∂J(uk+1), and we have

(3.9)

{
μsk+1 + 1

δu
k+1 = (1δ −ATA)uk +AT fk,

fk+1 = fk + f −Auk+1.

Let L = (1δ − ATA); then L is positive definite since 0 < δ < 1
‖ATA‖ . By rewriting the above

sequence, we get

(3.10)

{
μsk+1 + Luk+1 −AT fk+1 = Luk −AT f,

fk+1 = fk + f −Auk+1.

On the other hand, we can rewrite the sequences in terms of error as follows:

Δsk+1 = sk+1 − s,

Δfk+1 = fk+1 − p,

Δuk+1 = uk+1 − u.

Therefore (3.10) is rearranged in terms of the error differences as{
μ(Δsk+1) + L(Δuk+1)−AT (Δfk+1) = L(Δuk),

Δfk+1 +AΔuk+1 = Δfk.

Denoting ||v||2L := 〈Lv, v〉, we obtain

‖Δuk+1‖2L + ‖Δfk+1‖2 + ‖uk+1 − uk‖2L + ‖fk+1 − fk‖2 − ‖Δuk‖2L − ‖Δfk‖2
= 2〈L(uk+1 − uk),Δuk+1〉+ 2〈fk+1 − fk,Δfk+1〉
= 2〈ATΔfk+1,Δuk+1〉 − 2μ〈Δsk+1,Δuk+1〉+ 2〈f −Auk+1,Δfk+1〉
= −2μ〈Δsk+1,Δuk+1〉.(3.11)

Recall that since sk+1 is a subgradient of the convex functional J(u) at uk+1, we have

(3.12) 〈Δsk+1,Δuk+1〉 = 〈sk+1 − s, uk+1 − u〉 = Ds
J(u

k+1, u) +Dsk+1

J (u, uk+1) ≥ 0 ∀k.

This yields the inequality

‖Δuk+1‖2L + ‖Δfk+1‖2 ≤ ‖Δu0‖2L + ‖Δf0‖2.

Since L is positive definite, the sequences uk and fk are bounded and there exists a convergent
subsequence of (uk, fk). Second, by summing the equality (3.11), we obtain

∞∑
k=0

‖uk+1 − uk‖2L +

∞∑
k=0

‖fk+1 − fk‖2 + 2μ

∞∑
k=0

〈Δsk+1,Δuk+1〉 ≤ ‖Δu0‖2L + ‖Δf0‖2 < ∞.

Thus
‖uk+1 − uk‖2L → 0, ‖fk+1 − fk‖2 → 0, 〈Δsk+1,Δuk+1〉 → 0.



BREGMANIZED NONLOCAL REGULARIZATION FOR INVERSE PROBLEMS 261

The first formula implies that ‖uk+1 − uk‖ → 0 since L is positive definite. The second yields

lim
k→∞

‖Auk+1 − f‖2 = lim
k→∞

‖fk+1 − fk‖ = 0.

Finally, the third formula together with (3.12) implies that the nonnegative Bregman distance
satisfies

lim
k→∞

Ds
J(u

k+1, u) = lim
k→∞

(
J(uk+1)− J(u)− 〈s, uk+1 − u〉

)
= 0.

Using (3.7) and Auk+1 → f = Au, we have

(3.13) 0 = lim
k→∞

(
μJ(uk+1)− μJ(u) + 〈f − p,A(uk+1 − u)〉

)
= lim

k→∞
μJ(uk+1)− μJ(u).

Thus J(uk+1) → J(u).
Hence, for any accumulation point u∞, we have Au∞ = f and J(u∞) = J(u) by the

semicontinuity of J . We conclude directly that u∞ is a solution of (1.3).

4. Nonlocal regularization. In this section, we first present some notation of the NL
regularization introduced in [27], and then discuss applications for solving inverse problems.

4.1. Background. In [21], Efros and Leung used similarities in natural images to synthe-
size textures and fill in holes in images. The basic idea of texture synthesis is to search for
similar image patches in the image and determine the value of the hole using found patches.
Texture synthesis also influences the image denoising task. Buades, Coll, and Morel introduced
in [4] an efficient denoising model called nonlocal means (NL-means). The model consists of
denoising a pixel by averaging the other pixels with structures (patches) similar to that of
the current one. More precisely, given a reference image f , we define the NL-means solution
NLMf of the function u at point x as

NLMf (u)(x) :=
1

C(x)

∫
Ω
w(f, h0)(x, y)u(y)dy,

where

w(f, h0)(x, y) = exp

{
−Ga ∗ (||f(x+ ·)− f(y + ·)||2)(0)

2h20

}
,(4.1)

C(x) =

∫
Ω
exp

{
−Ga ∗ (||f(x+ ·)− f(y + ·)||2)(0)

2h20

}
dy,

where Ga is the Gaussian kernel with standard deviation a, C(x) is the normalizing factor,
and h0 is a filtering parameter. When the reference image f is known, the NL-means filter
is a linear operator. In the case where the reference image f is chosen to be u, the operator
is nonlinear and is the NL-means filter presented by Buades, Coll, and Morel in [4]. The
definition of the weight function (4.1) shows that this function is significant only if the patch
around y has a structure similar to that of the corresponding patch around x. This filter is
very efficient in reducing noise while preserving textures and contrast of natural images. It is
generally preferred to choose a reference image as close as possible to the true image in order
to include relevant information.
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In a discrete formulation, if the images are represented by a column vector u of N elements,
the operator NLMf (u) can be written as matrix multiplications such as

NLMf (u) = D−1
f Wfu,

where Wf is the N × N weight matrix defined in (4.1), and Df (i, i) = C(i) is an N × N
diagonal matrix.

The application of the NL-means filter for inverse problems such as image deblurring is
not trivial since the observed image and the original image generally do not have the same
distribution and structures. Based on the hypothesis that the deblurred image must maintain
the same coherence as the blurry image, Buades, Coll, and Morel proposed in [5] an NL-means
regularization energy for image deblurring defined as follows:

JNLM (u) := ||u−NLMf (u)||2,(4.2)

where NLMf := D−1
f Wf is the NL-means filter defined above and Wf is the weight computed

from the blurry and noisy image f .
An alternative nonlocal model for texture restoration is introduced in [3]. The authors

propose minimizing the functional:

(4.3) JNLM (u) := ||u−NLMu(f)||2.
This is a nonlinear model since the weight function depends on the unknown image u. The
solution of (4.3) is approximated by an iterated scheme:

uk+1 = NLMuk(f).

This model updates the denoising weight function at each iteration step and keeps averaging
on the original image. The convergence property of this iterative process has not been yet
established.

In order to formulate the NL-means filter in a variational framework, Kindermann, Osher,
and Jones in [33] started to investigate the use of regularization functionals with NL correlation
terms for general inverse problems. Also, inspired from the graph Laplacian in [13], Gilboa
and Osher defined variational framework–based NL operators in [27]. Note that Zhou and
Schölkopf in [49] and Elmoataz, Lezoray, and Bougleux in [23] also used the graph Laplacian in
the discrete setting for image denoising. Finally, the connection between the filtering methods
and spectral bases of the NL graph Laplacian operator is discussed in [40] by Peyré.

In the following, we give the definitions of the NL functionals introduced in [27]. Let
Ω ⊂ R

2, let x ∈ Ω, and let u(x) be a real function Ω → R. Assume w : Ω × Ω → R is a
nonnegative symmetric weight function defined in (4.1) from a reference image; then the NL
gradient ∇wu(x) is defined as the vector of all partial differences ∇wu(x, ·) at x such that

(4.4) ∇wu(x, y) := (u(y)− u(x))
√

w(x, y) ∀y ∈ Ω.

A graph divergence of a vector �p : Ω × Ω → R can be defined by the standard adjoint
relation with the gradient operator as follows:

(4.5) 〈∇wu, p〉 := −〈u,divwp〉 ∀u : Ω → R, ∀p : Ω×Ω → R,



BREGMANIZED NONLOCAL REGULARIZATION FOR INVERSE PROBLEMS 263

which leads to the definition of the graph divergence divw of p : Ω× Ω → R such that

(4.6) divwp(x) =

∫
Ω
(p(x, y)− p(y, x))

√
w(x, y)dy.

The graph Laplacian is defined by

(4.7) Δwu(x) :=
1

2
divw(∇wu(x)) =

∫
Ω
(u(y)− u(x))w(x, y)dy.

Note that a factor 1
2 is used to get the related standard Laplacian definition.

These operators possess several properties. For example, the Laplacian operator is self-
adjoint, i.e.,

〈Δwu, u〉 = 〈u,Δwu〉,
and negative semidefinite, i.e.,

〈Δwu, u〉 = −〈∇wu,∇wu〉 ≤ 0.

The nonlocal H1 and TV norms are defined to be the L2 and isotropic L1 norms, respec-
tively, of the weighted graph gradient ∇wu(x):

JNL/H1,w(u) :=
1

4

∫
|∇wu(x)|2dx,(4.8)

JNL/TV,w(u) :=

∫
Ω
|∇wu(x)|dx.(4.9)

The corresponding Euler–Lagrange equations of (4.8) and (4.9) are then written as

(4.10) −
∫
Ω
(u(y)− u(x))w(x, y)dy = 0

and

(4.11) −
∫
Ω
(u(y)− u(x))w(x, y)

[
1

|∇wu(x)| +
1

|∇wu(y)|
]
dy = 0.

Note that once the weight function w is fixed, the Euler–Lagrange equation for the NLH1 is
linear and can be solved by a gradient descent method. However, analogous to the classical
TV, the functional (4.9) is not differentiable when |∇wu| = 0. For this case, a dual method
or a regularized version

√|∇wu|2 + ε can be used to avoid a zero denominator. Finally, if
the function w(x, y) in (4.11) is chosen to be the NL weight function defined in (4.1), then
the NL-means filter is generalized to a variational framework. Nevertheless, the minimization
of the NLTV functional remains as a difficult optimization problem due to the computation
complexity and the nondifferentiability.
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4.2. Nonlocal regularization for inverse problems.

4.2.1. Weight fixed. The NL regularization for inverse problems is based on the following
constrained formulation:

(4.12) min
u

Jw(u) s.t. Au = f,

with Jw being an NL regularization term, such as the NLTV or the NLH1 with a given weight
function w, and with A being a convolution operator or a compressive sensing matrix. By
applying Algorithm 2, we obtain the first algorithm proposed in this paper:

(4.13)

⎧⎪⎪⎨
⎪⎪⎩

vk+1 = uk − δAT (Auk − fk),

uk+1 = argminu

(
μJw(u) +

1
2δ ||u− vk+1||2

)
,

fk+1 = fk + f −Auk+1.

We can see that the key computation of this algorithm relies on the computation of
products of vectors by A and AT and on the ROF-like denoising step. In section 4.2.4, we
will present a fast method based on split Bregman iteration for TV minimization.

4.2.2. Weight updating. In the previous discussion of NL regularization methods, the
weight function w was fixed. In the denoising case, most image similarity information can
be discovered by the given noisy image. Unfortunately, a good estimation of the weight
w0 ≈ w(u, h0) given in (4.1) is not always available, especially in the case of inverse problems,
where given data lie in a different space from the true image. In the case of compressive
sensing, due to a low sample rate, a weight function from an initial guess is not good enough
and the standard TV compressive sensing is also not capable of restoring complex textures.
This is why it is necessary to update the weight function w(uk, h0) (4.1) during the recon-
struction of signals. In [41], the authors have proposed updating the graph weight to solve
inverse problems using the forward-backward operator splitting technique [14] to solve the
relaxed Lagrangian formulation. Like Peyré, Bougleux, and Cohen in [41], we consider a more
appropriate problem:

(4.14) min
u

Jw(u) s.t. Au = f and w = w(u, h0).

However, a direct numerical solution of this problem is difficult to compute. Instead, the
simplified algorithm based on Algorithm I (BOS) with weight updating is proposed:

(4.15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

step 1: vk+1 = uk − δAT (Auk − fk),

step 2: wk+1 = w(vk+1, h0),

step 3: uk+1 = minu
(
μJwk+1(u) + δ

2 ||u− vk+1||2) ,
step 4: fk+1 = fk + f −Auk+1.

Note that during the preparation of the final version of the current paper, we discovered
that a variational framework with NL weight updating is given in [2] in the context of image
inpainting. Although the connection with the entropy energy is demonstrated, a theoretical
analysis is still under investigation.
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4.2.3. Preconditioned Bregmanized operator splitting (PBOS). As we have mentioned,
an important question in nonlocal regularization methods for inverse problems is how to
estimate a correct weight function w. In [35], the authors estimate the weight function with
the solution of the Tikhonov regularization problem:

(4.16) v = argmin
v

(
1

2
||Av − f ||2 + ε

2
||v||2

)
,

where ε is a small positive number. The solution amounts to

v = (ATA+ ε)−1AT f.

The operator (ATA + ε)−1AT is a preconditioned generalized inverse of A when A is not
invertible or ill-conditioned. In fact, we have

lim
ε→0

(ATA+ ε)−1AT = lim
ε→0

AT (AAT + ε)−1 = A+,

where A+ is the Moore–Penrose pseudoinverse of A even if (AAT )−1 and/or (ATA)−1 do not
exist. If the columns of A are linearly independent, then ATA is invertible. In this case, an
explicit formula is A+ = (ATA)−1AT . It follows that A+ is a left inverse of A: A+A = I.
Similarly, if the rows of A are linearly independent, then AAT is invertible. In this case, an
explicit formula is A+ = AT (AAT )−1. Furthermore, if A has orthonormal columns (ATA = I)
or orthonormal rows (AAT = I), then A+ = AT .

In [35], we show that the weight estimated from the preconditioned image gives a better
result than the one from the blurry image, because the main edge information is kept in the
preconditioned image even when the noise is amplified. Since NL methods are robust to noise,
it is more important to preserve as much edge information as possible. For this reason, we
consider a modified operator splitting algorithm analogous to the operator splitting algorithm
(2.6):

(4.17)

{
vk+1 = uk − δA+(Auk − f),

uk+1 = argminu

(
μJw(u) +

1
2δ ||u− vk+1||2

)
,

where A+ is the pseudoinverse of A and δ > 0. This similar idea is also considered in [8] for
frame-based image deblurring. The operator A+A is an orthogonal projector onto the range
space of A+; thus it is positive semidefinite. In the following, we replace A+ by AT (AAT+ε)−1,
and then algorithm (4.17) solves the minimization problem

(4.18) min
u

(
μJw(u) +

1

2
||Bu− b||2

)
,

where B = PA, b = Pf , and P = (AAT + ε)−
1
2 . In particular, we have the following:

• If A is full row rank (A+ = AT (AAT )−1), then we set ε = 0 and

B = (AAT )−
1
2A, b = (AAT )−

1
2 f.
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• If ATA = I, i.e., A+ = AT , then

B = A, b = f.

Then the modified algorithm (4.17) is consistent with the classical operator splitting
(2.6).

• If A is diagonalizable in an orthonormal basis, i.e., A = P−1DP , where P is orthonor-
mal, then we can easily verify that the left and right pseudoinverse approximations
are equal; i.e.,

(ATA+ ε)−1AT = AT (AAT + ε)−1.

Now we can consider a preconditioned constrained problem

(4.19) min
u

Jw(u) s.t. Bu = b.

We apply the general Bregmanized operator splitting algorithm (Algorithm I) on problem
(4.19) and let b = Pf ; then we get the algorithm

(4.20)

⎧⎪⎪⎨
⎪⎪⎩

vk+1 = uk − δATP T (PAuk − bk),

uk+1 = argminu

(
μJw(u) +

1
2δ ||u− vk+1||2

)
,

bk+1 = bk + b− PAuk+1.

This is equivalent to the following algorithm.
Algorithm II (preconditioned Bregmanized operator splitting).

(4.21)

⎧⎪⎪⎨
⎪⎪⎩

vk+1 = uk − δAT (AAT + ε)−1(Auk − fk),

uk+1 = argminu

(
μJw(u) +

1
2δ ||u− vk+1||2

)
,

fk+1 = fk + f −Auk+1.

According to Theorem 3.1, the condition for the convergence of Algorithm II is 0 < δ <
1

‖BTB‖ , that is,

0 < δ <
1

‖AT (AAT + ε)−1A‖ .

In the following, we discuss the computation for vk+1 in Algorithm II (PBOS), which is
obtained by inverting the operator (AAT + ε) based on two specific applications.

• Compressive sensing with partial Fourier measurement. In this case, the operator
A = RF , where F represents the Fourier transform matrix (n×n) and R represents a
“row-selector” matrix (m× n), which could be represented as a binary matrix. Then
ATA = F−1RTRF . And the pseudoinverse A+ = AT (AAT )−1 is equal to AT . Thus
when ε = 0, the algorithm is equivalent to Algorithm I.

• Deconvolution. We assume that A is an invariant circular convolution matrix, and
therefore the matrix A is diagonalizable in a Fourier basis as

A = F−1diag(H)F ,
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whereH(ω) is the Fourier transform of a kernel function h and diag(H) is the diagonal
matrix with H as the main diagonal vector. In general, the matrix A is not full row
rank. As we mentioned above, the left and right pseudoinverse approximations are
equal, i.e.,

AT (AAT + ε)−1 = (ATA+ ε)−1AT ,

and the latter is equivalent to solving a Tikhonov regularization:

vk+1 = argmin
v

(
||Av − fk+1||2 + δ

2
||v − uk||2

)
.

Then the solution vk+1 can be computed via the fast Fourier transform:

(4.22) vk+1 = uk − δF−1

(
H∗(ω) · (Gk+1(ω)−H(ω) · Uk+1(ω))

|H(ω)|2 + 1
δ

)
,

where Gk(ω) and Uk(ω) are discrete Fourier transform coefficients of fk and uk at fre-
quency ω, and H∗(ω) is the conjugate transpose of H(ω). Consequently, implementing
(4.22) requires only O(N2 logN) operations for an N ×N image.

When the operator A is not diagonalizable, a general quadratic minimization algorithm,
such as a preconditioned conjugate gradient, can be applied to solve efficiently for vk+1.

4.2.4. Split Bregman for nonlocal TV denoising. We can see that the efficiency of the
BOS and the PBOS algorithms depends on solvers for the ROF-like subproblem. Here we
focus on fast algorithms to minimize the NLTV functional defined in (4.9) in the extended
NL-ROF model [44]:

min
u

(
μJw(u) +

1

2
||u− v||2

)
,(4.23)

where w is a fixed weight function and μ > 0 for a given image v. Notice that the algorithms
for the NL-ROF model are extended from the fast algorithms originally developed for solv-
ing classical TV-based regularization problems. In particular, we extend the split Bregman
method proposed by Goldstein and Osher in [30] to the NL case.

The main idea of the split Bregman algorithm is to transform the TV minimization prob-
lem into an �1 norm minimization by introducing an auxiliary variable for the gradient of u,
and then an efficient thresholding algorithm can be applied [30]. Here, we extend the split
Bregman algorithm to the NLTV regularization by considering the related discrete problem:

(4.24) min
u

(
μ|∇wu|1 + 1

2
||u− v||2

)
.

The idea is to reformulate the problem as

(4.25) min
u,d

(
μ|d|1 + 1

2
||u− v||2

)
s.t. d = ∇wu.
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By enforcing the constraint with the Bregman iteration process, the extended NL split Breg-
man algorithm uses the NLTV norm instead of the standard TV norm, and the algorithm
scheme is given by

(uk+1, dk+1) = argmin
u,d

(
μ|d|1 + 1

2
||u− v||2 + λ

2
||d−∇wu− bk||2

)
,(4.26)

bk+1 = bk +∇wu
k+1 − dk+1.

The solution of (4.26) is obtained by performing an alternating minimization process:

uk+1 = argmin
u

(
1

2
||u− v||2 + λ

2
||dk −∇wu− bk||2

)
,

dk+1 = argmin
d

(
μ|d|1 + λ

2
||d−∇wu

k+1 − bk||2
)
.(4.27)

Note the equivalence of the alternating split Bregman method and the classical Douglas–
Rachford splitting method [19, 20] recently shown by Setzer in [45]; thus the convergence is
clarified.

Now, the subproblem for uk+1 consists in solving the linear system

(4.28) (uk+1 − v)− λdivw(∇wu
k+1 + bk − dk) = 0,

which provides
uk+1 = (1− 2λΔw)

−1(v + λdivw(b
k − dk)).

Since the graph Laplacian Δw is negative semidefinite and the operator 1 − 2λΔw is diago-
nally dominant with NL weight w, therefore we can solve uk+1 by a Gauss–Seidel algorithm.
Similarly to [30], the vector dk+1 is obtained by applying the shrinkage operator (2.7) for the
vector field at each point j:

dk+1
j = shrink

(
(∇wu

k+1 + bk)j ,
μ

λ

)
,

where shrink(p, τ) = p
|p| max{|p|; τ} for each vector p.

4.3. Algorithms. To conclude this section, we describe the split Bregman method for the
NLTV-ROF model and the BOS and PBOS algorithms presented above.

Algorithm 1. Split Bregman Method for Nonlocal TV Denoising.

Initialization: : u0 = v0 = 0, μ, λ,K.
for k = 0 to K do
Solve uk+1 = (1− 2λΔw)

−1(v + λdivw(b
k − dk)) by the Gauss–Seidel method.

Solve dk+1
j = shrink((∇wu

k+1 + bk)j,
μ
λ).

bk+1 = bk +∇wu
k+1 − dk+1.

end for

5. Experimental results. We present two applications: compressive sensing with Fourier
measurements and image deconvolution. We compare the NLH1 and the NLTV with standard
TV regularization, and wavelet-based �1 regularization with the GPSR1 algorithm [25].

1See http://www.lx.it.pt/∼mtf/GPSR.

http://www.lx.it.pt/~mtf/GPSR
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Algorithm 2. Bregmanized Nonlocal Regularization for Inverse Problems (Algorithm I/II).

Initialization: : u0 = v0 = 0, f0 = f , h0, μ, δ, nOuter, nUpdate, nInner, btol.
while k < nOuter and ‖Auk − f‖ > btol do
Compute vk+1 according to the method:
if type = ’BOS’ then

vk+1 = uk − δAT (Auk − fk)
else if type = ’PBOS’ then

vk+1 = uk −AT (AAT + ε)−1(Auk − fk)
end if
if (nUpdate> 0 and mod (k,nUpdate) = 0) then

(Update weight) Update the NL weight w(k) = w(vk+1, h0) using formula (4.1)
end if
Inner denoising step: Performing nInner steps of the NLTV denoising iteration with input
vk+1, μδ.
Update fk+1 = fk + f −Auk+1.
Increase k.

end while

In order to improve computational time and storage efficiency, we compute only the “best”
neighbors; that is, for each pixel x, we include only the K = 10 best neighbors in the semilocal
searching window of 21 × 21 centered at x and the 4 nearest neighbors in comparing 5 × 5
patches with formula (4.1). For the TV and the NL regularization, we apply the BOS (PBOS)
algorithm. For the TV-ROF denoising step, we use the split Bregman denoising algorithm,2

and we implement the adapted split Bregman algorithm above (Algorithm 1) for the NLTV
regularization. Similarly, a Gauss–Seidel method is applied to solve the NLH1 regularization.
A MATLAB and MEX implementation of the proposed algorithms is available online.3 For all
the experiments, the inner denoising steps for both NLTV and NLH1 are fixed as nInner = 20
steps with the parameter δ = 1.

5.1. Nonlocal TV deconvolution. We test both the BOS and PBOS methods on the
Cameraman image for image deconvolution problems. As in [35], a fixed weight (nUpdate= 0)
computed from a Tikhonov-based deblurred image u0 (see (4.16)) is used for all the NL
methods. Using optimal λ and the noise level σ, we can obtain u0 very efficiently with an
estimated noise level σ1 [35]. We set h0 = 2σ1. In [35], a gradient descent algorithm was
applied to solve the unconstrained Lagrangian formulation:

(5.1) min

(
|∇w0u|1 +

λ

2
||Au− f ||2

)
.

This algorithm is generally very slow. Instead, in this paper, we solve a constrained mini-
mization problem,

min |∇w0u|1 s.t. ||Au− f ||2 ≤ σ2,

2See http://www.math.ucla.edu/∼tagoldst/public codes/splitBregmanROF m ex.zip.
3See http://www.math.ucla.edu/∼xqzhang/html/code.html.

http://www.math.ucla.edu/~tagoldst/public_codes/splitBregmanROF_mex.zip
http://www.math.ucla.edu/~xqzhang/html/code.html


270 X. ZHANG, M. BURGER, X. BRESSON, AND S. OSHER

by using the BOS and the PBOS until the residual noise level is around σ. We set the stopping
criterion btol = 0.99σ and the maximum Bregman iteration nOuter = 30. For the wavelet-
based restoration, we use the daubcqf(4) wavelet4 with maximum decomposition level and
with the scale parameter τ = 0.2 as inputs for the GPSR code.

Figure 1 compares different algorithms. For the PBOS algorithm, the regularization pa-
rameter ε = 0.1. The images reconstructed by NLTV (NLTV+gradient descent, NLTV+BOS,
NLTV+PBOS) present better contrasts and edges compared to wavelet-, TV-, and NLH1-
based methods. Compared to the algorithm in [35], the reconstruction results are similar,
while the computation speed is improved. Note that the weight function was computed in
the whole searching window in [35], while here only the 10 best and 4 nearest neighbors are
used for each pixel. Furthermore, the algorithms BOS and PBOS take fewer than nOuter
steps to meet the stopping criterion. Overall, the NLTV+BOS algorithm stops with 25 steps
for 138 seconds, and the PBOS stops at 8 steps for 51 seconds including weight computation,
compared to 280 seconds with 500 steps with the gradient descent algorithm for solving (5.1).

We also tested the weight updating scheme: it appears that there is no improvement
compared to a fixed weight function. In fact, a simple weight updating scheme tends to
recover a smoother image. One explanation is that the weight function computed from a pre-
deblurred image is good enough to express structured information in the NLTV regularization,
while weight updating degrades the image structures.

5.2. Compressive sensing. In this section, we focus on exploring the sparsity of natural
images with NL regularization operators. The compressive sensing matrix we choose is A =
RF , where R is a row-selector matrix, and F is a Fourier transform matrix. For an N × N
image, we randomly choose m coefficients; then R is a sampling matrix of size m× (N2) with
m = 0.3. We consider only the BOS algorithm since AT = A+, as discussed in section 4.2.3.

Figures 2 and 3 present the results for the Barbara picture and a composed texture picture.
The weight parameter h0 is empirically chosen as h0 = 20 for the Barbara example (see Figure
2) and h0 = 15 for the patch example (Figure 3). For this application, an initial guess by
setting unknowns to be zeros hardly reveals right structures of true images. Hence, the
weight updating strategy is necessary for this application; in particular, we update the weight
every nUpdate = 20 steps. Experimentally, the update of weight is stable. As expected,
the standard TV regularization is not capable of recovering texture patterns presented in
these images. The results based on the wavelet method are obtained by using a daubqf(8)
wavelet with maximum decomposition level and an empirically optimal thresholding parameter
with GPSR code. Since there is no noise considered in these two examples, we solve the
equality constrained problem by activating the continuation and the debias options in the
GPSR code. The residual stopping tolerance btol is set as 10−5 for all of the BOS-based
algorithms. The maximal outer iteration nOuter for TV is set as 100 for both examples since
the algorithm attains a steady state. For NLH1 and NLTV with weight updating, it is harder
to determine a good iteration number. In fact, the peak signal to noise ratio (PSNR) of
NLH1 is decreasing after a certain number of iterations. Empirically we choose nOuter = 100
for NLH1 as the optimal result for both examples, nOuter = 500 for NLTV in Figure 2
(the PSNR is still significantly increasing after 100 steps), and nOuter = 100 for NLTV in

4See http://dsp.rice.edu/software/rice-wavelet-toolbox.

http://dsp.rice.edu/software/rice-wavelet-toolbox
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Original Image Blurry and noisy, PSNR=20.39 Wavelet+GPSR, PSNR=23.90

TV, μ = 5, PSNR=24.74 NLH1+BOS, μ = 5, PSNR=24.31

NLH1+PBOS, μ = 10, PSNR=24.44 NLTV+gradient descent [35], λ = 15, PSNR=25.65

NLTV+BOS, μ = 10, PSNR=25.38 NLTV+PBOS, μ = 20, PSNR=25.57

Figure 1. Deconvolution example on 256× 256 Cameraman degraded with the 9× 9 box average kernel and
Gaussian noise σ = 3. Weight fixed.
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Original Image Image by setting unknowns to be zeros, PSNR=15.39

TV+BOS, μ = 1, PSNR=16.41 Wavelet+GPSR+Continuation, τ = 0.05, PSNR=16.21

NLH1+BOS, μ = 5, PSNR=19.39 NLTV+BOS, μ = 10, PSNR=20.37

Figure 2. Compressive sensing example: Barbara (256 × 256), 30% randomly chosen Fourier coefficients,
noiseless. Weight updated.
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Original Image Image by setting unknowns to be zeros, PSNR=18.86

TV+BOS, μ = 0.5, PSNR=19.87 Wavelet+GPSR+Continuation, τ = 0.01, PSNR=19.60

NLH1+BOS, μ = 0.1, PSNR=20.80 NLTV+BOS, μ = 5, PSNR=21.48

Figure 3. Compressive sensing example: Textures (256× 256), 30% randomly chosen Fourier coefficients,
noiseless. Weight updated.
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Figure 3, respectively. Surprisingly, with only a few measurements, the image textures are
almost perfectly reconstructed by the NLTV regularization. This is because image structures
are expressed implicitly in the NL weight function, and the NL regularization process with
Bregman iteration provides an efficient way to recover textures without explicitly constructing
a basis. Note that with fewer outer iterations for the NLTV, we can still obtain an improved
result compared to other regularization methods, which leads to a faster reconstruction.

6. Discussion. In this paper, we propose a general algorithm framework for convex min-
imization problems with equality constraints. This simple algorithm framework overcomes
the uncertainty and the efficiency of inner iterations involved in the Bregman iteration. In
particular, we solve the compressive sensing problem for sparse reconstruction and the image
deconvolution problem using the NLTV functional. Experiments show that the NLTV regular-
ization is efficient in recovering natural images with few measurements without using a basis
or dictionary learning. We also make the same observation as in [30]: the edges are quickly set
after a small number of iterations. In the case of deconvolution, the algorithm converges very
quickly using a small number of denoising steps and Bregman iteration. Finally, the proposed
algorithms can in theory be applied for other inverse problems and regularization. We will
investigate this question more carefully in the future. Furthermore, as mentioned in [41], it is
also important to better understand the weight updating strategy in a theoretical framework.
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