{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 程序说明\n", "时间:2016年11月16日\n", "\n", "说明:该程序是一个包含两个隐藏层的神经网络。\n", "\n", "数据集:MNIST" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.加载keras模块" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from __future__ import print_function\n", "import numpy as np\n", "np.random.seed(1337) # for reproducibility" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "from keras.datasets import mnist\n", "from keras.models import Sequential\n", "from keras.layers.core import Dense, Dropout, Activation\n", "from keras.optimizers import SGD, Adam, RMSprop\n", "from keras.utils import np_utils" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 如需绘制模型请加载plot" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from keras.utils.visualize_util import plot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.变量初始化" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "batch_size = 128 \n", "nb_classes = 10\n", "nb_epoch = 20 " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.准备数据" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "60000 train samples\n", "10000 test samples\n" ] } ], "source": [ "# the data, shuffled and split between train and test sets\n", "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", "\n", "X_train = X_train.reshape(60000, 784)\n", "X_test = X_test.reshape(10000, 784)\n", "X_train = X_train.astype('float32')\n", "X_test = X_test.astype('float32')\n", "X_train /= 255\n", "X_test /= 255\n", "print(X_train.shape[0], 'train samples')\n", "print(X_test.shape[0], 'test samples')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 转换类标号" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# convert class vectors to binary class matrices\n", "Y_train = np_utils.to_categorical(y_train, nb_classes)\n", "Y_test = np_utils.to_categorical(y_test, nb_classes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4.建立模型\n", "### 使用Sequential()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "model = Sequential()\n", "model.add(Dense(512, input_shape=(784,)))\n", "model.add(Activation('relu'))\n", "model.add(Dropout(0.2))\n", "model.add(Dense(512))\n", "model.add(Activation('relu'))\n", "model.add(Dropout(0.2))\n", "model.add(Dense(10))\n", "model.add(Activation('softmax'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 打印模型" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "____________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "====================================================================================================\n", "dense_1 (Dense) (None, 512) 401920 dense_input_1[0][0] \n", "____________________________________________________________________________________________________\n", "activation_1 (Activation) (None, 512) 0 dense_1[0][0] \n", "____________________________________________________________________________________________________\n", "dropout_1 (Dropout) (None, 512) 0 activation_1[0][0] \n", "____________________________________________________________________________________________________\n", "dense_2 (Dense) (None, 512) 262656 dropout_1[0][0] \n", "____________________________________________________________________________________________________\n", "activation_2 (Activation) (None, 512) 0 dense_2[0][0] \n", "____________________________________________________________________________________________________\n", "dropout_2 (Dropout) (None, 512) 0 activation_2[0][0] \n", "____________________________________________________________________________________________________\n", "dense_3 (Dense) (None, 10) 5130 dropout_2[0][0] \n", "____________________________________________________________________________________________________\n", "activation_3 (Activation) (None, 10) 0 dense_3[0][0] \n", "====================================================================================================\n", "Total params: 669706\n", "____________________________________________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 绘制模型结构图,并保存成图片" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plot(model, to_file='model.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 显示绘制的图片\n", "![image](http://p1.bpimg.com/4851/4025c3b85df0e4f2.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5.训练与评估\n", "### 编译模型" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "model.compile(loss='categorical_crossentropy',\n", " optimizer=RMSprop(),\n", " metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 迭代训练" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 60000 samples, validate on 10000 samples\n", "Epoch 1/20\n", "60000/60000 [==============================] - 4s - loss: 0.2448 - acc: 0.9239 - val_loss: 0.1220 - val_acc: 0.9623\n", "Epoch 2/20\n", "60000/60000 [==============================] - 4s - loss: 0.1026 - acc: 0.9689 - val_loss: 0.0788 - val_acc: 0.9749\n", "Epoch 3/20\n", "60000/60000 [==============================] - 5s - loss: 0.0752 - acc: 0.9770 - val_loss: 0.0734 - val_acc: 0.9779\n", "Epoch 4/20\n", "60000/60000 [==============================] - 5s - loss: 0.0609 - acc: 0.9817 - val_loss: 0.0777 - val_acc: 0.9780\n", "Epoch 5/20\n", "60000/60000 [==============================] - 5s - loss: 0.0515 - acc: 0.9847 - val_loss: 0.0888 - val_acc: 0.9782\n", "Epoch 6/20\n", "60000/60000 [==============================] - 5s - loss: 0.0451 - acc: 0.9864 - val_loss: 0.0799 - val_acc: 0.9803\n", "Epoch 7/20\n", "60000/60000 [==============================] - 5s - loss: 0.0398 - acc: 0.9878 - val_loss: 0.0814 - val_acc: 0.9809\n", "Epoch 8/20\n", "60000/60000 [==============================] - 5s - loss: 0.0362 - acc: 0.9896 - val_loss: 0.0765 - val_acc: 0.9830\n", "Epoch 9/20\n", "60000/60000 [==============================] - 5s - loss: 0.0325 - acc: 0.9905 - val_loss: 0.0917 - val_acc: 0.9802\n", "Epoch 10/20\n", "60000/60000 [==============================] - 5s - loss: 0.0279 - acc: 0.9921 - val_loss: 0.0808 - val_acc: 0.9844\n", "Epoch 11/20\n", "60000/60000 [==============================] - 5s - loss: 0.0272 - acc: 0.9925 - val_loss: 0.0991 - val_acc: 0.9811\n", "Epoch 12/20\n", "60000/60000 [==============================] - 5s - loss: 0.0248 - acc: 0.9930 - val_loss: 0.0864 - val_acc: 0.9839\n", "Epoch 13/20\n", "60000/60000 [==============================] - 5s - loss: 0.0240 - acc: 0.9935 - val_loss: 0.1061 - val_acc: 0.9809\n", "Epoch 14/20\n", "60000/60000 [==============================] - 5s - loss: 0.0240 - acc: 0.9931 - val_loss: 0.1010 - val_acc: 0.9843\n", "Epoch 15/20\n", "60000/60000 [==============================] - 5s - loss: 0.0200 - acc: 0.9946 - val_loss: 0.1102 - val_acc: 0.9803\n", "Epoch 16/20\n", "60000/60000 [==============================] - 5s - loss: 0.0207 - acc: 0.9942 - val_loss: 0.1020 - val_acc: 0.9833\n", "Epoch 17/20\n", "60000/60000 [==============================] - 5s - loss: 0.0196 - acc: 0.9946 - val_loss: 0.1205 - val_acc: 0.9812\n", "Epoch 18/20\n", "60000/60000 [==============================] - 4s - loss: 0.0208 - acc: 0.9950 - val_loss: 0.1081 - val_acc: 0.9829\n", "Epoch 19/20\n", "60000/60000 [==============================] - 3s - loss: 0.0199 - acc: 0.9951 - val_loss: 0.1113 - val_acc: 0.9835\n", "Epoch 20/20\n", "60000/60000 [==============================] - 4s - loss: 0.0186 - acc: 0.9953 - val_loss: 0.1168 - val_acc: 0.9849\n" ] } ], "source": [ "history = model.fit(X_train, Y_train,\n", " batch_size=batch_size, nb_epoch=nb_epoch,\n", " verbose=1, validation_data=(X_test, Y_test))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 模型评估" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test score: 0.11684127673\n", "Test accuracy: 0.9849\n" ] } ], "source": [ "score = model.evaluate(X_test, Y_test, verbose=0)\n", "print('Test score:', score[0])\n", "print('Test accuracy:', score[1])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" }, "ssap_exp_config": { "error_alert": "Error Occurs!", "initial": [], "max_iteration": 1000, "recv_id": "", "running": [], "summary": [], "version": "1.1.1" } }, "nbformat": 4, "nbformat_minor": 0 }