/* * Copyright 2015 Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // @author: Andrei Alexandrescu #ifndef FOLLY_BASE_TRAITS_H_ #define FOLLY_BASE_TRAITS_H_ #include #include #include #include #include #include #include // libc++ doesn't provide this header, nor does msvc #ifdef FOLLY_HAVE_BITS_CXXCONFIG_H // This file appears in two locations: inside fbcode and in the // libstdc++ source code (when embedding fbstring as std::string). // To aid in this schizophrenic use, two macros are defined in // c++config.h: // _LIBSTDCXX_FBSTRING - Set inside libstdc++. This is useful to // gate use inside fbcode v. libstdc++ #include #endif #include #include #include #include namespace folly { /** * IsRelocatable::value describes the ability of moving around * memory a value of type T by using memcpy (as opposed to the * conservative approach of calling the copy constructor and then * destroying the old temporary. Essentially for a relocatable type, * the following two sequences of code should be semantically * equivalent: * * void move1(T * from, T * to) { * new(to) T(from); * (*from).~T(); * } * * void move2(T * from, T * to) { * memcpy(to, from, sizeof(T)); * } * * Most C++ types are relocatable; the ones that aren't would include * internal pointers or (very rarely) would need to update remote * pointers to pointers tracking them. All C++ primitive types and * type constructors are relocatable. * * This property can be used in a variety of optimizations. Currently * fbvector uses this property intensively. * * The default conservatively assumes the type is not * relocatable. Several specializations are defined for known * types. You may want to add your own specializations. Do so in * namespace folly and make sure you keep the specialization of * IsRelocatable in the same header as SomeStruct. * * You may also declare a type to be relocatable by including * `typedef std::true_type IsRelocatable;` * in the class header. * * It may be unset in a base class by overriding the typedef to false_type. */ /* * IsTriviallyCopyable describes the value semantics property. C++11 contains * the type trait is_trivially_copyable; however, it is not yet implemented * in gcc (as of 4.7.1), and the user may wish to specify otherwise. */ /* * IsZeroInitializable describes the property that default construction is the * same as memset(dst, 0, sizeof(T)). */ namespace traits_detail { #define FOLLY_HAS_TRUE_XXX(name) \ BOOST_MPL_HAS_XXX_TRAIT_DEF(name); \ template struct name ## _is_true \ : std::is_same {}; \ template struct has_true_ ## name \ : std::conditional< \ has_ ## name ::value, \ name ## _is_true, \ std::false_type \ >:: type {}; FOLLY_HAS_TRUE_XXX(IsRelocatable) FOLLY_HAS_TRUE_XXX(IsZeroInitializable) FOLLY_HAS_TRUE_XXX(IsTriviallyCopyable) #undef FOLLY_HAS_TRUE_XXX } template struct IsTriviallyCopyable : std::integral_constant::value || // TODO: add alternate clause is_trivially_copyable, when available traits_detail::has_true_IsTriviallyCopyable::value > {}; template struct IsRelocatable : std::integral_constant::value || // TODO add this line (and some tests for it) when we upgrade to gcc 4.7 //std::is_trivially_move_constructible::value || IsTriviallyCopyable::value || traits_detail::has_true_IsRelocatable::value > {}; template struct IsZeroInitializable : std::integral_constant::value || traits_detail::has_true_IsZeroInitializable::value > {}; } // namespace folly /** * Use this macro ONLY inside namespace folly. When using it with a * regular type, use it like this: * * // Make sure you're at namespace ::folly scope * template<> FOLLY_ASSUME_RELOCATABLE(MyType) * * When using it with a template type, use it like this: * * // Make sure you're at namespace ::folly scope * template * FOLLY_ASSUME_RELOCATABLE(MyType) */ #define FOLLY_ASSUME_RELOCATABLE(...) \ struct IsRelocatable< __VA_ARGS__ > : std::true_type {}; /** * Use this macro ONLY inside namespace boost. When using it with a * regular type, use it like this: * * // Make sure you're at namespace ::boost scope * template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType) * * When using it with a template type, use it like this: * * // Make sure you're at namespace ::boost scope * template * FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType) */ #define FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(...) \ struct has_nothrow_constructor< __VA_ARGS__ > : ::boost::true_type {}; /** * The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode two * assumptions: first, that the type is relocatable per IsRelocatable * above, and that it has a nothrow constructor. Most types can be * assumed to satisfy both conditions, but it is the responsibility of * the user to state that assumption. User-defined classes will not * work with fbvector (see FBVector.h) unless they state this * combination of properties. * * Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this: * * FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType) * * The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4 * allow using the macro for describing templatized classes with 1, 2, * 3, and 4 template parameters respectively. For template classes * just use the macro with the appropriate number and pass the name of * the template to it. Example: * * template class MyType { ... }; * ... * // Make sure you're at global scope * FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType) */ // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) \ namespace folly { template<> FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) \ namespace folly { \ template FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) \ namespace folly { \ template \ FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template \ FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) \ namespace folly { \ template \ FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template \ FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) \ namespace folly { \ template \ FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template \ FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } /** * Instantiate FOLLY_ASSUME_FBVECTOR_COMPATIBLE for a few types. It is * safe to assume that pair is compatible if both of its components * are. Furthermore, all STL containers can be assumed to comply, * although that is not guaranteed by the standard. */ FOLLY_NAMESPACE_STD_BEGIN template struct pair; template class vector; template class deque; template class set; template class map; template class shared_ptr; FOLLY_NAMESPACE_STD_END namespace boost { template class shared_ptr; template struct has_nothrow_constructor< std::pair > : ::boost::mpl::and_< has_nothrow_constructor, has_nothrow_constructor > {}; } // namespace boost namespace folly { // STL commonly-used types template struct IsRelocatable< std::pair > : ::boost::mpl::and_< IsRelocatable, IsRelocatable > {}; // Is T one of T1, T2, ..., Tn? template struct IsOneOf { enum { value = false }; }; template struct IsOneOf { enum { value = std::is_same::value || IsOneOf::value }; }; /* * Complementary type traits for integral comparisons. * * For instance, `if(x < 0)` yields an error in clang for unsigned types * when -Werror is used due to -Wtautological-compare * * * @author: Marcelo Juchem */ namespace detail { template struct is_negative_impl { constexpr static bool check(T x) { return x < 0; } }; template struct is_negative_impl { constexpr static bool check(T x) { return false; } }; // folly::to integral specializations can end up generating code // inside what are really static ifs (not executed because of the templated // types) that violate -Wsign-compare so suppress them in order to not prevent // all calling code from using it. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-compare" template bool less_than_impl( typename std::enable_if< (rhs <= std::numeric_limits::max() && rhs > std::numeric_limits::min()), LHS >::type const lhs ) { return lhs < rhs; } template bool less_than_impl( typename std::enable_if< (rhs > std::numeric_limits::max()), LHS >::type const ) { return true; } template bool less_than_impl( typename std::enable_if< (rhs <= std::numeric_limits::min()), LHS >::type const ) { return false; } #pragma GCC diagnostic pop template bool greater_than_impl( typename std::enable_if< (rhs <= std::numeric_limits::max() && rhs >= std::numeric_limits::min()), LHS >::type const lhs ) { return lhs > rhs; } template bool greater_than_impl( typename std::enable_if< (rhs > std::numeric_limits::max()), LHS >::type const ) { return false; } template bool greater_than_impl( typename std::enable_if< (rhs < std::numeric_limits::min()), LHS >::type const ) { return true; } } // namespace detail { // same as `x < 0` template constexpr bool is_negative(T x) { return folly::detail::is_negative_impl::value>::check(x); } // same as `x <= 0` template constexpr bool is_non_positive(T x) { return !x || folly::is_negative(x); } // same as `x > 0` template constexpr bool is_positive(T x) { return !is_non_positive(x); } // same as `x >= 0` template constexpr bool is_non_negative(T x) { return !x || is_positive(x); } template bool less_than(LHS const lhs) { return detail::less_than_impl< RHS, rhs, typename std::remove_reference::type >(lhs); } template bool greater_than(LHS const lhs) { return detail::greater_than_impl< RHS, rhs, typename std::remove_reference::type >(lhs); } } // namespace folly FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(std::basic_string); FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::vector); FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::list); FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::deque); FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::unique_ptr); FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::shared_ptr); FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::function); // Boost FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(boost::shared_ptr); #define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, cv_qual) \ template \ class classname { \ template < \ typename UTheClass_, RTheReturn_ (UTheClass_::*)(TTheArgs_...) cv_qual \ > struct sfinae {}; \ template \ constexpr static bool test(sfinae*) \ { return true; } \ template \ constexpr static bool test(...) { return false; } \ public: \ constexpr static bool value = test(nullptr); \ } /* * The FOLLY_CREATE_HAS_MEMBER_FN_TRAITS is used to create traits * classes that check for the existence of a member function with * a given name and signature. It currently does not support * checking for inherited members. * * Such classes receive two template parameters: the class to be checked * and the signature of the member function. A static boolean field * named `value` (which is also constexpr) tells whether such member * function exists. * * Each traits class created is bound only to the member name, not to * its signature nor to the type of the class containing it. * * Say you need to know if a given class has a member function named * `test` with the following signature: * * int test() const; * * You'd need this macro to create a traits class to check for a member * named `test`, and then use this traits class to check for the signature: * * namespace { * * FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(has_test_traits, test); * * } // unnamed-namespace * * void some_func() { * cout << "Does class Foo have a member int test() const? " * << boolalpha << has_test_traits::value; * } * * You can use the same traits class to test for a completely different * signature, on a completely different class, as long as the member name * is the same: * * void some_func() { * cout << "Does class Foo have a member int test()? " * << boolalpha << has_test_traits::value; * cout << "Does class Foo have a member int test() const? " * << boolalpha << has_test_traits::value; * cout << "Does class Bar have a member double test(const string&, long)? " * << boolalpha << has_test_traits::value; * } * * @author: Marcelo Juchem */ #define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(classname, func_name) \ template class classname; \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, ); \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, const); \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \ classname, func_name, /* nolint */ volatile); \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \ classname, func_name, /* nolint */ volatile const) #endif //FOLLY_BASE_TRAITS_H_