

Command-Line Rust

A Project-Based Primer for Writing Rust CLIs

Ken Youens-Clark

Command-Line Rust

by Ken Youens-Clark

Copyright © 2022 Charles Kenneth Youens-Clark. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available
for most titles (http://oreilly.com). For more information,
contact our corporate/institutional sales department: 800-

998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade

Development Editors: Rita Fernando and
Corbin Collins

Production Editors: Caitlin Ghegan and
Gregory Hyman

Copyeditor: Kim Sandoval

Proofreader: Rachel Head

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

http://oreilly.com/

January 2022: First Edition

Revision History for the First Edition

2021-01-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098109431
for release details.

The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Command-Line Rust, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and
do not represent the publisher’s views. While the publisher
and the author have used good faith efforts to ensure that
the information and instructions contained in this work are
accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If

any code samples or other technology this work contains or
describes is subject to open source licenses or the
intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with
such licenses and/or rights.

978-1-098-10943-1

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098109431

Preface

I already know the ending \ It’s the part that makes your

face implode

—They Might Be Giants, “Experimental Film”
(2004)

I remember back when this new language called “JavaScript”
came out in 1995. A few years later, I decided to learn it,
so I bought a big, thick reference book and read it cover to
cover. The book was well written and thoroughly explained the
language in great detail, from strings to lists and objects.

But when I finished the book, I still couldn’t write
JavaScript to save my life. Without applying this knowledge
by writing programs, I learned very little. I’ve since
improved at learning how to learn a language, which is
perhaps the most valuable skill you can develop as a
programmer. For me, that means rewriting programs I already
know, like tic-tac-toe.

Rust is the new kid on the block now, and perhaps you’ve
picked up this book to see what it’s all about. This book is
not a reference on the language. Those already exist, and
they’re quite good. Instead, I’ve written a book that
challenges you to write many small programs that probably
will be familiar to you. Rust is reputed to have a fairly

steep learning curve, but I believe this approach will help
you quickly become productive with the language.

Specifically, you’re going to write Rust versions of core
Unix command-line tools such as head and cal. This will
teach you more about the tools and why they are so wildly
useful while also providing the context to use Rust concepts

like strings, vectors, and filehandles. If you are not
familiar with Unix or command-line programming, then you will
learn about concepts like program exit values, command-line
arguments, output redirection, pipes to connect one
program’s output (STDOUT or standard out) to the input of
another program (STDIN or standard in), and how to use
STDERR (standard error) to segregate error messages from
other output. The programs you write will reveal patterns
that you’ll be able to use when you create your own Rust
programs—patterns like validating parameters, reading and
writing files, parsing text, and using regular expressions.
Many of these tools and concepts don’t even exist on
Windows, so users of that platform will create decent
versions of several core Unix programs.

What Is Rust (and Why Is Everybody Talkin’
About It)?

Rust is “a language empowering everyone to build reliable

and efficient software.” Rust was created by Graydon Hoare
and many others around 2006, while Hoare was working at
Mozilla Research. It gained enough interest and users that by
2010 Mozilla had sponsored the development effort. In the
2021 Stack Overflow Developer Survey, nearly 80,000
developers ranked Rust as the “most loved” language for the
sixth year running.

https://www.rust-lang.org/
https://oreil.ly/3rumR

Figure P-1. Here is a logo I made from an old Rush logo. As a kid
playing the drums in the 1980s, I listened to a lot of Rush.

Anyway, Rust is cool, and this logo proves it.

The language is syntactically similar to C, so you’ll find
things like for loops, semicolon-terminated statements, and
curly braces denoting block structures. Crucially, Rust can
guarantee memory safety through the use of a borrow checker
that tracks which part of a program has safe access to
different parts of memory. This safety does not come at the
expense of performance, though. Rust programs compile to
native binaries and often match or beat the speed of programs
written in C or C++. For this reason, Rust is often described
as a systems programming language that has been designed for
performance and safety.

Rust is a statically typed language like C/C++ or Java. This
means that a variable can never change its type, such as from
a number to a string, for example. You don’t always have to
declare a variable’s type in Rust because the compiler can
often figure it out from the context. This is in contrast to

dynamically typed languages like Perl, JavaScript, or Python,
where a variable can change its type at any point in the
program, like from a string to a filehandle.

Rust is not an object-oriented (OO) language like C++ or
Java, as there are no classes or inheritance in Rust.
Instead, Rust uses a struct (structure) to represent
complex data types and traits to describe how types can
behave. These structures can have methods, can mutate the
internal state of the data, and might even be called objects
in the documentation, but they are not objects in the formal
sense of the word.

Rust has borrowed many exciting concepts from other languages
and programming paradigms, including purely functional
languages such as Haskell. For instance, variables in Rust
are immutable by default, meaning they can’t be changed from
their initial value; you have to specifically inform the
compiler that they are mutable. Functions are also first-
class values, which means they can be passed as arguments to
other so-called higher-order functions. Most exciting to my
mind is Rust’s use of enumerated and sum types, also called
algebraic data types (ADTs), which allow you to represent,
for instance, that a function can return a Result that can
be either an Ok containing some value or an Err containing
some other kind of value. Any code that deals with these
values must handle all possibilities, so you’re never at
risk of forgetting to handle an error that could unexpectedly
crash your program.

Who Should Read This Book

You should read this book if you want to learn the basics of
the Rust language by writing practical command-line programs
that address common programming tasks. I imagine most readers
will already know some basics about programming from at least
one other language. For instance, you probably know about
creating variables, using loops to repeat an action, creating
functions, and so forth. I imagine that Rust might be a
difficult first language as it uses types extensively and
requires understanding some fine details about computer
memory. I also assume you have at least some idea of how to
use the command line and know some basic Unix commands, like
how to create, remove, and change into directories. This book
will focus on the practical side of things, showing you what
you need to know to get things done. I’ll leave the nitty-
gritty to more comprehensive books such as Programming Rust,
2nd ed., by Jim Blandy, Jason Orendorff, and Leonora F. S.
Tindall (O’Reilly) and The Rust Programming Language by
Steve Klabnik and Carol Nichols (No Starch Press). I highly
recommend that you read one or both of those along with this
book to dig deeper into the language itself.

You should also read this book if you’d like to see how to
write and run tests to check Rust programs. I’m an advocate
for using tests not only to verify that programs work
properly but also as an aid to breaking a problem into small,
understandable, testable parts. I will demonstrate how to use
tests that I have provided for you as well as how to use
test-driven development (TDD), where you write tests first
and then write code that passes those tests. I hope that this
book will show that the strictness of the Rust compiler
combined with testing leads to better programs that are
easier to maintain and modify.

https://oreil.ly/DUQqG
https://oreil.ly/HZWyF

Why You Should Learn Rust

There are plenty of reasons to learn Rust. First, I find that
Rust’s type checking prevents me from making many basic
errors. My background is in more dynamically typed languages
like Perl, Python, and JavaScript where there is little to no
checking of types. The more I used statically typed languages
like Rust, the more I realized that dynamically typed
languages force much more work onto me, requiring me to
verify my programs and write many more tests. I gradually
came to feel that the Rust compiler, while very strict, was
my dance partner and not my enemy. Granted, it’s a dance
partner who will tell you every time you step on their toes
or miss a cue, but that eventually makes you a better dancer,
which is the goal after all. Generally speaking, when I get a
Rust program to compile, it usually works as I intended.

Second, it’s easy to share a Rust program with someone who
doesn’t know Rust or is not a developer at all. If I write a
Python program for a workmate, I must give them the Python
source code to run and ensure they have the right version of
Python and all the required modules to execute my code. In
contrast, Rust programs are compiled directly into a machine-
executable file. I can write and debug a program on my
machine, build an executable for the architecture it needs to
run on, and give my colleague a copy of the program. Assuming
they have the correct architecture, they will not need to
install Rust and can run the program directly.

Third, I often build containers using Docker or Singularity
to encapsulate workflows. I find that the containers for Rust
programs are often orders of magnitude smaller than those for
Python programs. For instance, a Docker container with the
Python runtime may require several hundred MB. In contrast, I
can build a bare-bones Linux virtual machine with a Rust
binary that may only be tens of MB in size. Unless I really

need some particular features of Python, such as machine
learning or natural language processing modules, I prefer to
write in Rust and have smaller, leaner containers.

Finally, I find that I’m extremely productive with Rust
because of the rich ecosystem of available modules. I have
found many useful Rust crates—which is what libraries are
called in Rust—on crates.io, and the documentation at
Docs.rs is thorough and easy to navigate.

The Coding Challenges

In this book, you will learn how to write and test Rust code
by creating complete programs. Each chapter will show you how
to start a program from scratch, add features, work through
error messages, and test your logic. I don’t want you to
passively read this book on the bus to work and put it away.
You will learn the most by writing your own solutions, but I
believe that even typing the source code I present will prove
beneficial.

The problems I’ve selected for this book hail from the Unix
command-line coreutils, because I expect these will already
be quite familiar to many readers. For instance, I assume
you’ve used head and tail to look at the first or last few
lines of a file, but have you ever written your own versions
of these programs? Other Rustaceans (people who use Rust)
have had the same idea, so there are plenty of other Rust
implementations of these programs you can find on the
internet. Beyond that, these are fairly small programs that
each lend themselves to teaching a few skills. I’ve
sequenced the projects so that they build upon one another,
so it’s probably best if you work through the chapters in
order.

https://crates.io/
https://docs.rs/
https://oreil.ly/fYV82
https://www.rustaceans.org/
https://oreil.ly/RmiBN

One reason I’ve chosen many of these programs is that they
provide a sort of ground truth. While there are many flavors
of Unix and many implementations of these programs, they
usually all work the same and produce the same results. I use
macOS for my development, which means I’m running mostly the
BSD (Berkeley Standard Distribution) or GNU (GNU’s Not Unix)
variants of these programs. Generally speaking, the BSD
versions predate the GNU versions and have fewer options. For
each challenge program, I use a shell script to redirect the
output from the original program into an output file. The
goal is then to have the Rust programs create the same output
for the same inputs. I’ve been careful to include files
encoded on Windows as well as simple ASCII text mixed with
Unicode characters to force my programs to deal with various
ideas of line endings and characters in the same way as the
original programs.

For most of the challenges, I’ll try to implement only a
subset of the original programs as they can get pretty
complicated. I also have chosen to make a few small changes
in the output from some of the programs so that they are
easier to teach. Consider this to be like learning to play an
instrument by playing along with a recording. You don’t have
to play every note from the original version. The important
thing is to learn common patterns like handling arguments and
reading inputs so you can move on to writing your material.
As a bonus challenge, try writing these programs in other
languages so you can see how the solutions differ from Rust.

Getting Rust and the Code

To start, you’ll need to install Rust. One of my favorite
parts about Rust is the ease of using the rustup tool for
installing, upgrading, and managing Rust. It works equally

https://www.gnu.org/

well on Windows and Unix-type operating systems (OSs) like
Linux and macOS. You will need to follow the installation
instructions for your OS. If you have already installed
rustup, you might want to run rustup update to get the
latest version of the language and tools, as Rust updates
about every six weeks. Execute rustup doc to read copious
volumes of documentation. You can check your version of the
rustc compiler with the following command:

$ rustc --version
rustc 1.56.1 (59eed8a2a 2021-11-01)

All the tests, data, and solutions for the programs can be
found in the book’s GitHub repository. You can use the Git
source code management tool (which you may need to install)
to copy this to your machine. The following command will
create a new directory on your computer called command-line-
rust with the contents of the book’s repository:

$ git clone https://github.com/kyclark/command-line-
rust.git

You should not write your code in the directory you cloned in
the preceding step. You should create a separate directory
elsewhere for your projects. I suggest that you create your
own Git repository to hold the programs you’ll write. For
example, if you use GitHub and call it rust-solutions, then
you can use the following command to clone your repository.
Be sure to replace YOUR_GITHUB_ID with your actual GitHub ID:

$ git clone https://github.com/YOUR_GITHUB_ID/rust-
solutions.git

One of the first tools you will encounter in Rust is Cargo,
which is its build tool, package manager, and test runner.

https://oreil.ly/camNw
https://oreil.ly/pfhMC
https://git-scm.com/
https://oreil.ly/OhYek

Each chapter will instruct you to create a new project using
Cargo, and I recommend that you do this inside your solutions
directory. You will copy each chapter’s tests directory from
the book’s repository into your project directory to test
your code. If you’re curious what testing code looks like
with Cargo and Rust, you can run the tests for Chapter 1.
Change into the book’s 01_hello directory and run the tests
with cargo test:

$ cd command-line-rust/01_hello
$ cargo test

If all goes well, you should see some passing tests (in no
particular order):

running 3 tests
test false_not_ok ... ok
test true_ok ... ok
test runs ... ok

NOTE

I tested all the programs on macOS, Linux, Windows 10/PowerShell,
and Ubuntu Linux/Windows Subsystem for Linux (WSL). While I love
how well Rust works on both Windows and Unix operating systems,
two programs (findr and lsr) work slightly differently on
Windows due to some fundamental differences in the operating
system from Unix-type systems. I recommend that
Windows/PowerShell users consider also installing WSL and working
through the programs in that environment.

All the code in this book has been formatted using rustfmt,
which is a handy tool for making your code look pretty and
readable. You can use cargo fmt to run it on all the source
code in a project, or you can integrate it into your code
editor to run on demand. For instance, I prefer to use the

text editor vim, which I have configured to automatically
run rustfmt every time I save my work. I find this makes it
much easier to read my code and find mistakes.

I recommend you use Clippy, a linter for Rust code. Linting
is automatically checking code for common mistakes, and it
seems most languages offer one or more linters. Both
rustfmt and clippy should be installed by default, but you
can use rustup component add clippy if you need to
install it. Then you can run cargo clippy to have it check
the source code and make recommendations. No output from
Clippy means that it has no suggestions.

Now you’re ready to write some Rust!

Conventions Used in This Book

The following typographical conventions are used in this
book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

In blocks of code, unless stated otherwise, this style
calls special attention to elements being described in the
surrounding discussion. In discursive text, it highlights

https://oreil.ly/XyzTS

commands that can be used by the reader as they follow
along.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at
https://oreil.ly/commandlinerust_code.

If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general,
if example code is offered with this book, you may use it in
your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses

https://oreil.ly/commandlinerust_code
mailto:bookquestions@oreilly.com

several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing
this book and quoting example code does not require
permission. Incorporating a significant amount of example
code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher,
and ISBN. For example: “Command-Line Rust by Ken Youens-
Clark (O’Reilly). Copyright 2022 Charles Kenneth Youens-
Clark, 978-1-098-10943-1.”

If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses,
in-depth learning paths, interactive coding environments, and
a vast collection of text and video from O’Reilly and 200+
other publishers. For more information, visit
http://oreilly.com.

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

How to Contact Us

Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/commandLineRust.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

My first debt of gratitude is to the Rust community for
creating such an incredible language and body of resources
for learning. When I started writing Rust, I quickly learned

https://oreil.ly/commandLineRust
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

that I could try to write a naive program and just let the
compiler tell me what to fix. I would blindly add or subtract
& and * and clone and borrow until my program compiled, and
then I’d figure out how to make it better. When I got stuck,
I invariably found help at https://users.rust-lang.org.
Everyone I’ve encountered in Rust, from Twitter to Reddit,
has been kind and helpful.

I would like to thank the BSD and GNU communities for the
programs and documentation upon which each chapter’s project
is based. I appreciate the generous licenses that allow me to
include portions of the help documentation from their
programs:

https://www.freebsd.org/copyright/freebsd-license

https://creativecommons.org/licenses/by-nd/4.0

I further wish to thank my development editors, Corbin
Collins and Rita Fernando, and my production editors, Caitlin
Ghegan and Greg Hyman. I am deeply indebted to the technical
reviewers Carol Nichols, Brad Fulton, Erik Nordin, and Jeremy
Gailor, who kept me on the straight and narrow path, as well
as others who gave of their time to make comments, including
Joshua Lynch, Andrew Olson, Jasper Zanjani, and William
Evans. I also owe thanks to my bosses over the last few
years, Dr. Bonnie Hurwitz at the University of Arizona and
Amanda Borens at the Critical Path Institute, who have
tolerated the time and effort I’ve spent learning new
languages such as Rust in my professional job.

In my personal life, I could not have written this book
without the love and support of my wife, Lori Kindler, and
our three extremely interesting children. Finally, I would
also like to thank my friend Brian Castle, who tried so hard
in high school to redirect my musical tastes from hard and
progressive rock to alternative bands like Depeche Mode, The

https://users.rust-lang.org/
https://www.freebsd.org/copyright/freebsd-license
https://creativecommons.org/licenses/by-nd/4.0

Smiths, and They Might Be Giants, only the last of which
really took.

Chapter 1. Truth or

Consequences

And the truth is, we don’t know anything

— They Might Be Giants, “Ana Ng” (1988)

In this chapter, I’ll show you how to organize, run, and
test a Rust program. I’ll be using a Unix platform (macOS)
to explain some basic ideas about command-line programs. Only
some of these ideas apply to the Windows operating system,
but the Rust programs themselves will work the same no matter

which platform you use.

You will learn how to do the following:

Compile Rust code into an executable

Use Cargo to start a new project

Use the $PATH environment variable

Include an external Rust crate from crates.io

Interpret the exit status of a program

Use common system commands and options

Write Rust versions of the true and false programs

Organize, write, and run tests

Getting Started with “Hello, world!”

It seems the universally agreed-upon way to start learning a
programming language is printing “Hello, world!” to the

https://crates.io/

screen. Change to a temporary directory with cd /tmp to
write this first program. We’re just messing around, so we
don’t need a real directory yet. Then fire up a text editor
and type the following code into a file called hello.rs:

fn main() {
 println!("Hello, world!");
}

Functions are defined using fn. The name of this function
is main.

println! (print line) is a macro and will print text to
STDOUT (pronounced standard out). The semicolon
indicates the end of the statement.

The body of the function is enclosed in curly braces.

Rust will automatically start in the main function. Function
arguments appear inside the parentheses that follow the name

of the function. Because there are no arguments listed in
main(), the function takes no arguments. The last thing
I’ll point out here is that println! looks like a function
but is actually a macro, which is essentially code that
writes code. All the other macros I use in this book—such as
assert! and vec!—also end with an exclamation point.

To run this program, you must first use the Rust compiler,
rustc, to compile the code into a form that your computer
can execute:

$ rustc hello.rs

On Windows, you will use this command:

https://oreil.ly/GGmNx
https://oreil.ly/RFXMp
https://oreil.ly/SQHyp
https://oreil.ly/KACU4

> rustc.exe .\hello.rs

If all goes well, there will be no output from the preceding
command, but you should now have a new file called hello on
macOS and Linux or hello.exe on Windows. This is a binary-
encoded file that can be directly executed by your operating
system, so it’s common to call this an executable or a
binary. On macOS, you can use the file command to see what
kind of file this is:

$ file hello
hello: Mach-O 64-bit executable x86_64

You should be able to execute the program to see a charming
and heartfelt message:

$./hello
Hello, world!

The dot (.) indicates the current directory.

TIP

I will shortly discuss the $PATH environment variable that lists
the directories to search for programs to run. The current
working directory is never included in this variable, to prevent
malicious code from being surreptitiously executed. For instance,
a bad actor could create a program named ls that executes rm -rf
/ in an attempt to delete your entire filesystem. If you happened
to execute that as the root user, it would ruin your whole day.

On Windows, you can execute it like so:

> .\hello.exe
Hello, world!

Congratulations if that was your first Rust program. Next,
I’ll show you how to better organize your code.

Organizing a Rust Project Directory

In your Rust projects, you will likely write many files of
source code and will also use other people’s code from
places like crates.io. It’s best to create a directory for
each project, with a src subdirectory for the Rust source
code files. On a Unix system, you’ll first need to remove
the hello binary with the command rm hello because that is
the name of the directory you will create. Then you can use
the following command to make the directory structure:

$ mkdir -p hello/src

The mkdir command will make a directory. The -p option
says to create parent directories before creating child
directories. PowerShell does not require this option.

Move the hello.rs source file into hello/src using the mv
command:

$ mv hello.rs hello/src

Use the cd command to change into that directory and compile
your program again:

$ cd hello
$ rustc src/hello.rs

You should now have a hello executable in the directory. I
will use the tree command (which you might need to install)
to show you the contents of my directory:

https://crates.io/

$ tree
.
├── hello
└── src
 └── hello.rs

This is the basic structure for a simple Rust project.

Creating and Running a Project with Cargo

An easier way to start a new Rust project is to use the Cargo
tool. You can delete your temporary hello directory:

$ cd ..
$ rm -rf hello

Change into the parent directory, which is indicated with
two dots (..).

The -r recursive option will remove the contents of a
directory, and the -f force option will skip any errors.

If you would like to save the following program, change into
the solutions directory for your projects. Then start your
project anew using Cargo like so:

$ cargo new hello
 Created binary (application) `hello` package

This should create a new hello directory that you can change
into. I’ll use tree again to show you the contents:

$ cd hello
$ tree
.
├── Cargo.toml

└── src
 └── main.rs

Cargo.toml is a configuration file for the project. The
extension .toml stands for Tom’s Obvious, Minimal
Language.

The src directory is for Rust source code files.

main.rs is the default starting point for Rust programs.

You can use the following cat command (for concatenate) to
see the contents of the one source file that Cargo created
(in Chapter 3, you will write a Rust version of cat):

$ cat src/main.rs
fn main() {
 println!("Hello, world!");
}

Rather than using rustc to compile the program, this time
use cargo run to compile the source code and run it in one
command:

$ cargo run
 Compiling hello v0.1.0 (/private/tmp/hello)
 Finished dev [unoptimized + debuginfo] target(s) in
1.26s
 Running `target/debug/hello`
Hello, world!

The first three lines are information about what Cargo is
doing.

This is the output from the program.

If you would like for Cargo to not print status messages
about compiling and running the code, you can use the -q, or
--quiet, option:

$ cargo run --quiet
Hello, world!

CARGO COMMANDS

How did I know about the -q|--quiet option? Run cargo
with no arguments and note that it will print some

lengthy documentation. Good command-line tools will tell
you how to use them, like how the cookie in Alice in
Wonderland says “Eat me.” Notice that USAGE is one of
the first words in the documentation. It’s common to
call this helpful message the usage statement. The
programs in this book will also print their usage. You
can request help for any of Cargo’s commands using
cargo help command.

After running the program using Cargo, use the ls command to
list the contents of the current working directory. (You will
write a Rust version of ls in Chapter 14.) There should be

a new directory called target. By default, Cargo will build a
debug target, so you will see the directory target/debug that
contains the build artifacts:

$ ls
Cargo.lock Cargo.toml src/ target/

You can use the tree command from earlier or the find
command (you will write a Rust version of find in
Chapter 7) to look at all the files that Cargo and Rust
created. The executable file that ran should exist as
target/debug/hello. You can execute this directly:

https://oreil.ly/1Fs8Q

$./target/debug/hello
Hello, world!

To summarize, Cargo found the source code in src/main.rs,
used the main function there to build the binary
target/debug/hello, and then ran it. Why was the binary file
called hello, though, and not main? To answer that, look at
Cargo.toml:

$ cat Cargo.toml
[package]
name = "hello"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

This was the name of the project I created with Cargo, so
it will also be the name of the executable.

This is the version of the program.

This is the edition of Rust that should be used to compile
the program. Editions are how the Rust community
introduces changes that are not backward compatible. I
will use the 2021 edition for all the programs in this
book.

This is a comment line that I will include only this one
time. You can remove this line from your file, if you
like.

This is where you will list any external crates your
project uses. This project has none at this point, so this

https://oreil.ly/4fgvX

section is blank.

NOTE

Rust libraries are called crates, and they are expected to use
semantic version numbers in the form major.minor.patch, so that
1.2.4 is major version 1, minor version 2, patch version 4. A
change in the major version indicates a breaking change in the
crate’s public application programming interface (API).

Writing and Running Integration Tests

More than the act of testing, the act of designing tests is
one of the best bug preventers known. The thinking that
must be done to create a useful test can discover and
eliminate bugs before they are coded—indeed, test-design
thinking can discover and eliminate bugs at every stage in
the creation of software, from conception to specification,
to design, coding, and the rest.

—Boris Beizer, Software Testing Techniques
(Van Nostrand Reinhold)

Even though “Hello, world!” is quite simple, there are
still things that could bear testing. There are two broad
categories of tests I will show in this book. Inside-out or
unit testing is when you write tests for the functions inside
your program. I’ll introduce unit testing in Chapter 4.
Outside-in or integration testing is when you write tests
that run your programs as the user might, and that’s what
we’ll do for this program. The convention in Rust projects
is to create a tests directory parallel to the src directory
for testing code, and you can use the command mkdir tests
for this.

The goal is to test the hello program by running it on the
command line as the user will do. Create the file
tests/cli.rs for command-line interface (CLI) with the
following code. Note that this function is meant to show the
simplest possible test in Rust, but it doesn’t do anything
useful yet:

#[test]
fn works() {
 assert!(true);
}

The #[test] attribute tells Rust to run this function
when testing.

The assert! macro asserts that a Boolean expression is
true.

Your project should now look like this:

$ tree -L 2
.
├── Cargo.lock
├── Cargo.toml
├── src
│ └── main.rs
├── target
│ ├── CACHEDIR.TAG
│ ├── debug
│ └── tmp
└── tests
 └── cli.rs

The Cargo.lock file records the exact versions of the
dependencies used to build your program. You should not
edit this file.

https://oreil.ly/SQHyp
https://oreil.ly/81q3a

The src directory is for the Rust source code files to
build the program.

The target directory holds the build artifacts.

The tests directory holds the Rust source code for testing
the program.

All the tests in this book will use assert! to verify that
some expectation is true, or assert_eq! to verify that
something is an expected value. Since this test is evaluating
the literal value true, it will always succeed. To see this
test in action, execute cargo test. You should see these
lines among the output:

running 1 test
test works ... ok

To observe a failing test, change true to false in the
tests/cli.rs file:

#[test]
fn works() {
 assert!(false);
}

Among the output, you should see the following failed test
result:

running 1 test
test works ... FAILED

https://oreil.ly/P6Bfw

TIP

You can have as many assert! and assert_eq! calls in a test
function as you like. At the first failure of one of them, the
whole test fails.

Now, let’s create a more useful test that executes a command
and checks the result. The ls command works on both Unix and
Windows PowerShell, so we’ll start with that. Replace the
contents of tests/cli.rs with the following code:

use std::process::Command;

#[test]
fn runs() {
 let mut cmd = Command::new("ls");
 let res = cmd.output();
 assert!(res.is_ok());
}

Import std::process::Command. The std tells us this
is in the standard library and is Rust code that is so
universally useful it is included with the language.

Create a new Command to run ls. The let keyword will
bind a value to a variable. The mut keyword will make
this variable mutable so that it can change.

Run the command and capture the output, which will be a
Result.

Verify that the result is an Ok variant.

https://oreil.ly/ErqAX
https://oreil.ly/cYjVT
https://oreil.ly/SH6Qr
https://oreil.ly/EYxds

TIP

By default, Rust variables are immutable, meaning their values
cannot be changed.

Run cargo test and verify that you see a passing test among
all the output:

running 1 test
test runs ... ok

Update tests/cli.rs with the following code so that the runs
function executes hello instead of ls:

use std::process::Command;

#[test]
fn runs() {
 let mut cmd = Command::new("hello");
 let res = cmd.output();
 assert!(res.is_ok());
}

Run the test again and note that it fails because the hello
program can’t be found:

running 1 test
test runs ... FAILED

Recall that the binary exists in target/debug/hello. If you
try to execute hello on the command line, you will see that
the program can’t be found:

$ hello
-bash: hello: command not found

When you execute any command, your operating system will look
in a predefined set of directories for something by that
name. On Unix-type systems, you can inspect the PATH
environment variable of your shell to see this list of
directories, which are delimited by colons. (On Windows, this
is $env:Path.) I can use tr (translate characters) to
replace the colons (:) with newlines (\n) to show you my
PATH:

$ echo $PATH | tr : '\n'
/opt/homebrew/bin
/Users/kyclark/.cargo/bin
/Users/kyclark/.local/bin
/usr/local/bin
/usr/bin
/bin
/usr/sbin
/sbin

$PATH tells bash to interpolate the variable. Use a pipe
(|) to feed this to tr.

Even if I change into the target/debug directory, hello
still can’t be found due to the aforementioned security
restrictions that exclude the current working directory from
my PATH:

$ cd target/debug/
$ hello
-bash: hello: command not found

I must explicitly reference the current working directory for
the program to run:

$./hello
Hello, world!

1

Next, I need to find a way to execute binaries that exist
only in the current crate.

Adding a Project Dependency

Currently, the hello program exists only in the target/debug
directory. If I copy it to any of the directories in my PATH
(note that I include the $HOME/.local/bin directory for
private programs), I can execute it and run the test
successfully. But I don’t want to copy my program to test
it; rather, I want to test the program that lives in the
current crate. I can use the crate assert_cmd to find the
program in my crate directory. I first need to add this as a
development dependency to Cargo.toml. This tells Cargo that I
need this crate only for testing and benchmarking:

[package]
name = "hello"
version = "0.1.0"
edition = "2021"

[dependencies]

[dev-dependencies]
assert_cmd = "1"

I can then use this crate to create a Command that looks in
the Cargo binary directories. The following test does not
verify that the program produces the correct output, only
that it appears to succeed. Update your tests/cli.rs with the
following code so that the runs function will use
assert_cmd::Command instead of std::process::Command:

use assert_cmd::Command;

#[test]
fn runs() {

https://oreil.ly/hyuZZ
https://oreil.ly/pezix

 let mut cmd = Command::cargo_bin("hello").unwrap();
 cmd.assert().success();
}

Import assert_cmd::Command.

Create a Command to run hello in the current crate.
This returns a Result, and the code calls
Result::unwrap because the binary should be found. If
it isn’t, then unwrap will cause a panic and the test
will fail, which is a good thing.

Use Assert::success to ensure the command succeeded.

NOTE

I’ll have more to say about the Result type in following
chapters. For now, just know that this is a way to model
something that could succeed or fail for which there are two
possible variants, Ok and Err, respectively.

Run cargo test again and verify that you now see a passing
test:

running 1 test
test runs ... ok

Understanding Program Exit Values

What does it mean for a program to run successfully? Command-
line programs should report a final exit status to the
operating system to indicate success or failure. The Portable
Operating System Interface (POSIX) standards dictate that the
standard exit code is 0 to indicate success (think zero
errors) and any number from 1 to 255 otherwise. I can show

https://oreil.ly/SV6w1
https://oreil.ly/4VWet

you this using the bash shell and the true command. Here is
the manual page from man true for the version that exists
on macOS:

TRUE(1) BSD General Commands Manual
TRUE(1)

NAME
 true -- Return true value.

SYNOPSIS
 true

DESCRIPTION
 The true utility always returns with exit code zero.

SEE ALSO
 csh(1), sh(1), false(1)

STANDARDS
 The true utility conforms to IEEE Std 1003.2-1992
(''POSIX.2'').

BSD June 27, 1991
BSD

As the documentation notes, this program does nothing except
return the exit code zero. If I run true, it produces no
output, but I can inspect the bash variable $? to see the
exit status of the most recent command:

$ true
$ echo $?
0

The false command is a corollary in that it always exits
with a nonzero exit code:

$ false
$ echo $?

1

All the programs you will write in this book will be expected
to return zero when they terminate normally and a nonzero
value when there is an error. You can write versions of true
and false to see this. Start by creating a src/bin directory
using mkdir src/bin, then create src/bin/true.rs with the
following contents:

fn main() {
 std::process::exit(0);
}

Use the std::process::exit function to exit the
program with the value zero.

Your src directory should now have the following structure:

$ tree src/
src/
├── bin
│ └── true.rs
└── main.rs

Run the program and manually check the exit value:

$ cargo run --quiet --bin true
$ echo $?
0

The --bin option is the name of the binary target to run.

Add the following test to tests/cli.rs to ensure it works
correctly. It does not matter if you add this before or after
the existing runs function:

https://oreil.ly/hrM3X

#[test]
fn true_ok() {
 let mut cmd = Command::cargo_bin("true").unwrap();
 cmd.assert().success();
}

If you run cargo test, you should see the results of the
two tests:

running 2 tests
test true_ok ... ok
test runs ... ok

NOTE

The tests are not necessarily run in the same order they are
declared in the code. This is because Rust is a safe language for
writing concurrent code, which means code can be run across
multiple threads. The testing takes advantage of this concurrency
to run many tests in parallel, so the test results may appear in
a different order each time you run them. This is a feature, not
a bug. If you would like to run the tests in order, you can run
them on a single thread via cargo test -- --test-threads=1.

Rust programs will exit with the value zero by default.
Recall that src/main.rs doesn’t explicitly call
std::process::exit. This means that the true program can
do nothing at all. Want to be sure? Change src/bin/true.rs to
the following:

fn main() {}

Run the test suite and verify it still passes. Next, let’s
write a version of the false program with the following
source code in src/bin/false.rs:

fn main() {
 std::process::exit(1);
}

Exit with any value between 1 and 255 to indicate an
error.

Manually verify that the exit value of the program is not
zero:

$ cargo run --quiet --bin false
$ echo $?
1

Then add this test to tests/cli.rs to verify that the program
reports a failure when run:

#[test]
fn false_not_ok() {
 let mut cmd = Command::cargo_bin("false").unwrap();
 cmd.assert().failure();
}

Use the Assert::failure function to ensure the command
failed.

Run cargo test to verify that the programs all work as
expected:

running 3 tests
test runs ... ok
test true_ok ... ok
test false_not_ok ... ok

Another way to write the false program uses
std::process::abort. Change src/bin / false.rs to the

https://oreil.ly/QHgoR
https://oreil.ly/HPsKS

following:

fn main() {
 std::process::abort();
}

Again, run the test suite to ensure that the program still
works as expected.

Testing the Program Output

While it’s nice to know that my hello program exits
correctly, I’d like to ensure it actually prints the correct
output to STDOUT, which is the standard place for output to
appear and is usually the console. Update your runs function
in tests/cli.rs to the following:

#[test]
fn runs() {
 let mut cmd = Command::cargo_bin("hello").unwrap();
 cmd.assert().success().stdout("Hello, world!\n");
}

Verify that the command exits successfully and prints the
expected text to STDOUT.

Run the tests and verify that hello does, indeed, work
correctly. Next, change src / main.rs to add some more
exclamation points:

fn main() {
 println!("Hello, world!!!");
}

Run the tests again to observe a failing test:

running 3 tests
test true_ok ... ok
test false_not_ok ... ok
test runs ... FAILED

failures:

---- runs stdout ----
thread 'runs' panicked at 'Unexpected stdout, failed diff
var original
├── original: Hello, world!

├── diff:
--- value expected
+++ value actual
@@ -1 +1 @@
-Hello, world!
+Hello, world!!!

└── var as str: Hello, world!!!

command=`".../hello/target/debug/hello"`
code=0
stdout=```"Hello, world!!!\n"```
stderr=```""```

This is the expected output from the program.

This is the output the program actually created.

This is a shortened version of the command that was run by
the test.

The exit code from the program was 0.

This is the text that was received on STDOUT.

This is the text that was received on STDERR (pronounced
standard error), which I will discuss in the next chapter.

Learning to read test output is a skill in itself and takes
practice. The preceding test result is trying very hard to
show you how the expected output differs from the actual
output. While this is a trivial program, I hope you can see
the value in automatically checking all aspects of the
programs we write.

Exit Values Make Programs Composable

Correctly reporting the exit status is a characteristic of
well-behaved command-line programs. The exit value is
important because a failed process used in conjunction with
another process should cause the combination to fail. For
instance, I can use the logical and operator && in bash to
chain the two commands true and ls. Only if the first
process reports success will the second process run:

$ true && ls
Cargo.lock Cargo.toml src/ target/ tests/

If instead I execute false && ls, the result is that the
first process fails and ls never runs. Additionally, the
exit status of the whole command is nonzero:

$ false && ls
$ echo $?
1

Ensuring that command-line programs correctly report errors
makes them composable with other programs. It’s extremely
common in Unix environments to combine many small commands to
make ad hoc programs on the command line. If a program
encounters an error but fails to report it to the operating
system, then the results could be incorrect. It’s far better

for a program to abort so that the underlying problems can be
fixed.

Summary

This chapter introduced you to some key ideas about
organizing a Rust project and some basic ideas about command-
line programs. To recap:

The Rust compiler rustc compiles Rust source code
into a machine-executable file on Windows, macOS, and
Linux.

The Cargo tool helps create a new Rust project and
also compiles, runs, and tests the code.

Command-line tools like ls, cd, mkdir, and rm often
accept command-line arguments like file or directory
names as well as options like -f or -p.

POSIX-compatible programs should exit with a value of
0 to indicate success and any value between 1 and 255
to indicate an error.

By default, cargo new creates a new Rust program
that prints “Hello, world!”

You learned to add crate dependencies to Cargo.toml
and use the crates in your code.

You created a tests directory to organize testing
code, and you used #[test] to mark functions that
should be executed as tests.

You learned how to test a program’s exit status as
well as how to check the text printed to STDOUT.

You learned how to write, run, and test alternate
binaries in a Cargo project by creating source code
files in the src/bin directory.

You wrote your own implementations of the true and
false programs along with tests to verify that they
succeed and fail as expected. You saw that by default
a Rust program will exit with the value zero and that
the std::process::exit function can be used to
explicitly exit with a given code. Additionally, the
std::process::abort function can be used to exit
with a nonzero error code.

In the next chapter, I’ll show you how to write a program
that uses command-line arguments to alter the output.

1 Shell aliases and functions can also be executed like
commands, but I’m only talking about finding programs to run
at this point.

Chapter 2. Test for Echo

By the time you get this note / We’ll no longer be alive /

We’ll have all gone up in smoke / There’ll be no way to

reply

— They Might Be Giants, “By the Time You Get
This” (2018)

In Chapter 1, you wrote three programs—hello, true, and
false—that take no arguments and always produce the same

output. In this chapter, I’ll show you how to use arguments
from the command line to change the behavior of the program

at runtime. The challenge program you’ll write is a clone of
echo, which will print its arguments on the command line,
optionally terminated with a newline.

In this chapter, you’ll learn how to do the following:

Process command-line arguments with the clap crate

Use Rust types like strings, vectors, slices, and the
unit type

Use expressions like match, if, and return

Use Option to represent an optional value

Handle errors using the Result variants of Ok and
Err

Understand the difference between stack and heap
memory

Test for text that is printed to STDOUT and STDERR

How echo Works

In each chapter, you will be writing a Rust version of an
existing command-line tool, so I will begin each chapter by
describing how the tool works so that you understand what
you’ll be creating. The features I describe are also the
substance of the test suite I provide. For this challenge,
you will create a Rust version of the echo program, which is
blissfully simple. To start, echo will print its arguments
to STDOUT:

$ echo Hello
Hello

I’m using the bash shell, which assumes that any number of
spaces delimit the arguments, so arguments that have spaces
must be enclosed in quotes. In the following command, I’m
providing four words as a single argument:

$ echo "Rust has assumed control"
Rust has assumed control

Without the quotes, I’m providing four separate arguments.
Note that I can use a varying number of spaces when I provide
the arguments, but echo prints them using a single space
between each argument:

$ echo Rust has assumed control
Rust has assumed control

If I want the spaces to be preserved, I must enclose them in
quotes:

$ echo "Rust has assumed control"
Rust has assumed control

It’s extremely common—but not mandatory—for command-line
programs to respond to the flags -h or --help to print a
helpful usage statement. If I try that with echo, it will
simply print the flag:

$ echo --help
--help

Instead, I can read the manual page for echo by executing
man echo. You’ll see that I’m using the BSD version of

the program from 2003:

ECHO(1) BSD General Commands Manual
ECHO(1)

NAME
 echo -- write arguments to the standard output

SYNOPSIS
 echo [-n] [string ...]

DESCRIPTION
 The echo utility writes any specified operands,
separated by single blank
 (' ') characters and followed by a newline ('\n')
character, to the stan-
 dard output.

 The following option is available:

 -n Do not print the trailing newline character.
This may also be
 achieved by appending '\c' to the end of the
string, as is done by
 iBCS2 compatible systems. Note that this option
as well as the
 effect of '\c' are implementation-defined in
IEEE Std 1003.1-2001
 (''POSIX.1'') as amended by Cor. 1-2002.
Applications aiming for
 maximum portability are strongly encouraged to
use printf(1) to

 suppress the newline character.

 Some shells may provide a builtin echo command which
is similar or iden-
 tical to this utility. Most notably, the builtin echo
in sh(1) does not
 accept the -n option. Consult the builtin(1) manual
page.

EXIT STATUS
 The echo utility exits 0 on success, and >0 if an
error occurs.

SEE ALSO
 builtin(1), csh(1), printf(1), sh(1)

STANDARDS
 The echo utility conforms to IEEE Std 1003.1-2001
(''POSIX.1'') as
 amended by Cor. 1-2002.

BSD April 12, 2003
BSD

By default, the text that echo prints on the command line is
terminated by a newline character. As shown in the preceding
manual page, the program has a single -n option to omit the
final newline. Depending on the version of echo you have,
this may not appear to affect the output. For instance, the
BSD version I’m using shows this:

$ echo -n Hello
Hello
$

The BSD echo shows my command prompt, $, on the next
line.

The GNU version on Linux shows this:

$ echo -n Hello
Hello$

The GNU echo shows my command prompt immediately after
Hello.

Regardless of which version of echo you have, you can use
the bash redirect operator > to send STDOUT to a file:

$ echo Hello > hello
$ echo -n Hello > hello-n

The diff tool will display the differences between two
files. This output shows that the second file (hello-n) does
not have a newline at the end:

$ diff hello hello-n
1c1
< Hello

> Hello
\ No newline at end of file

Getting Started

This challenge program will be called echor, for echo plus
r for Rust. (I can’t decide if I pronounce this like eh-

core or eh-koh-ar.) Change into the directory for your
solutions and start a new project using Cargo:

$ cargo new echor
 Created binary (application) `echor` package

Change into the new directory to see a familiar structure:

$ cd echor
$ tree
.
├── Cargo.toml
└── src
 └── main.rs

Use Cargo to run the program:

$ cargo run
Hello, world!

The default program always prints “Hello, world!”

You’ve already seen this source code in Chapter 1, but I’d
like to point out a couple more things about the code in
src/main.rs:

fn main() {
 println!("Hello, world!");
}

As you saw in Chapter 1, Rust will start the program by
executing the main function in src/main.rs. All functions
return a value, and the return type may be indicated with an
arrow and the type, such as -> u32 to say the function
returns an unsigned 32-bit integer. The lack of any return
type for main implies that the function returns what Rust
calls the unit type. Also, note that the println! macro
will automatically append a newline to the output, which is a
feature you’ll need to control when the user requests no
terminating newline.

https://oreil.ly/Edncj

NOTE

The unit type is like an empty value and is signified with a set
of empty parentheses: (). The documentation says this “is used

when there is no other meaningful value that could be returned.”
It’s not quite like a null pointer or undefined value in other
languages, a concept first introduced by Tony Hoare (no relation
to Rust creator Graydon Hoare), who called the null reference his
“billion-dollar mistake.” Since Rust does not (normally) allow
you to dereference a null pointer, it must logically be worth at
least a billion dollars.

Accessing the Command-Line Arguments

The first order of business is getting the command-line
arguments to print. In Rust you can use std::env::args for
this. In Chapter 1, you used the std::process crate to
handle external processes. Here, you’ll use std::env to
interact with the environment, which is where the program
will find the arguments. If you look at the documentation for
the function, you’ll see it returns something of the type
Args:

pub fn args() -> Args

If you go to the link for the Args documentation, you’ll

find it is a struct, which is a kind of data structure in
Rust. If you look along the lefthand side of the page,
you’ll see things like trait implementations, other related
structs, functions, and more. We’ll explore these ideas
later, but for now, just poke around the docs and try to
absorb what you see.

Edit src/main.rs to print the arguments. You can call the
function by using the full path followed by an empty set of
parentheses:

https://oreil.ly/BVKGJ
https://oreil.ly/4lJGE
https://oreil.ly/Wtkqr

fn main() {
 println!(std::env::args()); // This will not work
}

Execute the program using cargo run, and you should see the
following error:

error: format argument must be a string literal
 --> src/main.rs:2:14
 |
2 | println!(std::env::args()); // This will not work
 | ^^^^^^^^^^^^^^^^
 |
help: you might be missing a string literal to format with
 |
2 | println!("{}", std::env::args()); // This will not
work
 | +++++

error: could not compile `echor` due to previous error

Here is your first spat with the compiler. It’s saying that
you cannot directly print the value that is returned from
that function, but it’s also suggesting how to fix the
problem. It wants you to first provide a literal string that
has a set of curly braces ({}) that will serve as a
placeholder for the printed value, so change the code
accordingly:

fn main() {
 println!("{}", std::env::args()); // This will not work
either
}

Run the program again and see that you’re not out of the
woods, because there is another compiler error. Note that I
omit the “compiling” and other lines to focus on the
important output:

$ cargo run
error[E0277]: `Args` doesn't implement `std::fmt::Display`
 --> src/main.rs:2:20
 |
2 | println!("{}", std::env::args()); // This will not
work
 | ^^^^^^^^^^^^^^^^ `Args` cannot be
formatted with
 | the default
formatter
 |
 = help: the trait `std::fmt::Display` is not implemented
for `Args`
 = note: in format strings you may be able to use `{:?}`
(or {:#?} for
 pretty-print) instead
 = note: this error originates in the macro
`$crate::format_args_nl`
 (in Nightly builds, run with -Z macro-backtrace for
more info)

There’s a lot of information in that compiler message. First
off, there’s something about the trait std::fmt::Display
not being implemented for Args. A trait in Rust is a way to
define the behavior of an object in an abstract way. If an
object implements the Display trait, then it can be
formatted for user-facing output. Look again at the “Trait
Implementations” section of the Args documentation and
notice that, indeed, Display is not mentioned there.

The compiler suggests you should use {:?} instead of {} for
the placeholder. This is an instruction to print a Debug
version of the structure, which will format the output in a
debugging context. Refer again to the Args documentation to
see that Debug is listed under “Trait Implementations.”

Change the code to the following:

fn main() {
 println!("{:?}", std::env::args()); // Success at last!
}

https://oreil.ly/gaxyv
https://oreil.ly/zPdzZ

Now the program compiles and prints something vaguely useful:

$ cargo run
Args { inner: ["target/debug/echor"] }

If you are unfamiliar with command-line arguments, it’s
common for the first value to be the path of the program
itself. It’s not an argument per se, but it is useful
information. Let’s see what happens when I pass some
arguments:

$ cargo run Hello world
Args { inner: ["target/debug/echor", "Hello", "world"] }

Huzzah! It would appear that I’m able to get the arguments
to my program. I passed two arguments, Hello and world, and
they showed up as additional values after the binary name. I
know I’ll need to pass the -n flag, so I’ll try that next:

$ cargo run Hello world -n
Args { inner: ["target/debug/echor", "Hello", "world", "-
n"] }

It’s also common to place the flag before the values, so let
me try that:

$ cargo run -n Hello world
error: Found argument '-n' which wasn't expected, or isn't
valid in this context

USAGE:
 cargo run [OPTIONS] [--] [args]...

For more information try --help

That doesn’t work because Cargo thinks the -n argument is
for itself, not the program I’m running. To fix this, I need
to separate Cargo’s options using two dashes:

$ cargo run -- -n Hello world
Args { inner: ["target/debug/echor", "-n", "Hello",
"world"] }

In the parlance of command-line program parameters, the -n
is an optional argument because you can leave it out.
Typically, program options start with one or two dashes.
It’s common to have short names with one dash and a single
character, like -h for the help flag, and long names with
two dashes and a word, like --help. You will commonly see
these concatenated like -h|--help to indicate one or the
other. The options -n and -h are often called flags because
they don’t take a value. Flags have one meaning when present
and the opposite when absent. In this case, -n says to omit
the trailing newline; otherwise, print as normal.

All the other arguments to echo are positional because their
position relative to the name of the program (the first
element in the arguments) determines their meaning. Consider
the command chmod to change the mode of a file or directory.
It takes two positional arguments, a mode like 755 first and
a file or directory name second. In the case of echo, all
the positional arguments are interpreted as the text to
print, and they should be printed in the same order they are
given. This is not a bad start, but the arguments to the
programs in this book are going to become much more complex.
We will need a more robust method for parsing the program’s
arguments.

Adding clap as a Dependency

Although there are various methods and crates for parsing
command-line arguments, I will exclusively use the clap
(command-line argument parser) crate in this book because
it’s fairly simple and extremely effective. To get started,

https://oreil.ly/X0qVZ

I need to tell Cargo that I want to download this crate and
use it in my project. I can do this by adding it as a
dependency to Cargo.toml, specifying the version:

[package]
name = "echor"
version = "0.1.0"
edition = "2021"

[dependencies]
clap = "2.33"

NOTE

The version “2.33” means I want to use exactly this version. I
could use just “2” to indicate that I’m fine using the latest
version in the major version “2.x” line. There are many other
ways to indicate the version, and I recommend you read about how
to specify dependencies.

The next time I try to build the program, Cargo will download
the clap source code (if needed) and all of its
dependencies. For instance, I can run cargo build to just
build the new binary and not run it:

$ cargo build
 Updating crates.io index
 Compiling libc v0.2.104
 Compiling unicode-width v0.1.9
 Compiling vec_map v0.8.2
 Compiling bitflags v1.3.2
 Compiling ansi_term v0.11.0
 Compiling strsim v0.8.0
 Compiling textwrap v0.11.0
 Compiling atty v0.2.14
 Compiling clap v2.33.3
 Compiling echor v0.1.0 (/Users/kyclark/work/cmdline-
rust/playground/echor)

https://oreil.ly/mvf9F

 Finished dev [unoptimized + debuginfo] target(s) in
12.66s

You may be curious where these packages went. Cargo places
the downloaded source code into .cargo in your home
directory, and the build artifacts go into the target
/ debug/deps directory of the project. This brings up an
interesting part of building Rust projects: each program you
build can use different versions of crates, and each program
is built in a separate directory. If you have ever suffered
through using shared modules, as is common with Perl and
Python, you’ll appreciate that you don’t have to worry
about conflicts where one program requires some old obscure
version and another requires the latest bleeding-edge version
in GitHub. Python, of course, offers virtual environments to
combat this problem, and other languages have similar
solutions. Still, I find Rust’s approach to be quite
comforting.

A consequence of Rust placing the dependencies into target is
that this directory is now quite large. You can use the disk
usage command du -shc . to find that the project now weighs
in at about 25 MB, and almost all of that lives in target. If

you run cargo help, you will see that the clean command
will remove the target directory. You might do this to
reclaim disk space if you aren’t going to work on the
project for a while, at the expense of having to recompile
again in the future.

Parsing Command-Line Arguments Using clap

To learn how to use clap to parse the arguments, you need to
read the documentation, and I like to use Docs.rs for this.
After consulting the clap docs, I wrote the following

https://oreil.ly/CdbFz

version of src/main.rs that creates a new clap::App struct
to parse the command-line arguments:

use clap::App;

fn main() {
 let _matches = App::new("echor")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust echo")
 .get_matches();
}

Import the clap::App struct.

Create a new App with the name echor.

Use semantic version information.

Include your name and email address so people know where
to send the money.

This is a short description of the program.

Tell the App to parse the arguments.

NOTE

In the preceding code, the leading underscore in the variable
name _matches is functional. It tells the Rust compiler that I
do not intend to use this variable right now. Without the
underscore, the compiler would warn about an unused variable.

With this code in place, I can run the echor program with
the -h or --help flags to get a usage document. Note that I

https://oreil.ly/3wAbH

didn’t have to define this argument, as clap did this for
me:

$ cargo run -- -h
echor 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust echo

USAGE:
 echor

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

The app name and version number appear here.

Here is the author information.

This is the about text.

In addition to the help flags, I see that clap also
automatically handles the flags -V and --version to print
the program’s version:

$ cargo run -- --version
echor 0.1.0

Next, I need to define the parameters using clap::Arg. To
do this, I expand src / main.rs with the following code:

use clap::{App, Arg};

fn main() {
 let matches = App::new("echor")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust echo")
 .arg(

https://oreil.ly/QuLf7

 Arg::with_name("text")
 .value_name("TEXT")
 .help("Input text")
 .required(true)
 .min_values(1),
)
 .arg(
 Arg::with_name("omit_newline")
 .short("n")
 .help("Do not print newline")
 .takes_value(false),
)
 .get_matches();

 println!("{:#?}", matches);
}

Import both the App and Arg structs from the clap crate.

Create a new Arg with the name text. This is a required
positional argument that must appear at least once and can
be repeated.

Create a new Arg with the name omit_newline. This is a
flag that has only the short name -n and takes no value.

Pretty-print the arguments.

NOTE

Earlier I used {:?} to format the debug view of the arguments.
Here I’m using {:#?} to include newlines and indentations to
help me read the output. This is called pretty-printing because,
well, it’s prettier.

If you request the usage again, you will see the new
parameters:

$ cargo run -- --help
echor 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust echo

USAGE:
 echor [FLAGS] <TEXT>...

FLAGS:
 -h, --help Prints help information
 -n Do not print newline
 -V, --version Prints version information

ARGS:
 <TEXT>... Input text

The -n flag to omit the newline is optional.

The required input text is one or more positional
arguments.

Run the program with some arguments and inspect the structure
of the arguments:

$ cargo run -- -n Hello world
ArgMatches {
 args: {
 "text": MatchedArg {
 occurs: 2,
 indices: [
 2,
 3,
],
 vals: [
 "Hello",
 "world",
],
 },
 "omit_newline": MatchedArg {
 occurs: 1,
 indices: [
 1,

],
 vals: [],
 },
 },
 subcommand: None,
 usage: Some(
 "USAGE:\n echor [FLAGS] <TEXT>...",
),
}

If you run the program with no arguments, you will get an
error indicating that you failed to provide the required
arguments:

$ cargo run
error: The following required arguments were not provided:
 <TEXT>...

USAGE:
 echor [FLAGS] <TEXT>...

For more information try --help

This was an error, and so you can inspect the exit value to
verify that it’s not zero:

$ echo $?
1

If you try to provide any argument that isn’t defined, it
will trigger an error and a nonzero exit value:

$ cargo run -- -x
error: Found argument '-x' which wasn't expected, or isn't
valid in this context

USAGE:
 echor [FLAGS] <TEXT>...

For more information try --help

NOTE

You might wonder how this magical stuff is happening. Why is the
program stopping and reporting these errors? If you read the
documentation for App::get_matches, you’ll see that “upon a

failed parse an error will be displayed to the user and the
process will exit with the appropriate error code.”

There’s a subtle thing happening with the error messages.
When you use println!, the output appears on STDOUT, but
the usage and error messages are all appearing on STDERR,
which you first saw in Chapter 1. To see this in the bash
shell, you can run echor and redirect channel 1 (STDOUT)
to a file called out and channel 2 (STDERR) to a file
called err:

$ cargo run 1>out 2>err

You should see no output because it was all redirected to the
out and err files. The out file should be empty because there
was nothing printed to STDOUT, but the err file should
contain the output from Cargo and the error messages from the
program:

$ cat err
 Finished dev [unoptimized + debuginfo] target(s) in
0.01s
 Running `target/debug/echor`
error: The following required arguments were not provided:
 <TEXT>...

USAGE:
 echor [FLAGS] <TEXT>...

For more information try --help

https://oreil.ly/lTlEk

So you see that another hallmark of well-behaved command-line
programs is to print regular output to STDOUT and error
messages to STDERR. Sometimes errors are severe enough that
you should halt the program, but sometimes they should just
be noted in the course of running. For instance, in
Chapter 3 you will write a program that processes input
files, some of which will intentionally not exist or will be
unreadable. I will show you how to print warnings to STDERR
about these files and skip to the next argument without
halting.

Creating the Program Output

Now that I’m able to parse the program’s arguments, the
next step is to use these values to generate the same output
as echo. It’s common to copy the values out of the

matches into variables. To start, I want to extract the
text argument. Because this Arg was defined to accept one
or more values, I can use either of these functions that
return multiple values:

ArgMatches::values_of

Returns Option<Values>

ArgMatches::values_of_lossy

Returns Option<Vec<String>>

To decide which to use, I have to run down a few rabbit holes
to understand the following concepts:

Option

A value that is either None or Some<T>, where T is any
type like a string or an integer. In the case of

https://oreil.ly/kPPN4
https://oreil.ly/AobBW
https://oreil.ly/WkWZs

ArgMatches::values_of_lossy, the type T will be a
vector of strings.

Values

An iterator for getting multiple values out of an
argument.

Vec

A vector, which is a contiguous growable array type.

String

A string of characters.

Both of the functions ArgMatches::values_of and
ArgMatches::values_of_lossy will return an Option of
something. Since I ultimately want to print the strings, I
will use the ArgMatches::values_of_lossy function to
get an Option<Vec<String>>. The Option::unwrap
function will take the value out of Some<T> to get at the
payload T. Because the text argument is required by clap, I
know it will be impossible to have None; therefore, I can
safely call Option::unwrap to get the Vec<String> value:

let text = matches.values_of_lossy("text").unwrap();

WARNING

If you call Option::unwrap on a None, it will cause a panic
that will crash your program. You should only call unwrap if you
are positive the value is the Some variant.

https://oreil.ly/K09ME
https://oreil.ly/pZU3A
https://oreil.ly/X32Yh
https://oreil.ly/4bPoA
https://oreil.ly/DrERd

The omit_newline argument is a bit easier, as it’s either

present or not. The type of this value will be a bool, or
Boolean, which is either true or false:

let omit_newline = matches.is_present("omit_newline");

Finally, I want to print the values. Because text is a
vector of strings, I can use Vec::join to join all the
strings on a single space into a new string to print. Inside
the echor program, clap will be creating the vector. To
demonstrate how Vec::join works, I’ll show you how to

create a vector using the vec! macro:

let text = vec!["Hello", "world"];

NOTE

The values in Rust vectors must all be of the same type. Dynamic
languages often allow lists to mix types like strings and
numbers, but Rust will complain about “mismatched types.” Here I
want a list of literal strings, which must be enclosed in double
quotes. The str type in Rust represents a valid UTF-8 string.
I’ll have more to say about UTF in Chapter 4.

Vec::join will insert the given string between all the
elements of the vector to create a new string. I can use
println! to print the new string to STDOUT followed by a
newline:

println!("{}", text.join(" "));

It’s common practice in Rust documentation to present facts
using assert! to say that something is true or
assert_eq! to demonstrate that one thing is equivalent to

https://oreil.ly/4Zh0A
https://oreil.ly/i8IBx
https://oreil.ly/SAlnL
https://oreil.ly/DREEk
https://oreil.ly/SQHyp
https://oreil.ly/P6Bfw

another. In the following code, I can assert that the result
of text.join(" ") is equal to the string "Hello world":

assert_eq!(text.join(" "), "Hello world");

When the -n flag is present, the output should omit the
newline. I will instead use the print! macro, which does
not add a newline, and I will choose to add either a newline
or the empty string depending on the value of
omit_newline. You might expect me to write something like
this:

fn main() {
 let matches = ...; // Same as before
 let text = matches.values_of_lossy("text").unwrap();
 let omit_newline = matches.is_present("omit_newline");

 let ending = "\n";
 if omit_newline {
 ending = ""; // This will not work
 }
 print!("{}{}", text.join(" "), ending);
}

Assume a default value of the newline.

Change the value to the empty string if the newline should
be omitted.

Use print!, which will not add a newline to the output.

But if I try to run this code, Rust complains that I cannot
reassign the value of ending:

$ cargo run -- Hello world
error[E0384]: cannot assign twice to immutable variable
`ending`

https://oreil.ly/nMLGY

 --> src/main.rs:27:9
 |
25 | let ending = "\n";
 | ------
 | |
 | first assignment to `ending`
 | help: make this binding mutable: `mut ending`
26 | if omit_newline {
27 | ending = ""; // This will not work
 | ^^^^^^^^^^^ cannot assign twice to immutable
variable

As you saw in Chapter 1, Rust variables are immutable by
default. The compiler suggests adding mut to make the
ending variable mutable to fix this error:

fn main() {
 let matches = ...; // Same as before
 let text = matches.values_of_lossy("text").unwrap();
 let omit_newline = matches.is_present("omit_newline");

 let mut ending = "\n";
 if omit_newline {
 ending = "";
 }
 print!("{}{}", text.join(" "), ending);
}

Add mut to make this a mutable value.

There’s a much better way to write this. In Rust, if is an
expression, not a statement as it is in languages like C and
Java. An expression returns a value, but a statement does
not. Here’s a more Rustic way to write this:

let ending = if omit_newline { "" } else { "\n" };

1

NOTE

An if without an else will return the unit type. The same is true
for a function without a return type, so the main function in
this program returns the unit type.

Since I use ending in only one place, I don’t need to

assign it to a variable. Here is the final way I would write
the main function:

fn main() {
 let matches = ...; // Same as before
 let text = matches.values_of_lossy("text").unwrap();
 let omit_newline = matches.is_present("omit_newline");
 print!("{}{}", text.join(" "), if omit_newline { "" }
else { "\n" });
}

With these changes, the program appears to work correctly;
however, I’m not willing to stake my reputation on this. I
need to, as the Russian saying goes, “Доверяй, но
проверяй.” This requires that I write some tests to
run my program with various inputs and verify that it
produces the same output as the original echo program.

Writing Integration Tests

Again, we will use the assert_cmd crate for testing echor.
We’ll also use the predicates crate, as it will make
writing some of the tests easier. Update Cargo.toml with the
following:

[package]
name = "echor"
version = "0.1.0"
edition = "2021"

2

https://oreil.ly/GGCMZ

[dependencies]
clap = "2.33"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"

I often write tests that ensure my programs fail when run
incorrectly. For instance, this program ought to fail and
print help documentation when provided no arguments. Create

the tests directory, and then start your tests/cli.rs with
the following:

use assert_cmd::Command;
use predicates::prelude::*;

#[test]
fn dies_no_args() {
 let mut cmd = Command::cargo_bin("echor").unwrap();
 cmd.assert()
 .failure()
 .stderr(predicate::str::contains("USAGE"));
}

Import the predicates crate.

Run the program with no arguments and assert that it fails
and prints a usage statement to STDERR.

NOTE

I often put the word dies somewhere in the test name to make it
clear that the program is expected to fail under the given
conditions. If I run cargo test dies, then Cargo will run all
the tests with names containing the string dies.

Let’s also add a test to ensure the program exits
successfully when provided an argument:

#[test]
fn runs() {
 let mut cmd = Command::cargo_bin("echor").unwrap();
 cmd.arg("hello").assert().success();
}

Run echor with the argument hello and verify it exits
successfully.

Creating the Test Output Files

I can now run cargo test to verify that I have a program
that runs, validates user input, and prints usage. Next, I
would like to ensure that the program creates the same output
as echo. To start, I need to capture the output from the
original echo for various inputs so that I can compare these
to the output from my program. In the 02_echor directory of
the GitHub repository for the book, you’ll find a bash
script called mk-outs.sh that I used to generate the output
from echo for various arguments. You can see that, even with
such a simple tool, there’s still a decent amount of
cyclomatic complexity, which refers to the various ways all
the parameters can be combined. I need to check one or more
text arguments both with and without the newline option:

$ cat mk-outs.sh
#!/usr/bin/env bash

OUTDIR="tests/expected"
[[! -d "$OUTDIR"]] && mkdir -p "$OUTDIR"

echo "Hello there" > $OUTDIR/hello1.txt
echo "Hello" "there" > $OUTDIR/hello2.txt

https://oreil.ly/pfhMC

echo -n "Hello there" > $OUTDIR/hello1.n.txt
echo -n "Hello" "there" > $OUTDIR/hello2.n.txt

A special comment (aka a shebang) that tells the operating
system to use the environment to execute bash for the
following code.

Define a variable for the output directory.

Test if the output directory does not exist and create it
if needed.

One argument with two words.

Two arguments separated by more than one space.

One argument with two spaces and no newline.

Two arguments with no newline.

If you are working on a Unix platform, you can copy this
program to your project directory and run it like so:

$ bash mk-outs.sh

It’s also possible to execute the program directly, but you
may need to execute chmod +x mk-outs.sh if you get a
permission denied error:

$./mk-outs.sh

If this worked, you should now have a tests/expected
directory with the following contents:

$ tree tests
tests

├── cli.rs
└── expected
 ├── hello1.n.txt
 ├── hello1.txt
 ├── hello2.n.txt
 └── hello2.txt

1 directory, 5 files

If you are working on a Windows platform, then I recommend
you copy the directory and files into your project.

Comparing Program Output

Now that we have some test files, it’s time to compare the
output from echor to the output from the original echo. The
first output file was generated with the input Hello there as
a single string, and the output was captured into the file
tests/expected / hello1.txt. In the following test, I will run
echor with the same argument and compare the output to the
contents of that file. I must add use std::fs to
tests/cli.rs to bring in the standard filesystem module. I
replace the runs function with the following:

#[test]
fn hello1() {
 let outfile = "tests/expected/hello1.txt";
 let expected = fs::read_to_string(outfile).unwrap();
 let mut cmd = Command::cargo_bin("echor").unwrap();
 cmd.arg("Hello
there").assert().success().stdout(expected);
}

This is the output from echo generated by mk-outs.sh.

Use fs::read_to_string to read the contents of the
file. This returns a Result that might contain a string

https://oreil.ly/dZGzk

if all goes well. Use the Result::unwrap method with
the assumption that this will work.

Create a Command to run echor in the current crate.

Run the program with the given argument and assert it
finishes successfully and that STDOUT is the expected
value.

WARNING

Using fs::read_to_string is a convenient way to read a file
into memory, but it’s also an easy way to crash your program—and
possibly your computer—if you happen to read a file that exceeds
your available memory. You should only use this function with
small files. As Ted Nelson says, “The good news about computers
is that they do what you tell them to do. The bad news is that
they do what you tell them to do.”

If I run cargo test now, I should see output from two tests
(in no particular order):

running 2 tests
test hello1 ... ok
test dies_no_args ... ok

Using the Result Type

I’ve been using the Result::unwrap method in a way that
assumes each fallible call will succeed. For example, in the
hello1 function, I assumed that the output file exists and
can be opened and read into a string. During my limited
testing, this may be the case, but it’s dangerous to make
such assumptions. I should be more cautious, so I’m going to
create a type alias called TestResult. This will be a

specific type of Result that is either an Ok that always
contains the unit type or some value that implements the
std::error::Error trait:

type TestResult = Result<(), Box<dyn std::error::Error>>;

In the preceding code, Box indicates that the error will
live inside a kind of pointer where the memory is dynamically
allocated on the heap rather than the stack, and dyn
indicates that the method calls on the std::error::Error
trait are dynamically dispatched. That’s really a lot of
information, and I don’t blame you if your eyes glazed over.
In short, I’m saying that the Ok part of TestResult will
only ever hold the unit type, and the Err part can hold
anything that implements the std::error::Error trait.
These concepts are more thoroughly explained in Programming
Rust.

https://oreil.ly/s0dqy
https://oreil.ly/r9nut
https://oreil.ly/NtPOH
https://oreil.ly/DUQqG

STACK AND HEAP MEMORY

Before programming in Rust, I’d only ever considered one
amorphous idea of computer memory. Having studiously
avoided languages that required me to allocate and free
memory, I was only vaguely aware of the efforts that
dynamic languages make to hide these complexities from
me. In Rust, I’ve learned that not all memory is
accessed in the same way. First there is the stack, where
items of known sizes are accessed in a particular order.
The classic analogy is to a stack of cafeteria trays
where new items go on top and are taken back off the top
in last-in, first-out (LIFO) order. Items on the stack
have a fixed, known size, making it possible for Rust to
set aside a particular chunk of memory and find it
quickly.

The other type of memory is the heap, where the sizes of
the values may change over time. For instance, the
documentation for the Vec (vector) type describes this
structure as a “contiguous growable array type.”
Growable is the key word here, as the number and sizes of
the elements in a vector can change during the lifetime
of the program. Rust makes an initial estimation of the
amount of memory it needs for the vector. If the vector
grows beyond the original allocation, Rust will find
another chunk of memory to hold the data. To find the
memory where the data lives, Rust stores the memory
address on the stack. This is called a pointer because it
points to the actual data, and so is also said to be a
reference to the data. Rust knows how to dereference a
Box to find the data.

https://oreil.ly/u5T4g

Up to this point, my test functions have returned the unit
type. Now they will return a TestResult, changing my test
code in some subtle ways. Previously I used Result::unwrap
to unpack Ok values and panic in the event of an Err,
causing the test to fail. In the following code, I replace
unwrap with the ? operator to either unpack an Ok value or
propagate the Err value to the return type. That is, this
will cause the function to return the Err variant of Option
to the caller, which will in turn cause the test to fail. If
all the code in a test function runs successfully, I return
Ok containing the unit type to indicate the test passes.
Note that while Rust does have the return keyword to return
a value from a function, the idiom is to omit the semicolon
from the last expression to implicitly return that result.
Update your tests/cli.rs to the following:

use assert_cmd::Command;
use predicates::prelude::*;
use std::fs;

type TestResult = Result<(), Box<dyn std::error::Error>>;

#[test]
fn dies_no_args() -> TestResult {
 let mut cmd = Command::cargo_bin("echor")?;
 cmd.assert()
 .failure()
 .stderr(predicate::str::contains("USAGE"));
 Ok(())
}

#[test]
fn hello1() -> TestResult {
 let expected =
fs::read_to_string("tests/expected/hello1.txt")?;
 let mut cmd = Command::cargo_bin("echor")?;
 cmd.arg("Hello
there").assert().success().stdout(expected);
 Ok(())
}

https://oreil.ly/rtZW1

Use ? instead of Result::unwrap to unpack an Ok value
or propagate an Err.

Omit the final semicolon to return this value.

The next test passes two arguments, "Hello" and "there",
and expects the program to print “Hello there”:

#[test]
fn hello2() -> TestResult {
 let expected =
fs::read_to_string("tests/expected/hello2.txt")?;
 let mut cmd = Command::cargo_bin("echor")?;
 cmd.args(vec!["Hello", "there"])
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

Use the Command::args method to pass a vector of
arguments rather than a single string value.

I have a total of four files to check, so it behooves me to
write a helper function. I’ll call it run and will pass it
the argument strings along with the expected output file.
Rather than use vec! to create a vector for the arguments,
I’m going to use a std::slice. Slices are a bit like
vectors in that they represent a list of values, but they
cannot be resized after creation:

fn run(args: &[&str], expected_file: &str) -> TestResult {

 let expected = fs::read_to_string(expected_file)?;
 Command::cargo_bin("echor")?
 .args(args)
 .assert()

https://oreil.ly/cpdYi
https://oreil.ly/NHidS

 .success()
 .stdout(expected);
 Ok(())
}

The args will be a slice of &str values, and the
expected_file will be a &str. The return value is a
TestResult.

Try to read the contents of the expected_file into a
string.

Attempt to run echor in the current crate with the given
arguments and assert that STDOUT is the expected value.

If all the previous code worked, return Ok containing the
unit type.

NOTE

You will find that Rust has many types of “string” variables.
The type str is appropriate here for literal strings in the
source code. The & shows that I intend only to borrow the string
for a little while. I’ll have more to say about strings,
borrowing, and ownership later.

Following is the final contents of tests/cli.rs showing how I
use the helper function to run all four tests:

use assert_cmd::Command;
use predicates::prelude::*;
use std::fs;

type TestResult = Result<(), Box<dyn std::error::Error>>;

#[test]
fn dies_no_args() -> TestResult {

 Command::cargo_bin("echor")?
 .assert()
 .failure()
 .stderr(predicate::str::contains("USAGE"));
 Ok(())
}

fn run(args: &[&str], expected_file: &str) -> TestResult {
 let expected = fs::read_to_string(expected_file)?;
 Command::cargo_bin("echor")?
 .args(args)
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

#[test]
fn hello1() -> TestResult {
 run(&["Hello there"], "tests/expected/hello1.txt")
}

#[test]
fn hello2() -> TestResult {
 run(&["Hello", "there"], "tests/expected/hello2.txt")

}

#[test]
fn hello1_no_newline() -> TestResult {
 run(&["Hello there", "-n"],
"tests/expected/hello1.n.txt")
}

#[test]
fn hello2_no_newline() -> TestResult {
 run(&["-n", "Hello", "there"],
"tests/expected/hello2.n.txt")
}

Run the program with a single string value as input. Note
the lack of a terminating semicolon, as this function will
return whatever the run function returns.

Run the program with two strings as input.

Run the program with a single string value as input and
the -n flag to omit the newline. Note that there are two
spaces between the words.

Run the program with two strings as input and the -n flag
appearing first.

As you can see, I can write as many functions as I like in
tests/cli.rs. Only those marked with #[test] are run when
testing. If you run cargo test now, you should see five
passing tests:

running 5 tests
test dies_no_args ... ok
test hello1 ... ok
test hello1_no_newline ... ok
test hello2_no_newline ... ok
test hello2 ... ok

Summary

Now you have written about 30 lines of Rust code in
src/main.rs for the echor program and five tests in
tests/cli.rs to verify that your program meets some measure
of specification. Consider what you’ve achieved:

You learned that basic program output is printed to
STDOUT and errors should be printed to STDERR.

You’ve written a program that takes the options -h
or --help to produce help, -V or --version to show
the program’s version, and -n to omit a newline
along with one or more positional command-line
arguments.

You wrote a program that will print usage
documentation when run with the wrong arguments or
with the -h|--help flag.

You learned how to print all the positional command-
line arguments joined on spaces.

You learned to use the print! macro to omit the
trailing newline if the -n flag is present.

You can run integration tests to confirm that your
program replicates the output from echo for at least
four test cases covering one or two inputs both with
and without the trailing newline.

You learned to use several Rust types, including the
unit type, strings, vectors, slices, Option, and
Result, as well as how to create a type alias for a
specific type of Result called a TestResult.

You used a Box to create a smart pointer to heap
memory. This required digging a bit into the
differences between the stack—where variables have a
fixed, known size and are accessed in LIFO order—and
the heap—where variables are accessed through a
pointer and their sizes may change during program
execution.

You learned how to read the entire contents of a file
into a string.

You learned how to execute an external command from
within a Rust program, check the exit status, and
verify the contents of both STDOUT and STDERR.

All this, and you’ve done it while writing in a language
that simply will not allow you to make common mistakes that

lead to buggy programs or security vulnerabilities. Feel free
to give yourself a little high five or enjoy a slightly evil
mwuhaha chuckle as you consider how Rust will help you
conquer the world. Now that I’ve shown you how to organize
and write tests and data, I’ll use the tests earlier in the
next program so I can start using test-driven development,
where I write tests first then write code to satisfy the
tests.

1 Python has both an if statement and an if expression.

2 “Trust, but verify.” This rhymes in Russian and so sounds
cooler than when Reagan used it in the 1980s during nuclear
disarmament talks with the USSR.

Chapter 3. On the Catwalk

When you are alone / You are the cat, you are the phone /

You are an animal

— They Might Be Giants, “Don’t Let’s
Start” (1986)

In this chapter, the challenge is to write a clone of cat,
which is so named because it can concatenate many files into
one file. That is, given files a, b, and c, you could execute
cat a b c > all to stream all the lines from these three
files and redirect them into a file called all. The program

will accept a couple of different options to prefix each line
with the line number.

You’ll learn how to do the following:

Organize your code into a library and a binary crate

Use testing-first development

Define public and private variables and functions

Test for the existence of a file

Create a random string for a file that does not exist

Read regular files or STDIN (pronounced standard in)

Use eprintln! to print to STDERR and format! to
format a string

Write a test that provides input on STDIN

Create a struct

Define mutually exclusive arguments

Use the enumerate method of an iterator

How cat Works

I’ll start by showing how cat works so that you know what
is expected of the challenge. The BSD version of cat does
not print the usage for the -h|--help flags, so I must use
man cat to read the manual page. For such a limited
program, it has a surprising number of options, but the
challenge program will implement only a subset of these:

CAT(1) BSD General Commands Manual
CAT(1)

NAME
 cat -- concatenate and print files

SYNOPSIS
 cat [-benstuv] [file ...]

DESCRIPTION
 The cat utility reads files sequentially, writing them
to the standard
 output. The file operands are processed in command-
line order. If file
 is a single dash ('-') or absent, cat reads from the
standard input. If
 file is a UNIX domain socket, cat connects to it and
then reads it until
 EOF. This complements the UNIX domain binding
capability available in
 inetd(8).

 The options are as follows:

 -b Number the non-blank output lines, starting at
1.

 -e Display non-printing characters (see the -v
option), and display
 a dollar sign ('$') at the end of each line.

 -n Number the output lines, starting at 1.

 -s Squeeze multiple adjacent empty lines, causing
the output to be
 single spaced.

 -t Display non-printing characters (see the -v
option), and display
 tab characters as '^I'.

 -u Disable output buffering.

 -v Display non-printing characters so they are
visible. Control
 characters print as '^X' for control-X; the
delete character
 (octal 0177) prints as '^?'. Non-ASCII
characters (with the high
 bit set) are printed as 'M-' (for meta)
followed by the character
 for the low 7 bits.

EXIT STATUS
 The cat utility exits 0 on success, and >0 if an error
occurs.

Throughout the book I will also show the GNU versions of
programs so that you can consider how the programs can vary
and to provide inspiration for how you might expand beyond
the solutions I present. Note that the GNU version does
respond to --help, as will the solution you will write:

$ cat --help
Usage: cat [OPTION]... [FILE]...
Concatenate FILE(s), or standard input, to standard output.

 -A, --show-all equivalent to -vET
 -b, --number-nonblank number nonempty output lines,
overrides -n
 -e equivalent to -vE
 -E, --show-ends display $ at end of each line
 -n, --number number all output lines

 -s, --squeeze-blank suppress repeated empty output
lines
 -t equivalent to -vT
 -T, --show-tabs display TAB characters as ^I
 -u (ignored)
 -v, --show-nonprinting use ^ and M- notation, except
for LFD and TAB
 --help display this help and exit
 --version output version information and exit

With no FILE, or when FILE is -, read standard input.

Examples:
 cat f - g Output f's contents, then standard input, then
g's contents.
 cat Copy standard input to standard output.

GNU coreutils online help:
<http://www.gnu.org/software/coreutils/>
For complete documentation, run: info coreutils 'cat
invocation'

NOTE

The BSD version predates the GNU version, so the latter
implements all the same short flags to be compatible. As is
typical of GNU programs, it also offers long flag aliases like --
number for -n and --number-nonblank for -b. I will show you
how to offer both options, like the GNU version.

For the challenge program, you will implement only the
options -b|--number - non blank and -n|--number. I will
also show you how to read regular files and STDIN when given
a filename argument of a dash (-). To demonstrate cat, I’ll

use some files that I have included in the 03_catr directory
of the repository. Change into that directory:

$ cd 03_catr

The tests/inputs directory contains four files for testing:

empty.txt: an empty file

fox.txt: a single line of text

spiders.txt: a haiku by Kobayashi Issa with three
lines of text

the-bustle.txt: a lovely poem by Emily Dickinson that
has nine lines of text, including one blank

Empty files are common, if useless. The following command
produces no output, so we’ll expect our program to do the
same:

$ cat tests/inputs/empty.txt

Next, I’ll run cat on a file with one line of text:

$ cat tests/inputs/fox.txt
The quick brown fox jumps over the lazy dog.

NOTE

I have already used cat several times in this book to print the
contents of a single file, as in the preceding command. This is
another common usage of the program outside of its original
intent of concatenating files.

The -n|--number and -b|--number-nonblank flags will
both number the lines. The line number is right-justified in
a field six characters wide followed by a tab character and
then the line of text. To distinguish the tab character, I
can use the -t option to display nonprinting characters so
that the tab shows as ^I, but note that the challenge

program is not expected to do this. In the following command,
I use the Unix pipe (|) to connect STDOUT from the first
command to STDIN in the second command:

$ cat -n tests/inputs/fox.txt | cat -t
 1^IThe quick brown fox jumps over the lazy dog.

The spiders.txt file has three lines of text that should be
numbered with the -n option:

$ cat -n tests/inputs/spiders.txt
 1 Don't worry, spiders,
 2 I keep house
 3 casually.

The difference between -n (on the left) and -b (on the
right) is apparent only with the-bustle.txt, as the latter
will number only nonblank lines:

$ cat -n tests/inputs/the-bustle.txt $ cat -b
tests/inputs/the-bustle.txt
 1 The bustle in a house 1 The bustle
in a house
 2 The morning after death 2 The morning
after death
 3 Is solemnest of industries 3 Is
solemnest of industries
 4 Enacted upon earth,— 4 Enacted
upon earth,—
 5
 6 The sweeping up the heart, 5 The
sweeping up the heart,
 7 And putting love away 6 And putting
love away
 8 We shall not want to use again 7 We shall
not want to use again
 9 Until eternity. 8 Until
eternity.

NOTE

Oddly, you can use -b and -n together, and the -b option takes
precedence. The challenge program will allow only one or the
other.

In the following example, I’m using blargh to represent a
nonexistent file. I create the file cant-touch-this using the
touch command and use the chmod command to set permissions
that make it unreadable. (You’ll learn more about what the

000 means in Chapter 14 when you write a Rust version of

ls.) When cat encounters any file that does not exist or
cannot be opened, it will print a message to STDERR and
move to the next file:

$ touch cant-touch-this && chmod 000 cant-touch-this
$ cat tests/inputs/fox.txt blargh tests/inputs/spiders.txt
cant-touch-this
The quick brown fox jumps over the lazy dog.
cat: blargh: No such file or directory
Don't worry, spiders,
I keep house
casually.
cat: cant-touch-this: Permission denied

This is the output from the first file.

This is the error for a nonexistent file.

This is the output from the third file.

This is the error for an unreadable file.

Finally, I’ll run cat with all the files. Notice that it
starts renumbering the lines for each file:

$ cd tests/inputs
$ cat -n empty.txt fox.txt spiders.txt the-bustle.txt
 1 The quick brown fox jumps over the lazy dog.
 1 Don't worry, spiders,
 2 I keep house
 3 casually.
 1 The bustle in a house
 2 The morning after death
 3 Is solemnest of industries
 4 Enacted upon earth,—
 5
 6 The sweeping up the heart,
 7 And putting love away
 8 We shall not want to use again
 9 Until eternity.

Change into the tests/inputs directory.

Run cat with all the files and the -n option to number
the lines.

If you look at the mk-outs.sh script used to generate the
test cases, you’ll see I execute cat with all these files,
individually and together, as regular files and through
STDIN, using no flags and with the -n and -b flags. I
capture all the outputs to various files in the
tests/expected directory to use in testing.

Getting Started

The challenge program you write should be called catr
(pronounced cat-er) for a Rust version of cat. I suggest you
begin with cargo new catr to start a new application.
You’ll use all the same external crates as in Chapter 2,
plus the rand crate to create random values for testing.
Update your Cargo.toml to add the following dependencies:

https://oreil.ly/HJOPg

[dependencies]
clap = "2.33"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

You’re going to write the whole challenge program yourself
later, but first I’m going to coach you through the things
you need to know.

Starting with Tests

So far in this book, I’ve shown you how to write tests after
writing the programs to get you used to the idea of testing
and to practice the basics of the Rust language. Starting
with this chapter, I want you to think about the tests before
you start writing the program. Tests force you to consider
the program’s requirements and how you will verify that the
program works as expected. Ultimately, I want to draw your
attention to test-driven development (TDD) as described in a
book by that title written by Kent Beck (Addison-Wesley). TDD
advises we write the tests before writing the code, as shown
in Figure 3-1. Technically, TDD involves writing tests as
you add each feature, and I will demonstrate this technique
in later chapters. Because I’ve written all the tests for
the program, you might consider this more like test-first
development. Regardless of how and when the tests are
written, the point is to emphasize testing at the beginning
of the process. Once your program passes the tests, you can
use the tests to improve and refactor your code, perhaps by
reducing the lines of code or by finding a faster
implementation.

https://oreil.ly/Aved3

Figure 3-1. The test-driven development cycle starts with writing a
test and then the code that passes it.

Copy the 03_catr/tests directory into your new catr
directory. Don’t copy anything but the tests, as you will
write the rest of the code yourself. On a Unix-type system,
you can copy this directory and its contents using the cp
command with the recursive -r option:

$ cd catr
$ cp -r ~/command-line-rust/03_catr/tests .

Your project directory should have a structure like this:

$ tree -L 2
.
├── Cargo.toml
├── src
│ └── main.rs
└── tests
 ├── cli.rs
 ├── expected
 └── inputs

Run cargo test to download the dependencies, compile your
program, and run the tests, all of which should fail.
Starting with this chapter, I’ll get you started with the
basics of setting up each program, give you the info you need
to write the program, and let you finish writing it using the
tests to guide you.

Creating a Library Crate

The programs we’ve written in this book so far have been
pretty short. The typical programs you will write in your
career will likely be much longer. Starting with this
program, I suggest you divide the code into a library in

src/lib.rs and a binary in src / main.rs that will call library
functions. I believe this organization makes it easier to
test and grow applications over time.

I’ll demonstrate how to use a library with the default
“Hello, world!” then I’ll show how to use this structure
to write echor. To start, move all the important bits from
src/main.rs into a function called run in src/lib.rs. This
function will return a kind of Result to indicate success
or failure. This is similar to the TestResult type alias
from Chapter 2, but whereas TestResult always returns the
unit type () in the Ok variant, MyResult can return an Ok
that contains any type, which is represented using the
generic T in the following code:

use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

pub fn run() -> MyResult<()> {
 println!("Hello, world!");
 Ok(())
}

Import the Error trait for representing error values.

Create a MyResult to represent an Ok value for any type
T or some Err value that implements the Error trait.

Define a public (pub) function that returns either Ok
containing the unit type () or some error Err.

Print Hello, world!

Return an indication that the function ran successfully.

TIP

By default, all the variables and functions in a module are
private, which means they are accessible only to other code
within the same module. In the preceding code, I used pub to make
this a public function visible to the rest of the program.

To call the run function, change src/main.rs to the
following. Note that the functions in src/lib.rs are
available through the crate named catr:

fn main() {
 if let Err(e) = catr::run() {
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

Execute the catr::run function and check if the return
value matches Err(e), where e is some value that
implements the Error trait, which means, among other
things, that it can be printed.

Use the eprintln! (error print line) macro to print the
error message to STDERR.

Exit the program with a nonzero value to indicate an
error.

TIP

The eprint! and eprintln! macros are just like print! and
println! except that they print to STDERR.

If you execute cargo run, you should see Hello, world! as
before.

Defining the Parameters

Now that your code has a more formal structure, it’s time to
modify it to meet the criteria for echor. Let’s start by

adding the program’s command-line parameters, which I
suggest you represent using a struct called Config. A
struct definition is similar to a class definition in object-
oriented languages. In this case, we want a struct that
describes the names and types of the arguments to the
program. Specifically, echor requires a list of input
filenames and the -n and -b flags for numbering the lines of
output.

Add the following struct to src/lib.rs. It’s common to place
such definitions near the top, after the use statements:

#[derive(Debug)]
pub struct Config {
 files: Vec<String>,
 number_lines: bool,
 number_nonblank_lines: bool,
}

The derive macro adds the Debug trait so the struct can
be printed.

Define a public struct called Config.

The files will be a vector of strings.

This is a Boolean value to indicate whether or not to
print the line numbers.

https://oreil.ly/Lr8JE
https://oreil.ly/cEl5P

This is a Boolean to control printing line numbers only
for nonblank lines.

To use a struct, you create an instance of it with specific
values. In the following sketch of a get_args function, you
can see it finishes by creating a new Config with the
runtime values from the user. Add use clap::{App, Arg}
and this function to your src/lib.rs. Use what you learned
from Chapter 2 to complete this function on your own:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("catr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust cat")
 // What goes here?
 .get_matches();

 Ok(Config {
 files: ...,
 number_lines: ...,
 number_nonblank_lines: ...,
 })
}

This is a public function that returns a MyResult that
will contain either a Config on success or an error.

You should define the parameters here.

Return an Ok variant containing a Config using the
supplied values.

This means the run function needs to be updated to accept a
Config argument. For now, print it:

pub fn run(config: Config) -> MyResult<()> {
 dbg!(config);
 Ok(())
}

The function will accept a Config struct and will return
Ok with the unit type if successful.

Use the dbg! (debug) macro to print the configuration.

Following is the structure I will use for src/main.rs for
this and all the rest of the programs in this book:

fn main() {
 if let Err(e) = catr::get_args().and_then(catr::run) {

 eprintln!("{}", e);
 std::process::exit(1);
 }
}

If the catr::get_args function returns an Ok(config)
value, use Result ::and_then to pass the config to
catr::run.

If either get_args or run returns an Err, print it to
STDERR.

Exit the program with a nonzero value.

When run with the -h or --help flags, your program should
print a usage like this:

$ cargo run --quiet -- --help
catr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust cat

https://oreil.ly/a7BdC
https://oreil.ly/5J5gv

USAGE:
 catr [FLAGS] [FILE]...

FLAGS:
 -h, --help Prints help information
 -n, --number Number lines
 -b, --number-nonblank Number nonblank lines
 -V, --version Prints version information

ARGS:
 <FILE>... Input file(s) [default: -]

With no arguments, your program should print a configuration
structure like this:

$ cargo run
[src/lib.rs:52] config = Config {
 files: [
 "-",
],
 number_lines: false,
 number_nonblank_lines: false,
}

The default files should contain a dash (-) for STDIN.

The Boolean values should default to false.

Run it with some arguments and be sure the config looks
like this:

$ cargo run -- -n tests/inputs/fox.txt
[src/lib.rs:52] config = Config {
 files: [
 "tests/inputs/fox.txt",
],
 number_lines: true,
 number_nonblank_lines: false,
}

The positional file argument is parsed into the files.

The -n option causes number_lines to be true.

While the BSD version will allow both -n and -b, the
challenge program should consider these to be mutually
exclusive and generate an error when they’re used together:

$ cargo run -- -b -n tests/inputs/fox.txt
error: The argument '--number-nonblank' cannot be used with
'--number'

NOTE

Stop reading here and get your program working as described so
far. Seriously! I want you to try writing your version of this
before you read ahead. I’ll wait here until you finish.

All set? Compare what you have to my get_args function:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("catr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust cat")
 .arg(
 Arg::with_name("files")
 .value_name("FILE")
 .help("Input file(s)")
 .multiple(true)
 .default_value("-"),
)
 .arg(
 Arg::with_name("number")
 .short("n")
 .long("number")
 .help("Number lines")
 .takes_value(false)

 .conflicts_with("number_nonblank"),
)
 .arg(
 Arg::with_name("number_nonblank")
 .short("b")
 .long("number-nonblank")
 .help("Number non-blank lines")
 .takes_value(false),
)
 .get_matches();

 Ok(Config {
 files: matches.values_of_lossy("files").unwrap(),

 number_lines: matches.is_present("number"),
 number_nonblank_lines:
matches.is_present("number_nonblank"),
 })
}

This positional argument is for the files and is required
to have at least one value that defaults to a dash (-).

This is an option that has a short name -n and a long
name --number. It does not take a value because it is a
flag. When present, it will tell the program to print line
numbers. It cannot occur in conjunction with -b.

The -b|--number-nonblank flag controls whether or not
to print line numbers for nonblank lines.

Because at least one value is required, it should be safe
to call Option::unwrap.

The two Boolean options are either present or not.

TIP

Optional arguments have short and/or long names, but posi ‐
tional ones do not. You can define optional arguments before or
after positional arguments. Defining positional arguments with
min_values also implies multiple values, but that’s not the

case for optional parameters.

You should be able to pass at least a couple of the tests if
you execute cargo test at this point. There will be a great
deal of output showing you all the failing test output, but
don’t despair. You will soon see a fully passing test suite.

Iterating Through the File Arguments

Now that you have validated all the arguments, you are ready
to process the files and create the correct output. First,
modify the run function in src/lib.rs to print each
filename:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 println!("{}", filename);
 }
 Ok(())
}

Iterate through each filename.

Print the filename.

Run the program with some input files. In the following
example, the bash shell will expand the file glob *.txt
into all filenames that end with the extension .txt:

1

https://oreil.ly/kGbiA

$ cargo run -- tests/inputs/*.txt
tests/inputs/empty.txt
tests/inputs/fox.txt
tests/inputs/spiders.txt
tests/inputs/the-bustle.txt

Windows PowerShell can expand file globs using Get-
ChildItem:

> cargo run -q -- -n (Get-ChildItem .\tests\inputs*.txt)
C:\Users\kyclark\work\command-line-
rust\03_catr\tests\inputs\empty.txt
C:\Users\kyclark\work\command-line-
rust\03_catr\tests\inputs\fox.txt
C:\Users\kyclark\work\command-line-
rust\03_catr\tests\inputs\spiders.txt
C:\Users\kyclark\work\command-line-
rust\03_catr\tests\inputs\the-bustle.txt

Opening a File or STDIN

The next step is to try to open each filename. When the
filename is a dash, you should open STDIN; otherwise,
attempt to open the given filename and handle errors. For the
following code, you will need to expand your imports in
src/lib.rs to the following:

use clap::{App, Arg};
use std::error::Error;
use std::fs::File;
use std::io::{self, BufRead, BufReader};

This next step is a bit tricky, so I’d like to provide an
open function for you to use. In the following code, I’m

using the match keyword, which is similar to a switch
statement in C. Specifically, I’m matching on whether the
given filename is equal to a dash (-) or something else,
which is specified using the wildcard _:

fn open(filename: &str) -> MyResult<Box<dyn BufRead>> {
 match filename {
 "-" => Ok(Box::new(BufReader::new(io::stdin()))),

 _ =>
Ok(Box::new(BufReader::new(File::open(filename)?))),
 }
}

The function will accept a filename and will return either
an error or a boxed value that implements the BufRead
trait.

When the filename is a dash (-), read from
std::io::stdin.

Otherwise, use File::open to try to open the given file
or propagate an error.

If File::open is successful, the result will be a
filehandle, which is a mechanism for reading the contents of
a file. Both a filehandle and std::io::stdin implement the
BufRead trait, which means the values will, for instance,
respond to the BufRead::lines function to produce lines of
text. Note that BufRead::lines will remove any line
endings, such as \r\n on Windows and \n on Unix.

Again you see I’m using a Box to create a pointer to heap-
allocated memory to hold the filehandle. You may wonder if
this is completely necessary. I could try to write the
function without using Box:

// This will not compile
fn open(filename: &str) -> MyResult<dyn BufRead> {
 match filename {
 "-" => Ok(BufReader::new(io::stdin())),
 _ => Ok(BufReader::new(File::open(filename)?)),

https://oreil.ly/c5fGP
https://oreil.ly/TtQvx
https://oreil.ly/Aj1pC
https://oreil.ly/KhmCp
https://oreil.ly/r9nut

 }
}

But if I try to compile this code, I get the following error:

error[E0277]: the size for values of type `(dyn
std::io::BufRead + 'static)`
cannot be known at compilation time
 --> src/lib.rs:88:28
 |
88 | fn open(filename: &str) -> MyResult<dyn BufRead> {
 | ^^^^^^^^^^^^^^^^^^^^^
 | doesn't have a size known
at compile-time
 |
 = help: the trait `Sized` is not implemented for `(dyn
std::io::BufRead
 + 'static)`

The compiler doesn’t have enough information from dyn
BufRead to know the size of the return type. If a variable
doesn’t have a fixed, known size, then Rust can’t store it
on the stack. The solution is to instead allocate memory on
the heap by putting the return value into a Box, which is a
pointer with a known size.

The preceding open function is really dense. I can
appreciate if you think that it’s more than a little
complicated; however, it handles basically any error you will
encounter. To demonstrate this, change your run to the
following:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("Failed to open {}: {}",
filename, err),
 Ok(_) => println!("Opened {}", filename),
 }
 }

 Ok(())
}

Iterate through the filenames.

Try to open the filename. Note the use of & to borrow the
variable.

Print an error message to STDERR when open fails.

Print a success message when open works.

Try to run your program with the following:

1. A valid input file such as tests/inputs/fox.txt

2. A nonexistent file

3. An unreadable file

For the last option, you can create a file that cannot be
read like so:

$ touch cant-touch-this && chmod 000 cant-touch-this

Run your program and verify your code gracefully prints error
messages for bad input files and continues to process the
valid ones:

$ cargo run -- blargh cant-touch-this tests/inputs/fox.txt
Failed to open blargh: No such file or directory (os error
2)
Failed to open cant-touch-this: Permission denied (os error
13)
Opened tests/inputs/fox.txt

At this point, you should be able to pass cargo test
skips_bad_file. Now that you are able to open and read

valid input files, I want you to finish the program on your
own. Can you figure out how to read the opened file line by
line? Start with tests / inputs/fox.txt, which has only one
line. You should be able to see the following output:

$ cargo run -- tests/inputs/fox.txt
The quick brown fox jumps over the lazy dog.

Verify that you can read STDIN by default. In the following
command, I use the | to pipe STDOUT from the first command
to the STDIN of the second command:

$ cat tests/inputs/fox.txt | cargo run
The quick brown fox jumps over the lazy dog.

The output should be the same when providing a dash as the
filename. In the following command, I will use the bash
redirect operator < to take input from the given filename
and provide it to STDIN:

$ cargo run -- - < tests/inputs/fox.txt
The quick brown fox jumps over the lazy dog.

Next, try an input file with more than one line and try to
number the lines with -n:

$ cargo run -- -n tests/inputs/spiders.txt
 1 Don't worry, spiders,
 2 I keep house
 3 casually.

Then try to skip blank lines in the numbering with -b:

$ cargo run -- -b tests/inputs/the-bustle.txt
 1 The bustle in a house
 2 The morning after death
 3 Is solemnest of industries

 4 Enacted upon earth,—

 5 The sweeping up the heart,
 6 And putting love away
 7 We shall not want to use again
 8 Until eternity.

Run cargo test often to see which tests are failing.

Using the Test Suite

Now is a good time to examine the tests more closely so you
can understand both how to write tests and what they expect
of your program. The tests in tests/cli.rs are similar to
those from Chapter 2, but I’ve added a little more
organization. For instance, I use the const keyword to
create several constant &str values at the top of that
module that I use throughout the crate. I use a common
convention of ALL_CAPS names to highlight the fact that
they are scoped or visible throughout the crate:

const PRG: &str = "catr";
const EMPTY: &str = "tests/inputs/empty.txt";
const FOX: &str = "tests/inputs/fox.txt";
const SPIDERS: &str = "tests/inputs/spiders.txt";
const BUSTLE: &str = "tests/inputs/the-bustle.txt";

To test that the program will die when given a nonexistent
file, I use the rand crate to generate a random filename
that does not exist. For the following function, I will use
rand::{distributions::Alphanumeric, Rng} to import
various parts of the crate I need in this function:

fn gen_bad_file() -> String {
 loop {
 let filename: String = rand::thread_rng()
 .sample_iter(&Alphanumeric)
 .take(7)

https://oreil.ly/CY0Hn
https://oreil.ly/HJOPg

 .map(char::from)
 .collect();

 if fs::metadata(&filename).is_err() {
 return filename;
 }
 }
}

The function will return a String, which is a
dynamically generated string closely related to the str
struct I’ve been using.

Start an infinite loop.

Create a random string of seven alphanumeric characters.

fs::metadata returns an error when the given filename
does not exist, so return the nonexistent filename.

In the preceding function, I use filename two times after
creating it. The first time I borrow it using &filename,
and the second time I don’t use the ampersand. Try removing
the & and running the code. You should get an error message
stating that ownership of the filename value is moved into
fs::metadata:

error[E0382]: use of moved value: `filename`
 --> tests/cli.rs:37:20
 |
30 | let filename: String = rand::thread_rng()
 | -------- move occurs because `filename`
has type `String`,
 | which does not implement the
`Copy` trait
...
36 | if fs::metadata(filename).is_err() {
 | -------- value moved here

https://oreil.ly/X32Yh
https://oreil.ly/VsRxb

37 | return filename;
 | ^^^^^^^^ value used here after move

Effectively, the fs::metadata function consumes the
filename variable, leaving it unusable. The & shows I only
want to borrow a reference to the variable. Don’t worry if
you don’t completely understand that yet. I’m only showing
the gen_bad_file function so that you understand how it is
used in the skips_bad_file test:

#[test]
fn skips_bad_file() -> TestResult {
 let bad = gen_bad_file();
 let expected = format!("{}: .* [(]os error 2[)]", bad);

 Command::cargo_bin(PRG)?
 .arg(&bad)
 .assert()
 .success()
 .stderr(predicate::str::is_match(expected)?);
 Ok(())
}

Generate the name of a nonexistent file.

The expected error message should include the filename and
the string os error 2 on both Windows and Unix platforms.

Run the program with the bad file and verify that STDERR
matches the expected pattern.

The program should not fail because bad files should only
generate warnings and not kill the process.

TIP

In the preceding function, I used the format! macro to generate a
new String. This macro works like print! except that it returns
the value rather than printing it.

I created a helper function called run to run the program
with input arguments and verify that the output matches the
text in the file generated by mk-outs.sh:

fn run(args: &[&str], expected_file: &str) -> TestResult {

 let expected = fs::read_to_string(expected_file)?;
 Command::cargo_bin(PRG)?
 .args(args)
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

The function accepts a slice of &str arguments and the
filename with the expected output. The function returns a
TestResult.

Try to read the expected output file.

Execute the program with the arguments and verify it runs
successfully and produces the expected output.

I use this function like so:

#[test]
fn bustle() -> TestResult {
 run(&[BUSTLE], "tests/expected/the-bustle.txt.out")
}

https://oreil.ly/rgrsJ

Run the program with the BUSTLE input file and verify
that the output matches the output produced by mk-outs.sh.

I also wrote a helper function to provide input via STDIN:

fn run_stdin(
 input_file: &str,
 args: &[&str],
 expected_file: &str,
) -> TestResult {
 let input = fs::read_to_string(input_file)?;
 let expected = fs::read_to_string(expected_file)?;
 Command::cargo_bin(PRG)?
 .args(args)
 .write_stdin(input)
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

The first argument is the filename containing the text
that should be given to STDIN.

Try to read the input and expected files.

Try to run the program with the given arguments and STDIN
and verify the output.

This function is used similarly:

#[test]
fn bustle_stdin() -> TestResult {
 run_stdin(BUSTLE, &["-"], "tests/expected/the-
bustle.txt.stdin.out")
}

Run the program using the contents of the given filename
as STDIN and a dash as the input filename. Verify the
output matches the expected value.

NOTE

That should be enough for you to finish the rest of the program.
Off you go! Come back when you’re done.

Solution

I hope you found this an interesting and challenging program
to write. I’ll show you how to modify the program step by
step to reach a final solution, which you can find in the
book’s repository.

Reading the Lines in a File

To start, I will print the lines of files that are opened
successfully:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),

 Ok(file) => {
 for line_result in file.lines() {
 let line = line_result?;
 println!("{}", line);
 }
 }
 }
 }
 Ok(())
}

Print the filename and error when there is a problem
opening a file.

Iterate over each line_result value from
BufRead::lines.

Either unpack an Ok value from line_result or propagate
an error.

Print the line.

NOTE

When reading the lines from a file, you don’t get the lines
directly from the filehandle but instead get a std::io::Result,
which is a type “broadly used across std::io for any operation
which may produce an error.” Reading and writing files falls
into the category of I/O (input/output), which depends on
external resources like the operating and filesystems. While
it’s unlikely that reading a line from a filehandle will fail,
the point is that it could fail.

If you run cargo test at this point, you should pass about
half of the tests, which is not bad for so few lines of code.

Printing Line Numbers

Next is to add the printing of line numbers for the -n|--
number option. One solution that will likely be familiar to
C programmers would be something like this:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {

https://oreil.ly/kxFes

 let mut line_num = 0;
 for line_result in file.lines() {
 let line = line_result?;
 line_num += 1;

 if config.number_lines {
 println!("{:>6}\t{}", line_num,
line);
 } else {
 println!("{}", line);
 }
 }
 }
 }
 }
 Ok(())
}

Initialize a mutable counter variable to hold the line
number.

Add 1 to the line number.

Check if the user wants line numbers.

If so, print the current line number in a right-justified
field six characters wide followed by a tab character and
then the line of text.

Otherwise, print the line.

Recall that all variables in Rust are immutable by default,
so it’s necessary to add mut to line_num, as I intend to
change it. The += operator is a compound assignment that
adds the righthand value 1 to line_num to increment it. Of

note, too, is the formatting syntax {:>6} that indicates the
width of the field as six characters with the text aligned to
the right. (You can use < for left-justified and ^ for

2

centered text.) This syntax is similar to printf in C,
Perl, and Python’s string formatting.

If I run the program at this point, it looks pretty good:

$ cargo run -- tests/inputs/spiders.txt -n
 1 Don't worry, spiders,
 2 I keep house
 3 casually.

While this works adequately, I’d like to point out a more
idiomatic solution using Iterator::enumerate. This method
will return a tuple containing the index position and value
for each element in an iterable, which is something that can
produce values until exhausted:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 for (line_num, line_result) in
file.lines().enumerate() {
 let line = line_result?;
 if config.number_lines {
 println!("{:>6}\t{}", line_num + 1,
line);
 } else {
 println!("{}", line);
 }
 }
 }
 }
 }
 Ok(())
}

The tuple values from Iterator::enumerate can be
unpacked using pattern matching.

https://oreil.ly/gXM7q
https://oreil.ly/Cmywl

Numbering from enumerate starts at 0, so add 1 to mimic
cat, which starts at 1.

This will create the same output, but now the code avoids
using a mutable value. I can execute cargo test fox to run
all the tests with the word fox in their name, and I find
that two out of three pass. The program fails on the -b
flag, so next I need to handle printing the line numbers only
for nonblank lines. Notice in this version, I’m also going
to remove line_result and shadow the line variable:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 let mut last_num = 0;
 for (line_num, line) in
file.lines().enumerate() {
 let line = line?;
 if config.number_lines {
 println!("{:>6}\t{}", line_num + 1,
line);
 } else if config.number_nonblank_lines
{
 if !line.is_empty() {
 last_num += 1;
 println!("{:>6}\t{}", last_num,
line);
 } else {
 println!();
 }
 } else {
 println!("{}", line);
 }
 }
 }
 }
 }

 Ok(())
}

Initialize a mutable variable for the number of the last
nonblank line.

Shadow the line with the result of unpacking the Result.

Handle printing line numbers.

Handle printing line numbers for nonblank lines.

If the line is not empty, increment last_num and print
the output.

If the line is empty, print a blank line.

If there are no numbering options, print the line.

NOTE

Shadowing a variable in Rust is when you reuse a variable’s name
and set it to a new value. Arguably the line_result/line code
may be more explicit and readable, but reusing line in this
context is more Rustic code you’re likely to encounter.

If you run cargo test, you should pass all the tests.

Going Further

You have a working program now, but you don’t have to stop
there. If you’re up for an additional challenge, try
implementing the other options shown in the manual pages for
both the BSD and GNU versions. For each option, use cat to

create the expected output file, then expand the tests to
check that your program creates this same output. I’d also
recommend you check out bat, which is another Rust clone of
cat (“with wings”), for a more complete implementation.

The numbered lines output of cat -n is similar in ways to
nl, a “line numbering filter.” cat is also a bit similar
to programs that will show you a page or screen full of text
at a time, so-called pagers like more and less. Consider

implementing these programs. Read the manual pages, create
the test output, and copy the ideas from this project to
write and test your versions.

Summary

You made big strides in this chapter, creating a much more
complex program than in the previous chapters. Consider what
you learned:

You separated your code into library (src/lib.rs) and
binary (src/main.rs) crates, which can make it easier
to organize and encapsulate ideas.

You created your first struct, which is a bit like a
class declaration in other languages. This struct
allowed you to create a complex data structure called
Config to describe the inputs for your program.

By default, all values and functions are immutable and
private. You learned to use mut to make a value
mutable and pub to make a value or function public.

You used a testing-first approach where all the tests
exist before the program is even written. When the
program passes all the tests, you can be confident

3

https://oreil.ly/QgMnb

your program meets all the specifications encoded in
the tests.

You saw how to use the rand crate to generate a
random string for a nonexistent file.

You figured out how to read lines of text from both
STDIN and regular files.

You used the eprintln! macro to print to STDERR and
format! to dynamically generate a new string.

You used a for loop to visit each element in an
iterable.

You found that the Iterator::enumerate method will
return both the index and the element as a tuple,
which is useful for numbering the lines of text.

You learned to use a Box that points to a filehandle
to read STDIN or a regular file.

In the next chapter, you’ll learn a good deal more about
reading files by lines, bytes, or characters.

1 Glob is short for global, an early Unix program that would
expand wildcard characters into filepaths. Nowadays, the shell
handles glob patterns directly.

2 Note that Rust does not have a unary ++ operator, so you
cannot use line_num++ to increment a variable by 1.

3 more shows you a page of text with “More” at the bottom to
let you know you can continue. Obviously someone decided to be
clever and named their clone less, but it does the same thing.

Chapter 4. Head Aches

Stand on your own head for a change / Give me some skin to

call my own

— They Might Be Giants, “Stand on Your Own
Head” (1988)

The challenge in this chapter is to implement the head
program, which will print the first few lines or bytes of one
or more files. This is a good way to peek at the contents of
a regular text file and is often a much better choice than
cat. When faced with a directory of something like output
files from some process, using head can help you quickly
scan for potential problems. It’s particularly useful when
dealing with extremely large files, as it will only read the
first few bytes or lines of a file (as opposed to cat, which
will always read the entire file).

In this chapter, you will learn how to do the following:

Create optional command-line arguments that accept
values

Parse a string into a number

Write and run a unit test

Use a match arm with a guard

Convert between types using From, Into, and as

Use take on an iterator or a filehandle

Preserve line endings while reading a filehandle

Read bytes versus characters from a filehandle

Use the turbofish operator

How head Works

I’ll start with an overview of head so you know what’s

expected of your program. There are many implementations of
the original AT&T Unix operating system, such as Berkeley
Standard Distribution (BSD), SunOS/Solaris, HP-UX, and Linux.
Most of these operating systems have some version of a head
program that will default to showing the first 10 lines of 1
or more files. Most will probably have options -n to control
the number of lines shown and -c to instead show some number
of bytes. The BSD version has only these two options, which I
can see via man head:

HEAD(1) BSD General Commands Manual
HEAD(1)

NAME
 head -- display first lines of a file

SYNOPSIS
 head [-n count | -c bytes] [file ...]

DESCRIPTION
 This filter displays the first count lines or bytes of
each of the speci-
 fied files, or of the standard input if no files are
specified. If count
 is omitted it defaults to 10.

 If more than a single file is specified, each file is
preceded by a
 header consisting of the string ''==> XXX <=='' where
''XXX'' is the name
 of the file.

EXIT STATUS
 The head utility exits 0 on success, and >0 if an
error occurs.

SEE ALSO
 tail(1)

HISTORY
 The head command appeared in PWB UNIX.

BSD June 6, 1993
BSD

With the GNU version, I can run head --help to read the
usage:

Usage: head [OPTION]... [FILE]...
Print the first 10 lines of each FILE to standard output.
With more than one FILE, precede each with a header giving
the file name.
With no FILE, or when FILE is -, read standard input.

Mandatory arguments to long options are mandatory for short
options too.
 -c, --bytes=[-]K print the first K bytes of each
file;
 with the leading '-', print
all but the last
 K bytes of each file
 -n, --lines=[-]K print the first K lines instead
of the first 10;
 with the leading '-', print
all but the last
 K lines of each file
 -q, --quiet, --silent never print headers giving file
names
 -v, --verbose always print headers giving file
names
 --help display this help and exit
 --version output version information and exit

K may have a multiplier suffix:
b 512, kB 1000, K 1024, MB 1000*1000, M 1024*1024,
GB 1000*1000*1000, G 1024*1024*1024, and so on for T, P, E,
Z, Y.

Note the ability with the GNU version to specify -n and -c
with negative numbers and using suffixes like K, M, etc.,
which the challenge program will not implement. In both the
BSD and GNU versions, the files are optional positional
arguments that will read STDIN by default or when a filename
is a dash.

To demonstrate how head works, I’ll use the files found in

04_headr/tests/inputs:

empty.txt: an empty file

one.txt: a file with one line of text

two.txt: a file with two lines of text

three.txt: a file with three lines of text and Windows
line endings

ten.txt: a file with 10 lines of text

Given an empty file, there is no output, which you can verify
with head tests/inputs/empty.txt. As mentioned, head
will print the first 10 lines of a file by default:

$ head tests/inputs/ten.txt
one
two
three
four
five
six
seven
eight
nine
ten

The -n option allows you to control the number of lines that
are shown. For instance, I can choose to show only the first
two lines with the following command:

$ head -n 2 tests/inputs/ten.txt
one
two

The -c option shows only the given number of bytes from a
file. For instance, I can show just the first two bytes:

$ head -c 2 tests/inputs/ten.txt
on

Oddly, the GNU version will allow you to provide both -n and
-c and defaults to showing bytes. The BSD version will
reject both arguments:

$ head -n 1 -c 2 tests/inputs/one.txt
head: can't combine line and byte counts

Any value for -n or -c that is not a positive integer will
generate an error that will halt the program, and the error
will echo back the illegal value:

$ head -n 0 tests/inputs/one.txt
head: illegal line count -- 0
$ head -c foo tests/inputs/one.txt
head: illegal byte count -- foo

When there are multiple arguments, head adds a header and
inserts a blank line between each file. Notice in the
following output that the first character in tests
/ inputs/one.txt is an Ö, a silly multibyte character I
inserted to force the program to discern between bytes and
characters:

$ head -n 1 tests/inputs/*.txt
==> tests/inputs/empty.txt <==

==> tests/inputs/one.txt <==
Öne line, four words.

==> tests/inputs/ten.txt <==
one

==> tests/inputs/three.txt <==
Three

==> tests/inputs/two.txt <==
Two lines.

With no file arguments, head will read from STDIN:

$ cat tests/inputs/ten.txt | head -n 2
one
two

As with cat in Chapter 3, any nonexistent or unreadable

file is skipped and a warning is printed to STDERR. In the
following command, I will use blargh as a nonexistent file
and will create an unreadable file called cant-touch-this:

$ touch cant-touch-this && chmod 000 cant-touch-this
$ head blargh cant-touch-this tests/inputs/one.txt
head: blargh: No such file or directory
head: cant-touch-this: Permission denied
==> tests/inputs/one.txt <==
Öne line, four words.

This is as much as this chapter’s challenge program will
need to implement.

Getting Started

You might have anticipated that the program I want you to
write will be called headr (pronounced head-er). Start by
running cargo new headr, then add the following
dependencies to your Cargo.toml:

[dependencies]
clap = "2.33"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

Copy my 04_headr/tests directory into your project directory,
and then run cargo test. All the tests should fail. Your
mission, should you choose to accept it, is to write a
program that will pass these tests. I propose you again split

your source code so that src/main.rs looks like this:

fn main() {
 if let Err(e) = headr::get_args().and_then(headr::run)
{
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

Begin your src/lib.rs by bringing in clap and the Error
trait and declaring MyResult, which you can copy from the
source code in Chapter 3:

use clap::{App, Arg};
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

The program will have three parameters that can be
represented with a Config struct:

#[derive(Debug)]
pub struct Config {
 files: Vec<String>,
 lines: usize,
 bytes: Option<usize>,
}

files will be a vector of strings.

The number of lines to print will be of the type usize.

bytes will be an optional usize.

The primitive usize is the pointer-sized unsigned integer
type, and its size varies from 4 bytes on a 32-bit operating
system to 8 bytes on a 64-bit system. Rust also has an isize
type, which is a pointer-sized signed integer, which you
would need to represent negative numbers as the GNU version
does. Since you only want to store positive numbers à la the
BSD version, you can stick with an unsigned type. Note that
Rust also has the types u32/i32 (unsigned/signed 32-bit
integer) and u64/i64 (unsigned/signed 64-bit integer) if
you want finer control over how large these values can be.

The lines and bytes parameters will be used in a couple of
functions, one of which expects a usize and the other a
u64. This will provide an opportunity later to discuss how
to convert between types. Your program should use 10 as the
default value for lines, but bytes will be an Option,
which I first introduced in Chapter 2. This means that
bytes will either be Some<usize> if the user provides a
valid value or None if they do not.

Next, create your get_args function in src/lib.rs with the
following outline. You need to add the code to parse the
arguments and return a Config struct:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("headr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust head")
 // What goes here?

https://oreil.ly/lj6PZ
https://oreil.ly/WkWZs

 .get_matches();

 Ok(Config {
 files: ...
 lines: ...
 bytes: ...
 })
}

TIP

All the command-line arguments for this program are optional
because files will default to a dash (-), lines will default to
10, and bytes can be left out. The optional arguments in
Chapter 3 were flags, but here lines and bytes will need
Arg::takes_value set to true.

The values that clap returns will be strings, so you will
need to convert lines and bytes to integers in order to
place them into the Config struct. In the next section,
I’ll show you how to do this. In the meantime, create a run
function that prints the configuration:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:#?}", config);
 Ok(())
}

Pretty-print the config. You could also use dbg!
(config).

Return a successful result.

Writing a Unit Test to Parse a String into a

Number

https://oreil.ly/jrddl

All command-line arguments are strings, and so it falls on
our code to check that the lines and bytes values are valid
integer values. In the parlance of computer science, we must
parse these values to see if they look like positive whole
numbers. The str::parse function will parse a string slice
into some other type, such as a usize. This function will
return a Result that will be an Err variant when the value
cannot be parsed into a number, or an Ok containing the
converted number. I’ve written a function called
parse_positive_int that attempts to parse a string value
into a positive usize value. Add the following function to
your src/lib.rs:

fn parse_positive_int(val: &str) -> MyResult<usize> {
 unimplemented!();
}

This function accepts a &str and will either return a
positive usize or an error.

The unimplemented! macro will cause the program to
panic or prematurely terminate with the message not
implemented.

TIP

You can manually call the panic! macro to kill the program with a
given error.

In all the previous chapters, we’ve used only integration
tests that run and test the program as a whole from the
command line just as the user will do. Next, I will show you
how to write a unit test to check the parse_positive_int

https://oreil.ly/1DPIe
https://oreil.ly/hqKK8
https://oreil.ly/DrERd

function in isolation. I recommend adding this just after
parse_positive_int function:

#[test]
fn test_parse_positive_int() {
 // 3 is an OK integer
 let res = parse_positive_int("3");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 3);

 // Any string is an error
 let res = parse_positive_int("foo");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(),
"foo".to_string());

 // A zero is an error
 let res = parse_positive_int("0");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(),
"0".to_string());
}

NOTE

To run just this one test, execute cargo test parse_posi tive
_int. Stop reading now and write a version of the function that
passes the test. I’ll wait here until you finish.

TIME PASSES.
AUTHOR GETS A CUP OF TEA AND CONSIDERS HIS LIFE CHOICES.
AUTHOR RETURNS TO THE NARRATIVE.

How did that go? Swell, I bet! Here is the function I wrote
that passes the preceding tests:

fn parse_positive_int(val: &str) -> MyResult<usize> {
 match val.parse() {
 Ok(n) if n > 0 => Ok(n),

 _ => Err(From::from(val)),
 }
}

Attempt to parse the given value. Rust infers the usize
type from the return type.

If the parse succeeds and the parsed value n is greater
than 0, return it as an Ok variant.

For any other outcome, return an Err with the given
value.

I’ve used match several times so far, but this is the first
time I’m showing that match arms can include a guard, which
is an additional check after the pattern match. I don’t know
about you, but I think that’s pretty sweet. Without the
guard, I would have to write something much longer and more
redundant, like this:

fn parse_positive_int(val: &str) -> MyResult<usize> {
 match val.parse() {
 Ok(n) => {
 if n > 0 {
 Ok(n)
 } else {
 Err(From::from(val))
 }
 }
 _ => Err(From::from(val)),
 }
}

After the value is parsed as a usize, check if it is
greater than 0. If so, return an Ok.

Otherwise, turn the given value into an error.

Converting Strings into Errors

When I’m unable to parse a given string value into a
positive integer, I want to return the original string so it
can be included in an error message. To do this in the
parse_positive_int function, I am using the redundantly
named From::from to turn the input &str value into an
Error. Consider the following version, where I put the
unparsable string directly into the Err:

fn parse_positive_int(val: &str) -> MyResult<usize> {
 match val.parse() {
 Ok(n) if n > 0 => Ok(n),
 _ => Err(val), // This will not compile
 }
}

If I try to compile this, I get the following error:

error[E0308]: mismatched types
 --> src/lib.rs:71:18
 |
71 | _ => Err(val),
 | ^^^ expected struct `Box`, found
`&str`
 |
 = note: expected struct `Box<dyn std::error::Error>`
 found reference `&str`
 = note: for more on the distinction between the stack
and the heap,
 read https://doc.rust-lang.org/book/ch15-01-box.html,
 https://doc.rust-lang.org/rust-by-
example/std/box.html, and
 https://doc.rust-lang.org/std/boxed/index.html
 help: store this in the heap by calling `Box::new`
 |
71 | _ => Err(Box::new(val)),
 | +++++++++ +

https://oreil.ly/oPiK9

The problem is that the function is expected to return a
MyResult, which is defined as either an Ok<T> for any type
T or something that implements the Error trait and which is
stored in a Box:

type MyResult<T> = Result<T, Box<dyn Error>>;

In the preceding code, &str neither implements Error nor
lives in a Box. I can try to fix this according to the
compiler error suggestions by placing the value into a Box.
Unfortunately, this still won’t compile as I still haven’t
satisfied the Error trait:

error[E0277]: the trait bound `str: std::error::Error` is
not satisfied
 --> src/lib.rs:71:18
 |
71 | _ => Err(Box::new(val)),
 | ^^^^^^^^^^^^^ the trait
`std::error::Error`
 | is not implemented for
`str`
 |
 = note: required because of the requirements on the impl
of
 `std::error::Error` for `&str`
 = note: required for the cast to the object type `dyn
std::error::Error`

Enter the std::convert::From trait, which helps convert
from one type to another. As the documentation states:

The From is also very useful when performing error
handling. When constructing a function that is capable of

failing, the return type will generally be of the form

Result<T, E>. The From trait simplifies error handling
by allowing a function to return a single error type that

encapsulates multiple error types.

https://oreil.ly/oPiK9

Figure 4-1 shows that I can convert &str into an Error
using either std:: con vert::From or
std::convert::Into. They each accomplish the same task,
but val.into() is the shortest thing to type.

Figure 4-1. There are many ways to convert a &str to an Error
using From and Into traits.

Now that you have a way to convert a string to a number,
integrate it into your get_args. See if you can get your
program to print a usage like the following. Note that I use
the short and long names from the GNU version:

$ cargo run -- -h
headr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust head

USAGE:
 headr [OPTIONS] [FILE]...

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

OPTIONS:
 -c, --bytes <BYTES> Number of bytes
 -n, --lines <LINES> Number of lines [default: 10]

https://oreil.ly/rNiJk

ARGS:
 <FILE>... Input file(s) [default: -]

Run the program with no inputs and verify the defaults are
correctly set:

$ cargo run
Config {
 files: [
 "-",
],
 lines: 10,
 bytes: None,
}

files should default to a dash (-) as the filename.

The number of lines should default to 10.

bytes should be None.

Now run the program with arguments and ensure they are
correctly parsed:

$ cargo run -- -n 3 tests/inputs/one.txt
Config {
 files: [
 "tests/inputs/one.txt",
],
 lines: 3,
 bytes: None,
}

The positional argument tests/inputs/one.txt is parsed as
one of the files.

The -n option for lines sets this to 3.

The -b option for bytes defaults to None.

If I provide more than one positional argument, they will all
go into files, and the -c argument will go into bytes. In
the following command, I’m again relying on the bash shell
to expand the file glob *.txt into all the files ending in
.txt. PowerShell users should refer to the equivalent use of
Get-ChildItem shown in the section “Iterating Through the

File Arguments”:

$ cargo run -- -c 4 tests/inputs/*.txt
Config {
 files: [
 "tests/inputs/empty.txt",
 "tests/inputs/one.txt",
 "tests/inputs/ten.txt",
 "tests/inputs/three.txt",
 "tests/inputs/two.txt",
],
 lines: 10,
 bytes: Some(
 4,
),
}

There are four files ending in .txt.

lines is still set to the default value of 10.

The -c 4 results in the bytes now being Some(4).

Any value for -n or -c that cannot be parsed into a positive
integer should cause the program to halt with an error:

$ cargo run -- -n blargh tests/inputs/one.txt
illegal line count -- blargh

$ cargo run -- -c 0 tests/inputs/one.txt
illegal byte count -- 0

The program should disallow -n and -c being present
together. Be sure to consult the clap documentation as you
figure this out:

$ cargo run -- -n 1 -c 1 tests/inputs/one.txt
error: The argument '--lines <LINES>' cannot be used with
'--bytes <BYTES>'

NOTE

Just parsing and validating the arguments is a challenge, but I
know you can do it. Stop reading here and get your program to
pass all the tests included with cargo test dies:

running 3 tests
test dies_bad_lines ... ok
test dies_bad_bytes ... ok
test dies_bytes_and_lines ... ok

Defining the Arguments

Welcome back. Now that your program can pass all of the tests
included with cargo test dies, compare your solution to
mine. Note that the two options for lines and bytes will
take values. This is different from the flags implemented in
Chapter 3 that are used as Boolean values:

 let matches = App::new("headr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust head")
 .arg(
 Arg::with_name("lines")
 .short("n")

https://oreil.ly/X0qVZ

 .long("lines")
 .value_name("LINES")
 .help("Number of lines")
 .default_value("10"),
)
 .arg(
 Arg::with_name("bytes")
 .short("c")
 .long("bytes")
 .value_name("BYTES")
 .takes_value(true)
 .conflicts_with("lines")
 .help("Number of bytes"),
)
 .arg(
 Arg::with_name("files")
 .value_name("FILE")
 .help("Input file(s)")
 .multiple(true)
 .default_value("-"),
)
 .get_matches();

The lines option takes a value and defaults to 10.

The bytes option takes a value, and it conflicts with the
lines parameter so that they are mutually exclusive.

The files parameter is positional, required, takes one or
more values, and defaults to a dash (-).

TIP

The Arg::value_name will be printed in the usage documentation,
so be sure to choose a descriptive name. Don’t confuse this with
the Arg::with_name that uniquely defines the name of the
argument for accessing within your code.

https://oreil.ly/PVQjm
https://oreil.ly/HfIXn

Following is how I can use parse_positive_int inside
get_args to validate lines and bytes. When the function
returns an Err variant, I use ? to propagate the error to
main and end the program; otherwise, I return the Config:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("headr")... // Same as before

 let lines = matches
 .value_of("lines")
 .map(parse_positive_int)
 .transpose()
 .map_err(|e| format!("illegal line count -- {}",
e))?;

 let bytes = matches
 .value_of("bytes")
 .map(parse_positive_int)
 .transpose()
 .map_err(|e| format!("illegal byte count -- {}",
e))?;

 Ok(Config {
 files: matches.values_of_lossy("files").unwrap(),

 lines: lines.unwrap(),
 bytes
 })
}

ArgMatches::value_of returns an Option<&str>.

Use Option::map to unpack a &str from Some and send it
to parse_posi tive _int.

The result of Option::map will be an Option<Result>,
and Option::transpose will turn this into a
Result<Option>.

https://oreil.ly/DHODx
https://oreil.ly/JaDYG
https://oreil.ly/QCi0s

In the event of an Err, create an informative error
message. Use ? to propagate an Err or unpack the Ok
value.

Do the same for bytes.

The files option should have at least one value, so it
should be safe to call Option::unwrap.

The lines argument has a default value and is safe to
unwrap.

The bytes argument should be left as an Option. Use the
struct field init shorthand since the name of the field
is the same as the variable.

In the preceding code, I could have written the Config with
every key/value pair like so:

Ok(Config {
 files: matches.values_of_lossy("files").unwrap(),
 lines: lines.unwrap(),
 bytes: bytes,
})

While that is valid code, it’s not idiomatic Rust. The Rust
code linter, Clippy, will suggest using field init shorthand:

$ cargo clippy
warning: redundant field names in struct initialization
 --> src/lib.rs:61:9
 |
61 | bytes: bytes,
 | ^^^^^^^^^^^^ help: replace it with: `bytes`
 |
 = note: `#[warn(clippy::redundant_field_names)]` on by
default
 = help: for further information visit https://rust-

https://oreil.ly/PotJu

lang.github.io/
 rust-clippy/master/index.html#redundant_field_names

It’s quite a bit of work to validate all the user input, but
now I have some assurance that I can proceed with good data.

Processing the Input Files

This challenge program should handle the input files just
like the one in Chapter 3, so I suggest you add the open
function to src/lib.rs:

fn open(filename: &str) -> MyResult<Box<dyn BufRead>> {
 match filename {
 "-" => Ok(Box::new(BufReader::new(io::stdin()))),
 _ =>
Ok(Box::new(BufReader::new(File::open(filename)?))),
 }
}

Be sure to add all the required dependencies:

use clap::{App, Arg};
use std::error::Error;
use std::fs::File;
use std::io::{self, BufRead, BufReader};

Expand your run function to try opening the files, printing
errors as you encounter them:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),

 Ok(_) => println!("Opened {}", filename),
 }
 }
 Ok(())
}

Iterate through each of the filenames.

Attempt to open the given file.

Print errors to STDERR.

Print a message that the file was successfully opened.

Run your program with a good file and a bad file to ensure it
seems to work. In the following command, blargh represents a
nonexistent file:

$ cargo run -- blargh tests/inputs/one.txt
blargh: No such file or directory (os error 2)
Opened tests/inputs/one.txt

Next, try to read the lines and then the bytes of a given
file, then try to add the headers separating multiple file
arguments. Look closely at the error output from head when
handling invalid files. Notice that readable files have a
header first and then the file output, but invalid files only
print an error. Additionally, there is an extra blank line
separating the output for the valid files:

$ head -n 1 tests/inputs/one.txt blargh
tests/inputs/two.txt
==> tests/inputs/one.txt <==
Öne line, four words.
head: blargh: No such file or directory

==> tests/inputs/two.txt <==
Two lines.

I’ve specifically designed some challenging inputs for you
to consider. To see what you face, use the file command to
report file type information:

$ file tests/inputs/*.txt
tests/inputs/empty.txt: empty
tests/inputs/one.txt: UTF-8 Unicode text
tests/inputs/ten.txt: ASCII text
tests/inputs/three.txt: ASCII text, with CRLF, LF line
terminators
tests/inputs/two.txt: ASCII text

This is an empty file just to ensure your program doesn’t
fall over.

This file contains Unicode, as I put an umlaut over the O
in Őne to force you to consider the differences between
bytes and characters.

This file has 10 lines to ensure the default of 10 lines
is shown.

This file has Windows-style line endings.

This file has Unix-style line endings.

TIP

On Windows, the newline is the combination of the carriage return
and the line feed, often shown as CRLF or \r\n. On Unix
platforms, only the newline is used, so LF or \n. These line
endings must be preserved in the output from your program, so you
will have to find a way to read the lines in a file without
removing the line endings.

Reading Bytes Versus Characters

Before continuing, you should understand the difference
between reading bytes and characters from a file. In the
early 1960s, the American Standard Code for Information

Interchange (ASCII, pronounced as-key) table of 128
characters represented all possible text elements in
computing. It takes only seven bits (2 = 128) to represent
this many characters. Usually a byte consists of eight bits,
so the notion of byte and character were interchangeable.

Since the creation of Unicode (Universal Coded Character Set)
to represent all the writing systems of the world (and even
emojis), some characters may require up to four bytes. The
Unicode standard defines several ways to encode characters,
including UTF-8 (Unicode Transformation Format using eight
bits). As noted, the file tests / inputs/one.txt begins with
the character Ő, which is two bytes long in UTF-8. If you
want head to show you this one character, you must request
two bytes:

$ head -c 2 tests/inputs/one.txt
Ö

If you ask head to select just the first byte from this
file, you get the byte value 195, which is not a valid UTF-8
string. The output is a special character that indicates a
problem converting a character into Unicode:

$ head -c 1 tests/inputs/one.txt
�

The challenge program is expected to re-create this behavior.
This is a not an easy program to write, but you should be
able to use std::io, std::fs::File, and
std::io::BufReader to figure out how to read bytes and
lines from each of the files. Note that in Rust, a String
must be a valid UTF-8-encoded string, and this struct has,
for instance, the method String::from_utf8_lossy that
might prove useful. I’ve included a full set of tests in

7

https://oreil.ly/PpLCr
https://oreil.ly/VtAdj
https://oreil.ly/bznCz
https://oreil.ly/X32Yh
https://oreil.ly/Bs4Zl

tests/cli.rs that you should have copied into your source
tree.

NOTE

Stop reading here and finish the program. Use cargo test
frequently to check your progress. Do your best to pass all the
tests before looking at my solution.

Solution

This challenge proved more interesting than I anticipated. I
thought it would be little more than a variation on cat, but
it turned out to be quite a bit more difficult. I’ll walk
you through how I arrived at my solution.

Reading a File Line by Line

After opening the valid files, I started by reading lines
from the filehandle. I decided to modify some code from
Chapter 3:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 for line in file.lines().take(config.lines)
{
 println!("{}", line?);
 }
 }
 }
 }
 Ok(())
}

Use Iterator::take to select the desired number of
lines from the filehandle.

Print the line to the console.

I think this is a fun solution because it uses the
Iterator::take method to select the desired number of
lines. I can run the program to select one line from a file,
and it appears to work well:

$ cargo run -- -n 1 tests/inputs/ten.txt
one

If I run cargo test, the program passes almost half the
tests, which seems pretty good for having implemented only a
small portion of the specifications; however, it’s failing
all the tests that use the Windows-encoded input file. To fix
this problem, I have a confession to make.

Preserving Line Endings While Reading a File

I hate to break it to you, dear reader, but the catr program
in Chapter 3 does not completely replicate the original cat
program because it uses BufRead::lines to read the input
files. The documentation for that functions says, “Each
string returned will not have a newline byte (the 0xA byte)
or CRLF (0xD, 0xA bytes) at the end.” I hope you’ll

forgive me because I wanted to show you how easy it can be to
read the lines of a file, but you should be aware that the
catr program replaces Windows CRLF line endings with Unix-
style newlines.

To fix this, I must instead use BufRead::read_line,
which, according to the documentation, “will read bytes from
the underlying stream until the newline delimiter (the 0xA

https://oreil.ly/OjTMN
https://oreil.ly/KhmCp
https://oreil.ly/aJFkc

byte) or EOF is found. Once found, all bytes up to, and
including, the delimiter (if found) will be appended to
buf.” Following is a version that will preserve the

original line endings. With these changes, the program will
pass more tests than it fails:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(mut file) => {
 let mut line = String::new();
 for _ in 0..config.lines {
 let bytes = file.read_line(&mut line)?;

 if bytes == 0 {
 break;
 }
 print!("{}", line);
 line.clear();
 }
 }
 };
 }
 Ok(())
}

Accept the filehandle as a mut (mutable) value.

Use String::new to create a new, empty mutable string
buffer to hold each line.

Use for to iterate through a std::ops::Range to count
up from zero to the requested number of lines. The
variable name _ indicates I do not intend to use it.

Use BufRead::read_line to read the next line.

1

https://oreil.ly/Lg0D2
https://oreil.ly/gA0sx
https://oreil.ly/aJFkc

The filehandle will return zero bytes when it reaches the
end, so break out of the loop.

Print the line, including the original line ending.

Use String::clear to empty the line buffer.

If I run cargo test at this point, the program will pass
almost all the tests for reading lines and will fail all
those for reading bytes and handling multiple files.

Reading Bytes from a File

Next, I’ll handle reading bytes from a file. After I attempt
to open the file, I check to see if config.bytes is Some
number of bytes; otherwise, I’ll use the preceding code that
reads lines. For the following code, be sure to add use
std::io::Read to your imports:

for filename in config.files {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(mut file) => {
 if let Some(num_bytes) = config.bytes {
 let mut handle = file.take(num_bytes as
u64);
 let mut buffer = vec![0; num_bytes];
 let bytes_read = handle.read(&mut buffer)?;

 print!(
 "{}",

String::from_utf8_lossy(&buffer[..bytes_read])
);
 } else {
 ... // Same as before
 }
 }

https://oreil.ly/UG54e
https://oreil.ly/IpZ2x

 };
}

Use pattern matching to check if config.bytes is Some
number of bytes to read.

Use take to read the requested number of bytes.

Create a mutable buffer of a fixed length num_bytes
filled with zeros to hold the bytes read from the file.

Read the desired number of bytes from the filehandle into
the buffer. The value bytes_read will contain the number
of bytes that were actually read, which may be fewer than
the number requested.

Convert the selected bytes into a string, which may not be
valid UTF-8. Note the range operation to select only the
bytes actually read.

TIP

The take method from the std::io::Read trait expects its
argument to be the type u64, but I have a usize. I cast or
convert the value using the as keyword.

As you saw in the case of selecting only part of a multibyte
character, converting bytes to characters could fail because
strings in Rust must be valid UTF-8. The
String::from_utf8 function will return an Ok only if the
string is valid, but String::from_utf8_lossy will
convert invalid UTF-8 sequences to the unknown or replacement
character:

https://oreil.ly/oYMgP
https://oreil.ly/uPBfC
https://oreil.ly/X7cc9
https://oreil.ly/Ps3jV
https://oreil.ly/Bs4Zl

$ cargo run -- -c 1 tests/inputs/one.txt
�

Let me show you another, much worse, way to read the bytes
from a file. You can read the entire file into a string,
convert that into a vector of bytes, and then select the
first num_bytes:

let mut contents = String::new();
file.read_to_string(&mut contents)?; // Danger here
let bytes = contents.as_bytes();
print!("{}", String::from_utf8_lossy(&bytes[..num_bytes]));
// More danger

Create a new string buffer to hold the contents of the
file.

Read the entire file contents into the string buffer.

Use str::as_bytes to convert the contents into bytes
(u8 or unsigned 8-bit integers).

Use String::from_utf8_lossy to turn a slice of bytes
into a string.

As I’ve noted before, this approach can crash your program
or computer if the file’s size exceeds the amount of memory
on your machine. Another serious problem with the preceding
code is that it assumes the slice operation
bytes[..num_bytes] will succeed. If you use this code
with an empty file, for instance, you’ll be asking for bytes
that don’t exist. This will cause your program to panic and
exit immediately with an error message:

$ cargo run -- -c 1 tests/inputs/empty.txt
thread 'main' panicked at 'range end index 1 out of range

https://oreil.ly/JaIiI

for slice of
length 0', src/lib.rs:80:50
note: run with `RUST_BACKTRACE=1` environment variable to
display a backtrace

Following is a safe—and perhaps the shortest—way to read
the desired number of bytes from a file:

let bytes: Result<Vec<_>, _> =
file.bytes().take(num_bytes).collect();
print!("{}", String::from_utf8_lossy(&bytes?));

In the preceding code, the type annotation Result<Vec<_>,
_> is necessary as the compiler infers the type of bytes as
a slice, which has an unknown size. I must indicate I want a
Vec, which is a smart pointer to heap-allocated memory. The
underscores (_) indicate partial type annotation, which
basically instructs the compiler to infer the types. Without
any type annotation for bytes, the compiler complains
thusly:

error[E0277]: the size for values of type `[u8]` cannot be
known at
compilation time
 --> src/lib.rs:95:58
 |
95 | print!("{}",
String::from_utf8_lossy(&bytes?));
 |
^^^^^^^ doesn't
 | have a size
known at compile-time
 |
 = help: the trait `Sized` is not implemented for `[u8]`
 = note: all local variables must have a statically known
size
 = help: unsized locals are gated as an unstable feature

NOTE

You’ve now seen that the underscore (_) serves various different
functions. As the prefix or name of a variable, it shows the
compiler you don’t want to use the value. In a match arm, it is
the wildcard for handling any case. When used in a type
annotation, it tells the compiler to infer the type.

You can also indicate the type information on the righthand
side of the expression using the turbofish operator (::<>).
Often it’s a matter of style whether you indicate the type
on the lefthand or righthand side, but later you will see
examples where the turbofish is required for some
expressions. Here’s what the previous example would look
like with the type indicated with the turbofish instead:

let bytes = file.bytes().take(num_bytes).collect::
<Result<Vec<_>, _>>();

The unknown character produced by
String::from_utf8_lossy (b'\xef\xbf\xbd') is not
exactly the same output produced by the BSD head
(b'\xc3'), making this somewhat difficult to test. If you
look at the run helper function in tests/cli.rs, you’ll see

that I read the expected value (the output from head) and
use the same function to convert what could be invalid UTF-8
so that I can compare the two outputs. The run_stdin
function works similarly:

fn run(args: &[&str], expected_file: &str) -> TestResult {
 // Extra work here due to lossy UTF
 let mut file = File::open(expected_file)?;
 let mut buffer = Vec::new();
 file.read_to_end(&mut buffer)?;
 let expected = String::from_utf8_lossy(&buffer);

https://turbo.fish/

 Command::cargo_bin(PRG)?
 .args(args)
 .assert()
 .success()
 .stdout(predicate::eq(&expected.as_bytes() as &
[u8]));

 Ok(())
}

Handle any invalid UTF-8 in expected_file.

Compare the output and expected values as a slice of bytes
([u8]).

Printing the File Separators

The last piece to handle is the separators between multiple
files. As noted before, valid files have a header that puts
the filename inside ==> and <== markers. Files after the
first have an additional newline at the beginning to visually
separate the output. This means I will need to know the
number of the file that I’m handling, which I can get by
using the Iterator::enumerate method. Following is the
final version of my run function that will pass all the
tests:

pub fn run(config: Config) -> MyResult<()> {
 let num_files = config.files.len();

 for (file_num, filename) in
config.files.iter().enumerate() {
 match open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(mut file) => {
 if num_files > 1 {
 println!(
 "{}==> {} <==",
 if file_num > 0 { "\n" } else { ""

https://oreil.ly/gXM7q

},
 filename
);
 }

 if let Some(num_bytes) = config.bytes {
 let mut handle = file.take(num_bytes as
u64);
 let mut buffer = vec![0; num_bytes];
 let bytes_read = handle.read(&mut
buffer)?;
 print!(
 "{}",

String::from_utf8_lossy(&buffer[..bytes_read])
);
 } else {
 let mut line = String::new();
 for _ in 0..config.lines {
 let bytes = file.read_line(&mut
line)?;
 if bytes == 0 {
 break;
 }
 print!("{}", line);
 line.clear();
 }
 }
 }
 };
 }

 Ok(())
}

Use the Vec::len method to get the number of files.

Use the Iterator::enumerate method to track the file
number and filenames.

Only print headers when there are multiple files.

https://oreil.ly/e0wqL

Print a newline when file_num is greater than 0, which
indicates the first file.

Going Further

There’s no reason to stop this party now. Consider
implementing how the GNU head handles numeric values with
suffixes and negative values. For instance, -c=1K means
print the first 1,024 bytes of the file, and -n=-3 means
print all but the last three lines of the file. You’ll need
to change lines and bytes to signed integer values to store
both positive and negative numbers. Be sure to run the GNU
head with these arguments, capture the output to test files,
and write tests to cover the new features you add.

You could also add an option for selecting characters in
addition to bytes. You can use the String::chars function
to split a string into characters. Finally, copy the test
input file with the Windows line endings
(tests/inputs/three.txt) to the tests for Chapter 3. Edit
the mk-outs.sh for that program to incorporate this file, and
then expand the tests and program to ensure that line endings
are preserved.

Summary

This chapter dove into some fairly sticky subjects, such as
converting types like a &str to a usize, a String to an
Error, and a usize to a u64. When I was learning Rust, I
felt like it took me quite a while to understand the
differences between &str and String and why I need to use
From::from to create the Err part of MyResult. If you
still feel confused, just know that you won’t always. If you

https://oreil.ly/Yohiw

keep reading the docs and writing more code, it will
eventually make sense.

Here are some things you accomplished in this chapter:

You learned to create optional parameters that can
take values. Previously, the options were flags.

You saw that all command-line arguments are strings.
You used the str::parse method to attempt the
conversion of a string like "3" into the number 3.

You learned how to write and run a unit test for an
individual function.

You learned to convert types using the as keyword or
with traits like From and Into.

You found that using _ as the name or prefix of a
variable is a way to indicate to the compiler that you
don’t intend to use the value. When used in a type
annotation, it tells the compiler to infer the type.

You learned that a match arm can incorporate an
additional Boolean condition called a guard.

You learned how to use BufRead::read_line to
preserve line endings while reading a filehandle.

You found that the take method works on both
iterators and filehandles to limit the number of
elements you select.

You learned to indicate type information on the
lefthand side of an assignment or on the righthand
side using the turbofish operator.

In the next chapter, you’ll learn more about Rust iterators
and how to break input into lines, bytes, and characters.

1 EOF is an acronym for end of file.

Chapter 5. Word to Your

Mother

All hail the dirt bike / Philosopher dirt bike /

Silence as we gathered round / We saw the word and were on

our way

— They Might Be Giants, “Dirt Bike” (1994)

For this chapter’s challenge, you will create a version of
the venerable wc (word count) program, which dates back to
version 1 of AT&T Unix. This program will display the number

of lines, words, and bytes found in text from STDIN or one
or more files. I often use it to count the number of lines
returned by some other process.

In this chapter, you will learn how to do the following:

Use the Iterator::all function

Create a module for tests

Fake a filehandle for testing

Conditionally format and print a value

Conditionally compile a module when testing

Break a line of text into words, bytes, and characters

Use Iterator::collect to turn an iterator into a
vector

How wc Works

I’ll start by showing how wc works so you know what is
expected by the tests. Following is an excerpt from the BSD
wc manual page that describes the elements that the
challenge program will implement:

WC(1) BSD General Commands Manual
WC(1)

NAME
 wc -- word, line, character, and byte count

SYNOPSIS
 wc [-clmw] [file ...]

DESCRIPTION
 The wc utility displays the number of lines, words,
and bytes contained
 in each input file, or standard input (if no file is
specified) to the
 standard output. A line is defined as a string of
characters delimited
 by a <newline> character. Characters beyond the final
<newline> charac-
 ter will not be included in the line count.

 A word is defined as a string of characters delimited
by white space
 characters. White space characters are the set of
characters for which
 the iswspace(3) function returns true. If more than
one input file is
 specified, a line of cumulative counts for all the
files is displayed on
 a separate line after the output for the last file.

 The following options are available:

 -c The number of bytes in each input file is
written to the standard
 output. This will cancel out any prior usage
of the -m option.

 -l The number of lines in each input file is

written to the standard
 output.

 -m The number of characters in each input file is
written to the
 standard output. If the current locale does
not support multi-
 byte characters, this is equivalent to the -c
option. This will
 cancel out any prior usage of the -c option.

 -w The number of words in each input file is
written to the standard
 output.

 When an option is specified, wc only reports the
information requested by
 that option. The order of output always takes the
form of line, word,
 byte, and file name. The default action is equivalent
to specifying the
 -c, -l and -w options.

 If no files are specified, the standard input is used
and no file name is
 displayed. The prompt will accept input until
receiving EOF, or [^D] in
 most environments.

A picture is worth a kilobyte of words, so I’ll show you
some examples using the following test files in the
05_wcr/tests/inputs directory:

empty.txt: an empty file

fox.txt: a file with one line of text

atlamal.txt: a file with the first stanza from
“Atlamál hin groenlenzku” or “The Greenland Ballad
of Atli,” an Old Norse poem

When run with an empty file, the program reports zero lines,
words, and bytes in three right-justified columns eight

characters wide:

$ cd 05_wcr
$ wc tests/inputs/empty.txt
 0 0 0 tests/inputs/empty.txt

Next, consider a file with one line of text with varying
spaces between words and a tab character. Let’s take a look
at it before running wc on it. Here I’m using cat with the
flag -t to display the tab character as ^I and -e to
display $ for the end of the line:

$ cat -te tests/inputs/fox.txt
The quick brown fox^Ijumps over the lazy dog.$

This example is short enough that I can manually count all
the lines, words, and bytes as shown in Figure 5-1, where
spaces are noted with raised dots, the tab character with
\t, and the end of the line as $.

Figure 5-1. There is 1 line of text containing 9 words and 48
bytes.

I find that wc is in agreement:

$ wc tests/inputs/fox.txt
 1 9 48 tests/inputs/fox.txt

As mentioned in Chapter 3, bytes may equate to characters
for ASCII, but Unicode characters may require multiple bytes.
The file tests/inputs/atlamal.txt contains many such
examples:

$ cat tests/inputs/atlamal.txt
Frétt hefir öld óvu, þá er endr of gerðu
seggir samkundu, sú var nýt fæstum,
æxtu einmæli, yggr var þeim síðan
ok it sama sonum Gjúka, er váru sannráðnir.

According to wc, this file contains 4 lines, 29 words, and
177 bytes:

$ wc tests/inputs/atlamal.txt
 4 29 177 tests/inputs/atlamal.txt

If I want only the number of lines, I can use the -l flag
and only that column will be shown:

$ wc -l tests/inputs/atlamal.txt
 4 tests/inputs/atlamal.txt

I can similarly request only the number of bytes with -c and
words with -w, and only those two columns will be shown:

$ wc -w -c tests/inputs/atlamal.txt
 29 177 tests/inputs/atlamal.txt

I can request the number of characters using the -m flag:

$ wc -m tests/inputs/atlamal.txt
 159 tests/inputs/atlamal.txt

The GNU version of wc will show both character and byte
counts if you provide both the flags -m and -c, but the BSD

1

version will show only one or the other, with the latter flag
taking precedence:

$ wc -cm tests/inputs/atlamal.txt
 159 tests/inputs/atlamal.txt
$ wc -mc tests/inputs/atlamal.txt
 177 tests/inputs/atlamal.txt

The -m flag comes last, so characters are shown.

The -c flag comes last, so bytes are shown.

Note that no matter the order of the flags, like -wc or -
cw, the output columns are always ordered by lines, words,
and bytes/characters:

$ wc -cw tests/inputs/atlamal.txt
 29 177 tests/inputs/atlamal.txt

If no positional arguments are provided, wc will read from
STDIN and will not print a filename:

$ cat tests/inputs/atlamal.txt | wc -lc
 4 177

The GNU version of wc will understand a filename consisting
of a dash (-) to mean STDIN, and it also provides long flag
names as well as some other options:

$ wc --help
Usage: wc [OPTION]... [FILE]...
 or: wc [OPTION]... --files0-from=F
Print newline, word, and byte counts for each FILE, and a
total line if
more than one FILE is specified. With no FILE, or when
FILE is -,
read standard input. A word is a non-zero-length sequence

of characters
delimited by white space.
The options below may be used to select which counts are
printed, always in
the following order: newline, word, character, byte,
maximum line length.
 -c, --bytes print the byte counts
 -m, --chars print the character counts
 -l, --lines print the newline counts
 --files0-from=F read input from the files
specified by
 NUL-terminated names in file F;
 If F is - then read names from
standard input
 -L, --max-line-length print the length of the longest
line
 -w, --words print the word counts
 --help display this help and exit
 --version output version information and exit

If processing more than one file, both versions will finish
with a total line showing the number of lines, words, and
bytes for all the inputs:

$ wc tests/inputs/*.txt
 4 29 177 tests/inputs/atlamal.txt
 0 0 0 tests/inputs/empty.txt
 1 9 48 tests/inputs/fox.txt
 5 38 225 total

Nonexistent files are noted with a warning to STDERR as the
files are being processed. In the following example, blargh
represents a nonexistent file:

$ wc tests/inputs/fox.txt blargh tests/inputs/atlamal.txt
 1 9 48 tests/inputs/fox.txt
wc: blargh: open: No such file or directory
 4 29 177 tests/inputs/atlamal.txt
 5 38 225 total

As I first showed in Chapter 2, I can redirect the STDERR
filehandle 2 in bash to verify that wc prints the warnings
to that channel:

$ wc tests/inputs/fox.txt blargh tests/inputs/atlamal.txt
2>err
 1 9 48 tests/inputs/fox.txt
 4 29 177 tests/inputs/atlamal.txt
 5 38 225 total
$ cat err
wc: blargh: open: No such file or directory

Redirect output handle 2 (STDERR) to the file err.

Verify that the error message is in the file.

There is an extensive test suite to verify that your program
implements all these options.

Getting Started

The challenge program should be called wcr (pronounced wick-
er) for our Rust version of wc. Use cargo new wcr to
start, then modify your Cargo.toml to add the following
dependencies:

[dependencies]
clap = "2.33"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

Copy the 05_wcr/tests directory into your new project and run
cargo test to perform an initial build and run the tests,

all of which should fail. Use the same structure for
src/main.rs from previous programs:

fn main() {
 if let Err(e) = wcr::get_args().and_then(wcr::run) {
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

Following is a skeleton for src/lib.rs you can copy. First,
here is how I would define the Config to represent the
command-line parameters:

use clap::{App, Arg};
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug)]
pub struct Config {
 files: Vec<String>,
 lines: bool,
 words: bool,
 bytes: bool,
 chars: bool,
}

The files parameter will be a vector of strings.

The lines parameter is a Boolean for whether or not to
print the line count.

The words parameter is a Boolean for whether or not to
print the word count.

The bytes parameter is a Boolean for whether or not to
print the byte count.

The chars parameter is a Boolean for whether or not to
print the character count.

The main function assumes you will create a get_args
function to process the command-line arguments. Here is an
outline you can use:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("wcr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust wc")
 // What goes here?
 .get_matches();

 Ok(Config {
 files: ...
 lines: ...
 words: ...
 bytes: ...
 chars: ...
 })
}

You will also need a run function, and you can start by
printing the configuration:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:#?}", config);
 Ok(())
}

Try to get your program to generate --help output similar
to the following:

$ cargo run -- --help
wcr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust wc

USAGE:
 wcr [FLAGS] [FILE]...

FLAGS:
 -c, --bytes Show byte count
 -m, --chars Show character count
 -h, --help Prints help information
 -l, --lines Show line count
 -V, --version Prints version information
 -w, --words Show word count

ARGS:
 <FILE>... Input file(s) [default: -]

The challenge program will mimic the BSD wc in disallowing
both the -m (character) and -c (bytes) flags:

$ cargo run -- -cm tests/inputs/fox.txt
error: The argument '--bytes' cannot be used with '--chars'

USAGE:
 wcr --bytes --chars

The default behavior will be to print lines, words, and bytes
from STDIN, which means those values in the configuration
should be true when none have been explicitly requested by
the user:

$ cargo run
Config {
 files: [
 "-",
],
 lines: true,
 words: true,
 bytes: true,
 chars: false,
}

The default value for files should be a dash (-) for
STDIN.

The chars value should be false unless the -m|--chars
flag is present.

If any single flag is present, then all the other flags not
mentioned should be false:

$ cargo run -- -l tests/inputs/*.txt
Config {
 files: [
 "tests/inputs/atlamal.txt",
 "tests/inputs/empty.txt",
 "tests/inputs/fox.txt",
],
 lines: true,
 words: false,
 bytes: false,
 chars: false,
}

The -l flag indicates only the line count is wanted, and
bash will expand the file glob tests/inputs/*.txt
into all the filenames in that directory.

Because the -l flag is present, the lines value is the
only one that is true.

NOTE

Stop here and get this much working. My dog needs a bath, so
I’ll be right back.

Following is the first part of my get_args. There’s

nothing new to how I declare the parameters, so I’ll not
comment on this:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("wcr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust wc")
 .arg(
 Arg::with_name("files")
 .value_name("FILE")
 .help("Input file(s)")
 .default_value("-")
 .multiple(true),
)
 .arg(
 Arg::with_name("words")
 .short("w")
 .long("words")
 .help("Show word count")
 .takes_value(false),
)
 .arg(
 Arg::with_name("bytes")
 .short("c")
 .long("bytes")
 .help("Show byte count")
 .takes_value(false),
)
 .arg(
 Arg::with_name("chars")
 .short("m")
 .long("chars")
 .help("Show character count")
 .takes_value(false)
 .conflicts_with("bytes"),
)
 .arg(
 Arg::with_name("lines")
 .short("l")
 .long("lines")
 .help("Show line count")
 .takes_value(false),

)
 .get_matches();

After clap parses the arguments, I unpack them and try to
figure out the default values:

 let mut lines = matches.is_present("lines");
 let mut words = matches.is_present("words");
 let mut bytes = matches.is_present("bytes");
 let chars = matches.is_present("chars");

 if [lines, words, bytes, chars].iter().all(|v| v ==
&false) {
 lines = true;
 words = true;
 bytes = true;
 }

 Ok(Config {
 files: matches.values_of_lossy("files").unwrap(),
 lines,
 words,
 bytes,
 chars,
 })
}

Unpack all the flags.

If all the flags are false, then set lines, words, and
bytes to true.

Use the struct field initialization shorthand to set the
values.

I want to highlight how I create a temporary list using a
slice with all the flags. I then call the slice::iter
method to create an iterator so I can use the Itera tor
::all function to find if all the values are false. This

https://oreil.ly/NHidS
https://oreil.ly/hcprj
https://oreil.ly/O8CL1

method expects a closure, which is an anonymous function that
can be passed as an argument to another function. Here, the
closure is a predicate or a test that figures out if an
element is false. The values are references, so I compare
each value to &false, which is a reference to a Boolean
value. If all the evaluations are true, then
Iterator::all will return true. A slightly shorter but

possibly less obvious way to write this would be:

if [lines, words, bytes, chars].iter().all(|v| !v) {

Negate each Boolean value v using std::ops::Not, which
is written using a prefix exclamation point (!).

2

https://oreil.ly/onL9M
https://oreil.ly/ZvixG

ITERATOR METHODS THAT TAKE A CLOSURE

You should take some time to read the Iterator
documentation to note the other methods that take a
closure as an argument to select, test, or transform the
elements, including the following:

Iterator::any will return true if even one
evaluation of the closure for an item returns
true.

Iterator::filter will find all elements for
which the predicate is true.

Iterator::map will apply a closure to each
element and return a std ::iter::Map with the
transformed elements.

Iterator::find will return the first element of
an iterator that satisfies the predicate as
Some(value) or None if all elements evaluate to
false.

Iterator::position will return the index of the
first element that satisfies the predicate as
Some(value) or None if all elements evaluate to
false.

Iterator::cmp, Iterator::min_by, and
Iterator::max_by have predicates that accept
pairs of items for comparison or to find the
minimum and maximum.

Iterating the Files

https://oreil.ly/CEdH5
https://oreil.ly/HvVrb
https://oreil.ly/LDu90
https://oreil.ly/cfevE
https://oreil.ly/PITID
https://oreil.ly/7n1u5
https://oreil.ly/TAlOW
https://oreil.ly/7uabU
https://oreil.ly/uEiqO
https://oreil.ly/mXDle

Now to work on the counting part of the program. This will
require iterating over the file arguments and trying to open
them, and I suggest you use the open function from
Chapter 2 for this:

fn open(filename: &str) -> MyResult<Box<dyn BufRead>> {
 match filename {
 "-" => Ok(Box::new(BufReader::new(io::stdin()))),
 _ =>
Ok(Box::new(BufReader::new(File::open(filename)?))),
 }
}

Be sure to expand your imports to the following:

use clap::{App, Arg};
use std::error::Error;
use std::fs::File;
use std::io::{self, BufRead, BufReader};

Here is a run function to get you going:

pub fn run(config: Config) -> MyResult<()> {
 for filename in &config.files {
 match open(filename) {
 Err(err) => eprintln!("{}: {}", filename, err),

 Ok(_) => println!("Opened {}", filename),
 }
 }

 Ok(())
}

When a file fails to open, print the filename and error
message to STDERR.

When a file is opened, print a message to STDOUT.

Writing and Testing a Function to Count File

Elements

You are welcome to write your solution however you like, but
I decided to create a function called count that would take
a filehandle and possibly return a struct called FileInfo
containing the number of lines, words, bytes, and characters,
each represented as a usize. I say that the function will
possibly return this struct because the function will involve
I/O, which could go sideways. I put the following definition
in src/lib.rs just after the Config struct. For reasons I
will explain shortly, this must derive the PartialEq trait
in addition to Debug:

#[derive(Debug, PartialEq)]
pub struct FileInfo {
 num_lines: usize,
 num_words: usize,
 num_bytes: usize,
 num_chars: usize,
}

My count function might succeed or fail, so it will return a
MyResult<FileInfo>, meaning that on success it will have
a FileInfo in the Ok variant or else will have an Err. To
start this function, I will initialize some mutable variables
to count all the elements and will return a FileInfo
struct:

pub fn count(mut file: impl BufRead) -> MyResult<FileInfo>
{
 let mut num_lines = 0;
 let mut num_words = 0;
 let mut num_bytes = 0;
 let mut num_chars = 0;

 Ok(FileInfo {
 num_lines,

https://oreil.ly/kOB0D

 num_words,
 num_bytes,
 num_chars,
 })
}

The count function will accept a mutable file value, and
it might return a FileInfo struct.

Initialize mutable variables to count the lines, words,
bytes, and characters.

For now, return a FileInfo with all zeros.

NOTE

I’m introducing the impl keyword to indicate that the file value
must implement the BufRead trait. Recall that open returns a
value that meets this criterion. You’ll shortly see how this
makes the function flexible.

In Chapter 4, I showed you how to write a unit test, placing
it just after the function it was testing. I’m going to
create a unit test for the count function, but this time
I’m going to place it inside a module called tests. This is
a tidy way to group unit tests, and I can use the #
[cfg(test)] configuration option to tell Rust to compile
the module only during testing. This is especially useful
because I want to use std::io ::Cur sor in my test to fake a
filehandle for the count function. According to the
documentation, a Cursor is “used with in-memory buffers,

anything implementing AsRef<[u8]>, to allow them to
implement Read and/or Write, allowing these buffers to be
used anywhere you might use a reader or writer that does

https://oreil.ly/BYApT
https://oreil.ly/jQVVm

actual I/O.” Placing this dependency inside the tests
module ensures that it will be included only when I test the
program. The following is how I create the tests module and
then import and test the count function:

#[cfg(test)]
mod tests {
 use super::{count, FileInfo};
 use std::io::Cursor;

 #[test]
 fn test_count() {
 let text = "I don't want the world. I just want
your half.\r\n";
 let info = count(Cursor::new(text));
 assert!(info.is_ok());
 let expected = FileInfo {
 num_lines: 1,
 num_words: 10,
 num_chars: 48,
 num_bytes: 48,
 };
 assert_eq!(info.unwrap(), expected);
 }
}

The cfg enables conditional compilation, so this module
will be compiled only when testing.

Define a new module (mod) called tests to contain test
code.

Import the count function and FileInfo struct from the
parent module super, meaning next above and referring to
the module above tests that contains it.

Import std::io::Cursor.

Run count with the Cursor.

https://oreil.ly/Fl3pU

Ensure the result is Ok.

Compare the result to the expected value. This comparison
requires FileInfo to implement the PartialEq trait,
which is why I added derive(PartialEq) earlier.

Run this test using cargo test test_count. You will see
lots of warnings from the Rust compiler about unused
variables or variables that do not need to be mutable. The
most important result is that the test fails:

failures:

---- tests::test_count stdout ----
thread 'tests::test_count' panicked at 'assertion failed:
`(left == right)`
 left: `FileInfo { num_lines: 0, num_words: 0, num_bytes:
0, num_chars: 0 }`,
 right: `FileInfo { num_lines: 1, num_words: 10, num_bytes:
48,
 num_chars: 48 }`', src/lib.rs:146:9

This is an example of test-driven development, where you
write a test to define the expected behavior of your function
and then write the function that passes the unit test. Once
you have some reasonable assurance that the function is
correct, use the returned FileInfo to print the expected
output. Start as simply as possible using the empty file, and
make sure your program prints zeros for the three columns of
lines, words, and bytes:

$ cargo run -- tests/inputs/empty.txt
 0 0 0 tests/inputs/empty.txt

Next, use tests/inputs/fox.txt and make sure you get the
following counts. I specifically added various kinds and

numbers of whitespace to challenge you on how to split the
text into words:

$ cargo run -- tests/inputs/fox.txt
 1 9 48 tests/inputs/fox.txt

Be sure your program can handle the Unicode in
tests/inputs/atlamal.txt correctly:

$ cargo run -- tests/inputs/atlamal.txt
 4 29 177 tests/inputs/atlamal.txt

And that you correctly count the characters:

$ cargo run -- tests/inputs/atlamal.txt -wml
 4 29 159 tests/inputs/atlamal.txt

Next, use multiple input files to check that your program
prints the correct total column:

$ cargo run -- tests/inputs/*.txt
 4 29 177 tests/inputs/atlamal.txt
 0 0 0 tests/inputs/empty.txt
 1 9 48 tests/inputs/fox.txt
 5 38 225 total

When all that works correctly, try reading from STDIN:

$ cat tests/inputs/atlamal.txt | cargo run
 4 29 177

NOTE

Stop reading here and finish your program. Run cargo test often
to see how you’re progressing.

Solution

Now, I’ll walk you through how I went about writing the wcr
program. Bear in mind that you could have solved this many
different ways. As long as your code passes the tests and
produces the same output as the BSD version of wc, then it
works well and you should be proud of your accomplishments.

Counting the Elements of a File or STDIN

I left you with an unfinished count function, so I’ll start

there. As we discussed in Chapter 3, BufRead::lines will
remove the line endings, and I don’t want that because
newlines in Windows files are two bytes (\r\n) but Unix
newlines are just one byte (\n). I can copy some code from
Chapter 3 that uses BufRead::read_line to read each line
into a buffer. Conveniently, this function tells me how many
bytes have been read from the file:

pub fn count(mut file: impl BufRead) -> MyResult<FileInfo>
{
 let mut num_lines = 0;
 let mut num_words = 0;
 let mut num_bytes = 0;
 let mut num_chars = 0;
 let mut line = String::new();

 loop {
 let line_bytes = file.read_line(&mut line)?;
 if line_bytes == 0 {
 break;
 }
 num_bytes += line_bytes;
 num_lines += 1;
 num_words += line.split_whitespace().count();
 num_chars += line.chars().count();
 line.clear();
 }

https://oreil.ly/KhmCp
https://oreil.ly/aJFkc

 Ok(FileInfo {
 num_lines,
 num_words,
 num_bytes,
 num_chars,
 })
}

Create a mutable buffer to hold each line of text.

Create an infinite loop for reading the filehandle.

Try to read a line from the filehandle.

End of file (EOF) has been reached when zero bytes are
read, so break out of the loop.

Add the number of bytes from this line to the num_bytes
variable.

Each time through the loop is a line, so increment
num_lines.

Use the str::split_whitespace method to break the
string on whitespace and use Iterator::count to find
the number of words.

Use the str::chars method to break the string into
Unicode characters and use Iterator::count to count the
characters.

Clear the line buffer for the next line of text.

With these changes, the test_count test will pass. To
integrate this into my code, I will first change run to

https://oreil.ly/sCxGE
https://oreil.ly/Y7yPl
https://oreil.ly/u9LXa

simply print the FileInfo struct or print a warning to
STDERR when the file can’t be opened:

pub fn run(config: Config) -> MyResult<()> {
 for filename in &config.files {
 match open(filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 if let Ok(info) = count(file) {
 println!("{:?}", info);
 }
 }
 }
 }

 Ok(())
}

Attempt to get the counts from a file.

Print the counts.

When I run it on one of the test inputs, it appears to work
for a valid file:

$ cargo run -- tests/inputs/fox.txt
FileInfo { num_lines: 1, num_words: 9, num_bytes: 48,
num_chars: 48 }

It even handles reading from STDIN:

$ cat tests/inputs/fox.txt | cargo run
FileInfo { num_lines: 1, num_words: 9, num_bytes: 48,
num_chars: 48 }

Next, I need to format the output to meet the specifications.

Formatting the Output

To create the expected output, I can start by changing run
to always print the lines, words, and bytes followed by the
filename:

pub fn run(config: Config) -> MyResult<()> {
 for filename in &config.files {
 match open(filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 if let Ok(info) = count(file) {
 println!(
 "{:>8}{:>8}{:>8} {}",
 info.num_lines,
 info.num_words,
 info.num_bytes,
 filename
);
 }
 }
 }
 }

 Ok(())
}

Format the number of lines, words, and bytes into a right-
justified field eight characters wide.

If I run it with one input file, it’s already looking pretty
sweet:

$ cargo run -- tests/inputs/fox.txt
 1 9 48 tests/inputs/fox.txt

If I run cargo test fox to run all the tests with the word
fox in the name, I pass one out of eight tests. Huzzah!

running 8 tests
test fox ... ok

test fox_bytes ... FAILED
test fox_chars ... FAILED
test fox_bytes_lines ... FAILED
test fox_words_bytes ... FAILED
test fox_words ... FAILED
test fox_words_lines ... FAILED
test fox_lines ... FAILED

I can inspect tests/cli.rs to see what the passing test looks
like. Note that the tests reference constant values declared
at the top of the module:

const PRG: &str = "wcr";
const EMPTY: &str = "tests/inputs/empty.txt";
const FOX: &str = "tests/inputs/fox.txt";
const ATLAMAL: &str = "tests/inputs/atlamal.txt";

Again I have a run helper function to run my tests:

fn run(args: &[&str], expected_file: &str) -> TestResult {
 let expected = fs::read_to_string(expected_file)?;
 Command::cargo_bin(PRG)?
 .args(args)
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

Try to read the expected output for this command.

Run the wcr program with the given arguments. Assert that
the program succeeds and that STDOUT matches the
expected value.

The fox test is running wcr with the FOX input file and no
options, comparing it to the contents of the expected output
file that was generated using 05_wcr/mk-outs.sh:

#[test]
fn fox() -> TestResult {
 run(&[FOX], "tests/expected/fox.txt.out")
}

Look at the next function in the file to see a failing test:

#[test]
fn fox_bytes() -> TestResult {
 run(&["--bytes", FOX], "tests/expected/fox.txt.c.out")

}

Run the wcr program with the same input file and the --
bytes option.

When run with --bytes, my program should print only that
column of output, but it always prints lines, words, and
bytes. So I decided to write a function called for mat
_field in src/lib.rs that would conditionally return a
formatted string or the empty string depending on a Boolean
value:

fn format_field(value: usize, show: bool) -> String {
 if show {
 format!("{:>8}", value)
 } else {
 "".to_string()
 }
}

The function accepts a usize value and a Boolean and
returns a String.

Check if the show value is true.

Return a new string by formatting the number into a string
eight characters wide.

Otherwise, return the empty string.

NOTE

Why does this function return a String and not a str? They’re

both strings, but a str is an immutable, fixed-length string. The
value that will be returned from the function is dynamically
generated at runtime, so I must use String, which is a growable,
heap-allocated structure.

I can expand my tests module to add a unit test for this:

#[cfg(test)]
mod tests {
 use super::{count, format_field, FileInfo};
 use std::io::Cursor;

 #[test]
 fn test_count() {} // Same as before

 #[test]
 fn test_format_field() {
 assert_eq!(format_field(1, false), "");
 assert_eq!(format_field(3, true), " 3");
 assert_eq!(format_field(10, true), " 10");
 }
}

Add format_field to the imports.

The function should return the empty string when show is
false.

Check width for a single-digit number.

Check width for a double-digit number.

Here is how I use the format_field function in context,
where I also handle printing the empty string when reading
from STDIN:

pub fn run(config: Config) -> MyResult<()> {
 for filename in &config.files {
 match open(filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 if let Ok(info) = count(file) {
 println!(
 "{}{}{}{}{}",
 format_field(info.num_lines,
config.lines),
 format_field(info.num_words,
config.words),
 format_field(info.num_bytes,
config.bytes),
 format_field(info.num_chars,
config.chars),
 if filename == "-" {
 "".to_string()
 } else {
 format!(" {}", filename)
 }
);
 }
 }
 }
 }

 Ok(())
}

Format the output for each of the columns using the
format_field function.

When the filename is a dash, print the empty string;
otherwise, print a space and the filename.

With these changes, all the tests for cargo test fox pass.
But if I run the entire test suite, I see that my program is
still failing the tests with names that include the word all:

failures:
 test_all
 test_all_bytes
 test_all_bytes_lines
 test_all_lines
 test_all_words
 test_all_words_bytes
 test_all_words_lines

Looking at the test_all function in tests/cli.rs confirms
that the test is using all the input files as arguments:

#[test]
fn test_all() -> TestResult {
 run(&[EMPTY, FOX, ATLAMAL], "tests/expected/all.out")
}

If I run my current program with all the input files, I can
see that I’m missing the total line:

$ cargo run -- tests/inputs/*.txt
 4 29 177 tests/inputs/atlamal.txt
 0 0 0 tests/inputs/empty.txt
 1 9 48 tests/inputs/fox.txt

Here is my final run function that keeps a running total and
prints those values when there is more than one input:

pub fn run(config: Config) -> MyResult<()> {
 let mut total_lines = 0;
 let mut total_words = 0;
 let mut total_bytes = 0;

 let mut total_chars = 0;

 for filename in &config.files {
 match open(filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 if let Ok(info) = count(file) {
 println!(
 "{}{}{}{}{}",
 format_field(info.num_lines,
config.lines),
 format_field(info.num_words,
config.words),
 format_field(info.num_bytes,
config.bytes),
 format_field(info.num_chars,
config.chars),
 if filename.as_str() == "-" {
 "".to_string()
 } else {
 format!(" {}", filename)
 }
);

 total_lines += info.num_lines;
 total_words += info.num_words;
 total_bytes += info.num_bytes;
 total_chars += info.num_chars;
 }
 }
 }
 }

 if config.files.len() > 1 {
 println!(
 "{}{}{}{} total",
 format_field(total_lines, config.lines),
 format_field(total_words, config.words),
 format_field(total_bytes, config.bytes),
 format_field(total_chars, config.chars)
);
 }

 Ok(())
}

Create mutable variables to track the total number of
lines, words, bytes, and characters.

Update the totals using the values from this file.

Print the totals if there is more than one input.

This appears to work well:

$ cargo run -- tests/inputs/*.txt
 4 29 177 tests/inputs/atlamal.txt
 0 0 0 tests/inputs/empty.txt
 1 9 48 tests/inputs/fox.txt
 5 38 225 total

I can count characters instead of bytes:

$ cargo run -- -m tests/inputs/atlamal.txt
 159 tests/inputs/atlamal.txt

And I can show and hide any columns I want:

$ cargo run -- -wc tests/inputs/atlamal.txt
 29 177 tests/inputs/atlamal.txt

Most importantly, cargo test shows all passing tests.

Going Further

Write a version that mimics the output from the GNU wc
instead of the BSD version. If your system already has the
GNU version, run the mk-outs.sh program to gene rate the
expected outputs for the given input files. Modify the
program to create the correct output according to the tests.
Then expand the program to handle the addi tional options
like --files0-from for reading the input filenames from a

file and --max-line-length to print the length of the
longest line. Add tests for the new functionality.

Next, ponder the mysteries of the iswspace function
mentioned in the BSD manual page noted at the beginning of
the chapter. What if you ran the program on the spiders.txt
file of the Issa haiku from Chapter 2, but it used Japanese
characters?

隅の蜘案じな煤はとらぬぞよ

What would the output be? If I place this into a file called
spiders.txt, BSD wc thinks there are three words:

$ wc spiders.txt
 1 3 40 spiders.txt

The GNU version says there is only one word:

$ wc spiders.txt
 1 1 40 spiders.txt

I didn’t want to open that can of worms (or spiders?), but
if you were creating a version of this program to release to
the public, how could you replicate the BSD and GNU versions?

Summary

Well, that was certainly fun. In about 200 lines of Rust, we
wrote a pretty passable replacement for one of the most
widely used Unix programs. Compare your version to the 1,000
lines of C in the GNU source code. Reflect upon your progress
in this chapter:

You learned that the Iterator::all function will
return true if all the elements evaluate to true for
the given predicate, which is a closure accepting an

3

https://oreil.ly/Lzy0u

element. Many similar Iterator methods accept a
closure as an argument for testing, selecting, and
transforming the elements.

You used the str::split_whitespace and
str::chars methods to break text into words and
characters.

You used the Iterator::count method to count the
number of items.

You wrote a function to conditionally format a value
or the empty string to support the printing or
omission of information according to the flag
arguments.

You organized your unit tests into a tests module and
imported functions from the parent module, called
super.

You used the #[cfg(test)] configuration option to
tell Rust to compile the tests module only when
testing.

You saw how to use std::io::Cursor to create a fake
filehandle for testing a function that expects
something that implements BufRead.

You’ve learned quite a bit about reading files with Rust,
and in the next chapter, you’ll learn how to write files.

1 The text shown in this example translates to: “There are
many who know how of old did men, in counsel gather / little
good did they get / in secret they plotted, it was sore for
them later / and for Gjuki’s sons, whose trust they
deceived.”

2 When my youngest first started brushing his own teeth before
bed, I would ask if he’d brushed and flossed. The problem was
that he was prone to fibbing, so it was hard to trust him. In
an actual exchange one night, I asked, “Did you brush and
floss your teeth?” Yes, he replied. “Did you brush your
teeth?” Yes, he replied. “Did you floss your teeth?” No, he
replied. So clearly he failed to properly combine Boolean
values because a true statement and a false statement should
result in a false outcome.

3 A more literal translation might be “Corner spider, rest
easy, my soot-broom is idle.”

Chapter 6. Den of Uniquity

There’s only one everything

— They Might Be Giants, “One Everything”
(2008)

In this chapter, you will write a Rust version of the uniq
program (pronounced unique), which will find the distinct
lines of text from either a file or STDIN. Among its many
uses, it is often employed to count how many times each
unique string is found.

Along the way, you will learn how to do the following:

Write to a file or STDOUT

Use a closure to capture a variable

Apply the don’t repeat yourself (DRY) concept

Use the Write trait and the write! and writeln!
macros

Use temporary files

Indicate the lifetime of a variable

How uniq Works

As usual, I’ll start by explaining how uniq works so that
you understand what is expected of your program. Following is
part of the manual page for the BSD version of uniq. The
challenge program in this chapter will only implement the
reading of a file or STDIN, writing to a file or STDOUT,
and counting the lines for the -c flag, but I include more

of the documentation so that you can see the full scope of
the program:

UNIQ(1) BSD General Commands Manual
UNIQ(1)

NAME
 uniq -- report or filter out repeated lines in a file

SYNOPSIS
 uniq [-c | -d | -u] [-i] [-f num] [-s chars]
[input_file [output_file]]

DESCRIPTION
 The uniq utility reads the specified input_file
comparing adjacent lines,
 and writes a copy of each unique input line to the
output_file. If
 input_file is a single dash ('-') or absent, the
standard input is read.
 If output_file is absent, standard output is used for
output. The second
 and succeeding copies of identical adjacent input
lines are not written.
 Repeated lines in the input will not be detected if
they are not adja-
 cent, so it may be necessary to sort the files first.

 The following options are available:

 -c Precede each output line with the count of the
number of times
 the line occurred in the input, followed by a
single space.

 -d Only output lines that are repeated in the
input.

 -f num Ignore the first num fields in each input line
when doing compar-
 isons. A field is a string of non-blank
characters separated
 from adjacent fields by blanks. Field numbers
are one based,

 i.e., the first field is field one.

 -s chars
 Ignore the first chars characters in each
input line when doing
 comparisons. If specified in conjunction with
the -f option, the
 first chars characters after the first num
fields will be
 ignored. Character numbers are one based,
i.e., the first char-
 acter is character one.

 -u Only output lines that are not repeated in the
input.

 -i Case insensitive comparison of lines.

In the 06_uniqr/tests/inputs directory of the book’s Git
repository, you will find the following input files I’ll use
for testing:

empty.txt: an empty file

one.txt: a file with one line of text

two.txt: a file with two lines of the same text

three.txt: a file with 13 lines of 4 unique values

skip.txt: a file with four lines of two unique values
plus an empty line

The other files t[1–6].txt are examples from a Perl program
used to test the GNU version. These are generated by the mk-
outs.sh file:

$ cat mk-outs.sh
#!/usr/bin/env bash

ROOT="tests/inputs"
OUT_DIR="tests/expected"

https://oreil.ly/I9QA5

[[! -d "$OUT_DIR"]] && mkdir -p "$OUT_DIR"

Cf
https://github.com/coreutils/coreutils/blob/master/tests/mi
sc/uniq.pl
echo -ne "a\na\n" > $ROOT/t1.txt
echo -ne "a\na" > $ROOT/t2.txt
echo -ne "a\nb" > $ROOT/t3.txt
echo -ne "a\na\nb" > $ROOT/t4.txt
echo -ne "b\na\na\n" > $ROOT/t5.txt
echo -ne "a\nb\nc\n" > $ROOT/t6.txt

for FILE in $ROOT/*.txt; do
 BASENAME=$(basename "$FILE")
 uniq $FILE > ${OUT_DIR}/${BASENAME}.out
 uniq -c $FILE > ${OUT_DIR}/${BASENAME}.c.out
 uniq < $FILE > ${OUT_DIR}/${BASENAME}.stdin.out
 uniq -c < $FILE > ${OUT_DIR}/${BASENAME}.stdin.c.out
done

Two lines each ending with a newline

No trailing newline on last line

Two different lines, no trailing newline

Two lines the same; last is different with no trailing
newline

Two different values with newlines on each

Three different values with newlines on each

To demonstrate uniq, note that it will print nothing when
given an empty file:

$ uniq tests/inputs/empty.txt

Given a file with just one line, the one line will be
printed:

$ uniq tests/inputs/one.txt
a

It will also print the number of times a line occurs before
the line when run with the -c option. The count is right-
justified in a field four characters wide and is followed by
a single space and then the line of text:

$ uniq -c tests/inputs/one.txt
 1 a

The file tests/inputs/two.txt contains two duplicate lines:

$ cat tests/inputs/two.txt
a
a

Given this input, uniq will emit one line:

$ uniq tests/inputs/two.txt
a

With the -c option, uniq will also include the count of
unique lines:

$ uniq -c tests/inputs/two.txt
 2 a

A longer input file shows that uniq only considers the lines
in order and not globally. For example, the value a appears
four times in this input file:

$ cat tests/inputs/three.txt
a

a
b
b
a
c
c
c
a
d
d
d
d

When counting, uniq starts over at 1 each time it sees a new
string. Since a occurs in three different places in the input
file, it will also appear three times in the output:

$ uniq -c tests/inputs/three.txt
 2 a
 2 b
 1 a
 3 c
 1 a
 4 d

If you want the actual unique values, you must first sort the
input, which can be done with the aptly named sort command.
In the following output, you’ll finally see that a occurs a
total of four times in the input file:

$ sort tests/inputs/three.txt | uniq -c
 4 a
 2 b
 3 c
 4 d

The file tests/inputs/skip.txt contains a blank line:

$ cat tests/inputs/skip.txt
a

a
b

The blank line acts just like any other value, and so it will
reset the counter:

$ uniq -c tests/inputs/skip.txt
 1 a
 1
 1 a
 1 b

If you study the Synopsis of the usage closely, you’ll see a
very subtle indication of how to write the output to a file.
Notice how input_file and output_file in the following
are grouped inside square brackets to indicate that they are
optional as a pair. That is, if you provide input_file, you
may also optionally provide output _file:

uniq [-c | -d | -u] [-i] [-f num] [-s chars] [input_file
[output_file]]

For example, I can count tests/inputs/two.txt and place the
output into out:

$ uniq -c tests/inputs/two.txt out
$ cat out
 2 a

With no positional arguments, uniq will read from STDIN by
default:

$ cat tests/inputs/two.txt | uniq -c
 2 a

If you want to read from STDIN and indicate the output
filename, you must use a dash (-) for the input filename:

$ cat tests/inputs/two.txt | uniq -c - out
$ cat out
 2 a

The GNU version works basically the same while also providing
many more options:

$ uniq --help
Usage: uniq [OPTION]... [INPUT [OUTPUT]]
Filter adjacent matching lines from INPUT (or standard
input),
writing to OUTPUT (or standard output).

With no options, matching lines are merged to the first
occurrence.

Mandatory arguments to long options are mandatory for short
options too.
 -c, --count prefix lines by the number of
occurrences
 -d, --repeated only print duplicate lines, one for
each group
 -D, --all-repeated[=METHOD] print all duplicate lines
 groups can be delimited with an
empty line
 METHOD=
{none(default),prepend,separate}
 -f, --skip-fields=N avoid comparing the first N fields
 --group[=METHOD] show all items, separating groups
with an empty line
 METHOD=
{separate(default),prepend,append,both}
 -i, --ignore-case ignore differences in case when
comparing
 -s, --skip-chars=N avoid comparing the first N
characters
 -u, --unique only print unique lines
 -z, --zero-terminated end lines with 0 byte, not newline
 -w, --check-chars=N compare no more than N characters
in lines

 --help display this help and exit
 --version output version information and exit

A field is a run of blanks (usually spaces and/or TABs),
then nonblank
characters. Fields are skipped before chars.

Note: 'uniq' does not detect repeated lines unless they are
adjacent.
You may want to sort the input first, or use 'sort -u'
without 'uniq'.
Also, comparisons honor the rules specified by
'LC_COLLATE'.

As you can see, both the BSD and GNU versions have many more
options, but this is as much as the challenge program is
expected to implement.

Getting Started

This chapter’s challenge program should be called uniqr
(pronounced you-neek-er) for a Rust version of uniq. Start
by running cargo new uniqr, then modify your Cargo.toml to
add the following dependencies:

[dependencies]
clap = "2.33"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
tempfile = "3"
rand = "0.8"

The tests will create temporary files using the tempfile
crate.

https://oreil.ly/AYcMa

Copy the book’s 06_uniqr/tests directory into your project,
and then run cargo test to ensure that the program compiles
and the tests run and fail.

Defining the Arguments

Update your src/main.rs to the following:

fn main() {
 if let Err(e) = uniqr::get_args().and_then(uniqr::run)
{
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

I suggest you start src/lib.rs with the following:

use clap::{App, Arg};
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug)]
pub struct Config {
 in_file: String,
 out_file: Option<String>,
 count: bool,
}

This is the input filename to read, which may be STDIN if
the filename is a dash.

The output will be written either to an optional output
filename or STDOUT.

count is a Boolean for whether or not to print the counts
of each line.

Here is an outline for get_args:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("uniqr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust uniq")
 // What goes here?
 .get_matches();

 Ok(Config {
 in_file: ...
 out_file: ...
 count: ...
 })
}

I suggest you start your run by printing the config:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:?}", config);
 Ok(())
}

Your program should be able to produce the following usage:

$ cargo run -- -h
uniqr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust uniq

USAGE:
 uniqr [FLAGS] [ARGS]

FLAGS:
 -c, --count Show counts
 -h, --help Prints help information
 -V, --version Prints version information

ARGS:
 <IN_FILE> Input file [default: -]
 <OUT_FILE> Output file

The -c|--count flag is optional.

The input file is the first positional argument and
defaults to a dash (-).

The output file is the second positional argument and is
optional.

By default the program will read from STDIN, which can be
represented using a dash:

$ cargo run
Config { in_file: "-", out_file: None, count: false }

The first positional argument should be interpreted as the
input file and the second positional argument as the output
file. Note that clap can handle options either before or
after positional arguments:

$ cargo run -- tests/inputs/one.txt out --count
Config { in_file: "tests/inputs/one.txt", out_file:
Some("out"), count: true }

NOTE

Take a moment to finish get_args before reading further.

I assume you are an upright and moral person who figured out
the preceding function on your own, so I will now share my
solution:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("uniq")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")

1

 .about("Rust uniq")
 .arg(
 Arg::with_name("in_file")
 .value_name("IN_FILE")
 .help("Input file")
 .default_value("-"),
)
 .arg(
 Arg::with_name("out_file")
 .value_name("OUT_FILE")
 .help("Output file"),
)
 .arg(
 Arg::with_name("count")
 .short("c")
 .help("Show counts")
 .long("count")
 .takes_value(false),
)
 .get_matches();

 Ok(Config {
 in_file:
matches.value_of_lossy("in_file").unwrap().to_string(),
 out_file:
matches.value_of("out_file").map(String::from),
 count: matches.is_present("count"),
 })
}

Convert the in_file argument to a String.

Convert the out_file argument to an Option<String>.

The count is either present or not, so convert this to a
bool.

Because the in_file argument has a default value, it is
safe to call Option::unwrap and convert the value to a
String. There are several other ways to get the same
result, none of which is necessarily superior. You could use

Option::map to feed the value to String::from and then
unwrap it:

 in_file:
matches.value_of_lossy("in_file").map(String::from).unwrap(
),

You could also use a closure that calls Into::into to
convert the value into a String because Rust can infer the
type:

 in_file: matches.value_of_lossy("in_file").map(|v|
v.into()).unwrap(),

The preceding can also be expressed using the Into::into
function directly because functions are first-class values
that can be passed as arguments:

 in_file:
matches.value_of_lossy("in_file").map(Into::into).unwrap(),

The out_file is optional, but if there is an option, you
can use Option::map to convert a Some value to a String:

 out_file: matches.value_of("out_file").map(|v|
v.to_string()),

https://oreil.ly/JaDYG
https://oreil.ly/X32Yh
https://oreil.ly/HTe0m

VARIABLE LIFETIMES

You may wonder why I don’t leave in_file as a &str
value. Consider what would happen if I did this:

#[derive(Debug)]
pub struct Config {
 in_file: &str,
 out_file: Option<&str>,
 count: bool,
}

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("uniq")
 ...

 Ok(Config {
 in_file: matches.value_of("in_file").unwrap(),
 out_file: matches.value_of("out_file"),
 count: matches.is_present("count"),
 })
}

The compiler would complain about missing lifetime
specifiers:

error[E0106]: missing lifetime specifier
 --> src/lib.rs:11:14
 |
11 | in_file: &str,
 | ^ expected named lifetime parameter
 |
help: consider introducing a named lifetime parameter
 |
10 | pub struct Config<'a> {
11 | in_file: &'a str,

The lifetime refers to how long a value is valid for
borrowing throughout a program. The problem here is that
I’m trying to take references to values from matches,

which goes out of scope at the end of the function and is
then dropped. Returning a Config that stores references
to a dropped value would lead to dangling pointers, which
is not allowed. In the next section I’ll demonstrate a
practical use of lifetimes; for a deeper discussion of
lifetimes, I would refer you to other texts, such as
Programming Rust or other more comprehensive books. In
this instance, the only valid choice is to return a
dynamic, heap-allocated String.

Testing the Program

The test suite in tests/cli.rs is fairly large, containing 78
tests that check the program under the following conditions:

Input file as the only positional argument, check
STDOUT

Input file as a positional argument with --count
option, check STDOUT

Input from STDIN with no positional arguments, check
STDOUT

Input from STDIN with --count and no positional
arguments, check STDOUT

Input and output files as positional arguments, check
output file

Input and output files as positional arguments with -
-count, check output file

Input from STDIN and output files as positional
arguments with --count, check output file

https://oreil.ly/R2d0d
https://oreil.ly/DUQqG

Given how large and complicated the tests became, you may be
interested to see how I structured tests/cli.rs, which starts
with the following:

use assert_cmd::Command;
use predicates::prelude::*;
use rand::{distributions::Alphanumeric, Rng};
use std::fs;
use tempfile::NamedTempFile;

type TestResult = Result<(), Box<dyn std::error::Error>>;

struct Test {
 input: &'static str,
 out: &'static str,
 out_count: &'static str,
}

This is used to create temporary output files.

A struct to define the input files and expected output
values with and without the counts.

Note the use of 'static to denote the lifetime of the
values. I want to define structs with &str values, and the
Rust compiler would like to know exactly how long the values
are expected to stick around relative to one another. The
'static annotation shows that this data will live for the
entire lifetime of the program. If you remove it and run the
tests, you’ll see similar errors from the compiler, as shown
in the previous section, along with a suggestion of how to
fix it:

error[E0106]: missing lifetime specifier
 --> tests/cli.rs:8:12
 |
8 | input: &str,
 | ^ expected named lifetime parameter

 |
help: consider introducing a named lifetime parameter
 |
7 | struct Test<'a> {
8 | input: &'a str,

Next, I define some constant values I need for testing:

const PRG: &str = "uniqr";

const EMPTY: Test = Test {
 input: "tests/inputs/empty.txt",
 out: "tests/inputs/empty.txt.out",
 out_count: "tests/inputs/empty.txt.c.out",
};

The name of the program being tested

The location of the input file for this test

The location of the output file without the counts

The location of the output file with the counts

After the declaration of EMPTY, there are many more Test
structures followed by several helper functions. The run
function will use Test.input as an input file and will
compare STDOUT to the contents of the Test.out file:

fn run(test: &Test) -> TestResult {
 let expected = fs::read_to_string(test.out)?;
 Command::cargo_bin(PRG)?
 .arg(test.input)
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

The function accepts a Test and returns a TestResult.

Try to read the expected output file.

Try to run the program with the input file as an argument,
verify it ran successfully, and compare STDOUT to the
expected value.

The run_count helper function works very similarly, but
this time it tests for the counting:

fn run_count(test: &Test) -> TestResult {
 let expected = fs::read_to_string(test.out_count)?;
 Command::cargo_bin(PRG)?
 .args(&[test.input, "-c"])
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

Read the Test.out_count file for the expected output.

Pass both the Test.input value and the flag -c to count
the lines.

The run_stdin function will supply the input to the program
through STDIN:

fn run_stdin(test: &Test) -> TestResult {
 let input = fs::read_to_string(test.input)?;
 let expected = fs::read_to_string(test.out)?;
 Command::cargo_bin(PRG)?
 .write_stdin(input)
 .assert()
 .success()
 .stdout(expected);

 Ok(())
}

Try to read the Test.input file.

Try to read the Test.out file.

Pass the input through STDIN and verify that STDOUT is
the expected value.

The run_stdin_count function tests both reading from
STDIN and counting the lines:

fn run_stdin_count(test: &Test) -> TestResult {
 let input = fs::read_to_string(test.input)?;
 let expected = fs::read_to_string(test.out_count)?;
 Command::cargo_bin(PRG)?
 .arg("--count")
 .write_stdin(input)
 .assert()
 .success()
 .stdout(expected);
 Ok(())
}

Run the program with the long --count flag, feed the
input to STDIN, and verify that STDOUT is correct.

The run_outfile function checks that the program accepts
both the input and output files as positional arguments. This
is somewhat more interesting as I needed to use temporary
files in the testing because, as you have seen repeatedly,
Rust will run the tests in parallel. If I were to use the
same dummy filename like blargh to write all the output
files, the tests would overwrite one another’s output. To
get around this, I use the tempfile::NamedTempFile to

https://oreil.ly/3y9kZ

get a dynamically generated temporary filename that will
automatically be removed when I finish:

fn run_outfile(test: &Test) -> TestResult {
 let expected = fs::read_to_string(test.out)?;
 let outfile = NamedTempFile::new()?;
 let outpath = &outfile.path().to_str().unwrap();

 Command::cargo_bin(PRG)?
 .args(&[test.input, outpath])
 .assert()
 .success()
 .stdout("");
 let contents = fs::read_to_string(&outpath)?;
 assert_eq!(&expected, &contents);

 Ok(())
}

Try to get a named temporary file.

Get the path to the file.

Run the program with the input and output filenames as
arguments, then verify there is nothing in STDOUT.

Try to read the output file.

Check that the contents of the output file match the
expected value.

The next two functions are variations on what I’ve already
shown, adding in the --count flag and finally asking the
program to read from STDIN when the input filename is a
dash. The rest of the module calls these helpers using the
various structs to run all the tests.

https://oreil.ly/jIpqA

Processing the Input Files

I would suggest you start in src/lib.rs by reading the input
file, so it makes sense to use the open function from
previous chapters:

fn open(filename: &str) -> MyResult<Box<dyn BufRead>> {
 match filename {
 "-" => Ok(Box::new(BufReader::new(io::stdin()))),
 _ =>
Ok(Box::new(BufReader::new(File::open(filename)?))),
 }
}

Be sure you expand your imports to include the following:

use clap::{App, Arg};
use std::{
 error::Error,
 fs::File,
 io::{self, BufRead, BufReader},
};

This syntax will group imports by common prefixes, so all
the following come from std.

You can borrow quite a bit of code from Chapter 3 that reads
lines of text from an input file or STDIN while preserving
the line endings:

pub fn run(config: Config) -> MyResult<()> {
 let mut file = open(&config.in_file)
 .map_err(|e| format!("{}: {}", config.in_file,
e))?;
 let mut line = String::new();
 loop {
 let bytes = file.read_line(&mut line)?;
 if bytes == 0 {
 break;

 }
 print!("{}", line);
 line.clear();
 }
 Ok(())
}

Either read STDIN if the input file is a dash or open the
given filename. Create an informative error message when
this fails.

Create a new, empty mutable String buffer to hold each
line.

Create an infinite loop.

Read a line of text while preserving the line endings.

If no bytes were read, break out of the loop.

Print the line buffer.

Clear the line buffer.

Run your program with an input file to ensure it works:

$ cargo run -- tests/inputs/one.txt
a

It should also work for reading STDIN:

$ cargo run -- - < tests/inputs/one.txt
a

Next, make your program iterate the lines of input and count
each unique run of lines, then print the lines with and
without the counts. Once you are able to create the correct

output, you will need to handle printing it either to
STDOUT or a given filename. I suggest that you copy ideas
from the open function and use File::create.

NOTE

Stop reading here and finish your program. Remember that you can
run just a subset of tests with a command like cargo test empty
to run all the tests with the string empty in the name.

Solution

I’ll step you through how I arrived at a solution. Your
version may be different, but it’s fine as long as it passes
the test suite. I decided to create two additional mutable
variables to hold the previous line of text and the running
count. For now, I will always print the count to make sure
it’s working correctly:

pub fn run(config: Config) -> MyResult<()> {
 let mut file = open(&config.in_file)
 .map_err(|e| format!("{}: {}", config.in_file,
e))?;
 let mut line = String::new();
 let mut previous = String::new();
 let mut count: u64 = 0;

 loop {
 let bytes = file.read_line(&mut line)?;
 if bytes == 0 {
 break;
 }

 if line.trim_end() != previous.trim_end() {
 if count > 0 {
 print!("{:>4} {}", count, previous);
 }
 previous = line.clone();

https://oreil.ly/QPy35

 count = 0;
 }

 count += 1;
 line.clear();
 }

 if count > 0 {
 print!("{:>4} {}", count, previous);
 }

 Ok(())
}

Create a mutable variable to hold the previous line of
text.

Create a mutable variable to hold the count.

Compare the current line to the previous line, both
trimmed of any possible trailing whitespace.

Print the output only when count is greater than 0.

Print the count right-justified in a column four
characters wide followed by a space and the previous
value.

Set the previous variable to a copy of the current
line.

Reset the counter to 0.

Increment the counter by 1.

Handle the last line of the file.

NOTE

I didn’t have to indicate the type u64 for the count variable.
Rust will happily infer a type. On a 32-bit system, Rust would
use an i32, which would limit the maximum number of duplicates to
i32::MAX, or 2,147,483,647. That’s a big number that’s likely

to be adequate, but I think it’s better to have the program work
consistently by specifying u64.

If I run cargo test, this will pass a fair number of tests.
This code is clunky, though. I don’t like having to check
if count > 0 twice, as it violates the don’t repeat

yourself (DRY) principle, where you isolate a common idea
into a single abstraction like a function rather than copying
and pasting the same lines of code throughout a program.
Also, my code always prints the count, but it should print
the count only when config.count is true. I can put all
of this logic into a function, and I will specifically use a
closure to close around the config.count value:

let print = |count: u64, text: &str| {
 if count > 0 {
 if config.count {
 print!("{:>4} {}", count, text);
 } else {
 print!("{}", text);
 }
 };
};

The print closure will accept count and text values.

Print only if count is greater than 0.

Check if the config.count value is true.

https://oreil.ly/sE2YC

Use the print! macro to print the count and text to
STDOUT.

Otherwise, print the text to STDOUT.

CLOSURES VERSUS FUNCTIONS

A closure is a function, so you might be tempted to write
print as a function inside the run function:

pub fn run(config: Config) -> MyResult<()> {
 ...
 fn print(count: u64, text: &str) {
 if count > 0 {
 if config.count {
 print!("{:>4} {}", count, text);
 } else {
 print!("{}", text);
 }
 }
 }
 ...

This is a common way to write a closure in other
languages, and Rust does allow you to declare a function
inside another function; however, the Rust compiler
specifically disallows capturing a dynamic value from the
environment:

error[E0434]: can't capture dynamic environment in a fn
item
 --> src/lib.rs:67:16
 |
67 | if config.count {
 | ^^^^^^
 |
 = help: use the `|| { ... }` closure form instead

I can update the rest of the function to use this closure:

loop {
 let bytes = file.read_line(&mut line)?;
 if bytes == 0 {
 break;
 }

 if line.trim_end() != previous.trim_end() {
 print(count, &previous);
 previous = line.clone();
 count = 0;
 }

 count += 1;
 line.clear();
}

print(count, &previous);

At this point, the program will pass several more tests. All
the failed test names have the string outfile because the
program fails to write a named output file. To add this last
feature, you can open the output file in the same way as the
input file, either by creating a named output file using
File::create or by using std::io::stdout. Be sure to
add use std::io::Write for the following code, which you
can place just after the file variable:

let mut out_file: Box<dyn Write> = match &config.out_file {

 Some(out_name) => Box::new(File::create(out_name)?),
 _ => Box::new(io::stdout()),
};

The mutable out_file will be a boxed value that
implements the std::io ::Write trait.

https://oreil.ly/Hlk6A

When config.out_file is Some filename, use
File::create to try to create the file.

Otherwise, use std::io::stdout.

If you look at the documentation for File::create and
io::stdout, you’ll see both have a “Traits” section

showing the various traits they implement. Both show that
they implement Write, so they satisfy the type requirement
Box<dyn Write>, which says that the value inside the Box
must implement this trait.

The second change I need to make is to use out_file for the
output. I will replace the print! macro with write! to
write the output to a stream like a filehandle or STDOUT.
The first argument to write! must be a mutable value that
implements the Write trait. The documentation shows that
write! will return a std::io::Result because it might
fail. As such, I changed my print closure to return
MyResult. Here is the final version of my run function
that passes all the tests:

pub fn run(config: Config) -> MyResult<()> {
 let mut file = open(&config.in_file)
 .map_err(|e| format!("{}: {}", config.in_file,
e))?;

 let mut out_file: Box<dyn Write> = match
&config.out_file {
 Some(out_name) =>
Box::new(File::create(out_name)?),
 _ => Box::new(io::stdout()),
 };

 let mut print = |count: u64, text: &str| ->
MyResult<()> {
 if count > 0 {
 if config.count {

https://oreil.ly/QPy35
https://oreil.ly/gjxor
https://oreil.ly/oiJaM

 write!(out_file, "{:>4} {}", count, text)?;
 } else {
 write!(out_file, "{}", text)?;
 }
 };
 Ok(())
 };

 let mut line = String::new();
 let mut previous = String::new();
 let mut count: u64 = 0;
 loop {
 let bytes = file.read_line(&mut line)?;
 if bytes == 0 {
 break;
 }

 if line.trim_end() != previous.trim_end() {
 print(count, &previous)?;
 previous = line.clone();
 count = 0;
 }

 count += 1;
 line.clear();
 }
 print(count, &previous)?;

 Ok(())
}

Open either STDIN or the given input filename.

Open either STDOUT or the given output filename.

Create a mutable print closure to format the output.

Use the print closure to possibly print output. Use ? to
propagate potential errors.

Handle the last line of the file.

Note that the print closure must be declared with the mut
keyword to make it mutable because the out_file filehandle
is borrowed. Without this, the compiler will show the
following error:

error[E0596]: cannot borrow `print` as mutable, as it is
not declared as mutable
 --> src/lib.rs:84:13
 |
63 | let print = |count: u64, text: &str| ->
MyResult<()> {
 | ----- help: consider changing this to be
mutable: `mut print`
...
66 | write!(out_file, "{:>4} {}", count,
text)?;
 | -------- calling `print`
requires mutable binding
 | due to mutable borrow
of `out_file`

Again, it’s okay if your solution is different from mine, as
long as it passes the tests. Part of what I like about
writing with tests is that there is an objective
determination of when a program meets some level of
specifications. As Louis Srygley once said, “Without
requirements or design, programming is the art of adding bugs
to an empty text file.” I would say that tests are the
requirements made incarnate. Without tests, you simply have
no way to know when a change to your program strays from the
requirements or breaks the design.

Going Further

Can you find other ways to write this algorithm? For
instance, I tried another method that read all the lines of
the input file into a vector and used Vec::windows to look

2

https://oreil.ly/vudZO

at pairs of lines. This was interesting but could fail if the
size of the input file exceeded the available memory on my
machine. The solution presented here will only ever allocate
memory for the current and previous lines and so should scale
to any size file.

As usual, the BSD and GNU versions of uniq both have many
more features than I chose to include in the challenge. I
would encourage you to add all the features you would like to
have in your version. Be sure to add tests for each feature,
and always run the entire test suite to verify that all
previous features still work.

In my mind, uniq is closely tied with sort, as I often use
them together. Consider implementing your own version of
sort, at least to the point of sorting values
lexicographically (in dictionary order) or numerically.

Summary

In about 100 lines of Rust, the uniqr program manages to
replicate a reasonable subset of features from the original
uniq program. Compare this to the GNU C source code, which
has more than 600 lines of code. I would feel much more
confident extending uniqr than I would using C due to the
Rust compiler’s use of types and useful error messages.

Let’s review some of the things you learned in this chapter:

You can now open a new file for writing or print to
STDOUT.

DRY says that any duplicated code should be moved into
a single abstraction like a function or a closure.

A closure must be used to capture values from the
enclosing scope.

https://oreil.ly/X8ipY

When a value implements the Write trait, it can be
used with the write! and writeln! macros.

The tempfile crate helps you create and remove
temporary files.

The Rust compiler may sometimes require you to
indicate the lifetime of a variable, which is how long
it lives in relation to other variables.

In the next chapter, I’ll introduce Rust’s enumerated enum
type and how to use regular expressions.

1 While the goal is to mimic the original versions as much as
possible, I would note that I do not like optional positional
parameters. In my opinion, it would be better to have an -o|--
output option that defaults to STDOUT and have only one
optional positional argument for the input file that defaults
to STDIN.

2 Programming Wisdom (@CodeWisdom), “‘Without requirements or
design, programming is the art of adding bugs to an empty text
file.’ - Louis Srygley,” Twitter, January 24, 2018, 1:00
p.m., https://oreil.ly/FC6aS.

https://oreil.ly/FC6aS

Chapter 7. Finders Keepers

Then / Is when I maybe should have wrote it down /
But when I looked around to find a pen /
And then I tried to think of what you said / We broke in
two

— They Might be Giants, “Broke in Two”
(2004)

In this chapter, you will write a Rust version of the find
utility, which will, unsurprisingly, find files and
directories for you. If you run find with no restrictions,
it will recursively search one or more paths for entries such
as files, symbolic links, sockets, and directories. You can
add myriad matching restrictions, such as for names, file
sizes, file types, modification times, permissions, and more.
The challenge program will locate files, directories, or
links in one or more directories having names that match one
or more regular expressions, or patterns of text.

You will learn how to do the following:

Use clap to constrain possible values for command-
line arguments

Use the unreachable! macro to cause a panic

Use a regular expression to find a pattern of text

Create an enumerated type

Recursively search filepaths using the walkdir crate

Use the Iterator::any function

Chain multiple filter, map, and filter_map
operations

Compile code conditionally when on Windows or not

Refactor code

How find Works

Let’s begin by exploring what find can do by consulting the
manual page, which goes on for about 500 lines detailing
dozens of options. The challenge program for this chapter
will be required to find entries in one or more paths, and
these entries can be filtered by files, links, and
directories as well as by names that match an optional
pattern. I’ll show the beginning of the BSD find manual
page that shows part of the requirements for the challenge:

FIND(1) BSD General Commands Manual
FIND(1)

NAME
 find -- walk a file hierarchy

SYNOPSIS
 find [-H | -L | -P] [-EXdsx] [-f path] path ...
[expression]
 find [-H | -L | -P] [-EXdsx] -f path [path ...]
[expression]

DESCRIPTION
 The find utility recursively descends the directory
tree for each path
 listed, evaluating an expression (composed of the
''primaries'' and
 ''operands'' listed below) in terms of each file in
the tree.

The GNU find is similar:

$ find --help
Usage: find [-H] [-L] [-P] [-Olevel]
[-D help|tree|search|stat|rates|opt|exec] [path...]
[expression]

default path is the current directory; default expression
is -print
expression may consist of: operators, options, tests, and
actions:

operators (decreasing precedence; -and is implicit where no
others are given):
 (EXPR) ! EXPR -not EXPR EXPR1 -a EXPR2
EXPR1 -and EXPR2
 EXPR1 -o EXPR2 EXPR1 -or EXPR2 EXPR1 , EXPR2

positional options (always true): -daystart -follow -
regextype

normal options (always true, specified before other
expressions):
 -depth --help -maxdepth LEVELS -mindepth LEVELS -
mount -noleaf
 --version -xautofs -xdev -ignore_readdir_race -
noignore_readdir_race

tests (N can be +N or -N or N): -amin N -anewer FILE -atime
N -cmin N
 -cnewer FILE -ctime N -empty -false -fstype TYPE -gid
N -group NAME
 -ilname PATTERN -iname PATTERN -inum N -iwholename
PATTERN
 -iregex PATTERN -links N -lname PATTERN -mmin N -
mtime N
 -name PATTERN -newer FILE -nouser -nogroup -path
PATTERN
 -perm [-/]MODE -regex PATTERN -readable -writable -
executable
 -wholename PATTERN -size N[bcwkMG] -true -type
[bcdpflsD] -uid N
 -used N -user NAME -xtype [bcdpfls] -context CONTEXT

actions: -delete -print0 -printf FORMAT -fprintf FILE
FORMAT -print
 -fprint0 FILE -fprint FILE -ls -fls FILE -prune -quit

 -exec COMMAND ; -exec COMMAND {} + -ok COMMAND ;
 -execdir COMMAND ; -execdir COMMAND {} + -okdir
COMMAND ;

As usual, the challenge program will attempt to implement
only a subset of these options that I’ll demonstrate

forthwith using the files in 07_findr/tests/inputs. In the
following output from tree showing the directory and the
file structure of that directory, the symbol -> indicates
that d/b.csv is a symbolic link to the file a/b/b.csv:

$ cd 07_findr/tests/inputs/
$ tree
.
├── a
│ ├── a.txt
│ └── b
│ ├── b.csv
│ └── c
│ └── c.mp3
├── d
│ ├── b.csv -> ../a/b/b.csv
│ ├── d.tsv
│ ├── d.txt
│ └── e
│ └── e.mp3
├── f
│ └── f.txt
└── g.csv

6 directories, 9 files

NOTE

A symbolic link is a pointer or a shortcut to a file or
directory. Windows does not have symbolic links (aka symlinks),
so the output will be different on that platform because the path
tests\inputs\d\b.csv will exist as a regular file. I recommend
Windows users also explore writing and testing this program in
Windows Subsystem for Linux.

Next, I will demonstrate the features of find that the
challenge program is expected to implement. To start, find
must have one or more positional arguments that indicate the
paths to search. For each path, find will recursively search
for all files and directories found therein. If I am in the
tests/inputs directory and indicate . for the current
working directory, find will list all the contents. The
ordering of the output from the BSD find on macOS differs
from the GNU version on Linux, which I show on the left and
right, respectively:

$ find . $ find .
. .
./g.csv ./d
./a ./d/d.txt
./a/a.txt ./d/d.tsv
./a/b ./d/e
./a/b/b.csv ./d/e/e.mp3
./a/b/c ./d/b.csv
./a/b/c/c.mp3 ./f
./f ./f/f.txt
./f/f.txt ./g.csv
./d ./a
./d/b.csv ./a/a.txt
./d/d.txt ./a/b
./d/d.tsv ./a/b/c
./d/e ./a/b/c/c.mp3
./d/e/e.mp3 ./a/b/b.csv

I can use the -type option to specify f and find only
files:

$ find . -type f
./g.csv
./a/a.txt
./a/b/b.csv
./a/b/c/c.mp3
./f/f.txt
./d/d.txt

1

./d/d.tsv

./d/e/e.mp3

I can use l to find only links:

$ find . -type l
./d/b.csv

I can also use d to find only directories:

$ find . -type d
.
./a
./a/b
./a/b/c
./f
./d
./d/e

While the challenge program will try to find only these
types, find will accept several more -type values per the
manual page:

-type t
 True if the file is of the specified type. Possible
file types
 are as follows:

 b block special
 c character special
 d directory
 f regular file
 l symbolic link
 p FIFO
 s socket

If you give a -type value not found in this list, find will
stop with an error:

$ find . -type x
find: -type: x: unknown type

The -name option can locate items matching a file glob
pattern, such as *.csv for any entry ending with .csv. In
bash, the asterisk (*) must be escaped with a backslash so
that it is passed as a literal character and not interpreted
by the shell:

$ find . -name *.csv
./g.csv
./a/b/b.csv
./d/b.csv

I can also put the pattern in quotes:

$ find . -name "*.csv"
./g.csv
./a/b/b.csv
./d/b.csv

I can search for multiple -name patterns by chaining them
with -o, for or:

$ find . -name "*.txt" -o -name "*.csv"
./g.csv
./a/a.txt
./a/b/b.csv
./f/f.txt
./d/b.csv
./d/d.txt

I can combine -type and -name options. For instance, I can
search for files or links matching *.csv:

$ find . -name "*.csv" -type f -o -type l
./g.csv
./a/b/b.csv
./d/b.csv

I must use parentheses to group the -type arguments when the
-name condition follows an or expression:

$ find . \(-type f -o -type l \) -name "*.csv"
./g.csv
./a/b/b.csv
./d/b.csv

I can also list multiple search paths as positional
arguments:

$ find a/b d -name "*.mp3"
a/b/c/c.mp3
d/e/e.mp3

If the given search path does not exist, find will print an
error. In the following command, blargh represents a
nonexistent path:

$ find blargh
find: blargh: No such file or directory

If an argument is the name of an existing file, find will
simply print it:

$ find a/a.txt
a/a.txt

When find encounters an unreadable directory, it will print
a message to STDERR and move on. You can verify this on a
Unix platform by creating a directory called cant-touch-this
and using chmod 000 to remove all permissions:

$ mkdir cant-touch-this && chmod 000 cant-touch-this
$ find . -type d
.
./a
./a/b

./a/b/c

./f

./cant-touch-this
find: ./cant-touch-this: Permission denied
./d
./d/e

Windows does not have a permissions system that would render
a directory unreadable, so this will work only on Unix. Be
sure to remove the directory so that this will not interfere
with the tests:

$ chmod 700 cant-touch-this && rmdir cant-touch-this

While find can do much more, this is as much as you will
implement in this chapter.

Getting Started

The program you write will be called findr (pronounced find-
er), and I recommend you run cargo new findr to start.
Update Cargo.toml with the following:

[dependencies]
clap = "2.33"
walkdir = "2"
regex = "1"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

The walkdir crate will be used to recursively search the
paths for entries.

https://oreil.ly/zxLwJ

At this point, I normally suggest that you copy the tests
directory (07_findr/tests) into your project; however, in
this case, special care must be taken to preserve the symlink
in the tests/inputs directory or your tests will fail. In
Chapter 3, I showed you how to use the cp (copy) command
with the -r (recursive) option to copy the tests directory
into your project. On both macOS and Linux, you can change -
r to -R to recursively copy the directory and maintain
symlinks. I’ve also provided a bash script in the 07_findr
directory that will copy tests into a destination directory
and create the symlink manually. Run this with no arguments
to see the usage:

$./cp-tests.sh
Usage: cp-tests.sh DEST_DIR

Assuming you created your new project in ~/rust-
solutions/findr, you can use the program like this:

$./cp-tests.sh ~/rust-solutions/findr
Copying "tests" to "/Users/kyclark/rust-solutions/findr"
Fixing symlink
Done.

Run cargo test to build the program and run the tests, all
of which should fail.

Defining the Arguments

Create src/main.rs in the usual way:

fn main() {
 if let Err(e) = findr::get_args().and_then(findr::run)
{
 eprintln!("{}", e);
 std::process::exit(1);

 }
}

Before I get you started with what to write for your
src/lib.rs, I want to show the expected command-line
interface as it will affect how you define the arguments to
clap:

$ cargo run -- --help
findr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust find

USAGE:
 findr [OPTIONS] [--] [PATH]...

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

OPTIONS:
 -n, --name <NAME>... Name
 -t, --type <TYPE>... Entry type [possible values: f,
d, l]

ARGS:
 <PATH>... Search paths [default: .]

The -- separates multiple optional values from the
multiple positional values. Alternatively, you can place
the positional arguments before the options, as the find
program does.

The -n|--name option can specify one or more patterns.

The -t|--type option can specify one or more of f for
files, d for directories, or l for links. The possible
values indicates that clap will constrain the choices to
these values.

Zero or more directories can be supplied as positional
arguments, and the default should be a dot (.) for the
current working directory.

You can model this however you like, but here is how I
suggest you start src/lib.rs:

use crate::EntryType::*;
use clap::{App, Arg};
use regex::Regex;
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug, Eq, PartialEq)]
enum EntryType {
 Dir,
 File,
 Link,
}

This will allow you to use, for instance, Dir instead of
EntryType::Dir.

The EntryType is an enumerated list of possible values.

In the preceding code, I’m introducing enum, which is a
type that can be one of several variants. You’ve been using
enums such as Option, which has the variants Some<T> or
None, and Result, which has the variants Ok<T> and
Err<E>. In a language without such a type, you’d probably

have to use literal strings in your code like "dir",
"file", and "link". In Rust, you can create a new enum
called EntryType with exactly three possibilities: Dir,
File, or Link. You can use these values in pattern matching
with much more precision than matching strings, which might

https://oreil.ly/SGi2B

be misspelled. Additionally, Rust will not allow you to match
on EntryType values without considering all the variants,
which adds yet another layer of safety in using them.

TIP

Per Rust naming conventions, types, structs, traits, and enum
variants use UpperCamelCase, also called PascalCase.

Here is the Config I will use to represent the program’s

arguments:

#[derive(Debug)]
pub struct Config {
 paths: Vec<String>,
 names: Vec<Regex>,
 entry_types: Vec<EntryType>,
}

paths will be a vector of strings and may name files or
directories.

names will be a vector of compiled regular expressions
represented by the type regex::Regex.

entry_types will be a vector of EntryType variants.

NOTE

Regular expressions use a unique syntax to describe patterns of
text. The name comes from the concept of a regular language in
linguistics. Often the name is shortened to regex, and you will
find them used in many command-line tools and programming
languages.

https://oreil.ly/2tok7
https://oreil.ly/d4Bz6

Here is how you might start the get_args function:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("findr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust find")
 // What goes here?
 .get_matches()

 Ok(Config {
 paths: ...
 names: ...
 entry_types: ...
 })
}

Start the run function by printing the config:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:?}", config);
 Ok(())
}

When run with no arguments, the default Config values
should look like this:

$ cargo run
Config { paths: ["."], names: [], entry_types: [] }

The entry_types should include the File variant when given
a --type argument of f:

$ cargo run -- --type f
Config { paths: ["."], names: [], entry_types: [File] }

or Dir when the value is d:

$ cargo run -- --type d
Config { paths: ["."], names: [], entry_types: [Dir] }

or Link when the value is l:

$ cargo run -- --type l
Config { paths: ["."], names: [], entry_types: [Link] }

Any other value should be rejected. You can get clap::Arg
to handle this, so read the documentation closely:

$ cargo run -- --type x
error: 'x' isn't a valid value for '--type <TYPE>...'
 [possible values: d, f, l]

USAGE:
 findr --type <TYPE>

For more information try --help

I’ll be using the regex crate to match file and directory
names, which means that the --name value must be a valid
regular expression. Regular expression syntax differs
slightly from file glob patterns, as shown in Figure 7-1.
For instance, the dot has no special meaning in a file glob,
and the asterisk (*) in the glob *.txt means zero or more
of any character, so this will match files that end in .txt.
In regex syntax, however, the dot (.) is a metacharacter
that means any one character, and the asterisk means zero or
more of the previous character, so .* is the equivalent
regex.

2

https://oreil.ly/QuLf7
https://oreil.ly/VYPhC

Figure 7-1. The dot (.) and asterisk (*) have different meanings in
file globs and regular expressions.

This means that the equivalent regex should use a backslash
to escape the literal dot, as in .*\.txt, and the backslash
must itself be backslash-escaped on the command line. I will
change the code to pretty-print the config to make this
easier to see:

$ cargo run -- --name .*\\.txt
Config {
 paths: [
 ".",
],
 names: [
 .*\.txt,
],
 entry_types: [],
}

Alternatively, you can place the dot inside a character class
like [.], where it is no longer a metacharacter:

$ cargo run -- --name .*[.]txt
Config {
 paths: [
 ".",
],
 names: [
 .*[.]txt,
],
 entry_types: [],
}

Technically, the regular expression will match anywhere in
the string, even at the beginning, because .* means zero or
more of anything:

let re = Regex::new(".*[.]csv").unwrap();
assert!(re.is_match("foo.csv"));
assert!(re.is_match(".csv.foo"));

If I want to insist that the regex matches at the end of the
string, I can add $ at the end of the pattern to indicate
the end of the string:

let re = Regex::new(".*[.]csv$").unwrap();
assert!(re.is_match("foo.csv"));
assert!(!re.is_match(".csv.foo"));

TIP

The converse of using $ to anchor a pattern to the end of a
string is to use ^ to indicate the beginning of the string. For
instance, the pattern ^foo would match foobar and football
because those strings start with foo, but it would not match
barefoot.

If I try to use the same file glob pattern that find
expects, it should be rejected as invalid syntax:

$ cargo run -- --name *.txt
Invalid --name "*.txt"

Finally, all the Config fields should accept multiple
values:

$ cargo run -- -t f l -n txt mp3 -- tests/inputs/a
tests/inputs/d
Config {
 paths: [
 "tests/inputs/a",
 "tests/inputs/d",
],
 names: [
 txt,
 mp3,
],
 entry_types: [
 File,
 Link,
],
}

NOTE

Stop reading and get this much working before attempting to solve
the rest of the program. Don’t proceed until your program can
replicate the preceding output and can pass at least cargo test
dies:

running 2 tests
test dies_bad_type ... ok
test dies_bad_name ... ok

Validating the Arguments

Following is my get_args function, so that we can regroup
on the task at hand:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("findr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust find")
 .arg(
 Arg::with_name("paths")
 .value_name("PATH")
 .help("Search paths")
 .default_value(".")
 .multiple(true),
)
 .arg(
 Arg::with_name("names")
 .value_name("NAME")
 .short("n")
 .long("name")
 .help("Name")
 .takes_value(true)
 .multiple(true),
)
 .arg(
 Arg::with_name("types")
 .value_name("TYPE")
 .short("t")
 .long("type")
 .help("Entry type")
 .possible_values(&["f", "d", "l"])
 .takes_value(true)
 .multiple(true),
)
 .get_matches();

The paths argument requires at least one value and
defaults to a dot (.).

The names option accepts zero or more values.

The types option accepts zero or more values, and
Arg::possible_values restricts the selection to f, d,
or l.

https://oreil.ly/X104K

Next, I handle the possible filenames, transforming them into
regular expressions or rejecting invalid patterns:

 let names = matches
 .values_of_lossy("names")
 .map(|vals| {
 vals.into_iter()
 .map(|name| {
 Regex::new(&name)
 .map_err(|_| format!("Invalid --
name \"{}\"", name))
 })
 .collect::<Result<Vec<_>, _>>()
 })
 .transpose()?
 .unwrap_or_default();

Use Option::map if the user has provided Some(vals)
for the names.

Iterate over the values.

Try to create a new Regex with the name. This will return
a Result.

Use Result::map_err to create an informative error
message for invalid regexes.

Use Iterator::collect to gather the results as a
vector.

Use Option::transpose to change an Option of a
Result into a Result of an Option.

Use Option::unwrap_or_default to unwrap the previous
operations or use the default value for this type. Rust
will infer that the default is an empty vector.

https://oreil.ly/JaDYG
https://oreil.ly/4izCX
https://oreil.ly/Xn28H
https://oreil.ly/QCi0s
https://oreil.ly/U5Vyb
https://oreil.ly/s4Y4k

Next, I interpret the entry types. Even though I used
Arg::possible_values to ensure that the user could supply
only f, d, or l, Rust still requires a match arm for any
other possible string:

 // clap should disallow anything but "d," "f," or "l"
 let entry_types = matches
 .values_of_lossy("types")
 .map(|vals| {
 vals.iter()
 .map(|val| match val.as_str() {
 "d" => Dir,
 "f" => File,
 "l" => Link,
 _ => unreachable!("Invalid type"),
 })
 .collect()
 })
 .unwrap_or_default();

Use Option::map to handle Some(vals).

Iterate over each of the values.

Use Iterator::map to check each of the provided values.

If the value is d, f, or l, return the appropriate
EntryType.

This arm should never be selected, so use the
unreachable! macro to cause a panic if it is ever
reached.

Use Iterator::collect to gather the values. Rust
infers that I want a Vec<EntryType>.

Either unwrap the Some value or use the default for this
type, which is an empty vector.

https://oreil.ly/cfevE
https://oreil.ly/aZNlz

I end the function by returning the Config:

 Ok(Config {
 paths: matches.values_of_lossy("paths").unwrap(),
 names,
 entry_types,
 })
}

Finding All the Things

Now that you have validated the arguments from the user,
it’s time to look for the items that match the conditions.
You might start by iterating over config.paths and trying
to find all the files contained in each. You can use the
walkdir crate for this. Be sure to add use
walkdir::WalkDir for the following code, which shows how
to print all the entries:

pub fn run(config: Config) -> MyResult<()> {
 for path in config.paths {
 for entry in WalkDir::new(path) {
 match entry {
 Err(e) => eprintln!("{}", e),
 Ok(entry) => println!("{}",
entry.path().display()),
 }
 }
 }
 Ok(())
}

Each directory entry is returned as a Result.

Print errors to STDERR.

Print the display name of Ok values.

To see if this works, list the contents of tests/inputs/a/b.
Note that this is the order I see on macOS:

$ cargo run -- tests/inputs/a/b
tests/inputs/a/b
tests/inputs/a/b/b.csv
tests/inputs/a/b/c
tests/inputs/a/b/c/c.mp3

On Linux, I see the following output:

$ cargo run -- tests/inputs/a/b
tests/inputs/a/b
tests/inputs/a/b/c
tests/inputs/a/b/c/c.mp3
tests/inputs/a/b/b.csv

On Windows/PowerShell, I see this output:

> cargo run -- tests/inputs/a/b
tests/inputs/a/b
tests/inputs/a/b\b.csv
tests/inputs/a/b\c
tests/inputs/a/b\c\c.mp3

The test suite checks the output irrespective of order. It
also includes output files for Windows to ensure the
backslashes are correct and to deal with the fact that
symlinks don’t exist on that platform. Note that this
program skips nonexistent directories such as blargh:

$ cargo run -- blargh tests/inputs/a/b
IO error for operation on blargh: No such file or directory
(os error 2)
tests/inputs/a/b
tests/inputs/a/b/b.csv
tests/inputs/a/b/c
tests/inputs/a/b/c/c.mp3

This means that the program passes cargo test
skips_bad_dir at this point:

running 1 test
test skips_bad_dir ... ok

It will also handle unreadable directories, printing a
message to STDERR:

$ mkdir tests/inputs/hammer && chmod 000
tests/inputs/hammer
$ cargo run -- tests/inputs 1>/dev/null
IO error for operation on tests/inputs/cant-touch-this:
Permission denied (os error 13)
$ chmod 700 tests/inputs/hammer && rmdir
tests/inputs/hammer

A quick check with cargo test shows that this simple
version of the program already passes several tests.

NOTE

Now it’s your turn. Take what I’ve shown you so far and build
the rest of the program. Iterate over the contents of the
directory and show files, directories, or links when
config.entry_types contains the appropriate EntryType. Next,
filter out entry names that fail to match any of the given
regular expressions when they are present. I would encourage you
to read the tests in tests/cli.rs to ensure you understand what
the program should be able to handle.

Solution

Remember, you may have solved this differently from me, but a
passing test suite is all that matters. I will walk you

through how I arrived at a solution, starting with how I
filter for entry types:

pub fn run(config: Config) -> MyResult<()> {
 for path in config.paths {
 for entry in WalkDir::new(path) {
 match entry {
 Err(e) => eprintln!("{}", e),
 Ok(entry) => {
 if config.entry_types.is_empty()
 ||
config.entry_types.iter().any(|entry_type| {
 match entry_type {
 Link =>
entry.file_type().is_symlink(),
 Dir =>
entry.file_type().is_dir(),
 File =>
entry.file_type().is_file(),
 }
 })
 {
 println!("{}",
entry.path().display());
 }
 }
 }
 }
 }
 Ok(())
}

Check if no entry types are indicated.

If there are entry types, use Iterator::any to see if
any of the desired types match the entry’s type.

Print only those entries matching the selection criteria.

https://oreil.ly/HvVrb

Recall that I used Iterator::all in Chapter 5 to return

true if all of the elements in a vector passed some
predicate. In the preceding code, I’m using Iterator::any
to return true if at least one of the elements proves true
for the predicate, which in this case is whether the entry’s
type matches one of the desired types. When I check the
output, it seems to be finding, for instance, all the
directories:

$ cargo run -- tests/inputs/ -t d
tests/inputs/
tests/inputs/a
tests/inputs/a/b
tests/inputs/a/b/c
tests/inputs/f
tests/inputs/d
tests/inputs/d/e

I can run cargo test type to verify that I’m now passing

all of the tests that check for types alone. The failures are
for a combination of type and name, so next I also need to
check the filenames with the given regular expressions:

pub fn run(config: Config) -> MyResult<()> {
 for path in config.paths {
 for entry in WalkDir::new(path) {
 match entry {
 Err(e) => eprintln!("{}", e),
 Ok(entry) => {
 if (config.entry_types.is_empty()
 ||
config.entry_types.iter().any(|entry_type| {
 match entry_type {
 Link =>
entry.file_type().is_symlink(),
 Dir =>
entry.file_type().is_dir(),
 File =>
entry.file_type().is_file(),
 }

 }))
 && (config.names.is_empty()
 || config.names.iter().any(|re|
{
 re.is_match(

&entry.file_name().to_string_lossy(),
)
 }))
 {
 println!("{}",
entry.path().display());
 }
 }
 }
 }
 }
 Ok(())
}

Check the entry type as before.

Combine the entry type check using && with a similar
check on the given names.

Use Iterator::any again to check if any of the provided
regexes match the current filename.

TIP

In the preceding code, I’m using Boolean::and (&&) and
Boolean::or (||) to combine two Boolean values according to the
standard truth tables shown in the documentation. The parentheses
are necessary to group the evaluations in the correct order.

I can use this to find, for instance, any regular file
matching mp3, and it seems to work:

https://oreil.ly/WWDcU
https://oreil.ly/NjWlZ

$ cargo run -- tests/inputs/ -t f -n mp3
tests/inputs/a/b/c/c.mp3
tests/inputs/d/e/e.mp3

If I run cargo test at this point, all tests pass. Huzzah!
I could stop now, but I feel my code could be more elegant.
There are several smell tests that fail for me. I don’t like
how the code continues to march to the right—there’s just
too much indentation. All the Boolean operations and
parentheses also make me nervous. This looks like it would be
a difficult program to expand if I wanted to add more
selection criteria.

I want to refactor this code, which means I want to
restructure it without changing the way it works. Refactoring
is only possible once I have a working solution, and tests
help ensure that any changes I make still work as expected.
Specifically, I want to find a less convoluted way to select
the entries to display. These are filter operations, so I’d
like to use Iterator::filter, and I’ll show you why.

Following is my final run that still passes all the tests.
Be sure you add use walkdir::DirEntry to your code for
this:

pub fn run(config: Config) -> MyResult<()> {
 let type_filter = |entry: &DirEntry| {
 config.entry_types.is_empty()
 || config
 .entry_types
 .iter()
 .any(|entry_type| match entry_type {
 Link => entry.path_is_symlink(),
 Dir => entry.file_type().is_dir(),
 File => entry.file_type().is_file(),
 })
 };

 let name_filter = |entry: &DirEntry| {
 config.names.is_empty()

https://oreil.ly/LDu90

 || config
 .names
 .iter()
 .any(|re|
re.is_match(&entry.file_name().to_string_lossy()))
 };

 for path in &config.paths {
 let entries = WalkDir::new(path)
 .into_iter()
 .filter_map(|e| match e {
 Err(e) => {
 eprintln!("{}", e);
 None
 }
 Ok(entry) => Some(entry),
 })
 .filter(type_filter)
 .filter(name_filter)
 .map(|entry|
entry.path().display().to_string())
 .collect::<Vec<_>>();

 println!("{}", entries.join("\n"));
 }

 Ok(())
}

Create a closure to filter entries on any of the regular
expressions.

Create a similar closure to filter entries by any of the
types.

Turn WalkDir into an iterator and use
Iterator::filter_map to remove and print bad results
to STDERR while allowing Ok results to pass through.

Filter out unwanted types.

https://oreil.ly/nZ8Yi

Filter out unwanted names.

Turn each DirEntry into a string to display.

Use Iterator::collect to create a vector.

Join the found entries on newlines and print.

In the preceding code, I create two closures to use with
filter operations. I chose to use closures because I wanted
to capture values from the config. The first closure checks
if any of the config.entry_types match the
DirEntry::file_type:

let type_filter = |entry: &DirEntry| {
 config.entry_types.is_empty()
 || config
 .entry_types
 .iter()
 .any(|entry_type| match entry_type {
 Link => entry.file_type().is_symlink(),
 Dir => entry.file_type().is_dir(),
 File => entry.file_type().is_file(),
 })
};

Return true immediately if no entry types have been
indicated.

Otherwise, iterate over the config.entry_types to
compare to the given entry type.

When the entry type is Link, use the
DirEntry::file_type function to call
FileType::is_symlink.

https://oreil.ly/6dyim
https://oreil.ly/Xn28H
https://oreil.ly/9PU5P
https://oreil.ly/sr5MJ

When the entry type is Dir, similarly use
FileType::is_dir.

When the entry type is File, similarly use
FileType::is_file.

The preceding match takes advantage of the Rust compiler’s

ability to ensure that all variants of EntryType have been
covered. For instance, comment out one arm like so:

let type_filter = |entry: &DirEntry| {
 config.entry_types.is_empty()
 || config
 .entry_types
 .iter()
 .any(|entry_type| match entry_type {
 Link => entry.file_type().is_symlink(),
 Dir => entry.file_type().is_dir(),
 //File => entry.file_type().is_file(), //
Will not compile
 })
};

The compiler stops and politely explains that you have not
handled the case of the EntryType::File variant. You will
not get this kind of safety if you use strings to model this.
The enum type makes your code far safer and easier to verify
and modify:

error[E0004]: non-exhaustive patterns: `&File` not covered
 --> src/lib.rs:99:41
 |
10 | / enum EntryType {
11 | | Dir,
12 | | File,
 | | ---- not covered
13 | | Link,
14 | | }
 | |_- `EntryType` defined here

https://oreil.ly/ijJP5
https://oreil.ly/OQNp2

...
99 | .any(|entry_type| match entry_type {
 | ^^^^^^^^^^
pattern `&File`
 |
not covered
 |
 = help: ensure that all possible cases are being
handled, possibly by
 adding wildcards or more match arms
 = note: the matched value is of type `&EntryType`

The second closure is used to remove filenames that don’t
match one of the given regular expressions:

let name_filter = |entry: &DirEntry| {
 config.names.is_empty()
 || config
 .names
 .iter()
 .any(|re|
re.is_match(&entry.file_name().to_string_lossy()))
};

Return true immediately if no name regexes are present.

Use Iterator::any to check if the
DirEntry::file_name matches any one of the regexes.

The last thing I’ll highlight is the multiple operations I
can chain together with iterators in the following code. As
with reading lines from a file or entries in a directory,
each value in the iterator is a Result that might yield a
DirEntry value. I use Itera tor ::filter_map to map each
Result into a closure that prints errors to STDERR and
removes by them by returning None; otherwise, the Ok values
are allowed to pass by turning them into Some values. The
valid DirEntry values are then passed to the filters for

https://oreil.ly/0c43N

types and names before being shunted to the map operation to
transform them into String values:

let entries = WalkDir::new(path)
 .into_iter()
 .filter_map(|e| match e {
 Err(e) => {
 eprintln!("{}", e);
 None
 }
 Ok(entry) => Some(entry),
 })
 .filter(type_filter)
 .filter(name_filter)
 .map(|entry| entry.path().display().to_string())
 .collect::<Vec<_>>();

Although this is fairly lean, compact code, I find it
expressive. I appreciate how much these functions are doing
for me and how well they fit together. Most importantly, I
can clearly see a way to expand this code with additional
filters for file size, modification time, ownership, and so
forth, which would have been much more difficult without
refactoring the code to use Iterator::filter. You are
free to write code however you like so long as it passes the
tests, but this is my preferred solution.

Conditionally Testing on Unix Versus Windows

It’s worth taking a moment to talk about how I wrote tests
that pass on both Windows and Unix. On Windows, the symlinked
file becomes a regular file, so nothing will be found for --
type l. This also means there will be an additional regular
file found when searching with --type f. You will find all
the tests in tests/cli.rs. As in previous tests, I wrote a
helper function called run to run the program with various
arguments and compare the output to the contents of a file:

fn run(args: &[&str], expected_file: &str) -> TestResult {

 let file = format_file_name(expected_file);
 let contents = fs::read_to_string(file.as_ref())?;
 let mut expected: Vec<&str> =
 contents.split("\n").filter(|s|
!s.is_empty()).collect();
 expected.sort();

 let cmd =
Command::cargo_bin(PRG)?.args(args).assert().success();
 let out = cmd.get_output();
 let stdout = String::from_utf8(out.stdout.clone())?;
 let mut lines: Vec<&str> =
 stdout.split("\n").filter(|s|
!s.is_empty()).collect();
 lines.sort();

 assert_eq!(lines, expected);
 Ok(())
}

The function accepts the command-line arguments and the
file containing the expected output.

Decide whether to use the file for Unix or Windows, which
will be explained shortly.

Read the contents of the expected file, then split and
sort the lines.

Run the program with the arguments, assert it runs
successfully, then split and sort the lines of output.

Assert that the output is equal to the expected values.

If you look in the tests/expected directory, you’ll see
there are pairs of files for each test. That is, the test

name_a has two possible output files, one for Unix and
another for Windows:

$ ls tests/expected/name_a.txt*
tests/expected/name_a.txt
tests/expected/name_a.txt.windows

The name_a test looks like this:

#[test]
fn name_a() -> TestResult {
 run(&["tests/inputs", "-n", "a"],
"tests/expected/name_a.txt")
}

The run function uses the format_file_name function to
create the appropriate filename. I use conditional
compilation to decide which version of the function is
compiled. Note that these functions require use std::
bor row::Cow. When the program is compiled on Windows, the
following function will be used to append the string .windows
to the expected filename:

#[cfg(windows)]
fn format_file_name(expected_file: &str) -> Cow<str> {
 // Equivalent to: Cow::Owned(format!("{}.windows",
expected_file))
 format!("{}.windows", expected_file).into()
}

When the program is not compiled on Windows, this version
will use the given filename:

#[cfg(not(windows))]
fn format_file_name(expected_file: &str) -> Cow<str> {
 // Equivalent to: Cow::Borrowed(expected_file)
 expected_file.into()
}

https://oreil.ly/AnpGk

TIP

Using std::borrow::Cow means that on Unix systems the string is
not cloned, and on Windows, the modified filename is returned as
an owned string.

Lastly, there is an unreadable_dir test that will run only
on a non-Windows platform:

#[test]
#[cfg(not(windows))]
fn unreadable_dir() -> TestResult {
 let dirname = "tests/inputs/cant-touch-this";
 if !Path::new(dirname).exists() {
 fs::create_dir(dirname)?;
 }

 std::process::Command::new("chmod")
 .args(&["000", dirname])
 .status()
 .expect("failed");

 let cmd = Command::cargo_bin(PRG)?
 .arg("tests/inputs")
 .assert()
 .success();
 fs::remove_dir(dirname)?;

 let out = cmd.get_output();
 let stdout = String::from_utf8(out.stdout.clone())?;
 let lines: Vec<&str> =
 stdout.split("\n").filter(|s|
!s.is_empty()).collect();

 assert_eq!(lines.len(), 17);

 let stderr = String::from_utf8(out.stderr.clone())?;
 assert!(stderr.contains("cant-touch-this: Permission
denied"));
 Ok(())
}

https://oreil.ly/f88Lq

Define and create the directory.

Set the permissions to make the directory unreadable.

Run findr and assert that it does not fail.

Remove the directory so that it does not interfere with
future tests.

Split the lines of STDOUT.

Verify there are 17 lines.

Check that STDERR contains the expected warning.

Going Further

As with all the previous programs, I challenge you to
implement all of the other features in find. For instance,
two very useful options of find are -max_depth and -
min_depth to control how deeply into the directory
structure it should search. There are WalkDir::min_depth
and WalkDir::max_depth options you might use.

Next, perhaps try to find files by size. The find program
has a particular syntax for indicating files less than,
greater than, or exactly equal to the specified size:

-size n[ckMGTP]
 True if the file's size, rounded up, in 512-byte
blocks is n. If
 n is followed by a c, then the primary is true if the
file's size
 is n bytes (characters). Similarly if n is followed
by a scale
 indicator then the file's size is compared to n scaled
as:

https://oreil.ly/orl4I
https://oreil.ly/WM68A

 k kilobytes (1024 bytes)
 M megabytes (1024 kilobytes)
 G gigabytes (1024 megabytes)
 T terabytes (1024 gigabytes)
 P petabytes (1024 terabytes)

The find program can also take action on the results. For
instance, there is a -delete option to remove an entry.
This is useful for finding and removing empty files:

$ find . -size 0 -delete

I’ve often thought it would be nice to have a -count
option to tell me how many items are found, like uniqr -c
did in the last chapter. I can, of course, pipe this into wc
-l (or, even better, wcr), but consider adding such an
option to your program.

Write a Rust version of the tree program that I’ve shown

several times. This program recursively searches a path for
entries and creates a visual representation of the file and
directory structure. It also has many options to customize
the output; for instance, you can display only directories
using the -d option:

$ tree -d
.
├── a
│ └── b
│ └── c
├── d
│ └── e
└── f

6 directories

tree also allows you to use a file glob to display only
entries matching a given pattern, with the -P option:

$ tree -P *.csv
.
├── a
│ └── b
│ ├── b.csv
│ └── c
├── d
│ ├── b.csv -> ../a/b/b.csv
│ └── e
├── f
└── g.csv

6 directories, 3 files

Finally, compare your version to fd, another Rust
replacement for find, to see how someone else has solved
these problems.

Summary

I hope you have an appreciation now for how complex real-
world programs can become. For instance, find can combine
multiple comparisons to help you locate the large files
eating up your disk or files that haven’t been modified in a
long time that can be removed.

Consider the skills you learned in this chapter:

You can use Arg::possible_values to constrain
argument values to a limited set of strings, saving
you time in validating user input.

You learned to use the unreachable! macro to panic
if an invalid match arm is executed.

https://oreil.ly/ralqD

You saw how to use a regular expression to find a
pattern of text. You also learned that the caret (^)
anchors the pattern to the beginning of the search
string and the dollar sign ($) anchors the expression
to the end.

You can create an enum type to represent alternate
possibilities for a type. This provides far more
security than using strings.

You can use WalkDir to recursively search through a
directory structure and evaluate the DirEntry values
to find files, directories, and links.

You learned how to chain multiple operations like
any, filter, map, and filter_map with iterators.

You can use #[cfg(windows)] to compile code
conditionally if on Windows or #
[cfg(not(windows))] if not on Windows.

You saw a case for refactoring code to simplify the
logic while using tests to ensure that the program
still works.

In Chapter 8 you will learn to read delimited text files,
and in Chapter 9 you will use regular expressions to find
lines of text that match a given pattern.

1 This is one of those odd programs that have no short flags
and in which the long flags start with a single dash.

2 Sometimes a dot is just a dot.

Chapter 8. Shave and a

Haircut

I’m a mess / Since you cut me out / But Chucky’s arm

keeps me company

— They Might Be Giants, “Cyclops Rock”
(2001)

For the next challenge program, you will create a Rust
version of cut, which will excise text from a file or
STDIN. The selected text could be some range of bytes or
characters or might be fields denoted by a delimiter like a
comma or tab that creates field boundaries. You learned how
to select a contiguous range of characters or bytes in
Chapter 4, while working on the headr program, but this
challenge goes further as the selections may be noncontiguous
and in any order. For example, the selection 3,1,5-7 should
cause the challenge program to print the third, first, and
fifth through seventh bytes, characters, or fields, in that
order. The challenge program will capture the spirit of the
original but will not strive for complete fidelity, as I will
suggest a few changes that I feel are improvements.

In this chapter, you will learn how to do the following:

Read and write a delimited text file using the csv
crate

Deference a value using *

Use Iterator::flatten to remove nested structures
from iterators

Use Iterator::flat_map to combine Iterator::map
and Iterator::flatten

How cut Works

I will start by reviewing the portion of the BSD cut manual
page that describes the features of the program you will
write:

CUT(1) BSD General Commands Manual
CUT(1)

NAME
 cut -- cut out selected portions of each line of a
file

SYNOPSIS
 cut -b list [-n] [file ...]
 cut -c list [file ...]
 cut -f list [-d delim] [-s] [file ...]

DESCRIPTION
 The cut utility cuts out selected portions of each
line (as specified by
 list) from each file and writes them to the standard
output. If no file
 arguments are specified, or a file argument is a
single dash ('-'), cut
 reads from the standard input. The items specified by
list can be in
 terms of column position or in terms of fields
delimited by a special
 character. Column numbering starts from 1.

 The list option argument is a comma or whitespace
separated set of num-
 bers and/or number ranges. Number ranges consist of a
number, a dash
 ('-'), and a second number and select the fields or
columns from the
 first number to the second, inclusive. Numbers or
number ranges may be

 preceded by a dash, which selects all fields or
columns from 1 to the
 last number. Numbers or number ranges may be followed
by a dash, which
 selects all fields or columns from the last number to
the end of the
 line. Numbers and number ranges may be repeated,
overlapping, and in any
 order. If a field or column is specified multiple
times, it will appear
 only once in the output. It is not an error to select
fields or columns
 not present in the input line.

The original tool offers quite a few options, but the
challenge program will implement only the following:

 -b list
 The list specifies byte positions.

 -c list
 The list specifies character positions.

 -d delim
 Use delim as the field delimiter character
instead of the tab
 character.

 -f list
 The list specifies fields, separated in the
input by the field
 delimiter character (see the -d option.)
Output fields are sepa-
 rated by a single occurrence of the field
delimiter character.

As usual, the GNU version offers both short and long flags
for these options:

NAME
 cut - remove sections from each line of files

SYNOPSIS
 cut OPTION... [FILE]...

DESCRIPTION
 Print selected parts of lines from each FILE to
standard output.

 Mandatory arguments to long options are
mandatory for short options
 too.

 -b, --bytes=LIST
 select only these bytes

 -c, --characters=LIST
 select only these characters

 -d, --delimiter=DELIM
 use DELIM instead of TAB for field delimiter

 -f, --fields=LIST
 select only these fields; also print any
line that contains no
 delimiter character, unless the -s option is
specified

Both tools implement the selection ranges in similar ways,
where numbers can be selected individually, in closed ranges
like 1-3, or in partially defined ranges like -3 to indicate
1 through 3 or 5- to indicate 5 to the end, but the
challenge program will support only closed ranges. I’ll use
some of the files found in the book’s 08_cutr/tests / inputs
directory to show the features that the challenge program
will implement. You should change into this directory if you
want to execute the following commands:

$ cd 08_cutr/tests/inputs

First, consider a file of fixed-width text where each column
occupies a fixed number of characters:

$ cat books.txt
Author Year Title
Émile Zola 1865 La Confession de Claude
Samuel Beckett 1952 Waiting for Godot
Jules Verne 1870 20,000 Leagues Under the Sea

The Author column takes the first 20 characters:

$ cut -c 1-20 books.txt
Author
Émile Zola
Samuel Beckett
Jules Verne

The publication Year column spans the next five characters:

$ cut -c 21-25 books.txt
Year
1865
1952
1870

The Title column fills the remainder of the line, where the
longest title is 28 characters. Note here that I
intentionally request a larger range than exists to show that
this is not considered an error:

$ cut -c 26-70 books.txt
Title
La Confession de Claude
Waiting for Godot
20,000 Leagues Under the Sea

The program does not allow me to rearrange the output by
requesting the range 26-55 for the Title followed by the
range 1-20 for the Author. Instead, the selections are
placed in their original, ascending order:

$ cut -c 26-55,1-20 books.txt
Author Title
Émile Zola La Confession de Claude
Samuel Beckett Waiting for Godot
Jules Verne 20,000 Leagues Under the Sea

I can use the option -c 1 to select the first character,
like so:

$ cut -c 1 books.txt
A
É
S
J

As you’ve seen in previous chapters, bytes and characters
are not always interchangeable. For instance, the É in Émile
Zola is a Unicode character that is composed of two bytes, so
asking for just one byte will result in invalid UTF-8 that is
represented with the Unicode replacement character:

$ cut -b 1 books.txt
A
�
S
J

In my experience, fixed-width datafiles are less common than
those where the columns of data are delimited by a character
such as a comma or a tab. Consider the same data in the file
books.tsv, where the file extension .tsv stands for tab-
separated values (TSV) and the columns are delimited by the
tab:

$ cat books.tsv
Author Year Title
Émile Zola 1865 La Confession de Claude
Samuel Beckett 1952 Waiting for Godot
Jules Verne 1870 20,000 Leagues Under the Sea

By default, cut will assume the tab character is the field
delimiter, so I can use the -f option to select, for
instance, the publication year in the second column and the
title in the third column, like so:

$ cut -f 2,3 books.tsv
Year Title
1865 La Confession de Claude
1952 Waiting for Godot
1870 20,000 Leagues Under the Sea

The comma is another common delimiter, and such files often

have the extension .csv for comma-separated values (CSV).
Following is the same data as a CSV file:

$ cat books.csv
Author,Year,Title
Émile Zola,1865,La Confession de Claude
Samuel Beckett,1952,Waiting for Godot
Jules Verne,1870,"20,000 Leagues Under the Sea"

To parse a CSV file, I must indicate the delimiter with the
-d option. Note that I’m still unable to reorder the fields

in the output, as I indicate 2,1 for the second column
followed by the first, but I get the columns back in their
original order:

$ cut -d , -f 2,1 books.csv
Author,Year
Émile Zola,1865
Samuel Beckett,1952
Jules Verne,1870

You may have noticed that the third title contains a comma in
20,000 and so the title has been enclosed in quotes to
indicate that this comma is not a field delimiter. This is a
way to escape the delimiter, or to tell the parser to ignore
it. Unfortunately, neither the BSD nor the GNU version of

cut recognizes this and so will truncate the title
prematurely:

$ cut -d , -f 1,3 books.csv
Author,Title
Émile Zola,La Confession de Claude
Samuel Beckett,Waiting for Godot
Jules Verne,"20

Noninteger values for any of the list option values are
rejected:

$ cut -f foo,bar books.tsv
cut: [-cf] list: illegal list value

Any error opening a file is handled in the course of
processing, printing a message to STDERR. In the following
example, blargh represents a nonexistent file:

$ cut -c 1 books.txt blargh movies1.csv
A
É
S
J
cut: blargh: No such file or directory
t
T
L

Finally, the program will read STDIN by default or if the
given input filename is a dash (-):

$ cat books.tsv | cut -f 2
Year
1865
1952
1870

The challenge program is expected to implement just this
much, with the following changes:

Ranges must indicate both start and stop values
(inclusive).

Selection ranges should be printed in the order
specified by the user.

Ranges may include repeated values.

The parsing of delimited text files should respect
escaped delimiters.

Getting Started

The name of the challenge program should be cutr (pronounced
cut-er) for a Rust version of cut. I recommend you begin
with cargo new cutr and then copy the 08_cutr/tests
directory into your project. My solution will use the
following crates, which you should add to your Cargo.toml:

[dependencies]
clap = "2.33"
csv = "1"
regex = "1"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

The csv crate will be used to parse delimited files such
as CSV files.

Run cargo test to download the dependencies and run the
tests, all of which should fail.

https://oreil.ly/ztDKv

Defining the Arguments

Use the following structure for your src/main.rs:

fn main() {
 if let Err(e) = cutr::get_args().and_then(cutr::run) {
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

In the following code, I want to highlight that I’m creating
an enum where the variants can hold a value. In this case,
the type alias PositionList, which is a
Vec<Range<usize>> or a vector of std::ops::Range
structs, will represent spans of positive integer values.
Here is how I started my src/lib.rs:

use crate::Extract::*;
use clap::{App, Arg};
use std::{error::Error, ops::Range};

type MyResult<T> = Result<T, Box<dyn Error>>;
type PositionList = Vec<Range<usize>>;

#[derive(Debug)]
pub enum Extract {
 Fields(PositionList),
 Bytes(PositionList),
 Chars(PositionList),
}

#[derive(Debug)]
pub struct Config {
 files: Vec<String>,
 delimiter: u8,
 extract: Extract,
}

https://oreil.ly/gA0sx

This allows me to use Fields(...) instead of
Extract::Fields(...).

A PositionList is a vector of Range<usize> values.

Define an enum to hold the variants for extracting
fields, bytes, or characters.

The files parameter will be a vector of strings.

The delimiter should be a single byte.

The extract field will hold one of the Extract
variants.

Unlike the original cut tool, the challenge program will
allow only for a comma-separated list of either single
numbers or ranges like 2-4. Also, the challenge program will
use the selections in the given order rather than rearranging
them in ascending order. You can start your get_args by
expanding on the following skeleton:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("cutr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust cut")
 // What goes here?
 .get_matches();

 Ok(Config {
 files: ...
 delimiter: ...
 extract: ...
 })
}

Begin your run by printing the config:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:#?}", &config);
 Ok(())
}

Following is the expected usage for the program:

$ cargo run -- --help
cutr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust cut

USAGE:
 cutr [OPTIONS] [FILE]...

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

OPTIONS:
 -b, --bytes <BYTES> Selected bytes
 -c, --chars <CHARS> Selected characters
 -d, --delim <DELIMITER> Field delimiter [default:
]
 -f, --fields <FIELDS> Selected fields

ARGS:
 <FILE>... Input file(s) [default: -]

To parse and validate the range values for the byte,
character, and field arguments, I wrote a function called
parse_pos that accepts a &str and might return a
PositionList. Here is how you might start it:

fn parse_pos(range: &str) -> MyResult<PositionList> {
 unimplemented!();
}

TIP

This function is similar to the parse_positive_int function
from Chapter 4. See how much of that code can be reused here.

To help you along, I have written an extensive unit test for
the numbers and number ranges that should be accepted or
rejected. The numbers may have leading zeros but may not have
any nonnumeric characters, and number ranges must be denoted
with a dash (-). Multiple numbers and ranges can be
separated with commas. In this chapter, I will create a
unit_tests module so that cargo test unit will run all
the unit tests. Note that my implementation of parse_pos
uses index positions where I subtract one from each value for
zero-based indexing, but you may prefer to handle this
differently. Add the following to your src/lib.rs:

#[cfg(test)]
mod unit_tests {
 use super::parse_pos;

 #[test]
 fn test_parse_pos() {
 // The empty string is an error
 assert!(parse_pos("").is_err());

 // Zero is an error
 let res = parse_pos("0");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "illegal
list value: \"0\"",);

 let res = parse_pos("0-1");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "illegal
list value: \"0\"",);

 // A leading "+" is an error
 let res = parse_pos("+1");

 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "illegal list value: \"+1\"",
);

 let res = parse_pos("+1-2");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "illegal list value: \"+1-2\"",
);

 let res = parse_pos("1-+2");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "illegal list value: \"1-+2\"",
);

 // Any non-number is an error
 let res = parse_pos("a");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "illegal
list value: \"a\"",);

 let res = parse_pos("1,a");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "illegal
list value: \"a\"",);

 let res = parse_pos("1-a");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "illegal list value: \"1-a\"",
);

 let res = parse_pos("a-1");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "illegal list value: \"a-1\"",
);

 // Wonky ranges
 let res = parse_pos("-");
 assert!(res.is_err());

 let res = parse_pos(",");
 assert!(res.is_err());

 let res = parse_pos("1,");
 assert!(res.is_err());

 let res = parse_pos("1-");
 assert!(res.is_err());

 let res = parse_pos("1-1-1");
 assert!(res.is_err());

 let res = parse_pos("1-1-a");
 assert!(res.is_err());

 // First number must be less than second
 let res = parse_pos("1-1");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "First number in range (1) must be lower than
second number (1)"
);

 let res = parse_pos("2-1");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "First number in range (2) must be lower than
second number (1)"
);

 // All the following are acceptable
 let res = parse_pos("1");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![0..1]);

 let res = parse_pos("01");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![0..1]);

 let res = parse_pos("1,3");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![0..1, 2..3]);

 let res = parse_pos("001,0003");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![0..1, 2..3]);

 let res = parse_pos("1-3");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![0..3]);

 let res = parse_pos("0001-03");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![0..3]);

 let res = parse_pos("1,7,3-5");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![0..1, 6..7, 2..5]);

 let res = parse_pos("15,19-20");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), vec![14..15, 18..20]);
 }
}

Some of the preceding tests check for a specific error
message to help you write the parse_pos function; however,
these could prove troublesome if you were trying to
internationalize the error messages. An alternative way to
check for specific errors would be to use enum variants that
would allow the user interface to customize the output while
still testing for specific errors.

NOTE

At this point, I expect you can read the preceding code well
enough to understand how the function should work. I recommend
you stop reading at this point and write the code that will pass
this test.

After cargo test unit passes, incorporate the parse_pos
function into get_args so that your program will reject
invalid arguments and print an error message like the
following:

$ cargo run -- -f foo,bar tests/inputs/books.tsv
illegal list value: "foo"

The program should also reject invalid ranges:

$ cargo run -- -f 3-2 tests/inputs/books.tsv
First number in range (3) must be lower than second number
(2)

When given valid arguments, your program should display a
structure like so:

$ cargo run -- -f 1 -d , tests/inputs/movies1.csv
Config {
 files: [
 "tests/inputs/movies1.csv",
],
 delimiter: 44,
 extract: Fields(
 [
 0..1,
],
),
}

The positional argument goes into files.

The -d value of a comma has a byte value of 44.

The -f 1 argument creates the Extract::Fields variant
that holds a single range, 0..1.

When parsing a TSV file, use the tab as the default
delimiter, which has a byte value of 9:

$ cargo run -- -f 2-3 tests/inputs/movies1.tsv
Config {
 files: [
 "tests/inputs/movies1.tsv",
],
 delimiter: 9,
 extract: Fields(
 [
 1..3,
],
),
}

Note that the options for -f|--fields, -b|--bytes, and -
c|--chars should all be mutually exclusive:

$ cargo run -- -f 1 -b 8-9 tests/inputs/movies1.tsv
error: The argument '--fields <FIELDS>' cannot be used with
'--bytes <BYTES>'

NOTE

Stop here and get your program working as described. The program
should be able to pass all the tests that verify the validity of
the inputs, which you can run with cargo test dies:

running 10 tests
test dies_bad_delimiter ... ok
test dies_chars_fields ... ok
test dies_chars_bytes_fields ... ok
test dies_bytes_fields ... ok
test dies_chars_bytes ... ok
test dies_not_enough_args ... ok
test dies_empty_delimiter ... ok
test dies_bad_digit_field ... ok
test dies_bad_digit_bytes ... ok
test dies_bad_digit_chars ... ok

If you find you need more guidance on writing the parse_pos
function, I’ll provide that in the next section.

Parsing the Position List

The parse_pos function I will show relies on a
parse_index function that attempts to parse a string into
a positive index value one less than the given number,
because the user will provide one-based values but Rust needs
zero-offset indexes. The given string may not start with a
plus sign, and the parsed value must be greater than zero.
Note that closures normally accept arguments inside pipes
(||), but the following function uses two closures that
accept no arguments, which is why the pipes are empty. Both
closures instead reference the provided input value. For the
following code, be sure to add use
std::num::NonZeroUsize to your imports:

fn parse_index(input: &str) -> Result<usize, String> {
 let value_error = || format!("illegal list value: \"
{}\"", input);
 input
 .starts_with('+')
 .then(|| Err(value_error()))
 .unwrap_or_else(|| {
 input
 .parse::<NonZeroUsize>()
 .map(|n| usize::from(n) - 1)
 .map_err(|_| value_error())
 })
}

Create a closure that accepts no arguments and formats an
error string.

Check if the input value starts with a plus sign.

If so, create an error.

Otherwise, continue with the following closure, which
accepts no arguments.

Use str::parse to parse the input value, and use the
turbofish to indicate the return type of
std::num::NonZeroUsize, which is a positive integer
value.

If the input value parses successfully, cast the value to
a usize and decrement the value to a zero-based offset.

If the value does not parse, generate an error by calling
the value_error closure.

The following is how parse_index is used in the parse_pos
function. Add use regex::Regex to your imports for this:

fn parse_pos(range: &str) -> MyResult<PositionList> {
 let range_re = Regex::new(r"^(\d+)-(\d+)$").unwrap();

 range
 .split(',')
 .into_iter()
 .map(|val| {
 parse_index(val).map(|n| n..n + 1).or_else(|e|
{

range_re.captures(val).ok_or(e).and_then(|captures| {
 let n1 = parse_index(&captures[1])?;
 let n2 = parse_index(&captures[2])?;
 if n1 >= n2 {
 return Err(format!(
 "First number in range ({}) \
 must be lower than second
number ({})",
 n1 + 1,
 n2 + 1

https://oreil.ly/ec44d

));
 }
 Ok(n1..n2 + 1)
 })
 })
 })
 .collect::<Result<_, _>>()
 .map_err(From::from)
}

Create a regular expression to match two integers
separated by a dash, using parentheses to capture the
matched numbers.

Split the provided range value on the comma and turn the
result into an iterator. In the event there are no commas,
the provided value itself will be used.

Map each split value into the closure.

If parse_index parses a single number, then create a
Range for the value. Otherwise, note the error value e
and continue trying to parse a range.

If the Regex matches the value, the numbers in
parentheses will be available through Regex::captures.

Parse the two captured numbers as index values.

If the first value is greater than or equal to the second,
return an error.

Otherwise, create a Range from the lower number to the
higher number, adding 1 to ensure the upper number is
included.

https://oreil.ly/O6frw

Use Iterator::collect to gather the values as a
Result.

Map any problems through From::from to create an error.

The regular expression in the preceding code is enclosed with
r"" to denote a raw string, which prevents Rust from
interpreting backslash-escaped values in the string. For
instance, you’ve seen that Rust will interpret \n as a
newline. Without this, the compiler complains that \d is an
unknown character escape:

error: unknown character escape: `d`
 --> src/lib.rs:127:35
 |
127 | let range_re = Regex::new("^(\d+)-
(\d+)$").unwrap();
 | ^ unknown character
escape
 |
 = help: for more information, visit
<https://static.rust-lang.org
 /doc/master/reference.html#literals>

I would like to highlight the parentheses in the regular
expression ^(\d+)-(\d+)$ to indicate one or more digits
followed by a dash followed by one or more digits, as shown
in Figure 8-1. If the regular expression matches the given
string, then I can use Regex::captures to extract the
digits that are surrounded by the parentheses. Note that they
are available in one-based counting, so the contents of the
first capturing parentheses are available in position 1 of
the captures.

https://oreil.ly/Xn28H
https://oreil.ly/sXlWa

Figure 8-1. The parentheses in the regular expression will capture
the values they surround.

NOTE

Now that you have a way to parse and validate the numeric ranges,
finish your get_args function before reading further.

Here is how I incorporate the parse_pos function into my
get_args. First, I define all the arguments:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("cutr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust cut")
 .arg(
 Arg::with_name("files")
 .value_name("FILE")
 .help("Input file(s)")
 .multiple(true)
 .default_value("-"),
)
 .arg(
 Arg::with_name("delimiter")
 .value_name("DELIMITER")
 .short("d")

 .long("delim")
 .help("Field delimiter")
 .default_value("\t"),
)
 .arg(
 Arg::with_name("fields")
 .value_name("FIELDS")
 .short("f")
 .long("fields")
 .help("Selected fields")
 .conflicts_with_all(&["chars", "bytes"]),
)
 .arg(
 Arg::with_name("bytes")
 .value_name("BYTES")
 .short("b")
 .long("bytes")
 .help("Selected bytes")
 .conflicts_with_all(&["fields", "chars"]),
)
 .arg(
 Arg::with_name("chars")
 .value_name("CHARS")
 .short("c")
 .long("chars")
 .help("Selected characters")
 .conflicts_with_all(&["fields", "bytes"]),
)
 .get_matches();

The required files option accepts multiple values and
defaults to a dash.

The delimiter option uses the tab as the default value.

The fields option conflicts with chars and bytes.

The bytes option conflicts with fields and chars.

The chars options conflicts with fields and bytes.

Next, I convert the delimiter to a vector of bytes and verify
that the vector contains a single byte:

 let delimiter = matches.value_of("delimiter").unwrap();
 let delim_bytes = delimiter.as_bytes();
 if delim_bytes.len() != 1 {
 return Err(From::from(format!(
 "--delim \"{}\" must be a single byte",
 delimiter
)));
 }

I use the parse_pos function to handle all the optional
list values:

 let fields =
matches.value_of("fields").map(parse_pos).transpose()?;
 let bytes =
matches.value_of("bytes").map(parse_pos).transpose()?;
 let chars =
matches.value_of("chars").map(parse_pos).transpose()?;

Next, I figure out which Extract variant to create or
generate an error if the user fails to select bytes,
characters, or fields:

 let extract = if let Some(field_pos) = fields {
 Fields(field_pos)
 } else if let Some(byte_pos) = bytes {
 Bytes(byte_pos)
 } else if let Some(char_pos) = chars {
 Chars(char_pos)
 } else {
 return Err(From::from("Must have --fields, --bytes,
or --chars"));
 };

If the code makes it to this point, then I appear to have
valid arguments that I can return:

 Ok(Config {
 files: matches.values_of_lossy("files").unwrap(),
 delimiter: *delim_bytes.first().unwrap(),
 extract,
 })
}

Use Vec::first to select the first element of the
vector. Because I have verified that this vector has
exactly one byte, it is safe to call Option::unwrap.

In the preceding code, I use the Deref::deref operator *
in the expression *delim_bytes to dereference the
variable, which is a &u8. The code will not compile without
the asterisk, and the error message shows exactly where to
add the dereference operator:

error[E0308]: mismatched types
 --> src/lib.rs:94:20
 |
94 | delimiter: delim_bytes.first().unwrap(),
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
expected `u8`, found `&u8`
 |
help: consider dereferencing the borrow
 |
94 | delimiter: *delim_bytes.first().unwrap(),
 | +

Next, you will need to figure out how you will use this
information to extract the desired bits from the inputs.

Extracting Characters or Bytes

In Chapters 4 and 5, you learned how to process lines, bytes,
and characters in a file. You should draw on those programs
to help you select characters and bytes in this challenge.
One difference is that line endings need not be preserved, so

https://oreil.ly/rFrS8
https://oreil.ly/VCe9J

you may use BufRead::lines to read the lines of input
text. To start, you might consider bringing in the open
function to open each file:

fn open(filename: &str) -> MyResult<Box<dyn BufRead>> {
 match filename {
 "-" => Ok(Box::new(BufReader::new(io::stdin()))),
 _ =>
Ok(Box::new(BufReader::new(File::open(filename)?))),
 }
}

The preceding function will require some additional imports:

use crate::Extract::*;
use clap::{App, Arg};
use regex::Regex;
use std::{
 error::Error,
 fs::File,
 io::{self, BufRead, BufReader},
 num::NonZeroUsize,
 ops::Range,
};

You can expand your run to handle good and bad files:

pub fn run(config: Config) -> MyResult<()> {
 for filename in &config.files {
 match open(filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(_) => println!("Opened {}", filename),
 }
 }
 Ok(())
}

At this point, the program should pass cargo test
skips_bad_file, and you can manually verify that it skips
invalid files such as the nonexistent blargh:

https://oreil.ly/KhmCp

$ cargo run -- -c 1 tests/inputs/books.csv blargh
Opened tests/inputs/books.csv
blargh: No such file or directory (os error 2)

Now consider how you might extract ranges of characters from
each line of a filehandle. I wrote a function called
extract_chars that will return a new string composed of
the characters at the given index positions:

fn extract_chars(line: &str, char_pos: &[Range<usize>]) ->
String {
 unimplemented!();
}

I originally wrote the preceding function with the type
annotation &PositionList for char_pos. When I checked
the code with Clippy, it suggested the type &
[Range<usize>] instead. The type &PositionList is more
restrictive on callers than is really necessary, and I do
make use of the additional flexibility in the tests, so
Clippy is being quite helpful here:

warning: writing `&Vec<_>` instead of `&[_]` involves one
more reference
and cannot be used with non-Vec-based slices
 --> src/lib.rs:223:40
 |
223 | fn extract_chars(line: &str, char_pos: &PositionList)
-> String {
 | ^^^^^^^^^^^^^
 |
 = note: `#[warn(clippy::ptr_arg)]` on by default
 = help: for further information visit
 https://rust-lang.github.io/rust-
clippy/master/index.html#ptr_arg

The following is a test you can add to the unit_tests
module. Be sure to add extract_chars to the module’s

imports:

#[test]
fn test_extract_chars() {
 assert_eq!(extract_chars("", &[0..1]), "".to_string());
 assert_eq!(extract_chars("ábc", &[0..1]),
"á".to_string());
 assert_eq!(extract_chars("ábc", &[0..1, 2..3]),
"ác".to_string());
 assert_eq!(extract_chars("ábc", &[0..3]),
"ábc".to_string());
 assert_eq!(extract_chars("ábc", &[2..3, 1..2]),
"cb".to_string());
 assert_eq!(
 extract_chars("ábc", &[0..1, 1..2, 4..5]),
 "áb".to_string()
);
}

I also wrote a similar extract_bytes function to parse out
bytes:

fn extract_bytes(line: &str, byte_pos: &[Range<usize>]) ->
String {
 unimplemented!();
}

For the following unit test, be sure to add extract_bytes
to the module’s imports:

#[test]
fn test_extract_bytes() {
 assert_eq!(extract_bytes("ábc", &[0..1]),
"�".to_string());
 assert_eq!(extract_bytes("ábc", &[0..2]),
"á".to_string());
 assert_eq!(extract_bytes("ábc", &[0..3]),
"áb".to_string());
 assert_eq!(extract_bytes("ábc", &[0..4]),
"ábc".to_string());
 assert_eq!(extract_bytes("ábc", &[3..4, 2..3]),
"cb".to_string());
 assert_eq!(extract_bytes("ábc", &[0..2, 5..6]),

"á".to_string());
}

Note that selecting one byte from the string ábc should
break the multibyte á and result in the Unicode
replacement character.

NOTE

Once you have written these two functions so that they pass
tests, incorporate them into your main program so that you pass
the integration tests for printing bytes and characters. The
failing tests that include tsv and csv in the names involve
reading text delimited by tabs and commas, which I’ll discuss in
the next section.

Parsing Delimited Text Files

Next, you will need to learn how to parse comma- and tab-
delimited text files. Technically, all the files you’ve read
to this point were delimited in some manner, such as with
newlines to denote the end of a line. In this case, a
delimiter like a tab or a comma is used to separate the
fields of a record, which is terminated with a newline.
Sometimes the delimiting character may also be part of the
data, as when the title 20,000 Leagues Under the Sea occurs
in a CSV file. In this case, the field should be enclosed in
quotes to escape the delimiter. As noted in the chapter’s
introduction, neither the BSD nor the GNU version of cut
respects this escaped delimiter, but the challenge program
will. The easiest way to properly parse delimited text is to
use something like the csv crate. I highly recommend that
you first read the tutorial, which explains the basics of

https://oreil.ly/vPDrj
https://oreil.ly/AdjU1

working with delimited text files and how to use the csv
module effectively.

Consider the following example that shows how you can use
this crate to parse delimited data. If you would like to
compile and run this code, start a new project, add the csv
= "1" dependency to your Cargo.toml, and copy the
tests/inputs / books.csv file into the root directory of the
new project. Use the following for src / main.rs:

use csv::{ReaderBuilder, StringRecord};
use std::fs::File;

fn main() -> std::io::Result<()> {
 let mut reader = ReaderBuilder::new()
 .delimiter(b',')
 .from_reader(File::open("books.csv")?);

 println!("{}", fmt(reader.headers()?));
 for record in reader.records() {
 println!("{}", fmt(&record?));
 }

 Ok(())
}

fn fmt(rec: &StringRecord) -> String {
 rec.into_iter().map(|v| format!("{:20}", v)).collect()

}

Use csv::ReaderBuilder to parse a file.

The delimiter must be a single u8 byte.

The from_reader method accepts a value that implements
the Read trait.

https://oreil.ly/MTJBI
https://oreil.ly/WkEqD
https://oreil.ly/ViNLH
https://oreil.ly/wDxvY

The Reader::headers method will return the column names
in the first row as a StringRecord.

The Reader::records method provides access to an
iterator over StringRecord values.

Print a formatted version of the record.

Use Iterator::map to format the values into a field 20
characters wide and collect the values into a new
String.

If you run this program, you will see that the comma in
20,000 Leagues Under the Sea was not used as a field
delimiter because it was found within quotes, which
themselves are metacharacters that have been removed:

$ cargo run
Author Year Title
Émile Zola 1865 La Confession de
Claude
Samuel Beckett 1952 Waiting for Godot
Jules Verne 1870 20,000 Leagues
Under the Sea

TIP

In addition to csv::ReaderBuilder, you should use
csv::WriterBuilder in your solution to escape the input
delimiter in the output of the program.

Think about how you might use some of the ideas I just
demonstrated in your challenge program. For example, you
could write a function like extract_fields that accepts a
csv::StringRecord and pulls out the fields found in the

https://oreil.ly/g6hTY
https://oreil.ly/L6oav
https://oreil.ly/jrerm
https://oreil.ly/cfevE
https://oreil.ly/csEZ4

PositionList. For the following function, add use
csv::StringRecord to the top of src/lib.rs:

fn extract_fields(
 record: &StringRecord,
 field_pos: &[Range<usize>]
) -> Vec<String> {
 unimplemented!();
}

Following is a unit test for this function that you can add
to the unit_tests module:

#[test]
fn test_extract_fields() {
 let rec = StringRecord::from(vec!["Captain", "Sham",
"12345"]);
 assert_eq!(extract_fields(&rec, &[0..1]), &
["Captain"]);
 assert_eq!(extract_fields(&rec, &[1..2]), &["Sham"]);
 assert_eq!(
 extract_fields(&rec, &[0..1, 2..3]),
 &["Captain", "12345"]
);
 assert_eq!(extract_fields(&rec, &[0..1, 3..4]), &
["Captain"]);
 assert_eq!(extract_fields(&rec, &[1..2, 0..1]), &
["Sham", "Captain"]);
}

At this point, the unit_tests module will need all of the
following imports:

use super::{extract_bytes, extract_chars, extract_fields,
parse_pos};
use csv::StringRecord;

NOTE

Once you are able to pass this last unit test, you should use all
of the extract_* functions to print the desired bytes,
characters, and fields from the input files. Be sure to run cargo
test to see what is and is not working. This is a challenging
program, so don’t give up too quickly. Fear is the mind-killer.

Solution

I’ll show you my solution now, but I would again stress that
there are many ways to write this program. Any version that
passes the test suite is acceptable. I’ll begin by showing
how I evolved extract_chars to select the characters.

Selecting Characters from a String

In this first version of extract_chars, I initialize a
mutable vector to accumulate the results and then use an
imperative approach to select the desired characters:

fn extract_chars(line: &str, char_pos: &[Range<usize>]) ->
String {
 let chars: Vec<_> = line.chars().collect();
 let mut selected: Vec<char> = vec![];

 for range in char_pos.iter().cloned() {
 for i in range {
 if let Some(val) = chars.get(i) {
 selected.push(*val)
 }
 }
 }
 selected.iter().collect()
}

Use str::chars to split the line of text into
characters. The Vec type annotation is required by Rust
because Iterator::collect can return many different
types of collections.

Initialize a mutable vector to hold the selected
characters.

Iterate over each Range of indexes.

Iterate over each value in the Range.

Use Vec::get to select the character at the index. This
might fail if the user has requested positions beyond the
end of the string, but a failure to select a character
should not generate an error.

If it’s possible to select the character, use Vec::push
to add it to the selected characters. Note the use of *
to dereference &val.

Use Iterator::collect to create a String from the
characters.

I can simplify the selection of the characters by using
Iterator::filter_map, which yields only the values for
which the supplied closure returns Some(value):

fn extract_chars(line: &str, char_pos: &[Range<usize>]) ->
String {
 let chars: Vec<_> = line.chars().collect();
 let mut selected: Vec<char> = vec![];

 for range in char_pos.iter().cloned() {
 selected.extend(range.filter_map(|i|
chars.get(i)));
 }

https://oreil.ly/u9LXa
https://oreil.ly/Xn28H
https://oreil.ly/7xsI8
https://oreil.ly/TQlnN
https://oreil.ly/nZ8Yi

 selected.iter().collect()
}

The preceding versions both initialize a variable to collect
the results. In this next version, an iterative approach
avoids mutability and leads to a shorter function by using
Iterator::map and Iterator::flatten, which, according
to the documentation, “is useful when you have an iterator
of iterators or an iterator of things that can be turned into
iterators and you want to remove one level of indirection”:

fn extract_chars(line: &str, char_pos: &[Range<usize>]) ->
String {
 let chars: Vec<_> = line.chars().collect();
 char_pos
 .iter()
 .cloned()
 .map(|range| range.filter_map(|i| chars.get(i)))
 .flatten()
 .collect()
}

Use Iterator::map to process each Range to select the
characters.

Use Iterator::flatten to remove nested structures.

Without Iterator::flatten, Rust will show the following
error:

error[E0277]: a value of type `String` cannot be built from
an iterator
over elements of type `FilterMap<std::ops::Range<usize>,

In the findr program from Chapter 7, I used

Iterator::filter_map to combine the operations of
filter and map. Similarly, the operations of flatten and

https://oreil.ly/RzXDz
https://oreil.ly/cfevE

map can be combined with Iterator::flat_map in this
shortest and final version of the function:

fn extract_chars(line: &str, char_pos: &[Range<usize>]) ->
String {
 let chars: Vec<_> = line.chars().collect();
 char_pos
 .iter()
 .cloned()
 .flat_map(|range| range.filter_map(|i|
chars.get(i)))
 .collect()
}

Selecting Bytes from a String

The selection of bytes is very similar, but I have to deal
with the fact that String::from_utf8_lossy needs a slice
of bytes, unlike the previous example where I could collect
an iterator of references to characters into a String. As
with extract_chars, the goal is to return a new string,
but there is a potential problem if the byte selection breaks
Unicode characters and so produces an invalid UTF-8 string:

fn extract_bytes(line: &str, byte_pos: &[Range<usize>]) ->
String {
 let bytes = line.as_bytes();
 let selected: Vec<_> = byte_pos
 .iter()
 .cloned()
 .flat_map(|range| range.filter_map(|i|
bytes.get(i)).copied())
 .collect();
 String::from_utf8_lossy(&selected).into_owned()
}

Break the line into a vector of bytes.

https://oreil.ly/zHoNC

Use Iterator::flat_map to select bytes at the wanted
positions and copy the selected bytes.

Use String::from_utf8_lossy to generate a possibly
invalid UTF-8 string from the selected bytes. Use
Cow::into_owned to clone the data, if needed.

In the preceding code, I’m using Iterator::get to select
the bytes. This function returns a vector of byte references
(&Vec<&u8>), but String::from_utf8_lossy expects a
slice of bytes (&[u8]). To fix this, I use
std::iter::Copied to create copies of the elements and
avoid the following error:

error[E0308]: mismatched types
 --> src/lib.rs:215:29
 |
215 | String::from_utf8_lossy(&selected).into_owned()
 | ^^^^^^^^^ expected slice
`[u8]`,
 | found struct
`Vec`
 |
 = note: expected reference `&[u8]`
 found reference `&Vec<&u8>`

Finally, I would note the necessity of using
Cow::into_owned at the end of the function. Without this,
I get a compilation error that suggests an alternate solution
to convert the Cow value to a String:

error[E0308]: mismatched types
 --> src/lib.rs:178:5
 |
171 | fn extract_bytes(line: &str, byte_pos: &
[Range<usize>]) -> String {
 |

https://oreil.ly/Bs4Zl
https://oreil.ly/Jpdd0
https://oreil.ly/5SvXY

 | expected `String` because of
return type
...
178 | String::from_utf8_lossy(&selected)
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^- help: try
using a conversion
 | | method:
`.to_string()`
 | |
 | expected struct `String`, found enum `Cow`
 |
 = note: expected struct `String`
 found enum `Cow<'_, str>`

While the Rust compiler is extremely strict, I appreciate how
informative and helpful the error messages are.

Selecting Fields from a csv::StringRecord

Selecting the fields from a csv::StringRecord is almost
identical to extracting characters from a line:

fn extract_fields(
 record: &StringRecord,
 field_pos: &[Range<usize>],
) -> Vec<String> {
 field_pos
 .iter()
 .cloned()
 .flat_map(|range| range.filter_map(|i|
record.get(i)))
 .map(String::from)
 .collect()
}

Use StringRecord::get to try to get the field for the
index position.

Use Iterator::map to turn &str values into String
values.

https://oreil.ly/UTCtd

There’s another way to write this function so that it will
return a Vec<&str>, which will be slightly more memory
efficient as it will not make copies of the strings. The
trade-off is that I must indicate the lifetimes. First, let
me naively try to write it like so:

// This will not compile
fn extract_fields(
 record: &StringRecord,
 field_pos: &[Range<usize>],
) -> Vec<&str> {
 field_pos
 .iter()
 .cloned()
 .flat_map(|range| range.filter_map(|i|
record.get(i)))
 .collect()
}

If I try to compile this, the Rust compiler will complain
about lifetimes:

error[E0106]: missing lifetime specifier
 --> src/lib.rs:203:10
 |
201 | record: &StringRecord,
 | -------------
202 | field_pos: &[Range<usize>],
 | ---------------
203 |) -> Vec<&str> {
 | ^ expected named lifetime parameter
 = help: this function's return type contains a borrowed
value, but the
 signature does not say whether it is borrowed from
`record` or `field_pos`

The error message continues with directions for how to amend
the code to add lifetimes:

help: consider introducing a named lifetime parameter
200 ~ fn extract_fields<'a>(

201 ~ record: &'a StringRecord,
202 ~ field_pos: &'a [Range<usize>],
203 ~) -> Vec<&'a str> {

The suggestion is actually overconstraining the lifetimes.
The returned string slices refer to values owned by the
StringRecord, so only record and the return value need to
have the same lifetime. The following version with lifetimes
works well:

fn extract_fields<'a>(
 record: &'a StringRecord,
 field_pos: &[Range<usize>],
) -> Vec<&'a str> {
 field_pos
 .iter()
 .cloned()
 .flat_map(|range| range.filter_map(|i|
record.get(i)))
 .collect()
}

Both the version returning Vec<String> and the version
returning Vec<&'a str> will pass the
test_extract_fields unit test. The latter version is
slightly more efficient and shorter but also has more
cognitive overhead. Choose whichever version you feel you’ll
be able to understand six weeks from now.

Final Boss

For the following code, be sure to add the following imports
to src/lib.rs:

use csv::{ReaderBuilder, StringRecord, WriterBuilder};

Here is my run function that passes all the tests for
printing the desired ranges of characters, bytes, and

records:

pub fn run(config: Config) -> MyResult<()> {
 for filename in &config.files {
 match open(filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => match &config.extract {
 Fields(field_pos) => {
 let mut reader = ReaderBuilder::new()

 .delimiter(config.delimiter)
 .has_headers(false)
 .from_reader(file);

 let mut wtr = WriterBuilder::new()
 .delimiter(config.delimiter)
 .from_writer(io::stdout());

 for record in reader.records() {
 let record = record?;
 wtr.write_record(extract_fields(
 &record, field_pos,
))?;
 }
 }
 Bytes(byte_pos) => {
 for line in file.lines() {
 println!("{}",
extract_bytes(&line?, byte_pos));
 }
 }
 Chars(char_pos) => {
 for line in file.lines() {
 println!("{}",
extract_chars(&line?, char_pos));
 }
 }
 },
 }
 }
 Ok(())
}

If the user has requested fields from a delimited file,
use csv::ReaderBuilder to create a mutable reader
using the given delimiter, and do not treat the first row
as headers.

Use csv::WriterBuilder to correctly escape delimiters
in the output.

Iterate through the records.

Write the extracted fields to the output.

Iterate the lines of text and print the extracted bytes.

Iterate the lines of text and print the extracted
characters.

The csv::Reader will attempt to parse the first row for
the column names by default. For this program, I don’t need
to do anything special with these values, so I don’t parse
the first line as a header row. If I used the default
behavior, I would have to handle the headers separately from
the rest of the records.

Note that I’m using the csv crate to both parse the input
and write the output, so this program will correctly handle
delimited text files, which I feel is an improvement over the
original cut programs. I’ll use tests/inputs/books.csv

again to demonstrate that cutr will correctly select a field
containing the delimiter and will create output that properly
escapes the delimiter:

$ cargo run -- -d , -f 1,3 tests/inputs/books.csv
Author,Title
Émile Zola,La Confession de Claude

Samuel Beckett,Waiting for Godot
Jules Verne,"20,000 Leagues Under the Sea"

This was a fairly complex program with a lot of options, but
I found the strictness of the Rust compiler kept me focused
on how to write a solution.

Going Further

I have several ideas for how you can expand this program.
Alter the program to allow partial ranges like -3, meaning
1–3, or 5- to mean 5 to the end. Consider using
std::ops::RangeTo to model -3 and std::ops::RangeFrom
for 5-. Be aware that clap will try to interpret the value
-3 as an option when you run cargo run -- -f -3
tests/inputs/books.tsv, so use -f=-3 instead.

The final version of the challenge program uses the --
delimiter as the input and output delimiter. Add an option
to specify the output delimiter, and have it default to the
input delimiter.

Add an optional output filename, and let it default to
STDOUT. The -n option from the BSD and GNU cut versions
that prevents multibyte characters from being split seems
like a fun challenge to implement, and I also quite like the
--complement option from GNU cut that complements the set
of selected bytes, characters, or fields so that the
positions not indicated are shown. Finally, for more ideas on
how to deal with delimited text records, check out the xsv
crate, a “fast CSV command line toolkit written in Rust.”

Summary

Gaze upon the knowledge you gained in this chapter:

https://oreil.ly/ZniC2
https://oreil.ly/azzZY
https://oreil.ly/894fA

You learned how to dereference a variable that
contains a reference using the * operator.

Sometimes actions on iterators return other iterators.
You saw how Iterator ::flatten will remove the
inner structures to flatten the result.

You learned how the Iterator::flat_map method
combines Iterator::map and Iterator::flatten
into one operation for more concise code.

You used a get function for selecting positions from
a vector or fields from a csv::StringRecord. This
action might fail, so you used
Iterator::filter_map to return only those values
that are successfully retrieved.

You compared how to return a String versus a &str
from a function, the latter of which required
indicating lifetimes.

You can now parse and create delimited text using the
csv crate.

In the next chapter, you will learn more about regular
expressions and chaining operations on iterators.

Chapter 9. Jack the Grepper

Please explain the expression on your face

— They Might Be Giants, “Unrelated Thing”
(1994)

In this chapter, you will write a Rust version of grep,
which will find lines of input that match a given regular
expression. By default the input comes from STDIN, but you
can provide the names of one or more files or directories if
you use a recursive option to find all the files in those

directories. The normal output will be the lines that match
the given pattern, but you can invert the match to find the
lines that don’t match. You can also instruct grep to print
the number of matching lines instead of the lines of text.
Pattern matching is normally case-sensitive, but you can use
an option to perform case-insensitive matching. While the
original program can do more, the challenge program will go
only this far.

In writing this program, you’ll learn about:

Using a case-sensitive regular expression

Variations of regular expression syntax

Another syntax to indicate a trait bound

Using Rust’s bitwise exclusive-OR operator

How grep Works

I’ll start by showing the manual page for the BSD grep to
give you a sense of the many options the command will accept:

1

GREP(1) BSD General Commands Manual
GREP(1)

NAME
 grep, egrep, fgrep, zgrep, zegrep, zfgrep -- file
pattern searcher

SYNOPSIS
 grep [-abcdDEFGHhIiJLlmnOopqRSsUVvwxZ] [-A num] [-B
num] [-C[num]]
 [-e pattern] [-f file] [--binary-files=value] [--
color[=when]]
 [--colour[=when]] [--context[=num]] [--label] [--
line-buffered]
 [--null] [pattern] [file ...]

DESCRIPTION
 The grep utility searches any given input files,
selecting lines that
 match one or more patterns. By default, a pattern
matches an input line
 if the regular expression (RE) in the pattern matches
the input line
 without its trailing newline. An empty expression
matches every line.
 Each input line that matches at least one of the
patterns is written to
 the standard output.

 grep is used for simple patterns and basic regular
expressions (BREs);
 egrep can handle extended regular expressions (EREs).
See re_format(7)
 for more information on regular expressions. fgrep is
quicker than both
 grep and egrep, but can only handle fixed patterns
(i.e. it does not
 interpret regular expressions). Patterns may consist
of one or more
 lines, allowing any of the pattern lines to match a
portion of the input.

The GNU version is very similar:

GREP(1) General Commands Manual
GREP(1)

NAME
 grep, egrep, fgrep - print lines matching a pattern

SYNOPSIS
 grep [OPTIONS] PATTERN [FILE...]
 grep [OPTIONS] [-e PATTERN | -f FILE] [FILE...]

DESCRIPTION
 grep searches the named input FILEs (or standard
input if no files are
 named, or if a single hyphen-minus (-) is given as
file name) for lines
 containing a match to the given PATTERN. By
default, grep prints the
 matching lines.

To demonstrate the features of grep that the challenge
program is expected to implement, I’ll use some files from
the book’s GitHub repository. If you want to follow along,
change into the 09_grepr/tests/inputs directory:

$ cd 09_grepr/tests/inputs

Here are the files that I’ve included:

empty.txt: an empty file

fox.txt: a file with a single line of text

bustle.txt: a poem by Emily Dickinson with eight lines
of text and one blank line

nobody.txt: another poem by the Belle of Amherst with
eight lines of text and one blank line

To start, verify for yourself that grep fox empty.txt
will print nothing when using an empty file. As shown by the
usage, grep accepts a regular expression as the first

positional argument and optionally some input files for the
rest. Note that an empty regular expression will match all
lines of input, and here I’ll use the input file fox.txt,
which contains one line of text:

$ grep "" fox.txt
The quick brown fox jumps over the lazy dog.

In the following Emily Dickinson poem, notice that Nobody is
always capitalized:

$ cat nobody.txt
I'm Nobody! Who are you?
Are you—Nobody—too?
Then there's a pair of us!
Don't tell! they'd advertise—you know!

How dreary—to be—Somebody!
How public—like a Frog—
To tell one's name—the livelong June—
To an admiring Bog!

If I search for Nobody, the two lines containing the string
are printed:

$ grep Nobody nobody.txt
I'm Nobody! Who are you?
Are you—Nobody—too?

If I search for lowercase nobody with grep nobody
nobody.txt, nothing is printed. I can, however, use -i|--
ignore-case to find these lines:

$ grep -i nobody nobody.txt
I'm Nobody! Who are you?
Are you—Nobody—too?

I can use the -v|--invert-match option to find the lines
that don’t match the pattern:

$ grep -v Nobody nobody.txt
Then there's a pair of us!
Don't tell! they'd advertise—you know!

How dreary—to be—Somebody!
How public—like a Frog—
To tell one's name—the livelong June—
To an admiring Bog!

The -c|--count option will cause the output to be a summary
of the number of times a match occurs:

$ grep -c Nobody nobody.txt
2

I can combine -v and -c to count the lines not matching:

$ grep -vc Nobody nobody.txt
7

When searching multiple input files, each line of output
includes the source filename:

$ grep The *.txt
bustle.txt:The bustle in a house
bustle.txt:The morning after death
bustle.txt:The sweeping up the heart,
fox.txt:The quick brown fox jumps over the lazy dog.
nobody.txt:Then there's a pair of us!

The filename is also included for the counts:

$ grep -c The *.txt
bustle.txt:3
empty.txt:0

fox.txt:1
nobody.txt:1

Normally, the positional arguments are files, and the
inclusion of a directory such as my $HOME directory will
cause grep to print a warning:

$ grep The bustle.txt $HOME fox.txt
bustle.txt:The bustle in a house
bustle.txt:The morning after death
bustle.txt:The sweeping up the heart,
grep: /Users/kyclark: Is a directory
fox.txt:The quick brown fox jumps over the lazy dog.

Directory names are acceptable only when using the -r|--
recursive option to find all the files in a directory that
contain matching text. In this command, I’ll use . to
indicate the current working directory:

$ grep -r The .
./nobody.txt:Then there's a pair of us!
./bustle.txt:The bustle in a house
./bustle.txt:The morning after death
./bustle.txt:The sweeping up the heart,
./fox.txt:The quick brown fox jumps over the lazy dog.

The -r and -i short flags can be combined to perform a
recursive, case-insensitive search of one or more
directories:

$ grep -ri the .
./nobody.txt:Then there's a pair of us!
./nobody.txt:Don't tell! they'd advertise—you know!
./nobody.txt:To tell one's name—the livelong June—
./bustle.txt:The bustle in a house
./bustle.txt:The morning after death
./bustle.txt:The sweeping up the heart,
./fox.txt:The quick brown fox jumps over the lazy dog.

Without any positional arguments for inputs, grep will read
STDIN:

$ cat * | grep -i the
The bustle in a house
The morning after death
The sweeping up the heart,
The quick brown fox jumps over the lazy dog.
Then there's a pair of us!
Don't tell! they'd advertise—you know!
To tell one's name—the livelong June—

This is as far as the challenge program is expected to go.

Getting Started

The name of the challenge program should be grepr
(pronounced grep-er) for a Rust version of grep. Start with
cargo new grepr, then copy the book’s 09_grepr/tests

directory into your new project. Modify your Cargo.toml to
include the following dependencies:

[dependencies]
clap = "2.33"
regex = "1"
walkdir = "2"
sys-info = "0.9"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

The tests use this crate to determine whether they are
being run on Windows or not.

You can run cargo test to perform an initial build and run
the tests, all of which should fail.

Defining the Arguments

Update src/main.rs to the standard code used in previous
programs:

fn main() {
 if let Err(e) = grepr::get_args().and_then(grepr::run)
{
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

Following is how I started my src/lib.rs. Note that all the
Boolean options default to false:

use clap::{App, Arg};
use regex::{Regex, RegexBuilder};
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug)]
pub struct Config {
 pattern: Regex,
 files: Vec<String>,
 recursive: bool,
 count: bool,
 invert_match: bool,
}

The pattern option is a compiled regular expression.

The files option is a vector of strings.

The recursive option is a Boolean for whether or not to
recursively search directories.

The count option is a Boolean for whether or not to
display a count of the matches.

The invert_match option is a Boolean for whether or not
to find lines that do not match the pattern.

TIP

The program will have an insensitive option, but you may notice
that my Config does not. Instead, I use regex::RegexBuilder to
create the regex using the case _insensi tive method.

Here is how I started my get_args function. You should fill
in the missing parts:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("grepr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust grep")
 // What goes here?
 .get_matches();

 Ok(Config {
 pattern: ...
 files: ...
 recursive: ...
 count: ...
 invert_match: ...
 })
}

Start your run by printing the configuration:

https://oreil.ly/ks2Qg
https://oreil.ly/P3fXc

pub fn run(config: Config) -> MyResult<()> {
 println!("{:#?}", config);
 Ok(())
}

Your next goal is to update your get_args so that your
program can produce the following usage:

$ cargo run -- -h
grepr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust grep

USAGE:
 grepr [FLAGS] <PATTERN> [FILE]...

FLAGS:
 -c, --count Count occurrences
 -h, --help Prints help information
 -i, --insensitive Case-insensitive
 -v, --invert-match Invert match
 -r, --recursive Recursive search
 -V, --version Prints version information

ARGS:
 <PATTERN> Search pattern
 <FILE>... Input file(s) [default: -]

The search pattern is a required argument.

The input files are optional and default to a dash for
STDIN.

Your program should be able to print a Config like the
following when provided a pattern and no input files:

$ cargo run -- dog
Config {
 pattern: dog,
 files: [

 "-",
],
 recursive: false,
 count: false,
 invert_match: false,
}

NOTE

Printing a regular expression means calling the Regex::as_str
method. RegexBuilder::build notes that this “will produce the

pattern given to new verbatim. Notably, it will not incorporate
any of the flags set on this builder.”

The program should be able to handle one or more input files
and handle the flags:

$ cargo run -- dog -ricv tests/inputs/*.txt
Config {
 pattern: dog,
 files: [
 "tests/inputs/bustle.txt",
 "tests/inputs/empty.txt",
 "tests/inputs/fox.txt",
 "tests/inputs/nobody.txt",
],
 recursive: true,
 count: true,
 invert_match: true,
}

Your program should reject an invalid regular expression, and
you can reuse code from the findr program in Chapter 7 to

handle this. For instance, * signifies zero or more of the
preceding pattern. By itself, this is incomplete and should
cause an error message:

https://oreil.ly/qW1c2
https://oreil.ly/3BqDT

$ cargo run -- *
Invalid pattern "*"

NOTE

Stop reading here and write your get_args to match the preceding
description. Your program should also pass cargo test dies.

Following is how I declared my arguments:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("grepr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust grep")
 .arg(
 Arg::with_name("pattern")
 .value_name("PATTERN")
 .help("Search pattern")
 .required(true),
)
 .arg(
 Arg::with_name("files")
 .value_name("FILE")
 .help("Input file(s)")
 .multiple(true)
 .default_value("-"),
)
 .arg(
 Arg::with_name("insensitive")
 .short("i")
 .long("insensitive")
 .help("Case-insensitive")
 .takes_value(false),
)
 .arg(
 Arg::with_name("recursive")
 .short("r")
 .long("recursive")
 .help("Recursive search")
 .takes_value(false),

)
 .arg(
 Arg::with_name("count")
 .short("c")
 .long("count")
 .help("Count occurrences")
 .takes_value(false),
)
 .arg(
 Arg::with_name("invert")
 .short("v")
 .long("invert-match")
 .help("Invert match")
 .takes_value(false),
)
 .get_matches();

The first positional argument is for the pattern.

The rest of the positional arguments are for the inputs.
The default is a dash.

The insensitive flag will handle case-insensitive
options.

The recursive flag will handle searching for files in
directories.

The count flag will cause the program to print counts.

The invert flag will search for lines not matching the
pattern.

TIP

Here, the order in which you declare the positional parameters is
important, as the first one defined will be for the first
positional argument. You may define the optional arguments before
or after the positional parameters.

Next, I used the arguments to create a regular expression
that will incorporate the insensitive option:

 let pattern = matches.value_of("pattern").unwrap();
 let pattern = RegexBuilder::new(pattern)

.case_insensitive(matches.is_present("insensitive"))
 .build()
 .map_err(|_| format!("Invalid pattern \"{}\"",
pattern))?;

 Ok(Config {
 pattern,
 files: matches.values_of_lossy("files").unwrap(),
 recursive: matches.is_present("recursive"),
 count: matches.is_present("count"),
 invert_match: matches.is_present("invert"),
 })
}

The pattern is required, so it should be safe to unwrap
the value.

The RegexBuilder::new method will create a new regular
expression.

The RegexBuilder::case_insensitive method will cause
the regex to disregard case in comparisons when the
insensitive flag is present.

The RegexBuilder::build method will compile the regex.

https://oreil.ly/bpzFh
https://oreil.ly/P3fXc
https://oreil.ly/3BqDT

If build returns an error, use Result::map_err to
create an error message stating that the given pattern is
invalid.

Return the Config.

RegexBuilder::build will reject any pattern that is not a
valid regular expression, and this raises an interesting
point. There are many syntaxes for writing regular
expressions. If you look closely at the manual page for
grep, you’ll notice these options:

-E, --extended-regexp
 Interpret pattern as an extended regular expression
(i.e. force
 grep to behave as egrep).

-e pattern, --regexp=pattern
 Specify a pattern used during the search of the
input: an input
 line is selected if it matches any of the specified
patterns.
 This option is most useful when multiple -e options
are used to
 specify multiple patterns, or when a pattern begins
with a dash
 ('-').

The converse of these options is:

-G, --basic-regexp
 Interpret pattern as a basic regular expression
(i.e. force grep
 to behave as traditional grep).

Regular expressions have been around since the 1950s, when
they were invented by the American mathematician Stephen Cole
Kleene. Since that time, the syntax has been modified and2

https://oreil.ly/4izCX

expanded by various groups, perhaps most notably by the Perl
community, which created Perl Compatible Regular Expressions
(PCRE). By default, grep will parse only basic regexes, but
the preceding flags can allow it to use other varieties. For
instance, I can use the pattern ee to search for any lines
containing two adjacent es. Note that I have added the bold
style in the following output to help you see the pattern
that was found:

$ grep 'ee' tests/inputs/*
tests/inputs/bustle.txt:The sweeping up the heart,

If I want to find any character that is repeated twice, the
pattern is (.)\1, where the dot (.) represents any
character and the capturing parentheses allow me to use the
backreference \1 to refer to the first capture group. This
is an example of an extended expression and so requires the
-E flag:

$ grep -E '(.)\1' tests/inputs/*
tests/inputs/bustle.txt:The sweeping up the heart,
tests/inputs/bustle.txt:And putting love away
tests/inputs/bustle.txt:We shall not want to use again
tests/inputs/nobody.txt:Are you—Nobody—too?
tests/inputs/nobody.txt:Don't tell! they'd advertise—you
know!
tests/inputs/nobody.txt:To tell one's name—the livelong
June—

The Rust regex crate’s documentation notes that its

“syntax is similar to Perl-style regular expressions, but
lacks a few features like look around and backreferences.”
(Look-around assertions allow the expression to assert that a
pattern must be followed or preceded by another pattern, and
backreferences allow the pattern to refer to previously
captured values.) This means that the challenge program will

https://oreil.ly/VYPhC

work more like egrep in handling extended regular
expressions by default. Sadly, this also means that the
program will not be able to handle the preceding pattern
because it requires backreferences. It will still be a wicked
cool program to write, though, so let’s keep going.

Finding the Files to Search

Next, I need to find all the files to search. Recall that the
user might provide directory names with the --recursive
option to search for all the files contained in each
directory; otherwise, directory names should result in a
warning printed to STDERR. I decided to write a function
called find_files that will accept a vector of strings that
may be file or directory names along with a Boolean for
whether or not to recurse into directories. It returns a
vector of MyResult values that will hold a string that is
the name of a valid file or an error message:

fn find_files(paths: &[String], recursive: bool) ->
Vec<MyResult<String>> {
 unimplemented!();
}

To test this, I can add a tests module to src/lib.rs. Note
that this will use the rand crate that should be listed in
the [dev-dependencies] section of your Cargo.toml, as
noted earlier in the chapter:

#[cfg(test)]
mod tests {
 use super::find_files;
 use rand::{distributions::Alphanumeric, Rng};

 #[test]
 fn test_find_files() {
 // Verify that the function finds a file known to

exist
 let files =
 find_files(&
["./tests/inputs/fox.txt".to_string()], false);
 assert_eq!(files.len(), 1);
 assert_eq!(files[0].as_ref().unwrap(),
"./tests/inputs/fox.txt");

 // The function should reject a directory without
the recursive option
 let files = find_files(&
["./tests/inputs".to_string()], false);
 assert_eq!(files.len(), 1);
 if let Err(e) = &files[0] {
 assert_eq!(e.to_string(), "./tests/inputs is a
directory");
 }

 // Verify the function recurses to find four files
in the directory
 let res = find_files(&
["./tests/inputs".to_string()], true);
 let mut files: Vec<String> = res
 .iter()
 .map(|r| r.as_ref().unwrap().replace("\\",
"/"))
 .collect();
 files.sort();
 assert_eq!(files.len(), 4);
 assert_eq!(
 files,
 vec![
 "./tests/inputs/bustle.txt",
 "./tests/inputs/empty.txt",
 "./tests/inputs/fox.txt",
 "./tests/inputs/nobody.txt",
]
);

 // Generate a random string to represent a
nonexistent file
 let bad: String = rand::thread_rng()
 .sample_iter(&Alphanumeric)
 .take(7)
 .map(char::from)

 .collect();

 // Verify that the function returns the bad file as
an error
 let files = find_files(&[bad], false);
 assert_eq!(files.len(), 1);
 assert!(files[0].is_err());
 }
}

NOTE

Stop reading and write the code to pass cargo test
test_find_files.

Here is how I can use find_files in my code:

pub fn run(config: Config) -> MyResult<()> {
 println!("pattern \"{}\"", config.pattern);

 let entries = find_files(&config.files,
config.recursive);
 for entry in entries {
 match entry {
 Err(e) => eprintln!("{}", e),
 Ok(filename) => println!("file \"{}\"",
filename),
 }
 }

 Ok(())
}

My solution uses WalkDir, which I introduced in Chapter 7.

See if you can get your program to reproduce the following
output. To start, the default input should be a dash (-), to
represent reading from STDIN:

https://oreil.ly/ahe7k

$ cargo run -- fox
pattern "fox"
file "-"

Explicitly listing a dash as the input should produce the
same output:

$ cargo run -- fox -
pattern "fox"
file "-"

The program should handle multiple input files:

$ cargo run -- fox tests/inputs/*
pattern "fox"
file "tests/inputs/bustle.txt"
file "tests/inputs/empty.txt"
file "tests/inputs/fox.txt"
file "tests/inputs/nobody.txt"

A directory name without the --recursive option should be
rejected:

$ cargo run -- fox tests/inputs
pattern "fox"
tests/inputs is a directory

With the --recursive flag, it should find the directory’s

files:

$ cargo run -- -r fox tests/inputs
pattern "fox"
file "tests/inputs/empty.txt"
file "tests/inputs/nobody.txt"
file "tests/inputs/bustle.txt"
file "tests/inputs/fox.txt"

Invalid file arguments should be printed to STDERR in the
course of handling each entry. In the following example,

blargh represents a nonexistent file:

$ cargo run -- -r fox blargh tests/inputs/fox.txt
pattern "fox"
blargh: No such file or directory (os error 2)
file "tests/inputs/fox.txt"

Finding the Matching Lines of Input

Now it’s time for your program to open the files and search
for matching lines. I suggest you again use the open
function from earlier chapters, which will open and read
either an existing file or STDIN for a filename that equals
a dash (-):

fn open(filename: &str) -> MyResult<Box<dyn BufRead>> {
 match filename {
 "-" => Ok(Box::new(BufReader::new(io::stdin()))),
 _ =>
Ok(Box::new(BufReader::new(File::open(filename)?))),
 }
}

This will require you to expand your program’s imports with
the following:

use std::{
 error::Error,
 fs::{self, File},
 io::{self, BufRead, BufReader},
};

When reading the lines, be sure to preserve the line endings
as one of the input files contains Windows-style CRLF
endings. My solution uses a function called find_lines,
which you can start with the following:

fn find_lines<T: BufRead>(
 mut file: T,
 pattern: &Regex,
 invert_match: bool,
) -> MyResult<Vec<String>> {
 unimplemented!();
}

The file option must implement the std::io::BufRead
trait.

The pattern option is a reference to a compiled regular
expression.

The invert_match option is a Boolean for whether to
reverse the match operation.

NOTE

In the wcr program from Chapter 5, I used impl BufRead to
indicate a value that must implement the BufRead trait. In the
preceding code, I’m using <T: BufRead> to indicate the trait
bound for the type T. They both accomplish the same thing, but I
wanted to show another common way to write this.

To test this function, I expanded my tests module by adding
the following test_find_lines function, which again uses
std::io::Cursor to create a fake filehandle that
implements BufRead for testing:

#[cfg(test)]
mod test {
 use super::{find_files, find_lines};
 use rand::{distributions::Alphanumeric, Rng};
 use regex::{Regex, RegexBuilder};
 use std::io::Cursor;

https://oreil.ly/c5fGP

 #[test]
 fn test_find_files() {} // Same as before

 #[test]
 fn test_find_lines() {
 let text = b"Lorem\nIpsum\r\nDOLOR";

 // The pattern _or_ should match the one line,
"Lorem"
 let re1 = Regex::new("or").unwrap();
 let matches = find_lines(Cursor::new(&text), &re1,
false);
 assert!(matches.is_ok());
 assert_eq!(matches.unwrap().len(), 1);

 // When inverted, the function should match the
other two lines
 let matches = find_lines(Cursor::new(&text), &re1,
true);
 assert!(matches.is_ok());
 assert_eq!(matches.unwrap().len(), 2);

 // This regex will be case-insensitive
 let re2 = RegexBuilder::new("or")
 .case_insensitive(true)
 .build()
 .unwrap();

 // The two lines "Lorem" and "DOLOR" should match
 let matches = find_lines(Cursor::new(&text), &re2,
false);
 assert!(matches.is_ok());
 assert_eq!(matches.unwrap().len(), 2);

 // When inverted, the one remaining line should
match
 let matches = find_lines(Cursor::new(&text), &re2,
true);
 assert!(matches.is_ok());
 assert_eq!(matches.unwrap().len(), 1);
 }
}

NOTE

Stop reading and write the function that will pass cargo test
test_find_lines.

Next, I suggest you incorporate these ideas into your run:

pub fn run(config: Config) -> MyResult<()> {
 let entries = find_files(&config.files,
config.recursive);
 for entry in entries {
 match entry {
 Err(e) => eprintln!("{}", e),
 Ok(filename) => match open(&filename) {
 Err(e) => eprintln!("{}: {}", filename, e),

 Ok(file) => {
 let matches = find_lines(
 file,
 &config.pattern,
 config.invert_match,
);
 println!("Found {:?}", matches);
 }
 },
 }
 }

 Ok(())
}

Look for the input files.

Handle the errors from finding input files.

Try to open a valid filename.

Handle errors opening a file.

Use the open filehandle to find the lines matching (or not
matching) the regex.

At this point, the program should show the following output:

$ cargo run -- -r fox tests/inputs/*
Found Ok([])
Found Ok([])
Found Ok(["The quick brown fox jumps over the lazy
dog.\n"])
Found Ok([])

Modify this version to meet the criteria for the program.
Start as simply as possible, perhaps by using an empty
regular expression that should match all the lines from the
input:

$ cargo run -- "" tests/inputs/fox.txt
The quick brown fox jumps over the lazy dog.

Be sure you are reading STDIN by default:

$ cargo run -- "" < tests/inputs/fox.txt
The quick brown fox jumps over the lazy dog.

Run with several input files and a case-sensitive pattern:

$ cargo run -- The tests/inputs/*
tests/inputs/bustle.txt:The bustle in a house
tests/inputs/bustle.txt:The morning after death
tests/inputs/bustle.txt:The sweeping up the heart,
tests/inputs/fox.txt:The quick brown fox jumps over the
lazy dog.
tests/inputs/nobody.txt:Then there's a pair of us!

Then try to print the number of matches instead of the lines:

$ cargo run -- --count The tests/inputs/*
tests/inputs/bustle.txt:3
tests/inputs/empty.txt:0
tests/inputs/fox.txt:1
tests/inputs/nobody.txt:1

Incorporate the --insensitive option:

$ cargo run -- --count --insensitive The tests/inputs/*
tests/inputs/bustle.txt:3
tests/inputs/empty.txt:0
tests/inputs/fox.txt:1
tests/inputs/nobody.txt:3

Next, try to invert the matching:

$ cargo run -- --count --invert-match The tests/inputs/*
tests/inputs/bustle.txt:6
tests/inputs/empty.txt:0
tests/inputs/fox.txt:0
tests/inputs/nobody.txt:8

Be sure your --recursive option works:

$ cargo run -- -icr the tests/inputs
tests/inputs/empty.txt:0
tests/inputs/nobody.txt:3
tests/inputs/bustle.txt:3
tests/inputs/fox.txt:1

Handle errors such as the nonexistent file blargh while
processing the files in order:

$ cargo run -- fox blargh tests/inputs/fox.txt
blargh: No such file or directory (os error 2)
tests/inputs/fox.txt:The quick brown fox jumps over the
lazy dog.

Another potential problem you should gracefully handle is
failure to open a file, perhaps due to insufficient

permissions:

$ touch hammer && chmod 000 hammer
$ cargo run -- fox hammer tests/inputs/fox.txt
hammer: Permission denied (os error 13)
tests/inputs/fox.txt:The quick brown fox jumps over the
lazy dog.

NOTE

It’s go time. These challenges are getting harder, so it’s OK to
feel a bit overwhelmed by the requirements. Tackle each task in
order, and keep running cargo test to see how many you’re able

to pass. When you get stuck, run grep with the arguments from the
test and closely examine the output. Then run your program with
the same arguments and try to find the differences.

Solution

I will always stress that your solution can be written
however you like as long as it passes the provided test
suite. In the following find_files function, I choose to
use the imperative approach of manually pushing to a vector
rather than collecting from an iterator. The function will
either collect a single error for a bad path or flatten the
iterable WalkDir to recursively get the files. Be sure you
add use std::fs and use walkdir::WalkDir for this
code:

fn find_files(paths: &[String], recursive: bool) ->
Vec<MyResult<String>> {
 let mut results = vec![];

 for path in paths {
 match path.as_str() {
 "-" => results.push(Ok(path.to_string())),
 _ => match fs::metadata(path) {

 Ok(metadata) => {
 if metadata.is_dir() {
 if recursive {
 for entry in WalkDir::new(path)

 .into_iter()
 .flatten()
 .filter(|e|
e.file_type().is_file())
 {
 results.push(Ok(entry
 .path()
 .display()
 .to_string()));
 }
 } else {

results.push(Err(From::from(format!(
 "{} is a directory",
 path
))));
 }
 } else if metadata.is_file() {
 results.push(Ok(path.to_string()));
 }
 }
 Err(e) => {
 results.push(Err(From::from(format!("
{}: {}", path, e))))
 }
 },
 }
 }

 results
}

Initialize an empty vector to hold the results.

Iterate over each of the given paths.

First, accept a dash (-) as a path, for STDIN.

Try to get the path’s metadata.

Check if the path is a directory.

Check if the user wants to recursively search directories.

Add all the files in the given directory to the results.

Iterator::flatten will take the Ok or Some variants
for Result and Option types and will ignore the Err and
None variants, meaning it will ignore any errors with
files found by recursing through directories.

Note an error that the given entry is a directory.

If the path is a file, add it to the results.

This arm will be triggered by nonexistent files.

Next, I will share my find_lines function. The following
code requires that you add use std::mem to your imports.
This borrows heavily from previous functions that read files
line by line, so I won’t comment on code I’ve used before:

fn find_lines<T: BufRead>(
 mut file: T,
 pattern: &Regex,
 invert_match: bool,
) -> MyResult<Vec<String>> {
 let mut matches = vec![];
 let mut line = String::new();

 loop {
 let bytes = file.read_line(&mut line)?;
 if bytes == 0 {
 break;
 }
 if pattern.is_match(&line) ^ invert_match {

https://oreil.ly/RzXDz

 matches.push(mem::take(&mut line));
 }
 line.clear();
 }

 Ok(matches)
}

Initialize a mutable vector to hold the matching lines.

Use the BitXor bit-wise exclusive OR operator (^) to
determine if the line should be included.

Use std::mem::take to take ownership of the line. I
could have used clone to copy the string and add it to
the matches, but take avoids an unnecessary copy.

In the preceding function, the bitwise XOR comparison (^)
could also be expressed using a combination of the logical
AND (&&) and OR operators (||) like so:

if (pattern.is_match(&line) && !invert_match)
 || (!pattern.is_match(&line) && invert_match)
{
 matches.push(line.clone());
}

Verify that the line matches and the user does not want to
invert the match.

Alternatively, check if the line does not match and the
user wants to invert the match.

At the beginning of the run function, I decided to create a
closure to handle the printing of the output with or without
the filenames given the number of input files:

https://oreil.ly/fwIFt
https://oreil.ly/bKZz9
https://oreil.ly/NkRmp

pub fn run(config: Config) -> MyResult<()> {
 let entries = find_files(&config.files,
config.recursive);
 let num_files = entries.len();
 let print = |fname: &str, val: &str| {
 if num_files > 1 {
 print!("{}:{}", fname, val);
 } else {
 print!("{}", val);
 }
 };

Find all the inputs.

Find the number of inputs.

Create a print closure that uses the number of inputs to
decide whether to print the filenames in the output.

Continuing from there, the program attempts to find the
matching lines from the entries:

 for entry in entries {
 match entry {
 Err(e) => eprintln!("{}", e),
 Ok(filename) => match open(&filename) {
 Err(e) => eprintln!("{}: {}", filename, e),

 Ok(file) => {
 match find_lines(
 file,
 &config.pattern,
 config.invert_match,
) {
 Err(e) => eprintln!("{}", e),
 Ok(matches) => {
 if config.count {
 print(
 &filename,
 &format!("{}\n",
matches.len()),

);
 } else {
 for line in &matches {
 print(&filename, line);
 }
 }
 }
 }
 }
 },
 }
 }
 Ok(())
}

Print errors like nonexistent files to STDERR.

Attempt to open a file. This might fail due to
permissions.

Print an error to STDERR.

Attempt to find the matching lines of text.

Print errors to STDERR.

Decide whether to print the number of matches or the
matches themselves.

At this point, the program should pass all the tests.

Going Further

The Rust ripgrep tool implements many of the features of
grep and is worthy of your study. You can install the
program using the instructions provided and then execute rg.
As shown in Figure 9-1, the matching text is highlighted in

https://oreil.ly/oqlzw

the output. Try to add that feature to your program using
Regex::find to find the start and stop positions of the
matching pattern and something like termcolor to highlight
the matches.

Figure 9-1. The ripgrep tool will highlight the matching text.

The author of ripgrep wrote an extensive blog post about
design decisions that went into writing the program. In the
section “Repeat After Me: Thou Shalt Not Search Line by
Line,” the author discusses the performance hit of searching
over lines of text, the majority of which will not match.

https://oreil.ly/MzvvZ
https://oreil.ly/QRuAE
https://oreil.ly/JfnB8

Summary

This chapter challenged you to extend skills you learned in
Chapter 7, such as recursively finding files in directories
and using regular expressions. In this chapter, you combined
those skills to find content inside files matching (or not
matching) a given regex. In addition, you learned the
following:

How to use RegexBuilder to create more complicated
regular expressions using, for instance, the case-
insensitive option to match strings regardless of
case.

There are multiple syntaxes for writing regular
expressions that different tools recognize, such as
PCRE. Rust’s regex engine does not implement some
features of PCRE, such as look-around assertions or
backreferences.

You can indicate a trait bound like BufRead in
function signatures using either impl BufRead or
<T: BufRead>.

Rust’s bitwise XOR operator can replace more complex
logical operations that combine AND and OR
comparisons.

In the next chapter, you’ll learn more about iterating the
lines of a file, how to compare strings, and how to create a
more complicated enum type.

1 The name grep comes from the ed command g/re/p, which means
“global regular expression print,” where ed is the standard
text editor.

2 If you would like to learn more about regexes, I recommend
Mastering Regular Expressions, 3rd ed., by Jeffrey E. F. Friedl
(O’Reilly).

https://oreil.ly/jwvCB

Chapter 10. Boston Commons

Never looked at you before with / Common sense

— They Might Be Giants, “Circular Karate
Chop” (2013)

In this chapter, you will write a Rust version of the comm
(common) utility, which will read two files and report the
lines of text that are common to both and the lines that are
unique to each. These are set operations where the common
lines are the intersection of the two files and the unique
lines are the difference. If you are familiar with databases,

you might also consider these as types of join operations.

You will learn how to:

Manually iterate the lines of a filehandle using
Iterator::next

match on combinations of possibilities using a tuple

Use std::cmp::Ordering when comparing strings

How comm Works

To show you what will be expected of your program, I’ll
start by reviewing part of the manual page for the BSD comm
to see how the tool works:

COMM(1) BSD General Commands Manual
COMM(1)

NAME
 comm -- select or reject lines common to two files

SYNOPSIS
 comm [-123i] file1 file2

DESCRIPTION
 The comm utility reads file1 and file2, which should
be sorted lexically,
 and produces three text columns as output: lines only
in file1; lines
 only in file2; and lines in both files.

 The filename ''-'' means the standard input.

 The following options are available:

 -1 Suppress printing of column 1.

 -2 Suppress printing of column 2.

 -3 Suppress printing of column 3.

 -i Case insensitive comparison of lines.

 Each column will have a number of tab characters
prepended to it equal to
 the number of lower numbered columns that are being
printed. For exam-
 ple, if column number two is being suppressed, lines
printed in column
 number one will not have any tabs preceding them, and
lines printed in
 column number three will have one.

 The comm utility assumes that the files are lexically
sorted; all charac-
 ters participate in line comparisons.

The GNU version has some additional options but lacks a case-
insensitive option:

$ comm --help
Usage: comm [OPTION]... FILE1 FILE2
Compare sorted files FILE1 and FILE2 line by line.

When FILE1 or FILE2 (not both) is -, read standard input.

With no options, produce three-column output. Column one
contains
lines unique to FILE1, column two contains lines unique to
FILE2,
and column three contains lines common to both files.

 -1 suppress column 1 (lines unique to FILE1)
 -2 suppress column 2 (lines unique to FILE2)
 -3 suppress column 3 (lines that appear in
both files)

 --check-order check that the input is correctly
sorted, even
 if all input lines are pairable
 --nocheck-order do not check that the input is
correctly sorted
 --output-delimiter=STR separate columns with STR
 --total output a summary
 -z, --zero-terminated line delimiter is NUL, not
newline
 --help display this help and exit
 --version output version information and exit

Note, comparisons honor the rules specified by
'LC_COLLATE'.

Examples:
 comm -12 file1 file2 Print only lines present in both
file1 and file2.
 comm -3 file1 file2 Print lines in file1 not in file2,
and vice versa.

At this point, you may be wondering exactly why you’d use
this. Suppose you have a file containing a list of cities
where your favorite band played on their last tour:

$ cd 10_commr/tests/inputs/
$ cat cities1.txt
Jackson
Denton
Cincinnati
Boston

Santa Fe
Tucson

Another file lists the cities on their current tour:

$ cat cities2.txt
San Francisco
Denver
Ypsilanti
Denton
Cincinnati
Boston

You can use comm to find which cities occur in both sets by
suppressing columns 1 (the lines unique to the first file)
and 2 (the lines unique to the second file) and only showing
column 3 (the lines common to both files). This is like an
inner join in SQL, where only data that occurs in both inputs
is shown. Note that both files need to be sorted first:

$ comm -12 <(sort cities1.txt) <(sort cities2.txt)
Boston
Cincinnati
Denton

If you wanted the cities the band played only on the first
tour, you could suppress columns 2 and 3:

$ comm -23 <(sort cities1.txt) <(sort cities2.txt)
Jackson
Santa Fe
Tucson

Finally, if you wanted the cities they played only on the
second tour, you could suppress columns 1 and 3:

$ comm -13 <(sort cities1.txt) <(sort cities2.txt)
Denver

San Francisco
Ypsilanti

The first or second file can be STDIN, as denoted by a
filename consisting of a dash (-):

$ sort cities2.txt | comm -12 <(sort cities1.txt) -
Boston
Cincinnati
Denton

As with the GNU comm, only one of the inputs may be a dash
with the challenge program. Note that BSD comm can perform
case-insensitive comparisons when the -i flag is present.
For instance, I can put the first tour cities in lowercase:

$ cat cities1_lower.txt
jackson
denton
cincinnati
boston
santa fe
tucson

and the second tour cities in uppercase:

$ cat cities2_upper.txt
SAN FRANCISCO
DENVER
YPSILANTI
DENTON
CINCINNATI
BOSTON

Then I can use the -i flag to find the cities in common:

$ comm -i -12 <(sort cities1_lower.txt) <(sort
cities2_upper.txt)
boston

cincinnati
denton

NOTE

I know the tour cities example is a trivial one, so I’ll give
you another example drawn from my experience in bioinformatics,
which is the intersection of computer science and biology. Given
a file of protein sequences, I can run an analysis that will
group similar sequences into clusters. I can then use comm to
compare the clustered proteins to the original list and find the
proteins that failed to cluster. There may be something unique to
these unclustered proteins that bears further analysis.

This is as much as the challenge program is expected to
implement. One change from the BSD version is that I use the
GNU version’s optional output column delimiter that defaults
to a tab character, which is the normal output from comm.

Getting Started

The program in this chapter will be called commr (pronounced
comm-er, which is basically how the British pronounce the
word comma) for a Rust version of comm. I suggest you use
cargo new commr to start, then add the following
dependencies to your Cargo.toml file:

[dependencies]
clap = "2.33"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

Copy my 10_commr/tests directory into your project, and then
run cargo test to run the tests, which should all fail.

Defining the Arguments

No surprises here, but I suggest the following for your
src/main.rs:

fn main() {
 if let Err(e) = commr::get_args().and_then(commr::run)
{
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

You can start src/lib.rs with the following code:

use clap::{App, Arg};
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug)]
pub struct Config {
 file1: String,
 file2: String,
 show_col1: bool,
 show_col2: bool,
 show_col3: bool,
 insensitive: bool,
 delimiter: String,
}

The first input filename is a String.

The second input filename is a String.

A Boolean for whether or not to show the first column of
output.

A Boolean for whether or not to show the second column of
output.

A Boolean for whether or not to show the third column of
output.

A Boolean for whether or not to perform case-insensitive
comparisons.

The output column delimiter, which will default to a tab.

NOTE

Normally I give my Config fields the same names as the arguments,
but I don’t like the negative suppress verb, preferring instead
the positive show. I feel this leads to more readable code, as I
will demonstrate later.

You can fill in the missing parts of the following code to
begin your get_args function:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("commr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust comm")
 // What goes here?
 .get_matches();

 Ok(Config {
 file1: ...
 file2: ...
 show_col1: ...
 show_col2: ...
 show_col3: ...

 insensitive: ...
 delimiter: ...
 })
}

Start your run function by printing the config:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:#?}", config);
 Ok(())
}

Your program should be able to produce the following usage:

$ cargo run -- -h
commr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust comm

USAGE:
 commr [FLAGS] [OPTIONS] <FILE1> <FILE2>

FLAGS:
 -h, --help Prints help information
 -i Case-insensitive comparison of lines
 -1 Suppress printing of column 1
 -2 Suppress printing of column 2
 -3 Suppress printing of column 3
 -V, --version Prints version information

OPTIONS:
 -d, --output-delimiter <DELIM> Output delimiter
[default:]

ARGS:
 <FILE1> Input file 1
 <FILE2> Input file 2

If you run your program with no arguments, it should fail
with a message that the two file arguments are required:

$ cargo run
error: The following required arguments were not provided:
 <FILE1>
 <FILE2>

USAGE:
 commr <FILE1> <FILE2> --output-delimiter <DELIM>

For more information try --help

If you supply two positional arguments, you should get the
following output:

$ cargo run -- tests/inputs/file1.txt
tests/inputs/file2.txt
Config {
 file1: "tests/inputs/file1.txt",
 file2: "tests/inputs/file2.txt",
 show_col1: true,
 show_col2: true,
 show_col3: true,
 insensitive: false,
 delimiter: "\t",
}

The two positional arguments are parsed into file1 and
file2.

All the rest of the values use defaults, which are true
for the Booleans and the tab character for the output
delimiter.

Verify that you can set all the other arguments as well:

$ cargo run -- tests/inputs/file1.txt
tests/inputs/file2.txt -123 -d , -i
Config {
 file1: "tests/inputs/file1.txt",
 file2: "tests/inputs/file2.txt",
 show_col1: false,

 show_col2: false,
 show_col3: false,
 insensitive: true,
 delimiter: ",",
}

The -123 sets each of the show values to false.

The -i sets insensitive to true.

The -d option sets the output delimiter to a comma (,).

NOTE

Stop reading and make your program match the preceding output.

Following is how I defined the arguments in my get_args. I
don’t have much to comment on here since it’s so similar to
previous programs:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("commr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust comm")
 .arg(
 Arg::with_name("file1")
 .value_name("FILE1")
 .help("Input file 1")
 .takes_value(true)
 .required(true),
)
 .arg(
 Arg::with_name("file2")
 .value_name("FILE2")
 .help("Input file 2")
 .takes_value(true)
 .required(true),
)

 .arg(
 Arg::with_name("suppress_col1")
 .short("1")
 .takes_value(false)
 .help("Suppress printing of column 1"),
)
 .arg(
 Arg::with_name("suppress_col2")
 .short("2")
 .takes_value(false)
 .help("Suppress printing of column 2"),
)
 .arg(
 Arg::with_name("suppress_col3")
 .short("3")
 .takes_value(false)
 .help("Suppress printing of column 3"),
)
 .arg(
 Arg::with_name("insensitive")
 .short("i")
 .takes_value(false)
 .help("Case-insensitive comparison of
lines"),
)
 .arg(
 Arg::with_name("delimiter")
 .short("d")
 .long("output-delimiter")
 .value_name("DELIM")
 .help("Output delimiter")
 .default_value("\t")
 .takes_value(true),
)
 .get_matches();

 Ok(Config {
 file1:
matches.value_of("file1").unwrap().to_string(),
 file2:
matches.value_of("file2").unwrap().to_string(),
 show_col1: !matches.is_present("suppress_col1"),
 show_col2: !matches.is_present("suppress_col2"),
 show_col3: !matches.is_present("suppress_col3"),
 insensitive: matches.is_present("insensitive"),

 delimiter:
matches.value_of("delimiter").unwrap().to_string(),
 })
}

Validating and Opening the Input Files

The next step is checking and opening the input files. I
suggest a modification to the open function used in several
previous chapters:

fn open(filename: &str) -> MyResult<Box<dyn BufRead>> {
 match filename {
 "-" => Ok(Box::new(BufReader::new(io::stdin()))),
 _ => Ok(Box::new(BufReader::new(
 File::open(filename)
 .map_err(|e| format!("{}: {}", filename,
e))?,
))),
 }
}

Incorporate the filename into the error message.

This will require you to expand your imports with the

following:

use std::{
 error::Error,
 fs::File,
 io::{self, BufRead, BufReader},
};

As noted earlier, only one of the inputs is allowed to be a
dash, for STDIN. You can use the following code for your
run that will check the filenames and then open the files:

pub fn run(config: Config) -> MyResult<()> {
 let file1 = &config.file1;

 let file2 = &config.file2;

 if file1 == "-" && file2 == "-" {
 return Err(From::from("Both input files cannot be
STDIN (\"-\")"));
 }

 let _file1 = open(file1)?;
 let _file2 = open(file2)?;
 println!("Opened {} and {}", file1, file2);

 Ok(())
}

Check that both of the filenames are not a dash (-).

Attempt to open the two input files.

Print a message so you know what happened.

Your program should reject two STDIN arguments:

$ cargo run -- - -
Both input files cannot be STDIN ("-")

It should be able to print the following for two good input
files:

$ cargo run -- tests/inputs/file1.txt
tests/inputs/file2.txt
Opened tests/inputs/file1.txt and tests/inputs/file2.txt

It should reject a bad file for either argument, such as the
nonexistent blargh:

$ cargo run -- tests/inputs/file1.txt blargh
blargh: No such file or directory (os error 2)

At this point, your program should pass all the tests for
cargo test dies that check for missing or bad input
arguments:

running 4 tests
test dies_both_stdin ... ok
test dies_no_args ... ok
test dies_bad_file1 ... ok
test dies_bad_file2 ... ok

Processing the Files

Your program can now validate all the arguments and open the
input files, either of which may be STDIN. Next, you need to
iterate over the lines from each file to compare them. The
files in 10_commr/tests/inputs that are used in the tests
are:

empty.txt: an empty file

blank.txt: a file with one blank line

file1.txt: a file with four lines of text

file2.txt: a file with two lines of text

You may use BufRead::lines to read files as it is not
necessary to preserve line endings. Start simply, perhaps
using the empty.txt file and file1.txt. Try to get your
program to reproduce the following output from comm:

$ cd tests/inputs/
$ comm file1.txt empty.txt
a
b
c
d

https://oreil.ly/KhmCp

Then reverse the argument order and ensure that you get the
same output, but now in column 2, like this:

$ comm empty.txt file1.txt
 a
 b
 c
 d

Next, look at the output from the BSD version of comm using
file1.txt and file2.txt. The order of the lines shown in the
following command is the expected output for the challenge
program:

$ comm file1.txt file2.txt
 B
a
b
 c
d

The GNU comm uses a different ordering for which lines to
show first when they are not equal. Note that the line B is
shown after b:

$ comm file1.txt file2.txt
a
b
 B
 c
d

Next, consider how you will handle the blank.txt file that
contains a single blank line. In the following output, notice
that the blank line is shown first, then the two lines from
file2.txt:

$ comm tests/inputs/blank.txt tests/inputs/file2.txt

 B
 c

I suggest you start by trying to read a line from each file.
The documentation for BufRead::lines notes that it will
return a None when it reaches the end of the file. Starting
with the empty file as one of the arguments will force you to
deal with having an uneven number of lines, where you will
have to advance one of the filehandles while the other stays
the same. Then, when you use two nonempty files, you’ll have
to consider how to read the files until you have matching
lines and move them independently otherwise.

NOTE

Stop here and finish your program using the test suite to guide
you. I’ll see you on the flip side after you’ve written your
solution.

Solution

As always, I’ll stress that the only requirement for your
code is to pass the test suite. I doubt you will have written
the same code as I did, but that’s what I find so fun and
creative about coding. In my solution, I decided to create
iterators to retrieve the lines from the filehandles. These
iterators incorporate a closure to handle case-insensitive
comparisons:

pub fn run(config: Config) -> MyResult<()> {
 let file1 = &config.file1;
 let file2 = &config.file2;

 if file1 == "-" && file2 == "-" {
 return Err(From::from("Both input files cannot be
STDIN (\"-\")"));

 }

 let case = |line: String| {
 if config.insensitive {
 line.to_lowercase()
 } else {
 line
 }
 };

 let mut lines1 =
open(file1)?.lines().filter_map(Result::ok).map(case);
 let mut lines2 =
open(file2)?.lines().filter_map(Result::ok).map(case);

 let line1 = lines1.next();
 let line2 = lines2.next();
 println!("line1 = {:?}", line1);
 println!("line2 = {:?}", line2);

 Ok(())
}

Create a closure to lowercase each line of text when
config.insensitive is true.

Open the files, create iterators that remove errors, and
then map the lines through the case closure.

The Iterator::next method advances an iterator and
returns the next value. Here, it will retrieve the first
line from a filehandle.

Print the first two values.

https://oreil.ly/7yJEJ

NOTE

In the preceding code, I used the function Result::ok rather
than writing a closure |line| line.ok(). They both accomplish
the same thing, but the first is shorter.

As I suggested, I’ll start with one of the files being
empty. Moving to the root directory of the chapter, I ran the
program with the following input files:

$ cd ../..
$ cargo run -- tests/inputs/file1.txt
tests/inputs/empty.txt
line1 = Some("a")
line2 = None

That led me to think about how I can move through the lines
of each iterator based on the four different combinations of
Some(line) and None that I can get from two iterators. In
the following code, I place the possibilities inside a tuple,
which is a finite heterogeneous sequence surrounded by
parentheses:

 let mut line1 = lines1.next();
 let mut line2 = lines2.next();

 while line1.is_some() || line2.is_some() {
 match (&line1, &line2) {
 (Some(_), Some(_)) => {
 line1 = lines1.next();
 line2 = lines2.next();
 }
 (Some(_), None) => {
 line1 = lines1.next();
 }
 (None, Some(_)) => {
 line2 = lines2.next();
 }
 _ => (),

https://oreil.ly/Cmywl

 };
 }

Make the line variables mutable.

Execute the loop as long as one of the filehandles
produces a line.

Compare all possible combinations of the two line
variables for two variants.

When both are Some values, use Iterator::next to
retrieve the next line from both filehandles.

When there is only the first value, ask for the next line
from the first filehandle.

Do the same for the second filehandle.

Do nothing for any other condition.

When I have only one value from the first or second file, I
should print the value in the first or second column,
respectively. When I have two values from the files and they
are the same, I should print a value in column 3. When I have
two values and the first value is less than the second, I
should print the first value in column 1; otherwise, I should
print the second value in column 2. To understand this last
point, consider the following two input files, which I’ll
place side by side so you can imagine how the code will read
the lines:

$ cat tests/inputs/file1.txt $ cat
tests/inputs/file2.txt
a B
b c

c
d

To help you see the output from BSD comm, I will pipe the
output into sed (stream editor) to replace each tab
character (\t) with the string ---> to make it clear which
columns are being printed:

$ comm tests/inputs/file1.txt tests/inputs/file2.txt | sed
"s/\t/--->/g"
--->B
a
b
--->--->c
d

The sed command s// will substitute values, replacing
the string between the first pair of slashes with the
string between the second pair. The final g is the global
flag to substitute every occurrence.

Now imagine your code reads the first line from each input
and has a from file1.txt and B from file2.txt. They are not
equal, so the question is which to print. The goal is to
mimic BSD comm, so I know that the B should come first and
be printed in the second column. When I compare a and B, I
find that B is less than a when they are ordered by their
code point, or numerical value. To help you see this, I’ve
included a program in util/ascii that will show you a range
of the ASCII table starting at the first printable character.
Note that B has a value of 66 while a is 97:

 33: ! 52: 4 71: G 90: Z 109: m
 34: " 53: 5 72: H 91: [110: n
 35: # 54: 6 73: I 92: \ 111: o
 36: $ 55: 7 74: J 93:] 112: p
 37: % 56: 8 75: K 94: ^ 113: q

 38: & 57: 9 76: L 95: _ 114: r
 39: ' 58: : 77: M 96: ` 115: s
 40: (59: ; 78: N 97: a 116: t
 41:) 60: < 79: O 98: b 117: u
 42: * 61: = 80: P 99: c 118: v
 43: + 62: > 81: Q 100: d 119: w
 44: , 63: ? 82: R 101: e 120: x
 45: - 64: @ 83: S 102: f 121: y
 46: . 65: A 84: T 103: g 122: z
 47: / 66: B 85: U 104: h 123: {
 48: 0 67: C 86: V 105: i 124: |
 49: 1 68: D 87: W 106: j 125: }
 50: 2 69: E 88: X 107: k 126: ~
 51: 3 70: F 89: Y 108: l 127: DEL

To mimic BSD comm, I should print the lower value (B) first
and draw another value from that file for the next iteration;
the GNU version does the opposite. In the following code,
I’m concerned only with the ordering, and I’ll handle the
indentation in a moment. Note that you should add use
std::cmp::Ordering::* to your imports for this code:

 let mut line1 = lines1.next();
 let mut line2 = lines2.next();

 while line1.is_some() || line2.is_some() {
 match (&line1, &line2) {
 (Some(val1), Some(val2)) => match
val1.cmp(val2) {
 Equal => {
 println!("{}", val1);
 line1 = lines1.next();
 line2 = lines2.next();
 }
 Less => {
 println!("{}", val1);
 line1 = lines1.next();
 }
 Greater => {
 println!("{}", val2);
 line2 = lines2.next();
 }

 },
 (Some(val1), None) => {
 println!("{}", val1);
 line1 = lines1.next();
 }
 (None, Some(val2)) => {
 println!("{}", val2);
 line2 = lines2.next();
 }
 _ => (),
 }
 }

Use Ord::cmp to compare the first value to the second.
This will return a variant from std::cmp::Ordering.

When the two values are equal, print the first and get
values from each of the files.

When the value from the first file is less than the value
from the second file, print the first and request the next
value from the first file.

When the first value is greater than the second, print the
value from the second file and request the next value from
the second file.

When there is a value only from the first file, print it
and continue requesting values from the first file.

When there is a value only from the second file, print it
and continue requesting values from the second file.

If I run this code using a nonempty file and an empty file,
it works:

$ cargo run -- tests/inputs/file1.txt
tests/inputs/empty.txt

https://oreil.ly/cTw3P
https://oreil.ly/ytvJ9

a
b
c
d

If I use file1.txt and file2.txt, it’s not far from the
expected output:

$ cargo run -- tests/inputs/file1.txt
tests/inputs/file2.txt
B
a
b
c
d

I decided to create an enum called Column to represent in
which column I should print a value. Each variant holds a
&str, which requires a lifetime annotation. You can place
the following at the top of src/lib.rs, near your Config
declaration. Be sure to add use crate::Column::* to your
import so you can reference Col1 instead of Column::Col1:

enum Column<'a> {
 Col1(&'a str),
 Col2(&'a str),
 Col3(&'a str),
}

Next, I created a closure called print to handle the
printing of the output. The following code belongs in the
run function:

 let print = |col: Column| {
 let mut columns = vec![];
 match col {
 Col1(val) => {
 if config.show_col1 {
 columns.push(val);

 }
 }
 Col2(val) => {
 if config.show_col2 {
 if config.show_col1 {
 columns.push("");
 }
 columns.push(val);
 }
 }
 Col3(val) => {
 if config.show_col3 {
 if config.show_col1 {
 columns.push("");
 }
 if config.show_col2 {
 columns.push("");
 }
 columns.push(val);
 }
 }
 };

 if !columns.is_empty() {
 println!("{}",
columns.join(&config.delimiter));
 }
 };

Create a mutable vector to hold the output columns.

Given text for column 1, add the value only if the column
is shown.

Given text for column 2, add the values for the two
columns only if they are shown.

Given text for column 3, add the values for the three
columns only if they are shown.

If there are columns to print, join them on the output
delimiter.

TIP

Originally I used the field suppress_col1, which had me writing
if !config.suppress_col1, a double negative that is much harder
to comprehend. In general, I would recommend using positive names
like do_something rather than dont_do_something.

Here is how I incorporate the print closure:

 let mut line1 = lines1.next();
 let mut line2 = lines2.next();

 while line1.is_some() || line2.is_some() {
 match (&line1, &line2) {
 (Some(val1), Some(val2)) => match
val1.cmp(val2) {
 Equal => {
 print(Col3(val1));
 line1 = lines1.next();
 line2 = lines2.next();
 }
 Less => {
 print(Col1(val1));
 line1 = lines1.next();
 }
 Greater => {
 print(Col2(val2));
 line2 = lines2.next();
 }
 },
 (Some(val1), None) => {
 print(Col1(val1));
 line1 = lines1.next();
 }
 (None, Some(val2)) => {
 print(Col2(val2));
 line2 = lines2.next();

 }
 _ => (),
 }
 }

Draw the initial values from the two input files.

When the values are the same, print one of them in column
3.

When the first value is less than the second, print the
first value in column 1.

When the first value is greater than the second, print the
second value in col umn 2.

When there is a value only from the first file, print it
in column 1.

When there is a value only from the second file, print it
in column 2.

I like having the option to change the output delimiter from
a tab to something more visible:

$ cargo run -- -d="--->" tests/inputs/file1.txt
tests/inputs/file2.txt
--->B
a
b
--->--->c
d

With these changes, all the tests pass.

Going Further

The version I presented mimics the BSD version of comm.
Alter the program to match the GNU output, and also add the
additional options from that version. Be sure you update the
test suite and test files to verify that your program works
exactly like the GNU version.

Change the column suppression flags to selection flags, so
-12 would mean show the first two columns only. Without any
column selections, all the columns should be shown. This is
similar to how the wcr program works, where the default is
to show all the columns for lines, words, and characters, and
the selection of any of those columns suppresses those not
selected. Update the tests to verify that your program works
correctly.

As I noted in the chapter introduction, comm performs basic
join operations on two files, which is similar to the join
program. Run man join to read the manual page for that
program, and use your experience from writing commr to write
a Rust version. I would suggest the ingenious name joinr.
Generate input files, and then use join to create the output
files you can use to verify that your version maintains
fidelity to the original tool.

Summary

Until I wrote my own version of the utility, I had to look at
the manual page every time I used comm, to remember what the
flags meant. I also imagined it to be a very complicated
program, but I find the solution quite simple and elegant.
Consider what you learned:

You can choose when to advance any iterator by using
Iterator::next. For instance, when used with a
filehandle, you can manually select the next line.

You can use match on combinations of possibilities by
grouping them into a tuple.

You can use the cmp method of the Ord trait to
compare one value to another. The result is a variant
of std::cmp::Ordering.

You can create an enum called Column where the
variants can hold a &str value as long as you include
lifetime annotations.

In the next chapter, you’ll learn how to move to a line or
byte position in a file.

Chapter 11. Tailor Swyfte

From the embryonic whale to the monkey with no tail

— They Might Be Giants, “Mammal” (1992)

The challenge in this chapter will be to write a version of
tail, which is the converse of head from Chapter 4. The

program will show you the last bytes or lines of one or more
files or STDIN, usually defaulting to the last 10 lines.
Again the program will have to deal with bad input and will
possibly mangle Unicode characters. Due to some limitations

with how Rust currently handles STDIN, the challenge program
will read only regular files.

In this chapter, you will learn how to do the following:

Initialize a static, global, computed value

Seek to a line or byte position in a filehandle

Indicate multiple trait bounds on a type using the
where clause

Build a release binary with Cargo

Benchmark programs to compare runtime performance

How tail Works

To demonstrate how the challenge program should work, I’ll
first show you a portion of the manual page for the BSD
tail. Note that the challenge program will only implement
some of these features:

TAIL(1) BSD General Commands Manual
TAIL(1)

NAME
 tail -- display the last part of a file

SYNOPSIS
 tail [-F | -f | -r] [-q] [-b number | -c number | -n
number] [file ...]

DESCRIPTION
 The tail utility displays the contents of file or, by
default, its stan-
 dard input, to the standard output.

 The display begins at a byte, line or 512-byte block
location in the
 input. Numbers having a leading plus ('+') sign are
relative to the
 beginning of the input, for example, ''-c +2'' starts
the display at the
 second byte of the input. Numbers having a leading
minus ('-') sign or
 no explicit sign are relative to the end of the input,
for example,
 ''-n2'' displays the last two lines of the input. The
default starting
 location is ''-n 10'', or the last 10 lines of the
input.

The BSD version has many options, but these are the only ones
relevant to the challenge program:

 -c number
 The location is number bytes.

 -n number
 The location is number lines.

 -q Suppresses printing of headers when multiple
files are being
 examined.

 If more than a single file is specified, each file is

preceded by a
 header consisting of the string ''==> XXX <=='' where
XXX is the name of
 the file unless -q flag is specified.

Here’s part of the manual page for GNU tail, which includes
long option names:

TAIL(1) User Commands
TAIL(1)

NAME
 tail - output the last part of files

SYNOPSIS
 tail [OPTION]... [FILE]...

DESCRIPTION
 Print the last 10 lines of each FILE to standard
output. With more
 than one FILE, precede each with a header giving the
file name. With
 no FILE, or when FILE is -, read standard input.

 Mandatory arguments to long options are mandatory
for short options
 too.

 -c, --bytes=K
 output the last K bytes; or use -c +K to output
bytes starting
 with the Kth of each file

 -n, --lines=K
 output the last K lines, instead of the last 10;
or use -n +K to
 output starting with the Kth

I’ll use files in the book’s 11_tailr/tests/inputs
directory to demonstrate the features of tail that the
challenge will implement. As in previous chapters, there are

examples with Windows line endings that must be preserved in
the output. The files I’ll use are:

empty.txt: an empty file

one.txt: a file with one line of UTF-8 Unicode text

two.txt: a file with two lines of ASCII text

three.txt: a file with three lines of ASCII text and
CRLF line terminators

ten.txt: a file with 10 lines of ASCII text

Change into the chapter’s directory:

$ cd 11_tailr

By default, tail will show the last 10 lines of a file,
which you can see with tests/inputs/ten.txt:

$ tail tests/inputs/ten.txt
one
two
three
four
five
six
seven
eight
nine
ten

Run it with -n 4 to see the last four lines:

$ tail -n 4 tests/inputs/ten.txt
seven
eight
nine
ten

Use -c 8 to select the last eight bytes of the file. In the
following output, there are six byte-sized characters and two
byte-sized newline characters, for a total of eight bytes.
Pipe the output to cat -e to display the dollar sign ($) at
the end of each line:

$ tail -c 8 tests/inputs/ten.txt | cat -e
ine$
ten$

With multiple input files, tail will print separators
between each file. Any errors opening files (such as for
nonexistent or unreadable files) will be noted to STDERR
without any file headers. For instance, blargh represents a
nonexistent file in the following command:

$ tail -n 1 tests/inputs/one.txt blargh
tests/inputs/three.txt
==> tests/inputs/one.txt <==
Öne line, four wordś.
tail: blargh: No such file or directory

==> tests/inputs/three.txt <==
four words.

The -q flag will suppress the file headers:

$ tail -q -n 1 tests/inputs/*.txt
Öne line, four wordś.
ten
four words.
Four words.

The end of tests/inputs/one.txt has a funky Unicode ś thrown
in for good measure, which is a multibyte Unicode character.
If you request the last four bytes of the file, two will be
for ś, one for the period, and one for the final newline:

$ tail -c 4 tests/inputs/one.txt
ś.

If you ask for only three, the ś will be split, and you
should see the Unicode unknown character:

$ tail -c 3 tests/inputs/one.txt
�.

Requesting more lines or bytes than a file contains is not an
error and will cause tail to print the entire file:

$ tail -n 1000 tests/inputs/one.txt
Öne line, four wordś.
$ tail -c 1000 tests/inputs/one.txt
Öne line, four wordś.

As noted in the manual pages, -n or -c values may begin with
a plus sign to indicate a line or byte position from the
beginning of the file rather than the end. A start position
beyond the end of the file is not an error, and tail will
print nothing, which you can see if you run tail -n +1000
tests/inputs/one.txt. In the following command, I use -n
+8 to start printing from line 8:

$ tail -n +8 tests/inputs/ten.txt
eight
nine
ten

It’s possible to split multibyte characters with byte
selection. For example, the tests / inputs/one.txt file starts
with the Unicode character Ö, which is two bytes long. In the
following command, I use -c +2 to start printing from the
second byte, which will split the multibyte character,
resulting in the unknown character:

$ tail -c +2 tests/inputs/one.txt
�ne line, four wordś.

To start printing from the second character, I must use -c
+3 to start printing from the third byte:

$ tail -c +3 tests/inputs/one.txt
ne line, four wordś.

Both the BSD and GNU versions will accept 0 and -0 for -n or
-c. The GNU version will show no output at all, while the
BSD version will show no output when run with a single file

but will still show the file headers when there are multiple
input files. The following behavior of BSD is expected of the
challenge program:

$ tail -n 0 tests/inputs/*
==> tests/inputs/empty.txt <==

==> tests/inputs/one.txt <==

==> tests/inputs/ten.txt <==

==> tests/inputs/three.txt <==

==> tests/inputs/two.txt <==

Both versions interpret the value +0 as starting at the
zeroth line or byte, so the whole file will be shown:

$ tail -n +0 tests/inputs/one.txt
Öne line, four wordś.
$ tail -c +0 tests/inputs/one.txt
Öne line, four wordś.

Both versions will reject any value for -n or -c that cannot
be parsed as an integer:

$ tail -c foo tests/inputs/one.txt
tail: illegal offset -- foo

While tail has several more features, this is as much as
your program needs to implement.

Getting Started

The challenge program will be called tailr (pronounced tay-
ler). I recommend you begin with cargo new tailr and then
add the following dependencies to Cargo.toml:

[dependencies]
clap = "2.33"
num = "0.4"
regex = "1"
once_cell = "1"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

The once_cell crate will be used to create a computed
static value.

Copy the book’s 11_tailr/tests directory into your project,
and then run cargo test to download the needed crates,
build your program, and ensure that you fail all the tests.

Defining the Arguments

Use the same structure for src/main.rs as in the previous
chapters:

fn main() {
 if let Err(e) = tailr::get_args().and_then(tailr::run)

https://oreil.ly/MO87l

{
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

The challenge program should have similar options as headr,
but this program will need to handle both positive and
negative values for the number of lines or bytes. In headr,
I used the usize type, which is an unsigned integer that can
represent only positive values. In this program, I will use
i64, the 64-bit signed integer type, to also store negative
numbers. Additionally, I need some way to differentiate
between 0, which means nothing should be selected, and +0,
which means everything should be selected. I decided to
create an enum called TakeValue to represent this, but you
may choose a different way. You can start src/lib.rs with the
following if you want to follow my lead:

use crate::TakeValue::*;
use clap::{App, Arg};
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug, PartialEq)]
enum TakeValue {
 PlusZero,
 TakeNum(i64),
}

This will allow the code to use PlusZero instead of
TakeValue::PlusZero.

The PartialEq is needed by the tests to compare values.

This variant represents an argument of +0.

https://oreil.ly/7grA6

This variant represents a valid integer value.

Here is the Config I suggest you create to represent the
program’s arguments:

#[derive(Debug)]
pub struct Config {
 files: Vec<String>,
 lines: TakeValue,
 bytes: Option<TakeValue>,
 quiet: bool,
}

files is a vector of strings.

lines is a TakeValue that should default to
TakeNum(-10) to indicate the last 10 lines.

bytes is an optional TakeValue for how many bytes to
select.

The quiet flag is a Boolean for whether or not to
suppress the headers between multiple files.

Following is a skeleton for get_args you can fill in:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("tailr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust tail")
 // What goes here?
 .get_matches();

 Ok(Config {
 files: ...
 lines: ...
 bytes: ...

 quiet: ...
 })
}

I suggest you start your run function by printing the
config:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:#?}", config);
 Ok(())
}

First, get your program to print the following usage:

$ cargo run -- -h
tailr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust tail

USAGE:
 tailr [FLAGS] [OPTIONS] <FILE>...

FLAGS:
 -h, --help Prints help information
 -q, --quiet Suppress headers
 -V, --version Prints version information

OPTIONS:
 -c, --bytes <BYTES> Number of bytes
 -n, --lines <LINES> Number of lines [default: 10]

ARGS:
 <FILE>... Input file(s)

If you run the program with no arguments, it should fail with
an error that at least one file argument is required because
this program will not read STDIN by default:

$ cargo run
error: The following required arguments were not provided:
 <FILE>...

USAGE:
 tailr <FILE>... --lines <LINES>

For more information try --help

Run the program with a file argument and see if you can get
this output:

$ cargo run -- tests/inputs/one.txt
Config {
 files: [
 "tests/inputs/one.txt",
],
 lines: TakeNum(
 -10,
),
 bytes: None,
 quiet: false,
}

The positional arguments belong in files.

The lines argument should default to TakeNum(-10) to
take the last 10 lines.

The bytes argument should default to None.

The quiet option should default to false.

Run the program with multiple file arguments and the -c
option to ensure you get the following output:

$ cargo run -- -q -c 4 tests/inputs/*.txt
Config {
 files: [
 "tests/inputs/empty.txt",
 "tests/inputs/one.txt",
 "tests/inputs/ten.txt",

 "tests/inputs/three.txt",
 "tests/inputs/two.txt",
],
 lines: TakeNum(
 -10,
),
 bytes: Some(
 TakeNum(
 -4,
),
),
 quiet: true,
}

The positional arguments are parsed as files.

The lines argument is still set to the default.

Now bytes is set to Some(TakeNum(-4)) to indicate the
last four bytes should be taken.

The -q flag causes the quiet option to be true.

You probably noticed that the value 4 was parsed as a
negative number even though it was provided as a positive

value. The numeric values for lines and bytes should be
negative to indicate that the program will take values from
the end of the file. A plus sign is required to indicate that
the starting position is from the beginning of the file:

$ cargo run -- -n +5 tests/inputs/ten.txt
Config {
 files: [
 "tests/inputs/ten.txt",
],
 lines: TakeNum(
 5,
),
 bytes: None,

 quiet: false,
}

The +5 argument indicates the program should start
printing on the fifth line.

The value is recorded as a positive integer.

Both -n and -c are allowed to have a value of 0, which will
mean that no lines or bytes will be shown:

$ cargo run -- tests/inputs/empty.txt -c 0
Config {
 files: [
 "tests/inputs/empty.txt",
],
 lines: TakeNum(
 -10,
),
 bytes: Some(
 TakeNum(
 0,
),
),
 quiet: false,
}

As with the original versions, the value +0 indicates that
the starting point is the beginning of the file, so all the
content will be shown:

$ cargo run -- tests/inputs/empty.txt -n +0
Config {
 files: [
 "tests/inputs/empty.txt",
],
 lines: PlusZero,
 bytes: None,
 quiet: false,
}

The PlusZero variant represents +0.

Any noninteger value for -n and -c should be rejected:

$ cargo run -- tests/inputs/empty.txt -n foo
illegal line count -- foo
$ cargo run -- tests/inputs/empty.txt -c bar
illegal byte count -- bar

The challenge program should consider -n and -c mutually
exclusive:

$ cargo run -- tests/inputs/empty.txt -n 1 -c 1
error: The argument '--lines <LINES>' cannot be used with
'--bytes <BYTES>'

NOTE

Stop here and implement this much of the program. If you need
some guidance on validating the numeric arguments for bytes and
lines, I’ll discuss that in the next section.

Parsing Positive and Negative Numeric

Arguments

In Chapter 4, the challenge program validated the numeric
arguments using the parse_positive_int function to reject
any values that were not positive integers. This program
needs to accept any integer value, and it also needs to
handle an optional + or - sign. Here is the start of the
function parse_num I’d like you to write that will accept

a &str and will return a TakeValue or an error:

fn parse_num(val: &str) -> MyResult<TakeValue> {
 unimplemented!();

}

Add the following unit test to a tests module in your
src/lib.rs:

#[cfg(test)]
mod tests {
 use super::{parse_num, TakeValue::*};

 #[test]
 fn test_parse_num() {
 // All integers should be interpreted as negative
numbers
 let res = parse_num("3");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(-3));

 // A leading "+" should result in a positive number
 let res = parse_num("+3");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(3));

 // An explicit "-" value should result in a
negative number
 let res = parse_num("-3");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(-3));

 // Zero is zero
 let res = parse_num("0");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(0));

 // Plus zero is special
 let res = parse_num("+0");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), PlusZero);

 // Test boundaries
 let res = parse_num(&i64::MAX.to_string());
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(i64::MIN + 1));

 let res = parse_num(&(i64::MIN + 1).to_string());

 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(i64::MIN + 1));

 let res = parse_num(&format!("+{}", i64::MAX));
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(i64::MAX));

 let res = parse_num(&i64::MIN.to_string());
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), TakeNum(i64::MIN));

 // A floating-point value is invalid
 let res = parse_num("3.14");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "3.14");

 // Any noninteger string is invalid
 let res = parse_num("foo");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "foo");
 }
}

NOTE

I suggest that you stop reading and take some time to write this
function. Do not proceed until it passes cargo test
test_parse_num. In the next section, I’ll share my solution.

Using a Regular Expression to Match an

Integer with an Optional Sign

Following is one version of the parse_num function that
passes the tests. Here I chose to use a regular expression to
see if the input value matches an expected pattern of text.
If you want to include this version in your program, be sure
to add use regex::Regex:

fn parse_num(val: &str) -> MyResult<TakeValue> {
 let num_re = Regex::new(r"^([+-])?(\d+)$").unwrap();

 match num_re.captures(val) {
 Some(caps) => {
 let sign = caps.get(1).map_or("-", |m|
m.as_str());
 let num = format!("{}{}", sign,
caps.get(2).unwrap().as_str());
 if let Ok(val) = num.parse() {
 if sign == "+" && val == 0 {
 Ok(PlusZero)
 } else {
 Ok(TakeNum(val))
 }
 } else {
 Err(From::from(val))
 }
 }
 _ => Err(From::from(val)),
 }
}

Create a regex to find an optional leading + or - sign
followed by one or more numbers.

If the regex matches, the optional sign will be the first
capture. Assume the minus sign if there is no match.

The digits of the number will be in the second capture.
Format the sign and digits into a string.

Attempt to parse the number as an i64, which Rust infers
from the function’s return type.

Check if the sign is a plus and the parsed value is 0.

If so, return the PlusZero variant.

Otherwise, return the parsed value.

Return the unparsable number as an error.

Return an invalid argument as an error.

Regular expression syntax can be daunting to the uninitiated.
Figure 11-1 shows each element of the pattern used in the
preceding function.

Figure 11-1. This is a regular expression that will match a
positive or negative integer.

You’ve seen much of this syntax in previous programs.
Here’s a review of all the parts of this regex:

The ^ indicates the beginning of a string. Without
this, the pattern could match anywhere inside the
string.

Parentheses group and capture values, making them
available through Regex::captures.

Square brackets ([]) create a character class that
will match any of the contained values. A dash (-)
inside a character class can be used to denote a

https://oreil.ly/O6frw

range, such as [0-9] to indicate all the characters
from 0 to 9. To indicate a literal dash, it should
occur last.

A ? makes the preceding pattern optional.

The \d is shorthand for the character class [0-9]
and so matches any digit. The + suffix indicates one
or more of the preceding pattern.

The $ indicates the end of the string. Without this,
the regular expression would match even when
additional characters follow a successful match.

I’d like to make one small change. The first line of the
preceding function creates a regular expression by parsing
the pattern each time the function is called:

fn parse_num(val: &str) -> MyResult<TakeValue> {
 let num_re = Regex::new(r"^([+-])?(\d+)$").unwrap();
 ...
}

I’d like my program to do the work of compiling the regex
just once. You’ve seen in earlier tests how I’ve used
const to create a constant value. It’s common to use

ALL_CAPS to name global constants and to place them near
the top of the crate, like so:

// This will not compile
const NUM_RE: Regex = Regex::new(r"^([+-])?
(\d+)$").unwrap();

If I try to run the test again, I get the following error
telling me that I cannot use a computed value for a constant:

error[E0015]: calls in constants are limited to constant
functions, tuple

1

structs and tuple variants
 --> src/lib.rs:10:23
 |
10 | const NUM_RE: Regex = Regex::new(r"^([+-])?
(\d+)$").unwrap();
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Enter once_cell, which provides a mechanism for creating
lazily evaluated statics. To use this, you must first add the
dependency to Cargo.toml, which I included at the start of
this chapter. To create a lazily evaluated regular expression
just one time in my program, I add the following to the top
of src/lib.rs:

use once_cell::sync::OnceCell;

static NUM_RE: OnceCell<Regex> = OnceCell::new();

The only change to the parse_num function is to initialize
NUM_RE the first time the function is called:

fn parse_num(val: &str) -> MyResult<TakeValue> {
 let num_re =
 NUM_RE.get_or_init(|| Regex::new(r"^([+-])?
(\d+)$").unwrap());
 // Same as before
}

It is not a requirement that you use a regular expression to
parse the numeric arguments. Here’s a method that relies
only on Rust’s internal parsing capabilities:

fn parse_num(val: &str) -> MyResult<TakeValue> {
 let signs: &[char] = &['+', '-'];
 let res = val
 .starts_with(signs)
 .then(|| val.parse())
 .unwrap_or_else(||
val.parse().map(i64::wrapping_neg));

 match res {
 Ok(num) => {
 if num == 0 && val.starts_with('+') {
 Ok(PlusZero)
 } else {
 Ok(TakeNum(num))
 }
 }
 _ => Err(From::from(val)),
 }
}

The type annotation is required because Rust infers the
type &[char; 2], which is a reference to an array, but I
want to coerce the value to a slice.

If the given value starts with a plus or minus sign, use
str::parse, which will use the sign to create a positive
or negative number, respectively.

Otherwise, parse the number and use i64::wrapping_neg
to compute the negative value; that is, a positive value
will be returned as negative, while a negative value will
remain negative.

If the result is a successfully parsed i64, check whether
to return PlusZero when the number is 0 and the given
value starts with a plus sign; otherwise, return the
parsed value.

Return the unparsable value as an error.

You may have found another way to figure this out, and
that’s the point with functions and testing. It doesn’t
much matter how a function is written as long as it passes
the tests. A function is a black box where something goes in

https://oreil.ly/H2gWn

and something comes out, and we write enough tests to
convince ourselves that the function works correctly.

NOTE

Now that you have a way to validate the numeric arguments, stop
and finish your get_args function.

Parsing and Validating the Command-Line

Arguments

Following is how I wrote my get_args function. First, I
declare all my arguments with clap:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("tailr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust tail")
 .arg(
 Arg::with_name("files")
 .value_name("FILE")
 .help("Input file(s)")
 .required(true)
 .multiple(true),
)
 .arg(
 Arg::with_name("lines")
 .short("n")
 .long("lines")
 .value_name("LINES")
 .help("Number of lines")
 .default_value("10"),
)
 .arg(
 Arg::with_name("bytes")
 .short("c")
 .long("bytes")
 .value_name("BYTES")
 .conflicts_with("lines")

 .help("Number of bytes"),
)
 .arg(
 Arg::with_name("quiet")
 .short("q")
 .long("quiet")
 .help("Suppress headers"),
)
 .get_matches();

The files argument is positional and requires at least
one value.

The lines argument has a default value of 10.

The bytes argument is optional and conflicts with lines.

The quiet flag is optional.

Then I validate lines and bytes and return the Config:

 let lines = matches
 .value_of("lines")
 .map(parse_num)
 .transpose()
 .map_err(|e| format!("illegal line count -- {}",
e))?;

 let bytes = matches
 .value_of("bytes")
 .map(parse_num)
 .transpose()
 .map_err(|e| format!("illegal byte count -- {}",
e))?;

 Ok(Config {
 files: matches.values_of_lossy("files").unwrap(),
 lines: lines.unwrap(),
 bytes,
 quiet: matches.is_present("quiet"),

 })
}

Attempt to parse lines as an integer, creating a useful
error message when invalid.

Do the same for bytes.

Return the Config.

At this point, the program passes all the tests included with
cargo test dies:

running 4 tests
test dies_no_args ... ok
test dies_bytes_and_lines ... ok
test dies_bad_lines ... ok
test dies_bad_bytes ... ok

Processing the Files

You can expand your run function to iterate the given files
and attempt to open them. Since the challenge does not
include reading STDIN, you only need to add use
std::fs::File for the following code:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match File::open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(_) => println!("Opened {}", filename),
 }
 }
 Ok(())
}

Run your program with both good and bad filenames to verify
this works. Additionally, your program should now pass cargo

test skips_bad_file. In the following command, blargh
represents a nonexistent file:

$ cargo run -- tests/inputs/one.txt blargh
Opened tests/inputs/one.txt
blargh: No such file or directory (os error 2)

Counting the Total Lines and Bytes in a File

Next, it’s time to figure out how to read a file from a

given byte or line location. For instance, the default case
is to print the last 10 lines of a file, so I need to know
how many lines are in the file to figure out which is the
tenth from the end. The same is true for bytes. I also need
to determine if the user has requested more lines or bytes
than the file contains. When this value is negative—meaning
the user wants to start beyond the beginning of the file—the
program should print the entire file. When this value is
positive—meaning the user wants to start beyond the end of
the file—the program should print nothing.

I decided to create a function called count_lines_bytes
that takes a filename and returns a tuple containing the
total number of lines and bytes in the file. Here is the
function’s signature:

fn count_lines_bytes(filename: &str) -> MyResult<(i64,
i64)> {
 unimplemented!()
}

If you want to create this function, modify your tests
module to add the following unit test:

#[cfg(test)]
mod tests {
 use super::{count_lines_bytes, parse_num,

TakeValue::*};

 #[test]
 fn test_parse_num() {} // Same as before

 #[test]
 fn test_count_lines_bytes() {
 let res =
count_lines_bytes("tests/inputs/one.txt");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), (1, 24));

 let res =
count_lines_bytes("tests/inputs/ten.txt");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), (10, 49));
 }

You can expand your run to temporarily print this
information:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match File::open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(_) => {
 let (total_lines, total_bytes) =
 count_lines_bytes(&filename)?;
 println!(
 "{} has {} lines and {} bytes",
 filename, total_lines, total_bytes
);
 }
 }
 }
 Ok(())
}

NOTE

I decided to pass the filename to the count_lines_bytes
function instead of the filehandle that is returned by
File::open because the filehandle will be consumed by the
function, making it unavailable for use in selecting the bytes or
lines.

Verify that it looks OK:

$ cargo run tests/inputs/one.txt tests/inputs/ten.txt
tests/inputs/one.txt has 1 lines and 24 bytes
tests/inputs/ten.txt has 10 lines and 49 bytes

Finding the Starting Line to Print

My next step was to write a function to print the lines of a
given file. Following is the signature of my print_lines
function. Be sure to add use std::io::BufRead for this:

fn print_lines(
 mut file: impl BufRead,
 num_lines: &TakeValue,
 total_lines: i64,
) -> MyResult<()> {
 unimplemented!();
}

The file argument should implement the BufRead trait.

The num_lines argument is a TakeValue describing the
number of lines to print.

The total_lines argument is the total number of lines
in this file.

I can find the starting line’s index using the number of
lines the user wants to print and the total number of lines
in the file. Since I will also need this logic to find the
starting byte position, I decided to write a function called
get_start_index that will return Some<u64> when there is
a valid starting position or None when there is not. A valid
starting position must be a positive number, so I decided to
return a u64. Additionally, the functions where I will use
the returned index also require this type:

fn get_start_index(take_val: &TakeValue, total: i64) ->
Option<u64> {
 unimplemented!();
}

Following is a unit test you can add to the tests module
that might help you see all the possibilities more clearly.
For instance, the function returns None when the given file
is empty or when trying to read from a line beyond the end of
the file. Be sure to add get_start_index to the list of
super imports:

#[test]
fn test_get_start_index() {
 // +0 from an empty file (0 lines/bytes) returns None
 assert_eq!(get_start_index(&PlusZero, 0), None);

 // +0 from a nonempty file returns an index that
 // is one less than the number of lines/bytes
 assert_eq!(get_start_index(&PlusZero, 1), Some(0));

 // Taking 0 lines/bytes returns None
 assert_eq!(get_start_index(&TakeNum(0), 1), None);

 // Taking any lines/bytes from an empty file returns
None
 assert_eq!(get_start_index(&TakeNum(1), 0), None);

 // Taking more lines/bytes than is available returns

None
 assert_eq!(get_start_index(&TakeNum(2), 1), None);

 // When starting line/byte is less than total
lines/bytes,
 // return one less than starting number
 assert_eq!(get_start_index(&TakeNum(1), 10), Some(0));
 assert_eq!(get_start_index(&TakeNum(2), 10), Some(1));
 assert_eq!(get_start_index(&TakeNum(3), 10), Some(2));

 // When starting line/byte is negative and less than
total,
 // return total - start
 assert_eq!(get_start_index(&TakeNum(-1), 10), Some(9));
 assert_eq!(get_start_index(&TakeNum(-2), 10), Some(8));
 assert_eq!(get_start_index(&TakeNum(-3), 10), Some(7));

 // When starting line/byte is negative and more than
total,
 // return 0 to print the whole file
 assert_eq!(get_start_index(&TakeNum(-20), 10),
Some(0));
}

Once you figure out the line index to start printing, use
this information in the print_lines function to iterate
the lines of the input file and print all the lines after the
starting index, if there is one.

Finding the Starting Byte to Print

I also wrote a function called print_bytes that works very
similarly to print_lines. For the following code, you will
need to expand your imports with the following:

use std::{
 error::Error,
 fs::File,
 io::{BufRead, Read, Seek},
};

The function’s signature indicates that the file argument
must implement the traits Read and Seek, the latter of
which is a word used in many programming languages for moving
what’s called a cursor or read head to a particular position
in a stream:

fn print_bytes<T: Read + Seek>(
 mut file: T,
 num_bytes: &TakeValue,
 total_bytes: i64,
) -> MyResult<()> {
 unimplemented!();
}

The generic type T has the trait bounds Read and Seek.

The file argument must implement the indicated traits.

The num_bytes argument is a TakeValue describing the
byte selection.

The total_bytes argument is the file size in bytes.

I can also write the generic types and bounds using a where
clause, which you might find more readable:

fn print_bytes<T>(
 mut file: T,
 num_bytes: &TakeValue,
 total_bytes: i64,
) -> MyResult<()>
where
 T: Read + Seek,
{
 unimplemented!();
}

https://oreil.ly/wDxvY
https://oreil.ly/vJD1W
https://oreil.ly/aM1vI

You can use the get_start_index function to find the
starting byte position from the beginning of the file, and
then move the cursor to that position. Remember that the
selected byte string may contain invalid UTF-8, so my
solution uses String::from_utf8_lossy when printing the
selected bytes.

Testing the Program with Large Input Files

I have included a program in the util/biggie directory of my
repository that will generate large input text files that you
can use to stress test your program. For instance, you can
use it to create a file with a million lines of random text
to use when selecting various ranges of lines and bytes. Here
is the usage for the biggie program:

$ cargo run -- --help
biggie 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Make big text files

USAGE:
 biggie [OPTIONS]

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

OPTIONS:
 -n, --lines <LINES> Number of lines [default:
100000]
 -o, --outfile <FILE> Output filename [default: out]

https://oreil.ly/Bs4Zl

NOTE

This should be enough hints for you to write a solution. There’s
no hurry to finish the program. Sometimes you need to step away
from a difficult problem for a day or more while your
subconscious mind works. Come back when your solution passes
cargo test.

Solution

I’ll walk you through how I arrived at a solution. My
solution will incorporate several dependencies, so this is
how my src/lib.rs starts:

use crate::TakeValue::*;
use clap::{App, Arg};
use once_cell::sync::OnceCell;
use regex::Regex;
use std::{
 error::Error,
 fs::File,
 io::{BufRead, BufReader, Read, Seek, SeekFrom},
};

type MyResult<T> = Result<T, Box<dyn Error>>;

static NUM_RE: OnceCell<Regex> = OnceCell::new();

I suggested writing several intermediate functions in the
first part of this chapter, so next I’ll show my versions
that pass the unit tests I provided.

Counting All the Lines and Bytes in a File

I will start by showing my count_lines_bytes function to
count all the lines and bytes in a file. In previous
programs, I have used BufRead::read_line, which writes

https://oreil.ly/aJFkc

into a String. In the following function, I use
BufRead::read_until to read raw bytes to avoid the cost
of creating strings, which I don’t need:

fn count_lines_bytes(filename: &str) -> MyResult<(i64,
i64)> {
 let mut file = BufReader::new(File::open(filename)?);

 let mut num_lines = 0;
 let mut num_bytes = 0;
 let mut buf = Vec::new();
 loop {
 let bytes_read = file.read_until(b'\n', &mut buf)?;

 if bytes_read == 0 {
 break;
 }
 num_lines += 1;
 num_bytes += bytes_read as i64;
 buf.clear();
 }
 Ok((num_lines, num_bytes))
}

Create a mutable filehandle to read the given filename.

Initialize counters for the number of lines and bytes as
well as a buffer for reading the lines.

Use BufRead::read_until to read bytes until a newline
byte. This function returns the number of bytes that were
read from the filehandle.

When no bytes were read, exit the loop.

Increment the line count.

Increment the byte count. Note that
BufRead::read_until returns a usize that must be cast

https://oreil.ly/7BJaH

to i64 to add the value to the num_bytes tally.

Clear the buffer before reading the next line.

Return a tuple containing the number of lines and bytes in
the file.

Finding the Start Index

To find the starting line or byte position, my program relies
on a get_start_index function that uses the desired
location and the total number of lines and bytes in the file:

fn get_start_index(take_val: &TakeValue, total: i64) ->
Option<u64> {
 match take_val {
 PlusZero => {
 if total > 0 {
 Some(0)
 } else {
 None
 }
 }
 TakeNum(num) => {
 if num == &0 || total == 0 || num > &total {
 None
 } else {
 let start = if num < &0 { total + num }
else { num - 1 };
 Some(if start < 0 { 0 } else { start as u64
})
 }
 }
 }
}

When the user wants to start at index 0, return 0 if the
file is not empty; otherwise, return None.

Return None if the user wants to select nothing, the file
is empty, or the user wants to select more data than is
available in the file.

If the desired number of lines or bytes is negative, add
it to the total; otherwise, subtract one from the desired
number to get the zero-based offset.

If the starting index is less than 0, return 0;
otherwise, return the starting index as a u64.

Printing the Lines

The following is my print_lines function, much of which is
similar to count_lines_bytes:

fn print_lines(
 mut file: impl BufRead,
 num_lines: &TakeValue,
 total_lines: i64,
) -> MyResult<()> {
 if let Some(start) = get_start_index(num_lines,
total_lines) {
 let mut line_num = 0;
 let mut buf = Vec::new();
 loop {
 let bytes_read = file.read_until(b'\n', &mut
buf)?;
 if bytes_read == 0 {
 break;
 }
 if line_num >= start {
 print!("{}",
String::from_utf8_lossy(&buf));
 }
 line_num += 1;
 buf.clear();
 }
 }

 Ok(())
}

Check if there is a valid starting position when trying to
read the given number of lines from the total number of
lines available.

Initialize variables for counting and reading lines from
the file.

Check if the given line is at or beyond the starting
point.

If so, convert the bytes to a string and print.

Here is how I can integrate this into my run function:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match File::open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 let (total_lines, _total_bytes) =
 count_lines_bytes(filename)?;
 let file = BufReader::new(file);
 print_lines(file, &config.lines,
total_lines)?;
 }
 }
 }
 Ok(())
}

Count the total lines and bytes in the current file.

Create a BufReader with the opened filehandle.

Print the requested number of lines.

A quick check shows this will select, for instance, the last
three lines:

$ cargo run -- -n 3 tests/inputs/ten.txt
eight
nine
ten

I can get the same output by staring on the eighth line:

$ cargo run -- -n +8 tests/inputs/ten.txt
eight
nine
ten

If I run cargo test at this point, I pass more than two-
thirds of the tests.

Printing the Bytes

Next, I will show my print_bytes function:

fn print_bytes<T: Read + Seek>(
 mut file: T,
 num_bytes: &TakeValue,
 total_bytes: i64,
) -> MyResult<()> {
 if let Some(start) = get_start_index(num_bytes,
total_bytes) {
 file.seek(SeekFrom::Start(start))?;
 let mut buffer = Vec::new();
 file.read_to_end(&mut buffer)?;
 if !buffer.is_empty() {
 print!("{}", String::from_utf8_lossy(&buffer));

 }
 }

 Ok(())
}

See if there is a valid starting byte position.

Use Seek::seek to move to the desired byte position as
defined by SeekFrom::Start.

Create a mutable buffer for reading the bytes.

Read from the byte position to the end of the file and
place the results into the buffer.

If the buffer is not empty, convert the selected bytes to
a String and print.

Here’s how I integrated this into the run function:

pub fn run(config: Config) -> MyResult<()> {
 for filename in config.files {
 match File::open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 let (total_lines, total_bytes) =
 count_lines_bytes(filename)?;
 let file = BufReader::new(file);
 if let Some(num_bytes) = &config.bytes {
 print_bytes(file, num_bytes,
total_bytes)?;
 } else {
 print_lines(file, &config.lines,
total_lines)?;
 }
 }
 }
 }
 Ok(())
}

Check if the user has requested a byte selection.

If so, print the selected bytes.

https://oreil.ly/ki8DT
https://oreil.ly/Bi8Bp

Otherwise, print the line selection.

A quick check with cargo test shows I’m inching ever

closer to passing all my tests. All the failing tests start
with multiple, and they are failing because my program is not
printing the headers separating the output from each file.
I’ll modify the code from Chapter 4 for this. Here is my
final run function that will pass all the tests:

pub fn run(config: Config) -> MyResult<()> {
 let num_files = config.files.len();
 for (file_num, filename) in
config.files.iter().enumerate() {
 match File::open(&filename) {
 Err(err) => eprintln!("{}: {}", filename, err),
 Ok(file) => {
 if !config.quiet && num_files > 1 {
 println!(
 "{}==> {} <==",
 if file_num > 0 { "\n" } else { ""
},
 filename
);
 }

 let (total_lines, total_bytes) =
 count_lines_bytes(filename)?;
 let file = BufReader::new(file);
 if let Some(num_bytes) = &config.bytes {
 print_bytes(file, num_bytes,
total_bytes)?;
 } else {
 print_lines(file, &config.lines,
total_lines)?;
 }
 }
 }
 }
 Ok(())
}

Find the number of files.

Use Iterator::enumerate to iterate through the index
positions and filenames.

If the config quiet option is false and there are
multiple files, print the header.

Benchmarking the Solution

How does the tailr program compare to tail for the subset
of features it shares? I suggested earlier that you could use
the biggie program to create large input files to test your
program. I created a file called 1M.txt that has one million
lines of randomly generated text to use in testing my
program. I can use the time command to see how long it takes
for tail to find the last 10 lines of the 1M.txt file:

$ time tail 1M.txt > /dev/null

real 0m0.022s
user 0m0.006s
sys 0m0.015s

I don’t want to see the output from the command, so I
redirect it to /dev/null, a special system device that
ignores its input.

The real time is wall clock time, measuring how long the
process took from start to finish.

The user time is how long the CPU spent in user mode
outside the kernel.

2

The sys time is how long the CPU spent working inside the
kernel.

I want to build the fastest version of tailr possible to
compare to tail, so I’ll use cargo build --release to
create a release build. The binary will be created at target
/ release/tailr. This build of the program appears to be much
slower than tail:

$ time target/release/tailr 1M.txt > /dev/null

real 0m0.564s
user 0m0.071s
sys 0m0.030s

This is the start of a process called benchmarking, where I
try to compare how well different programs work. Running one
iteration and eyeballing the output is not very scientific or
effective. Luckily, there is a Rust crate called hyperfine
that can do this much better. After installing it with cargo
install hyperfine, I can run benchmarks and find that my
Rust program is about 10 times slower than the system tail
when printing the last 10 lines from the 1M.txt file:

$ hyperfine -i -L prg tail,target/release/tailr '{prg}
1M.txt > /dev/null'
Benchmark #1: tail 1M.txt > /dev/null
 Time (mean ± σ): 9.0 ms ± 0.7 ms [User: 3.7
ms, System: 4.1 ms]
 Range (min … max): 7.6 ms … 12.6 ms 146 runs

Benchmark #2: target/release/tailr 1M.txt > /dev/null
 Time (mean ± σ): 85.3 ms ± 0.8 ms [User: 68.1
ms, System: 14.2 ms]
 Range (min … max): 83.4 ms … 86.6 ms 32 runs

Summary
 'tail 1M.txt > /dev/null' ran

https://oreil.ly/A9BMw
https://oreil.ly/ICXBY

 9.46 ± 0.79 times faster than 'target/release/tailr
1M.txt > /dev/null'

If I request the last 100K lines, however, the Rust version
is about 80 times faster than tail:

$ hyperfine -i -L prg tail,target/release/tailr '{prg} -n
100000 1M.txt
 > /dev/null'
Benchmark #1: tail -n 100000 1M.txt > /dev/null
 Time (mean ± σ): 10.338 s ± 0.052 s [User: 5.643
s, System: 4.685 s]
 Range (min … max): 10.245 s … 10.424 s 10 runs

Benchmark #2: target/release/tailr -n 100000 1M.txt >
/dev/null
 Time (mean ± σ): 129.1 ms ± 3.8 ms [User: 98.8
ms, System: 26.6 ms]
 Range (min … max): 127.0 ms … 144.2 ms 19 runs

Summary
 'target/release/tailr -n 100000 1M.txt > /dev/null' ran
 80.07 ± 2.37 times faster than 'tail -n 100000 1M.txt >
/dev/null'

If I change the command to {prg} -c 100 1M.txt to print
the last 100 bytes, the Rust version is around 9 times
slower:

Summary
 'tail -c 100 1M.txt > /dev/null' ran
 8.73 ± 2.49 times faster than 'target/release/tailr -c
100 1M.txt
 > /dev/null'

If I request the last million bytes, however, the Rust
version is a little faster:

Summary
 'target/release/tailr -c 1000000 1M.txt > /dev/null' ran

 1.12 ± 0.05 times faster than 'tail -c 1000000 1M.txt >
/dev/null'

To improve the performance, the next step would probably be
profiling the code to find where Rust is using most of the
time and memory. Program optimization is a fascinating and
deep topic well beyond the scope of this book.

Going Further

See how many of the BSD and GNU options you can implement,
including the size suffixes and reading STDIN. One of the
more challenging options is to follow the files. When I’m
developing web applications, I often use tail -f to watch
the access and error logs of a web server to see requests and
responses as they happen. I suggest you search crates.io for
“tail” to see how others have implemented these ideas.

Summary

Reflect upon your progress in this chapter:

You learned how to create a regular expression as a
static, global variable using the once_cell crate.

You learned how to seek a line or byte position in a
filehandle.

You saw how to indicate multiple trait bounds like
<T: Read + Seek> and also how to write this using
where.

You learned how to make Cargo build a release binary.

You used hyperfine to benchmark programs.

https://oreil.ly/Lo6rG

In the next chapter, you will learn how to use and control
pseudorandom number generators to make random selections.

1 The range here means all the characters between those two
code points. Refer to the output from the ascii program in
Chapter 10 to see that the contiguous values from 0 to 9 are
all numbers. Contrast this with the values from A to z where
various punctuation characters fall in the middle, which is why
you will often see the range [A-Za-z] to select ASCII alphabet
characters.

2 I used macOS 11.6 running on a MacBook Pro M1 with 8 cores
and 8 GB RAM for all the benchmarking tests.

Chapter 12. Fortunate Son

Now I laugh and make a fortune / Off the same ones that I

tortured

— They Might Be Giants, “Kiss Me, Son of
God” (1988)

In this chapter, you will create a Rust version of the
fortune program that will print a randomly selected
aphorism or bit of trivia or interesting ASCII art from a
database of text files. The program gets its name from a
fortune cookie, a crisp cookie that contains a small piece of

paper printed with a short bit of text that might be a
fortune like “You will take a trip soon” or that might be a
short joke or saying. When I was first learning to use a Unix
terminal in my undergraduate days, a successful login would
often include the output from fortune.

You will learn how to do the following:

Use the Path and PathBuf structs to represent
system paths

Parse records of text spanning multiple lines from a
file

Use randomness and control it with seeds

Use the OsStr and OsString types to represent
filenames

How fortune Works

1

2

I will start by describing how fortune works so you will
have an idea of what your version will need to do. You may
first need to install the program, as it is not often
present by default on most systems. Here’s a bit of the
manual page, which you can read with man fortune:

NAME
 fortune - print a random, hopefully interesting,
adage

SYNOPSIS
 fortune [-acefilosuw] [-n length] [-m pattern]
[[n%] file/dir/all]

DESCRIPTION
 When fortune is run with no arguments it prints
out a random epigram.
 Epigrams are divided into several categories, where
each category is
 sub-divided into those which are potentially
offensive and those which
 are not.

The original program has many options, but the challenge

program will be concerned only with the following:

 -m pattern
 Print out all fortunes which match the basic
regular expression
 pattern. The syntax of these expressions
depends on how your
 system defines re_comp(3) or regcomp(3), but it
should neverthe-
 less be similar to the syntax used in grep(1).

 The fortunes are output to standard output,
while the names of
 the file from which each fortune comes are printed
to standard
 error. Either or both can be redirected; if
standard output is
 redirected to a file, the result is a valid

3

fortunes database
 file. If standard error is also redirected to
this file, the
 result is still valid, but there will be
''bogus'' fortunes,
 i.e. the filenames themselves, in parentheses.
This can be use-
 ful if you wish to remove the gathered matches
from their origi-
 nal files, since each filename-record will
precede the records
 from the file it names.

 -i Ignore case for -m patterns.

When the fortune program is run with no arguments, it will
randomly choose and print some text:

$ fortune
Laughter is the closest distance between two people.
 -- Victor Borge

Whence does this text originate? The manual page notes that
you can supply one or more files or directories of the text
sources. If no files are given, then the program will read
from some default location. On my laptop, this is what the
manual page says:

FILES
 Note: these are the defaults as defined at compile
time.

/opt/homebrew/Cellar/fortune/9708/share/games/fortunes
 Directory for inoffensive fortunes.

/opt/homebrew/Cellar/fortune/9708/share/games/fortunes/off
 Directory for offensive fortunes.

I created a few representative files in the
12_fortuner/tests/inputs directory for testing purposes,

along with an empty directory:

$ cd 12_fortuner
$ ls tests/inputs/
ascii-art empty/ jokes literature quotes

Use head to look at the structure of a file. A fortune
record can span multiple lines and is terminated with a
percent sign (%) on a line by itself:

$ head -n 9 tests/inputs/jokes
Q. What do you call a head of lettuce in a shirt and tie?
A. Collared greens.
%
Q: Why did the gardener quit his job?
A: His celery wasn't high enough.
%
Q. Why did the honeydew couple get married in a church?
A. Their parents told them they cantaloupe.
%

You can tell fortune to read a particular file like
tests/inputs/ascii-art, but first you will need to use the
program strfile to create index files for randomly
selecting the text records. I have provided a bash script
called mk-dat.sh in the 12_fortuner directory that will index
the files in the tests/inputs directory. After running this
program, each input file should have a companion file ending
in .dat:

$ ls -1 tests/inputs/
ascii-art
ascii-art.dat
empty/
jokes
jokes.dat
literature
literature.dat

https://oreil.ly/jYa5O

quotes
quotes.dat

Now you should be able to run the following command to, for
instance, randomly select a bit of ASCII art. You may or may
not see a cute frog:

$ fortune tests/inputs/ascii-art
 .--._.--.
 (O O)
 / . . \
 .`._______.'.
 /()\
 _/ \ \ / / _
 .~ ` \ \ / / ' ~.
 { -. \ V / .- }
_ _`. \ | | | / .'_ _
>_ _} | | | {_ _<
 /. - ~ ,_-' .^. `-_, ~ - .\
 '-'|/ \|`-`

You can also supply the tests/inputs directory to tell
fortune to select a record from any of the files therein:

$ fortune tests/inputs
A classic is something that everyone wants to have read
and nobody wants to read.
 -- Mark Twain, "The Disappearance of
Literature"

If a provided path does not exist, fortune will immediately
halt with an error. Here I’ll use blargh for a nonexistent
file:

$ fortune tests/inputs/jokes blargh tests/inputs/ascii-art
blargh: No such file or directory

Oddly, if the input source exists but is not readable, one
version of fortune will complain that the file does not

exist and produces no further output:

$ touch hammer && chmod 000 hammer
$ fortune hammer
hammer: No such file or directory

Another version explains that the file is not readable and
informs the user that no fortunes were available for
choosing:

$ fortune hammer
/home/u20/kyclark/hammer: Permission denied
No fortunes found

Using the -m option, I can search for all the text records
matching a given string. The output will include a header
printed to STDERR listing the filename that contains the
records followed by the records printed to STDOUT. For
instance, here are all the quotes by Yogi Berra:

$ fortune -m 'Yogi Berra' tests/inputs/
(quotes)
%
It's like deja vu all over again.
-- Yogi Berra
%
You can observe a lot just by watching.
-- Yogi Berra
%

If I search for Mark Twain and redirect both STDERR and
STDOUT to files, I find that quotes of his are found in the
literature and quotes files. Note that the headers printed to
STDERR include only the basename of the file, like
literature, and not the full path, like
tests/inputs/literature:

$ fortune -m 'Mark Twain' tests/inputs/ 1>out 2>err
$ cat err
(literature)
%
(quotes)
%

Searching is case-sensitive by default, so searching for
lowercase yogi berra will return no results. I must use the
-i flag to perform case-insensitive matching:

$ fortune -i -m 'yogi berra' tests/inputs/
(quotes)
%
It's like deja vu all over again.
-- Yogi Berra
%
You can observe a lot just by watching.
-- Yogi Berra
%

While fortune can do a few more things, this is the extent
that the challenge program will re-create.

Getting Started

The challenge program for this chapter will be called
fortuner (pronounced for-chu-ner) for a Rust version of
fortune. You should begin with cargo new fortuner, and
then add the following dependencies to your Cargo.toml:

[dependencies]
clap = "2.33"
rand = "0.8"
walkdir = "2"
regex = "1"

[dev-dependencies]

assert_cmd = "2"
predicates = "2"

Copy the book’s 12_fortuner/tests directory into your
project. Run cargo test to build the program and run the
tests, all of which should fail.

Defining the Arguments

Update your src/main.rs to the following:

fn main() {
 if let Err(e) =
fortuner::get_args().and_then(fortuner::run) {
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

Start your src/lib.rs with the following code to define the
program’s arguments:

use clap::{App, Arg};
use std::error::Error;
use regex::{Regex, RegexBuilder};

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug)]
pub struct Config {
 sources: Vec<String>,
 pattern: Option<Regex>,
 seed: Option<u64>,
}

The sources argument is a list of files or directories.

The pattern to filter fortunes is an optional regular
expression.

The seed is an optional u64 value to control random
selections.

NOTE

As in Chapter 9, I use the -i|--insensitive flag with
RegexBuilder, so you’ll note that my Config does not have a
place for this flag.

SEEDING RANDOM NUMBER GENERATORS

The challenge program will randomly choose some text to
show, but computers don’t usually make completely random
choices. As Robert R. Coveyou stated, “Random number
generation is too important to be left to chance.” The
challenge program will use a pseudorandom number
generator (PRNG) that will always make the same selection
following from some starting value, often called a seed.
That is, for any given seed, the same “random” choices
will follow. This makes it possible to test pseudorandom
programs because we can use a known seed to verify that
it produces some expected output. I’ll be using the rand
crate to create a PRNG, optionally using the
config.seed value when present. When no seed is
present, then the program will make a different
pseudorandom choice based on some other random input and
so will appear to actually be random. For more
information, consult “The Rust Rand Book”.

You can start your get_args with the following:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("fortuner")

4

https://oreil.ly/OWYOT
https://oreil.ly/J7gRz

 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust fortune")
 // What goes here?
 .get_matches();

 Ok(Config {
 sources: ...,
 seed: ...,
 pattern: ...,
 })
}

I suggest you start your run by printing the config:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:#?}", config);
 Ok(())
}

Your program should be able to print a usage statement like
the following:

$ cargo run -- -h
fortuner 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust fortune

USAGE:
 fortuner [FLAGS] [OPTIONS] <FILE>...

FLAGS:
 -h, --help Prints help information
 -i, --insensitive Case-insensitive pattern matching
 -V, --version Prints version information

OPTIONS:
 -m, --pattern <PATTERN> Pattern
 -s, --seed <SEED> Random seed

ARGS:
 <FILE>... Input files or directories

Unlike the original fortune, the challenge program will
require one or more input files or directories. When run with
no arguments, it should halt and print the usage:

$ cargo run
error: The following required arguments were not provided:
 <FILE>...

USAGE:
 fortuner [FLAGS] [OPTIONS] <FILE>...

Verify that the arguments are parsed correctly:

$ cargo run -- ./tests/inputs -m 'Yogi Berra' -s 1
Config {
 sources: [
 "./tests/inputs",
],
 pattern: Some(
 Yogi Berra,
),
 seed: Some(
 1,
),
}

Positional arguments should be interpreted as sources.

The -m option should be parsed as a regular expression
for the pattern.

The -s option should be parsed as a u64, if present.

An invalid regular expression should be rejected at this
point. As noted in Chapter 9, for instance, a lone asterisk
is not a valid regex:

$ cargo run -- ./tests/inputs -m "*"
Invalid --pattern "*"

Likewise, any value for the --seed that cannot be parsed as
a u64 should also be rejected:

$ cargo run -- ./tests/inputs -s blargh
"blargh" not a valid integer

This means you will once again need some way to parse and
validate a command-line argument as an integer. You’ve
written functions like this in several previous chapters, but
parse_positive_int from Chapter 4 is probably most

similar to what you need. In this case, however, 0 is an
acceptable value. You might start with this:

fn parse_u64(val: &str) -> MyResult<u64> {
 unimplemented!();
}

Add the following unit test to src/lib.rs:

#[cfg(test)]
mod tests {
 use super::parse_u64;

 #[test]
 fn test_parse_u64() {
 let res = parse_u64("a");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "\"a\" not
a valid integer");

 let res = parse_u64("0");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 0);

 let res = parse_u64("4");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 4);

 }
}

NOTE

Stop here and get your code working to this point. Be sure your
program can pass cargo test parse_u64.

Here is how I wrote the parse_u64 function:

fn parse_u64(val: &str) -> MyResult<u64> {
 val.parse()
 .map_err(|_| format!("\"{}\" not a valid integer",
val).into())
}

Parse the value as a u64, which Rust infers from the
return type.

In the event of an error, create a useful error message
using the given value.

Following is how I define the arguments in my get_args:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("fortuner")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust fortune")
 .arg(
 Arg::with_name("sources")
 .value_name("FILE")
 .multiple(true)
 .required(true)
 .help("Input files or directories"),
)
 .arg(
 Arg::with_name("pattern")

 .value_name("PATTERN")
 .short("m")
 .long("pattern")
 .help("Pattern"),
)
 .arg(
 Arg::with_name("insensitive")
 .short("i")
 .long("insensitive")
 .help("Case-insensitive pattern matching")
 .takes_value(false),
)
 .arg(
 Arg::with_name("seed")
 .value_name("SEED")
 .short("s")
 .long("seed")
 .help("Random seed"),
)
 .get_matches();

I use the --insensitive flag with regex::RegexBuilder
to create a regular expression that might be case-insensitive
before returning the Config:

 let pattern = matches
 .value_of("pattern")
 .map(|val| {
 RegexBuilder::new(val)

.case_insensitive(matches.is_present("insensitive"))
 .build()
 .map_err(|_| format!("Invalid --pattern \"
{}\"", val))
 })
 .transpose()?;

ArgMatches::value_of will return Option<&str>.

Use Option::map to handle Some(val).

https://oreil.ly/ks2Qg
https://oreil.ly/JaDYG

Call RegexBuilder::new with the given value.

The RegexBuilder::case_insensitive method will cause
the regex to disregard case in comparisons when the
insensitive flag is present.

The RegexBuilder::build method will compile the regex.

If build returns an error, use Result::map_err to
create an error message stating that the given pattern is
invalid.

The result of Option::map will be an Option<Result>,
and Option:: trans pose will turn this into a
Result<Option>. Use ? to fail on an invalid regex.

Finally, I return the Config:

 Ok(Config {
 sources:
matches.values_of_lossy("sources").unwrap(),
 seed:
matches.value_of("seed").map(parse_u64).transpose()?,
 pattern,
 })
}

There should be at least one value in sources, so it is
safe to call Option::unwrap.

Attempt to parse the seed value as a u64. Transpose the
result and use ? to bail on a bad input.

Finding the Input Sources

https://oreil.ly/P3fXc
https://oreil.ly/3BqDT
https://oreil.ly/4izCX
https://oreil.ly/QCi0s

You are free to write your solution however you see fit so
long as it passes the integration tests. This is a rather
complicated program, so I’m going to break it into many
small, testable functions to help you arrive at a solution.
If you want to follow my lead, then the next order of
business is finding the input files from the given sources,
which might be filenames or directories. When a source is a
directory, all the files in the directory will be used. To
read the fortune files, the fortune program requires the
*.dat files created by strfile. These are binary files that
contain data for randomly accessing the records. The
challenge program will not use these and so should skip them,
if present. If you ran the mk-dat.sh program, you can either
remove the *.dat files from tests/inputs or include logic in
your program to skip them.

I decided to write a function to find all the files in a list
of paths provided by the user. While I could return the files
as strings, I want to introduce you to a couple of useful
structs Rust has for representing paths. The first is Path,
which, according to the documentation, “supports a number of
operations for inspecting a path, including breaking the path
into its components (separated by / on Unix and by either /
or \ on Windows), extracting the file name, determining
whether the path is absolute, and so on.” That sounds really
useful, so you might think my function should return the
results as Path objects, but the documentation notes: “This

is an unsized type, meaning that it must always be used
behind a pointer like & or Box. For an owned version of this
type, see PathBuf.”

This leads us to PathBuf, the second useful module for
representing paths. Just as String is an owned, modifiable
version of &str, PathBuf is an owned, modifiable version
of Path. Returning a Path from my function would lead to

https://oreil.ly/H9eW4
https://oreil.ly/Mth0r

compiler errors, as my code would be trying to reference
dropped values, but there will be no such problem returning a
PathBuf. You are not required to use either of these
structs, but they will make your program portable across
operating systems and will save you a lot of work that’s
been done to parse paths correctly. Following is the
signature of my find_files function, which you are welcome
to use. Be sure to add use std::path::PathBuf to your
imports:

fn find_files(paths: &[String]) -> MyResult<Vec<PathBuf>> {
 unimplemented!();
}

Here is a unit test called test_find_files that you can
add to your tests module:

#[cfg(test)]
mod tests {
 use super::{find_files, parse_u64};

 #[test]
 fn test_parse_u64() {} // Same as before

 #[test]
 fn test_find_files() {
 // Verify that the function finds a file known to
exist
 let res = find_files(&
["./tests/inputs/jokes".to_string()]);
 assert!(res.is_ok());

 let files = res.unwrap();
 assert_eq!(files.len(), 1);
 assert_eq!(
 files.get(0).unwrap().to_string_lossy(),
 "./tests/inputs/jokes"
);

 // Fails to find a bad file

 let res = find_files(&
["/path/does/not/exist".to_string()]);
 assert!(res.is_err());

 // Finds all the input files, excludes ".dat"
 let res = find_files(&
["./tests/inputs".to_string()]);
 assert!(res.is_ok());

 // Check number and order of files
 let files = res.unwrap();
 assert_eq!(files.len(), 5);
 let first =
files.get(0).unwrap().display().to_string();
 assert!(first.contains("ascii-art"));
 let last =
files.last().unwrap().display().to_string();
 assert!(last.contains("quotes"));

 // Test for multiple sources, path must be unique
and sorted
 let res = find_files(&[
 "./tests/inputs/jokes".to_string(),
 "./tests/inputs/ascii-art".to_string(),
 "./tests/inputs/jokes".to_string(),
]);
 assert!(res.is_ok());
 let files = res.unwrap();
 assert_eq!(files.len(), 2);
 if let Some(filename) =
files.first().unwrap().file_name() {
 assert_eq!(filename.to_string_lossy(), "ascii-
art".to_string())
 }
 if let Some(filename) =
files.last().unwrap().file_name() {
 assert_eq!(filename.to_string_lossy(),
"jokes".to_string())
 }
 }
}

Add find_files to the imports.

The tests/inputs/empty directory contains the empty,
hidden file .gitkeep so that Git will track this
directory. If you choose to ignore empty files, you can
change the expected number of files from five to four.

Note that the find_files function must return the paths in
sorted order. Different operating systems will return the
files in different orders, which will lead to the fortunes
being in different orders, leading to difficulties in
testing. You will nip the problem in the bud if you return
the files in a consistent, sorted order. Furthermore, the
returned paths should be unique, and you can use a
combination of Vec::sort and Vec::dedup for this.

NOTE

Stop reading and write the function that will satisfy cargo test
find_files.

Next, update your run function to print the found files:

pub fn run(config: Config) -> MyResult<()> {
 let files = find_files(&config.sources)?;
 println!("{:#?}", files);
 Ok(())
}

When given a list of existing, readable files, it should
print them in order:

$ cargo run tests/inputs/jokes tests/inputs/ascii-art
[
 "tests/inputs/ascii-art",
 "tests/inputs/jokes",
]

https://oreil.ly/ua40G
https://oreil.ly/7FvsZ

Test your program to see if it will find the files (that
don’t end with .dat) in the tests / inputs directory:

$ cargo run tests/inputs/
[
 "tests/inputs/ascii-art",
 "tests/inputs/empty/.gitkeep",
 "tests/inputs/jokes",
 "tests/inputs/literature",
 "tests/inputs/quotes",
]

Previous challenge programs in this book would note
unreadable or nonexistent files and move on, but fortune
dies immediately when given even one file it can’t use. Be
sure your program does the same if you provide an invalid
file, such as the nonexistent blargh:

$ cargo run tests/inputs/jokes blargh tests/inputs/ascii-
art
blargh: No such file or directory (os error 2)

Note that my version of find_files tries only to find files
and does not try to open them, which means an unreadable file
does not trigger a failure at this point:

$ touch hammer && chmod 000 hammer
$ cargo run -- hammer
[
 "hammer",
]

Reading the Fortune Files

Once you have found the input files, the next step is to read
the records of text from them. I wrote a function that
accepts the list of found files and possibly returns a list
of the contained fortunes. When the program is run with the

-m option to find all the matching fortunes for a given
pattern, I will need both the fortune text and the source
filename, so I decided to create a struct called Fortune to
contain these. If you want to use this idea, add the
following to src/lib.rs, perhaps just after the Config
struct:

#[derive(Debug)]
struct Fortune {
 source: String,
 text: String,
}

The source is the filename containing the record.

The text is the contents of the record up to but not
including the terminating percent sign (%).

My read_fortunes function accepts a list of input paths
and possibly returns a vector of Fortune structs. In the
event of a problem such as an unreadable file, the function
will return an error. If you would like to write this
function, here is the signature you can use:

fn read_fortunes(paths: &[PathBuf]) ->
MyResult<Vec<Fortune>> {
 unimplemented!();
}

Following is a test_read_fortunes unit test you can add
to the tests module:

#[cfg(test)]
mod tests {
 use super::{find_files, parse_u64, read_fortunes,
Fortune};
 use std::path::PathBuf;

 #[test]
 fn test_parse_u64() {} // Same as before

 #[test]
 fn test_find_files() {} // Same as before

 #[test]
 fn test_read_fortunes() {
 // One input file
 let res = read_fortunes(&
[PathBuf::from("./tests/inputs/jokes")]);
 assert!(res.is_ok());

 if let Ok(fortunes) = res {
 // Correct number and sorting
 assert_eq!(fortunes.len(), 6);
 assert_eq!(
 fortunes.first().unwrap().text,
 "Q. What do you call a head of lettuce in a
shirt and tie?\n\
 A. Collared greens."
);
 assert_eq!(
 fortunes.last().unwrap().text,
 "Q: What do you call a deer wearing an eye
patch?\n\
 A: A bad idea (bad-eye deer)."
);
 }

 // Multiple input files
 let res = read_fortunes(&[
 PathBuf::from("./tests/inputs/jokes"),
 PathBuf::from("./tests/inputs/quotes"),
]);
 assert!(res.is_ok());
 assert_eq!(res.unwrap().len(), 11);
 }
}

Import read_fortunes, Fortune, and PathBuf for
testing.

The tests/inputs/jokes file contains an empty fortune that
is expected to be removed.

NOTE

Stop here and implement a version of the function that passes
cargo test read_fortunes.

Update run to print, for instance, one of the found records:

pub fn run(config: Config) -> MyResult<()> {
 let files = find_files(&config.sources)?;
 let fortunes = read_fortunes(&files)?;
 println!("{:#?}", fortunes.last());
 Ok(())
}

When passed good input sources, the program should print a
fortune like so:

$ cargo run tests/inputs
Some(
 Fortune {
 source: "quotes",
 text: "You can observe a lot just by watching.\n--
Yogi Berra",
 },
)

When provided an unreadable file, such as the previously
created hammer file, the program should die with a useful
error message:

$ cargo run hammer
hammer: Permission denied (os error 13)

Randomly Selecting a Fortune

The program will have two possible outputs. When the user
supplies a pattern, the program should print all the
fortunes matching the pattern; otherwise, the pro gram should
randomly select one fortune to print. For the latter option,
I wrote a pick_fortune function that takes some fortunes
and an optional seed and returns an optional string:

fn pick_fortune(fortunes: &[Fortune], seed: Option<u64>) ->
Option<String> {
 unimplemented!();
}

My function uses the rand crate to select the fortune using
a random number generator (RNG), as described earlier in the
chapter. When there is no seed value, I use
rand::thread_rng to create an RNG that is seeded by the
system. When there is a seed value, I use
rand::rngs::StdRng::seed_from_u64. Finally, I use
Slice Ran dom::choose with the RNG to select a fortune.

Following is how you can expand your tests module to include
the test_read _for tunes unit test:

#[cfg(test)]
mod tests {
 use super::{
 find_files, parse_u64, pick_fortune, read_fortunes,
Fortune,
 };
 use std::path::PathBuf;

 #[test]
 fn test_parse_u64() {} // Same as before

 #[test]
 fn test_find_files() {} // Same as before

https://oreil.ly/Ufwrb
https://oreil.ly/NdtDw
https://oreil.ly/9cEP6

 #[test]
 fn test_read_fortunes() {} // Same as before

 #[test]
 fn test_pick_fortune() {
 // Create a slice of fortunes
 let fortunes = &[
 Fortune {
 source: "fortunes".to_string(),
 text: "You cannot achieve the impossible
without \
 attempting the absurd."
 .to_string(),
 },
 Fortune {
 source: "fortunes".to_string(),
 text: "Assumption is the mother of all
screw-ups."
 .to_string(),
 },
 Fortune {
 source: "fortunes".to_string(),
 text: "Neckties strangle clear
thinking.".to_string(),
 },
];

 // Pick a fortune with a seed
 assert_eq!(
 pick_fortune(fortunes, Some(1)).unwrap(),
 "Neckties strangle clear thinking.".to_string()
);
 }
}

Import the pick_fortune function for testing.

Supply a seed in order to verify that the pseudorandom
selection is reproducible.

NOTE

Stop reading and write the function that will pass cargo test
pick_fortune.

You can integrate this function into your run like so:

pub fn run(config: Config) -> MyResult<()> {
 let files = find_files(&config.sources)?;
 let fortunes = read_fortunes(&files)?;
 println!("{:#?}", pick_fortune(&fortunes,
config.seed));
 Ok(())
}

Run your program with no seed and revel in the ensuing chaos
of randomness:

$ cargo run tests/inputs/
Some(
 "Q: Why did the gardener quit his job?\nA: His celery
wasn't high enough.",
)

When provided a seed, the program should always select the
same fortune:

$ cargo run tests/inputs/ -s 1
Some(
 "You can observe a lot just by watching.\n-- Yogi
Berra",
)

TIP

The tests I wrote are predicated on the fortunes being in a
particular order. I wrote find_files to return the files in
sorted order, which means the list of fortunes passed to
pick_fortune are ordered first by their source filename and then
by their order inside the file. If you use a different data
structure to represent the fortunes or parse them in a different
order, then you’ll need to change the tests to reflect your
decisions. The key is to find a way to make your pseudorandom
choices be predictable and testable.

Printing Records Matching a Pattern

You now have all the pieces for finishing the program. The
last step is to decide whether to print all the fortunes that
match a given regular expression or to randomly select one
fortune. You can expand your run function like so:

pub fn run(config: Config) -> MyResult<()> {
 let files = find_files(&config.sources)?;
 let fortunes = read_fortunes(&files)?;

 if let Some(pattern) = config.pattern {
 for fortune in fortunes {
 // Print all the fortunes matching the pattern
 }
 } else {
 // Select and print one fortune
 }

 Ok(())
}

Remember that the program should let the user know when there
are no fortunes, such as when using the tests/inputs/empty
directory:

$ cargo run tests/inputs/empty
No fortunes found

NOTE

That should be enough information for you to finish this program
using the provided tests. This is a tough problem, but don’t
give up.

Solution

For the following code, you will need to expand your
src/lib.rs with the following imports and definitions:

use clap::{App, Arg};
use rand::prelude::SliceRandom;
use rand::{rngs::StdRng, SeedableRng};
use regex::{Regex, RegexBuilder};
use std::{
 error::Error,
 ffi::OsStr,
 fs::{self, File},
 io::{BufRead, BufReader},
 path::PathBuf,
};
use walkdir::WalkDir;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug)]
pub struct Config {
 sources: Vec<String>,
 pattern: Option<Regex>,
 seed: Option<u64>,
}

#[derive(Debug)]
pub struct Fortune {
 source: String,

 text: String,
}

I’ll show you how I wrote each of the functions I described
in the previous section, starting with the find_files
function. You will notice that it filters out files that have
the extension .dat using the type OsStr, which is a Rust
type for an operating system’s preferred representation of a
string that might not be a valid UTF-8 string. The type
OsStr is borrowed, and the owned version is OsString.
These are similar to the Path and PathBuf distinctions.
Both versions encapsulate the complexities of dealing with
filenames on both Windows and Unix platforms. In the
following code, you’ll see that I use Path::extension,
which returns Option<&OsStr>:

fn find_files(paths: &[String]) -> MyResult<Vec<PathBuf>> {
 let dat = OsStr::new("dat");
 let mut files = vec![];

 for path in paths {
 match fs::metadata(path) {
 Err(e) => return Err(format!("{}: {}", path,
e).into()),
 Ok(_) => files.extend(
 WalkDir::new(path)
 .into_iter()
 .filter_map(Result::ok)
 .filter(|e| {
 e.file_type().is_file()
 && e.path().extension() !=
Some(dat)
 })
 .map(|e| e.path().into()),
),
 }
 }

 files.sort();
 files.dedup();

https://oreil.ly/CAeUi
https://oreil.ly/J3nFa
https://oreil.ly/aOffl

 Ok(files)
}

Create an OsStr value for the string dat.

Create a mutable vector for the results.

If fs::metadata fails, return a useful error message.

Use Vec::extend to add the results from WalkDir to the
results.

Use walkdir::WalkDir to find all the entries from the
starting path.

This will ignore any errors for unreadable files or
directories, which is the behavior of the original
program.

Take only regular files that do not have the .dat
extension.

The walkdir::DirEntry::path function returns a Path,
so convert it into a PathBuf.

Use Vec::sort to sort the entries in place.

Use Vec::dedup to remove consecutive repeated values.

Return the sorted, unique files.

The files found by the preceding function are the inputs to
the read_fortunes function:

fn read_fortunes(paths: &[PathBuf]) ->
MyResult<Vec<Fortune>> {

https://oreil.ly/VsRxb
https://oreil.ly/nWMcd
https://oreil.ly/ahe7k
https://oreil.ly/yQmt4
https://oreil.ly/ua40G
https://oreil.ly/7FvsZ

 let mut fortunes = vec![];
 let mut buffer = vec![];

 for path in paths {
 let basename =

path.file_name().unwrap().to_string_lossy().into_owned();
 let file = File::open(path).map_err(|e| {
 format!("{}: {}",
path.to_string_lossy().into_owned(), e)
 })?;

 for line in
BufReader::new(file).lines().filter_map(Result::ok)
 {
 if line == "%" {
 if !buffer.is_empty() {
 fortunes.push(Fortune {
 source: basename.clone(),
 text: buffer.join("\n"),
 });
 buffer.clear();
 }
 } else {
 buffer.push(line.to_string());
 }
 }
 }

 Ok(fortunes)
}

Create mutable vectors for the fortunes and a record
buffer.

Iterate through the given filenames.

Convert Path::file_name from OsStr to String, using
the lossy version in case this is not valid UTF-8. The
result is a clone-on-write smart pointer, so use

https://oreil.ly/PVqKf

Cow::into_owned to clone the data if it is not already
owned.

Open the file or return an error message.

Iterate through the lines of the file.

A sole percent sign (%) indicates the end of a record.

If the buffer is not empty, set the text to the buffer
lines joined on newlines and then clear the buffer.

Otherwise, add the current line to the buffer.

Here is how I wrote the pick_fortune function:

fn pick_fortune(fortunes: &[Fortune], seed: Option<u64>) ->
Option<String> {
 if let Some(val) = seed {
 let mut rng = StdRng::seed_from_u64(val);
 fortunes.choose(&mut rng).map(|f|
f.text.to_string())
 } else {
 let mut rng = rand::thread_rng();
 fortunes.choose(&mut rng).map(|f|
f.text.to_string())
 }
}

Check if the user has supplied a seed.

If so, create a PRNG using the provided seed.

Use the PRNG to select one of the fortunes.

Otherwise, use a PRNG seeded by the system.

I can bring all these ideas together in my run like so:

https://oreil.ly/Jpdd0

pub fn run(config: Config) -> MyResult<()> {
 let files = find_files(&config.sources)?;
 let fortunes = read_fortunes(&files)?;
 if let Some(pattern) = config.pattern {
 let mut prev_source = None;
 for fortune in fortunes
 .iter()
 .filter(|fortune|
pattern.is_match(&fortune.text))
 {
 if prev_source.as_ref().map_or(true, |s| s !=
&fortune.source) {
 eprintln!("({})\n%", fortune.source);
 prev_source = Some(fortune.source.clone());

 }
 println!("{}\n%", fortune.text);
 }
 } else {
 println!(
 "{}",
 pick_fortune(&fortunes, config.seed)
 .or_else(|| Some("No fortunes
found".to_string()))
 .unwrap()
);
 }
 Ok(())
}

Check if the user has provided a pattern option.

Initialize a mutable variable to remember the last fortune
source.

Iterate over the found fortunes and filter for those
matching the provided regular expression.

Print the source header if the current source is not the
same as the previous one seen.

Store the current fortune source.

Print the text of the fortune.

Print a random fortune or a message that states that there
are no fortunes to be found.

NOTE

The fortunes are stored with embedded newlines that may cause the
regular expression matching to fail if the sought-after phrase
spans multiple lines. This mimics how the original fortune works
but may not match the expectations of the user.

At this point, the program passes all the provided tests. I
provided more guidance on this challenge because of the many
steps involved in finding and reading files and then printing
all the matching records or using a PRNG to randomly select
one. I hope you enjoyed that as much as I did.

Going Further

Read the fortune manual page to learn about other options
your program can implement. For instance, you could add the
-n length option to restrict fortunes to those less than
the given length. Knowing the lengths of the fortunes would
be handy for implementing the -s option, which picks only
short fortunes. As noted in the final solution, the regular
expression matching may fail because of the embedded newlines
in the fortunes. Can you find a way around this limitation?

Randomness is a key aspect to many games that you could try
to write. Perhaps start with a game where the user must guess
a randomly selected number in a range; then you could move on

to a more difficult game like “Wheel of Fortune,” where the
user guesses letters in a randomly selected word or phrase.
Many systems have the file /usr/share/dict/words that
contains many thousands of English words; you could use that
as a source, or you could create your own input file of words
and phrases.

Summary

Programs that incorporate randomness are some of my
favorites. Random events are very useful for creating games
as well as machine learning programs, so it’s important to
understand how to control and test randomness. Here’s some
of what you learned in this chapter:

The fortune records span multiple lines and use a lone
percent sign to indicate the end of the record. You
learned to read the lines into a buffer and dump the
buffer when the record or file terminator is found.

You can use the rand crate to make pseudorandom
choices that can be controlled using a seed value.

The Path (borrowed) and PathBuf (owned) types are
useful abstractions for dealing with system paths on
both Windows and Unix. They are similar to the &str
and String types for dealing with borrowed and owned
strings.

The names of files and directories may be invalid UTF-
8, so Rust uses the types OsStr (borrowed) and
OsString (owned) to represent these strings.

Using abstractions like Path and OsStr makes your
Rust code more portable across operating systems.

In the next chapter, you’ll learn to manipulate dates as you
create a terminal-based calendar program.

1 ASCII art is a term for graphics that use only ASCII text
values.

2 This was in the 1990s, which I believe the kids nowadays
refer to as “the late 1900s.”

3 On Ubuntu, sudo apt install fortune-mod; on macOS, brew
install fortune.

4 Robert R. Coveyou, “Random Number Generation Is Too
Important to Be Left to Chance,” Studies in Applied
Mathematics 3(1969): 70–111.

Chapter 13. Rascalry

Time is flying like an arrow

And the clock hands go so fast, they make the wind blow

And it makes the pages of the calendar go flying out the

window, one by one

— They Might Be Giants, “Hovering Sombrero”
(2001)

In this chapter, you will create a clone of cal, which will
show you a text calendar in the terminal. I often don’t know
what the date is (or even the day of the week), so I use this

(along with date) to see vaguely where I am in the space-
time continuum. As is commonly the case, what appears to be a
simple app becomes much more complicated as you get into the
specifics of implementation.

You will learn how to do the following:

Find today’s date and do basic date manipulations

Use Vec::chunks to create groupings of items

Combine elements from multiple iterators

Produce highlighted text in the terminal

How cal Works

I’ll start by showing you the manual page for BSD cal to
consider what’s required. It’s rather long, so I’ll just
include some parts relevant to the challenge program:

CAL(1) BSD General Commands Manual
CAL(1)

NAME
 cal, ncal — displays a calendar and the date of Easter

SYNOPSIS
 cal [-31jy] [-A number] [-B number] [-d yyyy-mm]
[[month] year]
 cal [-31j] [-A number] [-B number] [-d yyyy-mm] -m
month [year]
 ncal [-C] [-31jy] [-A number] [-B number] [-d yyyy-mm]
[[month] year]
 ncal [-C] [-31j] [-A number] [-B number] [-d yyyy-mm]
-m month [year]
 ncal [-31bhjJpwySM] [-A number] [-B number] [-H yyyy-
mm-dd] [-d yyyy-mm]
 [-s country_code] [[month] year]
 ncal [-31bhJeoSM] [-A number] [-B number] [-d yyyy-mm]
[year]

DESCRIPTION
 The cal utility displays a simple calendar in
traditional format and ncal
 offers an alternative layout, more options and the
date of Easter. The
 new format is a little cramped but it makes a year fit
on a 25x80 termi‐
 nal. If arguments are not specified, the current
month is displayed.

 ...

 A single parameter specifies the year (1-9999) to be
displayed; note the
 year must be fully specified: ``cal 89'' will not
display a calendar for
 1989. Two parameters denote the month and year; the
month is either a
 number between 1 and 12, or a full or abbreviated name
as specified by
 the current locale. Month and year default to those
of the current sys-
 tem clock and time zone (so ``cal -m 8'' will display
a calendar for the
 month of August in the current year).

GNU cal responds to --help and has both short and long
option names. Note that this version also allows the week to
start on either Sunday or Monday, but the challenge program
will start it on Sunday:

$ cal --help

Usage:
 cal [options] [[[day] month] year]

Options:
 -1, --one show only current month (default)
 -3, --three show previous, current and next month
 -s, --sunday Sunday as first day of week
 -m, --monday Monday as first day of week
 -j, --julian output Julian dates
 -y, --year show whole current year
 -V, --version display version information and exit
 -h, --help display this help text and exit

Given no arguments, cal will print the current month and
will highlight the current day by reversing foreground and
background colors in your terminal. I can’t show this in
print, so I’ll show today’s date in bold, and you can
pretend this is what you see when you run the command in your
terminal:

$ cal
 October 2021
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

A single positional argument will be interpreted as the year.
If this value is a valid integer in the range of 1–9999,

cal will show the calendar for that year. For example,
following is a calendar for the year 1066. Note that the year
is shown centered on the first line in the following output:

$ cal 1066
 1066
 January February March
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th
Fr Sa
 1 2 3 4 5 6 7 1 2 3 4 1 2
3 4
 8 9 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9
10 11
15 16 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16
17 18
22 23 24 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23
24 25
29 30 31 26 27 28 26 27 28 29 30
31

 April May June
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th
Fr Sa
 1 1 2 3 4 5 6 1
2 3
 2 3 4 5 6 7 8 7 8 9 10 11 12 13 4 5 6 7 8
9 10
 9 10 11 12 13 14 15 14 15 16 17 18 19 20 11 12 13 14 15
16 17
16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22
23 24
23 24 25 26 27 28 29 28 29 30 31 25 26 27 28 29
30
30

 July August September
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th
Fr Sa
 1 1 2 3 4 5
1 2
 2 3 4 5 6 7 8 6 7 8 9 10 11 12 3 4 5 6 7
8 9
 9 10 11 12 13 14 15 13 14 15 16 17 18 19 10 11 12 13 14

15 16
16 17 18 19 20 21 22 20 21 22 23 24 25 26 17 18 19 20 21
22 23
23 24 25 26 27 28 29 27 28 29 30 31 24 25 26 27 28
29 30
30 31

 October November December
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th
Fr Sa
 1 2 3 4 5 6 7 1 2 3 4
1 2
 8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7
8 9
15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14
15 16
22 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21
22 23
29 30 31 26 27 28 29 30 24 25 26 27 28
29 30
 31

Both the BSD and GNU versions show similar error messages if
the year is not in the acceptable range:

$ cal 0
cal: year `0' not in range 1..9999
$ cal 10000
cal: year `10000' not in range 1..9999

Both versions will interpret two integer values as the
ordinal value of the month and year, respectively. For
example, in the incantation cal 3 1066, the 3 will be
interpreted as the third month, which is March. Note that
when showing a single month, the year is included with the
month name:

$ cal 3 1066
 March 1066
Su Mo Tu We Th Fr Sa
 1 2 3 4

 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Use the -y|--year flag to show the whole current year,
which I find useful because I often forget what year it is
too. If both -y|--year and the positional year are present,
cal will use the positional year argument, but the challenge
program should consider this an error. Oddly, GNU cal will
not complain if you combine -y with both a month and a year,
but BSD cal will error out. This is as much as the challenge
program will implement.

Getting Started

The program in this chapter should be called calr
(pronounced cal-ar) for a Rust calendar. Use cargo new
calr to get started, then add the following dependencies to
Cargo.toml:

[dependencies]
clap = "2.33"
chrono = "0.4"
itertools = "0.10"
ansi_term = "0.12"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"

The chrono crate will provide access to date and time
functions.

The itertools crate will be used to join lines of text.

https://oreil.ly/IDbky

The ansi_term crate will be used to highlight today’s

date.

Copy the book’s 13_calr/tests directory into your project,
and run cargo test to build and test your program, which
should fail most ignominiously.

Defining and Validating the Arguments

I suggest you change src/main.rs to the following:

fn main() {
 if let Err(e) = calr::get_args().and_then(calr::run) {
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

The following Config struct uses
chrono::naive::NaiveDate, which is an ISO 8601 calendar
date without a time zone that can represent dates from
January 1, 262145 BCE to December 31, 262143 CE. Naive dates
are fine for this application as it does not require time
zones. Here is how you can start your src/lib.rs:

use clap::{App, Arg};
use std::error::Error;
use chrono::NaiveDate;

#[derive(Debug)]
pub struct Config {
 month: Option<u32>,
 year: i32,
 today: NaiveDate,
}

type MyResult<T> = Result<T, Box<dyn Error>>;

https://oreil.ly/Laqtb

The month is an optional u32 value.

The year is a required i32 value.

Today’s date will be useful in get_args and in the main
program, so I’ll store it here.

TIP

Since the month will only be in the range 1–12 and the year in
the range 0–9999, these integer sizes may seem excessively
large. I chose them because they are the types that the chrono
crate uses for month and year. I found these to be the most
convenient types, but you are welcome to use something else.

Here is a skeleton you can complete for your get_args
function:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("calr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust cal")
 // What goes here?
 .get_matches();

 Ok(Config {
 month: ...,
 year: ...,
 today: ...,
 })
}

Begin your run by printing the config:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:?}", config);

 Ok(())
}

Your program should be able to produce the following usage:

$ cargo run -- -h
calr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust cal

USAGE:
 calr [FLAGS] [OPTIONS] [YEAR]

FLAGS:
 -h, --help Prints help information
 -y, --year Show whole current year
 -V, --version Prints version information

OPTIONS:
 -m <MONTH> Month name or number (1-12)

ARGS:
 <YEAR> Year (1-9999)

When run with no arguments, the program should default to
using the current month and year, which was October 2021 when
I was writing this. To figure out the default values for year
and month, I recommend that you use the chrono crate. If
you add use chrono::Local to your src/lib.rs, you can
call the chrono::off set ::Local::today function to get
the current chrono::Date struct set to your local time
zone. You can then use methods like month and year to get
integer values representing the current month and year.
Update your src / lib.rs with the following code:

use chrono::{Datelike, Local};

pub fn get_args() -> MyResult<Config> {
 let matches = ...
 let today = Local::today();

https://oreil.ly/SKoli
https://oreil.ly/sBFBy
https://oreil.ly/F36yP
https://oreil.ly/9icYK
https://oreil.ly/Ofjnr

 Ok(Config {
 month: Some(today.month()),
 year: today.year(),
 today: today.naive_local(),
 })
}

Now you should be able to see something like the following
output:

$ cargo run
Config { month: Some(10), year: 2021, today: 2021-10-10 }

NOTE

The chrono crate also has chrono::offset::Utc to get time based
on Coordinated Universal Time (UTC), which is the successor to
Greenwich Mean Time (GMT) and is the time standard used for
regulating the world’s clocks. You may be asking, “Why isn’t it
abbreviated as CUT?” Apparently, it’s because the International
Tel e communication Union and the International Astronomical Union
wanted to have one universal acronym. The English speakers
proposed CUT (for coordinated universal time), while the French
speakers wanted TUC (for temps universel coordonné). Using the
wisdom of Solomon, they compromised with UTC, which doesn’t mean
anything in particular but conforms to the abbreviation
convention for universal time.

Next, update your get_args to parse the given arguments.
For example, a single integer positional argument should be
interpreted as the year, and the month should be None to
show the entire year:

$ cargo run -- 1000
Config { month: None, year: 1000, today: 2021-10-10 }

https://oreil.ly/msDT9

The -y|--year flag should cause year to be set to the
current year and month to be None, indicating that the
entire year should be shown:

$ cargo run -- -y
Config { month: None, year: 2021, today: 2021-10-10 }

Your program should accept valid integer values for the month
and year:

$ cargo run -- -m 7 1776
Config { month: Some(7), year: 1776, today: 2021-10-10 }

Note that months may be provided as any distinguishing
starting substring, so Jul or July should work:

$ cargo run -- -m Jul 1776
Config { month: Some(7), year: 1776, today: 2021-10-10 }

The string Ju is not enough to disambiguate June and July:

$ cargo run -- -m Ju 1776
Invalid month "Ju"

Month names should also be case-insensitive, so s is enough
to distinguish September:

$ cargo run -- -m s 1999
Config { month: Some(9), year: 1999, today: 2021-10-12 }

Ensure that the program will use the current month and year
when given no arguments:

$ cargo run
Config { month: Some(10), year: 2021, today: 2021-10-10 }

Any month number outside the range 1–12 should be rejected:

$ cargo run -- -m 0
month "0" not in the range 1 through 12

Any unknown month name should be rejected:

$ cargo run -- -m Fortinbras
Invalid month "Fortinbras"

Any year outside the range 1–9999 should also be rejected:

$ cargo run -- 0
year "0" not in the range 1 through 9999

The -y|--year flag cannot be used with the month:

$ cargo run -- -m 1 -y
error: The argument '-m <MONTH>' cannot be used with '--
year'

USAGE:
 calr -m <MONTH> --year

The program should also error out when combining the -y|--
year flag with the year positional argument:

$ cargo run -- -y 1972
error: The argument '<YEAR>' cannot be used with '--year'

USAGE:
 calr --year

To validate the month and year, you will need to be able to
parse a string into an integer value, which you’ve done
several times before. In this case, the month must be a u32
while the year must be an i32 to match the types used by the
chrono crate. I wrote functions called parse_year and
parse_month to handle the year and month conversion and
validation. Both rely on a parse_int function with the

following signature that generically defines a return type T
that implements std::str ::FromStr. This allows me to
specify whether I want a u32 for the month or an i32 for
the year when I call the function. If you plan to implement
this function, be sure to add use std::str::FromStr to
your imports:

fn parse_int<T: FromStr>(val: &str) -> MyResult<T> {
 unimplemented!();
}

Following is how you can start your tests module with the
test_parse_int unit test for this function:

#[cfg(test)]
mod tests {
 use super::parse_int;

 #[test]
 fn test_parse_int() {
 // Parse positive int as usize
 let res = parse_int::<usize>("1");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 1usize);

 // Parse negative int as i32
 let res = parse_int::<i32>("-1");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), -1i32);

 // Fail on a string
 let res = parse_int::<i64>("foo");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "Invalid
integer \"foo\"");
 }
}

Use the turbofish on the function call to indicate the
return type.

https://oreil.ly/ArshI

Use a numeric literal like 1usize to specify the value 1
and type usize.

NOTE

Stop here and write the function that passes cargo test
test_parse_int.

My parse_year takes a string and might return an i32. It
starts like this:

fn parse_year(year: &str) -> MyResult<i32> {
 unimplemented!();
}

Expand your tests module with the following unit test, which
checks that the bounds 1 and 9999 are accepted and that
values outside this range are rejected:

#[cfg(test)]
mod tests {
 use super::{parse_int, parse_year};

 #[test]
 fn test_parse_int() {} // Same as before

 #[test]
 fn test_parse_year() {
 let res = parse_year("1");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 1i32);

 let res = parse_year("9999");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 9999i32);

 let res = parse_year("0");
 assert!(res.is_err());

 assert_eq!(
 res.unwrap_err().to_string(),
 "year \"0\" not in the range 1 through 9999"
);

 let res = parse_year("10000");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "year \"10000\" not in the range 1 through
9999"
);

 let res = parse_year("foo");
 assert!(res.is_err());
 }
}

Add parse_year to the list of imports.

NOTE

Stop and write the function that will pass cargo test
test_parse_year.

Next, you can start parse_month like so:

fn parse_month(month: &str) -> MyResult<u32> {
 unimplemented!();
}

The following unit test checks for success using the bounds 1
and 12 and a sample case-insensitive month like jan (for
January). It then ensures that values outside 1–12 are
rejected, as is an unknown month name:

#[cfg(test)]
mod tests {

 use super::{parse_int, parse_month, parse_year};

 #[test]
 fn test_parse_int() {} // Same as before

 #[test]
 fn test_parse_year() {} // Same as before

 #[test]
 fn test_parse_month() {
 let res = parse_month("1");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 1u32);

 let res = parse_month("12");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 12u32);

 let res = parse_month("jan");
 assert!(res.is_ok());
 assert_eq!(res.unwrap(), 1u32);

 let res = parse_month("0");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "month \"0\" not in the range 1 through 12"
);

 let res = parse_month("13");
 assert!(res.is_err());
 assert_eq!(
 res.unwrap_err().to_string(),
 "month \"13\" not in the range 1 through 12"
);

 let res = parse_month("foo");
 assert!(res.is_err());
 assert_eq!(res.unwrap_err().to_string(), "Invalid
month \"foo\"");
 }
}

Add parse_month to the list of imports.

NOTE

Stop reading here and write the function that passes cargo test
test_parse_month.

At this point, your program should pass cargo test parse:

running 3 tests
test tests::test_parse_year ... ok
test tests::test_parse_int ... ok
test tests::test_parse_month ... ok

Following is how I wrote my parse_int in such a way that it
can return either an i32 or a u32:

fn parse_int<T: FromStr>(val: &str) -> MyResult<T> {
 val.parse()
 .map_err(|_| format!("Invalid integer \"{}\"",
val).into())
}

Use str::parse to convert the string into the desired
return type.

In the event of an error, create a useful error message.

Following is how I wrote parse_year:

fn parse_year(year: &str) -> MyResult<i32> {
 parse_int(year).and_then(|num| {
 if (1..=9999).contains(&num) {
 Ok(num)
 } else {
 Err(format!("year \"{}\" not in the range 1
through 9999", year)
 .into())
 }

1

https://oreil.ly/1DPIe

 })
}

Rust infers the type for parse_int from the function’s

return type, i32. Use Option::and_then to handle an
Ok result from parse_int.

Check that the parsed number num is in the range 1–9999,

inclusive of the upper bound.

Return the parsed and validated number num.

Return an informative error message.

My parse_month function needs a list of valid month names,
so I declare a constant value at the top of my src/lib.rs:

const MONTH_NAMES: [&str; 12] = [
 "January",
 "February",
 "March",
 "April",
 "May",
 "June",
 "July",
 "August",
 "September",
 "October",
 "November",
 "December",
];

Following is how I use the month names to help figure out the
given month:

fn parse_month(month: &str) -> MyResult<u32> {
 match parse_int(month) {
 Ok(num) => {
 if (1..=12).contains(&num) {

https://oreil.ly/Fvdz1

 Ok(num)
 } else {
 Err(format!(
 "month \"{}\" not in the range 1
through 12",
 month
)
 .into())
 }
 }
 _ => {
 let lower = &month.to_lowercase();
 let matches: Vec<_> = MONTH_NAMES
 .iter()
 .enumerate()
 .filter_map(|(i, name)| {
 if
name.to_lowercase().starts_with(lower) {
 Some(i + 1)
 } else {
 None
 }
 })
 .collect();

 if matches.len() == 1 {
 Ok(matches[0] as u32)
 } else {
 Err(format!("Invalid month \"{}\"",
month).into())
 }
 }
 }
}

Attempt to parse a numeric argument.

If the number num parsed is in the range 1–12, return

the value.

Otherwise, create an informative error message.

If the month didn’t parse as an integer, compare the
lowercased value to the month names.

Enumerate the month names to get the index and value.

See if the given value is the start of a month name.

If so, return the zero-based index position corrected to
one-based counting.

Collect all the possible month values as a vector of
usize values.

If there was exactly one possible month, return it as a
u32 value; otherwise, return an informative error
message.

Following is how I bring all these together in my get_args
to parse and validate the command-line arguments and choose
the defaults:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("calr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust cal")
 .arg(
 Arg::with_name("month")
 .value_name("MONTH")
 .short("m")
 .help("Month name or number (1-12)")
 .takes_value(true),
)
 .arg(
 Arg::with_name("show_current_year")
 .value_name("SHOW_YEAR")
 .short("y")
 .long("year")
 .help("Show whole current year")

 .conflicts_with_all(&["month", "year"])
 .takes_value(false),
)
 .arg(
 Arg::with_name("year")
 .value_name("YEAR")
 .help("Year (1-9999)"),
)
 .get_matches();

 let mut month =
matches.value_of("month").map(parse_month).transpose()?;
 let mut year =
matches.value_of("year").map(parse_year).transpose()?;
 let today = Local::today();
 if matches.is_present("show_current_year") {
 month = None;
 year = Some(today.year());
 } else if month.is_none() && year.is_none() {
 month = Some(today.month());
 year = Some(today.year());
 }

 Ok(Config {
 month,
 year: year.unwrap_or_else(|| today.year()),
 today: today.naive_local(),
 })
}

Parse and validate the month and year values.

Get today’s date.

If -y|--year is present, set the year to the current
year and the month to None.

Otherwise, show the current month.

At this point, your program should pass cargo test dies:

running 8 tests
test dies_year_0 ... ok
test dies_invalid_year ... ok
test dies_invalid_month ... ok
test dies_year_13 ... ok
test dies_month_13 ... ok
test dies_month_0 ... ok
test dies_y_and_month ... ok
test dies_y_and_year ... ok

Writing the Program

Now that you have good input, it’s time to write the rest of
the program. First, consider how to print just one month,
like April 2016, which I will place beside the same month
from 2017. I’ll pipe the output from cal into cat -e,
which will show the dollar sign ($) for the ends of the
lines. The following shows that each month has eight lines:
one for the name of the month, one for the day headers, and
six for the weeks of the month. Additionally, each line must
be 22 columns wide:

$ cal -m 4 2016 | cat -e $ cal -m 4 2017 | cat -e
 April 2016 $ April 2017 $
Su Mo Tu We Th Fr Sa $ Su Mo Tu We Th Fr Sa $
 1 2 $ 1 $
 3 4 5 6 7 8 9 $ 2 3 4 5 6 7 8 $
10 11 12 13 14 15 16 $ 9 10 11 12 13 14 15 $
17 18 19 20 21 22 23 $ 16 17 18 19 20 21 22 $
24 25 26 27 28 29 30 $ 23 24 25 26 27 28 29 $
 $ 30 $

I decided to create a function called format_month to
create the output for one month:

fn format_month(
 year: i32,
 month: u32,
 print_year: bool,
 today: NaiveDate,

) -> Vec<String> {
 unimplemented!();
}

The year of the month.

The month number to format.

Whether or not to include the year in the month’s header.

Today’s date, used to highlight today.

The function returns a Vec<String>, which is the eight
lines of text.

You can expand your tests module to include the following
unit test:

#[cfg(test)]
mod tests {
 use super::{format_month, parse_int, parse_month,
parse_year};
 use chrono::NaiveDate;

 #[test]
 fn test_parse_int() {} // Same as before

 #[test]
 fn test_parse_year() {} // Same as before

 #[test]
 fn test_parse_month() {} // Same as before

 #[test]
 fn test_format_month() {
 let today = NaiveDate::from_ymd(0, 1, 1);
 let leap_february = vec![
 " February 2020 ",
 "Su Mo Tu We Th Fr Sa ",
 " 1 ",

 " 2 3 4 5 6 7 8 ",
 " 9 10 11 12 13 14 15 ",
 "16 17 18 19 20 21 22 ",
 "23 24 25 26 27 28 29 ",
 " ",
];
 assert_eq!(format_month(2020, 2, true, today),
leap_february);

 let may = vec![
 " May ",
 "Su Mo Tu We Th Fr Sa ",
 " 1 2 ",
 " 3 4 5 6 7 8 9 ",
 "10 11 12 13 14 15 16 ",
 "17 18 19 20 21 22 23 ",
 "24 25 26 27 28 29 30 ",
 "31 ",
];
 assert_eq!(format_month(2020, 5, false, today),
may);

 let april_hl = vec![
 " April 2021 ",
 "Su Mo Tu We Th Fr Sa ",
 " 1 2 3 ",
 " 4 5 6 \u{1b}[7m 7\u{1b}[0m 8 9 10 ",
 "11 12 13 14 15 16 17 ",
 "18 19 20 21 22 23 24 ",
 "25 26 27 28 29 30 ",
 " ",
];
 let today = NaiveDate::from_ymd(2021, 4, 7);
 assert_eq!(format_month(2021, 4, true, today),
april_hl);
 }
}

Import the format_month function and the
chrono::NaiveDate struct.

This February month should include a blank line at the end
and has 29 days because this is a leap year.

This May month should span the same number of lines as
April.

ansi_term::Style::reverse is used to create the
highlighting of April 7 in this output.

Create a today that falls in the given month and verify
the output highlights the date.

NOTE

The escape sequences that Style::reverse creates are not exactly
the same as BSD cal, but the effect is the same. You can choose
any method of highlighting the current date you like, but be sure
to update the test accordingly.

You might start your format_month function by numbering
all the days in a month from one to the last day in the
month. It’s not as trivial as the “thirty days hath
September” mnemonic because February can have a different
number of days depending on whether it’s a leap year. I
wrote a function called last_day_in_month that will
return a NaiveDate representing the last day of any month:

fn last_day_in_month(year: i32, month: u32) -> NaiveDate {
 unimplemented!();
}

Following is a unit test you can add, which you might notice
includes a leap year check. Be sure to add
last_day_in_month to the imports at the top of the tests
module:

#[test]
fn test_last_day_in_month() {

https://oreil.ly/F3TpC

 assert_eq!(
 last_day_in_month(2020, 1),
 NaiveDate::from_ymd(2020, 1, 31)
);
 assert_eq!(
 last_day_in_month(2020, 2),
 NaiveDate::from_ymd(2020, 2, 29)
);
 assert_eq!(
 last_day_in_month(2020, 4),
 NaiveDate::from_ymd(2020, 4, 30)
);
}

NOTE

Stop reading and write the code to pass cargo test test_for mat
_month.

At this point, you should have all the pieces to finish the
program. The challenge program will only ever print a single
month or all 12 months, so start by getting your program to
print the current month with the current day highlighted.
Next, have it print all the months for a year, one month
after the other. Then consider how you could create four rows
that group three months side by side to mimic the output of
cal. Because each month is a vector of lines, you need to
combine all the first lines of each row, and then all the
second lines, and so forth. This operation is often called a
zip, and Rust iterators have a zip method you might find
useful. Keep going until you pass all of cargo test. When
you’re done, check out my solution.

Solution

https://oreil.ly/2zGKh

I’ll walk you through how I built up my version of the
program. Following are all the imports you’ll need:

use ansi_term::Style;
use chrono::{Datelike, Local, NaiveDate};
use clap::{App, Arg};
use itertools::izip;
use std::{error::Error, str::FromStr};

I also added another constant for the width of the lines:

const LINE_WIDTH: usize = 22;

I’ll start with my last_day_in_month function, which
figures out the first day of the next month and then finds
its predecessor:

fn last_day_in_month(year: i32, month: u32) -> NaiveDate {
 // The first day of the next month...
 let (y, m) = if month == 12 {
 (year + 1, 1)
 } else {
 (year, month + 1)
 };
 // ...is preceded by the last day of the original month
 NaiveDate::from_ymd(y, m, 1).pred()
}

If this is December, then advance the year by one and set
the month to January.

Otherwise, increment the month by one.

Use NaiveDate::from_ymd to create a NaiveDate, and
then call NaiveDate::pred to get the previous calendar
date.

https://oreil.ly/JxedN
https://oreil.ly/gYgIt

TIP

You might be tempted to roll your own solution rather than using
the chrono crate, but the calculation of leap years could prove
onerous. For instance, a leap year must be evenly divisible by 4
—except for end-of-century years, which must be divisible by
400. This means that the year 2000 was a leap year but 1900 was
not, and 2100 won’t be, either. It’s more advisable to stick
with a library that has a good reputation and is well tested
rather than creating your own implementation.

Next, I’ll break down my format_month function to format
a given month:

fn format_month(
 year: i32,
 month: u32,
 print_year: bool,
 today: NaiveDate,
) -> Vec<String> {
 let first = NaiveDate::from_ymd(year, month, 1);
 let mut days: Vec<String> =
(1..first.weekday().number_from_sunday())
 .into_iter()
 .map(|_| " ".to_string()) // Two spaces
 .collect();

Construct a NaiveDate for the start of the given month.

Initialize a Vec<String> with a buffer of the days from
Sunday until the start of the month.

The initialization of days handles, for instance, the fact
that April 2020 starts on a Wednesday. In this case, I want
to fill up the days of the first week with two spaces for
each day from Sunday through Tuesday. Continuing from there:

 let is_today = |day: u32| {
 year == today.year() && month == today.month() &&
day == today.day()
 };

 let last = last_day_in_month(year, month);

days.extend((first.day()..=last.day()).into_iter().map(|num
| {
 let fmt = format!("{:>2}", num);
 if is_today(num) {
 Style::new().reverse().paint(fmt).to_string()
 } else {
 fmt
 }
 }));

Create a closure to determine if a given day of the month
is today.

Find the last day of this month.

Extend days by iterating through each
chrono::Datelike::day from the first to the last of
the month.

Format the day right-justified in two columns.

If the given day is today, use Style::reverse to
highlight the text; otherwise, use the text as is.

Here is the last part of this function:

 let month_name = MONTH_NAMES[month as usize - 1];
 let mut lines = Vec::with_capacity(8);
 lines.push(format!(
 "{:^20} ", // two trailing spaces
 if print_year {
 format!("{} {}", month_name, year)
 } else {

https://oreil.ly/UD1pV
https://oreil.ly/F3TpC

 month_name.to_string()
 }
));

 lines.push("Su Mo Tu We Th Fr Sa ".to_string()); //
two trailing spaces

 for week in days.chunks(7) {
 lines.push(format!(
 "{:width$} ", // two trailing spaces
 week.join(" "),
 width = LINE_WIDTH - 2
));
 }

 while lines.len() < 8 {
 lines.push(" ".repeat(LINE_WIDTH));
 }

 lines
}

Get the current month’s display name, which requires
casting month as a usize and correcting for zero-offset
counting.

Initialize an empty, mutable vector that can hold eight
lines of text.

The month header may or may not have the year. Format the
header centered in a space 20 characters wide followed by
2 spaces.

Add the days of the week.

Use Vec::chunks to get seven weekdays at a time. This
will start on Sunday because of the earlier buffer.

Join the days on a space and format the result into the
correct width.

https://oreil.ly/wBfGb

Pad with as many lines as needed to bring the total to
eight.

Use str::repeat to create a new String by repeating a
single space to the width of the line.

Return the lines.

Finally, here is how I bring everything together in my run:

pub fn run(config: Config) -> MyResult<()> {
 match config.month {
 Some(month) => {
 let lines = format_month(config.year, month,
true, config.today);
 println!("{}", lines.join("\n"));
 }
 None => {
 println!("{:>32}", config.year);
 let months: Vec<_> = (1..=12)
 .into_iter()
 .map(|month| {
 format_month(config.year, month, false,
config.today)
 })
 .collect();

 for (i, chunk) in months.chunks(3).enumerate()
{
 if let [m1, m2, m3] = chunk {
 for lines in izip!(m1, m2, m3) {
 println!("{}{}{}", lines.0,
lines.1, lines.2);
 }
 if i < 3 {
 println!();
 }
 }
 }
 }
 }

https://oreil.ly/cXKMU

 Ok(())
}

Handle the case of a single month.

Format the one month with the year in the header.

Print the lines joined on newlines.

When there is no month, then print the whole year.

When printing all the months, first print the year as the
first header.

Format all the months, leaving out the year from the
headers.

Use Vec::chunks to group into slices of three, and use
Iterator::enumerate to track the grouping numbers.

Use the pattern match [m1, m2, m3] to destructure the
slice into the three months.

Use itertools::izip to create an iterator that combines
the lines from the three months.

Print the lines from each of the three months.

If not on the last set of months, print a newline to
separate the groupings.

https://oreil.ly/t00b3

NOTE

Rust iterators have a zip function that, according to the
documentation, “returns a new iterator that will iterate over
two other iterators, returning a tuple where the first element
comes from the first iterator, and the second ele ment comes from
the second iterator.” Unfortunately, it only works with two
iterators. If you look closely, you’ll notice that the call to
izip! is actually a macro. The documentation says, “The result

of this macro is in the general case an iterator composed of
repeated .zip() and a .map().”

With that, all the tests pass, and you can now visualize a
calendar in the terminal.

Going Further

You could further customize this program. For instance, you
could check for the existence of a $HOME/.calr configuration
file that lists special dates such as holidays, birthdays,
and anniversaries. Use your new terminal colorizing skills to
highlight these dates using bold, reversed, or colored text.

The manual page mentions the program ncal, which will format
the months vertically rather than horizontally. When
displaying a full year, ncal prints three rows of four
months as opposed to four rows of three months like cal.
Create an option to change the output of calr to match the
output from ncal, being sure that you add tests for all the
possibilities.

Consider how you could internationalize the output. It’s
common to have a LANG or LANGUAGE environment variable
that you could use to select month names in the user’s
preferred language. Alternatively, you might allow the user

https://oreil.ly/2zGKh

to customize the months using the aforementioned
configuration file. How could you handle languages that use
different scripts, such as Chinese, Japanese, or Cyrillic?
Try making a Hebrew calendar that reads right to left or a
Mongolian one that reads top to bottom.

The original cal shows only one month or the entire year.
Allow the user to select multiple months, perhaps using the
ranges from cutr. This would allow something like -m
4,1,7-9 to show April, January, and July through September.

Finally, I mentioned the date command at the beginning of
the chapter. This is a program that shows just the current
date and time, among many other things. Use man date to
read the manual page, and then write a Rust version that
implements whichever options you find tantalizing.

Summary

Here’s a recap of some of the things you learned in this
chapter:

Sometimes you would like to generically indicate the
return type of a function using a trait bound. In the
case of parse_int, I indicated that the function
returns something of the type T that implements the
FromStr trait; this includes u32, which I used for
the month, and i32, which I used for the year.

The chrono crate provides a way to find today’s

date and perform basic date manipulations, such as
finding the previous day of a given date (in
last_day_in_month).

The Vec::chunks method will return groupings of
elements as a slice. The challenge program used this

to gather weekdays into groups of seven and the months
of the year into groups of three.

The Iterator::zip method will combine the elements
from two iterators into a new iterator containing a
tuple of values from the sources. The
itertools::izip macro allows you to expand this to
any number of iterators.

colorize::AnsiColor can create terminal text in
various colors and styles, such as reversing the
colors used for the text and background to highlight
the current date.

In the next chapter, you will learn more about Unix file
metadata and how to format text tables of output.

1 Technically, this function can parse any type that implements
FromStr, such as the floating-point type f64.

Chapter 14. Elless Island

Now you know that the girls are just making it up
Now you know that the boys are just pushing their luck
Now you know that my ride doesn’t really exist
And my name’s not really on that list

— They Might Be Giants, “Prevenge” (2004)

In this final chapter, you’ll create a Rust clone of the
list command, ls (pronounced ell-ess), which I think is
perhaps the hardest-working program in Unix. I use it many
times every day to view the contents of a directory or

inspect the size or permissions of some files. The original
program has more than three dozen options, but the challenge
program will implement only a few features, such as printing
the contents of directories or lists of files along with
their permissions, sizes, and modification times. Note that
this challenge program relies on ideas of files and ownership
that are specific to Unix and so will not work on Windows. I
suggest Windows users install Windows Subsystem for Linux to
write and test the program in that environment.

In this chapter, you will learn how to do the following:

Query and visually represent a file’s permissions

Add a method to a custom type using an implementation

Create modules in separate files to organize code

Use text tables to create aligned columns of output

Create documentation comments

How ls Works

To see what will be expected of the challenge program, start
by looking at the manual page for the BSD ls. You’ll see

that it has 39 options. I’ll include only the first part, as
the documentation is rather long, but I encourage you to read
the whole thing:

LS(1) BSD General Commands Manual
LS(1)

NAME
 ls -- list directory contents

SYNOPSIS
 ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1%] [file
...]

DESCRIPTION
 For each operand that names a file of a type other
than directory, ls
 displays its name as well as any requested, associated
information. For
 each operand that names a file of type directory, ls
displays the names
 of files contained within that directory, as well as
any requested, asso-
 ciated information.

 If no operands are given, the contents of the current
directory are dis-
 played. If more than one operand is given, non-
directory operands are
 displayed first; directory and non-directory operands
are sorted sepa-
 rately and in lexicographical order.

If you execute ls with no options, it will show you the
contents of the current working directory. For instance,
change into the 14_lsr directory and try it:

$ cd 14_lsr
$ ls
Cargo.toml set-test-perms.sh* src/
tests/

The challenge program will implement only two option flags,
the -l|--long and -a|--all options. Per the manual page:

The Long Format
 If the -l option is given, the following information is
displayed for
 each file: file mode, number of links, owner name, group
name, number of
 bytes in the file, abbreviated month, day-of-month file
was last modi-
 fied, hour file last modified, minute file last modified,
and the path-
 name. In addition, for each directory whose contents are
displayed, the
 total number of 512-byte blocks used by the files in the
directory is
 displayed on a line by itself, immediately before the
information for the
 files in the directory.

Execute ls -l in the source directory. Of course, you will
have different metadata, such as owners and modification
times, than what I’m showing:

$ ls -l
total 16
-rw-r--r-- 1 kyclark staff 217 Aug 11 08:26 Cargo.toml
-rwxr-xr-x 1 kyclark staff 447 Aug 12 17:56 set-test-
perms.sh*
drwxr-xr-x 5 kyclark staff 160 Aug 26 09:44 src/
drwxr-xr-x 4 kyclark staff 128 Aug 17 08:42 tests/

The -a all option will show entries that are normally
hidden. For example, the current directory . and the parent
directory .. are not usually shown:

$ ls -a
./ Cargo.toml src/
../ set-test-perms.sh* tests/

You can specify these individually, like ls -a -l, or
combined, like ls -la. These flags can occur in any order,
so -la or -al will work:

$ ls -la
total 16
drwxr-xr-x 6 kyclark staff 192 Oct 15 07:52 ./
drwxr-xr-x 24 kyclark staff 768 Aug 24 08:22 ../
-rw-r--r-- 1 kyclark staff 217 Aug 11 08:26 Cargo.toml
-rwxr-xr-x 1 kyclark staff 447 Aug 12 17:56 set-test-
perms.sh*
drwxr-xr-x 5 kyclark staff 160 Aug 26 09:44 src/
drwxr-xr-x 4 kyclark staff 128 Aug 17 08:42 tests/

TIP

Any entry (directory or file) with a name starting with a dot (.)
is hidden, leading to the existence of so-called dotfiles, which
are often used to store program state and metadata. For example,
the root directory of the source code repository contains a
directory called .git that has all the information Git needs to
keep track of the changes to files. It’s also common to create
.gitignore files that contain filenames and globs that you wish
to exclude from Git.

You can provide the name of one or more directories as
positional arguments to see their contents:

$ ls src/ tests/
src/:
lib.rs main.rs owner.rs

tests/:
cli.rs inputs

The positional arguments can also be files:

$ ls -l src/*.rs
-rw-r--r-- 1 kyclark staff 8917 Aug 26 09:44 src/lib.rs
-rw-r--r-- 1 kyclark staff 136 Aug 4 14:18 src/main.rs
-rw-r--r-- 1 kyclark staff 313 Aug 10 08:54
src/owner.rs

Different operating systems will return the files in
different orders. For example, the .hidden file is shown
before all the other files on macOS:

$ ls -la tests/inputs/
total 16
drwxr-xr-x 7 kyclark staff 224 Aug 12 10:29 ./
drwxr-xr-x 4 kyclark staff 128 Aug 17 08:42 ../
-rw-r--r-- 1 kyclark staff 0 Mar 19 2021 .hidden
-rw-r--r-- 1 kyclark staff 193 May 31 16:43 bustle.txt
drwxr-xr-x 4 kyclark staff 128 Aug 10 18:08 dir/
-rw-r--r-- 1 kyclark staff 0 Mar 19 2021 empty.txt
-rw------- 1 kyclark staff 45 Aug 12 10:29 fox.txt

On Linux, the .hidden file is listed last:

$ ls -la tests/inputs/
total 20
drwxr-xr-x. 3 kyclark staff 4096 Aug 21 12:13 ./
drwxr-xr-x. 3 kyclark staff 4096 Aug 21 12:13 ../
-rw-r--r--. 1 kyclark staff 193 Aug 21 12:13 bustle.txt
drwxr-xr-x. 2 kyclark staff 4096 Aug 21 12:13 dir/
-rw-r--r--. 1 kyclark staff 0 Aug 21 12:13 empty.txt
-rw-------. 1 kyclark staff 45 Aug 21 12:13 fox.txt
-rw-r--r--. 1 kyclark staff 0 Aug 21 12:13 .hidden

TIP

Due to these differences, the tests will not check for any
particular ordering.

Notice that errors involving nonexistent files are printed
first, and then the results for valid arguments. As usual,
blargh is meant as a nonexistent file:

$ ls Cargo.toml blargh src/main.rs
ls: blargh: No such file or directory
Cargo.toml src/main.rs

This is about as much as the challenge program should
implement. A version of ls dates back to the original AT&T
Unix, and both the BSD and GNU versions have had decades to
evolve. The challenge program won’t even scratch the surface
of replacing ls, but it will give you a chance to consider
some really interesting aspects of operating systems and
information storage.

Getting Started

The challenge program should be named lsr (pronounced lesser
or lister, maybe) for a Rust version of ls. I suggest you
start by running cargo new lsr. My solution will use the
following dependencies that you should add to your
Cargo.toml:

[dependencies]
chrono = "0.4"
clap = "2.33"
tabular = "0.1.4"
users = "0.11"

[dev-dependencies]
assert_cmd = "2"
predicates = "2"
rand = "0.8"

chrono will be used to handle the file modification
times.

tabular will be used to present a text table for the
long listing.

users will be used to get the user and group names of the
owners.

Copy 14_lsr/tests into your project, and then run cargo
test to build and test your program. All the tests should
fail. Next, you must run the bash script 14_lsr/set-test
- perms.sh to set the file and directory permissions of the
test inputs to known values. Run with -h|--help for usage:

$./set-test-perms.sh --help
Usage: set-test-perms.sh DIR

You should give it the path to your new lsr. For instance,
if you create the project under ~/rust-solutions/lsr, run it
like so:

$./set-test-perms.sh ~/rust-solutions/lsr
Done, fixed files in "/Users/kyclark/rust-solutions/lsr".

Defining the Arguments

I suggest you modify src/main.rs to the following:

fn main() {
 if let Err(e) = lsr::get_args().and_then(lsr::run) {
 eprintln!("{}", e);
 std::process::exit(1);
 }
}

I recommend you start src/lib.rs by defining a Config
struct to hold the program arguments along with other code
you’ve used before to represent MyResult:

use clap::{App, Arg};
use std::error::Error;

type MyResult<T> = Result<T, Box<dyn Error>>;

#[derive(Debug)]
pub struct Config {
 paths: Vec<String>,
 long: bool,
 show_hidden: bool,
}

The paths argument will be a vector of strings for files
and directories.

The long option is a Boolean for whether or not to print
the long listing.

The show_hidden option is a Boolean for whether or not
to print hidden entries.

There’s nothing new in this program when it comes to parsing
and validating the arguments. Here is an outline for
get_args you can use:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("lsr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust ls")
 // What goes here?
 .get_matches();

 Ok(Config {
 paths: ...,

 long: ...,
 show_hidden: ...,
 })
}

Start your run function by printing the arguments:

pub fn run(config: Config) -> MyResult<()> {
 println!("{:?}", config);
 Ok(())
}

Make sure your program can print a usage like the following:

$ cargo run -- -h
lsr 0.1.0
Ken Youens-Clark <kyclark@gmail.com>
Rust ls

USAGE:
 lsr [FLAGS] [PATH]...

FLAGS:
 -a, --all Show all files
 -h, --help Prints help information
 -l, --long Long listing
 -V, --version Prints version information

ARGS:
 <PATH>... Files and/or directories [default: .]

Run your program with no arguments and verify that the
default for paths is a list containing the dot (.), which
represents the current working directory. The two Boolean
values should be false:

$ cargo run
Config { paths: ["."], long: false, show_hidden: false }

Try turning on the two flags and giving one or more
positional arguments:

$ cargo run -- -la src/*
Config { paths: ["src/lib.rs", "src/main.rs"], long: true,
show_hidden: true }

NOTE

Stop reading and get your program working to this point.

I assume you figured that out, so here is my get_args.
It’s similar to that used in previous programs, so I’ll
eschew commentary:

pub fn get_args() -> MyResult<Config> {
 let matches = App::new("lsr")
 .version("0.1.0")
 .author("Ken Youens-Clark <kyclark@gmail.com>")
 .about("Rust ls")
 .arg(
 Arg::with_name("paths")
 .value_name("PATH")
 .help("Files and/or directories")
 .default_value(".")
 .multiple(true),
)
 .arg(
 Arg::with_name("long")
 .takes_value(false)
 .help("Long listing")
 .short("l")
 .long("long"),
)
 .arg(
 Arg::with_name("all")
 .takes_value(false)
 .help("Show all files")
 .short("a")
 .long("all"),

)
 .get_matches();

 Ok(Config {
 paths: matches.values_of_lossy("paths").unwrap(),
 long: matches.is_present("long"),
 show_hidden: matches.is_present("all"),
 })
}

Finding the Files

On the face of it, this program seems fairly simple. I want
to list the given files and directories, so I’ll start by
writing a find_files function as in several previous
chapters. The found files can be represented by strings, as
in Chapter 9, but I’ve chosen to use a PathBuf, like I
did Chapter 12. If you want to follow this idea, be sure to
add use std::path::PathBuf to your imports:

fn find_files(
 paths: &[String],
 show_hidden: bool,
) -> MyResult<Vec<PathBuf>> {
 unimplemented!();
}

paths is a vector of file or directory names from the
user.

show_hidden indicates whether or not to include hidden
files in directory listings.

The result might be a vector of PathBuf values.

My find_files function will iterate through all the given
paths and check if the value exists using

https://oreil.ly/Mth0r

std::fs::metadata. If there is no metadata, then I print
an error message to STDERR and move to the next entry, so
only existing files and directories will be returned by the
function. The printing of these error messages will be
checked by the integration tests, so the function itself
should return just the valid entries.

The metadata can tell me if the entry is a file or directory.
If the entry is a file, I create a PathBuf and add it to
the results. If the entry is a directory, I use
fs::read_dir to read the contents of the directory. The
function should skip hidden entries with filenames that begin
with a dot (.) unless show_hidden is true.

TIP

The filename is commonly called basename in command-line tools,
and its corollary is dirname, which is the leading path
information without the filename. There are command-line tools
called basename and dirname that will return these elements:

$ basename 14_lsr/src/main.rs
main.rs
$ dirname 14_lsr/src/main.rs
14_lsr/src

Following are two unit tests for find_files that check for
listings that do and do not include hidden files. As noted in
the chapter introduction, the files may be returned in a
different order depending on your OS, so the tests will sort
the entries to disregard the ordering. Note that the
find_files function is not expected to recurse into
subdirectories. Add the following to your src/lib.rs to start
a tests module:

https://oreil.ly/VsRxb
https://oreil.ly/m95Y5

#[cfg(test)]
mod test {
 use super::find_files;

 #[test]
 fn test_find_files() {
 // Find all nonhidden entries in a directory
 let res = find_files(&["tests/inputs".to_string()],
false);
 assert!(res.is_ok());
 let mut filenames: Vec<_> = res
 .unwrap()
 .iter()
 .map(|entry| entry.display().to_string())
 .collect();
 filenames.sort();
 assert_eq!(
 filenames,
 [
 "tests/inputs/bustle.txt",
 "tests/inputs/dir",
 "tests/inputs/empty.txt",
 "tests/inputs/fox.txt",
]
);

 // Find all entries in a directory
 let res = find_files(&["tests/inputs".to_string()],
true);
 assert!(res.is_ok());
 let mut filenames: Vec<_> = res
 .unwrap()
 .iter()
 .map(|entry| entry.display().to_string())
 .collect();
 filenames.sort();
 assert_eq!(
 filenames,
 [
 "tests/inputs/.hidden",
 "tests/inputs/bustle.txt",
 "tests/inputs/dir",
 "tests/inputs/empty.txt",
 "tests/inputs/fox.txt",
]

);

 // Any existing file should be found even if hidden
 let res = find_files(&
["tests/inputs/.hidden".to_string()], false);
 assert!(res.is_ok());
 let filenames: Vec<_> = res
 .unwrap()
 .iter()
 .map(|entry| entry.display().to_string())
 .collect();
 assert_eq!(filenames, ["tests/inputs/.hidden"]);

 // Test multiple path arguments
 let res = find_files(
 &[
 "tests/inputs/bustle.txt".to_string(),
 "tests/inputs/dir".to_string(),
],
 false,
);
 assert!(res.is_ok());
 let mut filenames: Vec<_> = res
 .unwrap()
 .iter()
 .map(|entry| entry.display().to_string())
 .collect();
 filenames.sort();
 assert_eq!(
 filenames,
 ["tests/inputs/bustle.txt",
"tests/inputs/dir/spiders.txt"]
);
 }
}

Look for the entries in the tests/inputs directory,
ignoring hidden files.

Ensure that the result is an Ok variant.

Collect the display names into a Vec<String>.

Sort the entry names in alphabetical order.

Verify that the four expected files were found.

Look for the entries in the tests/inputs directory,
including hidden files.

Following is the test for hidden files:

#[cfg(test)]
mod test {
 use super::find_files;

 #[test]
 fn test_find_files() {} // Same as before

 #[test]
 fn test_find_files_hidden() {
 let res = find_files(&["tests/inputs".to_string()],
true);
 assert!(res.is_ok());
 let mut filenames: Vec<_> = res
 .unwrap()
 .iter()
 .map(|entry| entry.display().to_string())
 .collect();
 filenames.sort();
 assert_eq!(
 filenames,
 [
 "tests/inputs/.hidden",
 "tests/inputs/bustle.txt",
 "tests/inputs/dir",
 "tests/inputs/empty.txt",
 "tests/inputs/fox.txt",
]
);
 }
}

Include hidden files in the results.

The .hidden file should be included in the results.

NOTE

Stop here and ensure that cargo test find_files passes both
tests.

Once your find_files function is working, integrate it into
the run function to print the found entries:

pub fn run(config: Config) -> MyResult<()> {
 let paths = find_files(&config.paths,
config.show_hidden)?;
 for path in paths {
 println!("{}", path.display());
 }
 Ok(())
}

Look for the files in the provided paths and specify
whether to show hidden entries.

Iterate through each of the returned paths.

Use Path::display for safely printing paths that may
contain non-Unicode data.

If I run the program in the source directory, I see the
following output:

$ cargo run
./Cargo.toml
./target
./tests
./Cargo.lock
./src

https://oreil.ly/apWTZ

The output from the challenge program is not expected to
completely replicate the original ls. For example, the
default listing for ls will create columns:

$ ls tests/inputs/
bustle.txt dir/ empty.txt fox.txt

If your program can produce the following output, then
you’ve already implemented the basic directory listing. Note
that the order of the files is not important. This is the
output I see on macOS:

$ cargo run -- -a tests/inputs/
tests/inputs/.hidden
tests/inputs/empty.txt
tests/inputs/bustle.txt
tests/inputs/fox.txt
tests/inputs/dir

And this is what I see on Linux:

$ cargo run -- -a tests/inputs/
tests/inputs/empty.txt
tests/inputs/.hidden
tests/inputs/fox.txt
tests/inputs/dir
tests/inputs/bustle.txt

Provide a nonexistent file such as the trusty old blargh and
check that your program prints a message to STDERR:

$ cargo run -q -- blargh 2>err
$ cat err
blargh: No such file or directory (os error 2)

NOTE

Stop reading and ensure that cargo test passes about half of the
tests. All the failing tests should have the word long in the
name, which means you need to implement the long listing.

Formatting the Long Listing

The next step is to handle the -l|--long listing option,
which lists metadata for each entry. Figure 14-1 shows
example output with the columns numbered in bold font; the
column numbers are not part of the expected output. Note that
the output from your program will have different owners and
modification times.

Figure 14-1. The long listing of the program will include eight
pieces of metadata.

The metadata displayed in the output, listed here by column
number, is as follows:

1. The entry type, which should be d for directory or a
dash (-) for anything else

2. The permissions formatted with r for read, w for
write, and x for execute for user, group, and other

3. The number of links pointing to the file

4. The name of the user that owns the file

5. The name of the group that owns the file

6. The size of the file or directory in bytes

7. The file’s last modification date and time

8. The path to the file

Creating the output table can be tricky, so I decided to use
tabular to handle this for me. I wrote a function called
format_output that accepts a list of PathBuf values and
might return a formatted table with columns of metadata. If
you want to follow my lead on this, be sure to add use
tabular::{Row, Table} to your imports. Note that my
function doesn’t exactly replicate the output from BSD ls,
but it meets the expectations of the test suite:

fn format_output(paths: &[PathBuf]) -> MyResult<String> {
 // 1 2 3 4 5 6 7 8
 let fmt = "{:<}{:<} {:>} {:<} {:<} {:>} {:<} {:
<}";
 let mut table = Table::new(fmt);

 for path in paths {
 table.add_row(
 Row::new()
 .with_cell("") // 1 "d" or "-"
 .with_cell("") // 2 permissions
 .with_cell("") // 3 number of links
 .with_cell("") // 4 user name
 .with_cell("") // 5 group name
 .with_cell("") // 6 size
 .with_cell("") // 7 modification
 .with_cell("") // 8 path

https://oreil.ly/O9Xh0

);
 }

 Ok(format!("{}", table))
}

You can find much of the data you need to fill in the cells
with PathBuf::metadata. Here are some pointers to help
you fill in the various columns:

metadata::is_dir returns a Boolean for whether or
not the entry is a directory.

metadata::mode will return a u32 representing the
permissions for the entry. In the next section, I will
explain how to format this information into a display
string.

You can find the number of links using
metadata::nlink.

For the user and group owners, add use
std::os::unix::fs::MetadataExt so that you can
call metadata::uid to get the user ID of the owner
and metadata::gid to get the group ID. Both the
user and group IDs are integer values that must be
converted into actual user and group names. For this,
I recommend you look at the users crate that contains
the functions get_user_by_uid and
get_group_by_gid.

Use metadata::len to get the size of a file or
directory.

Displaying the file’s metadata::modified time is
tricky. This method returns a
std::time::SystemTime struct, and I recommend

https://oreil.ly/2G3en
https://oreil.ly/qhXWX
https://oreil.ly/LuKo4
https://oreil.ly/f2RyC
https://oreil.ly/P8YpO
https://oreil.ly/ggddm
https://oreil.ly/nuvE8
https://oreil.ly/gaDwI
https://oreil.ly/qFRSD
https://oreil.ly/129cs
https://oreil.ly/buVC9
https://oreil.ly/GIiqd

that you use chrono ::Date Time::format to format
the date using strftime syntax, a format that will
likely be familiar to C and Perl programmers.

Use Path::display for the file or directory name.

I have unit tests for this function, but first I need to
explain more about how to display the permissions.

Displaying Octal Permissions

The file type and permissions will be displayed using a
string of 10 characters like drwxr-xr-x, where each letter
or dash indicates a specific piece of information. The first
character is either a d for directory or a dash for anything
else. The standard ls will also use l for a link, but the
challenge program will not distinguish links.

The other nine characters represent the permissions for the
entry. In Unix, each file and directory has three levels of
sharing for a user, a group, and other for everyone else.
Only one user and one group can own a file at a time. For
each ownership level, there are permissions for reading,
writing, and executing, as shown in Figure 14-2.

Figure 14-2. Each level of ownership (user, group, and other) has
permissions for read, write, and execute.

These three permissions are either on or off and can be
represented with three bits using 1 and 0, respectively.

https://oreil.ly/TUBOK
https://oreil.ly/075dF
https://oreil.ly/8tnwX

This means there are three combinations of two choices, which
makes eight possible outcomes because 2 = 8. In binary
encoding, each bit position corresponds to a power of 2, so
001 is the number 1 (2), and 010 is the number 2 (2). To

represent the number 3, both bits are added, so the binary
version is 011. You can verify this with Rust by using the
prefix 0b to represent a binary number:

assert_eq!(0b001 + 0b010, 3);

The number 4 is 100 (2), and so 5 is 101 (4 + 1). Because
a three-bit value can represent only eight numbers, this is
called octal notation. You can see the binary representation
of the first eight numbers with the following loop:

for n in 0..=7 {
 println!("{} = {:03b}", n, n);
}

The ..= range operator includes the ending value.

Print the value n as is and in binary format to three
places using leading zeros.

The preceding code will print this:

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

3

0 1

2

Figure 14-3 shows that each of the three bit positions
corresponds to a permission. The 4 position is for read, the
2 position for write, and the 1 position for execute. Octal
notation is commonly used with the chmod command I mentioned
in Chapters 2 and 3. For example, the command chmod 775
will enable the read/write/execute bits for the user and
group of a file but will enable only read and execute for
everyone else. This allows anyone to execute a program, but
only the owner or group can modify it. The permission 600,
where only the owner can read and write a file, is often used
for sensitive data like SSH keys.

Figure 14-3. The permissions 775 and 600 in octal notation
translate to read/write/execute permissions for user/group/other.

I recommend you read the documentation for metadata::mode
to get a file’s permissions. That documentation shows you
how to mask the mode with a value like 0o200 to determine if
the user has write access. (The prefix 0o is the Rust way to
write in octal notation.) That is, if you use the binary AND
operator & to combine two binary values, only those bits
that are both set (meaning they have a value of 1) will
produce a 1.

As shown in Figure 14-4, if you & the values 0o700 and
0o200, the write bits in position 2 are both set and so the

https://oreil.ly/LuKo4

result is 0o200. The other bits can’t be set because the

zeros in 0o200 will mask or hide those values, hence the
term masking for this operation. If you & the values 0o400
and 0o200, the result is 0 because none of the three
positions contains a 1 in both operands.

Figure 14-4. The binary AND operator & will set bit values in the
result where both bits are set in the operands.

I wrote a function called format_mode to create the needed
output for the per mis sions. It accepts the u32 value
returned by mode and returns a String of nine characters:

/// Given a file mode in octal format like 0o751,
/// return a string like "rwxr-x--x"
fn format_mode(mode: u32) -> String {
 unimplemented!();
}

The preceding function needs to create three groupings of
rwx for user, group, and other using the mask values shown
in Table 14-1.

T
a
b
l
e
1
4
-
1
.
R
e
a
d
/
w
r
i
t
e
/
e
x
e
c
u
t
e
m
a
s
k
v
a

l
u
e
s
f
o
r
u
s
e
r
,
g
r
o
u
p
,
a
n
d
o
t
h
e
r

Owner Read Write Execute

User 0o400 0o200 0o100

Group 0o040 0o020 0o010

Other 0o004 0o002 0o001

It might help to see the unit test that you can add to your
tests module:

#[cfg(test)]
mod test {
 use super::{find_files, format_mode};

 #[test]
 fn test_find_files() {} // Same as before

 #[test]
 fn test_find_files_hidden() {} // Same as before

 #[test]
 fn test_format_mode() {
 assert_eq!(format_mode(0o755), "rwxr-xr-x");
 assert_eq!(format_mode(0o421), "r---w---x");
 }
}

Import the format_mode function.

These are two spot checks for the function. Presumably the
function works if these two pass.

NOTE

Stop reading and write the code that will pass cargo test
for mat _mode. Then, incorporate the output from format_mode into
the format_output function.

Testing the Long Format

It’s not easy to test the output from the format_output
function, because the output on your system will necessarily
be different from mine. For instance, you will likely have a
different user name, group name, and file modification times.

We should still have the same permissions (if you ran the
set-test-perms.sh script), number of links, file sizes, and
paths, so I have written the tests to inspect only those
columns. In addition, I can’t rely on the specific widths of
the columns or any delimiting characters, as user and group
names will vary. The unit tests I’ve created for the
format_output function should help you write a working
solution while also providing enough flexibility to account
for the differences in our systems.

The following helper function, which you can add to your
tests module in src/lib.rs, will inspect the long output for
any one directory entry:

fn long_match(
 line: &str,
 expected_name: &str,
 expected_perms: &str,
 expected_size: Option<&str>,
) {
 let parts: Vec<_> = line.split_whitespace().collect();

 assert!(parts.len() > 0 && parts.len() <= 10);

 let perms = parts.get(0).unwrap();
 assert_eq!(perms, &expected_perms);

 if let Some(size) = expected_size {
 let file_size = parts.get(4).unwrap();
 assert_eq!(file_size, &size);
 }

 let display_name = parts.last().unwrap();
 assert_eq!(display_name, &expected_name);
}

The function takes a line of the output along with the
expected values for the permissions, size, and path.

Split the line of text on whitespace.

Verify that the line split into some fields.

Verify the permissions string, which is in the first
column.

Verify the file size, which is in the fifth column.
Directory sizes are not tested, so this is an optional
argument.

Verify the filepath, which is in the last column.

NOTE

I use Iterator::last rather than try to use a positive offset
because the modification date column has whitespace.

Expand the tests with the following unit test for the
format_output function that checks the long listing for
one file. Note that you will need to add use std
::path::PathBuf and format_output to the imports:

#[test]
fn test_format_output_one() {
 let bustle_path = "tests/inputs/bustle.txt";
 let bustle = PathBuf::from(bustle_path);

 let res = format_output(&[bustle]);
 assert!(res.is_ok());

 let out = res.unwrap();
 let lines: Vec<&str> =
 out.split("\n").filter(|s|
!s.is_empty()).collect();
 assert_eq!(lines.len(), 1);

https://oreil.ly/mvd2C

 let line1 = lines.first().unwrap();
 long_match(&line1, bustle_path, "-rw-r--r--",
Some("193"));
}

Create a PathBuf value for tests/inputs/bustle.txt.

Execute the function with one path.

Break the output on newlines and verify there is just one
line.

Use the helper function to inspect the permissions, size,
and path.

The following unit test passes two files and checks both
lines for the correct output:

#[test]
fn test_format_output_two() {
 let res = format_output(&[
 PathBuf::from("tests/inputs/dir"),
 PathBuf::from("tests/inputs/empty.txt"),
]);
 assert!(res.is_ok());

 let out = res.unwrap();
 let mut lines: Vec<&str> =
 out.split("\n").filter(|s|
!s.is_empty()).collect();
 lines.sort();
 assert_eq!(lines.len(), 2);

 let empty_line = lines.remove(0);
 long_match(
 &empty_line,
 "tests/inputs/empty.txt",
 "-rw-r--r--",
 Some("0"),
);

 let dir_line = lines.remove(0);
 long_match(&dir_line, "tests/inputs/dir", "drwxr-xr-x",
None);
}

Execute the function with two arguments, one of which is a
directory.

Verify that two lines are returned.

Verify the expected values for the empty.txt file.

Verify the expected values for the directory listing.
Don’t bother checking the size, as different systems will
report different sizes.

NOTE

Stop reading and write the code to pass cargo test for mat
_out put. Once that works, incorporate the long output into the
run function. Have at you!

Solution

This became a surprisingly complicated program that needed to
be decomposed into several smaller functions. I’ll show you
how I wrote each function, starting with find_files:

fn find_files(paths: &[String], show_hidden: bool) ->
MyResult<Vec<PathBuf>> {
 let mut results = vec![];
 for name in paths {
 match fs::metadata(name) {
 Err(e) => eprintln!("{}: {}", name, e),
 Ok(meta) => {
 if meta.is_dir() {
 for entry in fs::read_dir(name)? {

 let entry = entry?;
 let path = entry.path();
 let is_hidden =
 path.file_name().map_or(false,
|file_name| {

file_name.to_string_lossy().starts_with('.')
 });
 if !is_hidden || show_hidden {
 results.push(entry.path());
 }
 }
 } else {
 results.push(PathBuf::from(name));
 }
 }
 }
 }
 Ok(results)
}

Initialize a mutable vector for the results.

Attempt to get the metadata for the path.

In the event of an error such as a nonexistent file, print
an error message to STDERR and move to the next file.

Check if the entry is a directory.

If so, use fs::read_dir to read the entries.

Unpack the Result.

Use DirEntry::path to get the Path value for the
entry.

Check if the basename starts with a dot and is therefore
hidden.

https://oreil.ly/yQmt4

If the entry should be displayed, add a PathBuf to the
results.

Add a PathBuf for the file to the results.

Next, I’ll show how to format the permissions. Recall
Table 14-1 with the nine masks needed to handle the nine
bits that make up the permissions. To encapsulate this data,
I created an enum type called Owner, which I define with
variants for User, Group, and Other. Additionally, I want
to add a method to my type that will return the masks needed
to create the permissions string. I would like to group this
code into a separate module called owner, so I will place
the following code into the file src/owner.rs:

#[derive(Clone, Copy)]
pub enum Owner {
 User,
 Group,
 Other,
}

impl Owner {
 pub fn masks(&self) -> [u32; 3] {
 match self {
 Self::User => [0o400, 0o200, 0o100],
 Self::Group => [0o040, 0o020, 0o010],
 Self::Other => [0o004, 0o002, 0o001],
 }
 }
}

An owner can be a user, group, or other.

This is an implementation (impl) block for Owner.

Define a method called masks that will return an array of
the mask values for a given owner.

self will be one of the enum variants.

These are the read, write, and execute masks for User.

These are the read, write, and execute masks for Group.

These are the read, write, and execute masks for Other.

NOTE

If you come from an object-oriented background, you’ll find this
syntax is suspiciously similar to a class definition and an
object method declaration, complete with a reference to self as
the invocant.

To use this module, add mod owner to the top of src/lib.rs,
then add use owner::Owner to the list of imports. As
you’ve seen in almost every chapter, the mod keyword is
used to create new modules, such as the tests module for
unit tests. In this case, adding mod owner declares a new
module named owner. Because you haven’t specified the

contents of the module here, the Rust compiler knows to look
in src/owner.rs for the module’s code. Then, you can import
the Owner type into the root module’s scope with use
owner::Owner.

TIP

As your programs grow more complicated, it’s useful to organize
code into modules. This will make it easier to isolate and test
ideas as well as reuse code in other projects.

https://oreil.ly/GqfkT

Following is a list of all the imports I used to finish the
program:

mod owner;

use chrono::{DateTime, Local};
use clap::{App, Arg};
use owner::Owner;
use std::{error::Error, fs, os::unix::fs::MetadataExt,
path::PathBuf};
use tabular::{Row, Table};
use users::{get_group_by_gid, get_user_by_uid};

I added the following mk_triple helper function to
src/lib.rs, which creates part of the permissions string
given the file’s mode and an Owner variant:

/// Given an octal number like 0o500 and an [`Owner`],
/// return a string like "r-x"
pub fn mk_triple(mode: u32, owner: Owner) -> String {
 let [read, write, execute] = owner.masks();
 format!(
 "{}{}{}",
 if mode & read == 0 { "-" } else { "r" },
 if mode & write == 0 { "-" } else { "w" },
 if mode & execute == 0 { "-" } else { "x" },
)
}

The function takes a permissions mode and an Owner.

Unpack the three mask values for this owner.

Use the format! macro to create a new String to return.

If the mode masked with the read value returns 0, then
the read bit is not set. Show a dash (-) when unset and r
when set.

Likewise, mask the mode with the write value and display
w if set and a dash otherwise.

Mask the mode with the execute value and return x if
set and a dash otherwise.

Following is the unit test for this function, which you can
add to the tests module. Be sure to add super::
{mk_triple, Owner} to the list of imports:

#[test]
fn test_mk_triple() {
 assert_eq!(mk_triple(0o751, Owner::User), "rwx");
 assert_eq!(mk_triple(0o751, Owner::Group), "r-x");
 assert_eq!(mk_triple(0o751, Owner::Other), "--x");
 assert_eq!(mk_triple(0o600, Owner::Other), "---");
}

Finally, I can bring this all together in my format_mode
function:

/// Given a file mode in octal format like 0o751,
/// return a string like "rwxr-x--x"
fn format_mode(mode: u32) -> String {
 format!(
 "{}{}{}",
 mk_triple(mode, Owner::User),
 mk_triple(mode, Owner::Group),
 mk_triple(mode, Owner::Other),
)
}

The function takes a u32 value and returns a new string.

The returned string will be made of three triple values,
like rwx.

Create triples for user, group, and other.

TIP

You’ve seen throughout the book that Rust uses two slashes (//)
to indicate that all text that follows on the line will be
ignored. This is commonly called a comment because it can be used
to add commentary to your code, but it’s also a handy way to
temporarily disable lines of code. In the preceding functions,
you may have noticed the use of three slashes (///) to create a
special kind of comment that has the #[doc] attribute. Note that
the doc com ment should precede the function declaration. Execute
cargo doc --open --document-private-items to have Cargo
create documentation for your code. This should cause your web
browser to open with HTML documentation as shown in Figure 14-5,
and the triple-commented text should be displayed next to the
function name.

https://oreil.ly/VP1AV

Figure 14-5. The documentation created by Cargo will include
comments that begin with three slashes.

Following is how I use the format_mode function in the
format_output function:

fn format_output(paths: &[PathBuf]) -> MyResult<String> {
 // 1 2 3 4 5 6 7 8
 let fmt = "{:<}{:<} {:>} {:<} {:<} {:>} {:<} {:
<}";
 let mut table = Table::new(fmt);

 for path in paths {
 let metadata = path.metadata()?;

 let uid = metadata.uid();
 let user = get_user_by_uid(uid)
 .map(|u|
u.name().to_string_lossy().into_owned())
 .unwrap_or_else(|| uid.to_string());

 let gid = metadata.gid();
 let group = get_group_by_gid(gid)
 .map(|g|
g.name().to_string_lossy().into_owned())
 .unwrap_or_else(|| gid.to_string());

 let file_type = if path.is_dir() { "d" } else { "-"
};
 let perms = format_mode(metadata.mode());
 let modified: DateTime<Local> =
DateTime::from(metadata.modified()?);

 table.add_row(
 Row::new()
 .with_cell(file_type) // 1
 .with_cell(perms) // 2
 .with_cell(metadata.nlink()) // 3
 .with_cell(user) // 4
 .with_cell(group) // 5
 .with_cell(metadata.len()) // 6
 .with_cell(modified.format("%b %d %y
%H:%M")) // 7
 .with_cell(path.display()), // 8

);
 }

 Ok(format!("{}", table))
}

Create a new tabular::Table using the given format
string.

Attempt to get the entry’s metadata. This should not fail
because of the earlier use of fs::metadata. This method
is an alias to that function.

Get the user ID of the owner from the metadata. Attempt to
convert to a user name and fall back on a string version
of the ID.

Do likewise for the group ID and name.

Choose whether to print a d if the entry is a directory
or a dash (-) otherwise.

Use the format_mode function to format the entry’s

permissions.

Create a DateTime struct using the metadata’s

modified value.

Add a new Row to the table using the given cells.

Use metadata::nlink to find the number of links.

Use metadata::len to get the size.

Use strftime format options to display the modification
time.

https://oreil.ly/z73wW
https://oreil.ly/buVC9
https://oreil.ly/573Cv
https://oreil.ly/f2RyC
https://oreil.ly/129cs
https://oreil.ly/075dF

Convert the table to a string to return.

Finally, I bring it all together in the run function:

pub fn run(config: Config) -> MyResult<()> {
 let paths = find_files(&config.paths,
config.show_hidden)?;
 if config.long {
 println!("{}", format_output(&paths)?);
 } else {
 for path in paths {
 println!("{}", path.display());
 }
 }
 Ok(())
}

Find all the entries in the given list of files and
directories.

If the user wants the long listing, print the results of
format_output.

Otherwise, print each path on a separate line.

At this point, the program passes all the tests, and you have
implemented a simple replacement for ls.

Notes from the Testing Underground

In this last chapter, I’d like you to consider some of the
challenges of writing tests, as I hope this will become an
integral part of your coding skills. For example, the output
from your lsr program will necessarily always be different
from what I see when I’m creating the tests because you will
have different owners and modification times. I’ve found

that different systems will report different sizes for
directories, and the column widths of the output will be
different due to the fact that you are likely to have shorter
or longer user and group names. Really, the most that testing
can do is verify that the filenames, permissions, and sizes
are the expected values while basically assuming the layout
is kosher.

If you read tests/cli.rs, you’ll see I borrowed some of the
same ideas from the unit tests for the integration tests. For
the long listing, I created a run_long function to run for
a particular file, checking for the permissions, size, and
path:

fn run_long(filename: &str, permissions: &str, size: &str)
-> TestResult {
 let cmd = Command::cargo_bin(PRG)?
 .args(&["--long", filename])
 .assert()
 .success();
 let stdout =
String::from_utf8(cmd.get_output().stdout.clone())?;
 let parts: Vec<_> =
stdout.split_whitespace().collect();
 assert_eq!(parts.get(0).unwrap(), &permissions);
 assert_eq!(parts.get(4).unwrap(), &size);
 assert_eq!(parts.last().unwrap(), &filename);
 Ok(())
}

The function accepts the filename and the expected
permissions and size.

Run lsr with the --long option for the given filename.

Convert STDOUT to UTF-8.

Break the output on whitespace and collect into a vector.

Check that the first column is the expected permissions.

Check that the fifth column is the expected size.

Check that the last column is the given path.

I use this function like so:

#[test]
fn fox_long() -> TestResult {
 run_long(FOX, "-rw-------", "45")
}

Checking the directory listings is tricky, too. I found I
needed to ignore the directory sizes because different
systems report different sizes. Here is my dir_long
function that handles this:

fn dir_long(args: &[&str], expected: &[(&str, &str, &str)])
-> TestResult {
 let cmd =
Command::cargo_bin(PRG)?.args(args).assert().success();
 let stdout =
String::from_utf8(cmd.get_output().stdout.clone())?;
 let lines: Vec<&str> =
 stdout.split("\n").filter(|s|
!s.is_empty()).collect();
 assert_eq!(lines.len(), expected.len());

 let mut check = vec![];
 for line in lines {
 let parts: Vec<_> =
line.split_whitespace().collect();
 let path = parts.last().unwrap().clone();
 let permissions = parts.get(0).unwrap().clone();
 let size = match permissions.chars().next() {
 Some('d') => "",
 _ => parts.get(4).unwrap().clone(),
 };
 check.push((path, permissions, size));

 }

 for entry in expected {
 assert!(check.contains(entry));
 }

 Ok(())
}

The function accepts the arguments and a slice of tuples
with the expected results.

Run lsr with the given arguments and assert it is
successful.

Convert STDOUT to a string.

Break STDOUT into lines, ignoring any empty lines.

Check that the number of lines matches the expected
number.

Initialize a mutable vector of items to check.

Break the line on whitespace and extract the path,
permissions, and size.

Ignore the size of directories.

Ensure that each of the expected paths, permissions, and
sizes is present in the check vector.

I use the dir_long utility function in a test like this:

#[test]
fn dir1_long_all() -> TestResult {
 dir_long(
 &["-la", "tests/inputs"],

 &[
 ("tests/inputs/empty.txt", "-rw-r--r--", "0"),

 ("tests/inputs/bustle.txt", "-rw-r--r--",
"193"),
 ("tests/inputs/fox.txt", "-rw-------", "45"),

 ("tests/inputs/dir", "drwxr-xr-x", ""),
 ("tests/inputs/.hidden", "-rw-r--r--", "0"),
],
)
}

These are the arguments to lsr.

The empty.txt file should have permissions of 644 and a
file size of 0.

The fox.txt file’s permissions should be set to 600 by
set-test-perms.sh. If you forget to run this script, then
you will fail this test.

The dir entry should report d and permissions of 755.
Ignore the size.

In many ways, the tests for this program were as challenging
as the program itself. I hope I’ve shown throughout the book
the importance of writing and using tests to ensure a working
program.

Going Further

The challenge program works fairly differently from the
native ls programs. Modify your program to mimic the ls on
your system, then start trying to implement all the other
options, making sure that you add tests for every feature. If

you want inspiration, check out the source code for other
Rust implementations of ls, such as exa and lsd.

Write Rust versions of the command-line utilities basename
and dirname, which will print the filename or directory
name of given inputs, respectively. Start by reading the
manual pages to decide which features your programs will
implement. Use a test-driven approach where you write tests
for each feature you add to your programs. Release your code
to the world, and reap the fame and fortune that inevitably
follow open source development.

In Chapter 7, I suggested writing a Rust version of tree,
which will find and display the tree structure of files and
directories. The program can also display much of the same
information as ls:

$ tree -pughD
.
├── [-rw-r--r-- kyclark staff 193 May 31 16:43]
bustle.txt
├── [drwxr-xr-x kyclark staff 128 Aug 10 18:08] dir
│ └── [-rw-r--r-- kyclark staff 45 May 31 16:43]
spiders.txt
├── [-rw-r--r-- kyclark staff 0 Mar 19 2021]
empty.txt
└── [-rw------- kyclark staff 45 Aug 12 10:29]
fox.txt

1 directory, 4 files

Use what you learned from this chapter to write or expand
that program.

Summary

One of my favorite parts of this challenge program is the
formatting of the octal permission bits. I also enjoyed

https://oreil.ly/2ZWIe
https://oreil.ly/u38PE

finding all the other pieces of metadata that go into the
long listing. Consider what you did in this chapter:

You learned how to summon the metadata of a file to
find everything from the file’s owners and size to
the last modification time.

You found that directory entries starting with a dot
are normally hidden from view, leading to the
existence of dotfiles and directories for hiding
program data.

You delved into the mysteries of file permissions,
octal notation, and bit masking and came through more
knowledgeable about Unix file ownership.

You discovered how to add impl (implementation) to a
custom type Owner as well as how to segregate this
module into src/owner.rs and declare it with mod
owner in src/lib.rs.

You learned to use three slashes (///) to create doc
comments that are included in the documentation
created by Cargo and that can be read using cargo
doc.

You saw how to use the tabular crate to create text
tables.

You explored ways to write flexible tests for programs
that can create different output on different systems
and when run by different people.

Epilogue

No one in the world / Ever gets what they want / And that

is beautiful /

Everybody dies / Frustrated and sad / And that is beautiful

— They Might Be Giants, “Don’t Let’s
Start” (1986)

You made it to the last page, or at least you flipped here to
see how the book ends. I hope that I’ve shown that combining
a strict language like Rust with testing allows you to
confidently write and refactor complicated programs. I would
definitely encourage you to rewrite these programs in other
languages that you know or learn in order to determine what

you think makes them a better or worse fit for the task.

I’ve had more than one person say that telling people to
write tests is like telling them to eat their vegetables.
Maybe that’s so, but if we’re all going to “build reliable
and efficient software” like the Rust motto claims, it is
incumbent on us to shoulder this burden. Sometimes writing
the tests is as much work (or more) as writing the program,
but it’s a moral imperative that you learn and apply these
skills. I encourage you to go back and read all the tests
I’ve written to understand them more and find code you can
integrate into your own programs.

Your journey has not ended here; it has only begun. There are
more programs to be written and rewritten. Now go make the

world a better place by writing good software.

Index

Symbols

! (exclamation point)

beginning shebang lines in bash, Creating the Test Output

Files

ending names of macros, Getting Started with “Hello,

world!”

not operator, Getting Started

"" (quotation marks), enclosing names of arguments, How echo

Works

#[test] attribute, Writing and Running Integration Tests

$ (dollar sign)

end of string matching in regular expressions, Defining

the Arguments, Using a Regular Expression to Match an

Integer with an Optional Sign

$? bash variable, Understanding Program Exit Values

% (percent sign), indicating end of fortune record, Solution

& operator, Opening a File or STDIN

binary AND, Displaying Octal Permissions

borrowing reference to a variable, Using the Test Suite

&& (logical and) operator, Exit Values Make Programs

Composable, Solution

combining with || (logical or operator), Solution

() (parentheses)

capturing in regular expressions, Parsing the Position

List

grouping and capturing in regular expressions, Using a

Regular Expression to Match an Integer with an Optional

Sign

grouping find utility arguments, How find Works

signifying unit type, Getting Started

(.)\1 pattern, finding any character repeated twice, Defining

the Arguments

* (asterisk)

dereference operator, Parsing the Position List

escaping in bash, How find Works

matching zero or more occurrences in regular expressions,

Defining the Arguments, Defining the Arguments

+ (plus sign)

before numbers in tail utility, How tail Works

beginning of file starting position in tailr, Defining

the Arguments

matching in regular expressions, Using a Regular

Expression to Match an Integer with an Optional Sign,

Using a Regular Expression to Match an Integer with an

Optional Sign

+0 starting point in tail, Defining the Arguments

+= (addition and assignment) operator, Printing Line Numbers

- (dash or minus sign)

- for short names and ‐‐ for long names of arguments,

Accessing the Command-Line Arguments

before numbers in tail utility, How tail Works

denoting range in character classes in regular

expressions, Using a Regular Expression to Match an

Integer with an Optional Sign

filename argument, reading with cat, How cat Works

input filename in commr, Validating and Opening the Input

Files

matching in regular expressions, Using a Regular

Expression to Match an Integer with an Optional Sign

-> symbol, indicating symbolic links, How find Works

. (dot)

any one character in regular expressions, Defining the

Arguments

file or directory names starting with, How ls Works,

Finding the Files

indicating current directory, Getting Started with

“Hello, world!”, How find Works, How grep Works,

Defining the Arguments

placing inside character class [.], Defining the

Arguments

// (slashes), comments beginning with, Solution

/// (slashes), to indicate documentation, Solution

::<> (turbofish) operator, Reading Bytes from a File,

Defining and Validating the Arguments

; (semicolon), lack of terminating in functions, Using the

Result Type

> (redirect) operator in bash, How echo Works, Opening a File

or STDIN

? (question mark)

in regular expressions, Using a Regular Expression to

Match an Integer with an Optional Sign

operator, replacing Result::unwrap with, Using the Result

Type

operator, using to propagate error to main function,

Defining the Arguments

[] (square brackets)

indicating character class, Defining the Arguments

indicating character classes in regular expressions,

Using a Regular Expression to Match an Integer with an

Optional Sign

\ (backslash), escaping special characters, How find Works

\1 backreference, Defining the Arguments

\d (digits) in regular expressions, Using a Regular

Expression to Match an Integer with an Optional Sign

^ (caret)

beginning of string matching in regular expressions,

Defining the Arguments, Using a Regular Expression to

Match an Integer with an Optional Sign

bit-wise exclusive OR operator, Solution

_ (underscore)

indicating partial type annotation, Reading Bytes from a

File

various uses in Rust, Reading Bytes from a File

wildcard character in matching, Opening a File or STDIN

{} (curly braces)

enclosing body of a function, Getting Started with

“Hello, world!”

serving as placeholder for printed value of literal

string, Accessing the Command-Line Arguments

| (pipe) symbol

piping commands, Writing and Running Integration Tests

piping STDOUT from first command to STDIN for second

command, Opening a File or STDIN

using to connect STDOUT and STDIN for commands, How cat

Works

|| (pipes)

or operator, Solution

or operator, combining with && operator, Solution

|| { … } closure form, Solution

A

actual output versus expected output, Testing the Program

Output

ALL_CAPS, using to name global constants, Using a Regular

Expression to Match an Integer with an Optional Sign

ansi_term crate, Getting Started

ansi_term::Style::reverse, Writing the Program

App struct, Parsing Command-Line Arguments Using clap

App::get_matches function, Parsing Command-Line Arguments

Using clap

Arg struct, Parsing Command-Line Arguments Using clap

Arg type, Defining the Arguments

Arg::possible_values, Validating the Arguments

Arg::takes_value function, Getting Started

Arg::value_name function, Defining the Arguments

Arg::with_name function, Defining the Arguments

ArgMatches::values_of function, Creating the Program Output

ArgMatches::values_of_lossy function, Creating the Program

Output

ArgMatches::value_of function, Defining the Arguments,

Defining the Arguments

Args struct, Accessing the Command-Line Arguments

as keyword, Reading Bytes from a File

ASCII, Reading Bytes Versus Characters, How wc Works

range of ASCII table starting at first printable

character, Solution

ASCII art, Fortunate Son

command for randomly selecting, How fortune Works

assert! macro, Writing and Running Integration Tests,

Creating the Program Output

Assert::failure function, Understanding Program Exit Values

assert_cmd::Command, Adding a Project Dependency

assert_eq! macro, Writing and Running Integration Tests,

Creating the Program Output

-a|--all option flag (ls), How ls Works, How ls Works

B

backreferences, Defining the Arguments, Defining the

Arguments

backtrace, displaying, Reading Bytes from a File

basename, Finding the Files

bash shell

expanding file glob, Iterating Through the File

Arguments, Converting Strings into Errors

spaces delimiting command-line arguments, How echo Works

basic regular expressions, Defining the Arguments

beginning of file starting position in tailr, Defining the

Arguments

benchmarking, Benchmarking the Solution

biggie program, Testing the Program with Large Input Files,

Benchmarking the Solution

binary files, Getting Started with “Hello, world!”

bioinformatics, use of comm in, How comm Works

BitXor operator, Solution

Boolean::and, Solution

Boolean::or, Solution

Box type, Opening a File or STDIN, Converting Strings into

Errors

break keyword, Preserving Line Endings While Reading a File

BSD version

cal program, How cal Works

cat utility, How cat Works

comm utility, How comm Works, Processing the Files

cut utility, How cut Works

echo utility, How echo Works

find utility, How find Works

grep utility, How grep Works

head program, How head Works

ls utility, How ls Works

tail utility, How tail Works, How tail Works

uniq program, How uniq Works

wc program, How wc Works

BufRead trait, Opening a File or STDIN, Reading Bytes Versus

Characters, Finding the Matching Lines of Input, Finding the

Starting Line to Print

file value implementing, Writing and Testing a Function

to Count File Elements

indicating a trait bound like BufRead in function

signatures, Finding the Matching Lines of Input

BufRead::lines function, Preserving Line Endings While

Reading a File, Counting the Elements of a File or STDIN,

Extracting Characters or Bytes, Processing the Files

BufRead::read_line function, Preserving Line Endings While

Reading a File, Counting the Elements of a File or STDIN,

Counting All the Lines and Bytes in a File

BufRead::read_until function, Counting All the Lines and

Bytes in a File

BufReader, Printing the Lines

bytes, How wc Works, How cut Works

--bytes option, runing wcr with, Formatting the Output

counting total bytes in a file in tailr, Counting the

Total Lines and Bytes in a File-Finding the Starting Line

to Print

disallowing -c (bytes) flag in wcr, Getting Started

extracting, Extracting Characters or Bytes

finding starting byte to print in tailr, Finding the

Starting Byte to Print

number in input file, getting with wc, How wc Works

printing in tailr, Printing the Bytes

reading from a file, Reading Bytes from a File-Reading

Bytes from a File

requesting last four bytes of a file in tail, How tail

Works

requesting more bytes than a file contains in tail, How

tail Works

selecting from a string, Selecting Bytes from a String

selection of, splitting multibyte characters in tail, How

tail Works

bytes argument, Getting Started, Parsing and Validating the

Command-Line Arguments

bytes option (tailr), Defining the Arguments

negative and positive values for, Defining the Arguments

bytes versus characters, reading, Reading Bytes Versus

Characters

C

-c, --bytes option (tailr), Defining the Arguments

rejecting noninteger values, Defining the Arguments

cal program, Rascalry-Summary

how it works, How cal Works-How cal Works

writing calr version

defining and validating the arguments, Defining and

Validating the Arguments-Writing the Program

getting started, Getting Started

going further, Going Further

solution, Solution-Solution

writing the program, Writing the Program-Writing the

Program

calendar (see cal program)

cargo new catr command, Getting Started

cargo run command, Creating and Running a Project with Cargo

--bin option, Understanding Program Exit Values

cargo test command, Writing and Running Integration Tests

cargo test dies command, Converting Strings into Errors

Cargo tool

adding a project dependency, Adding a Project Dependency

creating and running Rust project with, Creating and

Running a Project with Cargo-Creating and Running a

Project with Cargo

help with commands, Creating and Running a Project with

Cargo

case closure, Solution

case-insensitive comparisons, closure handling in commr,

Solution

case-insensitive matching

in grepr, How grep Works, Defining the Arguments

case-insensitive regular expression, Defining the Arguments

case-sensitive pattern, Finding the Matching Lines of Input

case-sensitive searching in fortune, How fortune Works

casting, Reading Bytes from a File

cat (concatenate) command, Creating and Running a Project

with Cargo, On the Catwalk-Summary

-t option, How wc Works

head command versus, Head Aches

how it works, How cat Works-How cat Works

printing contents of a file, How cat Works

writing catr version

creating a library crate, Creating a Library Crate

defining parameters, Defining the Parameters-Defining

the Parameters

getting started, Getting Started

going further with, Going Further

iterating through file arguments, Iterating Through

the File Arguments

opening a file or STDIN, Opening a File or STDIN-

Using the Test Suite

printing line numbers, Printing Line Numbers

reading lines in a file, Solution

starting with tests, Starting with Tests-Starting

with Tests

catr::run function, Creating a Library Crate

cd (change directory) command, Organizing a Rust Project

Directory

chaining multiple operations in findr, Solution

character classes, Using a Regular Expression to Match an

Integer with an Optional Sign

characters, How wc Works, How cut Works

disallowing -m (characters) flag in wcr, Getting Started

extracting, Extracting Characters or Bytes

selecting from a string, Selecting Characters from a

String-Selecting Bytes from a String

characters versus bytes, reading, Reading Bytes Versus

Characters

chmod command, Accessing the Command-Line Arguments, How cat

Works

using chmod 000 to remove all permissions, How find Works

chrono crate, Getting Started, Defining and Validating the

Arguments, Getting Started

chrono::Date struct, Defining and Validating the Arguments

chrono::Datelike::day, Solution

chrono::DateTime::format, Formatting the Long Listing

chrono::Local, Defining and Validating the Arguments

chrono::naive::NaiveDate, Defining and Validating the

Arguments

chrono::NaiveDate struct, Writing the Program

chrono::offset::Local::today function, Defining and

Validating the Arguments

chrono::offset::Utc, Defining and Validating the Arguments

clap utility, Getting Started

adding as dependency to Cargo program, Adding clap as a

Dependency-Adding clap as a Dependency

using to parse command-line arguments, Parsing Command-

Line Arguments Using clap-Parsing Command-Line Arguments

Using clap

clap::App struct, Parsing Command-Line Arguments Using clap

clap::Arg type, Defining the Arguments

Clippy code linter, Defining the Arguments

clone-on-write smart pointer, Solution

closures, Getting Started, Defining the Arguments

creating to lowercase each line of text when

config.insensitive is true, Solution

filtering operations for findr, Solution

versus functions, Solution

handling case-insensitive comparisons for iterators in

commr, Solution

handling printing of output for grepr, Solution

Iterator methods that take as argument, Getting Started

removing filenames not matching regular expression for

findr, Solution

using to capture a value, Solution

code point, ordering by, Solution

colorize::AnsiColor, Summary

Column enum, Solution

comm (common) utility, Boston Commons-Summary

how it works, How comm Works-How comm Works

writing commr version

defining the arguments, Defining the Arguments-

Validating and Opening the Input Files

getting started, Getting Started

going further, Going Further

processing the files, Processing the Files-Processing

the Files

solution, Solution-Solution

validating and opening input files, Validating and

Opening the Input Files-Processing the Files

comma (,) output delimiter, Defining the Arguments

comma-separated values (CSV) files, How cut Works

Command type

creating, Adding a Project Dependency

creating to run echor in current crate, Comparing Program

Output

command-line interface (CLI), creating test file for, Writing

and Running Integration Tests

command-line programs, Truth or Consequences-Summary

Command::args method, Using the Result Type

comments, Solution

compiling Rust programs, Organizing a Rust Project Directory,

Creating and Running a Project with Cargo

composability

exit values making programs composable, Exit Values Make

Programs Composable

concurrent code, Understanding Program Exit Values

conditional compilation, Conditionally Testing on Unix Versus

Windows

Config struct, Defining the Parameters, Getting Started,

Defining the Arguments

defining for command-line parameters for wcr, Getting

Started

findr utility, Defining the Arguments

storing references to dropped variables, problems with,

Defining the Arguments

uniqr program, Defining the Arguments

constants, Using a Regular Expression to Match an Integer

with an Optional Sign

error using computed value for, Using a Regular

Expression to Match an Integer with an Optional Sign

Coordinated Universal Time (UTC), Defining and Validating the

Arguments

count function, Writing and Testing a Function to Count File

Elements

counting elements of a file or STDIN, Counting the

Elements of a File or STDIN

counts

--count option for uniqr input and output files, Testing

the Program

count flag, Defining the Arguments

counting in uniq, How uniq Works

counting matches, Finding the Matching Lines of Input

counting total lines and bytes in a file, Counting All

the Lines and Bytes in a File

filenames included in grep, How grep Works

lines not matching in grep, How grep Works

number of times match occurs in grep, How grep Works

count_lines_bytes function, Counting the Total Lines and

Bytes in a File-Finding the Starting Line to Print

Cow::into_owned, Selecting Bytes from a String, Solution

cp command, Starting with Tests

crate::Column::*, Solution

crates, Creating and Running a Project with Cargo

assert_cmd, Adding a Project Dependency

creating library crate, Creating a Library Crate

CSV (comma-separated values) files, How cut Works, Defining

the Arguments

csv crate, Getting Started

csv::Reader, Final Boss

csv::ReaderBuilder, Parsing Delimited Text Files, Final Boss

csv::StringRecord, Parsing Delimited Text Files

selecting fields from, Selecting Fields from a

csv::StringRecord-Selecting Fields from a

csv::StringRecord

csv::WriterBuilder, Parsing Delimited Text Files, Final Boss

Cursor type, Writing and Testing a Function to Count File

Elements, Finding the Matching Lines of Input

cursor, moving to position in a stream, Finding the Starting

Byte to Print

cut utility, Shave and a Haircut-Summary

how it works, How cut Works-How cut Works

writing cutr version

defining the arguments, Defining the Arguments-

Defining the Arguments

extracting characters or bytes, Extracting Characters

or Bytes-Extracting Characters or Bytes

final version, Final Boss-Final Boss

getting started, Getting Started

going further, Going Further

parsing the position list, Parsing the Position List-

Parsing the Position List

selecting bytes from a string, Selecting Bytes from a

String

selecting characters from a string, Selecting

Characters from a String-Selecting Bytes from a

String

selecting fields from csv::StringRecord, Selecting

Fields from a csv::StringRecord-Selecting Fields from

a csv::StringRecord

cyclomatic complexity, Creating the Test Output Files

D

date command, Rascalry, Going Further

Date struct, Defining and Validating the Arguments

DateTime struct, Solution

days, Solution

dbg! (debug) macro, Defining the Parameters

delimited text files, parsing, Parsing Delimited Text Files-

Parsing Delimited Text Files

delimiters

changing tab output delimiter in commr, Solution

comma output delimiter, setting with -d option, Defining

the Arguments

delimiter as u8 byte, Parsing Delimited Text Files

escaping, How cut Works

escaping in cutr utility, Final Boss

tab character, comm output delimiter, How comm Works

tab character, commr output delimiter, Defining the

Arguments

dependencies

adding clap as dependency, Adding clap as a Dependency

adding project dependency, Adding a Project Dependency

Deref::deref operator, Parsing the Position List

dereferencing pointers, Using the Result Type

dies (for failing tests), Writing Integration Tests

diff utility, How echo Works

difference, Boston Commons

directories

directory name without --recursive option rejected in

grepr, Finding the Files to Search

directory names in grep, How grep Works

metadata::is_dir function, Formatting the Long Listing

organizing for Rust project, Organizing a Rust Project

Directory

supplying as text source for fortune, How fortune Works

DirEntry, Solution

DirEntry::file_type function, Solution

DirEntry::path, Solution

dirname, Finding the Files

dir_long utility function, Notes from the Testing

Underground, Notes from the Testing Underground

Display trait, Accessing the Command-Line Arguments

don’t repeat yourself (DRY) principle, Solution

dotfiles, How ls Works

dyn keyword, Using the Result Type

E

-E flag for extended regular expressions, Defining the

Arguments

-e pattern regular expressions in grep, Defining the

Arguments

echo utility, Test for Echo-Summary

accessing command-line arguments, Accessing the Command-

Line Arguments-Accessing the Command-Line Arguments

creating program output for echor, Creating the Program

Output-Creating the Program Output

how it works, How echo Works

writing integration tests for echor, Writing Integration

Tests-Summary

editions of Rust, Creating and Running a Project with Cargo

else keyword, Creating the Program Output

end of file starting position in tailr, Defining the

Arguments

ending variable, Creating the Program Output

entry types

config.entry_types, Solution

interpreting for findr, Validating the Arguments

EntryType enum, Defining the Arguments

Dir, File, or Link, Defining the Arguments

EntryType::File, Solution

enum type, Defining the Arguments

creating where variants can hold value, Defining the

Arguments

naming conventions in Rust, Defining the Arguments

$env:Path variable (Windows), Writing and Running Integration

Tests

environment, interacting with, Accessing the Command-Line

Arguments

EOF (end of file), Preserving Line Endings While Reading a

File

eprintln! macro, Creating a Library Crate

Error trait, Using the Result Type, Getting Started,

Converting Strings into Errors

errors

converting strings into, Converting Strings into Errors-

Defining the Arguments

error messages for cutr utility, parse_pos function,

Defining the Arguments

find utility searches, How find Works

handling in finding matching input lines in grepr,

Finding the Matching Lines of Input

incorporating filename in input file error messages for

commr, Validating and Opening the Input Files

invalid file arguments printed to STDERR, Finding the

Files to Search

printing to STDERR for grepr finding matching lines of

input, Solution

printing to STDERR using eprintln!, Creating a Library

Crate

reporting for echor program, Parsing Command-Line

Arguments Using clap

unreadable directories in findr, Finding All the Things

escape sequences created by Style::reverse, Writing the

Program

escaping special characters

asterisk (*) in bash shell, How find Works

delimiters, How cut Works

executables, Getting Started with “Hello, world!”

exit values (program), Understanding Program Exit Values

making programs composable, Exit Values Make Programs

Composable

expected output versus actual output, Testing the Program

Output

expressions versus statements, Creating the Program Output

extended regular expressions, Defining the Arguments

indicating with -E flag, Defining the Arguments

Extract::Fields, Defining the Arguments

extracting bytes, characters, or fields, Defining the

Arguments, Parsing the Position List

extracting characters or bytes, Extracting Characters or

Bytes-Extracting Characters or Bytes

F

-f (force) option, Creating and Running a Project with Cargo

false command, Understanding Program Exit Values

chaining to ls command, Exit Values Make Programs

Composable

false values, Writing and Running Integration Tests

fd replacement for find, Going Further

field init shorthand, Defining the Arguments

fields, bytes, or characters, extracting, Defining the

Arguments, Parsing the Position List

fields, selecting from csv::StringRecord, Selecting Fields

from a csv::StringRecord-Selecting Fields from a

csv::StringRecord

FILE argument (fortuner), Defining the Arguments

file argument (tailr), Defining the Arguments

file command, Getting Started with “Hello, world!”

file glob patterns, differences in syntax from regular

expressions, Defining the Arguments

file globs, How find Works

expanding, Iterating Through the File Arguments,

Converting Strings into Errors

finding items matching file glob pattern, How find Works

File::create function, Processing the Input Files, Solution

filehandles, Opening a File or STDIN

FileInfo struct, Writing and Testing a Function to Count File

Elements

files

file types for find utility, How find Works

filenames, transforming into regular expressions for

findr, Validating the Arguments

opening a file or STDIN with catr program, Opening a File

or STDIN

printing file separators, Printing the File Separators

reading line by line, Reading a File Line by Line

reading line in with catr program, Solution

supplying as text source for fortune, How fortune Works

unreadable, handling by fortune, How fortune Works,

Finding the Input Sources

files argument, Getting Started, Parsing and Validating the

Command-Line Arguments

filesystem module (standard), Comparing Program Output

FileType::is_dir, Solution

FileType::is_file, Solution

FileType::is_symlink, Solution

filter, map, and filter_map operations, chaining for findr,

Solution

find utility, Creating and Running a Project with Cargo,

Finders Keepers-Summary

how it works, How find Works-How find Works

writing findr version

defining the arguments, Defining the Arguments-

Validating the Arguments

finding all items matching conditions, Finding All

the Things-Finding All the Things

getting started, Getting Started

going further, Going Further

solution, Solution-Going Further

validating the arguments, Validating the Arguments-

Finding All the Things

finding files to search in grepr, Finding the Files to

Search-Finding the Matching Lines of Input, Solution

finding matching lines of input in grepr, Finding the

Matching Lines of Input-Finding the Matching Lines of Input,

Solution

find_files function, Solution, Finding the Input Sources,

Solution, Finding the Files, Solution

integrating into run function for lsr, Finding the Files

returning paths in sorted order, Finding the Input

Sources

testing for hidden files in lsr, Finding the Files

unit tests in lsr, Finding the Files

find_lines function, Solution

fixed-width text files, How cut Works

flags, Accessing the Command-Line Arguments

- for short names and ‐‐ for long names of, How cat

Works

fn (function declaration), Getting Started with “Hello,

world!”

for loops, Preserving Line Endings While Reading a File

format! macro, Using the Test Suite, Solution

formatting output of wcr program, Formatting the Output-

Formatting the Output

format_mode function, Displaying Octal Permissions, Solution

unit test for in lsr, Displaying Octal Permissions

use in format_output function, Solution

format_month function, Writing the Program, Writing the

Program, Solution

format_output function, Testing the Long Format, Solution

unit test for in lsr, Testing the Long Format, Testing

the Long Format

fortune files, reading in fortuner, Reading the Fortune

Files-Randomly Selecting a Fortune

fortune program, Fortunate Son-Summary

how it works, How fortune Works-How fortune Works

writing fortuner version

defining the arguments, Defining the Arguments-

Defining the Arguments

finding input sources, Finding the Input Sources-

Reading the Fortune Files

getting started, Getting Started

going further, Going Further

printing records matching a pattern, Printing Records

Matching a Pattern

reading fortune files, Reading the Fortune Files-

Randomly Selecting a Fortune

selecting fortunes randomly, Randomly Selecting a

Fortune-Randomly Selecting a Fortune

solution, Solution-Solution

Fortune struct, Reading the Fortune Files

fortunes, randomly selecting in fortuner, Randomly Selecting

a Fortune-Randomly Selecting a Fortune

From trait, Converting Strings into Errors

From::from function, Converting Strings into Errors, Parsing

the Position List

from_reader method, Parsing Delimited Text Files

fs::metadata function, Using the Test Suite, Solution,

Solution

fs::read_dir function, Solution

fs::read_to_string function, Comparing Program Output

functions

closures versus, Solution

defining using fn, Getting Started with “Hello, world!”

G

-G flag for basic regular expressions in grep, Defining the

Arguments

get_args function, Getting Started, Getting Started

calr program, Defining and Validating the Arguments

calr program, parsing and validating arguments, Defining

and Validating the Arguments

commr utility, Defining the Arguments

cutr utility, Defining the Arguments

incorporating parse_pos in, Defining the Arguments,

Parsing the Position List

defining for wcr program, Getting Started

findr utility, Defining the Arguments, Validating the

Arguments

fortuner program, Defining the Arguments

in grepr, Defining the Arguments

lsr utility, Defining the Arguments

tailr utility, Parsing and Validating the Command-Line

Arguments

uniqr program, Defining the Arguments, Defining the

Arguments

using parse_positive_int in to validate lines and bytes

options, Defining the Arguments

get_group_by_gid function, Formatting the Long Listing

get_start_index function, Finding the Starting Line to Print,

Finding the Starting Byte to Print, Finding the Start Index

get_user_by_uid function, Formatting the Long Listing

glob pattern, handling by bash shell, Iterating Through the

File Arguments

GNU version

cal program, How cal Works

cat command, How cat Works

comm utility, How comm Works, Processing the Files

cut utility, How cut Works

echo utility, How echo Works

find utility, How find Works

grep utility, How grep Works

head program, How head Works

tail utility, How tail Works

uniq program, How uniq Works

wc program, How wc Works, Going Further

grep utility, Jack the Grepper-Summary

how it works, How grep Works-How grep Works

writing grepr version

defining the arguments, Defining the Arguments-

Defining the Arguments

finding files to search, Finding the Files to Search-

Finding the Matching Lines of Input

finding matching lines of input, Finding the Matching

Lines of Input-Finding the Matching Lines of Input

find_files function, Solution

find_lines function, Solution

getting started, Getting Started

going further, Going Further

groups, Formatting the Long Listing, Solution

guards, Writing a Unit Test to Parse a String into a Number

H

-h or --help command-line flags, How echo Works

head program, Head Aches-Summary, How fortune Works

cat versus, Head Aches

how it works, How head Works-How head Works

writing headr version

defining the arguments, Defining the Arguments-

Defining the Arguments

getting started, Getting Started

going further, Going Further

preserving line endings when reading a file,

Preserving Line Endings While Reading a File

printing file separators, Printing the File

Separators

processing input files, Processing the Input Files-

Processing the Input Files

reading a file line by line, Reading a File Line by

Line

reading bytes versus characters, Reading Bytes Versus

Characters

writing unit test to parse string into a number,

Writing a Unit Test to Parse a String into a Number-

Writing a Unit Test to Parse a String into a Number

heap memory, Using the Result Type

--help command-line flag, How echo Works

generating help output for wcr, Getting Started

.hidden file, How ls Works

hidden files, Solution

including/not including in directory listings, Finding

the Files

test for, Finding the Files

hyperfine crate, Benchmarking the Solution

I

i32 type, Defining and Validating the Arguments

i64 type, Using a Regular Expression to Match an Integer with

an Optional Sign

casting usize to, Counting All the Lines and Bytes in a

File

i64::wrapping_neg function, Using a Regular Expression to

Match an Integer with an Optional Sign

if expressions, Creating the Program Output

without an else, Creating the Program Output

immutability of Rust variables, Writing and Running

Integration Tests

impl keyword, Writing and Testing a Function to Count File

Elements

index files for random selection of text records, How fortune

Works

index positions, use by parse_pos function, Defining the

Arguments

inner joins, How comm Works

input files

large, using to test tailr, Testing the Program with

Large Input Files

processing in commr, Processing the Files-Processing the

Files

processing in uniqr program, Processing the Input Files-

Processing the Input Files

requirement by fortuner, Defining the Arguments

searching multiple in grep, How grep Works

uniq program, How uniq Works

uniqr program, Testing the Program

validating and opening in commr, Validating and Opening

the Input Files-Processing the Files

input sources, finding in fortuner, Finding the Input

Sources-Reading the Fortune Files

--insensitive option, Finding the Matching Lines of Input

using with regex::RegexBuilder, Defining the Arguments

insensitive flag, Defining the Arguments, Defining the

Arguments

integers

converting lines and bytes to, Getting Started

parsing and validating arguments as in fortuner, Defining

the Arguments

parsing string into integer value, Defining and

Validating the Arguments

types in Rust, Getting Started

using regular expression to match integer with optional

sign, Using a Regular Expression to Match an Integer with

an Optional Sign-Using a Regular Expression to Match an

Integer with an Optional Sign

valid integer values for month and year, Defining and

Validating the Arguments

integration tests

writing and running, Writing and Running Integration

Tests-Exit Values Make Programs Composable

writing for echor, Writing Integration Tests-Summary

comparing program output for echo and echor,

Comparing Program Output

creating test output files, Creating the Test Output

Files

using the Result type, Using the Result Type-Summary

intersection, Boston Commons

Into trait, Converting Strings into Errors

Into::into function, Defining the Arguments

invert flag, Defining the Arguments

inverting matching, Finding the Matching Lines of Input

invert_match, Finding the Matching Lines of Input

isize type, Getting Started

iswspace function, Going Further

Iterator type, methods that take a closure, Getting Started

Iterator::all function, Getting Started, Solution

Iterator::any function, Solution

Iterator::collect function, Validating the Arguments,

Solution, Parsing the Position List, Selecting Characters

from a String

Iterator::count method, Counting the Elements of a File or

STDIN

Iterator::enumerate function, Printing Line Numbers, Printing

the File Separators, Printing the Bytes, Solution

Iterator::filter, Solution

Iterator::filter_map function, Solution, Solution, Selecting

Characters from a String

Iterator::flatten function, Selecting Characters from a

String, Solution

Iterator::flat_map function, Selecting Characters from a

String, Selecting Bytes from a String

Iterator::get function, Selecting Bytes from a String

Iterator::last function, Testing the Long Format

Iterator::map function, Parsing Delimited Text Files,

Selecting Characters from a String

turning &str values into String values, Selecting Fields

from a csv::StringRecord

Iterator::next function, Solution

Iterator::take function, Reading a File Line by Line

iterators

creating to retrieve lines from filehandles in commr,

Solution-Solution

using to chain multiple operations for findr, Solution

zip method, Writing the Program, Solution

itertools, Getting Started

izip! macro, Solution

J

join operations, Boston Commons

L

last_day_in_month function, Writing the Program, Solution

let keyword, Writing and Running Integration Tests

lifetime specifiers for variables, Defining the Arguments,

Testing the Program, Selecting Fields from a

csv::StringRecord

&str variable, Solution

lines

counting total lines in a file in tailr, Counting the

Total Lines and Bytes in a File-Finding the Starting Line

to Print

finding starting line to print in tailr, Finding the

Starting Line to Print

getting number in a file, using wc, How wc Works

preserving line endings while reading a file, Preserving

Line Endings While Reading a File, Counting the Elements

of a File or STDIN, Finding the Matching Lines of Input

printing in tailr, Printing the Lines

printing line numbers in catr program, Printing Line

Numbers

reading without preserving line endings, Processing the

Files

lines argument, Getting Started, Parsing and Validating the

Command-Line Arguments

lines option (tailr), Defining the Arguments

negative and positive values for, Defining the Arguments

links, Formatting the Long Listing

Linux

find output from GNU version, How find Works

GNU echo on, How echo Works

.hidden file, How ls Works

local time zone, Defining and Validating the Arguments

long format (ls -l), How ls Works

long format, testing in lsr, Testing the Long Format-Testing

the Long Format

long listing, formatting in lsr, Formatting the Long Listing-

Formatting the Long Listing

look-around assertions, Defining the Arguments

ls utility, Creating and Running a Project with Cargo,

Writing and Running Integration Tests, Elless Island-Summary

chaining to false command, Exit Values Make Programs

Composable

chaining to true command, Exit Values Make Programs

Composable

executed with no options, How ls Works

how it works, How ls Works-How ls Works

writing lsr version

defining the arguments, Defining the Arguments-

Finding the Files

displaying octal permissions, Displaying Octal

Permissions-Displaying Octal Permissions

finding the files, Finding the Files-Finding the

Files

formatting the long listing, Formatting the Long

Listing

getting started, Getting Started

going further, Going Further

solution, Solution-Notes from the Testing Underground

testing the long format, Testing the Long Format-

Testing the Long Format

-l|--long option flag (ls), How ls Works

-l|--long option flag (lsr), Formatting the Long Listing-

Formatting the Long Listing

M

-m month option (calr), Defining and Validating the Arguments

-m option (fortune), How fortune Works

-m option (fortuner), Defining the Arguments, Reading the

Fortune Files

macOS, find output from BSD version, How find Works

macros, Getting Started with “Hello, world!”

main function, Getting Started with “Hello, world!”

man cat command, How cat Works

man echo command, How echo Works

map, filter, and filter_map operations, chaining for findr,

Solution

mask method, Solution

match function, including guard in, Writing a Unit Test to

Parse a String into a Number

match keyword, Opening a File or STDIN

-max_depth and -min_depth options (find), Going Further

memory

reading file into with fs::read_to_string, Comparing

Program Output

stack and heap, Using the Result Type

metadata, Finding the Files

metadata::gid function, Formatting the Long Listing

metadata::is_dir function, Formatting the Long Listing

metadata::len function, Formatting the Long Listing, Solution

metadata::mode, Formatting the Long Listing, Displaying Octal

Permissions

metadata::modified, Formatting the Long Listing

metadata::nlink, Formatting the Long Listing, Solution

metadata::uid function, Formatting the Long Listing

mkdir command, Organizing a Rust Project Directory

mk_triple helper function, Solution

mod keyword, Solution

mod owner, Solution

modified value, Solution

modules imported to finish lsr, Solution

month method, Defining and Validating the Arguments

months

case-insensitive names for, Defining and Validating the

Arguments

current month used with calr program with no arguments,

Defining and Validating the Arguments

format_month function, Solution

month set to none with -y|--year flag, Defining and

Validating the Arguments

parse_month function, Defining and Validating the

Arguments

provided as distinguishing substring, Defining and

Validating the Arguments

using month names to figure out the given month, Defining

and Validating the Arguments

valid integer values for, Defining and Validating the

Arguments

valid month names for parse_month, Defining and

Validating the Arguments

more and less pagers, Going Further

mut (mutable) keyword, Writing and Running Integration Tests

adding to line_num variable, Printing Line Numbers

creating mutable print closure, Solution

making ending variable mutable, Creating the Program

Output

mv (move) command, Organizing a Rust Project Directory

N

-n, --lines option (tailr), Defining the Arguments

rejecting noninteger values, Defining the Arguments

naive dates, Defining and Validating the Arguments

NaiveDate struct, Writing the Program

constructing for start of given month, Solution

representing last day of month, Writing the Program

NaiveDate::from_ymd, Solution

naming conventions in Rust, Defining the Arguments

newlines, Counting the Elements of a File or STDIN

omitting using print! macro, Creating the Program Output

on Windows and Unix, Processing the Input Files

None value (Option), Creating the Program Output

O

octal permissions, displaying in lsr, Displaying Octal

Permissions-Displaying Octal Permissions

once_cell crate, Getting Started, Using a Regular Expression

to Match an Integer with an Optional Sign

open function, Iterating the Files, Extracting Characters or

Bytes, Finding the Matching Lines of Input

modifying for input files in commr, Validating and

Opening the Input Files

Option<Result>, Defining the Arguments

Option type, Creating the Program Output, Getting Started

Option::and_then, Defining and Validating the Arguments

Option::map function, Defining the Arguments, Defining the

Arguments, Defining the Arguments

Option::transpose function, Defining the Arguments,

Validating the Arguments, Defining the Arguments

Option::unwrap function, Creating the Program Output,

Defining the Parameters

Option::unwrap_or_default, Validating the Arguments

Option<&str>, Defining the Arguments

optional arguments, Accessing the Command-Line Arguments

defining before or after positional arguments, Defining

the Parameters

files, lines, and bytes, Getting Started

optional positional parameters, Defining the Arguments

or expressions, How find Works

Ord::cmp function, Solution

OsStr type, Solution, Solution

OsString type, Solution

output files

uniq program, How uniq Works

uniqr program, Testing the Program

Owner enum, Solution

P

pagers, Going Further

parse_index function, use in parse_pos, Parsing the Position

List

parse_int function, Defining and Validating the Arguments,

Defining and Validating the Arguments

parse_month function, Defining and Validating the Arguments,

Defining and Validating the Arguments

parse_num function, Parsing Positive and Negative Numeric

Arguments

using regex to match positive or negative integers, Using

a Regular Expression to Match an Integer with an Optional

Sign

parse_pos function, Defining the Arguments

incorporating into get_args function, Defining the

Arguments, Parsing the Position List

parse_positive_int function, Writing a Unit Test to Parse a

String into a Number, Defining the Arguments

parse_u64 function, Defining the Arguments, Defining the

Arguments

parse_year function, Defining and Validating the Arguments,

Defining and Validating the Arguments

parsing and vaildating arguments (tailr), Parsing and

Validating the Command-Line Arguments-Processing the Files

PartialEq trait, Writing and Testing a Function to Count File

Elements

PascalCase, Defining the Arguments

$PATH environment variable, Writing and Running Integration

Tests

Path struct, Finding the Input Sources

converting to PathBuf, Solution

Path::display function, Finding the Files, Formatting the

Long Listing

Path::extension, Solution

Path::file_name, converting from OsStr to String, Solution

PathBuf type, Finding the Input Sources, Solution, Testing

the Long Format, Solution

found files represented as, Finding the Files

PathBuf::metadata, Formatting the Long Listing

paths

DirEntry::path, Solution

indicating for find utility search, How find Works

listing multiple search paths as positional arguments for

find, How find Works

in lsr program, Defining the Arguments, Finding the Files

looking for files in provided paths, Finding the

Files

nonexistent file paths, handling by fortune, How fortune

Works

pattern argument, Defining the Arguments

pattern matching

find utility, Finders Keepers

in grep, Jack the Grepper

guard in match, Writing a Unit Test to Parse a String

into a Number

inverting the match pattern in grep, How grep Works

using to unpack values from Iterator::enumerate, Printing

Line Numbers

pattern option, Solution

Perl Compatible Regular Expressions (PCRE), Defining the

Arguments

permissions, Solution

displaying octal permissions in lsr, Displaying Octal

Permissions-Displaying Octal Permissions

pick_fortune function, Randomly Selecting a Fortune, Solution

PlusZero variant, Defining the Arguments

pointers, Using the Result Type

creating to heap-allocated memory to hold filehandle,

Opening a File or STDIN

Path type behind, Finding the Input Sources

positional arguments, Accessing the Command-Line Arguments

defining with min_values, Defining the Parameters

files and directories in grep, How grep Works

grep utility, How grep Works

optional, Defining the Arguments

order of declaration in grepr, Defining the Arguments

PositionList type alias, Defining the Arguments, Parsing

Delimited Text Files

POSIX (Portable Operating System Interface) standards,

Understanding Program Exit Values

predicates, Getting Started

predicates crate, Writing Integration Tests, Writing

Integration Tests

pretty-printing, Parsing Command-Line Arguments Using clap

print closure, Solution, Solution

print! macro, Creating the Program Output

println! macro, Getting Started with “Hello, world!”

automatically appending newline character, Getting

Started

print_bytes function, Printing the Bytes

print_lines function, Printing the Lines

program exit values, Understanding Program Exit Values

pub, using to define public functions and variables, Creating

a Library Crate

Q

quiet option (tailr), Defining the Arguments, Parsing and

Validating the Command-Line Arguments, Printing the Bytes

-q|--quiet option, Creating and Running a Project with Cargo

R

-r (recursive) option, Creating and Running a Project with

Cargo, Getting Started

-R (recursive, maintain symlinks) option, Getting Started

rand crate, Getting Started, Randomly Selecting a Fortune

generating random filename that doesn't exist, Using the

Test Suite

rand::rngs::StdRng::seed_from_u64, Randomly Selecting a

Fortune

rand::thread_rng function, Randomly Selecting a Fortune

random number generator (RNG), Randomly Selecting a Fortune

Range structs, Defining the Arguments

Range type, Preserving Line Endings While Reading a File

ranges

changes in curt utility, How cut Works

in character classes in regular expressions, Using a

Regular Expression to Match an Integer with an Optional

Sign

in cutr utility, Defining the Arguments

iterating over, Selecting Characters from a String

parsing and validating for byte, character, and field

arguments in cutr, Defining the Arguments

parsing and validating in cutr, Parsing the Position

List-Parsing the Position List

selected text for cutting, Shave and a Haircut

raw strings, Parsing the Position List

read head, Finding the Starting Byte to Print

Read trait, Parsing Delimited Text Files

file argument implementing, Finding the Starting Byte to

Print

read/write/execute mask values, Displaying Octal Permissions

Reader::headers, Parsing Delimited Text Files

Reader::records method, Parsing Delimited Text Files

read_fortunes function, Reading the Fortune Files, Solution

--recursive option, Finding the Files to Search, Finding the

Matching Lines of Input

recursive flag, Defining the Arguments

recursive, case-insensitive search in grep, How grep Works

redirect operator (>) in bash, How echo Works

refactoring code, Solution

references, Using the Result Type

lifetime of variables and, Defining the Arguments

regex, Defining the Arguments

(see also regular expressions)

regex crate, Defining the Arguments, Defining the Arguments

Regex::as_str method, Defining the Arguments

Regex::captures, Parsing the Position List, Parsing the

Position List, Using a Regular Expression to Match an Integer

with an Optional Sign

regex::Regex type, Defining the Arguments

regex::RegexBuilder, Defining the Arguments

RegexBuilder::build method, Defining the Arguments, Defining

the Arguments

RegexBuilder::case_insensitive method, Defining the

Arguments, Defining the Arguments

RegexBuilder::new method, Defining the Arguments, Defining

the Arguments

regular expressions, Finders Keepers

about, Defining the Arguments

case-insensitive, creating, Defining the Arguments

creating lazily evaluated regular expression, Using a

Regular Expression to Match an Integer with an Optional

Sign

creating to incorporate insensitive option in grepr,

Defining the Arguments

creating to match two integers separated by a dash,

Parsing the Position List

in grep, How grep Works

-m option parsed as in fortuner, Defining the Arguments

printing records matching a regular expression, Printing

Records Matching a Pattern

syntax differences from file glob patterns, Defining the

Arguments

syntax, options for, Defining the Arguments

transforming filenames into for findr, Validating the

Arguments

using to match integer with optional sign, Using a

Regular Expression to Match an Integer with an Optional

Sign-Using a Regular Expression to Match an Integer with

an Optional Sign

Result object, Adding a Project Dependency

Result<Option>, Defining the Arguments

Result type, Comparing Program Output, Reading the Lines in a

File

mapping into closure printing errors to STDERR, Solution

using in integration testing of echor, Using the Result

Type-Summary

Result::map_err function, Validating the Arguments, Defining

the Arguments, Defining the Arguments

Result::ok function, Solution, Finding the Files

Result::unwrap function, Adding a Project Dependency,

Comparing Program Output

return keyword, Using the Result Type

ripgrep (rg) tool, Going Further

rm (remove) command, Organizing a Rust Project Directory

Row type, Solution

run function

calr program, Solution

creating for wcr program, Getting Started

for cutr utility, Final Boss

final version for wcr program, Formatting the Output

findr utility, Defining the Arguments

lsr program, Solution

lsr utility, integrating find_files in, Finding the Files

uniqr program, Testing the Program

runs function, Writing and Running Integration Tests

run_count helper function, Testing the Program

run_long function, Notes from the Testing Underground

run_stdin_count function, Testing the Program

Rust programs, Truth or Consequences-Summary

getting started with “Hello, world!”, Getting Started

with “Hello, world!”-Getting Started with “Hello,

world!”

testing program output, Testing the Program Output

Rust projects

adding project dependency, Adding a Project Dependency

organizing project directory, Organizing a Rust Project

Directory

rustc command, Organizing a Rust Project Directory

RUST_BACKTRACE=1 environment variable, Reading Bytes from a

File

S

-s option (fortuner), Defining the Arguments

sed utility, Solution

s// substitution command, Solution

--seed option (fortuner), Defining the Arguments

Seek trait, Finding the Starting Byte to Print

Seek::seek function, Printing the Bytes

SeekFrom::Start, Printing the Bytes

semantic version numbers, Creating and Running a Project with

Cargo

separators between input files in tail, How tail Works

set operations, Boston Commons

shadowing a variable, Printing Line Numbers

shebang, Creating the Test Output Files

show_hidden, Finding the Files

signed integers, Getting Started

slice::iter method, Getting Started

SliceRandom::choose function, Randomly Selecting a Fortune

slices, Using the Result Type, Getting Started

of bytes, Selecting Bytes from a String

Some<T> value (Option), Creating the Program Output

sort command, How uniq Works, Going Further

sources, positional arguments interpreted as in fortuner,

Defining the Arguments

spaces, delimiting bash shell CLI arguments, How echo Works

src (source) directory, Organizing a Rust Project Directory

stack memory, Using the Result Type

standard (std) libraries, Writing and Running Integration

Tests

statements versus expressions, Creating the Program Output

static annotation, denoting lifetime of values, Testing the

Program

static, global, computed value, Using a Regular Expression to

Match an Integer with an Optional Sign

using once_cell crate to create, Getting Started

std::borrow::Cow, Conditionally Testing on Unix Versus

Windows

std::cmp::Ordering, Solution

std::cmp::Ordering::*, Solution

std::convert::From trait, Converting Strings into Errors

std::convert::Into trait, Converting Strings into Errors

std::env::args, Accessing the Command-Line Arguments

std::error::Error trait, Using the Result Type

std::fmt::Display trait, Accessing the Command-Line Arguments

std::fs, Comparing Program Output

std::fs::File, Processing the Files

std::fs::metadata, Finding the Files

std::io, Reading Bytes Versus Characters

std::io::BufRead, Finding the Starting Line to Print

std::io::BufRead trait, Finding the Matching Lines of Input

std::io::BufReader trait, Reading Bytes Versus Characters

std::io::Cursor, Writing and Testing a Function to Count File

Elements, Finding the Matching Lines of Input

std::io::Read trait, Reading Bytes from a File

std::io::Result, Reading the Lines in a File

(see also Result type)

std::io::stdout, Solution

std::io::Write, Solution

std::iter::Copied, Selecting Bytes from a String

std::mem, Solution

std::mem::take, Solution

std::num::NonZeroUsize, Parsing the Position List

std::ops::Not, Getting Started

std::ops::Range structs, Preserving Line Endings While

Reading a File, Defining the Arguments

std::os::unix::fs::MetadataExt, Formatting the Long Listing

std::process::abort function, Understanding Program Exit

Values

std::process::exit function, Understanding Program Exit

Values

std::str::FromStr, Defining and Validating the Arguments

std::time::SystemTime struct, Formatting the Long Listing

STDERR, Testing the Program Output

printing errors to, using eprintln!, Creating a Library

Crate

redirecting to file, Parsing Command-Line Arguments Using

clap

redirecting to file with wc, How wc Works

STDIN

connecting to STDOUT for another command, How cat Works

grep reading from, How grep Works

opening with catr program, Opening a File or STDIN-

Opening a File or STDIN

printing lines, words, and bytes from for wcr, Getting

Started

reading from with uniq, How uniq Works

tailr not reading by default, Defining the Arguments

uniqr program reading from, Defining the Arguments

STDOUT

connecting to STDIN for another command, How cat Works

echo printing arguments to, How echo Works

redirecting to file, Parsing Command-Line Arguments Using

clap

sending to file with bash redirect (>) operator, How echo

Works

str type, Using the Result Type, Formatting the Output

str::as_bytes function, Reading Bytes from a File

str::chars method, Counting the Elements of a File or STDIN,

Selecting Characters from a String

str::parse function, Writing a Unit Test to Parse a String

into a Number, Parsing the Position List, Defining and

Validating the Arguments

str::repeat function, Solution

str::split_whitespace function, Counting the Elements of a

File or STDIN

strfile program, How fortune Works

strftime format options, Solution

strftime syntax, Formatting the Long Listing

String type, Creating the Program Output, Using the Test

Suite, Formatting the Output

converting Cow value into, Selecting Bytes from a String

converting in_file and out_file arguments to, Defining

the Arguments

converting OsStr to, Solution

converting selected bytes to, Printing the Bytes

generating using format! macro, Using the Test Suite

valid UTF-8-encoded string, Reading Bytes Versus

Characters

String::chars function, Going Further

String::clear function, Preserving Line Endings While Reading

a File

String::from function, Defining the Arguments

String::from_utf8 function, Reading Bytes from a File

String::from_utf8_lossy function, Reading Bytes Versus

Characters, Reading Bytes from a File, Reading Bytes from a

File, Finding the Starting Byte to Print

needing slice of bytes, Selecting Bytes from a String

String::new function, Preserving Line Endings While Reading a

File

StringRecord type, Parsing Delimited Text Files

StringRecord::get function, Selecting Fields from a

csv::StringRecord

strings

converting into error messages, Converting Strings into

Errors-Defining the Arguments

formatting for output of wcr, Formatting the Output

parsing into a number, writing unit test for, Writing a

Unit Test to Parse a String into a Number

parsing into integer value, Defining and Validating the

Arguments

parsing string value into positive usize value, Writing a

Unit Test to Parse a String into a Number

printing empty string when reading from STDIN, Formatting

the Output

raw, in regular expressions, Parsing the Position List

searching for text records matching given string in

fortune, How fortune Works

selecting bytes from, Selecting Bytes from a String

selecting characters from, Selecting Characters from a

String-Selecting Bytes from a String

structs, Accessing the Command-Line Arguments

naming conventions in Rust, Defining the Arguments

Style::reverse, Solution

symbolic links

defined, How find Works

indicated by -> symbol, How find Works

SystemTime struct, Formatting the Long Listing

T

tab character output delimiter in comm, How comm Works

tab character output delimiter in commr, Defining the

Arguments

tab-separated values (.tsv) files, How cut Works

parsing, Defining the Arguments

tabular crate, Getting Started

tabular::Table, Solution

tail utility, Tailor Swyfte-Summary

how it works, How tail Works-How tail Works

writing tailr version

benchmarking the solution, Benchmarking the Solution

counting total lines and bytes in a file, Counting

the Total Lines and Bytes in a File-Finding the

Starting Line to Print, Counting All the Lines and

Bytes in a File

defining the arguments, Defining the Arguments-

Defining the Arguments

finding start index, Finding the Start Index

finding starting byte to print, Finding the Starting

Byte to Print

finding starting line to print, Finding the Starting

Line to Print

getting started, Getting Started

going further, Going Further

parsing and validating command-line arguments,

Parsing and Validating the Command-Line Arguments-

Processing the Files

parsing positive and negative numeric arguments,

Parsing Positive and Negative Numeric Arguments

printing the bytes, Printing the Bytes

printing the lines, Printing the Lines

processing the files, Processing the Files

regular expression matching integers with optional

sign, Using a Regular Expression to Match an Integer

with an Optional Sign-Using a Regular Expression to

Match an Integer with an Optional Sign

testing program with large input files, Testing the

Program with Large Input Files

take method (std::io::Read), Reading Bytes from a File

TakeValue, Parsing Positive and Negative Numeric Arguments,

Finding the Starting Line to Print

target directory, Creating and Running a Project with Cargo

tempfile crate, Summary

tempfile::NamedTempFile, Testing the Program

#[test] attribute, Writing and Running Integration Tests

test-driven development (TDD), Starting with Tests, Writing

and Testing a Function to Count File Elements

test-first development, Starting with Tests

testing

calr tests, Getting Started

combining strict language like Rust with, Epilogue

conditionally testing Unix versus Windows for findr,

Conditionally Testing on Unix Versus Windows-Going

Further

notes from testing underground, Notes from the Testing

Underground-Notes from the Testing Underground

tests for lsr, Getting Started

of uniqr program, Testing the Program-Testing the Program

using test suite for catr program, Using the Test Suite

writing and running integration tests, Writing and

Running Integration Tests-Exit Values Make Programs

Composable

writing unit test to parse string into a number, Writing

a Unit Test to Parse a String into a Number

tests directory, Writing and Running Integration Tests

test_all function, Formatting the Output

time command, Benchmarking the Solution

touch command, How cat Works

tr (translate characters) command, Writing and Running

Integration Tests

traits, Accessing the Command-Line Arguments

indicating multiple trait bounds, Finding the Starting

Byte to Print

naming conventions in Rust, Defining the Arguments

tree command, Organizing a Rust Project Directory, Creating

and Running a Project with Cargo, Going Further

writing Rust version of, Going Further

true and false values, Writing and Running Integration Tests

flags for wcr program, Getting Started

true command, Understanding Program Exit Values

chaining to ls command, Exit Values Make Programs

Composable

tuples, Printing Line Numbers, Solution

containing number of lines and bytes in a file, Counting

All the Lines and Bytes in a File

turbofish operator (::<>), Reading Bytes from a File,

Defining and Validating the Arguments

types

casting, Reading Bytes from a File

inferring, Reading Bytes from a File

naming conventions in Rust, Defining the Arguments

string variables in Rust, Using the Result Type

values in vectors, Creating the Program Output

U

u32 type, Defining and Validating the Arguments

u64 type, Finding the Starting Line to Print

-s option parsed as in fortuner, Defining the Arguments

Unicode, Reading Bytes Versus Characters, How wc Works

unimplemented! macro, Writing a Unit Test to Parse a String

into a Number

uniq program, Den of Uniquity-Summary

how it works, How uniq Works-How uniq Works

writing uniqr version

defining the arguments, Defining the Arguments-

Defining the Arguments

getting started, Getting Started

going further, Going Further

processing input files, Processing the Input Files-

Processing the Input Files

solution, Solution

testing the program, Testing the Program-Testing the

Program

unit tests, Writing and Running Integration Tests

creating for count function, Writing and Testing a

Function to Count File Elements-Writing and Testing a

Function to Count File Elements

creating for cutr utility, Defining the Arguments

test for extract_fields function, Parsing Delimited Text

Files

test_find_files in fortuner, Finding the Input Sources

test_find_files in lsr, Finding the Files

test_format_mode in lsr, Displaying Octal Permissions

test_format_month in calr, Writing the Program

test_format_output in lsr, Testing the Long Format,

Testing the Long Format

test_last_day_in_month in calr, Writing the Program

test_parse_int in calr, Defining and Validating the

Arguments

test_parse_month in calr, Defining and Validating the

Arguments

test_parse_u64 in fortuner, Defining the Arguments

test_parse_year in calr, Defining and Validating the

Arguments

test_read_fortunes in fortuner, Reading the Fortune

Files, Randomly Selecting a Fortune

writing to parse string into a number, Writing a Unit

Test to Parse a String into a Number

unit type, Getting Started, Using the Result Type

return by if expression without else, Creating the

Program Output

Unix

conditionally testing Unix versus Windows for findr,

Conditionally Testing on Unix Versus Windows-Going

Further

newlines, Processing the Input Files

unknown character, How tail Works

unreachable! macro, Validating the Arguments

unsigned integers, Getting Started

UpperCamelCase, Defining the Arguments

usage statement, Creating and Running a Project with Cargo

calr program, Defining and Validating the Arguments

commr utility, Defining the Arguments

cutr utility, Defining the Arguments

fortuner program, Defining the Arguments

lsr program, Defining the Arguments

tailr utility, Defining the Arguments

uniqr program, Defining the Arguments

users, Getting Started, Solution

users crate, Formatting the Long Listing

usize type, Getting Started, Writing a Unit Test to Parse a

String into a Number, Parsing the Position List

casting to i64, Counting All the Lines and Bytes in a

File

UTC (Coordinated Universal Time), Defining and Validating the

Arguments

UTF-8 character encoding, Reading Bytes Versus Characters

byte selection producing invalid UTF-8 string, Selecting

Bytes from a String

String type and, Reading Bytes from a File

V

Values type, Creating the Program Output

value_error closure, Parsing the Position List

variables (Rust), Writing and Running Integration Tests

lifetimes, Defining the Arguments

shadowing, Printing Line Numbers

Vec type, Creating the Program Output, Selecting Characters

from a String

Vec::chunks, Solution, Solution

Vec::dedup function, Finding the Input Sources, Solution

Vec::extend function, Solution

Vec::first function, Parsing the Position List

Vec::get function, Selecting Characters from a String

Vec::join function, Creating the Program Output

Vec::len method, Printing the File Separators

Vec::push function, Selecting Characters from a String

Vec::sort function, Finding the Input Sources, Solution

Vec::windows, Going Further

Vec<&str>, Selecting Fields from a csv::StringRecord

Vec<EntryType>, Validating the Arguments

Vec<Range<usize>>, Defining the Arguments

Vec<String>, Solution

vectors

of byte references, Selecting Bytes from a String

creating in Rust, Creating the Program Output

growable nature of, Using the Result Type

manually pushing to in find_files function, Solution

passing vector of arguments, Using the Result Type

virtual environments (Python), Adding clap as a Dependency

W

walkdir crate, Getting Started, Finding All the Things

WalkDir type, Finding the Files to Search, Solution, Solution

WalkDir::max_depth, Going Further

WalkDir::min_depth, Going Further

walkdir::WalkDir, Solution

wc (word count) program, Word to Your Mother-Summary

how it works, How wc Works-How wc Works

writing wcr version

counting elements of file or STDIN, Counting the

Elements of a File or STDIN

formatting the output, Formatting the Output-

Formatting the Output

getting started, Getting Started-Getting Started

going further, Going Further

iterating the files, Iterating the Files

writing and testing function to count file elements,

Writing and Testing a Function to Count File

Elements-Writing and Testing a Function to Count File

Elements

where clause, Finding the Starting Byte to Print

Windows

conditionally testing Unix versus Windows for findr,

Conditionally Testing on Unix Versus Windows-Going

Further

determining if grepr tests are being run in, Getting

Started

expanding file glob with PowerShell, Iterating Through

the File Arguments, Converting Strings into Errors

newlines, Processing the Input Files

symbolic links and, How find Works

Windows Subsystem for Linux, How find Works, Elless Island

word count (see wc program)

words, getting number of, How wc Works

Write trait, Solution, Summary

Y

year method, Defining and Validating the Arguments

years

current year used with calr program with no arguments,

Defining and Validating the Arguments

parse_year function, Defining and Validating the

Arguments, Defining and Validating the Arguments

valid integer values for, Defining and Validating the

Arguments

year set to current year with -y|--year flag, Defining

and Validating the Arguments

-y|--year flag (cal), How cal Works

no use without the month, Defining and Validating the

Arguments

-y|--year flag (calr), Defining and Validating the Arguments

Z

zip method, Writing the Program, Solution

About the Author

Ken Youens-Clark is a software developer, teacher, and
writer. He began his undergraduate studies at the University
of North Texas, initially with a focus in jazz studies
(drums) and then changing his major several times before
limping out of school with a BA in English literature. Ken
learned coding on the job starting in the mid-1990s and has
worked in industry, in research, and at nonprofits. In 2019,
he earned his MS in biosystems engineering from the
University of Arizona. His previous books include Tiny Python
Projects (Manning) and Mastering Python for Bioinformatics
(O’Reilly). He resides in Tucson, Arizona, with his wife,
three children, and dog.

https://oreil.ly/3ylur
https://oreil.ly/Cr4yM

Colophon

The animal on the cover of Command-Line Rust is a fiddler
crab, a small crustacean sharing a common name with more than
100 species in the family Ocypodidae, made up of
semiterrestrial crabs.

Fiddler crabs are perhaps best known for the oversized claw
that distinguishes males and that is used for communication,
courtship, and competitive behaviors. Fiddlers eat
microorganisms, algae, decaying plants, and fungi, sifting
through sand and mud for edible matter. They live relatively
short lives—generally no more than two to three years—and
can be found in the salt marshes and beach habitats of
several regions around the world.

Many of the animals on O’Reilly covers are endangered. While
fiddler crabs are not rare, they, like all animals, are
important to the world and the ecosystems of which they are a
part.

The cover illustration is by Karen Montgomery, based on an
antique line engraving from Brehms Thierleben. The cover
fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Preface
	What Is Rust (and Why Is Everybody Talkin’ About It)?
	Who Should Read This Book
	Why You Should Learn Rust
	The Coding Challenges
	Getting Rust and the Code
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Truth or Consequences
	Getting Started with “Hello, world!”
	Organizing a Rust Project Directory
	Creating and Running a Project with Cargo
	Writing and Running Integration Tests
	Adding a Project Dependency
	Understanding Program Exit Values
	Testing the Program Output
	Exit Values Make Programs Composable

	Summary

	2. Test for Echo
	How echo Works
	Getting Started
	Accessing the Command-Line Arguments
	Adding clap as a Dependency
	Parsing Command-Line Arguments Using clap
	Creating the Program Output

	Writing Integration Tests
	Creating the Test Output Files
	Comparing Program Output
	Using the Result Type

	Summary

	3. On the Catwalk
	How cat Works
	Getting Started
	Starting with Tests
	Creating a Library Crate
	Defining the Parameters
	Iterating Through the File Arguments
	Opening a File or STDIN
	Using the Test Suite

	Solution
	Reading the Lines in a File
	Printing Line Numbers

	Going Further
	Summary

	4. Head Aches
	How head Works
	Getting Started
	Writing a Unit Test to Parse a String into a Number
	Converting Strings into Errors
	Defining the Arguments
	Processing the Input Files
	Reading Bytes Versus Characters

	Solution
	Reading a File Line by Line
	Preserving Line Endings While Reading a File
	Reading Bytes from a File
	Printing the File Separators

	Going Further
	Summary

	5. Word to Your Mother
	How wc Works
	Getting Started
	Iterating the Files
	Writing and Testing a Function to Count File Elements

	Solution
	Counting the Elements of a File or STDIN
	Formatting the Output

	Going Further
	Summary

	6. Den of Uniquity
	How uniq Works
	Getting Started
	Defining the Arguments
	Testing the Program
	Processing the Input Files

	Solution
	Going Further
	Summary

	7. Finders Keepers
	How find Works
	Getting Started
	Defining the Arguments
	Validating the Arguments
	Finding All the Things

	Solution
	Conditionally Testing on Unix Versus Windows
	Going Further
	Summary

	8. Shave and a Haircut
	How cut Works
	Getting Started
	Defining the Arguments
	Parsing the Position List
	Extracting Characters or Bytes
	Parsing Delimited Text Files

	Solution
	Selecting Characters from a String
	Selecting Bytes from a String
	Selecting Fields from a csv::StringRecord
	Final Boss

	Going Further
	Summary

	9. Jack the Grepper
	How grep Works
	Getting Started
	Defining the Arguments
	Finding the Files to Search
	Finding the Matching Lines of Input

	Solution
	Going Further
	Summary

	10. Boston Commons
	How comm Works
	Getting Started
	Defining the Arguments
	Validating and Opening the Input Files
	Processing the Files

	Solution
	Going Further
	Summary

	11. Tailor Swyfte
	How tail Works
	Getting Started
	Defining the Arguments
	Parsing Positive and Negative Numeric Arguments
	Using a Regular Expression to Match an Integer with an Optional Sign
	Parsing and Validating the Command-Line Arguments
	Processing the Files
	Counting the Total Lines and Bytes in a File
	Finding the Starting Line to Print
	Finding the Starting Byte to Print
	Testing the Program with Large Input Files

	Solution
	Counting All the Lines and Bytes in a File
	Finding the Start Index
	Printing the Lines
	Printing the Bytes
	Benchmarking the Solution

	Going Further
	Summary

	12. Fortunate Son
	How fortune Works
	Getting Started
	Defining the Arguments
	Finding the Input Sources
	Reading the Fortune Files
	Randomly Selecting a Fortune
	Printing Records Matching a Pattern

	Solution
	Going Further
	Summary

	13. Rascalry
	How cal Works
	Getting Started
	Defining and Validating the Arguments
	Writing the Program

	Solution
	Going Further
	Summary

	14. Elless Island
	How ls Works
	Getting Started
	Defining the Arguments
	Finding the Files
	Formatting the Long Listing
	Displaying Octal Permissions
	Testing the Long Format

	Solution
	Notes from the Testing Underground
	Going Further
	Summary

	Epilogue
	Index
	About the Author

