{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The gradient for this tensor will be accumulated into .grad attribute."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 1.])"
      ]
     },
     "execution_count": 92,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x = torch.ones(1, requires_grad=True); x"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [],
   "source": [
    "y = x**2\n",
    "z = x**3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### accumulated from `y.backward()` then `z.backward()`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {},
   "outputs": [],
   "source": [
    "y.backward()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 2.])"
      ]
     },
     "execution_count": 95,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [],
   "source": [
    "z.backward()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 5.])"
      ]
     },
     "execution_count": 97,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### accumulated from `z` then `y`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "metadata": {},
   "outputs": [],
   "source": [
    "x = torch.ones(1, requires_grad=True)\n",
    "y = x**2\n",
    "z = x**3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "metadata": {},
   "outputs": [],
   "source": [
    "z.backward()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 100,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 3.])"
      ]
     },
     "execution_count": 100,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 101,
   "metadata": {},
   "outputs": [],
   "source": [
    "y.backward()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 5.])"
      ]
     },
     "execution_count": 102,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set back to 0 after `y.backward()`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "metadata": {},
   "outputs": [],
   "source": [
    "x = torch.ones(1, requires_grad=True)\n",
    "y = x**2\n",
    "z = x**3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 104,
   "metadata": {},
   "outputs": [],
   "source": [
    "y.backward()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 2.])"
      ]
     },
     "execution_count": 105,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 106,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 0.])"
      ]
     },
     "execution_count": 106,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad.zero_()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 107,
   "metadata": {},
   "outputs": [],
   "source": [
    "z.backward()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([ 3.])"
      ]
     },
     "execution_count": 90,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## vector version"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[ 0.3725],\n",
       "        [ 0.4378]])"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x = torch.rand((2, 1), requires_grad = True); x"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "y = torch.zeros(3, 1)\n",
    "\n",
    "y[0] = x[0]**2\n",
    "y[1] = x[1]**3\n",
    "y[2] = x[1]**4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "y.backward(gradient=torch.ones(y.size()))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Cummulative grad of `x[0]` and `x[1]` respectively."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[ 0.7450],\n",
       "        [ 0.9105]])"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.grad"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(tensor([ 0.7450]), tensor([ 0.5749]), tensor([ 0.3356]))"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "2*x[0], 3*x[1]**2, 4*x[1]**3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(tensor([ 0.7450]), tensor([ 0.9105]))"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "2*x[0], 3*x[1]**2 + 4*x[1]**3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}