
DSC 180 Capstone Project Report: Dynamic
Industry Classification

Sheng Yang

A15451940

Github Repo: yangshengaa/dynamic_stock_industry_classification.

Project Gallery:

left: backtest

right: PMFG spectral clustering

1. Main Goal

Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio

optimization

2. Introduction

2.1 Motivation

Stocks are classified into different sectors (Energy, Finance, Health Care, etc), and stocks

within the same sectors are assumed to have similar behaviors (movement patterns and risk

profiles). Fund managers worldwide demand a precise classification to control portfolio

sector exposures and thus minimize risks brought by some specific sectors. This could be

considered a sector-level diversification.

The most widely used industry classifications are ICB, GICS for American stocks, and SWS

Research (申万宏源) for China A-share. They provide a professional guideline for a long-term

stock industry classification. However, the classification is fixed and fails to capture short-

term correlations between stocks in different sectors, and thus fails to embody short-term

co-movement risks between conventionally unrelated stocks. For example, company A in

https://github.com/yangshengaa/dynamic_stock_industry_classification

finance sector and company B in energy sector are considered uncorrelated, in a loose

sense, conventionally. Due to a recent announcement of cooperation, their stock prices

started to behave similarly. This particular risk could hardly be hedged against if the fund

manager use a fixed industry classification scheme.

Therefore, a dynamic industry classification is much more recommended for institutional

traders, especially hedge fund portfolio managers on low-frequency trading strategies

(change stock holdings each day, for instance).

To re-classify stocks from stock data, we believe that graph may help filter information and

obtain hidden embeddings of industry information. Two stocks are connected if they

demonstrate a strong coorelation over the given observation time period, and by that

connectivity we may partition the graph and obtain communities.

Henceforth, in this project, for each rolling period, we construct graphs and detect

communities in graphs, and later test if the new classification could improve strategy return

in the Markowitz porfolio optimization procedure. More details are discussed below.

2.2 Report Structure

In section 3 we will talk about the details of constructing a graph for each rolling period,

including the type of graphs used and the algorithms used for community detection. Section

4 introduces the dataset and covers the detail of the experiements and results. Section 5

concludes our investigation. For readers unfamiliar with quant investments, an appendix

briefly covers the complete procedure of conducting a quant research in the domain of low-

frequency stock picking strategies.

3. Graph Formulation

3.1 Build Graph from Financial Data

We would like to build a graph whose nodes are stocks and edges are indicators of

connectivity. Suppose there are tradable assets and days for observation, we take the

time-series correlation among stocks as a criteria to add edges.

To compute the time-series correlation, suppose is the (close) price of asset at time

, then the daily return is (starts from 2, which means there

are only returns). Then for any , the time-series correlation is thus given by

where . This could be considered as the "weight" of the edge between stock

and stock . One sometimes need to convert weights to distance between two nodes, and a

naive form is give by

N T

si,t i

t ∈ {1, . . . ,T} ri,t =
si,t−si,t−1

si,t−1
t

T − 1 i, j

ρij =
∑

T

t=2(ri,t − r̄ i)(rj,t − r̄j)

√[∑
T

t=2(ri,t − r̄ i)2][∑
T

t=2(rj,t − r̄j)2]

r̄ i =
∑

T

t=2 ri,t

T−1
i

j

dij =√2(1 − ρij)

Given the similarity measures (correlation) and distance measures, we may build graphs by

using the following methods:

Asset Graph (AG): connect if is beyond a pre-defined threshold;

Minimum Spanning Tree (MST): sort all in a descending order, add the edge if after

addition the graph is still a forest or a tree (Kruskal's Algorithm);

Planar Maximally Filter Graph (PMFG): simiilar to MST, but add edge if after addition

the graph is still planar;

Random Matrix Theory (RMT): use modularity optimization methods to directly obtain

clusterings, or alternatively select information from the correlation matrix and feed back

to the previous three models as a refinement.

In this project we use all four types in our experiment.

3.2 Community Detection from Contrcted Graphs

To control the number of industry, we pick algorithms that help generate a prescribed

number of clusters. The following are implemented:

Spectral Clustering

Average Linkage Clustering

Node2Vec + KMeans: conduct KMeans on Node2Vec embeddings;

Sub2Vec + KMeans: conduct KMeans on Sub2Vec embeddings.

(Currently all are built from either spectral clustering and Sub2Vec, will test others later)

3.3 Graph Evaluation

To evaluate if the re-constructed classification is "good", we go through the entire low-

frequency stock picking pipeline and plug in new industry information in the final step --

Markowitz Portfolio Optimization -- to see if there is a performance gain in our strategy.

We focus on the following four metrics to measure performance:

excess return: the excess return of the strategy with respect to the index / market;

max drawdowns: max decrease of the portfolio in value;

turnover: measure the rate of invested stocks being replaced by new ones;

AlphaSharpeRatio: return / volatility, measure the ability of maximizing returns over risk.

The dynamic property is done by a rolling-based train test schemed outlined as follows: we

train the graph using days and test the performance of the graph in the

following days. Then we move forward days to retrian the graph. Note that

the test periods are not overlapping, and the train test periods are the same in the factor

combination (machine learning) part of the low-frequency stock picking paradigm. We look

at the metrics of the successive testing periods in our portfolio.

|ρij|

ρij

Ttrain = 240

Ttest = 40 Ttest

4. Experiment

4.1 Data

Provided by Shanghai Probability Quantitative Investment, this is a dataset of day-level A-

share stock information.

In this project, we will focus on a particular stock pool named zz1000 (中证1000) favored by

many investors. This is a pool of 1000 mid-size market cap stocks, and the pool replace

stocks every 6 months. The following stats on zz1000 is taking the union of all stocks

appeared in this pool in history.

We also list the features available to compute alphafactors (for gathering excess returns)

and risk factors (for controling porfolio risks). The meaning of these names is self-

explanatory.

['AdjFactor',

 'ClosePrice',

 'DownLimitPrice',

 'FloatMarketValue',

 'FloatShare',

start_date end_date num_stocks num_industry num_features avg_nan_rate avg_

All 20150101 20211231 4752 28 24 0.215112

ZZ1000 20150101 20211231 1847 28 24 0.121805

In []: # load packages
import pandas as pd

In []: # load data summary

pd.read_csv('report/data_summary.csv', index_col=0)

Out[]:

In []: # list features
pd.read_csv('report/feature_names.csv', index_col=0, squeeze=True).tolist()

Out[]:

 'HighestPrice',

 'IssueStatus',

 'LowestPrice',

 'OpenPrice',

 'PreClosePrice',

 'Price',

 'RangeRate',

 'STStatus',

 'SuspendStatus',

 'TotalMarketValue',

 'TradeStatus',

 'TradeValue',

 'TradeVolume',

 'TrueRange',

 'TurnoverRate',

 'UpDownLimitStatus',

 'UpLimitPrice',

 'VWAP',

 'fund']

4.2 Experiment Details

TODO: ...

5. Conclusion

TODO: ...

Appendix: Low-Frequency Stock-Picking Precedure
Breakdown

In low-frequency quantitative investment research, the central goal is to predict future daily

returns as accurate as possible. There are the following four steps:

Mine Factors: perform feature engineering on stock information to facilitate predicting

future returns;

Combine Factors: use machine learning algorithms to combine mined factors to predict

future return;

Portfolio Sort/Backtest: at each day, given the prediction, pick the top number of

stocks with the highest returns from all tradable stocks (depends on the stock pool,

in this project). Mimic this using the history data to test if the predictions are

accurate;

Portfolio Optimization: given the selected stocks, assign appropriate weights to each

one to control the overall risk exposure (Industry Exposure, for instance).

In this project, we would like to use graph-based analysis to re-classify stocks and see

if a dynamic industry classification could help improve portfolio optimization

performance. The performance is measured by overall returns and realized volatility given a

tested timeframe.

Mine Factors

Starting from 1960s, people started to use factor model to predict stock returns. CAPM

(Capital Asset Pricing Model) was one of the first formal attempts. Suppose we have

M

M

M = 100

N

tradable assets, the simplified form is written below:

where is the predicted future return of asset and is a factor and

is the current market return. That is, future stock return depends on current market return. A

simple linear regression could help us identify the exact values of the coefficients for each

asset .

In 1993, FF3 (Fama-French Three-Factor Model) was proposed and its author later won the

Nobel Prize in Economic Sciences. It builds on CAPM and appended two other factors:

market capitalization and book-to-market (BM) ratio.

One could observe that there is nothing stopping us from adding more factors (more

features typically brings lower MSE in regression tasks, although collinearity needs to be

either eliminated or circumvented by picking an ML model that is robust to collinearity).

Many modern quant practitioner focus on mining factors. Suppose we have factors, then

our model becomes

where .

In a hedge fund, usually . But for limited data and computing resources, in this

project . These includes factors computed from daily price and volume data

(momentum, reversal, idiosyncratic returns, technical indicators, and other confidential

ones).

Combine Factors

With the model above, we would like to obtain the trained values for to predict future

stock returns. Suppose we have assets, factors, and pick days to be our training

period (in this project. This is roughly a year since there are only 245 trading

days per year), the , features, and , prediction goal, are constructed in the following way:

we flatten each factors and vertically concat them with correct dates aligned, and then do

the same thing for the return panel data. Features in different dates in the same training

period are equally weighted, though it is known empirically that an exponential decay on

dates could boost performance.

E(Re
i
) = αi + βiλmarket, ∀i ∈ {1, . . . ,N}

E(Re
i) i λmarket = E(Rm)

i

E(Re
i) = αi + βi,marketλmarket + βi,capλcap + βi,bmλbm, ∀i ∈ {1, . . . ,N}

K

E(Re
i) = αi +

K

∑
k=1

βi,kλk = αi + β
T
i λ, ∀i ∈ {1, . . . ,N}

βi,λ ∈ R
K

K > 2000

K = 646

βi
N K T

Ttrain = 240

X y

For scalibility, we focus on LightGBM regressor. LinearRegressor is also included for

performance comparison.

Porfolio Sort / Backtest

With the trained model, we could now predict the returns for all tradable stocks tomorrow.

Pick the top stocks (in this project, and essentially this is picking one-tenth of

the stocks from the pool of zz1000). should not be too small since our prediction may be

wrong, capturing stocks not with the hightest returns; nor could be too large, since we

may not have enough money to invest in all of them (there is a minimum purchase

requirement per stock).

Basic backtest config includes deducting costs (0.0015) for each trade, and we exclude

stocks with special treatment (ST), stocks delisted, stocks meeting their limit up/down

(making it non-tradable), and newly issued stocks (60 days after listing). Benchmark index is

the zz1000 index for computing excess returns.

Portfolio Optimization

M M = 100

M

M

With stocks selected, we would like to know the exact weights of each investment to

control the overall risk exposure. Suppose is the predicted return of the stocks

(machine learning output), the estimated covariance matrix, and the

weights for each stocks, we have the following constraint optimization problem:

The objective function means we would like to maximize returns and minimize risk at the

same time. empirically works the best.

Each constraint comes with a different purpose:

Holding Constraint: no short-selling, so all weights shall be postive, and we don't want

to over-invest in one stock, so there is also an upper limit for a single stock weight;

Style Exposure: style factors are also called risk factors, including Market-Cap,

Momentum, and others. We would like its exposure to be controlled over time, and not

using these factors to obtain excess returns;

Industry Exposure: prevent over-investing in a single industry. This is the place where

an alternative dynamic classification is plugged in.

Turnover Constraint: limit the rate of replacement of the stocks to lower costs.

M

R ∈ R
M M

Σ ∈ R
M×M x ∈ R

M

max
x

 RTx − λxTΣx

s. t. ∀i : Wlow ≤ xi ≤ Whigh,

n

∑
i=1

xi = 1 (Holding Constraint)

∀m : Slow ≤ (xT − wT
bench)Xstylem ≤ Shigh (Style Exposure Constraint)

∀k : Ilow ≤ (xT − wT
bench)Xindk ≤ Ihigh (Industry Exposure Constraint)

n

∑
i=1

|x − xt−1| ≤ TOlimit (Turnover Constraint)

λ = 10

