
Faculté des Sciences, de la Technologie et de la 
Communication

Campus du Kirchberg

June 2005

Development of a framework for performance 
testing of intrusion detection systems

Stage de pratique professionnelle

Yannick Loth
3rd year, Industrial Engineer in Applied Computer Sciences

Organisation:
ROYAL MILITARY ACADEMY (RMA)
Department of Communication, Information 
Systems and Sensors
Brussels
Belgium

Tutor UL:
Pr. Dr. Thomas Engel

Tutor RMA:
Dr. Ir. Wim Mees



Table of Contents

Preface....................................................................................................................................................5

Thanks....................................................................................................................................................6

1 Context of the training.......................................................................................................................7

2 Working place.....................................................................................................................................8
1 Royal Military Academy – CISS Info.............................................................................................8

3 Purpose of the training.......................................................................................................................9

4 Intrusion detection systems.............................................................................................................10
1 Concepts........................................................................................................................................10
2 Variety of existing systems............................................................................................................11
3 Snort – an open-source software IDS............................................................................................11

5 Application Requirements...............................................................................................................13
1 Requirements.................................................................................................................................13
2 Existing software...........................................................................................................................13

6 Stressnet............................................................................................................................................14
1 General concepts............................................................................................................................14
2 Design decisions............................................................................................................................14

2.a Architecture............................................................................................................................14
2.b Conception Logic...................................................................................................................14

2.b.1 General concepts............................................................................................................14
2.b.2 Stressnet command line arguments................................................................................15
2.b.3 Reading file stats............................................................................................................15
2.b.4 Prepare the socket connection........................................................................................16
2.b.5 Change the process scheduling policy and priority........................................................16
2.b.6 Send packets...................................................................................................................16
2.b.7 Terminate the program...................................................................................................17

2.c Source code............................................................................................................................17
3 The complete framework...............................................................................................................17
4 Implementation decisions..............................................................................................................21

4.a Programming language..........................................................................................................21
4.b API used to read files.............................................................................................................21
4.c Alternative API to write to the data link................................................................................21

5 Issues.............................................................................................................................................21
5.a Slow bit rate – packets too small...........................................................................................21

6 Further possible improvements.....................................................................................................22

7 The tests.............................................................................................................................................23
1 Test 1: SMTP with PCRE..............................................................................................................23
2 Test 2: Standard complete HTTP sessions....................................................................................25
3 Test 3: Stressnet’s reliability.........................................................................................................26

8 Conclusion.........................................................................................................................................28

Appendixes...........................................................................................................................................29
1 Custom Kernel...............................................................................................................................29

Development of a framework for performance testing of intrusion detection systems 2
Yannick LOTH



2 Various functions and system calls used in Stressnet....................................................................31
2.a assert()....................................................................................................................................31
2.b bind()......................................................................................................................................31
2.c close().....................................................................................................................................32
2.d div()........................................................................................................................................32
2.e gettimeofday()........................................................................................................................32
2.f mlock()...................................................................................................................................32
2.g munlock()...............................................................................................................................33
2.h sendto()..................................................................................................................................33
2.i setsockopt().............................................................................................................................33
2.j socket()...................................................................................................................................33
2.k write()....................................................................................................................................33

References and bibliography..............................................................................................................35
3 Linux..............................................................................................................................................35
4 Bash Shell......................................................................................................................................35
5 C....................................................................................................................................................35
6 C++................................................................................................................................................35
7 Kernel............................................................................................................................................35
8 Network programming..................................................................................................................36
9 IDS - Snort.....................................................................................................................................36
10 Doxygen......................................................................................................................................36

Custom kernel .config file...................................................................................................................37

Doxygen source code documentation for Stressnet..........................................................................55

Development of a framework for performance testing of intrusion detection systems 3
Yannick LOTH



Illustration Index
Illustration 1: Network architecture used to do the tests.......................................................................14
Illustration 2: Ordering of packets in memory and for sending............................................................15
Illustration 3: Buffers created to contain information about packets.  Illustrated with a total amount of 
n packets................................................................................................................................................16
Illustration 4: Automated tests' algorithm.............................................................................................20
Illustration 5: Test results: 999 SMTP-PCRE : 1 UDP_ZERO.............................................................24
Illustration 6: Fitting of logarithmic values...........................................................................................25
Illustration 7: Test results: 999 HTTP : 1 UDP_ZERO........................................................................26
Illustration 8: Stressnet's reliability test: HTTP packets........................................................................27

Development of a framework for performance testing of intrusion detection systems 4
Yannick LOTH



Preface

The  growth  of  information  networks  and  of  their  importance  in  everyday  life  led  many 
organizations and people to develop various security tools to monitor and control information flow 
through networks.  But such tools are not always well documented or their behavior under specific 
circumstances  may be  unknown.   For  this  reason,  there  is  a  need  for  some tools  which  help 
determine these marginal behaviors, which in fact may indicate security flaws even on devices well 
configured and efficient for everyday network usage.

The fact is that network architects and administrators do have to assume that if a private network is 
attacked, it will in fact be the worst case.  Network architects have to build a security architecture 
which would deal best with heavy attacks.  But how to take effective decisions about architecture if 
the behavior of security devices under heavy attacks is not well known?

This report describes basic concepts and tools for the development of an application framework 
which may be used to  evaluate and illustrate  the performance of Intrusion Detection Systems. 
Nevertheless, the results and techniques described may be applied to other network devices, such as 
firewalls or even web servers.

Development of a framework for performance testing of intrusion detection systems 5
Yannick LOTH



Thanks

I’d like to thank any people who permitted me to do this training in the best conditions, beginning 
with my parents who have been supporting me all my life, Major Célestin Herten and Professor 
Martin Timmermann, who were my two first  contacts at  the RMA and who accepted me as a 
trainee, Major Wim Mees, who permitted me to choose a subject which interests me a lot and who 
helped me with Captain Olivier Thonnard during the training.  Both of them led me in my training 
to a good end and helped me to attain the goals that were established.

I also address a lot of thanks to the whole staff from the Computer Sciences Department of the 
RMA for the way they accepted me and for their sympathy during these fifteen weeks.

Development of a framework for performance testing of intrusion detection systems 6
Yannick LOTH



1 Context of the training

This training takes place during the second semester of the second cycle (3rd year) in Industrial 
Engineering in Applied Informatics at the University of Luxembourg, Faculté des Sciences, de la 
Technologie et de la Communication.

This training should permit the students to participate to industrial projects and to practice general 
industrial engineering techniques learned in the common courses.  This training should also be in 
relation with the specializations proposed at the University of Luxembourg.

These requirements are fulfilled here, as the training involves:

• a complete study of networking techniques and network programming;

• the  development  of  an  application  meeting  usability  requirements  and  performance 
requirements;

• the tests to prove that the application in fact verifies these requirements and to find its 
limits;

• the use of this application to study performance issues of at least one software security 
devices (Snort IDS) and if enough time of a hardware security device (Cisco IDS);

• the subject itself is in concordance with the specialization in Networking and Distributed 
Systems proposed by the University of Luxembourg.

Development of a framework for performance testing of intrusion detection systems 7
Yannick LOTH



2 Working place

1 Royal Military Academy – CISS Info

The training took place in the department of communication, information systems and sensors of 
the Royal Military Academy.  This computer sciences group of this department is composed of 
about one dozen of researchers or professors and is headed by Pr. Martin Timmerman.

This department permits primarily officers to work on Master and Ph.D. Theses.  These people are 
generally also charged of some teaching to the military students.

Most of them are Polytechnician Civil Engineers.

This training was headed by Dr. Ir. Wim Mees and should result in performance measures which 
are useful for Captain Olivier Thonnard’s Master Thesis in Applied Computer Sciences at the Vrije 
Universiteit Brussel:  Network IDS Performance Analysis – Snort Evaluation and Profiling.

In fact, the application framework developed for this training can be used to confirm some of the 
results found by Captain Thonnard.

It is obvious that Major Mees and Captain Thonnard were the two persons who guided me and 
decided which work I had to do.

My workplace was in the laboratory, as I continuously had to test the performance of my code and 
to test IDS performance.

Development of a framework for performance testing of intrusion detection systems 8
Yannick LOTH



3 Purpose of the training

The purpose of the training was to develop applications and scripts to test the performance of 
intrusion detection systems.  This application framework should be able to generate high network 
loads of various kinds of data.  Depending on the bit rate and the type of data that was sent to an 
intrusion detection system (IDS), its performances in fact does change.

Mainly two conclusions did interest Major Mees and Captain Thonnard:

• How does the IDS react to some data at different speeds?

• How reliable is the IDS when some type of data is sent to it at different speeds?

This permits to see how the IDS reacts in the worst case (i.e. when the data type sent to the IDS 
needs most  processing power) and to see whether or not  the profiling of Captain Thonnard is 
concordant to reality.

These tests were realized on the open source software IDS Snort (version 2.3.0), as installed by 
default.  It is obvious that using the framework developed here, one can test performance of other 
IDSs like for example Cisco IDS 4215.

As there was no obvious way to realize such a work, the first weeks of this training were used to 
find, read and analyze documentation and consequently try code in little programs to find out if it 
was efficient and how difficult it would be to use it.

Also, there were issues we had to deal with during the implementation.  This implies that it was 
quite  not  possible  to  establish  a  precise  calendar  during  the  training  and  that  the  application 
framework can easily be optimized.  This will be discussed later.

Briefly:

• Build an application framework to test IDS;

• Do some tests with Snort IDS and interpret the values measured.

Development of a framework for performance testing of intrusion detection systems 9
Yannick LOTH



4 Intrusion detection systems

The following lines are resumed from Rebecca Bace and Peter Mell's paper  Intrusion Detection 
Systems1.

1 Concepts

Intrusion detection systems (IDS) are software or hardware systems that automate the process of 
monitoring the events occurring in a computer system or network, analyzing them for signs of 
security problems.

Intrusion is  defined as  attempts  to  compromise  the  confidentiality,  integrity,  availability,  or  to 
bypass the security mechanisms of a computer or network.

Intrusion detection allows organizations to protect their systems from the threats that come with 
increasing network connectivity and reliance on information systems.

Good reasons to acquire and uses IDSs:

1. They increase the perceived risk of discovery and punishment for attackers;

2. They may detect attacks that are not prevented by other security measures;

3. They detect preambles to attacks;

4. They may be useful to document the existing threat to an organization;

5. They may be used as quality control for security design and administration;

6. They provide useful information about intrusions that do take place.

Most IDSs are composed of the three following fundamental components:

1. Information  sources  –  the  sources  of  event  information  used  to  determine  wether  an 
intrusion has taken place;

2. Analysis – the part of intrusion detection that actually organizes and makes sens of the 
events derived from the information sources,  deciding when those events indicate  that 
intrusions  are  occurring  or  have  already  taken  place.   The  most  common  analysis 
approaches are misuse detection (pattern-matching) and anomaly detection (“intelligent” 
IDSs);

3. Response – the passive and active measures taken once the system detects intrusions.

1Rebecca  Bace  and  Peter  Mell,  Intrusion  Detection  Systems,  NIST  Special  Publication  on  Intrusion 
Detection Systems.

Development of a framework for performance testing of intrusion detection systems 10
Yannick LOTH



2 Variety of existing systems

Control strategy describes how the elements of an IDS is controlled, and furthermore, how the 
input and output of the IDS is managed.  Control strategy may be centralized, partially distributed 
or fully distributed.

Timing – measured as the elapsed time between the events that are monitored and the analysis of 
those events – is a critical property of IDS.  Timing of IDSs may be interval-based or real-time.

Interval  based IDSs feature  a  discontinuity  in  the  information flow from monitoring points  to 
analysis engines.  Such IDSs cannot perform active responses.

Real-time IDSs  operate  on  continuous  information  feeds  from information  sources.   Detection 
performed by real-time IDSs yields quickly enough to allow the IDS to take action that affects the 
progress of the detected attack.

The most common way to classify IDSs is to group them by information source:

IDS may be network-based, host-based or application-based.

Network-based IDSs can monitor the network traffic affecting multiple hosts that are connected to 
the network segment, thereby protecting those hosts.

Host-based IDSs operate on information collected from within an individual computer.  They can 
see the outcome of an attempted attack, as they can directly access and monitor the data files and 
system processes usually targeted by attacks.  Their usual information sources are operating system 
audit trails and system logs.

Application-based IDSs – a subset of host-based IDSs – analyze the events transpiring within a 
software application.  The ability to interface with applications directly allows those IDSs to detect 
suspicious behavior due to authorized users exceeding their authorization.

IDSs – like any other security system – do not provide an absolute and certain protection against 
attacks and intrusions.  They are to be complemented by other systems, like vulnerability analysis 
systems, file integrity checkers, honey pots, firewalls and anti-virus systems.

3 Snort – an open-source software IDS

The following lines are taken from the Snort Users Manual 2.3.22 and from Rebecca Bace and 
Peter Mell's paper Intrusion Detection Systems.3

Snort is a lightweight network intrusion detection system, which can perform a variety of traffic 
logging and analysis functions on IP networks.  It is a freeware product, available under the terms 
of the GNU General Public License as published by the Free Software Foundation.  Snort has an 
extensive database of attack signatures.  Both Snort and the attack signature database are found at 
http://www.snort.org.

Snort can be configured to run in different modes:

• Sniffer mode, which simply reads the packets off of the network and displays them for you 
in a continuous stream on the console;

• Packet logger mode, which logs the packets to disk;

• Network Intrusion Detection  System (NIDS)  mode,  the  most  complex  and  configurable 
configuration, which allows Snort to analyze network traffick for matches against a user-
defined rule set and performs several actions based upon what it sees.

2 SnortTM Users Manual, http://www.snort.org, March 2005
3 Cfr. infra

Development of a framework for performance testing of intrusion detection systems 11
Yannick LOTH

http://www.snort.org/
http://www.snort.org/


• Inline  mode,  which  obtains  packets  from  iptables  instead  of  libpcap  and  then  causes 
iptables to drop or to pass packets based on Snort rules that use inline-specific rule types.

For this work, we've used the NIDS mode of Snort.

As for almost every application, improving user interface and configurability of Snort does have 
negative impacts on its performance.  For example, Snort makes the use of the Perl Compatible 
Regular Expression (PCRE) library to realize pattern-matching during detection.  This permits to 
define very easily detection rules, but this also has a high impact on performance.

Snort is the IDS used throughout the training, because it’s widely used, open source and the subject 
of the Master thesis of Olivier Thonnard.

To  this  training  the  use  of  Snort  is  not  significant  in  the  sense  that  the  framework  that  was 
developed and the experience acquired during the training will be applicable to other IDS and 
network devices.

Development of a framework for performance testing of intrusion detection systems 12
Yannick LOTH



5 Application Requirements

1 Requirements

The application framework had to be able to send different types of data over networks at different 
speeds reliably.  The maximum speed should be as high as possible.  Reliably is not defined by a 
constant value, but it means that when a given .

The main idea is to be able to send various inoffensive data intermixed with various malicious data 
to the IDS in a way such that the ratio between the quantity of inoffensive data packets and the 
quantity of malicious data packets can be fixed by the user.

The application must accept one or two packet files as argument.

The network interface over which to send the packets may be imposed by the user.

The total quantity of packets sent over the network also may be imposed by the user.  Provided the 
knowledge of the ratio and the quantity of  packets to send, one can determine the quantity of 
malicious packets sent as well as the quantity of inoffensive packets.

The bit rate at which to send data over the network may be imposed by the user.  In this case, 
imposed is not absolute, as there is no guarantee that the operating system, the application or the 
hardware are able to reach speeds desired by the user.

The scheduling priority of the application may be imposed by the user.

The application should be implemented to run on x86 PC computers.

It was decided that a Linux 2.6+ operating system would be used to implement the framework and 
the tests, thus the requirements are adapted to this fact.

2 Existing software

There already exists some software (for example Packet Excalibur or tcpreplay) which does about 
the same as asked these requirements, but the timing these applications use to determine when to 
send data rely on signals, which depend on the PC clock.  On x86 PC’s, signals are delivered at 
best every 1 or 10 ms, which is much too slow for our use.  Thus it was decided to develop a new 
application and to write shell scripts to make its use easy.

Let’s do some maths :

If one wants to send packets of size 125 bytes (=1000 bits) at a bitrate of 100Mbit/s, the 
application must be able to send a 1000bit-sized packet every 10 microseconds.  This is 1000 
faster than what is permitted with signal-using implementations.

Development of a framework for performance testing of intrusion detection systems 13
Yannick LOTH



6 Stressnet

1 General concepts

The main application developed here and used for the tests is called stressnet.

2 Design decisions

2.a Architecture

The computers used to develop the application and to stress the IDSs are three HP Proliant ML110 
computers with Intel 2.6 Ghz P4-based Celeron processors and 768 Mb physical memory.

The  network  devices  on  these  PCs  were  Broadcom NetXtreme BCM5705_2 Gigabit  Ethernet 
cards.  During the tests, two computers were connected together directly with a crossed cable, thus 
there  was  no  interference  coming  from external  networks.   Illustration  1  shows  the  network 
configuration used to do the tests.

The operating system installed on these computers and used to do the tests is SuSE Linux 9.2 
Professional.

2.b Conception Logic

2.b.1 General concepts

It has been decided that the packets would be written directly to the data link layer and as such they 
had to contain every header information as well as the data payload, from the Ethernet header to 
higher level protocol headers.  Because of the success of tcpdump and libpcap and their ease of use, 
it has been decided that the application has to be able to read packets from tcpdump-files.  This 
format is easily read by libpcap, which is present on most if not on all modern Linux operating 

Development of a framework for performance testing of intrusion detection systems 14
Yannick LOTH

Illustration 1: Network architecture used to do the tests



systems.

As sending-performance is the most critical issue of Stressnet and more generally of the tests done, 
the kernels of both computers used for the tests were recompiled with the minimum set of features 
working and necessary for this use.  Working means that because it is not obvious to determine 
which features to drop and which to keep, there may still be some unnecessary features.

Recompiling the kernel with minimalist features permits us to guarantee that the program will not 
be interrupted too much during its critical loop.  For the same reason, we limited the applications 
running on the platforms to the minimum required for the tests.

Details about the features left in the kernel as well as about how to build such a minimalist kernel 
are given in Appendix 1 – Custom Kernel.

2.b.2 Stressnet command line arguments

The code used to parse arguments is generated with the application gengetopt4.  Arguments may be 
given to Stressnet in the command line or as a configuration file.  There is one argument which 
must be given to Stressnet: the path and filename of one dump file containing the packets to send.

If  a  ratio  r  is  given as  argument (this  has  no effect  if  only one file  is  passed to  Stressnet  as 
argument), then Stressnet will alternatively send r packets from file M then 1 packet from file N, 
this repeated until the total quantity of packets is reached.

The argument ‘--help’ lists details about the usage of Stressnet and its various arguments.

2.b.3 Reading file stats

The packets that will be sent, when read from files, are stored in a common buffer in the sequence 
they will be sent.  Another buffer contains the length of each of those packet.  As tcpdump-files do 
not contain statistics about the packets it contains, it is necessary to iterate through the packets in 
the file and read their length to determine the size of the buffer used to store them.  Once this is 
done, Stressnet allocates memory for the buffers.  Then Stressnet iterates once again through the 
files to copy the packets into the buffers.

For each packet which has to be sent, there is a common buffer for all packets which contains its 
length, one which later will contain timing information and one which contains pointers to the 
begin of the packet considered.

Illustration 3 illustrates the buffers created.

4 GNU Gengetopt, http://www.gnu.org/software/gengetopt/gengetopt.html

Development of a framework for performance testing of intrusion detection systems 15
Yannick LOTH

Illustration 2: Ordering of packets in memory and for sending

http://www.gnu.org/software/gengetopt/gengetopt.html


Once the buffers are created,  they are locked into physical  memory,  to avoid swapping.  This 
should lead to better performance, as the packets are directly read from physical memory.

2.b.4 Prepare the socket connection

As the datagrams to be sent are read including Ethernet header, there is a need to directly write 
them on  the  data  link  layer.   For  this  purpose,  we  decided  to  use  the  sockets  API  with  the 
PF_PACKET family and SOCK_RAW socket type.  We could have used libnet, which tends to be 
a portable networking API, but using libnet may involve some overhead which is not present with 
the sockets API.

Once the socket is opened, it is bound to the interface given as argument.  Thus, datagrams will be 
sent through this interface.

Note that on usual systems this only works if Stressnet is run as root.

2.b.5 Change the process scheduling policy and priority

Immediately before sending out the packets, Stressnet’s scheduling policy and priority are set to 
FIFO (first-in first-out) and to the value given by the user.

FIFO is the real time scheduling policy proposed by the Linux operating system.

To change the scheduling priority, Stressnet must be run as root.

2.b.6 Send packets

If  all  packets  were  sent  continuously,  without  interruption,  the  bit  rate  would  be close  to  the 
maximum  bit  rate  permitted  on  the  line  or  would  be  limited  by  the  sending  computer’s 
performance.

Thus the only way to send packets at different bit rates is to wait some little time before sending 
each of them.  This time to wait depends on the size of the packet and increases linearly with the 
size of the packet.

Assume we have to send one packet of size L bits at a given bit rate D.  Then the packet will have 

to be sent after a time T given by: D=
L
T
⇔T=

L
D

Development of a framework for performance testing of intrusion detection systems 16
Yannick LOTH

Illustration 3: Buffers created to contain information about packets. 
Illustrated with a total amount of n packets.



Let’s assume we have to send packets of size 1000, 1200, 400, 800 bytes at a bit rate of 70 Mbit/s.

Before sending packet 1, we have to wait T 1=
1000∗8
70∗106

=114 s

Then after  packet  1  has  been sent,  we have to  wait  T 2=
1200∗8
70∗106

=137s before  sending 

packet 2.

Before sending packet 3 we have to wait T 3=
400∗8
70∗106

=45s .

And finally before sending packet 4 we have to wait T 4=
800∗8
70∗106

=91 s .

This implies that during the 387s  from the emission time of packet 1, we send 3400 bytes. 

Let’s verify: 
3400∗8

387∗10−6
=70.2 Mbit /s , which roughly corresponds to the desired bit rate.

Using the signal() system call to implement this is simply not applicable, as it cannot wait times 
smaller than 1 to 10 ms.  Thus the decision we made was to implement a busy-waiting loop, which 
continuously asks for the system time until the time fixed to send the packet is reached.  Busy-
waiting means that the program does not give resources to other applications during waiting.  Thus 
the system has to be dedicated to the application during the emission of the packets.  This looks 
clumsy, but as we’ll explain later, it’s quite accurate enough for our purpose.

The system call used to send packets to the network has been chosen such that it does not drop 
packets if they are sent to the interface faster than the interface is able to send them to the network.

2.b.7 Terminate the program

Once  the  packets  are  all  sent,  the  program  unlocks  buffers  from  physical  memory,  sets  the 
scheduling priority to 0 and deallocates all buffers before exiting.

2.c Source code

The commented source code can be found at  the  end of this  paper.   This documentation was 
generated with Doxygen5.

3 The complete framework

To be able to automate the tests being done with Stressnet, some more tools and shell scripts were 
necessary.

First  of  all,  we used a program which is  able  to send or receive UDP packets to or from the 
network.  This program was necessary to synchronize the applications throughout the whole tests.

The device which was tested was a PC with Snort installed on it.  Thus this PC worked as an IDS 
device.

Let’s illustrate the concepts.

5 Doxygen, http://www.stack.nl/~dimitri/doxygen/

Development of a framework for performance testing of intrusion detection systems 17
Yannick LOTH

http://www.stack.nl/~dimitri/doxygen/


PACKET GENERATOR PC IDS PC

testsettings.sh:
#!/bin/bash
#This file contains the configuration settings of the tests.  This is the only file to 
be modified through the tests.
#echo "Loading settings into memory."

export dumpdir="/home/yannick/dumps"

export stressnetdir="/home/yannick/Coding/eclipse_workspace/stressnet/Rp3"
export bitrates="10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 
120000 140000 150000 160000 170000 180000 190000 200000" 
export priority="0"
export fileM="$dumpdir/smtp_outside.dump"
export fileN="$dumpdir/UDP_port_zero.dump"
export interface="eth0"
export ratio="999"
export quantity="200000"
#DO NOT FORGET TO SET nbkbytes TO THE RIGHT VALUE!
export nbkbytes="65000"

export testdir="/tests"
export snortdir="/snort-2.3.0/src"
export sleepbeforekill="60"

export netbenchdir=”/netbench”
gen.sh:
#!/bin/bash
#This is the script for the generator. 
Don't modify this. Change settings in 
test_settings.sh

. test_settings.sh
for ratio in $ratio
do
  for ((repeat=1;repeat<=20;repeat++))
  do
    for bitrate in $bitrates
    do
      sleep 3
      echo "Bitrate: $bitrate kbit/s"

      $stressnetdir/stressnet -i$interface 
-m$fileM -n$fileN -r$ratio -p$priority -q
$quantity -b$bitrate

      $netbenchdir/prec_raw_block -i eth0 > 
/dev/null
      echo "Bitrate done: $bitrate kbit/s"
    done
  done
done

killsnort.sh:
#!/bin/bash
. test_settings.sh

#sleep $sleepbeforekill
sleep $* #the star * means that the 
arguments of the calling script are passed 
to this application (sleep)
echo "    ___killing all snort processes if 
any___"
killall snort

parse.sh:
. test_settings.sh
export nofalerts=`less 
$testdir/snortstderr.txt | grep ALERTS | 
cut -d ' ' -f 2`
export nofreceived=`less 
$testdir/snortstderr.txt | grep Snort\ 
received | cut -d ' ' -f 3`
export nofanalyzed=`less 
$testdir/snortstderr.txt | grep Analyzed | 
cut -d ' ' -f 6 | cut -d '(' -f 1`
export nofdropped=`less 
$testdir/snortstderr.txt | grep Dropped | 
cut -d ' ' -f 6 | cut -d '(' -f 1`
echo "$bitrate $nofreceived $nofalerts 
$nofanalyzed $nofdropped" >> result.txt

echo "Don't forget to copy the results file 
or to rename it, or it will be overwritten 
during the next execution!"

ids.sh:
#!/bin/bash
. test_settings.sh

Development of a framework for performance testing of intrusion detection systems 18
Yannick LOTH



PACKET GENERATOR PC IDS PC

echo "___removing old results___"
rm -f $testdir/snortstd*.txt 
rm -f $testdir/result.txt

echo "___killing existing snort processes 
if any___"
killall snort
killall sleep
killall bash\ killsnort.sh

for ratio in $ratio
do

for 
((repeat=1;repeat<=20;repeat++))

do
for bitrate in 

$bitrates
do

echo "___Bitrate: 
$bitrate kbit/s___"

export 
sleepbeforekill=`echo 
"8*$nbkbytes/$bitrate+20" | bc` #20 SHOULD 
be enough.  If syncronization fails, try a 
higher value

bash killsnort.sh 
$sleepbeforekill &

sleep 3
echo "___Launch 

snort___"
$snortdir/snort 

-c $snortdir/../etc/snort.conf -l 
$snortdir/../log -i eth0 
>$testdir/snortstdout.txt 
2>$testdir/snortstderr.txt

echo "___Parsing 
snort output files___"

. parse.sh

echo "___Generate 
releasing packet___"

../netbench/pgen_raw -i eth0 -c 1 -s 
5 -l 0 -d "ff:ff:ff:ff:ff:ff" -b 100000 

done
done

done
killall sleep 
killall bash\ killsnort.sh
echo "___Finished the test.___"

Let’s explain this:

The file testsettings.sh is the only file which has to be changed from one test to the other.  It 
contains all required settings, like the directories in which the programs are, the different bit rates at 
which the tests have to be done or the amount of bytes that will be sent.  The same version of the 
file  testsettings.sh must  be  copied  on  both  computers  used  to  do  the  test,  to  avoid 
synchronization issues.

This amount has to be entered by hand and can be read during the first execution of Stressnet. 
Either one puts an amount big enough or one launches Stressnet with the option -s to read it and 

Development of a framework for performance testing of intrusion detection systems 19
Yannick LOTH



then to enter it in the testsettings.sh.

This value is critical, as it’s the key value for the timing.  If you enter a too big value, the tests may 
last for a too long time, if the value is too short, the tests will loose synchronization and the values 
measured won’t be valid for interpretation.

The script  killsnort.sh does wait the time given to it as argument and then kills all processes 
named snort.

The script  parse.sh parses  Snort’s  output  and puts the  interesting values in the comma (here 
space) separated values file result.txt.  The saved values are organized like this: 

Bit rate Received 
packets

Number of 
alerts

Number of 
analyzed

Number of 
dropped

The script ids.sh does kill all snort occurrences, then iterates through the various bit rates given as 
well as through the different ratios given.  In every loop it launches  killsnort.sh as a parallel 
process, then launches snort.  killsnort.sh waits a certain time then kills snort.  This unblocks 
ids.sh which then launches parse.sh and finally executes netbench, which sends an UDP packet 
to the generator to unblock it and permit the execution of the next loop (i.e. to launch the test for 
the next bit rate).  The waiting time is calculated to be longer than the time the generator needs to 
send all its packets at the desired bitrate.  Once

The script gen.sh iterates through the various bit rates given as well as through the different ratios 
given.  In every loop it tries to send its packets at the desired bit rate and then waits for a UDP 
packet from the IDS PC.  This UDP packet provokes the program Netbench to quit and to unblock 
the script, thus it provokes the script to continue through the next loop.

The following picture illustrates this algorithm:

Development of a framework for performance testing of intrusion detection systems 20
Yannick LOTH

Illustration 4: Automated tests' algorithm



The tool Netbench is a general packet generator and reader developed by Major Mees and is not 
described in this paper.  The only use of Netbench here is to synchronize the computers during the 
tests.

4 Implementation decisions

4.a Programming language

As the Linux source code is written in C language, it was obvious to use C or C++ for Stressnet. 
Nevertheless,  a  first  implementation in  C++ revealed to  be  too slow, probably  because of  the 
overhead induce by C++ dereferencing.  Thus, the whole program has been rewritten in C language 
and is in fact much closer to our expectations.  The difference was such that where the C code 
could generate 70 Mbit/s bit rate, the C++ code only reached about 7 Mbit/s!

Note that it would be sufficient to develop the program in C++, provided the critical loop – the one 
where sending packets occurs – is completely written in C and there happens the least possible 
dereferencing.   This means that  data access should be direct,  even for  class attributes.   Those 
attributes which are to be access to in the sending loop should be accessed directly.

4.b API used to read files

As we decided to use tcpdump formatted files, it became obvious to use the libpcap6 library to read 
those files.

4.c Alternative API to write to the data link

We had the possibility to use some other data link layer access API than the sockets API.  Saying 
this, it was very attractive to use the libnet7 library to ensure portability of data link layer access. 
But like for any other application, a trade has to be done between usability and performance.  As 
our main interests were to achieve some high bit rates with a quite good accuracy, it was obvious 
that no solution which potentially generates overhead compared to the sockets API should be used. 
Nevertheless, this does not mean that libnet is not efficient.  We simply didn’t try to use it.  Maybe 
some interesting work would be to evaluate the performance limitations of libnet and to compare 
them to the limits of the socket API.

5 Issues

5.a Slow bit rate – packets too small

When the packets to send are too small, the repeated calls to write() generate too much overhead 
and slows down the send bit rate.  To avoid this, we found a solution at the very end of the training, 
thus there was no more time to implement it in Stressnet.  Nevertheless we implemented it in a 
simple program to have an idea of the performance rise it could give us.  

The solution is to use the system call writev() (or sendmsg()), which permits the application to 
pass more than one packet to the kernel using only one system call.  The results we’ve found are 
astonishing  and  we  highly  recommend  to  implement  an  algorithm  that  uses  this  function  if 
Stressnet is to be developed further.

It’s worth saying that this also permits the application to reach much higher bit rates, as sending 

6 Libpcap, http://www.tcpdump.org/
7 Libnet, http://libnet.sourceforge.net/

Development of a framework for performance testing of intrusion detection systems 21
Yannick LOTH

http://libnet.sourceforge.net/
http://www.tcpdump.org/


normal sized packets at very high bit rates or sending small packets at high bit rates do lead to the 
same issue.

6 Further possible improvements

• Port to other OS: This may be quite easy if libnet reveals to be fast enough.  Don’t forget 
that porting to different architectures may impact on speed and accuracy.

• Permit use of other networking devices if this is not possible using raw sockets;

• Optimization of reading files stats and copying packets into memory (this could be done 
simultaneously);

• Optimization of managing the packets which have to be hold in memory, for example load 
a given packet only once into memory, even if it has to be sent more often;

• Use of sendmsg() or writev() instead of write() or sendto();

• Extend stressnet  to  2  applications  which calculate  TCP streams and the  corresponding 
header values before sending , to be able to test ‘real networks’, one occurrence of stressnet 
on each side of the firewalls etc :
stressnet1 – firewall, ids, dmz – private network with one computer having stressnet;

• Take  into  account  the  specific  coding  in  the  physical  layer  and the  data  link  layer  to 
calculate timing with the complete quantity of bits sent to the network, for example add the 
4 bytes used for the FCS/CRC at the end of ethernet packets;

• Permit to set values in packets, like the MAC address or TCP/UDP ports;

• Permit to receive packets and to output some data to files.

Development of a framework for performance testing of intrusion detection systems 22
Yannick LOTH



7 THE TESTS THE TESTS

7 The tests

This part will discuss the tests we’ve done and the results we’ve found.  Once we had a working 
version  of  Stressnet,  as  it  was  quite  late  in  the  training,  we  immediately  implemented  some 
performance measurements of Snort, and we only did one test to evaluate the accuracy of Stressnet. 
Remember that the goal of this training was to establish how IDSs, particularly Snort, behave when 
they are under heavy attack.  Only later we did some tests to measure the accuracy and reliability of 
Stressnet.

As Olivier  Thonnard’s  work for  his  Master  Thesis  is  to  profile  Snort,  he  already found some 
packets  which  generate  a  high  overhead  in  Snort:  the  packets  for  which  Snort  uses  the  Perl 
Compatible Regular Expression (PCRE) library.  The first test we did was to send SMTP packets 
with strings which have a rule in Snort needing PCRE.  These packets all contained the triggering 
string repeatedly, such that the PCRE was called very often for each of them.

We also implemented a test using a file containing 3 standard HTTP sessions to compare it to the 
previously described PCRE-test.

Each time the second file used by Stressnet is a one packet file with an packet containing UDP zero 
signature, which is interpreted by Snort as an intrusion attempt.

The version of Snort that was used throughout the tests was Snort 2.3.0 for Linux.  We installed 
Snort with the default out-of-the-box configuration and did not change this configuration.

1 Test 1: SMTP with PCRE

The bitrates tested were 10, 20, ..., 90 Mbit/s.

The ratio of normal packets over malicious packets was 999:1, thus 1/1000 packet was an attack.

The total quantity of packets sent is 200.000, and for each bit rate, the test was repeated 20 times.

Illustration 5 shows the results we obtained:

Development of a framework for performance testing of intrusion detection systems 23
Yannick LOTH



7 THE TESTS TEST 1: SMTP WITH PCRE

On both left figures the proportions of dropped packets and detected attacks respectively raises and 
drops quite fast once the bit rate is higher that 30 Mbit/s.

Both right figures show error box plots.  The plot is drawn around the median value and its borders 
reach the 25th and 75th percentiles.  The outer lines drawn show the 10th and 90th percentiles.

Don’t forget that these values are only valid because Stressnet in fact is reliable at these bit rates.

It’s obvious that even for common bit rates – in fact 35 Mbit/s is not so rare – Snort is not reliable 
any more.  And remember: the whole overhead is generated by sane packets which only contain the 
trigger to launch the detection, but provoke no alert!  Only the UDP packet contains an alert.

Now let’s view the distribution of values at a fixed bit rate (Illustration 6).  We see at bitrates 40, 
50, 70, 80 and 90 Mbit/s that there is one outsider which corresponds to better attack detection.  As 
it’s quite far away from the median value, this distribution does not seem to behave like a Gaussian 
distribution.  Thus we’ve tried to fit a Gaussian distribution to the log10 of our values, which tends 
to reduce the impact of the outsiders and takes them nearer to the median.  Illustration 6 shows that 
even with the logarithmic values the distribution is not Gaussian, but rather a t-distribution.  This 
fitting has been realized with the Matlab R148 fitting tool.

8 MATLAB, http://www.mathworks.com/

Development of a framework for performance testing of intrusion detection systems 24
Yannick LOTH

Illustration 5: Test results: 999 SMTP-PCRE : 1 UDP_ZERO

http://www.mathworks.com/


7 THE TESTS TEST 1: SMTP WITH PCRE

As the Gaussian does not fit  well,  we conclude that the outsider value is  probably not a pure 
accident (at this bit rate!).

As we find a distribution that is not Gaussian, we only show box error plots (Illustration 5) - not the 
standard deviation.  If the distribution was Gaussian, we could have concluded that for a given bit 
rate, it was possible to guarantee that the percentage of detected packets would be higher a certain 
value with a probability of 0.98.  Doing so would be an error! (For example, one could have been 
tempted to say that at  40 Mbit/s,  there is a probability of 0.98 that the percentage of detected 
attacks is always higher than 55%, but this is not true!

2 Test 2: Standard complete HTTP sessions

The bit rates tested were 10, 20, ..., 90 Mbit/s.

The ratio of normal packets over malicious packets was 999:1, thus 1/1000 packet was an attack.

The total quantity of packets sent is 200.000, and for each bit rate, the test was repeated 20 times.

Illustration 7 shows the results we obtained:

It’s obvious that at common bit rates, Snort performs well and finds almost every attack.  This, 
compared to test 1,  shows the impact  of  the pattern matching done with the PCRE library on 
Snort’s performances.  Thus there is a need to develop better algorithms, to implement some part of 
the pattern matching in hardware or to use a subset of PCRE patterns in Snort rules.  But the last 
solution implies a trade between usability and performance.

As UDP needs less processing than HTTP (because it  is stateless,  thus it needs no reassembly 
preprocessing), it’s not necessary to make tests with UDP packets.

Development of a framework for performance testing of intrusion detection systems 25
Yannick LOTH

Illustration 6: Fitting of logarithmic values



7 THE TESTS TEST 2: STANDARD COMPLETE HTTP
SESSIONS

3 Test 3: Stressnet’s reliability

We finally made one test using the file with the three HTTP sessions we used in the previous test to 
estimate the reliability of Stressnet.  This test has been done for bit rates from 5 to 150.000 Mbit/s, 
with steps of 5 Mbit.

Illustration 8 shows the results of this test.

The first picture shows the relative difference between the desired bit rate and the obtained bit rate 

Drel=
Bdesired−Bmeasured

Bdesired

.  For each bit rate, the test has been done 20 times and the Bmeasured used 

in the formula is the mean measured bit rate for a given desired bit rate.

We can see that the absolute value of this difference reaches 10% at bit rates close to 130 Mbit/s 
and higher.

We also see that the absolute value of this difference seems to rise up quite fast once the bit rate is 
over 125 Mbit/s.

The lower picture shows a plot of the desired bit rate (line) against the measured bit rate.

Development of a framework for performance testing of intrusion detection systems 26
Yannick LOTH

Illustration 7: Test results: 999 HTTP : 1 UDP_ZERO



7 THE TESTS TEST 3: STRESSNET’S RELIABILITY

Development of a framework for performance testing of intrusion detection systems 27
Yannick LOTH

Illustration 8: Stressnet's reliability test: HTTP packets



8 CONCLUSION CONCLUSION

8 Conclusion

Concerning the project of developing a framework to test IDSs, we’ve got a tool that permits to test 
reliably devices at bit rates up to 130 Mbit/s and we’ve shown how to use it.  In fact, we have 
found that Snort is not reliable when the rules containing calls to the PCRE library are enabled.

But more than having a tool that already works, we now have the basis knowledge and experience 
to further develop quite better tools to test various network devices at bit rates much higher than 
130 Mbit/s.

We also have basic examples about how to interpret results found using such benchmarking tools.

Concerning the goals of the training, it permitted me to actively participate to the development of a 
Unix-like command line tool using the sockets networking API and various Linux system calls.  I 
also did have to think about how to validate this program and thus to find out how to optimize the 
code to ensure reliability.

To reach these goals, the first work to do, and this is probably the most important part, was to read 
a  lot  of  documentation  about  Linux  network  programming  and  about  general  networking  – 
including protocols and security issues.  This took a lot of time, but once most ideas have been 
assimilated, it became easy for me to define efficient requirements and to develop the tools that 
were be needed.

Probably the most important thing I learned during the training happened at the end of the training, 
when exchange of ideas and discussions with both the Major Mees and the Captain Thonnard 
permitted to see that sharing information is important as the whole team benefits from discussed 
topics.

Now that basic work has been done and that basic knowledge about reliable high speed network 
programming has been collected, all doors are opened to design and implement a high performance 
tool to test various network devices.

Development of a framework for performance testing of intrusion detection systems 28
Yannick LOTH



8 CONCLUSION CONCLUSION

Appendixes

1 Custom Kernel9

The  Linux  kernel  is  the  heart  of  Linux  operating  systems.   It's  the  place  where  memory 
management, device access and program scheduling takes place.  The Linux kernel is based on a 
monolithic design – this means that it's mainly composed of one principal bloc.  Nevertheless it is 
possible  to extend the kernel  with external  modules.  Modern Linux distributions often enable 
almost  every  part  of  the  kernel  –  which  means  that  it  is  often  bigger  than  needed  and  that 
unnecessary modules might be loaded.

The fact that the Linux kernel is open source permits everyone to tailor the kernel to his needs.  For 
example, someone who doesn't use USB devices can completely disable USB support from the 
kernel.

The kernel source code distributions (http://www.kernel.org) do provide a tool to configure which 
parts  to  enable  or  to  disable.   The  configuration  is  saved  into  a  text  file  and  is  read  during 
compilation of the kernel.

The performance achieved by Stressnet is very sensitive to miscellaneous interrupts due to device 
support  or  program  scheduling.   In  fact,  when  used  to  send  little  datagrams  at  high  speeds, 
Stressnet produces a big overhead due to processing and the write() or sendto() system call.  To 
avoid concurrency between Stressnet and other applications, we decided to rebuild a minimalist 
kernel with only the features necessary for our job.

The kernel permits us to configure a large amount of features, so it would not be surprising to find 
smaller configurations than those we used.  A very critical point here is to which extent the user 
knows his hardware and knows which hardware features he'll needs.  We did in fact try multiple 
configurations and finally kept the one we preferred.  It's also worth saying that not every build 
worked and gave us a bootable configuration.

Let's explain the steps we went through to configure, build and launch our minimalist kernel.

For our tests, we used SuSE Linux 9.2 Professional, which comes with Linux kernel 2.6.8-24.  

1. The first step is to install the source code corresponding to the kernel version we wanted to 
compile.
Either you download it from a http://www.kernel.org in form of a tarball, or you install it 
using the package management tool your distribution provides.  It will usually be installed 
in /usr/src/linux/ or /usr/src/linux-source-2.6.8-24/.

2. Now we'll configure the  /etc/inittab file to enable booting by default till runlevel 3 
(usually  the  runlevel  with  networking  and  multiuser  enabled  –  thus  no  graphical  user 

9 Linux Kernel, http://www.kernel.org

Development of a framework for performance testing of intrusion detection systems 29
Yannick LOTH

http://www.kernel.org/
http://www.kernel.org/
http://www.kernel.org/


8 CONCLUSION CONCLUSION

interface as is in runlevel 5).  Note that this is not working on Ubuntu, which defaults 
multiuser  and  networking  on  runlevel  2  and  seems  to  obsolete  the  higher  runlevels.
Replace the lines:

# The default runlevel.
id:5:initdefault:

With:

# The default runlevel.
id:3:initdefault:

3. Now we'll deactivate in runlevel 3 all services we don't need for our application.  For this 
we use the runlevel config editor provided with Yast (SuSE Linux) (in Redhat we 
can use the command-line tool chkconfig).  There we'll disable almost everything except 
networking and keyboard key arrangement.

4. So  far  it's  time  to  reboot  and  to  check  wether  we're  right  till  here.
After reboot, the system boots till runlevel 3.  To change back to runlevel 5 and to X, we 
need to enter as root the command /sbin/init 5.  Again, when we are in runlevel 5 and 
want to go back to runlevel 3, there is no need to reboot, simply type as root: /sbin/init 
3.

5. In X, we open as root  the file  /etc/inittab and disable  4 tty terminals from the 6 
provided (the reason is still to keep resources for our application).  To activate the new 
inittab file, simply enter /sbin/init q as root.

6. The  file  /etc/modules.conf  permits  us  to  disable  some modules  that  may not  be 
necessary.

7. Now let's  configure  the  kernel.   In  a  terminal,  as  root,  change to  the  source  directory 
/usr/src/linux/ and launch make menuconfig or make xconfig if in command-
line or X respectively.

8. Now go through the tree and disable or enable features. Enabling can be done in two ways: 
either statically loaded in the kernel or dynamically loaded as a module.  Once you've done 
your  work,  go  to  General  Setup  and  add  a  local  version  (or  extra  version)  to  avoid 
overwriting the default compiled modules and kernel files with yours. We used version 
number 27.

9. Then  save  your  configuration  as  .config,  quit  and  launch:  make  &&  make 
modules_install (note that this is only valid for kernel 2.6+).  After a while, depending 
on your hardware and the number of features you've enabled, the compilation is ended. 
Now you still need some steps till being able to boot your new kernel (which of course will 
function immediately...).

10. If needed, let's create the initial ramdisk file: initrd.  This file is needed to load external 
modules needed to enable booting the computer.  For example, if you use reiserfs partitions 
but you didn't enable the reiserfs support into the kernel but as a module, you'll need to 
load this module before booting.  This is what the  initrd is meant to do.  We use the 
application mkinitrd to create this initial ramdisk file:

mkinitrd -k /boot/kernel-2.6.8-27 -i /boot/initrd-2.6.8-27

11. Now we need to copy the generated files to the /boot directory:

cp /usr/src/linux-source-2.6.10/arch/i386/boot/bzImage /boot/kernel-
2.6.10-27

cp /usr/src/linux-source-2.6.10/System.map /boot/System.map-2.6.10-27

cp /usr/src/linux-source-2.6.10/.config /boot/config-2.6.10-27

Development of a framework for performance testing of intrusion detection systems 30
Yannick LOTH



8 CONCLUSION CONCLUSION

12. Now we only need to edit the Grub configuration file.  Grub is the bootloader installed by 
default with SuSE Linux 9.2 Professional.  Other distributions may provide Lilo instead of 
Grub.  In /boot/grub/menu.lst, add the following lines:

title SuSE Linux 9.2 Pro MINIMALIST 

root (hd0,4)

kernel /boot/kernel-2.6.8-27 root=/dev/hda5 ro quiet splash

initrd /boot/initrd-2.6.8-27

savedefault

boot

13. Now you're ready to reboot and try your new kernel.  Reboot your computer and in the 
boot menu, select the newly added menu option.

14. Now you've done all these steps one, you've got three possibilities:

1. It works and you're satisfied

2. It  works,  but you still  want a finer  tuned kernel.  Redo these steps and change the 
configuration.

3. It doesn't work, the screen shows kernel panic, there is no console or whatever else: 
reset  your  computer,  boot  to  the  default  kernel  and  spend  some  more  time  with 
configuring and building again the kernel.

2 Various functions and system calls used in Stressnet

All the functions described here are completely specified on  http://www.opengroup.org  10  .   The 
following  descriptions  contain  information  from  this  site  and  is  sometimes  completed  with 
comments about their use in Stressnet.

2.a assert()
#include <assert.h>

The  <assert.h> header defines the  assert() macro. It refers to the macro  NDEBUG which is not 
defined in the header. If NDEBUG is defined as a macro name before the inclusion of this header, 
the assert() macro is defined simply as: 

#define assert(ignore)((void) 0)

otherwise the macro behaves as described in assert(). 

The  assert() macro  is  implemented  as  a  macro,  not  as  a  function.  If  the  macro  definition  is 
suppressed in order to access an actual function, the behaviour is undefined. 

2.b bind()
#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,

     socklen_t address_len);

The  bind() function  assigns  an  address to  an  unnamed  socket.  Sockets  created  with  socket() 
function are initially unnamed; they are identified only by their address family. 

The socket in use may require the process to have appropriate privileges to use the bind() function.

10 The Open Group, http://www.opengroup.org

Development of a framework for performance testing of intrusion detection systems 31
Yannick LOTH

http://www.opengroup.org/
http://www.opengroup.org/onlinepubs/7990989775/xns/socket.html
http://www.opengroup.org/onlinepubs/7990989775/xns/syssocket.h.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/assert.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/assert.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/assert.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/assert.html
http://www.opengroup.org/


8 CONCLUSION CONCLUSION

2.c close()
#include <unistd.h>

int close(int fildes);

The close() function will deallocate the file descriptor indicated by fildes. To deallocate means to 
make the file descriptor available for return by subsequent calls to  open() or other functions that 
allocate file descriptors. All outstanding record locks owned by the process on the file associated 
with the file descriptor will be removed (that is, unlocked).  

2.d div()
#include <stdlib.h>

div_t div(int numer, int denom);

The div() function computes the quotient and remainder of the division of the numerator numer by the denominator denom. 
If the division is inexact, the resulting quotient is the integer of lesser magnitude that is the nearest to the algebraic quotient.  
If the result cannot be represented, the behavior is undefined; otherwise, quot * denom + rem will equal numer. 

Remark : This function is used here because it produces less instructions than the integer division 
with the operator '/'.

2.e gettimeofday()
#include <sys/time.h>

int gettimeofday(struct timeval *tp, void *tzp);

The gettimeofday() function obtains the current time, expressed as seconds and microseconds since 
00:00 Coordinated Universal Time (UTC), January 1, 1970, and stores it in the timeval structure 
pointed to by tp. The resolution of the system clock is unspecified. 

If tzp is not a null pointer, the behavior is unspecified. 

2.f mlock()
#include <sys/mman.h>

int mlock(const void * addr, size_t len);

int munlock(const void * addr, size_t len);

The function  mlock() causes those whole pages containing any part of the address space of the 
process starting at address addr and continuing for len bytes to be memory resident until unlocked 
or until the process exits or  execs another process image. The implementation may require that 
addr be a multiple of {PAGESIZE}. 

The function munlock() unlocks those whole pages containing any part of the address space of the 
process starting at address addr and continuing for len bytes, regardless of how many times mlock() 
has been called by the process for any of the pages in the specified range. The implementation may 
require that addr be a multiple of the {PAGESIZE}. 

If any of the pages in the range specified to a call to munlock() are also mapped into the address 
spaces of other processes, any locks established on those pages by another process are unaffected 
by the call of this process to  munlock().  If any of the pages in the range specified by a call to 
munlock() are also mapped into other portions of the address space of the calling process outside 
the range specified, any locks established on those pages via the other mappings are also unaffected 
by this call. 

Upon successful return from  mlock(),  pages in the specified range will be locked and memory 
resident. Upon successful return from munlock(), pages in the specified range will be unlocked with 

Development of a framework for performance testing of intrusion detection systems 32
Yannick LOTH

http://www.opengroup.org/onlinepubs/7990989775/xsh/sysmman.h.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/systime.h.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/stdlib.h.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/open.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/unistd.h.html


8 CONCLUSION CONCLUSION

respect to the address space of the process. Memory residency of unlocked pages is unspecified. 

The appropriate privilege is required to lock process memory with mlock(). 

Remark : The use of this function in stressnet permits to keep in physical memory the buffers 
which are used in the critical loop, to avoid the overhead due to page swapping.

2.g munlock()
#include <sys/mman.h>

int munlock(const void * addr, size_t len);

Refer to mlock() for a description.

2.h sendto()
#include <sys/socket.h>

ssize_t sendto(int socket, const void *message, size_t length, int flags,

      const struct sockaddr *dest_addr, socklen_t dest_len);

The sendto() function sends a message through a connection-mode or connectionless-mode socket. 
If  the  socket  is  connectionless-mode,  the  message  will  be  sent  to  the  address  specified  by 
dest_addr. If the socket is connection-mode, dest_addr is ignored. 

2.i setsockopt()
#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name, const void

                *option_value, socklen_t option_len);

The  setsockopt() function sets the option specified by the  option_name argument, at the protocol 
level specified by the level argument, to the value pointed to by the option_value argument for the 
socket associated with the file descriptor specified by the socket argument. 

Remark : This function is used to allocate a larger buffer size to the socket.

2.j socket()
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The  socket() function creates an unbound socket in a communications domain, and returns a file 
descriptor that can be used in later function calls that operate on sockets. 

The process may need to have appropriate privileges to use the socket() function or to create some 
sockets. 

2.k write()
#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,

    off_t offset);

#include <sys/uio.h>

Development of a framework for performance testing of intrusion detection systems 33
Yannick LOTH

http://www.opengroup.org/onlinepubs/7990989775/xsh/sysuio.h.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/unistd.h.html
http://www.opengroup.org/onlinepubs/7990989775/xns/syssocket.h.html
http://www.opengroup.org/onlinepubs/7990989775/xns/syssocket.h.html
http://www.opengroup.org/onlinepubs/7990989775/xns/syssocket.h.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/mlock.html
http://www.opengroup.org/onlinepubs/7990989775/xsh/sysmman.h.html


8 CONCLUSION CONCLUSION

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

The  write() function attempts to write  nbyte bytes from the buffer pointed to by  buf to the file 
associated with the open file descriptor, fildes. 

Remark : This function can be used with any file descriptor, thus, it also works with socket file 
descriptors.

Development of a framework for performance testing of intrusion detection systems 34
Yannick LOTH



8 CONCLUSION CONCLUSION

References and bibliography

3 Linux

Andrew Tanenbaum, Réseaux, 4ème édition, Pearson Education, ISBN 2-7440-7001-7

Andrew Tanenbaum,  Systèmes d’exploitation, 2ème édition,  Pearson Education, ISBN 2-7440-
7002-5

Various Quick References, http://www.digilife.be/quickreferences/quickrefs.htm

CodeSourcery  LLC,  Advanced  Linux  Programming,  New  Riders  Publishing, 
http://www.advancedlinuxprogramming.com/.

The Linux Documentation Project, http://www.tldp.org/

Linux Online, http://www.linux.org/

The Open Group, http://www.opengroup.org/

4 Bash Shell

Bash Programming, Introduction, http://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

5 C

Peter Aitken & Bradley L. Jones, Le langage C, Campus Press, ISBN 2-7440-0838-9

Claude Delannoy, Programmer en Langage C, Eyrolles, ISBN 2-212-08985-6

How  to  Optimize  C/C++  Source  –  Performance  Programming,  Borland  Developer  Network, 
http://www.borland.com

AMD  AthlonTM  Processor  x86  Code  Optimization  Guide,  Advanced  Micro  Devices, 
http://www.amd.com

6 C++

Claude Delannoy, Programmer en Langage C++, Eyrolles, ISBN 2-212-09138-9

Bruce Eckel, Thinking in C++, Prentice Hall, ISBN 0-13-917709-4

7 Kernel

Linux Kernel, http://www.kernel.org

Development of a framework for performance testing of intrusion detection systems 35
Yannick LOTH

http://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.opengroup.org/
http://www.linux.org/
http://www.tldp.org/
http://www.advancedlinuxprogramming.com/
http://www.digilife.be/quickreferences/quickrefs.htm
http://www.amd.com/
http://www.borland.com/
http://www.kernel.org/


8 CONCLUSION CONCLUSION

Kwan Lowe,  Kernel Rebuild Guide,  Digital Hermit,  http://www.digitalhermit.com/linux/Kernel-
Build-HOWTO.html

8 Network programming

W. Richard Stevens, UNIX Network Programming, Volume 1, Second Edition, Prentice Hall, ISBN 
0-13-490012-X

Libpcap, http://www.tcpdump.org/

Libnet, http://libnet.sourceforge.net/

9 IDS - Snort

Snort Users Manual, http://www.snort.org

Rebecca Bace and Peter Mell, Intrusion Detection Systems, NIST Special Publication on Intrusion 
Detection Systems

Marcus  J.  Ranum,  Experiences  Benchmarking  Intrusion  Detection  Systems,  NFR  Security, 
http://www.nfr.com

10 Doxygen

Doxygen, http://www.stack.nl/~dimitri/doxygen/

Development of a framework for performance testing of intrusion detection systems 36
Yannick LOTH

http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://libnet.sourceforge.net/
http://www.tcpdump.org/
http://www.stack.nl/~dimitri/doxygen/
http://www.nfr.com/
http://www.snort.org/


8 CONCLUSION CONCLUSION

Custom kernel .config file

#
# Automatically generated make config: don't edit
# Linux kernel version: 2.6.8--
# Wed Jun  1 18:59:22 2005
#
CONFIG_X86=y
CONFIG_MMU=y
CONFIG_UID16=y
CONFIG_GENERIC_ISA_DMA=y

#
# Code maturity level options
#
CONFIG_EXPERIMENTAL=y
CONFIG_CLEAN_COMPILE=y
CONFIG_BROKEN_ON_SMP=y

#
# General setup
#
CONFIG_LOCALVERSION=""
# CONFIG_SWAP is not set
CONFIG_SYSVIPC=y
CONFIG_POSIX_MQUEUE=y
CONFIG_BSD_PROCESS_ACCT=y
CONFIG_BSD_PROCESS_ACCT_V3=y
CONFIG_SYSCTL=y
CONFIG_AUDIT=y
CONFIG_AUDITSYSCALL=y
CONFIG_LOG_BUF_SHIFT=14
CONFIG_HOTPLUG=y
CONFIG_IKCONFIG=y
CONFIG_IKCONFIG_PROC=y
# CONFIG_EMBEDDED is not set
CONFIG_KALLSYMS=y
# CONFIG_KALLSYMS_EXTRA_PASS is not set
CONFIG_FUTEX=y
CONFIG_EPOLL=y
CONFIG_IOSCHED_NOOP=y
CONFIG_IOSCHED_AS=y
CONFIG_IOSCHED_DEADLINE=y
CONFIG_IOSCHED_CFQ=y
# CONFIG_CC_OPTIMIZE_FOR_SIZE is not set
CONFIG_SHMEM=y
# CONFIG_TINY_SHMEM is not set

#
# Loadable module support
#
CONFIG_MODULES=y

Development of a framework for performance testing of intrusion detection systems 37
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_MODULE_UNLOAD=y
CONFIG_MODULE_FORCE_UNLOAD=y
CONFIG_OBSOLETE_MODPARM=y
CONFIG_MODVERSIONS=y
CONFIG_KMOD=y

#
# Processor type and features
#
CONFIG_X86_PC=y
# CONFIG_X86_ELAN is not set
# CONFIG_X86_VOYAGER is not set
# CONFIG_X86_NUMAQ is not set
# CONFIG_X86_SUMMIT is not set
# CONFIG_X86_BIGSMP is not set
# CONFIG_X86_VISWS is not set
# CONFIG_X86_GENERICARCH is not set
# CONFIG_X86_ES7000 is not set
# CONFIG_M386 is not set
# CONFIG_M486 is not set
# CONFIG_M586 is not set
# CONFIG_M586TSC is not set
# CONFIG_M586MMX is not set
# CONFIG_M686 is not set
# CONFIG_MPENTIUMII is not set
# CONFIG_MPENTIUMIII is not set
# CONFIG_MPENTIUMM is not set
CONFIG_MPENTIUM4=y
# CONFIG_MK6 is not set
# CONFIG_MK7 is not set
# CONFIG_MK8 is not set
# CONFIG_MCRUSOE is not set
# CONFIG_MWINCHIPC6 is not set
# CONFIG_MWINCHIP2 is not set
# CONFIG_MWINCHIP3D is not set
# CONFIG_MCYRIXIII is not set
# CONFIG_MVIAC3_2 is not set
CONFIG_X86_GENERIC=y
CONFIG_X86_CMPXCHG=y
CONFIG_X86_XADD=y
CONFIG_X86_L1_CACHE_SHIFT=7
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_GOOD_APIC=y
CONFIG_X86_INTEL_USERCOPY=y
CONFIG_X86_USE_PPRO_CHECKSUM=y
# CONFIG_HPET_TIMER is not set
# CONFIG_SMP is not set
# CONFIG_PREEMPT is not set
CONFIG_X86_UP_APIC=y
CONFIG_X86_UP_IOAPIC=y
CONFIG_X86_LOCAL_APIC=y
CONFIG_X86_IO_APIC=y
CONFIG_X86_TSC=y
CONFIG_X86_MCE=y
# CONFIG_X86_MCE_NONFATAL is not set
CONFIG_X86_MCE_P4THERMAL=y
CONFIG_TOSHIBA=m
CONFIG_I8K=m
CONFIG_MICROCODE=m
CONFIG_X86_MSR=m

Development of a framework for performance testing of intrusion detection systems 38
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_X86_CPUID=m

#
# Firmware Drivers
#
# CONFIG_EDD is not set
# CONFIG_NOHIGHMEM is not set
CONFIG_HIGHMEM4G=y
# CONFIG_HIGHMEM64G is not set
CONFIG_HIGHMEM=y
CONFIG_PROC_MM=y
CONFIG_HIGHPTE=y
# CONFIG_MATH_EMULATION is not set
CONFIG_MTRR=y
CONFIG_REGPARM=y

#
# Power management options (ACPI, APM)
#
# CONFIG_PM is not set
# CONFIG_PM_DEBUG is not set

#
# ACPI (Advanced Configuration and Power Interface) Support
#
# CONFIG_ACPI is not set

#
# CPU Frequency scaling
#
# CONFIG_CPU_FREQ is not set

#
# Bus options (PCI, PCMCIA, EISA, MCA, ISA)
#
CONFIG_PCI=y
# CONFIG_PCI_GOBIOS is not set
# CONFIG_PCI_GOMMCONFIG is not set
# CONFIG_PCI_GODIRECT is not set
CONFIG_PCI_GOANY=y
CONFIG_PCI_BIOS=y
CONFIG_PCI_DIRECT=y
CONFIG_PCI_MSI=y
# CONFIG_PCI_LEGACY_PROC is not set
# CONFIG_PCI_NAMES is not set
# CONFIG_ISA is not set
# CONFIG_MCA is not set
# CONFIG_SCx200 is not set

#
# PCMCIA/CardBus support
#
# CONFIG_PCMCIA is not set

#
# PCI Hotplug Support
#
# CONFIG_HOTPLUG_PCI is not set

#
# Executable file formats
#
CONFIG_BINFMT_ELF=y
# CONFIG_BINFMT_AOUT is not set

Development of a framework for performance testing of intrusion detection systems 39
Yannick LOTH



8 CONCLUSION CONCLUSION

# CONFIG_BINFMT_MISC is not set

#
# Device Drivers
#

#
# Generic Driver Options
#
# CONFIG_STANDALONE is not set
CONFIG_PREVENT_FIRMWARE_BUILD=y
CONFIG_FW_LOADER=m

#
# Memory Technology Devices (MTD)
#
# CONFIG_MTD is not set

#
# Parallel port support
#
# CONFIG_PARPORT is not set

#
# Plug and Play support
#

#
# Block devices
#
# CONFIG_BLK_DEV_FD is not set
# CONFIG_BLK_CPQ_DA is not set
# CONFIG_BLK_CPQ_CISS_DA is not set
# CONFIG_BLK_DEV_DAC960 is not set
# CONFIG_BLK_DEV_UMEM is not set
CONFIG_BLK_DEV_LOOP=y
CONFIG_BLK_DEV_CRYPTOLOOP=m
# CONFIG_BLK_DEV_NBD is not set
# CONFIG_BLK_DEV_SX8 is not set
CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_SIZE=64000
CONFIG_BLK_DEV_INITRD=y
# CONFIG_LBD is not set
# CONFIG_CIPHER_TWOFISH is not set

#
# ATA/ATAPI/MFM/RLL support
#
CONFIG_IDE=y
CONFIG_BLK_DEV_IDE=y

#
# Please see Documentation/ide.txt for help/info on IDE drives
#
# CONFIG_BLK_DEV_IDE_SATA is not set
# CONFIG_BLK_DEV_HD_IDE is not set
CONFIG_BLK_DEV_IDEDISK=y
CONFIG_IDEDISK_MULTI_MODE=y
CONFIG_BLK_DEV_IDECD=m
CONFIG_BLK_DEV_IDETAPE=m
CONFIG_BLK_DEV_IDEFLOPPY=y
CONFIG_BLK_DEV_IDESCSI=m
# CONFIG_IDE_TASK_IOCTL is not set
# CONFIG_IDE_TASKFILE_IO is not set

Development of a framework for performance testing of intrusion detection systems 40
Yannick LOTH



8 CONCLUSION CONCLUSION

#
# IDE chipset support/bugfixes
#
CONFIG_IDE_GENERIC=y
CONFIG_BLK_DEV_CMD640=y
CONFIG_BLK_DEV_CMD640_ENHANCED=y
CONFIG_BLK_DEV_IDEPCI=y
CONFIG_IDEPCI_SHARE_IRQ=y
CONFIG_BLK_DEV_OFFBOARD=y
CONFIG_BLK_DEV_GENERIC=y
CONFIG_BLK_DEV_OPTI621=y
CONFIG_BLK_DEV_RZ1000=y
CONFIG_BLK_DEV_IDEDMA_PCI=y
# CONFIG_BLK_DEV_IDEDMA_FORCED is not set
CONFIG_IDEDMA_PCI_AUTO=y
CONFIG_IDEDMA_ONLYDISK=y
CONFIG_BLK_DEV_ADMA=y
CONFIG_BLK_DEV_AEC62XX=y
CONFIG_BLK_DEV_ALI15X3=y
# CONFIG_WDC_ALI15X3 is not set
CONFIG_BLK_DEV_AMD74XX=y
CONFIG_BLK_DEV_ATIIXP=y
CONFIG_BLK_DEV_CMD64X=y
CONFIG_BLK_DEV_TRIFLEX=y
CONFIG_BLK_DEV_CY82C693=y
CONFIG_BLK_DEV_CS5520=m
CONFIG_BLK_DEV_CS5530=m
CONFIG_BLK_DEV_HPT34X=y
CONFIG_HPT34X_AUTODMA=y
CONFIG_BLK_DEV_HPT366=y
CONFIG_BLK_DEV_SC1200=y
CONFIG_BLK_DEV_PIIX=y
CONFIG_BLK_DEV_NS87415=y
CONFIG_BLK_DEV_PDC202XX_OLD=y
CONFIG_PDC202XX_BURST=y
CONFIG_BLK_DEV_PDC202XX_NEW=y
CONFIG_PDC202XX_FORCE=y
CONFIG_BLK_DEV_SVWKS=y
CONFIG_BLK_DEV_SIIMAGE=y
CONFIG_BLK_DEV_SIS5513=y
CONFIG_BLK_DEV_SLC90E66=y
CONFIG_BLK_DEV_TRM290=y
CONFIG_BLK_DEV_VIA82CXXX=y
# CONFIG_IDE_ARM is not set
CONFIG_BLK_DEV_IDEDMA=y
# CONFIG_IDEDMA_IVB is not set
CONFIG_IDEDMA_AUTO=y
# CONFIG_BLK_DEV_HD is not set

#
# SCSI device support
#
CONFIG_SCSI=m
CONFIG_SCSI_PROC_FS=y

#
# SCSI support type (disk, tape, CD-ROM)
#
CONFIG_BLK_DEV_SD=m
CONFIG_CHR_DEV_ST=m
CONFIG_CHR_DEV_OSST=m
CONFIG_BLK_DEV_SR=m
# CONFIG_BLK_DEV_SR_VENDOR is not set

Development of a framework for performance testing of intrusion detection systems 41
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_CHR_DEV_SG=m
CONFIG_CHR_DEV_SCH=m

#
# Some SCSI devices (e.g. CD jukebox) support multiple LUNs
#
CONFIG_SCSI_MULTI_LUN=y
# CONFIG_SCSI_CONSTANTS is not set
# CONFIG_SCSI_LOGGING is not set

#
# SCSI Transport Attributes
#
# CONFIG_SCSI_SPI_ATTRS is not set
# CONFIG_SCSI_FC_ATTRS is not set

#
# SCSI low-level drivers
#
# CONFIG_BLK_DEV_3W_XXXX_RAID is not set
# CONFIG_SCSI_3W_9XXX is not set
# CONFIG_SCSI_ACARD is not set
# CONFIG_SCSI_AACRAID is not set
# CONFIG_SCSI_AIC7XXX is not set
# CONFIG_SCSI_AIC7XXX_OLD is not set
# CONFIG_SCSI_AIC79XX is not set
# CONFIG_SCSI_DPT_I2O is not set
# CONFIG_MEGARAID_NEWGEN is not set
# CONFIG_MEGARAID_LEGACY is not set
# CONFIG_SCSI_SATA is not set
# CONFIG_SCSI_BUSLOGIC is not set
# CONFIG_SCSI_DMX3191D is not set
# CONFIG_SCSI_EATA is not set
# CONFIG_SCSI_EATA_PIO is not set
# CONFIG_SCSI_FUTURE_DOMAIN is not set
# CONFIG_SCSI_GDTH is not set
# CONFIG_SCSI_IPS is not set
# CONFIG_SCSI_INIA100 is not set
# CONFIG_SCSI_SYM53C8XX_2 is not set
# CONFIG_SCSI_LPFC is not set
# CONFIG_SCSI_IPR is not set
# CONFIG_SCSI_QLOGIC_ISP is not set
# CONFIG_SCSI_QLOGIC_FC is not set
# CONFIG_SCSI_QLOGIC_1280 is not set
CONFIG_SCSI_QLA2XXX=m
# CONFIG_SCSI_QLA21XX is not set
# CONFIG_SCSI_QLA22XX is not set
# CONFIG_SCSI_QLA2300 is not set
# CONFIG_SCSI_QLA2322 is not set
# CONFIG_SCSI_QLA6312 is not set
# CONFIG_SCSI_QLA6322 is not set
# CONFIG_SCSI_DC395x is not set
# CONFIG_SCSI_DC390T is not set
# CONFIG_SCSI_NSP32 is not set
# CONFIG_SCSI_DEBUG is not set

#
# Multi-device support (RAID and LVM)
#
# CONFIG_MD is not set

#
# Fusion MPT device support
#

Development of a framework for performance testing of intrusion detection systems 42
Yannick LOTH



8 CONCLUSION CONCLUSION

# CONFIG_FUSION is not set

#
# IEEE 1394 (FireWire) support
#
# CONFIG_IEEE1394 is not set

#
# I2O device support
#
CONFIG_I2O=m
CONFIG_I2O_CONFIG=m
CONFIG_I2O_BLOCK=m
CONFIG_I2O_SCSI=m
CONFIG_I2O_PROC=m

#
# Networking support
#
CONFIG_NET=y

#
# Networking options
#
CONFIG_PACKET=m
CONFIG_PACKET_MMAP=y
CONFIG_NETLINK_DEV=m
CONFIG_UNIX=y
CONFIG_NET_KEY=m
CONFIG_INET=y
CONFIG_IP_MULTICAST=y
CONFIG_IP_ADVANCED_ROUTER=y
CONFIG_IP_MULTIPLE_TABLES=y
CONFIG_IP_ROUTE_MULTIPATH=y
CONFIG_IP_ROUTE_TOS=y
CONFIG_IP_ROUTE_VERBOSE=y
# CONFIG_IP_PNP is not set
CONFIG_NET_IPIP=m
CONFIG_NET_IPGRE=m
CONFIG_NET_IPGRE_BROADCAST=y
# CONFIG_IP_MROUTE is not set
# CONFIG_ARPD is not set
# CONFIG_SYN_COOKIES is not set
# CONFIG_INET_AH is not set
# CONFIG_INET_ESP is not set
# CONFIG_INET_IPCOMP is not set
CONFIG_INET_TUNNEL=m
# CONFIG_IPV6 is not set
CONFIG_IPV6_NDISC_NEW=y
# CONFIG_NETFILTER is not set
CONFIG_XFRM=y
# CONFIG_XFRM_USER is not set

#
# SCTP Configuration (EXPERIMENTAL)
#
# CONFIG_IP_SCTP is not set
# CONFIG_SCTP_HMAC_NONE is not set
# CONFIG_SCTP_HMAC_SHA1 is not set
# CONFIG_SCTP_HMAC_MD5 is not set
# CONFIG_ATM is not set
# CONFIG_BRIDGE is not set
# CONFIG_VLAN_8021Q is not set
# CONFIG_DECNET is not set

Development of a framework for performance testing of intrusion detection systems 43
Yannick LOTH



8 CONCLUSION CONCLUSION

# CONFIG_LLC2 is not set
# CONFIG_IPX is not set
# CONFIG_ATALK is not set
# CONFIG_X25 is not set
# CONFIG_LAPB is not set
# CONFIG_NET_DIVERT is not set
# CONFIG_ECONET is not set
# CONFIG_WAN_ROUTER is not set
# CONFIG_NET_HW_FLOWCONTROL is not set

#
# QoS and/or fair queueing
#
# CONFIG_NET_SCHED is not set
# CONFIG_NET_SCH_CLK_JIFFIES is not set
# CONFIG_NET_SCH_CLK_GETTIMEOFDAY is not set
# CONFIG_NET_SCH_CLK_CPU is not set
# CONFIG_NET_CLS_ROUTE is not set

#
# Network testing
#
CONFIG_NET_PKTGEN=m
# CONFIG_NETPOLL is not set
# CONFIG_NET_POLL_CONTROLLER is not set
# CONFIG_HAMRADIO is not set
# CONFIG_IRDA is not set
# CONFIG_BT is not set
CONFIG_NETDEVICES=y
# CONFIG_DUMMY is not set
# CONFIG_BONDING is not set
# CONFIG_EQUALIZER is not set
# CONFIG_TUN is not set
# CONFIG_ETHERTAP is not set

#
# ARCnet devices
#
# CONFIG_ARCNET is not set

#
# Ethernet (10 or 100Mbit)
#
# CONFIG_NET_ETHERNET is not set

#
# Ethernet (1000 Mbit)
#
# CONFIG_ACENIC is not set
# CONFIG_DL2K is not set
# CONFIG_E1000 is not set
# CONFIG_NS83820 is not set
# CONFIG_HAMACHI is not set
# CONFIG_YELLOWFIN is not set
# CONFIG_R8169 is not set
# CONFIG_SK98LIN is not set
CONFIG_TIGON3=m
CONFIG_NET_BROADCOM=m

#
# Ethernet (10000 Mbit)
#
# CONFIG_IXGB is not set
# CONFIG_S2IO is not set

Development of a framework for performance testing of intrusion detection systems 44
Yannick LOTH



8 CONCLUSION CONCLUSION

#
# Token Ring devices
#
# CONFIG_TR is not set

#
# Wireless LAN (non-hamradio)
#
# CONFIG_NET_RADIO is not set

#
# Wan interfaces
#
# CONFIG_WAN is not set
# CONFIG_FDDI is not set
# CONFIG_HIPPI is not set
# CONFIG_PPP is not set
# CONFIG_SLIP is not set
# CONFIG_NET_FC is not set
# CONFIG_SHAPER is not set
# CONFIG_NETCONSOLE is not set

#
# ISDN subsystem
#
# CONFIG_ISDN is not set

#
# Telephony Support
#
# CONFIG_PHONE is not set

#
# Input device support
#
CONFIG_INPUT=y

#
# Userland interfaces
#
CONFIG_INPUT_MOUSEDEV=y
CONFIG_INPUT_MOUSEDEV_PSAUX=y
CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024
CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768
# CONFIG_INPUT_JOYDEV is not set
# CONFIG_INPUT_TSDEV is not set
CONFIG_INPUT_EVDEV=m
# CONFIG_INPUT_EVBUG is not set

#
# Input I/O drivers
#
# CONFIG_GAMEPORT is not set
CONFIG_SOUND_GAMEPORT=y
CONFIG_SERIO=y
CONFIG_SERIO_I8042=y
# CONFIG_SERIO_SERPORT is not set
# CONFIG_SERIO_CT82C710 is not set
# CONFIG_SERIO_PCIPS2 is not set
# CONFIG_SERIO_RAW is not set

#
# Input Device Drivers

Development of a framework for performance testing of intrusion detection systems 45
Yannick LOTH



8 CONCLUSION CONCLUSION

#
CONFIG_INPUT_KEYBOARD=y
CONFIG_KEYBOARD_ATKBD=y
# CONFIG_KEYBOARD_SUNKBD is not set
# CONFIG_KEYBOARD_LKKBD is not set
# CONFIG_KEYBOARD_XTKBD is not set
# CONFIG_KEYBOARD_NEWTON is not set
CONFIG_INPUT_MOUSE=y
CONFIG_MOUSE_PS2=y
# CONFIG_MOUSE_SERIAL is not set
# CONFIG_MOUSE_VSXXXAA is not set
# CONFIG_INPUT_JOYSTICK is not set
# CONFIG_INPUT_TOUCHSCREEN is not set
# CONFIG_INPUT_MISC is not set

#
# Character devices
#
CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_HW_CONSOLE=y
CONFIG_ECC=m
# CONFIG_SERIAL_NONSTANDARD is not set

#
# Serial drivers
#
CONFIG_SERIAL_8250=y
CONFIG_SERIAL_8250_CONSOLE=y
CONFIG_SERIAL_8250_NR_UARTS=4
CONFIG_SERIAL_8250_EXTENDED=y
CONFIG_SERIAL_8250_MANY_PORTS=y
CONFIG_SERIAL_8250_SHARE_IRQ=y
# CONFIG_SERIAL_8250_DETECT_IRQ is not set
CONFIG_SERIAL_8250_MULTIPORT=y
CONFIG_SERIAL_8250_RSA=y

#
# Non-8250 serial port support
#
CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_CORE_CONSOLE=y
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y
CONFIG_LEGACY_PTY_COUNT=256

#
# IPMI
#
CONFIG_IPMI_HANDLER=m
CONFIG_IPMI_PANIC_EVENT=y
CONFIG_IPMI_PANIC_STRING=y
CONFIG_IPMI_DEVICE_INTERFACE=m
CONFIG_IPMI_SI=m
CONFIG_IPMI_WATCHDOG=m
CONFIG_IPMI_POWEROFF=m

#
# Watchdog Cards
#
# CONFIG_WATCHDOG is not set
CONFIG_HW_RANDOM=m
CONFIG_NVRAM=m
CONFIG_RTC=y

Development of a framework for performance testing of intrusion detection systems 46
Yannick LOTH



8 CONCLUSION CONCLUSION

# CONFIG_DTLK is not set
# CONFIG_R3964 is not set
# CONFIG_APPLICOM is not set
# CONFIG_SONYPI is not set

#
# Ftape, the floppy tape device driver
#
# CONFIG_FTAPE is not set
# CONFIG_AGP is not set
# CONFIG_DRM is not set
# CONFIG_MWAVE is not set
# CONFIG_RAW_DRIVER is not set
# CONFIG_HANGCHECK_TIMER is not set
# CONFIG_VTUNE is not set

#
# Linux InfraRed Controller
#
CONFIG_LIRC_SUPPORT=m
CONFIG_LIRC_MAX_DEV=2
CONFIG_LIRC_BT829=m
CONFIG_LIRC_IT87=m
CONFIG_LIRC_SERIAL=m
# CONFIG_LIRC_HOMEBREW is not set
CONFIG_LIRC_PORT_SERIAL=0x3f8
CONFIG_LIRC_IRQ_SERIAL=4
CONFIG_LIRC_SIR=m
CONFIG_LIRC_PORT_SIR=0x3f8
CONFIG_LIRC_IRQ_SIR=4

#
# I2C support
#
CONFIG_I2C=m
CONFIG_I2C_CHARDEV=m

#
# I2C Algorithms
#
CONFIG_I2C_ALGOBIT=m
CONFIG_I2C_ALGOPCF=m
CONFIG_I2C_ALGOPCA=m

#
# I2C Hardware Bus support
#
CONFIG_I2C_ALI1535=m
CONFIG_I2C_ALI1563=m
CONFIG_I2C_ALI15X3=m
CONFIG_I2C_AMD756=m
CONFIG_I2C_AMD8111=m
CONFIG_I2C_I801=m
CONFIG_I2C_I810=m
CONFIG_I2C_ISA=m
CONFIG_I2C_NFORCE2=m
CONFIG_I2C_PARPORT_LIGHT=m
CONFIG_I2C_PIIX4=m
CONFIG_I2C_PROSAVAGE=m
CONFIG_I2C_SAVAGE4=m
CONFIG_SCx200_ACB=m
CONFIG_I2C_SIS5595=m
CONFIG_I2C_SIS630=m
CONFIG_I2C_SIS96X=m

Development of a framework for performance testing of intrusion detection systems 47
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_I2C_VIA=m
CONFIG_I2C_VIAPRO=m
CONFIG_I2C_VOODOO3=m
CONFIG_I2C_PCA_ISA=m

#
# Hardware Sensors Chip support
#
CONFIG_I2C_SENSOR=m
CONFIG_SENSORS_ADM1021=m
CONFIG_SENSORS_ADM1025=m
CONFIG_SENSORS_ADM1031=m
CONFIG_SENSORS_ASB100=m
CONFIG_SENSORS_DS1621=m
CONFIG_SENSORS_FSCHER=m
CONFIG_SENSORS_GL518SM=m
CONFIG_SENSORS_IT87=m
CONFIG_SENSORS_LM75=m
CONFIG_SENSORS_LM77=m
CONFIG_SENSORS_LM78=m
CONFIG_SENSORS_LM80=m
CONFIG_SENSORS_LM83=m
CONFIG_SENSORS_LM85=m
CONFIG_SENSORS_LM90=m
CONFIG_SENSORS_MAX1619=m
CONFIG_SENSORS_SMSC47M1=m
CONFIG_SENSORS_VIA686A=m
CONFIG_SENSORS_W83781D=m
CONFIG_SENSORS_W83L785TS=m
CONFIG_SENSORS_W83627HF=m

#
# Other I2C Chip support
#
CONFIG_SENSORS_EEPROM=m
CONFIG_SENSORS_PCF8574=m
CONFIG_SENSORS_PCF8591=m
CONFIG_SENSORS_RTC8564=m
# CONFIG_I2C_DEBUG_CORE is not set
# CONFIG_I2C_DEBUG_ALGO is not set
# CONFIG_I2C_DEBUG_BUS is not set
# CONFIG_I2C_DEBUG_CHIP is not set

#
# Dallas's 1-wire bus
#
# CONFIG_W1 is not set

#
# Misc devices
#
# CONFIG_IBM_ASM is not set

#
# Multimedia devices
#
# CONFIG_VIDEO_DEV is not set

#
# Digital Video Broadcasting Devices
#
# CONFIG_DVB is not set

#

Development of a framework for performance testing of intrusion detection systems 48
Yannick LOTH



8 CONCLUSION CONCLUSION

# Graphics support
#
CONFIG_FB=y
CONFIG_FB_MODE_HELPERS=y
# CONFIG_FB_CIRRUS is not set
# CONFIG_FB_PM2 is not set
# CONFIG_FB_CYBER2000 is not set
# CONFIG_FB_ASILIANT is not set
# CONFIG_FB_IMSTT is not set
CONFIG_FB_VGA16=m
CONFIG_FB_VESA=y
CONFIG_VIDEO_SELECT=y
# CONFIG_FB_HGA is not set
# CONFIG_FB_RIVA is not set
# CONFIG_FB_I810 is not set
# CONFIG_FB_MATROX is not set
# CONFIG_FB_RADEON_OLD is not set
# CONFIG_FB_RADEON is not set
# CONFIG_FB_ATY128 is not set
CONFIG_FB_ATY=m
CONFIG_FB_ATY_CT=y
CONFIG_FB_ATY_GX=y
CONFIG_FB_ATY_XL_INIT=y
# CONFIG_FB_SIS is not set
# CONFIG_FB_NEOMAGIC is not set
# CONFIG_FB_KYRO is not set
# CONFIG_FB_3DFX is not set
# CONFIG_FB_VOODOO1 is not set
# CONFIG_FB_TRIDENT is not set
# CONFIG_FB_VIRTUAL is not set

#
# Console display driver support
#
CONFIG_VGA_CONSOLE=y
CONFIG_DUMMY_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
# CONFIG_FONTS is not set
CONFIG_FONT_8x8=y
CONFIG_FONT_8x16=y

#
# Logo configuration
#
# CONFIG_LOGO is not set

#
# Bootsplash configuration
#
CONFIG_BOOTSPLASH=y

#
# Sound
#
# CONFIG_SOUND is not set

#
# USB support
#
# CONFIG_USB is not set

#
# USB Gadget Support
#

Development of a framework for performance testing of intrusion detection systems 49
Yannick LOTH



8 CONCLUSION CONCLUSION

# CONFIG_USB_GADGET is not set

#
# InfiniBand support
#
# CONFIG_INFINIBAND is not set

#
# File systems
#
CONFIG_EXT2_FS=y
CONFIG_EXT2_FS_XATTR=y
CONFIG_EXT2_FS_POSIX_ACL=y
CONFIG_EXT2_FS_SECURITY=y
CONFIG_EXT3_FS=m
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_EXT3_FS_SECURITY=y
CONFIG_JBD=m
CONFIG_JBD_DEBUG=y
CONFIG_FS_MBCACHE=y
CONFIG_REISER4_FS=m
CONFIG_REISER4_LARGE_KEY=y
# CONFIG_REISER4_CHECK is not set
CONFIG_REISERFS_FS=m
# CONFIG_REISERFS_CHECK is not set
# CONFIG_REISERFS_PROC_INFO is not set
CONFIG_REISERFS_FS_XATTR=y
CONFIG_REISERFS_FS_POSIX_ACL=y
CONFIG_REISERFS_FS_SECURITY=y
CONFIG_JFS_FS=m
CONFIG_JFS_POSIX_ACL=y
# CONFIG_JFS_DEBUG is not set
CONFIG_JFS_STATISTICS=y
CONFIG_FS_POSIX_ACL=y
CONFIG_XFS_FS=m
CONFIG_XFS_RT=y
CONFIG_XFS_QUOTA=y
CONFIG_XFS_SECURITY=y
CONFIG_XFS_POSIX_ACL=y
CONFIG_MINIX_FS=y
CONFIG_ROMFS_FS=m
CONFIG_QUOTA=y
CONFIG_QFMT_V1=m
CONFIG_QFMT_V2=m
CONFIG_QUOTACTL=y
# CONFIG_SUBFS_FS is not set
CONFIG_AUTOFS_FS=m
CONFIG_AUTOFS4_FS=m

#
# CD-ROM/DVD Filesystems
#
CONFIG_ISO9660_FS=y
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_ZISOFS_FS=y
CONFIG_UDF_FS=m
CONFIG_UDF_NLS=y

#
# DOS/FAT/NT Filesystems
#
CONFIG_FAT_FS=m

Development of a framework for performance testing of intrusion detection systems 50
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_MSDOS_FS=m
CONFIG_VFAT_FS=m
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"
CONFIG_NTFS_FS=m
# CONFIG_NTFS_DEBUG is not set
# CONFIG_NTFS_RW is not set

#
# Pseudo filesystems
#
CONFIG_PROC_FS=y
CONFIG_PROC_KCORE=y
CONFIG_SYSFS=y
# CONFIG_DEVFS_FS is not set
CONFIG_DEVPTS_FS_XATTR=y
CONFIG_DEVPTS_FS_SECURITY=y
CONFIG_TMPFS=y
CONFIG_HUGETLBFS=y
CONFIG_HUGETLB_PAGE=y
CONFIG_RAMFS=y

#
# Miscellaneous filesystems
#
CONFIG_ADFS_FS=m
# CONFIG_ADFS_FS_RW is not set
CONFIG_AFFS_FS=m
CONFIG_HFS_FS=m
CONFIG_HFSPLUS_FS=m
CONFIG_BEFS_FS=m
# CONFIG_BEFS_DEBUG is not set
CONFIG_BFS_FS=m
CONFIG_EFS_FS=m
CONFIG_CRAMFS=m
CONFIG_VXFS_FS=m
CONFIG_HPFS_FS=m
CONFIG_QNX4FS_FS=m
# CONFIG_QNX4FS_RW is not set
CONFIG_SYSV_FS=m
CONFIG_UFS_FS=m
# CONFIG_UFS_FS_WRITE is not set

#
# Network File Systems
#
CONFIG_NFS_FS=y
CONFIG_NFS_V3=y
CONFIG_NFS_ACL=y
# CONFIG_NFS_V4 is not set
CONFIG_NFS_DIRECTIO=y
CONFIG_NFSD=m
CONFIG_NFSD_V3=y
CONFIG_NFSD_ACL=y
CONFIG_NFS_ACL_SUPPORT=y
# CONFIG_NFSD_V4 is not set
CONFIG_NFSD_TCP=y
CONFIG_LOCKD=y
CONFIG_STATD=y
CONFIG_LOCKD_V4=y
CONFIG_EXPORTFS=m
CONFIG_SUNRPC=y
CONFIG_SUNRPC_GSS=y
CONFIG_RPCSEC_GSS_KRB5=y

Development of a framework for performance testing of intrusion detection systems 51
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_RPCSEC_GSS_SPKM3=m
CONFIG_SMB_FS=m
CONFIG_SMB_NLS_DEFAULT=y
CONFIG_SMB_NLS_REMOTE="cp850"
CONFIG_CIFS=m
CONFIG_CIFS_STATS=y
CONFIG_CIFS_XATTR=y
CONFIG_CIFS_POSIX=y
CONFIG_NCP_FS=m
CONFIG_NCPFS_PACKET_SIGNING=y
CONFIG_NCPFS_IOCTL_LOCKING=y
CONFIG_NCPFS_STRONG=y
CONFIG_NCPFS_NFS_NS=y
CONFIG_NCPFS_OS2_NS=y
CONFIG_NCPFS_SMALLDOS=y
CONFIG_NCPFS_NLS=y
CONFIG_NCPFS_EXTRAS=y
CONFIG_CODA_FS=m
# CONFIG_CODA_FS_OLD_API is not set
CONFIG_AFS_FS=m
CONFIG_RXRPC=m

#
# Partition Types
#
CONFIG_PARTITION_ADVANCED=y
# CONFIG_ACORN_PARTITION is not set
CONFIG_OSF_PARTITION=y
# CONFIG_AMIGA_PARTITION is not set
CONFIG_ATARI_PARTITION=y
CONFIG_MAC_PARTITION=y
CONFIG_MSDOS_PARTITION=y
CONFIG_BSD_DISKLABEL=y
# CONFIG_MINIX_SUBPARTITION is not set
CONFIG_SOLARIS_X86_PARTITION=y
CONFIG_UNIXWARE_DISKLABEL=y
CONFIG_LDM_PARTITION=y
# CONFIG_LDM_DEBUG is not set
CONFIG_SGI_PARTITION=y
CONFIG_ULTRIX_PARTITION=y
CONFIG_SUN_PARTITION=y
CONFIG_EFI_PARTITION=y

#
# Native Language Support
#
CONFIG_NLS=y
CONFIG_NLS_DEFAULT="utf8"
CONFIG_NLS_CODEPAGE_437=m
CONFIG_NLS_CODEPAGE_737=m
CONFIG_NLS_CODEPAGE_775=m
CONFIG_NLS_CODEPAGE_850=m
CONFIG_NLS_CODEPAGE_852=m
CONFIG_NLS_CODEPAGE_855=m
CONFIG_NLS_CODEPAGE_857=m
CONFIG_NLS_CODEPAGE_860=m
CONFIG_NLS_CODEPAGE_861=m
CONFIG_NLS_CODEPAGE_862=m
CONFIG_NLS_CODEPAGE_863=m
CONFIG_NLS_CODEPAGE_864=m
CONFIG_NLS_CODEPAGE_865=m
CONFIG_NLS_CODEPAGE_866=m
CONFIG_NLS_CODEPAGE_869=m
CONFIG_NLS_CODEPAGE_936=m

Development of a framework for performance testing of intrusion detection systems 52
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_NLS_CODEPAGE_950=m
CONFIG_NLS_CODEPAGE_932=m
CONFIG_NLS_CODEPAGE_949=m
CONFIG_NLS_CODEPAGE_874=m
CONFIG_NLS_ISO8859_8=m
CONFIG_NLS_CODEPAGE_1250=m
CONFIG_NLS_CODEPAGE_1251=m
CONFIG_NLS_ASCII=m
CONFIG_NLS_ISO8859_1=m
CONFIG_NLS_ISO8859_2=m
CONFIG_NLS_ISO8859_3=m
CONFIG_NLS_ISO8859_4=m
CONFIG_NLS_ISO8859_5=m
CONFIG_NLS_ISO8859_6=m
CONFIG_NLS_ISO8859_7=m
CONFIG_NLS_ISO8859_9=m
CONFIG_NLS_ISO8859_13=m
CONFIG_NLS_ISO8859_14=m
CONFIG_NLS_ISO8859_15=m
CONFIG_NLS_KOI8_R=m
CONFIG_NLS_KOI8_U=m
CONFIG_NLS_UTF8=m

#
# Profiling support
#
# CONFIG_PROFILING is not set

#
# Kernel hacking
#
# CONFIG_DEBUG_KERNEL is not set
# CONFIG_FRAME_POINTER is not set
CONFIG_EARLY_PRINTK=y
# CONFIG_4KSTACKS is not set
CONFIG_X86_FIND_SMP_CONFIG=y
CONFIG_X86_MPPARSE=y

#
# Security options
#
# CONFIG_SECURITY is not set

#
# Cryptographic options
#
CONFIG_CRYPTO=y
CONFIG_CRYPTO_HMAC=y
CONFIG_CRYPTO_NULL=m
CONFIG_CRYPTO_MD4=m
CONFIG_CRYPTO_MD5=y
CONFIG_CRYPTO_SHA1=m
CONFIG_CRYPTO_SHA256=m
CONFIG_CRYPTO_SHA512=m
CONFIG_CRYPTO_DES=y
CONFIG_CRYPTO_BLOWFISH=m
CONFIG_CRYPTO_TWOFISH=m
CONFIG_CRYPTO_SERPENT=m
CONFIG_CRYPTO_AES_586=m
CONFIG_CRYPTO_CAST5=m
CONFIG_CRYPTO_CAST6=m
CONFIG_CRYPTO_TEA=m
CONFIG_CRYPTO_ARC4=m
CONFIG_CRYPTO_KHAZAD=m

Development of a framework for performance testing of intrusion detection systems 53
Yannick LOTH



8 CONCLUSION CONCLUSION

CONFIG_CRYPTO_DEFLATE=m
CONFIG_CRYPTO_MICHAEL_MIC=m
CONFIG_CRYPTO_CRC32C=m
CONFIG_CRYPTO_TEST=m

#
# Library routines
#
CONFIG_CRC_CCITT=m
CONFIG_CRC32=y
CONFIG_LIBCRC32C=m
CONFIG_QSORT=y
CONFIG_ZLIB_INFLATE=y
CONFIG_ZLIB_DEFLATE=m

#
# Build options
#
CONFIG_SUSE_KERNEL=y
CONFIG_CFGNAME="default"
CONFIG_RELEASE="27"
CONFIG_X86_BIOS_REBOOT=y
CONFIG_PC=y

Development of a framework for performance testing of intrusion detection systems 54
Yannick LOTH



8 CONCLUSION CONCLUSION

Doxygen source code documentation for Stressnet

Development of a framework for performance testing of intrusion detection systems 55
Yannick LOTH



Stressnet Reference Manual

Generated by Doxygen 1.4.2

Tue Jun 21 21:52:27 2005



CONTENTS 1

Contents

1 Stressnet Data Structure Index 1

2 Stressnet File Index 1

3 Stressnet Data Structure Documentation 2

4 Stressnet File Documentation 4

1 Stressnet Data Structure Index

1.1 Stressnet Data Structures

Here are the data structures with brief descriptions:

gengetopt_args_info 2

2 Stressnet File Index

2.1 Stressnet File List

Here is a list of all files with brief descriptions:

cmdline.c 4

cmdline.h 14

dumpread.cpp 24

dumpread.h 27

licenseinfo.cpp 31

licenseinfo.h 32

memmanagement.c 33

memmanagement.h 34

processproperties.c 35

processproperties.h 35

stressnet.cpp 36

timing.c 42

timing.h 45

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



3 Stressnet Data Structure Documentation 2

3 Stressnet Data Structure Documentation

3.1 gengetopt_args_info Struct Reference

#include <cmdline.h>

Data Fields

• long bitrate_arg
• int bitrate_given
• char ∗ configfile_arg
• int configfile_given
• char ∗ destMAC_arg
• int destMAC_given
• int help_given
• char ∗ interface_arg
• int interface_given
• char ∗ packetfileM_arg
• int packetfileM_given
• char ∗ packetfileN_arg
• int packetfileN_given
• int priority_arg
• int priority_given
• int quantity_arg
• int quantity_given
• long ratio_arg
• int ratio_given
• int version_given

3.1.1 Field Documentation

3.1.1.1 long gengetopt_args_info::bitrate_arg

Definition at line 31 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.2 int gengetopt_args_info::bitrate_given

Definition at line 43 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

3.1.1.3 char∗ gengetopt_args_info::configfile_arg

Definition at line 32 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.4 int gengetopt_args_info::configfile_given

Definition at line 44 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



3.1 gengetopt_args_info Struct Reference 3

3.1.1.5 char∗ gengetopt_args_info::destMAC_arg

Definition at line 35 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.6 int gengetopt_args_info::destMAC_given

Definition at line 47 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.7 int gengetopt_args_info::help_given

Definition at line 37 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

3.1.1.8 char∗ gengetopt_args_info::interface_arg

Definition at line 27 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.9 int gengetopt_args_info::interface_given

Definition at line 39 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

3.1.1.10 char∗ gengetopt_args_info::packetfileM_arg

Definition at line 28 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.11 int gengetopt_args_info::packetfileM_given

Definition at line 40 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

3.1.1.12 char∗ gengetopt_args_info::packetfileN_arg

Definition at line 29 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.13 int gengetopt_args_info::packetfileN_given

Definition at line 41 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.14 int gengetopt_args_info::priority_arg

Definition at line 33 of file cmdline.h.

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4 Stressnet File Documentation 4

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.15 int gengetopt_args_info::priority_given

Definition at line 45 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

3.1.1.16 int gengetopt_args_info::quantity_arg

Definition at line 34 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.17 int gengetopt_args_info::quantity_given

Definition at line 46 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

3.1.1.18 long gengetopt_args_info::ratio_arg

Definition at line 30 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), and main().

3.1.1.19 int gengetopt_args_info::ratio_given

Definition at line 42 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

3.1.1.20 int gengetopt_args_info::version_given

Definition at line 38 of file cmdline.h.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

The documentation for this struct was generated from the following file:

• cmdline.h

4 Stressnet File Documentation

4.1 cmdline.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "getopt.h"

#include "cmdline.h"

Include dependency graph for cmdline.c:

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 5

cmdline.c

stdio.h

stdlib.h

string.h

getopt.h

cmdline.h

Defines

• #define clear_args()
• #define CONFIGPARSERBUFSIZE 1024

Functions

• int cmdline_parser (int argc, char ∗const ∗argv, struct gengetopt_args_info ∗args_info)
• int cmdline_parser_configfile (char ∗const filename, struct gengetopt_args_info ∗args_info, int over-

ride)
• void cmdline_parser_print_help (void)
• void cmdline_parser_print_version (void)
• static char ∗ gengetopt_strdup (const char ∗s)

4.1.1 Define Documentation

4.1.1.1 #define clear_args()

Value:

{ \
args_info->interface_arg = gengetopt_strdup("eth0") ;\
args_info->packetfileM_arg = NULL; \
args_info->packetfileN_arg = NULL; \
args_info->ratio_arg = 50 ;\
args_info->bitrate_arg = 100 ;\
args_info->configfile_arg = NULL; \
args_info->priority_arg = 0 ;\
args_info->quantity_arg = 100 ;\
args_info->destMAC_arg = gengetopt_strdup("00:11:22:33:44:55") ;\

}

Referenced by cmdline_parser().

4.1.1.2 #define CONFIGPARSERBUFSIZE 1024

Definition at line 301 of file cmdline.c.

Referenced by cmdline_parser_configfile().

4.1.2 Function Documentation

4.1.2.1 int cmdline_parser (int argc, char ∗const ∗ argv, struct gengetopt_args_info ∗ args_info)

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 6

Definition at line 105 of file cmdline.c.

References gengetopt_args_info::bitrate_arg, gengetopt_args_info::bitrate_given, clear_args,
CMDLINE_PARSER_PACKAGE, cmdline_parser_print_help(), cmdline_parser_print_version(),
gengetopt_args_info::configfile_arg, gengetopt_args_info::configfile_given, gengetopt_args_info::dest-
MAC_arg, gengetopt_args_info::destMAC_given, gengetopt_strdup(), gengetopt_args_info::help_-
given, gengetopt_args_info::interface_arg, gengetopt_args_info::interface_given, gengetopt_args_-
info::packetfileM_arg, gengetopt_args_info::packetfileM_given, gengetopt_args_info::packetfile-
N_arg, gengetopt_args_info::packetfileN_given, gengetopt_args_info::priority_arg, gengetopt_-
args_info::priority_given, gengetopt_args_info::quantity_arg, gengetopt_args_info::quantity_given,
gengetopt_args_info::ratio_arg, gengetopt_args_info::ratio_given, and gengetopt_args_info::version_-
given.

Referenced by main().

106 {
107 int c; /* Character of the parsed option. */
108 int missing_required_options = 0;
109
110 args_info->help_given = 0 ;
111 args_info->version_given = 0 ;
112 args_info->interface_given = 0 ;
113 args_info->packetfileM_given = 0 ;
114 args_info->packetfileN_given = 0 ;
115 args_info->ratio_given = 0 ;
116 args_info->bitrate_given = 0 ;
117 args_info->configfile_given = 0 ;
118 args_info->priority_given = 0 ;
119 args_info->quantity_given = 0 ;
120 args_info->destMAC_given = 0 ;
121 #define clear_args() { \
122 args_info->interface_arg = gengetopt_strdup("eth0") ;\
123 args_info->packetfileM_arg = NULL; \
124 args_info->packetfileN_arg = NULL; \
125 args_info->ratio_arg = 50 ;\
126 args_info->bitrate_arg = 100 ;\
127 args_info->configfile_arg = NULL; \
128 args_info->priority_arg = 0 ;\
129 args_info->quantity_arg = 100 ;\
130 args_info->destMAC_arg = gengetopt_strdup("00:11:22:33:44:55") ;\
131 }
132
133 clear_args();
134
135 optarg = 0;
136 optind = 1;
137 opterr = 1;
138 optopt = ’?’;
139
140 while (1)
141 {
142 int option_index = 0;
143 char *stop_char;
144
145 static struct option long_options[] = {
146 { "help", 0, NULL, ’h’ },
147 { "version", 0, NULL, ’V’ },
148 { "interface", 1, NULL, ’i’ },
149 { "packetfileM", 1, NULL, ’m’ },
150 { "packetfileN", 1, NULL, ’n’ },
151 { "ratio", 1, NULL, ’r’ },
152 { "bitrate", 1, NULL, ’b’ },
153 { "configfile", 1, NULL, ’c’ },
154 { "priority", 1, NULL, ’p’ },
155 { "quantity", 1, NULL, ’q’ },

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 7

156 { "destMAC", 1, NULL, ’d’ },
157 { NULL, 0, NULL, 0 }
158 };
159
160 stop_char = 0;
161 c = getopt_long (argc, argv, "hVi:m:n:r:b:c:p:q:d:", long_options, &option_index);
162
163 if (c == -1) break; /* Exit from ‘while (1)’ loop. */
164
165 switch (c)
166 {
167 case ’h’: /* Print help and exit. */
168 clear_args ();
169 cmdline_parser_print_help ();
170 exit (EXIT_SUCCESS);
171
172 case ’V’: /* Print version and exit. */
173 clear_args ();
174 cmdline_parser_print_version ();
175 exit (EXIT_SUCCESS);
176
177 case ’i’: /* network device used to send packets. */
178 if (args_info->interface_given)
179 {
180 fprintf (stderr, "%s: ‘--interface’ (‘-i’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
181 clear_args ();
182 exit (EXIT_FAILURE);
183 }
184 args_info->interface_given = 1;
185 args_info->interface_arg = gengetopt_strdup (optarg);
186 break;
187
188 case ’m’: /* First file of packets. */
189 if (args_info->packetfileM_given)
190 {
191 fprintf (stderr, "%s: ‘--packetfileM’ (‘-m’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
192 clear_args ();
193 exit (EXIT_FAILURE);
194 }
195 args_info->packetfileM_given = 1;
196 args_info->packetfileM_arg = gengetopt_strdup (optarg);
197 break;
198
199 case ’n’: /* Second file ofpackets. */
200 if (args_info->packetfileN_given)
201 {
202 fprintf (stderr, "%s: ‘--packetfileN’ (‘-n’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
203 clear_args ();
204 exit (EXIT_FAILURE);
205 }
206 args_info->packetfileN_given = 1;
207 args_info->packetfileN_arg = gengetopt_strdup (optarg);
208 break;
209
210 case ’r’: /* ratio M/N: number of packets of file M for every 1 packet of file N. */
211 if (args_info->ratio_given)
212 {
213 fprintf (stderr, "%s: ‘--ratio’ (‘-r’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
214 clear_args ();
215 exit (EXIT_FAILURE);
216 }
217 args_info->ratio_given = 1;
218 args_info->ratio_arg = strtol (optarg,&stop_char,0);
219 break;
220
221 case ’b’: /* desired send bitrate in kbit/s. */
222 if (args_info->bitrate_given)

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 8

223 {
224 fprintf (stderr, "%s: ‘--bitrate’ (‘-b’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
225 clear_args ();
226 exit (EXIT_FAILURE);
227 }
228 args_info->bitrate_given = 1;
229 args_info->bitrate_arg = strtol (optarg,&stop_char,0);
230 break;
231
232 case ’c’: /* config file containing the command line arguments. */
233 if (args_info->configfile_given)
234 {
235 fprintf (stderr, "%s: ‘--configfile’ (‘-c’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
236 clear_args ();
237 exit (EXIT_FAILURE);
238 }
239 args_info->configfile_given = 1;
240 args_info->configfile_arg = gengetopt_strdup (optarg);
241 break;
242
243 case ’p’: /* scheduling priority value. */
244 if (args_info->priority_given)
245 {
246 fprintf (stderr, "%s: ‘--priority’ (‘-p’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
247 clear_args ();
248 exit (EXIT_FAILURE);
249 }
250 args_info->priority_given = 1;
251 args_info->priority_arg = strtol (optarg,&stop_char,0);
252 break;
253
254 case ’q’: /* total quantity of packets to send. */
255 if (args_info->quantity_given)
256 {
257 fprintf (stderr, "%s: ‘--quantity’ (‘-q’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
258 clear_args ();
259 exit (EXIT_FAILURE);
260 }
261 args_info->quantity_given = 1;
262 args_info->quantity_arg = strtol (optarg,&stop_char,0);
263 break;
264
265 case ’d’: /* destination MAC address for ALL packets. */
266 if (args_info->destMAC_given)
267 {
268 fprintf (stderr, "%s: ‘--destMAC’ (‘-d’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
269 clear_args ();
270 exit (EXIT_FAILURE);
271 }
272 args_info->destMAC_given = 1;
273 args_info->destMAC_arg = gengetopt_strdup (optarg);
274 break;
275
276
277 case 0: /* Long option with no short option */
278
279 case ’?’: /* Invalid option. */
280 /* ‘getopt_long’ already printed an error message. */
281 exit (EXIT_FAILURE);
282
283 default: /* bug: option not considered. */
284 fprintf (stderr, "%s: option unknown: %c\n", CMDLINE_PARSER_PACKAGE, c);
285 abort ();
286 } /* switch */
287 } /* while */
288
289

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 9

290 if (! args_info->packetfileM_given)
291 {
292 fprintf (stderr, "%s: ’--packetfileM’ (’-m’) option required\n", CMDLINE_PARSER_PACKAGE);
293 missing_required_options = 1;
294 }
295 if ( missing_required_options )
296 exit (EXIT_FAILURE);
297
298 return 0;
299 }

Here is the call graph for this function:

cmdline_parser

cmdline_parser_print_help

cmdline_parser_print_version

gengetopt_strdup

4.1.2.2 int cmdline_parser_configfile (char ∗const filename, struct gengetopt_args_info ∗ args_info,
int override)

Definition at line 304 of file cmdline.c.

References gengetopt_args_info::bitrate_arg, gengetopt_args_info::bitrate_given, CMDLINE_PARSER_-
PACKAGE, gengetopt_args_info::configfile_arg, gengetopt_args_info::configfile_given, CONFIG-
PARSERBUFSIZE, gengetopt_args_info::destMAC_arg, gengetopt_args_info::destMAC_given,
gengetopt_strdup(), gengetopt_args_info::help_given, gengetopt_args_info::interface_arg, gengetopt_-
args_info::interface_given, gengetopt_args_info::packetfileM_arg, gengetopt_args_info::packetfileM_-
given, gengetopt_args_info::packetfileN_arg, gengetopt_args_info::packetfileN_given, gengetopt_-
args_info::priority_arg, gengetopt_args_info::priority_given, gengetopt_args_info::quantity_arg,
gengetopt_args_info::quantity_given, gengetopt_args_info::ratio_arg, gengetopt_args_info::ratio_given,
and gengetopt_args_info::version_given.

Referenced by main().

305 {
306 FILE* file;
307 char linebuf[CONFIGPARSERBUFSIZE];
308 int line_num = 0;
309 int len;
310 int fnum;
311 char fopt[CONFIGPARSERBUFSIZE], farg[CONFIGPARSERBUFSIZE];
312 char *stop_char;
313 char *str_index, *str_index2;
314 int next_token;
315
316 if ((file = fopen(filename, "r")) == NULL)
317 {
318 fprintf (stderr, "%s: Error opening configuration file ’%s’\n",
319 CMDLINE_PARSER_PACKAGE, filename);
320 exit (EXIT_FAILURE);
321 }
322
323 while ((fgets(linebuf, CONFIGPARSERBUFSIZE, file)) != NULL)
324 {
325 ++line_num;
326 len = strlen(linebuf);
327 if (len == CONFIGPARSERBUFSIZE-1)
328 {

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 10

329 fprintf (stderr, "%s: Line longer than %d characters found in configuration file ’%s’\n",
330 CMDLINE_PARSER_PACKAGE, CONFIGPARSERBUFSIZE, filename);
331 exit (EXIT_FAILURE);
332 }
333
334 if (linebuf[0] == ’#’)
335 continue; /* Line was a comment */
336
337 /* read the option */
338 fnum = sscanf (linebuf, "%s", fopt);
339
340 if (fnum < 0)
341 continue; /* blank line */
342
343 next_token = strlen (fopt);
344 str_index = strchr (&linebuf[next_token], ’\"’);
345 if (str_index)
346 {
347 str_index2 = strchr (str_index + 1, ’\"’);
348 if (! str_index2)
349 {
350 fprintf
351 (stderr,
352 "%s: unterminated string in configuration file ’%s’\n",
353 CMDLINE_PARSER_PACKAGE, filename);
354 exit (EXIT_FAILURE);
355 }
356
357 strncpy (farg, str_index + 1, str_index2 - str_index - 1);
358 farg[str_index2 - str_index]=’\0’;
359 ++fnum;
360 }
361 else
362 if (sscanf (&linebuf[next_token], "%s", farg) > 0)
363 ++fnum;
364
365 if (fnum > 0)
366 {
367 if (!strcmp(fopt, "help"))
368 {
369 if (override || !args_info->help_given)
370 {
371 args_info->help_given = 1;
372
373 }
374 continue;
375 }
376 if (!strcmp(fopt, "version"))
377 {
378 if (override || !args_info->version_given)
379 {
380 args_info->version_given = 1;
381
382 }
383 continue;
384 }
385 if (!strcmp(fopt, "interface"))
386 {
387 if (override || !args_info->interface_given)
388 {
389 args_info->interface_given = 1;
390 if (fnum == 2)
391 args_info->interface_arg = gengetopt_strdup (farg);
392 else
393 {
394 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
395 filename, line_num);

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 11

396 exit (EXIT_FAILURE);
397 }
398 }
399 continue;
400 }
401 if (!strcmp(fopt, "packetfileM"))
402 {
403 if (override || !args_info->packetfileM_given)
404 {
405 args_info->packetfileM_given = 1;
406 if (fnum == 2)
407 args_info->packetfileM_arg = gengetopt_strdup (farg);
408 else
409 {
410 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
411 filename, line_num);
412 exit (EXIT_FAILURE);
413 }
414 }
415 continue;
416 }
417 if (!strcmp(fopt, "packetfileN"))
418 {
419 if (override || !args_info->packetfileN_given)
420 {
421 args_info->packetfileN_given = 1;
422 if (fnum == 2)
423 args_info->packetfileN_arg = gengetopt_strdup (farg);
424 else
425 {
426 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
427 filename, line_num);
428 exit (EXIT_FAILURE);
429 }
430 }
431 continue;
432 }
433 if (!strcmp(fopt, "ratio"))
434 {
435 if (override || !args_info->ratio_given)
436 {
437 args_info->ratio_given = 1;
438 if (fnum == 2)
439 args_info->ratio_arg = strtol (farg,&stop_char,0);
440 else
441 {
442 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
443 filename, line_num);
444 exit (EXIT_FAILURE);
445 }
446 }
447 continue;
448 }
449 if (!strcmp(fopt, "bitrate"))
450 {
451 if (override || !args_info->bitrate_given)
452 {
453 args_info->bitrate_given = 1;
454 if (fnum == 2)
455 args_info->bitrate_arg = strtol (farg,&stop_char,0);
456 else
457 {
458 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
459 filename, line_num);
460 exit (EXIT_FAILURE);
461 }
462 }

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 12

463 continue;
464 }
465 if (!strcmp(fopt, "configfile"))
466 {
467 if (override || !args_info->configfile_given)
468 {
469 args_info->configfile_given = 1;
470 if (fnum == 2)
471 args_info->configfile_arg = gengetopt_strdup (farg);
472 else
473 {
474 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
475 filename, line_num);
476 exit (EXIT_FAILURE);
477 }
478 }
479 continue;
480 }
481 if (!strcmp(fopt, "priority"))
482 {
483 if (override || !args_info->priority_given)
484 {
485 args_info->priority_given = 1;
486 if (fnum == 2)
487 args_info->priority_arg = strtol (farg,&stop_char,0);
488 else
489 {
490 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
491 filename, line_num);
492 exit (EXIT_FAILURE);
493 }
494 }
495 continue;
496 }
497 if (!strcmp(fopt, "quantity"))
498 {
499 if (override || !args_info->quantity_given)
500 {
501 args_info->quantity_given = 1;
502 if (fnum == 2)
503 args_info->quantity_arg = strtol (farg,&stop_char,0);
504 else
505 {
506 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
507 filename, line_num);
508 exit (EXIT_FAILURE);
509 }
510 }
511 continue;
512 }
513 if (!strcmp(fopt, "destMAC"))
514 {
515 if (override || !args_info->destMAC_given)
516 {
517 args_info->destMAC_given = 1;
518 if (fnum == 2)
519 args_info->destMAC_arg = gengetopt_strdup (farg);
520 else
521 {
522 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
523 filename, line_num);
524 exit (EXIT_FAILURE);
525 }
526 }
527 continue;
528 }
529

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.1 cmdline.c File Reference 13

530
531 /* Tried all known options. This one is unknown! */
532 fprintf (stderr, "%s: Unknown option ’%s’ found in %s\n",
533 CMDLINE_PARSER_PACKAGE, fopt, filename);
534 exit (EXIT_FAILURE);
535 }
536 } /* while */
537 fclose(file); /* No error checking on close */
538
539 return 0;
540 }

Here is the call graph for this function:

cmdline_parser_configfile gengetopt_strdup

4.1.2.3 void cmdline_parser_print_help (void)

Definition at line 32 of file cmdline.c.

References CMDLINE_PARSER_PACKAGE, and cmdline_parser_print_version().

Referenced by cmdline_parser().

33 {
34 cmdline_parser_print_version ();
35 printf("\n"
36 "Purpose:\n"
37 " stressnet is intended for replaying tcpdump/pcap capture files \n"
38 " -except the ethernet address- with a given bitrate to stress network \n"
39 " devices such as intrusion detection systems or firewalls. It mixes two pcap\n"
40 " files (A and B) with a ratio r given as argument and meaning: for every 1 \n"
41 " packet of file B that is sent, there are r packets of file A that are sent. \n"
42 " This is meant to impose a rate of malformed packets in the dataflow.\n"
43 " \n"
44 " THIS SOFTWARE CAN AND SHOULD BE IMPROVED AS MUCH AS POSSIBLE, new ideas and \n"
45 " critics are always welcome. You can send them by email to the following \n"
46 " address:\n"
47 " \n"
48 " \tyannick AT loth.be\n"
49 " \n"
50 " I would be pleased to discuss about them with you and to exchange ideas about\n"
51 " further improvements.\n"
52 " \n"
53 " This software was initially developed for the Royal Military Academy (RMA) of\n"
54 " Belgium (Brussels), by a student (Yannick Loth) during a training for his \n"
55 " studies as Industrial Engineer in Applied Informatics at the University of \n"
56 " Luxembourg (2005).\n"
57 " The aim of stressnet is to provide a reliable tool (i.e. intended for \n"
58 " engineers etc.) to send packets (well formed and malformed ones) through a \n"
59 " network at different speeds and ratios of innofensive packets over attacking \n"
60 " packets to establish the limits of devices when they are seen as ’blackboxes’,\n"
61 " i.e. when the internal functioning of the devices is unknown.\n"
62 " ’Reliable’ means that when someone asks for a certain bitrate, it should send\n"
63 " data at bitrates quite close to the wanted bitrate.\n"
64 " \n"
65 " The author of this software thanks Maj. W. Mees (RMA) and Capt. O. Thonnard \n"
66 " (RMA) as well as Pr. Th. Engel (Uni. Lux.) for their advices.\n"
67 " \n"
68 " stressnet should only be used by people knowing what they do, this tool could \n"
69 " in fact block your computer for a long time if you don’t take care of what you\n"
70 " do.\n"

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 14

71 " \n"
72 " You’ll (one day, I hope...) find more about this program on \n"
73 " \thttp://www.loth.be/yannick/stressnet/index.html\n"
74 "\n"
75 "Usage: %s [OPTIONS]...\n", CMDLINE_PARSER_PACKAGE);
76 printf(" -h --help Print help and exit\n");
77 printf(" -V --version Print version and exit\n");
78 printf(" -iSTRING --interface=STRING network device used to send packets (default=’eth0’)\n");
79 printf(" -mSTRING --packetfileM=STRING First file of packets\n");
80 printf(" -nSTRING --packetfileN=STRING Second file ofpackets\n");
81 printf(" -rLONG --ratio=LONG ratio M/N: number of packets of file M for every 1 packet of file N (default=’50’)\n");
82 printf(" -bLONG --bitrate=LONG desired send bitrate in kbit/s (default=’100’)\n");
83 printf(" -cSTRING --configfile=STRING config file containing the command line arguments\n");
84 printf(" -pINT --priority=INT scheduling priority value (default=’0’)\n");
85 printf(" -qINT --quantity=INT total quantity of packets to send (default=’100’)\n");
86 printf(" -dSTRING --destMAC=STRING destination MAC address for ALL packets (default=’00:11:22:33:44:55’)\n");
87 }

Here is the call graph for this function:

cmdline_parser_print_help cmdline_parser_print_version

4.1.2.4 void cmdline_parser_print_version (void)

Definition at line 26 of file cmdline.c.

References CMDLINE_PARSER_PACKAGE, and CMDLINE_PARSER_VERSION.

Referenced by cmdline_parser(), and cmdline_parser_print_help().

27 {
28 printf ("%s %s\n", CMDLINE_PARSER_PACKAGE, CMDLINE_PARSER_VERSION);
29 }

4.1.2.5 char ∗ gengetopt_strdup (const char ∗ s) [static]

Definition at line 95 of file cmdline.c.

Referenced by cmdline_parser(), and cmdline_parser_configfile().

96 {
97 char *result = (char*)malloc(strlen(s) + 1);
98 if (result == (char*)0)
99 return (char*)0;
100 strcpy(result, s);
101 return result;
102 }

4.2 cmdline.h File Reference

This graph shows which files directly or indirectly include this file:

cmdline.h
cmdline.c

stressnet.cpp

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 15

Defines

• #define CMDLINE_PARSER_PACKAGE "stressnet"
• #define CMDLINE_PARSER_VERSION "0.1"

Functions

• int cmdline_parser (int argc, char ∗const ∗argv, struct gengetopt_args_info ∗args_info)
• int cmdline_parser_configfile (char ∗const filename, struct gengetopt_args_info ∗args_info, int over-

ride)
• void cmdline_parser_print_help (void)
• void cmdline_parser_print_version (void)

4.2.1 Define Documentation

4.2.1.1 #define CMDLINE_PARSER_PACKAGE "stressnet"

Definition at line 18 of file cmdline.h.

Referenced by cmdline_parser(), cmdline_parser_configfile(), cmdline_parser_print_help(), and cmdline_-
parser_print_version().

4.2.1.2 #define CMDLINE_PARSER_VERSION "0.1"

Definition at line 22 of file cmdline.h.

Referenced by cmdline_parser_print_version().

4.2.2 Function Documentation

4.2.2.1 int cmdline_parser (int argc, char ∗const ∗ argv, struct gengetopt_args_info ∗ args_info)

Definition at line 105 of file cmdline.c.

References gengetopt_args_info::bitrate_arg, gengetopt_args_info::bitrate_given, clear_args,
CMDLINE_PARSER_PACKAGE, cmdline_parser_print_help(), cmdline_parser_print_version(),
gengetopt_args_info::configfile_arg, gengetopt_args_info::configfile_given, gengetopt_args_info::dest-
MAC_arg, gengetopt_args_info::destMAC_given, gengetopt_strdup(), gengetopt_args_info::help_-
given, gengetopt_args_info::interface_arg, gengetopt_args_info::interface_given, gengetopt_args_-
info::packetfileM_arg, gengetopt_args_info::packetfileM_given, gengetopt_args_info::packetfile-
N_arg, gengetopt_args_info::packetfileN_given, gengetopt_args_info::priority_arg, gengetopt_-
args_info::priority_given, gengetopt_args_info::quantity_arg, gengetopt_args_info::quantity_given,
gengetopt_args_info::ratio_arg, gengetopt_args_info::ratio_given, and gengetopt_args_info::version_-
given.

Referenced by main().

106 {
107 int c; /* Character of the parsed option. */
108 int missing_required_options = 0;
109
110 args_info->help_given = 0 ;
111 args_info->version_given = 0 ;
112 args_info->interface_given = 0 ;
113 args_info->packetfileM_given = 0 ;
114 args_info->packetfileN_given = 0 ;

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 16

115 args_info->ratio_given = 0 ;
116 args_info->bitrate_given = 0 ;
117 args_info->configfile_given = 0 ;
118 args_info->priority_given = 0 ;
119 args_info->quantity_given = 0 ;
120 args_info->destMAC_given = 0 ;
121 #define clear_args() { \
122 args_info->interface_arg = gengetopt_strdup("eth0") ;\
123 args_info->packetfileM_arg = NULL; \
124 args_info->packetfileN_arg = NULL; \
125 args_info->ratio_arg = 50 ;\
126 args_info->bitrate_arg = 100 ;\
127 args_info->configfile_arg = NULL; \
128 args_info->priority_arg = 0 ;\
129 args_info->quantity_arg = 100 ;\
130 args_info->destMAC_arg = gengetopt_strdup("00:11:22:33:44:55") ;\
131 }
132
133 clear_args();
134
135 optarg = 0;
136 optind = 1;
137 opterr = 1;
138 optopt = ’?’;
139
140 while (1)
141 {
142 int option_index = 0;
143 char *stop_char;
144
145 static struct option long_options[] = {
146 { "help", 0, NULL, ’h’ },
147 { "version", 0, NULL, ’V’ },
148 { "interface", 1, NULL, ’i’ },
149 { "packetfileM", 1, NULL, ’m’ },
150 { "packetfileN", 1, NULL, ’n’ },
151 { "ratio", 1, NULL, ’r’ },
152 { "bitrate", 1, NULL, ’b’ },
153 { "configfile", 1, NULL, ’c’ },
154 { "priority", 1, NULL, ’p’ },
155 { "quantity", 1, NULL, ’q’ },
156 { "destMAC", 1, NULL, ’d’ },
157 { NULL, 0, NULL, 0 }
158 };
159
160 stop_char = 0;
161 c = getopt_long (argc, argv, "hVi:m:n:r:b:c:p:q:d:", long_options, &option_index);
162
163 if (c == -1) break; /* Exit from ‘while (1)’ loop. */
164
165 switch (c)
166 {
167 case ’h’: /* Print help and exit. */
168 clear_args ();
169 cmdline_parser_print_help ();
170 exit (EXIT_SUCCESS);
171
172 case ’V’: /* Print version and exit. */
173 clear_args ();
174 cmdline_parser_print_version ();
175 exit (EXIT_SUCCESS);
176
177 case ’i’: /* network device used to send packets. */
178 if (args_info->interface_given)
179 {
180 fprintf (stderr, "%s: ‘--interface’ (‘-i’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
181 clear_args ();

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 17

182 exit (EXIT_FAILURE);
183 }
184 args_info->interface_given = 1;
185 args_info->interface_arg = gengetopt_strdup (optarg);
186 break;
187
188 case ’m’: /* First file of packets. */
189 if (args_info->packetfileM_given)
190 {
191 fprintf (stderr, "%s: ‘--packetfileM’ (‘-m’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
192 clear_args ();
193 exit (EXIT_FAILURE);
194 }
195 args_info->packetfileM_given = 1;
196 args_info->packetfileM_arg = gengetopt_strdup (optarg);
197 break;
198
199 case ’n’: /* Second file ofpackets. */
200 if (args_info->packetfileN_given)
201 {
202 fprintf (stderr, "%s: ‘--packetfileN’ (‘-n’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
203 clear_args ();
204 exit (EXIT_FAILURE);
205 }
206 args_info->packetfileN_given = 1;
207 args_info->packetfileN_arg = gengetopt_strdup (optarg);
208 break;
209
210 case ’r’: /* ratio M/N: number of packets of file M for every 1 packet of file N. */
211 if (args_info->ratio_given)
212 {
213 fprintf (stderr, "%s: ‘--ratio’ (‘-r’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
214 clear_args ();
215 exit (EXIT_FAILURE);
216 }
217 args_info->ratio_given = 1;
218 args_info->ratio_arg = strtol (optarg,&stop_char,0);
219 break;
220
221 case ’b’: /* desired send bitrate in kbit/s. */
222 if (args_info->bitrate_given)
223 {
224 fprintf (stderr, "%s: ‘--bitrate’ (‘-b’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
225 clear_args ();
226 exit (EXIT_FAILURE);
227 }
228 args_info->bitrate_given = 1;
229 args_info->bitrate_arg = strtol (optarg,&stop_char,0);
230 break;
231
232 case ’c’: /* config file containing the command line arguments. */
233 if (args_info->configfile_given)
234 {
235 fprintf (stderr, "%s: ‘--configfile’ (‘-c’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
236 clear_args ();
237 exit (EXIT_FAILURE);
238 }
239 args_info->configfile_given = 1;
240 args_info->configfile_arg = gengetopt_strdup (optarg);
241 break;
242
243 case ’p’: /* scheduling priority value. */
244 if (args_info->priority_given)
245 {
246 fprintf (stderr, "%s: ‘--priority’ (‘-p’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
247 clear_args ();
248 exit (EXIT_FAILURE);

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 18

249 }
250 args_info->priority_given = 1;
251 args_info->priority_arg = strtol (optarg,&stop_char,0);
252 break;
253
254 case ’q’: /* total quantity of packets to send. */
255 if (args_info->quantity_given)
256 {
257 fprintf (stderr, "%s: ‘--quantity’ (‘-q’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
258 clear_args ();
259 exit (EXIT_FAILURE);
260 }
261 args_info->quantity_given = 1;
262 args_info->quantity_arg = strtol (optarg,&stop_char,0);
263 break;
264
265 case ’d’: /* destination MAC address for ALL packets. */
266 if (args_info->destMAC_given)
267 {
268 fprintf (stderr, "%s: ‘--destMAC’ (‘-d’) option given more than once\n", CMDLINE_PARSER_PACKAGE);
269 clear_args ();
270 exit (EXIT_FAILURE);
271 }
272 args_info->destMAC_given = 1;
273 args_info->destMAC_arg = gengetopt_strdup (optarg);
274 break;
275
276
277 case 0: /* Long option with no short option */
278
279 case ’?’: /* Invalid option. */
280 /* ‘getopt_long’ already printed an error message. */
281 exit (EXIT_FAILURE);
282
283 default: /* bug: option not considered. */
284 fprintf (stderr, "%s: option unknown: %c\n", CMDLINE_PARSER_PACKAGE, c);
285 abort ();
286 } /* switch */
287 } /* while */
288
289
290 if (! args_info->packetfileM_given)
291 {
292 fprintf (stderr, "%s: ’--packetfileM’ (’-m’) option required\n", CMDLINE_PARSER_PACKAGE);
293 missing_required_options = 1;
294 }
295 if ( missing_required_options )
296 exit (EXIT_FAILURE);
297
298 return 0;
299 }

Here is the call graph for this function:

cmdline_parser

cmdline_parser_print_help

cmdline_parser_print_version

gengetopt_strdup

4.2.2.2 int cmdline_parser_configfile (char ∗const filename, struct gengetopt_args_info ∗ args_info,
int override)

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 19

Definition at line 304 of file cmdline.c.

References gengetopt_args_info::bitrate_arg, gengetopt_args_info::bitrate_given, CMDLINE_PARSER_-
PACKAGE, gengetopt_args_info::configfile_arg, gengetopt_args_info::configfile_given, CONFIG-
PARSERBUFSIZE, gengetopt_args_info::destMAC_arg, gengetopt_args_info::destMAC_given,
gengetopt_strdup(), gengetopt_args_info::help_given, gengetopt_args_info::interface_arg, gengetopt_-
args_info::interface_given, gengetopt_args_info::packetfileM_arg, gengetopt_args_info::packetfileM_-
given, gengetopt_args_info::packetfileN_arg, gengetopt_args_info::packetfileN_given, gengetopt_-
args_info::priority_arg, gengetopt_args_info::priority_given, gengetopt_args_info::quantity_arg,
gengetopt_args_info::quantity_given, gengetopt_args_info::ratio_arg, gengetopt_args_info::ratio_given,
and gengetopt_args_info::version_given.

Referenced by main().

305 {
306 FILE* file;
307 char linebuf[CONFIGPARSERBUFSIZE];
308 int line_num = 0;
309 int len;
310 int fnum;
311 char fopt[CONFIGPARSERBUFSIZE], farg[CONFIGPARSERBUFSIZE];
312 char *stop_char;
313 char *str_index, *str_index2;
314 int next_token;
315
316 if ((file = fopen(filename, "r")) == NULL)
317 {
318 fprintf (stderr, "%s: Error opening configuration file ’%s’\n",
319 CMDLINE_PARSER_PACKAGE, filename);
320 exit (EXIT_FAILURE);
321 }
322
323 while ((fgets(linebuf, CONFIGPARSERBUFSIZE, file)) != NULL)
324 {
325 ++line_num;
326 len = strlen(linebuf);
327 if (len == CONFIGPARSERBUFSIZE-1)
328 {
329 fprintf (stderr, "%s: Line longer than %d characters found in configuration file ’%s’\n",
330 CMDLINE_PARSER_PACKAGE, CONFIGPARSERBUFSIZE, filename);
331 exit (EXIT_FAILURE);
332 }
333
334 if (linebuf[0] == ’#’)
335 continue; /* Line was a comment */
336
337 /* read the option */
338 fnum = sscanf (linebuf, "%s", fopt);
339
340 if (fnum < 0)
341 continue; /* blank line */
342
343 next_token = strlen (fopt);
344 str_index = strchr (&linebuf[next_token], ’\"’);
345 if (str_index)
346 {
347 str_index2 = strchr (str_index + 1, ’\"’);
348 if (! str_index2)
349 {
350 fprintf
351 (stderr,
352 "%s: unterminated string in configuration file ’%s’\n",
353 CMDLINE_PARSER_PACKAGE, filename);
354 exit (EXIT_FAILURE);
355 }

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 20

356
357 strncpy (farg, str_index + 1, str_index2 - str_index - 1);
358 farg[str_index2 - str_index]=’\0’;
359 ++fnum;
360 }
361 else
362 if (sscanf (&linebuf[next_token], "%s", farg) > 0)
363 ++fnum;
364
365 if (fnum > 0)
366 {
367 if (!strcmp(fopt, "help"))
368 {
369 if (override || !args_info->help_given)
370 {
371 args_info->help_given = 1;
372
373 }
374 continue;
375 }
376 if (!strcmp(fopt, "version"))
377 {
378 if (override || !args_info->version_given)
379 {
380 args_info->version_given = 1;
381
382 }
383 continue;
384 }
385 if (!strcmp(fopt, "interface"))
386 {
387 if (override || !args_info->interface_given)
388 {
389 args_info->interface_given = 1;
390 if (fnum == 2)
391 args_info->interface_arg = gengetopt_strdup (farg);
392 else
393 {
394 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
395 filename, line_num);
396 exit (EXIT_FAILURE);
397 }
398 }
399 continue;
400 }
401 if (!strcmp(fopt, "packetfileM"))
402 {
403 if (override || !args_info->packetfileM_given)
404 {
405 args_info->packetfileM_given = 1;
406 if (fnum == 2)
407 args_info->packetfileM_arg = gengetopt_strdup (farg);
408 else
409 {
410 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
411 filename, line_num);
412 exit (EXIT_FAILURE);
413 }
414 }
415 continue;
416 }
417 if (!strcmp(fopt, "packetfileN"))
418 {
419 if (override || !args_info->packetfileN_given)
420 {
421 args_info->packetfileN_given = 1;
422 if (fnum == 2)

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 21

423 args_info->packetfileN_arg = gengetopt_strdup (farg);
424 else
425 {
426 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
427 filename, line_num);
428 exit (EXIT_FAILURE);
429 }
430 }
431 continue;
432 }
433 if (!strcmp(fopt, "ratio"))
434 {
435 if (override || !args_info->ratio_given)
436 {
437 args_info->ratio_given = 1;
438 if (fnum == 2)
439 args_info->ratio_arg = strtol (farg,&stop_char,0);
440 else
441 {
442 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
443 filename, line_num);
444 exit (EXIT_FAILURE);
445 }
446 }
447 continue;
448 }
449 if (!strcmp(fopt, "bitrate"))
450 {
451 if (override || !args_info->bitrate_given)
452 {
453 args_info->bitrate_given = 1;
454 if (fnum == 2)
455 args_info->bitrate_arg = strtol (farg,&stop_char,0);
456 else
457 {
458 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
459 filename, line_num);
460 exit (EXIT_FAILURE);
461 }
462 }
463 continue;
464 }
465 if (!strcmp(fopt, "configfile"))
466 {
467 if (override || !args_info->configfile_given)
468 {
469 args_info->configfile_given = 1;
470 if (fnum == 2)
471 args_info->configfile_arg = gengetopt_strdup (farg);
472 else
473 {
474 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
475 filename, line_num);
476 exit (EXIT_FAILURE);
477 }
478 }
479 continue;
480 }
481 if (!strcmp(fopt, "priority"))
482 {
483 if (override || !args_info->priority_given)
484 {
485 args_info->priority_given = 1;
486 if (fnum == 2)
487 args_info->priority_arg = strtol (farg,&stop_char,0);
488 else
489 {

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 22

490 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
491 filename, line_num);
492 exit (EXIT_FAILURE);
493 }
494 }
495 continue;
496 }
497 if (!strcmp(fopt, "quantity"))
498 {
499 if (override || !args_info->quantity_given)
500 {
501 args_info->quantity_given = 1;
502 if (fnum == 2)
503 args_info->quantity_arg = strtol (farg,&stop_char,0);
504 else
505 {
506 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
507 filename, line_num);
508 exit (EXIT_FAILURE);
509 }
510 }
511 continue;
512 }
513 if (!strcmp(fopt, "destMAC"))
514 {
515 if (override || !args_info->destMAC_given)
516 {
517 args_info->destMAC_given = 1;
518 if (fnum == 2)
519 args_info->destMAC_arg = gengetopt_strdup (farg);
520 else
521 {
522 fprintf (stderr, "%s:%d: required <option_name> <option_val>\n",
523 filename, line_num);
524 exit (EXIT_FAILURE);
525 }
526 }
527 continue;
528 }
529
530
531 /* Tried all known options. This one is unknown! */
532 fprintf (stderr, "%s: Unknown option ’%s’ found in %s\n",
533 CMDLINE_PARSER_PACKAGE, fopt, filename);
534 exit (EXIT_FAILURE);
535 }
536 } /* while */
537 fclose(file); /* No error checking on close */
538
539 return 0;
540 }

Here is the call graph for this function:

cmdline_parser_configfile gengetopt_strdup

4.2.2.3 void cmdline_parser_print_help (void)

Definition at line 32 of file cmdline.c.

References CMDLINE_PARSER_PACKAGE, and cmdline_parser_print_version().

Referenced by cmdline_parser().

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.2 cmdline.h File Reference 23

33 {
34 cmdline_parser_print_version ();
35 printf("\n"
36 "Purpose:\n"
37 " stressnet is intended for replaying tcpdump/pcap capture files \n"
38 " -except the ethernet address- with a given bitrate to stress network \n"
39 " devices such as intrusion detection systems or firewalls. It mixes two pcap\n"
40 " files (A and B) with a ratio r given as argument and meaning: for every 1 \n"
41 " packet of file B that is sent, there are r packets of file A that are sent. \n"
42 " This is meant to impose a rate of malformed packets in the dataflow.\n"
43 " \n"
44 " THIS SOFTWARE CAN AND SHOULD BE IMPROVED AS MUCH AS POSSIBLE, new ideas and \n"
45 " critics are always welcome. You can send them by email to the following \n"
46 " address:\n"
47 " \n"
48 " \tyannick AT loth.be\n"
49 " \n"
50 " I would be pleased to discuss about them with you and to exchange ideas about\n"
51 " further improvements.\n"
52 " \n"
53 " This software was initially developed for the Royal Military Academy (RMA) of\n"
54 " Belgium (Brussels), by a student (Yannick Loth) during a training for his \n"
55 " studies as Industrial Engineer in Applied Informatics at the University of \n"
56 " Luxembourg (2005).\n"
57 " The aim of stressnet is to provide a reliable tool (i.e. intended for \n"
58 " engineers etc.) to send packets (well formed and malformed ones) through a \n"
59 " network at different speeds and ratios of innofensive packets over attacking \n"
60 " packets to establish the limits of devices when they are seen as ’blackboxes’,\n"
61 " i.e. when the internal functioning of the devices is unknown.\n"
62 " ’Reliable’ means that when someone asks for a certain bitrate, it should send\n"
63 " data at bitrates quite close to the wanted bitrate.\n"
64 " \n"
65 " The author of this software thanks Maj. W. Mees (RMA) and Capt. O. Thonnard \n"
66 " (RMA) as well as Pr. Th. Engel (Uni. Lux.) for their advices.\n"
67 " \n"
68 " stressnet should only be used by people knowing what they do, this tool could \n"
69 " in fact block your computer for a long time if you don’t take care of what you\n"
70 " do.\n"
71 " \n"
72 " You’ll (one day, I hope...) find more about this program on \n"
73 " \thttp://www.loth.be/yannick/stressnet/index.html\n"
74 "\n"
75 "Usage: %s [OPTIONS]...\n", CMDLINE_PARSER_PACKAGE);
76 printf(" -h --help Print help and exit\n");
77 printf(" -V --version Print version and exit\n");
78 printf(" -iSTRING --interface=STRING network device used to send packets (default=’eth0’)\n");
79 printf(" -mSTRING --packetfileM=STRING First file of packets\n");
80 printf(" -nSTRING --packetfileN=STRING Second file ofpackets\n");
81 printf(" -rLONG --ratio=LONG ratio M/N: number of packets of file M for every 1 packet of file N (default=’50’)\n");
82 printf(" -bLONG --bitrate=LONG desired send bitrate in kbit/s (default=’100’)\n");
83 printf(" -cSTRING --configfile=STRING config file containing the command line arguments\n");
84 printf(" -pINT --priority=INT scheduling priority value (default=’0’)\n");
85 printf(" -qINT --quantity=INT total quantity of packets to send (default=’100’)\n");
86 printf(" -dSTRING --destMAC=STRING destination MAC address for ALL packets (default=’00:11:22:33:44:55’)\n");
87 }

Here is the call graph for this function:

cmdline_parser_print_help cmdline_parser_print_version

4.2.2.4 void cmdline_parser_print_version (void)

Definition at line 26 of file cmdline.c.

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.3 dumpread.cpp File Reference 24

References CMDLINE_PARSER_PACKAGE, and CMDLINE_PARSER_VERSION.

Referenced by cmdline_parser(), and cmdline_parser_print_help().

27 {
28 printf ("%s %s\n", CMDLINE_PARSER_PACKAGE, CMDLINE_PARSER_VERSION);
29 }

4.3 dumpread.cpp File Reference

#include "dumpread.h"

Include dependency graph for dumpread.cpp:

dumpread.cpp dumpread.h

pcap.h

stdio.h

stdlib.h

string.h

Functions

• void readDumpfilePackets (char ∗const fileM, char ∗const fileN, int totalQuantity, int quantityN, int
ratio, char ∗const dataBuffer, struct timeval ∗const timingArray, int ∗const lengthArray)

readDumpfilePackets() iterates through the packets in the tcpdump formatted file to copy the packets which
will be sent into the buffers

• void readDumpfileStats (char ∗const file, int quantity, int ∗const length)
readDumpfileStats() iterates through the packets in the tcpdump formatted files to determine which sizes
will be allocated to the buffers

4.3.1 Function Documentation

4.3.1.1 void readDumpfilePackets (char ∗const fileM, char ∗const fileN, int totalQuantity, int
quantityN, int ratio, char ∗const dataBuffer, struct timeval ∗const timingArray, int ∗const lengthArray)

readDumpfilePackets() iterates through the packets in the tcpdump formatted file to copy the packets which
will be sent into the buffers

Definition at line 74 of file dumpread.cpp.

Referenced by main().

76 {
77 /*Locals*/
78 pcap_t *descrM;
79 pcap_t *descrN;
80 char errbuf[ PCAP_ERRBUF_SIZE ];
81 int i;
82 struct pcap_pkthdr *packetHeader;
83 const u_char *packetData;
84 int bytes;

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.3 dumpread.cpp File Reference 25

85 int result;
86 int counter;
87 div_t divisionResult;
88 div_t divisionResult10th;
89 /*Initialise buffers and variables*/
90 memset( errbuf, 0, PCAP_ERRBUF_SIZE ); //initialise the buffer to all zeros
91 i = 0;
92 bytes = 0;
93 result = 0;
94 counter = 0;
95 descrM = NULL;
96 descrN = NULL;
97
98 /*divide totalQuantity/10 to print dots each time 10% of packets have been processed*/
99 divisionResult10th=div(totalQuantity,10);
100
101 /*Printing a message to indicate the the files are being read*/
102 if(quantityN!=0)
103 printf("The files %s and %s are being processed,\nthis may take a while.\n",fileM, fileN);
104 else
105 printf("The file %s is being processed,\nthis may take a while.\n",fileM);
106
107 /*Begin reading the file*/
108 descrM = pcap_open_offline( fileM, errbuf );
109 if ( descrM == NULL )
110 {
111 printf( "%s\n", errbuf );
112 exit( 1 );
113 }
114 if ( quantityN != 0 )
115 {
116 descrN = pcap_open_offline( fileN, errbuf );
117 if ( descrN == NULL )
118 {
119 printf( "%s\n", errbuf );
120 exit( 1 );
121 }
122 }
123 else descrN = NULL;
124
125 while ( counter < totalQuantity )
126 {
127 for ( i = 0;i < ratio;++i ) //read ratio packets from M
128 {
129 result = pcap_next_ex ( descrM, &packetHeader, &packetData );
130 if ( ( result != -2 ) && ( result != -1 ) )
131 {
132 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
133 bytes += packetHeader->caplen;
134 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );
135 lengthArray[ counter ] = packetHeader->caplen;
136 }
137 else
138 {
139 pcap_close( descrM );
140 descrM = pcap_open_offline( fileM, errbuf );
141 if ( descrM == NULL )
142 {
143 printf( "%s\n", errbuf );
144 exit( 1 );
145 }
146 result = pcap_next_ex ( descrM, &packetHeader, &packetData );
147 if ( ( result != -2 ) && ( result != -1 ) )
148 {
149 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
150 bytes += packetHeader->caplen;
151 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.3 dumpread.cpp File Reference 26

152 lengthArray[ counter ] = packetHeader->caplen;
153 }
154 else
155 {
156 printf( "Error obtaining packets from the file.\n" );
157 exit( 1 );
158 }
159 }
160
161 if ( ++counter >= totalQuantity ) break;
162 }
163 if ( ( quantityN != 0 ) && ( counter < totalQuantity ) ) //read 1 packet from N
164 {
165 result = pcap_next_ex ( descrN, &packetHeader, &packetData );
166 if ( ( result != -2 ) && ( result != -1 ) )
167 {
168 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
169 bytes += packetHeader->caplen;
170 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );
171 lengthArray[ counter ] = packetHeader->caplen;
172 }
173 else
174 {
175 pcap_close( descrN );
176 descrN = pcap_open_offline( fileN, errbuf );
177 if ( descrN == NULL )
178 {
179 printf( "%s\n", errbuf );
180 exit( 1 );
181 }
182 result = pcap_next_ex ( descrN, &packetHeader, &packetData );
183 if ( ( result != -2 ) && ( result != -1 ) )
184 {
185 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
186 bytes += packetHeader->caplen;
187 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );
188 lengthArray[ counter ] = packetHeader->caplen;
189 }
190 else
191 {
192 printf( "Error obtaining packets from the file.\n" );
193 exit( 1 );
194 }
195 }
196 ++counter;
197 }
198 divisionResult=div(counter,divisionResult10th.quot);
199 if (divisionResult.rem==0)
200 {
201 printf("%d%c ",divisionResult.quot*10,’%’);
202 fflush(stdout);
203 }
204 }
205 printf("\n");
206 pcap_close( descrM );
207 if ( quantityN != 0 )
208 pcap_close( descrN );
209 }

4.3.1.2 void readDumpfileStats (char ∗const file, int quantity, int ∗const length)

readDumpfileStats() iterates through the packets in the tcpdump formatted files to determine which sizes
will be allocated to the buffers

Definition at line 21 of file dumpread.cpp.

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.4 dumpread.h File Reference 27

Referenced by main().

22 {
23 /*Locals*/
24 pcap_t * descr;
25 char errbuf[ PCAP_ERRBUF_SIZE ];
26 int i;
27 struct pcap_pkthdr *packetHeader;
28 const u_char * packetData; //the value pointed to is constant, not the pointer!
29 int bytes;
30 int result;
31
32 printf("Reading stats from file(s). This may take a while.\n");
33 /*Initialise buffers and variables*/
34 memset( errbuf, 0, PCAP_ERRBUF_SIZE ); //initialise the buffer to all zeros
35 i = 0;
36 bytes = 0;
37 result = 0;
38
39 /*Begin reading the file*/
40 descr = pcap_open_offline( file, errbuf );
41 if ( descr == NULL )
42 {
43 printf( "%s\n", errbuf );
44 exit( 1 );
45 }
46
47 for ( i = 0;i < quantity;++i )
48 {
49 result = pcap_next_ex ( descr, &packetHeader, &packetData );
50 if ( ( result != -2 ) && ( result != -1 ) )
51 bytes += packetHeader->caplen;
52 else
53 {
54 pcap_close( descr );
55 descr = pcap_open_offline( file, errbuf );
56 if ( descr == NULL )
57 {
58 printf( "%s\n", errbuf );
59 exit( 1 );
60 }
61 result = pcap_next_ex ( descr, &packetHeader, &packetData );
62 if ( ( result != -2 ) && ( result != -1 ) )
63 bytes += packetHeader->caplen;
64 else
65 {
66 printf( "Error obtaining packets from the file.\n" );
67 exit( 1 );
68 }
69 }
70 }
71 ( *length ) = bytes;
72 pcap_close( descr );
73 }

4.4 dumpread.h File Reference

#include <pcap.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

Include dependency graph for dumpread.h:

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.4 dumpread.h File Reference 28

dumpread.h

pcap.h

stdio.h

stdlib.h

string.h

This graph shows which files directly or indirectly include this file:

dumpread.h
dumpread.cpp

stressnet.cpp

Functions

• void readDumpfilePackets (char ∗const fileM, char ∗const fileN, int totalQuantity, int quantityN, int
ratio, char ∗const dataBuffer, struct timeval ∗const timingArray, int ∗const lengthArray)

readDumpfilePackets() iterates through the packets in the tcpdump formatted file to copy the packets which
will be sent into the buffers

• void readDumpfileStats (char ∗const file, int quantity, int ∗const length)
readDumpfileStats() iterates through the packets in the tcpdump formatted files to determine which sizes
will be allocated to the buffers

4.4.1 Function Documentation

4.4.1.1 void readDumpfilePackets (char ∗const fileM, char ∗const fileN, int totalQuantity, int
quantityN, int ratio, char ∗const dataBuffer, struct timeval ∗const timingArray, int ∗const lengthArray)

readDumpfilePackets() iterates through the packets in the tcpdump formatted file to copy the packets which
will be sent into the buffers

Definition at line 74 of file dumpread.cpp.

Referenced by main().

76 {
77 /*Locals*/
78 pcap_t *descrM;
79 pcap_t *descrN;
80 char errbuf[ PCAP_ERRBUF_SIZE ];
81 int i;
82 struct pcap_pkthdr *packetHeader;
83 const u_char *packetData;
84 int bytes;
85 int result;
86 int counter;
87 div_t divisionResult;
88 div_t divisionResult10th;
89 /*Initialise buffers and variables*/
90 memset( errbuf, 0, PCAP_ERRBUF_SIZE ); //initialise the buffer to all zeros
91 i = 0;

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.4 dumpread.h File Reference 29

92 bytes = 0;
93 result = 0;
94 counter = 0;
95 descrM = NULL;
96 descrN = NULL;
97
98 /*divide totalQuantity/10 to print dots each time 10% of packets have been processed*/
99 divisionResult10th=div(totalQuantity,10);
100
101 /*Printing a message to indicate the the files are being read*/
102 if(quantityN!=0)
103 printf("The files %s and %s are being processed,\nthis may take a while.\n",fileM, fileN);
104 else
105 printf("The file %s is being processed,\nthis may take a while.\n",fileM);
106
107 /*Begin reading the file*/
108 descrM = pcap_open_offline( fileM, errbuf );
109 if ( descrM == NULL )
110 {
111 printf( "%s\n", errbuf );
112 exit( 1 );
113 }
114 if ( quantityN != 0 )
115 {
116 descrN = pcap_open_offline( fileN, errbuf );
117 if ( descrN == NULL )
118 {
119 printf( "%s\n", errbuf );
120 exit( 1 );
121 }
122 }
123 else descrN = NULL;
124
125 while ( counter < totalQuantity )
126 {
127 for ( i = 0;i < ratio;++i ) //read ratio packets from M
128 {
129 result = pcap_next_ex ( descrM, &packetHeader, &packetData );
130 if ( ( result != -2 ) && ( result != -1 ) )
131 {
132 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
133 bytes += packetHeader->caplen;
134 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );
135 lengthArray[ counter ] = packetHeader->caplen;
136 }
137 else
138 {
139 pcap_close( descrM );
140 descrM = pcap_open_offline( fileM, errbuf );
141 if ( descrM == NULL )
142 {
143 printf( "%s\n", errbuf );
144 exit( 1 );
145 }
146 result = pcap_next_ex ( descrM, &packetHeader, &packetData );
147 if ( ( result != -2 ) && ( result != -1 ) )
148 {
149 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
150 bytes += packetHeader->caplen;
151 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );
152 lengthArray[ counter ] = packetHeader->caplen;
153 }
154 else
155 {
156 printf( "Error obtaining packets from the file.\n" );
157 exit( 1 );
158 }

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.4 dumpread.h File Reference 30

159 }
160
161 if ( ++counter >= totalQuantity ) break;
162 }
163 if ( ( quantityN != 0 ) && ( counter < totalQuantity ) ) //read 1 packet from N
164 {
165 result = pcap_next_ex ( descrN, &packetHeader, &packetData );
166 if ( ( result != -2 ) && ( result != -1 ) )
167 {
168 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
169 bytes += packetHeader->caplen;
170 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );
171 lengthArray[ counter ] = packetHeader->caplen;
172 }
173 else
174 {
175 pcap_close( descrN );
176 descrN = pcap_open_offline( fileN, errbuf );
177 if ( descrN == NULL )
178 {
179 printf( "%s\n", errbuf );
180 exit( 1 );
181 }
182 result = pcap_next_ex ( descrN, &packetHeader, &packetData );
183 if ( ( result != -2 ) && ( result != -1 ) )
184 {
185 memcpy( &dataBuffer[ bytes ], packetData, packetHeader->caplen );
186 bytes += packetHeader->caplen;
187 memcpy( &timingArray[ counter ], &( packetHeader->ts ), sizeof( struct timeval ) );
188 lengthArray[ counter ] = packetHeader->caplen;
189 }
190 else
191 {
192 printf( "Error obtaining packets from the file.\n" );
193 exit( 1 );
194 }
195 }
196 ++counter;
197 }
198 divisionResult=div(counter,divisionResult10th.quot);
199 if (divisionResult.rem==0)
200 {
201 printf("%d%c ",divisionResult.quot*10,’%’);
202 fflush(stdout);
203 }
204 }
205 printf("\n");
206 pcap_close( descrM );
207 if ( quantityN != 0 )
208 pcap_close( descrN );
209 }

4.4.1.2 void readDumpfileStats (char ∗const file, int quantity, int ∗const length)

readDumpfileStats() iterates through the packets in the tcpdump formatted files to determine which sizes
will be allocated to the buffers

Definition at line 21 of file dumpread.cpp.

Referenced by main().

22 {
23 /*Locals*/
24 pcap_t * descr;
25 char errbuf[ PCAP_ERRBUF_SIZE ];

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.5 licenseinfo.cpp File Reference 31

26 int i;
27 struct pcap_pkthdr *packetHeader;
28 const u_char * packetData; //the value pointed to is constant, not the pointer!
29 int bytes;
30 int result;
31
32 printf("Reading stats from file(s). This may take a while.\n");
33 /*Initialise buffers and variables*/
34 memset( errbuf, 0, PCAP_ERRBUF_SIZE ); //initialise the buffer to all zeros
35 i = 0;
36 bytes = 0;
37 result = 0;
38
39 /*Begin reading the file*/
40 descr = pcap_open_offline( file, errbuf );
41 if ( descr == NULL )
42 {
43 printf( "%s\n", errbuf );
44 exit( 1 );
45 }
46
47 for ( i = 0;i < quantity;++i )
48 {
49 result = pcap_next_ex ( descr, &packetHeader, &packetData );
50 if ( ( result != -2 ) && ( result != -1 ) )
51 bytes += packetHeader->caplen;
52 else
53 {
54 pcap_close( descr );
55 descr = pcap_open_offline( file, errbuf );
56 if ( descr == NULL )
57 {
58 printf( "%s\n", errbuf );
59 exit( 1 );
60 }
61 result = pcap_next_ex ( descr, &packetHeader, &packetData );
62 if ( ( result != -2 ) && ( result != -1 ) )
63 bytes += packetHeader->caplen;
64 else
65 {
66 printf( "Error obtaining packets from the file.\n" );
67 exit( 1 );
68 }
69 }
70 }
71 ( *length ) = bytes;
72 pcap_close( descr );
73 }

4.5 licenseinfo.cpp File Reference

#include "licenseinfo.h"

Include dependency graph for licenseinfo.cpp:

licenseinfo.cpp licenseinfo.h iostream

Functions

• void printGPLText (int year)
printGPLText() prints on screen that the software is free and subject to GPL version >= 2.

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.6 licenseinfo.h File Reference 32

4.5.1 Function Documentation

4.5.1.1 void printGPLText (int year)

printGPLText() prints on screen that the software is free and subject to GPL version >= 2.

Parameters:
year integer indicating when the source-code was written.

Definition at line 21 of file licenseinfo.cpp.

Referenced by main().

22 {
23 using namespace std;
24 cout<<"***************************************************************************"<<endl;
25 cout<<"* Copyright (C) "<<year<<" by Yannick Loth *"<<endl;
26 cout<<"* yannick@loth.be *"<<endl;
27 cout<<"* *"<<endl;
28 cout<<"* This program is free software; you can redistribute it and/or modify *"<<endl;
29 cout<<"* it under the terms of the GNU General Public License as published by *"<<endl;
30 cout<<"* the Free Software Foundation; either version 2 of the License, or *"<<endl;
31 cout<<"* (at your option) any later version. *"<<endl;
32 cout<<"* *"<<endl;
33 cout<<"* This program is distributed in the hope that it will be useful, *"<<endl;
34 cout<<"* but WITHOUT ANY WARRANTY; without even the implied warranty of *"<<endl;
35 cout<<"* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *"<<endl;
36 cout<<"* GNU General Public License for more details. *"<<endl;
37 cout<<"* *"<<endl;
38 cout<<"* You should have received a copy of the GNU General Public License *"<<endl;
39 cout<<"* along with this program; if not, write to the *"<<endl;
40 cout<<"* Free Software Foundation, Inc., *"<<endl;
41 cout<<"* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *"<<endl;
42 cout<<"***************************************************************************"<<endl;
43 cout<<endl;
44 }

4.6 licenseinfo.h File Reference

#include <iostream>

Include dependency graph for licenseinfo.h:

licenseinfo.h iostream

This graph shows which files directly or indirectly include this file:

licenseinfo.h
licenseinfo.cpp

stressnet.cpp

Functions

• void printGPLText (int year)
printGPLText() prints on screen that the software is free and subject to GPL version >= 2.

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.7 memmanagement.c File Reference 33

4.6.1 Function Documentation

4.6.1.1 void printGPLText (int year)

printGPLText() prints on screen that the software is free and subject to GPL version >= 2.

Parameters:
year integer indicating when the source-code was written.

Definition at line 21 of file licenseinfo.cpp.

Referenced by main().

22 {
23 using namespace std;
24 cout<<"***************************************************************************"<<endl;
25 cout<<"* Copyright (C) "<<year<<" by Yannick Loth *"<<endl;
26 cout<<"* yannick@loth.be *"<<endl;
27 cout<<"* *"<<endl;
28 cout<<"* This program is free software; you can redistribute it and/or modify *"<<endl;
29 cout<<"* it under the terms of the GNU General Public License as published by *"<<endl;
30 cout<<"* the Free Software Foundation; either version 2 of the License, or *"<<endl;
31 cout<<"* (at your option) any later version. *"<<endl;
32 cout<<"* *"<<endl;
33 cout<<"* This program is distributed in the hope that it will be useful, *"<<endl;
34 cout<<"* but WITHOUT ANY WARRANTY; without even the implied warranty of *"<<endl;
35 cout<<"* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *"<<endl;
36 cout<<"* GNU General Public License for more details. *"<<endl;
37 cout<<"* *"<<endl;
38 cout<<"* You should have received a copy of the GNU General Public License *"<<endl;
39 cout<<"* along with this program; if not, write to the *"<<endl;
40 cout<<"* Free Software Foundation, Inc., *"<<endl;
41 cout<<"* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *"<<endl;
42 cout<<"***************************************************************************"<<endl;
43 cout<<endl;
44 }

4.7 memmanagement.c File Reference

#include "memmanagement.h"

Include dependency graph for memmanagement.c:

memmanagement.c memmanagement.h
stdio.h

stdlib.h

Functions

• void ∗ callocBuffer (size_t nbElem, size_t elemSize)
callocBuffer() trys to allocates a buffer of all zeros

4.7.1 Function Documentation

4.7.1.1 void∗ callocBuffer (size_t nbElem, size_t elemSize)

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.8 memmanagement.h File Reference 34

callocBuffer() trys to allocates a buffer of all zeros

Definition at line 21 of file memmanagement.c.

Referenced by main().

22 {
23 void *ptr;
24 ptr=calloc(nbElem,elemSize);
25 if(ptr==NULL)
26 {
27 printf("Memory allocation failed. Try to free more memory or send less\nand/or shorter packets.\n");
28 exit(1);
29 }
30 return(ptr);
31 }

4.8 memmanagement.h File Reference

#include <stdio.h>

#include <stdlib.h>

Include dependency graph for memmanagement.h:

memmanagement.h
stdio.h

stdlib.h

This graph shows which files directly or indirectly include this file:

memmanagement.h
memmanagement.c

stressnet.cpp

Functions

• void ∗ callocBuffer (size_t nbElem, size_t elemSize)
callocBuffer() trys to allocates a buffer of all zeros

4.8.1 Function Documentation

4.8.1.1 void∗ callocBuffer (size_t nbElem, size_t elemSize)

callocBuffer() trys to allocates a buffer of all zeros

Definition at line 21 of file memmanagement.c.

Referenced by main().

22 {
23 void *ptr;
24 ptr=calloc(nbElem,elemSize);
25 if(ptr==NULL)
26 {

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.9 processproperties.c File Reference 35

27 printf("Memory allocation failed. Try to free more memory or send less\nand/or shorter packets.\n");
28 exit(1);
29 }
30 return(ptr);
31 }

4.9 processproperties.c File Reference

#include "processproperties.h"

Include dependency graph for processproperties.c:

processproperties.c processproperties.h
sched.h

sys/mman.h

Functions

• void setSchedulingPolicyFIFO (int priority)
setSchedulingPolicyFIFO() sets the scheduling policy to the linux real time policy and the priority to the
given value

4.9.1 Function Documentation

4.9.1.1 void setSchedulingPolicyFIFO (int priority)

setSchedulingPolicyFIFO() sets the scheduling policy to the linux real time policy and the priority to the
given value

Definition at line 21 of file processproperties.c.

Referenced by main().

22 {
23 /* Declarations */
24 int returnvalues;
25 struct sched_param schedul;
26 schedul.sched_priority = priority;
27 returnvalues = sched_setscheduler( 0, SCHED_FIFO, &schedul );
28 }

4.10 processproperties.h File Reference

#include <sched.h>

#include <sys/mman.h>

Include dependency graph for processproperties.h:

processproperties.h
sched.h

sys/mman.h

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.11 stressnet.cpp File Reference 36

This graph shows which files directly or indirectly include this file:

processproperties.h
processproperties.c

stressnet.cpp

Functions

• void setSchedulingPolicyFIFO (int priority)
setSchedulingPolicyFIFO() sets the scheduling policy to the linux real time policy and the priority to the
given value

4.10.1 Function Documentation

4.10.1.1 void setSchedulingPolicyFIFO (int priority)

setSchedulingPolicyFIFO() sets the scheduling policy to the linux real time policy and the priority to the
given value

Definition at line 21 of file processproperties.c.

Referenced by main().

22 {
23 /* Declarations */
24 int returnvalues;
25 struct sched_param schedul;
26 schedul.sched_priority = priority;
27 returnvalues = sched_setscheduler( 0, SCHED_FIFO, &schedul );
28 }

4.11 stressnet.cpp File Reference

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <sys/socket.h>

#include <netpacket/packet.h>

#include <unistd.h>

#include <netinet/in.h>

#include <linux/if_ether.h>

#include <net/ethernet.h>

#include <netinet/ether.h>

#include <sys/mman.h>

#include <assert.h>

#include <net/if.h>

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.11 stressnet.cpp File Reference 37

#include "cmdline.h"

#include "dumpread.h"

#include "licenseinfo.h"

#include "memmanagement.h"

#include "processproperties.h"

#include "timing.h"

Include dependency graph for stressnet.cpp:

stressnet.cpp

stdio.h

stdlib.h

sys/time.h

sys/socket.h

netpacket/packet.h

unistd.h

netinet/in.h

linux/if_ether.h

net/ethernet.h

netinet/ether.h

sys/mman.h

assert.h

net/if.h

cmdline.h

dumpread.h

licenseinfo.h

memmanagement.h

processproperties.h

timing.h

pcap.h

string.h

iostream

sched.h

time.h

Functions

• int main (int argc, char ∗argv[ ])

4.11.1 Function Documentation

4.11.1.1 int main (int argc, char ∗ argv[ ])

Definition at line 46 of file stressnet.cpp.

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.11 stressnet.cpp File Reference 38

References gengetopt_args_info::bitrate_arg, calculateOffset(), callocBuffer(), cmdline_parser(),
cmdline_parser_configfile(), gengetopt_args_info::configfile_arg, gengetopt_args_info::destMAC_arg,
gengetopt_args_info::destMAC_given, gengetopt_args_info::interface_arg, measureGettimeofday(),
gengetopt_args_info::packetfileM_arg, gengetopt_args_info::packetfileN_arg, gengetopt_args_-
info::packetfileN_given, printGPLText(), gengetopt_args_info::priority_arg, gengetopt_args_-
info::quantity_arg, gengetopt_args_info::ratio_arg, readDumpfilePackets(), readDumpfileStats(), set-
SchedulingPolicyFIFO(), and timevalAdd().

47 {
48 int bufferLength;
49 int bytesM;
50 int bytesN;
51 int quantityM;
52 int quantityN;
53 int i;
54 int position;
55 int bindResult;
56 int sendtoResult;
57 int setsockoptResult;
58 struct timeval refTime;
59 struct timeval now;
60 struct timeval startTimeOffset;
61 double dRefTime;
62 double dNow;
63 double gettimeofdayTime;
64 struct ether_header *pEtherHeader;
65 struct ether_addr *pEtherAddr;
66 struct gengetopt_args_info args_info;
67 char **packetPointer;
68 double *dOffsetArray;
69 double *dTimingArray;
70 int *lengthArray;
71 int *positionArray;
72 struct timeval *timingArray;
73 int *sent;
74
75 /*Print GPL info*/
76 printGPLText(2005);
77
78 /* Process command line arguments */
79 //Cmdline parser
80 if ( cmdline_parser ( argc, argv, &args_info ) != 0 )
81 exit( 1 ) ;
82 //Config file parser
83 if ( args_info.configfile_arg != NULL )
84 if ( cmdline_parser_configfile ( args_info.configfile_arg, &args_info, 1 ) != 0 )
85 exit( 1 );
86
87 /*Determine for each file the quantity of packets that’ll be sent*/
88 args_info.quantity_arg = args_info.quantity_arg;
89 if ( args_info.packetfileN_given )
90 {
91 div_t divisionResult;//Integer division faster with div() than with /
92 divisionResult=div(args_info.quantity_arg,args_info.ratio_arg+1);
93 quantityM = divisionResult.quot * args_info.ratio_arg + divisionResult.rem;
94 quantityN = divisionResult.quot;
95 }
96 else
97 {
98 quantityM = args_info.quantity_arg;
99 quantityN = 0;
100 }
101
102 /*Initialise the variables*/
103 lengthArray=(int *)callocBuffer(args_info.quantity_arg,sizeof(int));
104 timingArray = (struct timeval *)callocBuffer(args_info.quantity_arg,sizeof(struct timeval)); //if int const * or const int *, then the pointed variable is constant -> not what we want!

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.11 stressnet.cpp File Reference 39

105 dOffsetArray=(double *)callocBuffer(args_info.quantity_arg,sizeof(double));
106 dTimingArray = (double *)callocBuffer(args_info.quantity_arg, sizeof(double));
107 positionArray = (int *)callocBuffer(args_info.quantity_arg, sizeof(int));
108 packetPointer = (char **)callocBuffer(args_info.quantity_arg, sizeof(char *));
109 sent=(int *)callocBuffer(args_info.quantity_arg,sizeof(int));
110 bufferLength = 0;
111 bytesM = 0;
112 bytesN = 0;
113 dNow=0;
114 gettimeofdayTime = measureGettimeofday()/2;
115
116 /*Determine the length of the data buffer*/
117 readDumpfileStats( args_info.packetfileM_arg, quantityM, &bytesM );
118 if ( args_info.packetfileN_given )
119 readDumpfileStats( args_info.packetfileN_arg, quantityN, &bytesN );
120 bufferLength = bytesM + bytesN;
121 printf( "Buffer length: %d\n", bufferLength );
122 char * const dataBuffer = new char[ bufferLength ];
123
124 /*Now put the packets in the buffer*/
125 readDumpfilePackets( args_info.packetfileM_arg, args_info.packetfileN_arg, args_info.quantity_arg, quantityN, args_info.ratio_arg, dataBuffer, timingArray, lengthArray );
126 printf( "Number of packets to send: %d\n", args_info.quantity_arg );
127 //Calculate positions of each packet in data-buffer
128 packetPointer[ 0 ] = dataBuffer;
129 for ( i = 1;i < args_info.quantity_arg;++i )
130 {
131 positionArray[ i ] = positionArray[ i - 1 ] + lengthArray[ i - 1 ];
132 packetPointer[ i ] = dataBuffer + positionArray[ i ];
133 }
134
135 /*Check wether the addresses in positionArray are within dataBuffer*/
136 for ( i = 0;i < args_info.quantity_arg;++i )
137 {
138 if (packetPointer[ i ] < dataBuffer)
139 {
140 printf("Packet %d address before buffer!\n",i);
141 exit(1);
142 }
143 else if (packetPointer [ i ] > (dataBuffer + bufferLength - lengthArray[args_info.quantity_arg-1]))
144 {
145 printf("Packet %d address after buffer!\n",i);
146 exit(1);
147 }
148 }
149
150 //Modify ethernet addresses to unique address if any given as argument
151 if(args_info.destMAC_given!=0)
152 for ( i = 0;i < args_info.quantity_arg;++i )
153 {
154 pEtherHeader=(ether_header *)packetPointer[i];
155 pEtherAddr=ether_aton(args_info.destMAC_arg);
156 memcpy(pEtherHeader->ether_dhost,pEtherAddr->ether_addr_octet,ETH_ALEN);
157 }
158 free(positionArray);//Array not needed any more
159 //Calculate timings
160 calculateOffset( lengthArray, timingArray, args_info.quantity_arg, args_info.bitrate_arg);
161 for ( i = 0 ; i < args_info.quantity_arg ; ++i )
162 {
163 dOffsetArray[i]=timingArray[i].tv_sec+timingArray[i].tv_usec*1e-6;
164 }
165 //On modern hardware, 1s should be enough to do all calculations before send
166 startTimeOffset.tv_sec = 1;
167 startTimeOffset.tv_usec = 0;
168 gettimeofday( &refTime, NULL );
169 timevalAdd( &refTime, &startTimeOffset );
170 dRefTime = refTime.tv_sec + refTime.tv_usec * 1e-6;
171 //Calculate sending times

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.11 stressnet.cpp File Reference 40

172 printf("\tCalculating sending times...\n");
173 for ( i = 0;i < args_info.quantity_arg;++i )
174 {
175 dRefTime += timingArray[ i ].tv_sec + timingArray[ i ].tv_usec * 1e-6;
176 dTimingArray[ i ] = dRefTime;
177 }
178 /*Lock buffers in physical memory (=disable swapping of these buffers)*/
179 mlock( dataBuffer, bufferLength );
180 mlock( dTimingArray, args_info.quantity_arg * sizeof( double ) );
181 mlock( lengthArray, args_info.quantity_arg * sizeof( int ) );
182 mlock( packetPointer, args_info.quantity_arg * sizeof( char * ) );
183 mlock( sent, args_info.quantity_arg * sizeof( int ) );
184 /*Create the socket and send packets*/
185 printf("\tCreating the socket...\n");
186 int socketFileDescriptor;
187 struct sockaddr to;
188 int tolen;
189 //Create the SOCK_PACKET socket:
190 socketFileDescriptor = socket( PF_PACKET, SOCK_RAW, htons( ETH_P_ALL ) );
191 assert( socketFileDescriptor >= 0 );
192 printf("\tSocket successfully created...\n");
193 //Set socket options:
194 int optval;
195 optval=(int)2.1*bufferLength; //set enough kernel buffer space
196 setsockoptResult=setsockopt(socketFileDescriptor, SOL_SOCKET, SO_SNDBUF, &optval, sizeof(int));
197 //Bind the socket to the desired interface(necessary to know where to send the packets):
198 struct sockaddr_ll sSockAddr;
199 unsigned int sockaddr_llSize;
200 sockaddr_llSize=sizeof(struct sockaddr_ll);
201 memset( &sSockAddr, ’\0’, sizeof( struct sockaddr_ll ) );
202 sSockAddr.sll_family = AF_PACKET;
203 sSockAddr.sll_protocol = htons(ETH_P_ALL);
204 sSockAddr.sll_ifindex = if_nametoindex(args_info.interface_arg);
205 bindResult = bind( socketFileDescriptor, (struct sockaddr *) &sSockAddr, sizeof( sSockAddr ) );
206 assert( bindResult >= 0 );
207 printf("\tSocket successfully bound to device %s...\n",args_info.interface_arg);
208 //Prepares for sendto()
209 memset( &to , ’\0’, sizeof( to ) );
210 to.sa_family = AF_INET;
211 strcpy( to.sa_data, args_info.interface_arg );
212 tolen = sizeof( to );
213 position = 0;
214 //Change scheduling policy and priority
215 if (args_info.priority_arg>0)
216 {
217 printf("\tChanging scheduling policy (to FIFO) and priority...\n");
218 setSchedulingPolicyFIFO( args_info.priority_arg );
219 }
220 int count;
221 count=0;
222 int errorOccured;
223 errorOccured=0;
224 double dTimePreviousPacket;
225 dTimePreviousPacket = 0.0;
226 printf("\tSending packets...\n\n");
227 if(args_info.bitrate_arg!=0)//0 for maximum speed (no busy-waiting)
228 {
229 for ( i = 0;i < args_info.quantity_arg;++i )
230 {
231 /*Absolute precalculated timing*/
232 for(;dNow < ( dTimingArray[ i ] - gettimeofdayTime);)
233 {
234 gettimeofday( &now, NULL );
235 dNow = now.tv_sec + now.tv_usec * 1e-6;
236 }
237
238 sendtoResult = write( socketFileDescriptor, packetPointer[ i ], lengthArray[ i ]);//even if not a connected socket, write works because it works with ANY file descriptor

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.11 stressnet.cpp File Reference 41

239 if (sendtoResult>=0)
240 {
241 ++count;
242 ++sent[i];
243 }
244 else if (errorOccured==0) //only prints the error if the previous packet was sent successfully
245 {
246 errorOccured=1;
247 perror("sendto() return-value < 0 ");
248 printf("\tIf error ’No buffer space available’,\n\ttry to put a unique ethernet address.\n");
249 }
250 }
251 }
252 else //0 for maximum speed (no busy-waiting)
253 {
254 for ( i = 0;i < args_info.quantity_arg;++i )
255 {
256 //No waiting...
257 sendtoResult = write( socketFileDescriptor, packetPointer[ i ], lengthArray[ i ]);
258 if (sendtoResult>=0)
259 {
260 ++count;
261 ++sent[i];
262 }
263 else if (errorOccured==0) //only prints the error if the previous packet was sent successfully
264 {
265 errorOccured=1;
266 perror("sendto() return-value < 0 ");
267 printf("\tIf error ’No buffer space available’,\n\ttry to put a unique ethernet address.\n");
268 }
269 }
270 }
271 printf("\nNumber of packets sent: %d\n",count);
272 int bytesSent;
273 bytesSent=0;
274 for(i=0;i<args_info.quantity_arg;++i)
275 {
276 if (sent[i]!=0)
277 bytesSent+=lengthArray[i];
278 }
279 printf("Number of bytes sent: %d\n",bytesSent);
280 /*Set scheduling priority to 0*/
281 setSchedulingPolicyFIFO( 0 );
282 /*Unlock buffers from memory*/
283 munlock( dataBuffer, bufferLength );
284 munlock( dTimingArray, args_info.quantity_arg * sizeof( double ) );
285 munlock( lengthArray, args_info.quantity_arg * sizeof( int ) );
286 munlock( packetPointer, args_info.quantity_arg * sizeof( char * ) );
287 munlock( sent, args_info.quantity_arg * sizeof( int ) );
288
289 /*Close everything opened and free memory*/
290 free(lengthArray);
291 free(dTimingArray);
292 free(dataBuffer);
293 free(packetPointer);
294 free(timingArray);
295 free(dOffsetArray);
296 close( socketFileDescriptor );
297 printf("%s exited.\n",argv[0]);
298 printf("****************************************\n");
299 return EXIT_SUCCESS;
300 }

Here is the call graph for this function:

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.12 timing.c File Reference 42

main

calculateOffset

callocBuffer

cmdline_parser

cmdline_parser_configfile

measureGettimeofday

printGPLText

readDumpfilePackets

readDumpfileStats

setSchedulingPolicyFIFO

timevalAdd

cmdline_parser_print_help

cmdline_parser_print_version

gengetopt_strdup

timevalSub

4.12 timing.c File Reference

#include <stdlib.h>

#include "timing.h"

Include dependency graph for timing.c:

timing.c
stdlib.h

timing.h
sys/time.h

time.h

Defines

• #define COUNT 1000000

Functions

• void calculateOffset (int ∗pLengthArray, struct timeval ∗tArray, int tArrayLength, int bitrate)
calcultateOffset() calculates the time interval between the sending time of the previous packet and the send-
ing time of the current packet

• double measureGettimeofday ()
measureGettimeofday() measures the time needed for one execution of the waiting loop

• void timevalAdd (struct timeval ∗to, struct timeval ∗val)
timevalAdd() adds two struct timeval

• void timevalSub (struct timeval ∗to, struct timeval ∗const val)
timevalSub() substracts two struct timeval

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.12 timing.c File Reference 43

4.12.1 Define Documentation

4.12.1.1 #define COUNT 1000000

Definition at line 22 of file timing.c.

Referenced by measureGettimeofday().

4.12.2 Function Documentation

4.12.2.1 void calculateOffset (int ∗ pLengthArray, struct timeval ∗ tArray, int tArrayLength, int bi-
trate)

calcultateOffset() calculates the time interval between the sending time of the previous packet and the
sending time of the current packet

Definition at line 69 of file timing.c.

Referenced by main().

70 {
71 double brate;
72 double delta;
73 double intermediate;
74 int i;
75 int offset; //offset in microseconds, relative to the previous packet
76 brate = ( double ) bitrate;
77 intermediate=8*1e3;
78 delta = intermediate/brate;//intermediate to avoid loss of precision due to numerical division of small number through big number
79
80 /*Note that we’ve calculated all constants for the loop out of the loop to gain processing time*/
81 div_t divstruct;
82 for ( i = 0;i < tArrayLength;++i )
83 {
84 offset = ( int ) ( ( pLengthArray[ i ] + 4 ) * delta ); //+4 because of FCS/CRC appended to ethernet packet by the datalink layer
85 if ( offset >= 1000000 )
86 {
87 divstruct=div(offset,1000000);
88 tArray[ i ].tv_sec = divstruct.quot; //transform the offset in (sec + usec) instead of only too much usec.
89 tArray[ i ].tv_usec = divstruct.rem/*offset % 1000000*/;
90 }
91 else
92 {
93 tArray[ i ].tv_sec = 0;
94 tArray[ i ].tv_usec = offset;
95 }
96 }
97 }

4.12.2.2 double measureGettimeofday ()

measureGettimeofday() measures the time needed for one execution of the waiting loop

Definition at line 23 of file timing.c.

References COUNT, and timevalSub().

Referenced by main().

24 {
25 int i;
26 struct timeval tv1;

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.12 timing.c File Reference 44

27 struct timeval tv2;
28 gettimeofday( &tv1, NULL );
29 for ( i = 0;i < COUNT;++i )
30 {
31 gettimeofday( &tv2, NULL );
32 }
33 timevalSub( &tv2, &tv1 );
34 return ( ( double ) ( tv2.tv_sec + tv2.tv_usec * 1e-6 ) / COUNT );//division after other operations to avoid precision loss due to division of small number through big number
35 }

Here is the call graph for this function:

measureGettimeofday timevalSub

4.12.2.3 void timevalAdd (struct timeval ∗ to, struct timeval ∗ val)

timevalAdd() adds two struct timeval

Definition at line 52 of file timing.c.

Referenced by main().

53 {
54 to->tv_sec += val->tv_sec;
55 to->tv_usec += val->tv_usec;
56
57 // timevalfix
58 if ( to->tv_usec < 0 )
59 {
60 to->tv_sec--;
61 to->tv_usec += 1000000;
62 }
63 if ( to->tv_usec >= 1000000 )
64 {
65 to->tv_sec++;
66 to->tv_usec -= 1000000;
67 }
68 }

4.12.2.4 void timevalSub (struct timeval ∗ to, struct timeval ∗const val)

timevalSub() substracts two struct timeval

Definition at line 36 of file timing.c.

Referenced by measureGettimeofday().

37 {
38 to->tv_sec -= val->tv_sec;
39 to->tv_usec -= val->tv_usec;
40 //timevalfix
41 if ( to->tv_usec < 0 )
42 {
43 to->tv_sec--;
44 to->tv_usec += 1000000;
45 }
46 if ( to->tv_usec >= 1000000 )
47 {
48 to->tv_sec++;
49 to->tv_usec -= 1000000;
50 }
51 }

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.13 timing.h File Reference 45

4.13 timing.h File Reference

#include <sys/time.h>

#include <time.h>

Include dependency graph for timing.h:

timing.h
sys/time.h

time.h

This graph shows which files directly or indirectly include this file:

timing.h
stressnet.cpp

timing.c

Functions

• void calculateOffset (int ∗pLengthArray, struct timeval ∗tArray, int tArrayLength, int bitrate)
calcultateOffset() calculates the time interval between the sending time of the previous packet and the send-
ing time of the current packet

• double measureGettimeofday ()
measureGettimeofday() measures the time needed for one execution of the waiting loop

• void timevalAdd (struct timeval ∗to, struct timeval ∗val)
timevalAdd() adds two struct timeval

• void timevalSub (struct timeval ∗to, struct timeval ∗val)
timevalSub() substracts two struct timeval

4.13.1 Function Documentation

4.13.1.1 void calculateOffset (int ∗ pLengthArray, struct timeval ∗ tArray, int tArrayLength, int bi-
trate)

calcultateOffset() calculates the time interval between the sending time of the previous packet and the
sending time of the current packet

Definition at line 69 of file timing.c.

Referenced by main().

70 {
71 double brate;
72 double delta;
73 double intermediate;
74 int i;
75 int offset; //offset in microseconds, relative to the previous packet
76 brate = ( double ) bitrate;

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.13 timing.h File Reference 46

77 intermediate=8*1e3;
78 delta = intermediate/brate;//intermediate to avoid loss of precision due to numerical division of small number through big number
79
80 /*Note that we’ve calculated all constants for the loop out of the loop to gain processing time*/
81 div_t divstruct;
82 for ( i = 0;i < tArrayLength;++i )
83 {
84 offset = ( int ) ( ( pLengthArray[ i ] + 4 ) * delta ); //+4 because of FCS/CRC appended to ethernet packet by the datalink layer
85 if ( offset >= 1000000 )
86 {
87 divstruct=div(offset,1000000);
88 tArray[ i ].tv_sec = divstruct.quot; //transform the offset in (sec + usec) instead of only too much usec.
89 tArray[ i ].tv_usec = divstruct.rem/*offset % 1000000*/;
90 }
91 else
92 {
93 tArray[ i ].tv_sec = 0;
94 tArray[ i ].tv_usec = offset;
95 }
96 }
97 }

4.13.1.2 double measureGettimeofday ()

measureGettimeofday() measures the time needed for one execution of the waiting loop

Definition at line 23 of file timing.c.

References COUNT, and timevalSub().

Referenced by main().

24 {
25 int i;
26 struct timeval tv1;
27 struct timeval tv2;
28 gettimeofday( &tv1, NULL );
29 for ( i = 0;i < COUNT;++i )
30 {
31 gettimeofday( &tv2, NULL );
32 }
33 timevalSub( &tv2, &tv1 );
34 return ( ( double ) ( tv2.tv_sec + tv2.tv_usec * 1e-6 ) / COUNT );//division after other operations to avoid precision loss due to division of small number through big number
35 }

Here is the call graph for this function:

measureGettimeofday timevalSub

4.13.1.3 void timevalAdd (struct timeval ∗ to, struct timeval ∗ val)

timevalAdd() adds two struct timeval

Definition at line 52 of file timing.c.

Referenced by main().

53 {
54 to->tv_sec += val->tv_sec;
55 to->tv_usec += val->tv_usec;

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



4.13 timing.h File Reference 47

56
57 // timevalfix
58 if ( to->tv_usec < 0 )
59 {
60 to->tv_sec--;
61 to->tv_usec += 1000000;
62 }
63 if ( to->tv_usec >= 1000000 )
64 {
65 to->tv_sec++;
66 to->tv_usec -= 1000000;
67 }
68 }

4.13.1.4 void timevalSub (struct timeval ∗ to, struct timeval ∗ val)

timevalSub() substracts two struct timeval

Definition at line 36 of file timing.c.

Referenced by measureGettimeofday().

37 {
38 to->tv_sec -= val->tv_sec;
39 to->tv_usec -= val->tv_usec;
40 //timevalfix
41 if ( to->tv_usec < 0 )
42 {
43 to->tv_sec--;
44 to->tv_usec += 1000000;
45 }
46 if ( to->tv_usec >= 1000000 )
47 {
48 to->tv_sec++;
49 to->tv_usec -= 1000000;
50 }
51 }

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen



Index
bitrate_arg

gengetopt_args_info, 2
bitrate_given

gengetopt_args_info, 2

calculateOffset
timing.c, 44
timing.h, 46

callocBuffer
memmanagement.c, 34
memmanagement.h, 35

clear_args
cmdline.c, 5

cmdline.c, 4
clear_args, 5
cmdline_parser, 6
cmdline_parser_configfile, 9
cmdline_parser_print_help, 13
cmdline_parser_print_version, 14
CONFIGPARSERBUFSIZE, 5
gengetopt_strdup, 14

cmdline.h, 14
cmdline_parser, 15
cmdline_parser_configfile, 19
CMDLINE_PARSER_PACKAGE, 15
cmdline_parser_print_help, 23
cmdline_parser_print_version, 24
CMDLINE_PARSER_VERSION, 15

cmdline_parser
cmdline.c, 6
cmdline.h, 15

cmdline_parser_configfile
cmdline.c, 9
cmdline.h, 19

CMDLINE_PARSER_PACKAGE
cmdline.h, 15

cmdline_parser_print_help
cmdline.c, 13
cmdline.h, 23

cmdline_parser_print_version
cmdline.c, 14
cmdline.h, 24

CMDLINE_PARSER_VERSION
cmdline.h, 15

configfile_arg
gengetopt_args_info, 2

configfile_given
gengetopt_args_info, 2

CONFIGPARSERBUFSIZE
cmdline.c, 5

COUNT

timing.c, 44

destMAC_arg
gengetopt_args_info, 3

destMAC_given
gengetopt_args_info, 3

dumpread.cpp, 24
readDumpfilePackets, 24
readDumpfileStats, 27

dumpread.h, 28
readDumpfilePackets, 28
readDumpfileStats, 30

gengetopt_args_info, 2
bitrate_arg, 2
bitrate_given, 2
configfile_arg, 2
configfile_given, 2
destMAC_arg, 3
destMAC_given, 3
help_given, 3
interface_arg, 3
interface_given, 3
packetfileM_arg, 3
packetfileM_given, 3
packetfileN_arg, 3
packetfileN_given, 3
priority_arg, 4
priority_given, 4
quantity_arg, 4
quantity_given, 4
ratio_arg, 4
ratio_given, 4
version_given, 4

gengetopt_strdup
cmdline.c, 14

help_given
gengetopt_args_info, 3

interface_arg
gengetopt_args_info, 3

interface_given
gengetopt_args_info, 3

licenseinfo.cpp, 31
printGPLText, 32

licenseinfo.h, 32
printGPLText, 33

main
stressnet.cpp, 38



INDEX 49

measureGettimeofday
timing.c, 44
timing.h, 47

memmanagement.c, 33
callocBuffer, 34

memmanagement.h, 34
callocBuffer, 35

packetfileM_arg
gengetopt_args_info, 3

packetfileM_given
gengetopt_args_info, 3

packetfileN_arg
gengetopt_args_info, 3

packetfileN_given
gengetopt_args_info, 3

printGPLText
licenseinfo.cpp, 32
licenseinfo.h, 33

priority_arg
gengetopt_args_info, 4

priority_given
gengetopt_args_info, 4

processproperties.c, 35
setSchedulingPolicyFIFO, 35

processproperties.h, 36
setSchedulingPolicyFIFO, 36

quantity_arg
gengetopt_args_info, 4

quantity_given
gengetopt_args_info, 4

ratio_arg
gengetopt_args_info, 4

ratio_given
gengetopt_args_info, 4

readDumpfilePackets
dumpread.cpp, 24
dumpread.h, 28

readDumpfileStats
dumpread.cpp, 27
dumpread.h, 30

setSchedulingPolicyFIFO
processproperties.c, 35
processproperties.h, 36

stressnet.cpp, 36
main, 38

timevalAdd
timing.c, 45
timing.h, 47

timevalSub
timing.c, 45

timing.h, 48
timing.c, 43

calculateOffset, 44
COUNT, 44
measureGettimeofday, 44
timevalAdd, 45
timevalSub, 45

timing.h, 46
calculateOffset, 46
measureGettimeofday, 47
timevalAdd, 47
timevalSub, 48

version_given
gengetopt_args_info, 4

Generated on Tue Jun 21 21:52:27 2005 for Stressnet by Doxygen


	rapport_SPP.pdf
	7 The tests
	1 Test 1: SMTP with PCRE
	2 Test 2: Standard complete HTTP sessions
	3 Test 3: Stressnet’s reliability

	8 Conclusion

	refman.pdf
	Stressnet Data Structure Index
	Stressnet File Index
	Stressnet Data Structure Documentation
	Stressnet File Documentation


