
Your Mitigations are My 
Opportunities

Yarden Shafir



About Me

◦ Sr. Security Engineer at Trail of Bits

◦ Previously Sr. Software Engineer at CrowdStrike and 
SentinelOne

◦ Instructor of Windows Internals classes

◦ Circus artist

◦ Former pastry chef

◦ Author of articles and tools at windows-internals.com

▫ CET internals, extension host hooking, I/O ring exploitation, 
kernel exploit mitigations, heap backed pool internals

◦ @yarden_shafir



State of Windows Exploitation

◦ New features and mitigations kill entire bug classes or 
exploitation techniques

▫ CET, CastGuard, KASAN…

◦ But…

▫ Some require new hardware

▫ Or require recompilation of software

▫ Many are disabled by default

◦ Code Integrity Policies limit unsigned software

◦ Win32k rewrite in rust could remove the biggest source 
of kernel vulnerabilities



Introducing CET

◦ CET creates a shadow stack that stores return addresses

▫ Attacker can’t modify the shadow stack without an additional 
vulnerability

◦ On every “ret” instruction, the return address is 
compared with the top address in the shadow stack

▫ Mismatch will generate INT21: Control Protection Fault

▫ Windows implements CET support for both user-mode and 
kernel-mode targets



Data

Data

Return Address 1

Data

Data

Data

Return Address 2

Data

Return Address 3

Return Address 1

Return Address 2

Return Address 3

Stack Shadow Stack

call

ret

Jump to return 

address



Data

Data

Return Address 1

Data

Data

Data

Return Address 2

Data

Return Address 3

Return Address 1

Return Address 2

Return Address 3

Stack Shadow Stack

call

ret

INT 21

Fake Address

Exploit



CET – the Windows Implementation

◦ Kernel doesn’t immediately crash the process on Control 
Protection fault

▫ Processes where CET is disabled / in audit mode are exempt

▫ Return to modules compiled without CET is allowed

▫ Returning to any address in the shadow stack is allowed

◦ Additional logic to handle APCs, SetThreadContext, 
exceptions

◦ The kernel has CET too (KCET) implemented by VTL1

▫ Also allows returning to any address in the shadow stack



The Bypass

◦ Returning to any address in 
the shadow stack is allowed

▫ We can create a type 
confusion by returning to a 
valid address with a different 
register state

▫ More stack frames == More 
type confusion choices

The Bypass



s = FuncB(); 

s->Table[1]();

FuncA FuncC();

s = new MyClass();

s.Table[1] = Foo; 

return s;

FuncB

return 7;

FuncC

…

Foo

Normal Case



s = FuncB(); 

s->Table[1]();

FuncA FuncC();

s = new MyClass();

s.Table[1] = Foo; 

return s;

FuncB

_retaddr = FuncA + 8;

b = new BadClass();

b[0] = “AAAAAAAA”;

b[1] = MaliciousFunc;

b[2] = “BBBBBBBB”;

return b;

FuncC

…

MaliciousFunc

The Bypass



Demo



Getting to the Kernel

◦ BYOVD! (Bring Your Own Vulnerable Driver)

◦ HVCI block list blocks some vulnerable drivers

▫ But many drivers are still allowed to load

▫ Loldrivers.io has over 600 vulnerable drivers – over 170 aren’t 
blocked by HVCI block list

▫ Some blocked drivers have new unblocked builds too that are 
sometimes still vulnerable
■ New version of dbutil_2_3.sys is identical – but now requires admin 

rights to trigger vulns



The Problem With EDRs

◦ Most EDRs use drivers to monitor the system and block/ 
kill processes detected as malicious

◦ Many EDR user-mode processes are hard to kill because 
they run as a Protected Process Light (PPL)

▫ Run with a special level protecting them from other processes

■ Yes, even admin processes

● Well, sort of

▫ Only other protected processes can read/write/suspend/ 
terminate

▫ Requires an ELAM driver



How Can We Neutralize EDRs?

◦ HVCI has undocumented features that can be configured 
through the registry

▫ HKLM\System\CurrentControlSet\Control\CI

◦ HvciAuditMode (regular/full) allows receiving ETW 
messages for HVCI events without any blocking

▫ UMCIAuditMode is the same for user mode CI events

◦ HVCIDisallowedImages allows registering an array of 
driver names to be blocked by HVCI (requires reboot)

▫ Only blocks by driver file name on disk

▫ Great for blocking EDR drivers (except WdFilter.sys )





How Can We Disable a PPL?

◦ Common method is to terminate, suspend or close the 
handles of a PPL through a driver

▫ KProcessHacker.sys, ProcExp.sys

◦ Defender ATP installs a “KseSec” shim to hook APIs in 
drivers known to be used for PPL suspension/termination

▫ Hooks ZwTerminateProcess, PsSuspendProcess, NtClose, etc

▫ Also hooks drivers/functions that allow mapping physical 
memory

▫ Will block requests or log them to Microsoft-Windows-Sec

■ Depends on configuration received from user mode agent





MsSecFlt.sys and MsSecCore.sys

◦ MsSecFlt.sys – Microsoft Security Events Component file 
system filter driver

▫ Responsible for logging events to the Microsoft-Windows-Sec 
ETW channel

▫ Provides security-related events to security tools

■ Process must be an AM PPL or above to subscribe

◦ MsSecCore.sys – Microsoft Security Core Boot Driver

▫ Recently added driver that works as an extension of 
MsSecFlt.sys



MsSecCore.sysMsSecFlt.sys

SecBindHost(..)

Function Table

SecRegisterKernelShimProvider(

SecKseShimInformation)

ntoskrnl

Register shims

Shimmed 

Driver

ZwTerminateProcess

SecKseZwTerminateProcessSecKseZwTerminateProcess

MsSense.exe

Send shim configuration over 

filter port 

\MicrosoftSecFilterControlPort



MsSecCore.sys



MsSecFlt.sys



Time for Plan B

◦ MsMpEng.exe is a PPL – hard to suspend/terminate

▫ WdFilter.sys can terminate the process but only 
MsMpEng.exe can send it commands

◦ WdFilter.sys has a “Panic Mode”

▫ Enabled when MsMpEng.exe times out on multiple file scans

▫ Opens a “back door” that allows any process to sent certain 
commands to the driver

▫ Sending a FSCTL with code 0x902EB will enter 
MpFsCtlDispatcher: a private IOCTL interface

■ Allows setting internal flags, resetting cache and terminating 
MsMpEng.exe







Windows Defender Backdoor FSCTL

◦ Timeout is determined by MpData->LocalTimeout

▫ Default is 4 minutes for local files and 6 for network files

▫ After 4 timeouts WdFilter.sys will go into panic mode

■ Also set in MpData together with the number of times it entered 
panic mode

■ FSCTL 0x902EB with code 9 will terminate MsMpEng.exe

f = win32file.CreateFile("c:\\temp\\test.txt", 
win32file.GENERIC_READ, win32file.FILE_SHARE_READ, None, 
win32file.OPEN_EXISTING, 0)

win32file.DeviceIoControl(f, 0x902eb, b'\x09\x00\x00\x00', 
None, None)



Demo



Hiding in the Kernel

◦ Drivers are visible to anyone who is looking

▫ And user<->kernel communication mechanisms are too

▫ Many kernel structures are protected or monitored so they 
can’t be hooked or tampered with anymore

◦ But we can live off the land in the kernel

▫ MsSecCore.sys shim functions call the registered functions in 
MsSecFlt.sys – this interface isn’t protected

◦ Build private comms mechanism by hooking callback 
routines and invoking hooked APIs from the UM process 
to send messages to the driver



User Mode 

Process

MsSecCore.sys
Shimmed 

Driver

Rootkit.sys

Request 

process 

suspension

Call shim 

function

Call 

evaluation 

routine

ntoskrnl

PsSuspendProcess



Summary

◦ Bypass CET by returning to a different address from the 
shadow stack

▫ Works against KCET too

◦ Reach the kernel through a vulnerable driver

▫ Even if HVCI block list is enabled

◦ Neutralize EDRs with HVCI features or built-in backdoors

▫ Or vulnerable drivers

◦ Live off the land in the kernel by hooking and abusing 
existing internal mechanisms



References

◦ Protected Processes:
▫ http://publications.alex-

ionescu.com/NoSuchCon/NoSuchCon%202014%20-
%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf

▫ https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-
windows-protected.html

▫ https://drive.google.com/file/d/1Pj7hSvsj0qvegdIUvABa9KUEKOrLzu2p/vi
ew + https://github.com/gabriellandau/PPLFault

◦ Kernel Shim Engine:
▫ https://www.youtube.com/watch?v=qCa9icMqBNM

http://publications.alex-ionescu.com/NoSuchCon/NoSuchCon%202014%20-%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf
http://publications.alex-ionescu.com/NoSuchCon/NoSuchCon%202014%20-%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf
http://publications.alex-ionescu.com/NoSuchCon/NoSuchCon%202014%20-%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://drive.google.com/file/d/1Pj7hSvsj0qvegdIUvABa9KUEKOrLzu2p/view
https://drive.google.com/file/d/1Pj7hSvsj0qvegdIUvABa9KUEKOrLzu2p/view
https://github.com/gabriellandau/PPLFault
https://www.youtube.com/watch?v=qCa9icMqBNM


Questions?


	Slide 1: Your Mitigations are My Opportunities
	Slide 2: About Me
	Slide 3: State of Windows Exploitation
	Slide 4: Introducing CET
	Slide 5
	Slide 6
	Slide 7: CET – the Windows Implementation
	Slide 8: The Bypass
	Slide 9
	Slide 10
	Slide 11: Demo
	Slide 12: Getting to the Kernel
	Slide 13: The Problem With EDRs
	Slide 14: How Can We Neutralize EDRs?
	Slide 15
	Slide 16: How Can We Disable a PPL?
	Slide 17
	Slide 18: MsSecFlt.sys and MsSecCore.sys
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Time for Plan B
	Slide 23
	Slide 24
	Slide 25: Windows Defender Backdoor FSCTL
	Slide 26: Demo
	Slide 27: Hiding in the Kernel
	Slide 28
	Slide 29: Summary
	Slide 30: References
	Slide 31: Questions?

