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About Me

◦ Sr. Security Engineer at Trail of Bits

◦ Previously Sr. Software Engineer at CrowdStrike and 
SentinelOne

◦ Instructor of Windows Internals classes

◦ Circus artist

◦ Former pastry chef

◦ Author of articles and tools at windows-internals.com

▫ CET internals, extension host hooking, I/O ring exploitation, 
kernel exploit mitigations, heap backed pool internals

◦ @yarden_shafir



State of Windows Exploitation

◦ New features and mitigations kill entire bug classes or 
exploitation techniques

▫ CET, CastGuard, KASAN…

◦ But…

▫ Some require new hardware

▫ Or require recompilation of software

▫ Many are disabled by default

◦ Code Integrity Policies limit unsigned software

◦ Win32k rewrite in rust could remove the biggest source 
of kernel vulnerabilities



Introducing CET

◦ CET creates a shadow stack that stores return addresses

▫ Attacker can’t modify the shadow stack without an additional 
vulnerability

◦ On every “ret” instruction, the return address is 
compared with the top address in the shadow stack

▫ Mismatch will generate INT21: Control Protection Fault

▫ Windows implements CET support for both user-mode and 
kernel-mode targets
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CET – the Windows Implementation

◦ Kernel doesn’t immediately crash the process on Control 
Protection fault

▫ Processes where CET is disabled / in audit mode are exempt

▫ Return to modules compiled without CET is allowed

▫ Returning to any address in the shadow stack is allowed

◦ Additional logic to handle APCs, SetThreadContext, 
exceptions

◦ The kernel has CET too (KCET) implemented by VTL1

▫ Also allows returning to any address in the shadow stack



The Bypass

◦ Returning to any address in 
the shadow stack is allowed

▫ We can create a type 
confusion by returning to a 
valid address with a different 
register state

▫ More stack frames == More 
type confusion choices

The Bypass
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s = FuncB(); 

s->Table[1]();

FuncA FuncC();

s = new MyClass();

s.Table[1] = Foo; 

return s;

FuncB

_retaddr = FuncA + 8;

b = new BadClass();

b[0] = “AAAAAAAA”;

b[1] = MaliciousFunc;

b[2] = “BBBBBBBB”;

return b;

FuncC

…

MaliciousFunc

The Bypass
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Getting to the Kernel

◦ BYOVD! (Bring Your Own Vulnerable Driver)

◦ HVCI block list blocks some vulnerable drivers

▫ But many drivers are still allowed to load

▫ Loldrivers.io has over 600 vulnerable drivers – over 170 aren’t 
blocked by HVCI block list

▫ Some blocked drivers have new unblocked builds too that are 
sometimes still vulnerable
■ New version of dbutil_2_3.sys is identical – but now requires admin 

rights to trigger vulns



The Problem With EDRs

◦ Most EDRs use drivers to monitor the system and block/ 
kill processes detected as malicious

◦ Many EDR user-mode processes are hard to kill because 
they run as a Protected Process Light (PPL)

▫ Run with a special level protecting them from other processes

■ Yes, even admin processes

● Well, sort of

▫ Only other protected processes can read/write/suspend/ 
terminate

▫ Requires an ELAM driver



How Can We Neutralize EDRs?

◦ HVCI has undocumented features that can be configured 
through the registry

▫ HKLM\System\CurrentControlSet\Control\CI

◦ HvciAuditMode (regular/full) allows receiving ETW 
messages for HVCI events without any blocking

▫ UMCIAuditMode is the same for user mode CI events

◦ HVCIDisallowedImages allows registering an array of 
driver names to be blocked by HVCI (requires reboot)

▫ Only blocks by driver file name on disk

▫ Great for blocking EDR drivers (except WdFilter.sys )





How Can We Disable a PPL?

◦ Common method is to terminate, suspend or close the 
handles of a PPL through a driver

▫ KProcessHacker.sys, ProcExp.sys

◦ Defender ATP installs a “KseSec” shim to hook APIs in 
drivers known to be used for PPL suspension/termination

▫ Hooks ZwTerminateProcess, PsSuspendProcess, NtClose, etc

▫ Also hooks drivers/functions that allow mapping physical 
memory

▫ Will block requests or log them to Microsoft-Windows-Sec

■ Depends on configuration received from user mode agent





MsSecFlt.sys and MsSecCore.sys

◦ MsSecFlt.sys – Microsoft Security Events Component file 
system filter driver

▫ Responsible for logging events to the Microsoft-Windows-Sec 
ETW channel

▫ Provides security-related events to security tools

■ Process must be an AM PPL or above to subscribe

◦ MsSecCore.sys – Microsoft Security Core Boot Driver

▫ Recently added driver that works as an extension of 
MsSecFlt.sys
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Time for Plan B

◦ MsMpEng.exe is a PPL – hard to suspend/terminate

▫ WdFilter.sys can terminate the process but only 
MsMpEng.exe can send it commands

◦ WdFilter.sys has a “Panic Mode”

▫ Enabled when MsMpEng.exe times out on multiple file scans

▫ Opens a “back door” that allows any process to sent certain 
commands to the driver

▫ Sending a FSCTL with code 0x902EB will enter 
MpFsCtlDispatcher: a private IOCTL interface

■ Allows setting internal flags, resetting cache and terminating 
MsMpEng.exe







Windows Defender Backdoor FSCTL

◦ Timeout is determined by MpData->LocalTimeout

▫ Default is 4 minutes for local files and 6 for network files

▫ After 4 timeouts WdFilter.sys will go into panic mode

■ Also set in MpData together with the number of times it entered 
panic mode

■ FSCTL 0x902EB with code 9 will terminate MsMpEng.exe

f = win32file.CreateFile("c:\\temp\\test.txt", 
win32file.GENERIC_READ, win32file.FILE_SHARE_READ, None, 
win32file.OPEN_EXISTING, 0)

win32file.DeviceIoControl(f, 0x902eb, b'\x09\x00\x00\x00', 
None, None)



Demo



Hiding in the Kernel

◦ Drivers are visible to anyone who is looking

▫ And user<->kernel communication mechanisms are too

▫ Many kernel structures are protected or monitored so they 
can’t be hooked or tampered with anymore

◦ But we can live off the land in the kernel

▫ MsSecCore.sys shim functions call the registered functions in 
MsSecFlt.sys – this interface isn’t protected

◦ Build private comms mechanism by hooking callback 
routines and invoking hooked APIs from the UM process 
to send messages to the driver
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Summary

◦ Bypass CET by returning to a different address from the 
shadow stack

▫ Works against KCET too

◦ Reach the kernel through a vulnerable driver

▫ Even if HVCI block list is enabled

◦ Neutralize EDRs with HVCI features or built-in backdoors

▫ Or vulnerable drivers

◦ Live off the land in the kernel by hooking and abusing 
existing internal mechanisms



References

◦ Protected Processes:
▫ http://publications.alex-

ionescu.com/NoSuchCon/NoSuchCon%202014%20-
%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf

▫ https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-
windows-protected.html

▫ https://drive.google.com/file/d/1Pj7hSvsj0qvegdIUvABa9KUEKOrLzu2p/vi
ew + https://github.com/gabriellandau/PPLFault

◦ Kernel Shim Engine:
▫ https://www.youtube.com/watch?v=qCa9icMqBNM

http://publications.alex-ionescu.com/NoSuchCon/NoSuchCon%202014%20-%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf
http://publications.alex-ionescu.com/NoSuchCon/NoSuchCon%202014%20-%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf
http://publications.alex-ionescu.com/NoSuchCon/NoSuchCon%202014%20-%20Unreal%20Mode%20-%20Breaking%20Protected%20Processes.pdf
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
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https://github.com/gabriellandau/PPLFault
https://www.youtube.com/watch?v=qCa9icMqBNM


Questions?
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