{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from PIL import Image\n", "from matplotlib.pyplot import imshow\n", "import numpy as np\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img_lena = Image.open(\"images/lena.jpg\").convert('RGB')\n", "print(img_lena.width, img_lena.height, img_lena.mode, img_lena.format, type(img_lena))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "imshow(img_lena)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Resmi Kırpma (Crop)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# crop the rectangle given by (left, top, right, bottom) from the image\n", "im_c = img_lena.crop((100,75,150,150)) \n", "imshow(im_c)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Parlıklığı (Brightness) Arttırma" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img_lena_array = np.array(img_lena)\n", "\n", "#her değeri 50 arttır\n", "for i in range(img_lena_array.shape[0]):\n", " for j in range(img_lena_array.shape[1]):\n", " for k in range(img_lena_array.shape[2]):\n", " try:\n", " if img_lena_array[i][j][k] + 50 <= 255: \n", " img_lena_array[i][j][k] = img_lena_array[i][j][k] + 50\n", " except IndexError:\n", " continue\n", " \n", "imshow(img_lena_array)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Parlıklığı (Brightness) Düşürme" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img_lena_array = np.array(img_lena)\n", "\n", "#her değeri 50 düşür\n", "for i in range(img_lena_array.shape[0]):\n", " for j in range(img_lena_array.shape[1]):\n", " for k in range(img_lena_array.shape[2]):\n", " try:\n", " if img_lena_array[i][j][k] - 50 >= 0: \n", " img_lena_array[i][j][k] = img_lena_array[i][j][k] - 50\n", " except IndexError:\n", " continue\n", " \n", "imshow(img_lena_array)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Contrast" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img_lena_array = np.array(img_lena)\n", "\n", "#her değeri 50 düşür\n", "for i in range(img_lena_array.shape[0]):\n", " for j in range(img_lena_array.shape[1]):\n", " for k in range(img_lena_array.shape[2]):\n", " #bir eşik değeri belirlenip, o değerin altındaki pixel değerlerini düşürme veya değerin üzerindekileri arttırma\n", " if img_lena_array[i][j][k] <= 127:\n", " if img_lena_array[i][j][k] - 50 >= 0:\n", " img_lena_array[i][j][k] = img_lena_array[i][j][k] - 50 \n", " else:\n", " if img_lena_array[i][j][k] + 50 <= 255:\n", " img_lena_array[i][j][k] = img_lena_array[i][j][k] + 50 \n", " \n", "imshow(img_lena_array)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 4 }