{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ " #
Pandas DataSeries (15 exercises with solution)
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Write a Python program to create and display a one-dimensional array-like object containing an array of data using Pandas module." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 1\n", "1 2\n", "2 3\n", "3 4\n", "4 5\n", "dtype: int64\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "ds = pd.Series([1, 2, 3, 4, 5])\n", "print(ds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Write a Python program to convert a Panda module Series to Python list and it's type." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "int64\n", "\n", "[1, 2, 3, 4, 5]\n", "\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "ds = pd.Series([1, 2, 3, 4, 5])\n", "print(ds.dtype)\n", "print(type(ds))\n", "\n", "series_to_list = list(ds) # We can use ds.tolist() function instead.\n", "print(series_to_list)\n", "print(type(series_to_list))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. Write a Python program to add, subtract, multiple and divide two Pandas Series. Go to the editorSample Series: [2, 4, 6, 8, 10], [1, 3, 5, 7, 9]." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Summation of two Series:\n", "0 3\n", "1 7\n", "2 11\n", "3 15\n", "4 19\n", "dtype: int64\n", "\n", "Difference of two Series:\n", "0 1\n", "1 1\n", "2 1\n", "3 1\n", "4 1\n", "dtype: int64\n", "\n", "Multiple of two Series:\n", "0 2\n", "1 12\n", "2 30\n", "3 56\n", "4 90\n", "dtype: int64\n", "\n", "Divide of two Series:\n", "0 2.000000\n", "1 1.333333\n", "2 1.200000\n", "3 1.142857\n", "4 1.111111\n", "dtype: float64\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "ds1 = pd.Series([2, 4, 6, 8, 10])\n", "ds2 = pd.Series([1, 3, 5, 7, 9])\n", "\n", "sum = ds1 + ds2\n", "print(\"Summation of two Series:\")\n", "print(sum)\n", "print()\n", "\n", "\n", "print(\"Difference of two Series:\")\n", "print(ds1 - ds2)\n", "print()\n", "\n", "print(\"Multiple of two Series:\")\n", "print(ds1 * ds2)\n", "print()\n", "\n", "print(\"Divide of two Series:\")\n", "print(ds1 / ds2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4. Write a Pandas program to compare the elements of the two Pandas Series. Sample Series: [2, 4, 6, 8, 10], [1, 3, 5, 7, 9]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Equal Check:\n", "0 False\n", "1 False\n", "2 False\n", "3 False\n", "4 False\n", "dtype: bool\n", "\n", "Greater Check:\n", "0 True\n", "1 True\n", "2 True\n", "3 True\n", "4 True\n", "dtype: bool\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ds1 = pd.Series([2, 4, 6, 8, 10])\n", "ds2 = pd.Series([1, 3, 5, 7, 9])\n", "\n", "print(\"Equal Check:\")\n", "print(ds1 == ds2)\n", "print()\n", "\n", "print(\"Greater Check:\")\n", "print(ds1 > ds2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5. Write a Python program to convert a dictionary to a Pandas series.\n", "Original dictionary: {'a': 100, 'b': 200, 'c': 300, 'd': 400, 'e': 800}" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a 100\n", "b 200\n", "c 300\n", "d 400\n", "e 800\n", "dtype: int64\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "sample_dict = {'a': 100, 'b': 200, 'c': 300, 'd': 400, 'e': 800}\n", "\n", "dict_to_series = pd.Series(sample_dict)\n", "print(dict_to_series)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6. Write a Python program to convert a NumPy array to a Pandas series." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[10 20 30 40 50]\n", "\n", "\n", "From Numpy array to Pandas Series Conversion:\n", "0 10\n", "1 20\n", "2 30\n", "3 40\n", "4 50\n", "dtype: int32\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "l = [10, 20, 30, 40, 50]\n", "arr = np.array(l)\n", "print(arr)\n", "print(type(arr))\n", "\n", "print('\\nFrom Numpy array to Pandas Series Conversion:')\n", "print(pd.Series(arr))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 7. Write a Python program to change the data type of given a column or a Series." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 100.00\n", "1 200.00\n", "2 NaN\n", "3 300.12\n", "4 400.00\n", "dtype: float64\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "origina_ser = pd.Series([100, 200, 'python', 300.12, 400])\n", "\n", "numeric_ser = pd.to_numeric(origina_ser, errors = 'coerce')\n", "print(numeric_ser)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 8. Write a Python Pandas program to convert the first column of a DataFrame as a Series." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original Dataframe:\n", " col1 col2 col3\n", "0 1 4 7\n", "1 2 5 5\n", "2 3 6 8\n", "3 4 9 12\n", "4 7 5 1\n", "5 11 0 11\n", "\n", "\n", "First Column as Series:\n", "0 1\n", "1 2\n", "2 3\n", "3 4\n", "4 7\n", "5 11\n", "Name: col1, dtype: int64\n", "\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "dataframe = pd.DataFrame({'col1': [1, 2, 3, 4, 7, 11], 'col2': [4, 5, 6, 9, 5, 0], 'col3': [7, 5, 8, 12, 1, 11]})\n", "print('Original Dataframe:')\n", "print(dataframe)\n", "print('\\n')\n", "\n", "first_column = dataframe['col1']\n", "print('First Column as Series:')\n", "print(first_column)\n", "print(type(first_column))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9. Write a Pandas program to convert a given Series to an array." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pandas Series to Array: [100, 200, 'python', 300.12, 400]\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ser = pd.Series([100, 200, 'python', 300.12, 400])\n", "ser_to_array = ser.to_list()\n", "\n", "print('Pandas Series to Array:', ser_to_array)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 10. Write a Pandas program to convert Series of lists to one Series." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Converted series of lists into one series:\n", "\n", "0 Red\n", "1 Green\n", "2 White\n", "3 Red\n", "4 Black\n", "5 Yellow\n", "dtype: object\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ser = pd.Series([['Red', 'Green', 'White'], ['Red', 'Black'], ['Yellow']])\n", "\n", "single_series = ser.apply(pd.Series).stack().reset_index(drop = True) #Learned New Technique\n", "print('Converted series of lists into one series:\\n')\n", "print(single_series)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 11. Write a Pandas program to sort a given Series." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sorted Series by values:\n" ] }, { "data": { "text/plain": [ "0 100\n", "1 200\n", "3 300.12\n", "4 400\n", "2 python\n", "dtype: object" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ser = pd.Series(['100', '200', 'python', '300.12', '400'])\n", "\n", "print('Sorted Series by values:')\n", "ser.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12. Write a Pandas program to add some data to an existing Series." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "New Series after adding:\n", "\n", "0 100\n", "1 200\n", "2 python\n", "3 300.12\n", "4 400\n", "0 500\n", "1 php\n", "dtype: object\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ser = pd.Series(['100', '200', 'python', '300.12', '400'])\n", "\n", "series_after_adding = ser.append(pd.Series(['500', 'php']))\n", "print('New Series after adding:\\n')\n", "print(series_after_adding)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 13. Write a Pandas program to create a subset of a given series based on value and condition." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Subset of series based on condition:\n" ] }, { "data": { "text/plain": [ "0 0\n", "1 1\n", "2 2\n", "3 3\n", "4 4\n", "5 5\n", "dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ser = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\n", "\n", "condition = ser.apply(lambda x: x <= 5)\n", "\n", "print('Subset of series based on condition:')\n", "ser[condition]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 14. Write a Pandas program to change the order of index of a given series." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "B 2\n", "A 1\n", "C 3\n", "D 4\n", "E 5\n", "dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ser = pd.Series([1, 2, 3, 4, 5], index = ['A', 'B', 'C', 'D', 'E'])\n", "\n", "new_index = ['B', 'A', 'C', 'D', 'E']\n", "ser.reindex(new_index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 15. Write a Pandas program to create the mean and standard deviation of the data of a given Series." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean of the series\t\t: 4.818181818181818\n", "Standard deviation of the series: 2.522624895547565\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "ser = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 3])\n", "print('Mean of the series\\t\\t:', ser.mean())\n", "print('Standard deviation of the series:', ser.std())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Origin: [https://www.w3resource.com/python-exercises/pandas/index-data-series.php](https://www.w3resource.com/python-exercises/pandas/index-data-series.php)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#
THE END
" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }