{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Test notebook lazy pipeline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Installed packages\n", "import pandas as pd\n", "\n", "# Testing\n", "from IPython.utils.capture import capture_output\n", "\n", "# Our package\n", "from ydata_profiling import ProfileReport\n", "from ydata_profiling.utils.cache import cache_file" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Read the Titanic Dataset\n", "file_name = cache_file(\n", " \"titanic.csv\",\n", " \"https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv\",\n", ")\n", "df = pd.read_csv(file_name)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Generate the Profiling Report (with progress bar)\n", "with capture_output() as out:\n", " profile = ProfileReport(df, title=\"Titanic Dataset\", progress_bar=True, lazy=False)\n", "\n", "assert all(\n", " any(v in s.data[\"text/plain\"] for v in [\"%|\", \"FloatProgress\"]) for s in out.outputs\n", ")\n", "assert len(out.outputs) == 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Generate the Profiling Report (without progress bar)\n", "with capture_output() as out:\n", " profile = df.profile_report(\n", " title=\"Titanic Dataset\",\n", " html={\"style\": {\"full_width\": True}},\n", " progress_bar=True,\n", " lazy=True,\n", " )\n", "\n", "assert len(out.outputs) == 0\n", "\n", "with capture_output() as out:\n", " _ = profile.to_html()\n", "\n", "\n", "assert all(\n", " any(v in s.data[\"text/plain\"] for v in [\"%|\", \"FloatProgress\"]) for s in out.outputs\n", ")\n", "assert len(out.outputs) == 3\n", "\n", "with capture_output() as out:\n", " _ = profile.to_file(\"/tmp/tmpfile.html\")\n", "\n", "assert \"Export report to file\" in out.outputs[0].data[\"text/plain\"]\n", "assert len(out.outputs) == 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Test caching of the iterative building process\n", "with capture_output() as out:\n", " profile = ProfileReport(df, title=\"Titanic Dataset\", progress_bar=True, lazy=True)\n", "assert len(out.outputs) == 0\n", "\n", "with capture_output() as out:\n", " profile.description_set\n", "assert len(out.outputs) == 1\n", "\n", "with capture_output() as out:\n", " profile.report\n", "assert len(out.outputs) == 1\n", "\n", "with capture_output() as out:\n", " profile.html\n", "assert len(out.outputs) == 1\n", "\n", "with capture_output() as out:\n", " profile.config.html.style.theme = \"united\"\n", " profile.invalidate_cache(\"rendering\")\n", " profile.to_file(\"/tmp/cache1.html\")\n", "assert len(out.outputs) == 2\n", "\n", "with capture_output() as out:\n", " profile.config.pool_size = 1\n", " profile.html\n", "assert len(out.outputs) == 0\n", "\n", "with capture_output() as out:\n", " profile.config.pool_size = 0\n", " profile.config.samples.head = 5\n", " profile.config.samples.tail = 15\n", " profile.invalidate_cache()\n", " profile.to_file(\"/tmp/cache2.html\")\n", "assert len(out.outputs) == 4" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 2 }