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Highway Vehicle Trajectory Reconstruction
Using Sparse and Noisy Communication Base

Station Fingerprints
Yingbing Li, Yan Zhang, and Min Chen

Abstract— The current application of highway toll system, generally
use Dijkstra algorithm to calculate the shortest path of vehicles
from the entrance to the exit to charge. This means that managers
have no way of knowing the exact trajectory of vehicles. And differ-
ent routes of highways are often funded and operated by different
investors. To address this problem, this paper presents a new algo-
rithm to reconstruct trajectories from sparse and noisy fingerprint
signals from communication base stations (CBSIDs), with practical
application in a high-speed toll collection system in Hubei Province,
China. In this solution, we designed an inexpensive Internet of
Things (IOT) device that collects signal fingerprint identification
numbers from CBSIDs at a low sampling rate. These CBSIDs are
then matched with a special CBSID-anchor radiomap, converting the sequence of CBSIDs into a sequence of candidate
anchors (toll stations and intersections on highways). Finally, a trajectory mapping algorithm is run to process these
candidate anchors and to generate the complete driving route. In the experiment on both simulated and field routes,
results show that the proposed algorithm can effectively reconstruct the driving routes of vehicles and achieve intelligent
sensing and recognition of vehicle movement routes. The upgraded toll collection system meets the needs of efficient
motorway investment, maintenance and management.

Index Terms— Communication base station, fingerprint matching, map matching, Trajectory Reconstruction , IOT Tech-
nology

I. INTRODUCTION

TOLL collection is a fair and efficient strategy for highway
investment, maintenance, and management, and is widely

adopted by countries in Asia, Europe, and North America [1]–
[3]. Existing highway toll collection systems generally only
record the entrance and exit on the highway, then calculate
the toll according to the shortest path between them [4], [5].
However, such a strategy may incur a discrepancy between the
traveled distance and the tolled distance. 1. Different routes
of the highway are built by different investors, and as the
highway network becomes more complex, there is likely to
be more than one route between the same entrance and exit,
which poses a problem for profit distribution [6]. 2. Since the
existing system cannot record the actual trajectory of vehicles.
Drivers can drop off passengers or goods at service areas closer
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to their destinations and drive vehicles back to their origins to
save passage costs. This system vulnerability brings millions
of economic losses every year. In this paper, we propose a new
and economically reliable trajectory reconstruction method to
solve these two problems.

Here, we present some concrete statistics about drivers’
choice of highway routes. The dataset consists of real driving
routes on highways collected in 2018. Each route is made up
of cellular localization positions sampled at an average interval
of 6s. A total of 67,466 routes were obtained with a total length
of 17,267,864.07 km. Through comparison with the shortest
route between the same entrance-exit, we found that 2914
routes are different from their shortest counterparts, and the
total length of them is 551,497.96 km longer. The total tolled
distance is 3.19% shorter than the real distance. The 67,466
routes are made up of 19497 distinguishing entrance-exits, and
between 4054 (accounting for 20.32%) of the entrance-exits,
drivers have chosen an alternative route other than the shortest
path. Fig. 1 shows the 20 most frequently visited entrance-
exits. In 9 out of the 20 cases, drivers have chosen alternative
routes other than the shortest one. The total length of routes
taken by drivers between points 146 and 165, for example,
is approximately 4,939 km longer than that of the shortest
route. As for the rest 11 entrance-exits, it is apparent from
Fig. 2 that the routes between them are fairly short, and that is
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why drivers have not taken different routes. When the distance
and the complexity of the road network increase, diversity
of actual driving routes increases. Considering that highways
are commonly invested by a number of companies and their
charging standards vary from each other, the discrepancy
between the paid toll and the true toll will be more significant.

Fig. 1. Discrepancies between the shortest route and the real route
of the 20 most frequently visited entrance-exits. The vertical axis shows
the number of routes; the horizontal axis represents entrance-exits.

The statistics convincingly prove that the shortest-path strat-
egy may cause significant loss in interest for investors and
shareholders. In order to toll accurately, there is an urgent
demand for developing a more effective strategy for tracking
drivers’ actual driving routes.

There are a variety of solutions to the vehicle route tracking
issue, such as Global Navigation Satellite System (GNSS)&
5G, Radio Frequency Identification (RFID) with License Plate
Recognition (LPR), and fingerprint-based methods [7]–[10].
These methods should be carefully examined in the context
of highway toll collection, in terms of availability, energy-
efficiency, infrastructure investment, and latency.

GNSS, for example, is the default solution to most outdoor
localization applications [11]. Large number of applications
has been developed based on GNSS to tackle the trajectory
tracking issue. These applications range from EasyTracker [12]
and StarTrack [13] in the academic realm to everyday mobile
navigation applications such as Baidu Map and Google Maps.
However, there are also some limitations in GNSS-based appli-
cations, such as high energy consumption, poor performance
in urban canyons, and investment in signal receiving devices
[14]–[16]. Hence, GNSS may not be the optimal choice when
it comes to the application in toll collection systems where
energy efficiency and investment must be taken into careful
consideration [17], [18].

RFID with PLR has been used for vehicle access control
[19] and parking management [20], [21], and shows good
potential in Electronic Toll Collection (ETC) applications,
since it allows tolling without stopping the vehicle [22].
Nevertheless, the implementation of a network-based LPR
system is often accompanied by a considerable investment of
infrastructure and high complexity in computation [23], which
makes the wide-spread application difficult.

The principle of the fingerprint-based localization method
is to connect vision, motion, or signal fingerprints with a set

of location-tagged signatures such as landmarks, directions,
distances, and coordinates [24]. Vision fingerprint-based lo-
calization methods use images or videos to locate the points
of interest [25]. Although crowd-sourcing and advanced im-
age processing technologies have improved the localization
accuracy and decreased the latency time of such methods, the
inherent overhead and computational complexity are still non-
trivial [26], [27]. Motion fingerprints are generated by motion
sensors like accelerometer, gyroscope, and electric compass
embedded in smart-phones [28]. They are often combined
with other methods to improve the localization performance
because the inherent noise in the collected data often causes
huge errors in location estimates [29]–[31]. Wireless-Fidelity
(Wi-Fi), Bluetooth, and ZigBee are popular signals used in
indoor localization [32]. Wi-Fi-based localization method has
also been used in outdoor urban areas when enough Access
Points (AP) are around [33]. But the availability of Wi-
Fi and Bluetooth signals is often highly limited in some
rural areas along the highways. On the contrary, signals from
communication base stations (CBSs), called CBS fingerprints
thereafter, are almost ubiquitous along the highways, which
can be used for localization without the need for additional
infrastructure. In addition, obtaining CBS fingerprints con-
sumes less energy compared to GNSS [34]–[36], and the
processing of CBS fingerprints is simpler and causes less
latency than that of vision fingerprints. In view of availability,
energy-efficiency, infrastructure investment, and latency, CBS
fingerprint is more appropriate in the context of highway route
tracking application.

In this paper, we propose a CBS fingerprint-based solution
to the highway route tracking problem. The solution designs
a low-cost signal receiving terminal that is distributed to each
vehicle at the entrance of the highway. The device is recov-
ered at the highway exit and automatically reconstructs the
trajectory and generates toll orders based on the information
recorded by the device. It does not require drivers to install
additional APPs, periodically collects the identities of regis-
tered CBSs (CBSIDs) and then rebuilds vehicle trajectories
from these sparsely sampled sequences of CBSIDs.

1)The method is simple and efficient. Compared to previ-
ous works concerning CBS fingerprint map matching [31],
[34], [37], the method requires limited information about the
fingerprint (only CBSID of the register CBS). It associates
the CBSIDs with special anchors on highways, which helps
to capture vehicles’ mobility and improve trajectory mapping
accuracy. In the experiment on 197 simulated routes, the
method accurately recognizes 99%, 99%, 99%, 99%, 97.5%,
96.4%, and 93.4%, of the routes at the sampling intervals of 5
s, 30 s, 1 min, 5 min, 10 min, 15 min, and 20 min, respectively.
In the experiment on 3 field routes, CBSIDs are collected every
15 min. The method accurately identifies two of the routes,
and the precision and recall of the other route are 0.92 and
1, respectively. The method shows strong robustness against
sparseness and noise of data.

2)The method has been widely used in the highway toll
collection system of Hubei Province now. A toll collection
system based on the method not only tracks a vehicle’s real
driving route so that toll computation can be performed accu-
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Fig. 2. Distribution of toll stations and sampled cellular positions. “Toll station*” represents the most frequently visited starting or ending toll station.

rately, but also is quickly responsive, highly available, energy-
efficient, and infrastructure-installation-free. The rest of the
paper is organized as follows: In Section II, the related works
are summarized; Section III introduces the proposed method
of route recognition based on CBS fingerprints; Section IV
verifies the method by field experiments in Hubei; finally,
Section V concludes the present work with a deeper discussion
on the proposed method.

II. RELATED WORKS

A. CBS Fingerprint Matching

Fingerprint matching is an indispensable module of a fin-
gerprint localization system because it builds the connection
between fingerprints and location-tagged units in the real
world [24]. There are two kinds of methods for fingerprint
matching: one directly converts fingerprints to coordinates
[38]–[40]; the other incorporates sequential information into
the mapping process [34], [37], [41].

Methods of the first kind match the target fingerprint against
fingerprints in the radiomap, then return the coordinates of its
matches. In such cases where there are more than one matched
fingerprints, the location is computed by the average of the K
nearest neighbors (KNN) based on Euclidean Distance [42] or
estimated by probabilistic methods [43]. Cell Identity (Cell-
ID) and Received Signal Strength (RSS) are most frequently
used matching features. C. Ang et al. [33] compared the two
criteria and concluded that although the incorporation of RSS
decreases the granularity of the matching algorithm, the simple
Cell-ID matching scheme is less sensitive to the fluctuation of
signal strength and thus shows higher robustness.

Studies in [34] and [44] point out that sequencing fin-
gerprints before matching can improve localization accuracy

because the process of sequencing incorporates spatial and
temporal constraints into the subsequent mapping procedure,
which naturally reduces the probability of a mismatch. Re-
search works in [31], [34], [41] utilize Hidden Markov Model
(HMM) to simulate a vehicle’s transition from one spatial unit
to the next, thus incorporating road constraints and temporal
information into the fingerprint matching process. Experimen-
tal results have proved the effectiveness of HMM in fingerprint
matching. However, HMM requires thorough training of the
model, and the performance of one node is highly dependent
on that of its preceding node. One mismatched node may
transfer the cascading effect to all the nodes behind it, which
may decrease the matching accuracy of CBS fingerprints that
are sparsely sampled.

The Smith-Waterman algorithm has also been used in finger-
print sequence-matching problems [45], [46]. It is an effective
method for local sequence alignment [47]. By weighting each
fingerprint in the sequence, the algorithm produces a sum of
fingerprint weights and uses it as the matching score. The
algorithm is well suited for regular routes, such as bus routes
and subway lines. But it requires a continuous collection
of fingerprints and a comprehensive offline war-driving for
radiomap construction.

In order to enhance the robustness against signal strength
fluctuation and to simplify the matching process, the unique
identifier of CBS (CBSID) is used to search for matches.
CBS fingerprints are not directly converted to coordinates.
Instead, they are connected to anchors, i.e., toll stations and
intersections, where critical driving actions take place so that
spatial constraints are incorporated. Each fingerprint is inde-
pendently matched with the radiomap hence it is not subject to
the interference of preceding nodes. In addition, a weighting
scheme is adopted for fingerprint matching in reference to
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the Smith-Waterman algorithm. The above settings enhance
the effectiveness of the method in tackling sparse fingerprint
sequences.

B. Map Matching Based on Sparse and Noisy CBS
Fingerprints.

Cellular network localization data are very noisy. If only the
associated CBS information is used, the mean error of local-
ization is 2 km [48]. And fingerprints sometimes can only be
collected in a sparse time interval due to limitations on energy
and data storage. The noise and sparseness of CBS fingerprints
make map matching of the real route a challenging problem.
Newson et al. [49] simulated the situation by adding noise to
GNSS data and found that with 100 m noise standard deviation
and 9 min sampling interval, the fraction of mismatched route
almost reaches 0.9.

Newson et al. [49] proposed a HMM method to tackle
the problem, and it has been further adopted and improved
by later works, such as C-Track [34], WheelLoc [31], and
SnapNet [48]. It is recommended to refer to the work of
Dalla Torre et al. [50] that gives a thorough and detailed
survey of these HMM methods applied in CBS fingerprint
map matching. Although HMM has shown good performance,
there are still some problems. The authors of [41] and [51]
argue that mobility in a network is actually non-Markovian,
and a unified transition probability can lead to mismatches of
road segments. The authors hence incorporated the statistics
of driver’s behavior to improve the map matching accuracy.

Apart from HMM-based methods, there are other solutions
to map match sparse and noisy CBS fingerprints. For instance,
Gunnar et al. proposed a special searching corridor to locate
possible road segments and achieved good performance using
only the CBSID [52].

We provide a simple and efficient map matching solution
to the problem. The algorithm considers the specific mobility
patterns of vehicles on the highway and converts into a certain
trajectory the sequence of register CBSIDs.

III. METHODOLOGY
A. Problem Statement

The present work is inspired by the “handover” of CBSs that
takes place in the mobile communication network. As shown
in Fig. 3, as a vehicle moves within a network, a communi-
cation device equipped in the vehicle chooses different CBSs
as its serving stations to keep the continuity of communica-
tion [53]. Handover between CBSs happens when the signal
strength from the current serving CBS falls to a certain extent.
During this process, two paths are simultaneously generated:
1) the vehicle’s driving path in the real world; 2) the pseudo-
path concatenated by CBSs. It is clear that the two paths are
spatially close to each other. The spatial proximity enlightens
an idea: can we use the sequence of CBSs to determine the
unknown vehicle’s driving path?

To address the problem, the previous works listed in Sub-
section B, Section II have proposed different approaches. In
general, there are two challenges in inferring the driving route
from CBS fingerprints. The first challenge is that the CBS

Coverage of CBS

Highway

CBS

Driving path

Handover path

Coverage of CBS

Highway

CBS

Driving path

Handover path

Fig. 3. The pseudo path of CBSs and its relationship with the vehicle’s
driving route on the highway.

fingerprint does not explicitly indicate the location of the
vehicle. All we can do is to infer the possible location of
the vehicle, i.e., the overlap of the circle and the highway in
Fig. 3. Since the locations of CBSs are unknown and their
signal coverages vary from each other, it is difficult to find
the overlap. The localization uncertainty of each fingerprint
increases the uncertainty in inferring the whole route, and
this is the second challenge we face. We must develop an
effective method to extract the real driving route from all
possible locations. The problem is defined as:

Real (route|f1, f2, · · · , fn) = MaxLikelihoodΦ (routex|f1, f2, · · · , fn)
(1)

where Φ = {p1, p2, · · · , pm}, routex ∈ Φ, f1 is the
sequence of CBS fingerprints; Φ is the set of all possible
locations of the vehicle; and routex is a subset of Φ.

B. System Overview
We propose a highway vehicle-route-recognition system to

meet these challenges (Fig. 4). The lower half of the figure
illustrates the process of fingerprint collection. As soon as a
vehicle enters the highway, the CBSIDs of serving stations
are periodically recorded until the vehicle arrives at the exit.
Then the recorded sequence of CBSIDs together with the
information of the enter and exit is uploaded to the route-
recognition module shown in the upper part of Fig. 4.

The route-recognition module converts the sequences of
CBSIDs into the vehicle’s driving route. It includes two key
modules: the fingerprint matching module and the trajectory
mapping module. The former module transfers the sequence
of CBSIDs into a sequence of anchors, i.e., toll stations
and intersections on roads; the latter module then converts
these anchors into a complete route on the road network.
The fingerprint matching module requires a pre-constructed
radiomap to find matching anchors; and the trajectory mapping
module needs the information of road networks. Hence, an
offline war-driving is also required to build the radiomap and
updates the road network database. Detailed descriptions of
the two modules are given in subsections C and D.
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Fig. 4. The architecture of the highway driving-route-recognition sys-
tem.

C. Fingerprint Matching

Fig. 5 shows the workflow of the fingerprint matching
module. First, an offline war-driving is conducted to collect
CBSIDs along highways. The spatial unit refers to the loca-
tion range of the vehicle, within which several CBSIDs are
recorded. Then, the radiomap connects each spatial unit with
a set of CBSIDs. Lastly, given a CBSID, the location of the
vehicle can be inferred from the radiomap. For example, when
the vehicle moves in the range of spatial unit 1, it receives
CBSIDs 1 and 2. So, with CBSID 2 the possible locations of
the vehicle should be spatial units 1 and 2 according to the
radiomap.

spatial unit 2spatial unit 1 spatial unit 3

CBSID 1CBSID 1 CBSID 2CBSID 2 CBSID 3CBSID 3 CBSID 4CBSID 4

Offline 
war-driving

Radiomap

Fingerprint
matching

spatial unit 1 CBSID 1CBSID 1

CBSID 2CBSID 2 spatial units 1 & 2

build

infer from

spatial unit 2

spatial unit 3

CBSID 2CBSID 2

CBSID 3CBSID 3

CBSID 4CBSID 4

Fig. 5. Workflow of the fingerprint matching module.

1) Offline war-driving: Fig. 6 shows how CBS fingerprints
are collected in offline war-driving. The vehicle moves along
the highway and collects data samples at short intervals
(five second). Each data sample is composed of the time of
sampling, GNSS coordinate of the vehicle, and CBSIDs of
one register CBS and at most six neighboring CBSs. Sampling
point, such as P1, refers to the location of the vehicle when it

records a data sample, and the GNSS coordinate is assumed
precise enough to represent the sampling point. Anchors are
toll stations and intersections on the highway, and they are
manually recorded.

Neighbor 
CBSIDs

Register 
CBSID

01

02

03

04

05

06

07

01

02

03

04

05

06

07

01

02

03

04

05

06

07

01

02

03

04

05

08

09

01

02

03

04

05

08

09

01

02

03

04

05

08

09

02

03

04

05

08

09

-

02

03

04

05

08

09

-

02

03

04

05

08

09

-

04

02

03

08

09

10

11

04

02

03

08

09

10

11

04

02

03

08

09

10

11

04

08

09

10

11

12

-

04

08

09

10

11

12

-

04

08

09

10

11

12

-

08

09

10

11

12

-

-

08

09

10

11

12

-

-

08

09

10

11

12

-

-

(Lat,  Lon) (Lat,  Lon)(Lat,  Lon)(Lat,  Lon) (Lat,  Lon) (Lat,  Lon)

LBCLAB

Anchor A Anchor B Anchor C
P1 P2 P3 P4 P5 P6

Fig. 6. Example of data samples and the illustration of fingerprint clus-
tering, taking anchors as the clustering kernel. Black dots represent the
sampling points of CBS fingerprints (The input is the CBSID information
received at the sample point and sample location Pi. The output is the
CBSID-anchor radiomap which is the correspondence between CBSID
and anchor, one CBSID may correspond to zero, one or more anchors.
The detailed radiomap construction process is summarized as Algorithm
1).

2) Spatial unit: Figure 7 illustrates three types of radiomaps
in which the spatial units are coordinates, grids, and road
segments, respectively. The figure also shows the workflow
of fingerprint matching corresponding to the three radiomaps.

CBSID

Coordinate

Grid(s)

Road 
Segment(s)

Coordinate(s)

Grid(s)

Road 
Segment(s)

clustering

CBSID

CBSID

CBSID

Irregular and/or larger grid

Input Radiomap OutputInput Radiomap Output

Fig. 7. Three types of radiomap and the workflow of CBSID fingerprint
matching (The granularity of road segment positioning is the coarsest,
but in the context of Hubei province’s total highway mileage of nearly
8,000 km, it is more appropriate to choose road segments as the spatial
unit. It avoids the complicated step of mapping communication base
stations to roads and is computationally efficient, as a CBSID is often
matched to only a few anchors, which improves the efficiency of the next
trajectory reconstruction. In fact, there are nearly 10,000 communication
base stations in our study area in total, while there are only hundreds of
anchors).

The coordinate-based radiomap converts fingerprints into
precise coordinates, so it has the smallest localization gran-
ularity. The CBSID-grid radiomap divides the area of interest
into regular grids and connect these grids with CBSIDs.
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We treat the CBSID-road segment radiomap as a special
type of CBSID-grid radiomap because road segments can be
seen as grids on the road with irregular (and often longer)
lengths. Notwithstanding the coarse granularity of localization,
choosing road segment as the spatial unit is more appropriate
in the context of highway application. The reason is twofold.
On the one hand, the coordinates and grids are not necessarily
on the road, requiring additional work to ”drag” them to the
road network; whereas the road segment-based method can
directly map the CBS fingerprint to the road network. On the
other hand, only the CBSID is used in fingerprint matching
and RSS information is not considered, so, given a single
CBSID, there may be a large number of matching coordinates
or grids, but only a few road segments. Discriminating the
right ones from several road segments is easier than from tens
of or hundreds of grids or coordinates.

Moreover, we notice that there are some unique driving
patterns on highways. Restricted by traffic rules, vehicles
usually go straight along the highway, and actions such as
entering and exiting the highway, taking U-turns, as well as
transiting between two roads are only permitted at specific
sites like toll stations and intersections (anchors) [54]. These
actions are vital hints for the inference of the actual driving
route. In addition, anchors naturally divided highways into
road segments, and it is easier to build topological rela-
tionships between points than lines, hence converting road
segments into anchors can lower the complexity of computing.
In consideration of the above reasons, we choose anchors on
highways as kernels to cluster sampling points and generate
irregular road segments. Taking anchors as the final fingerprint
matching unit helps capture critical driving actions and hence
improve trajectory mapping accuracy.

3) Construction of the CBSID-anchor radiomap: We use the
spatial proximity and the signal coverage of CBSs to determine
the affiliation of sampling points to anchors. For example, in
Fig. 6, sampling point P1 is closer to anchor A than anchor B,
but the distance between anchors A and B is so near that they
most likely sit in the signal coverage of the same CBSs. Thus,
it is reasonable to affiliate P1 to both of the anchors, so is the
CBSID collected at P1. In another case, if the distance between
anchors, like B and C, is fairly large, the spatial proximity is
mainly considered and the sampling points are assigned to the
closer anchor. As shown in Fig. 6, sampling points P4, P5, and
P6 that fall in the green block are all affiliated to anchor C.
The width of the green block is set to be λLBC , in which the
parameter λ determines the range of coverage of an anchor.
If λ > 0.5, there will be an overlapping and sampling points
are simultaneously assigned to both anchors.

We set the parameter threshold to discriminate cases AB
and BC. The value of threshold is set to be the statistical
maximum coverage of CBSs on the highway. It can be seen
in Fig. 6 that the register CBS and the neighboring CBSs vary
with the sampling point. For instance, CBS 04 serves as the
neighboring station at sampling points P1, P2, and P3; then,
serves as the register station at P4 and P5; finally, it is replaced
by CBS 08 at P6 and disappears from the list. The coverage of
a CBS on the highway is set to the accumulation of Euclidean
distance between sampling points. The coverage of CBS 04,

for example, is the accumulated Euclidean distance between
P1, P2, P3, P4, and P5, since both register and neighboring
stations are counted to populate the radiomap.

The detailed radiomap construction process is summarized
as Algorithm 1.

Algorithm 1: CBSID-anchor radiomap construction
Input: the sequence of anchors:

A = (A1, A2, . . . , An);
the sequence of sampling points:
P = (P1, P2, . . . , Pm);
the sequence of CBSIDs of register CBSs:
C = (C1, C2, . . . , Cm);
the Euclidean distance between two points:
L(a, b);
the statistical maximum coverage of CBSs:
threshold;
the ratio of anchor coverage: λ.

Output: affiliation of CBSID to anchors.
1 clustering of sampling points, taking anchors as the

clustering kernel:
2 for i← 1 to n do
3 Find the sampling points P1, P2, . . . , Pk between

Ai and Ai+1;
4 if L(Ai, Ai+1) ≤ threshold then
5 affiliate C1, C2, . . . , Ck to both Ai and Ai+1;
6 else
7 for j ← 1 to k do
8 if L(Ai, Pj) ≤ λ (Ai, Ai+1) then
9 affiliate Cj to Ai

10 end
11 if L(Ai+1, Pj) ≤ λ L(Ai, Ai+1) then
12 affiliate Cj to Ai+1

13 end
14 end
15 end
16 end

4) Fingerprint matching with the radiomap: It is time-
consuming to traverse the whole radiomap for each CBSID
of the fingerprint sequence. Supposing there are M anchors
and N CBSIDs in the radiomap, the complexity of traversing
the whole CBSID-anchor radiomap would be O(MN). It is
observed that a CBSID includes a Location Area Code (LAC)
and a Cell Identity (CID), and a single LAC may be shared by
many CBSs. Therefore, searching the LAC first can narrow the
targets. We put forward a two-step searching strategy that, for
each CBSID, a LAC-anchor database is first searched then the
anchor-CID database. For example, for CBSID 2872117361,
the LAC is 28721, and the CID 17361. The LAC is firstly
compared with the LAC-anchor radiomap, which outputs
several anchors, such as anchors A and B. Then, we just need
to compare CID with the anchors A and B in the anchor-
CID database. Given N1 LACs and N2 CIDs, the complexity
of the searching algorithm would be O (M (N1 +N2)) .
N = N1N2, N1 +N2 ≪ N . The two-step searching strategy
makes it possible to quickly match candidate anchors for the
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next step of trajectory mapping.

D. Trajectory Mapping
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Fig. 8. Illustration of fingerprint matching results.

Fig. 8 depicts the results of fingerprint matching. All
anchors are renumbered along the highways in the direction
from north to south and from east to west. Given the sequence
of CBSIDs: {CBSID1, CBSID2, CBSID3, CBSID4, CBSID5,
CBSID6}, the output of the fingerprint matching module is:
{{A1, A2}, {A2}, {A3, A6}, {A6, A7}, {A8}, {A9}}. The
aim of trajectory mapping is to convert the sequence of
candidate anchors to a continuous trajectory. A rule-based
trajectory mapping algorithm is put forward to filter and
sequence these candidates. There are four main steps for this
algorithm: 1) weighting; 2) concatenation; 3) filtering; and 4)
generation of the complete driving route.

1) Weighting of the anchors: Fig. 9 illustrates how anchors
are weighted. Anchors are categorized into three types, and
each type is given a different weight. Entering and exiting
anchors (A1 and A9) are given the highest weight (e.g., 10),
as they are explicitly written into the record. If a CBSID is
associated with only one anchor (such as A2, A8, and A9),
the anchor is also given a high weight (e.g., 5) because of the
high possibility of the vehicle’s coming close to the anchor. If
the anchor is an intersection, such as A2, it also gets a high
weight as it marks the transition between roads. Other anchors
that do not belong to the above types are given a low weight
(e.g., A3, A6, and A7).

2) Concatenation of weighted anchors: Fig. 9 also depicts
the concatenation of weighted anchors. For each candidate
anchor, if there is no identical record in the previous sequence
of anchors, it is directly affiliated to the end of the sequence.
Otherwise, the anchor’s weight is added to its identical record.
For instance, A2 is in the lists of the candidate anchors of both
CBSID 1 and CBSID 2, and the weight of A2 is accumulated
accordingly. The output trajectory of this step is {A1, A2, A3,
A6, A7, A8, A9}.

3) Filtering: A high-pass filtering is used to filter out low-
weight candidates. Although this may result in mistakenly
discarding the correct anchors (for example, A7 in Fig. 9),
the strategy avoids more severe interference of noise caused

CBSID 1

CBSID 2

CBSID 3

CBSID 4

A1
10
A1
10

A1
10
A1
10

A6
1

A6
1

A7
1

A7
1

A6
2

A6
2

A7
1

A7
1

A9
10
A9
10

A8
5

A8
5

A8
5

A8
5

A8
5

A8
5

A2
10
A2
10
A2
10

CBSID 5

A2
5

A2
5

CBSID 6

Concatenation A3
1

A3
1

A2
5

A2
5

A3
1

A3
1

A6
1

A6
1

A9
10
A9
10
A9
10

Fig. 9. Weighting and concatenation of candidate anchors.

by incorrectly matched anchors. It is believed that these high-
weight anchors are more likely to match the real route (Eq.
(2) is the weighting rule for anchor in different cases). The
output route is generated with these high-weighted anchors:
{A1, A2, A6, A8, A9}.

Anchor Weight =


10 caseA

5 caseB and caseC

1 other

(2)

CaseA means that anchor is the entrance or exit,which is
absolutely certain. CaseB indicates that only one anchor is re-
trieved for the operating vehicle, and the relationship between
CBSID and anchor is relatively determined at this time. CaseC
indicates that the anchor is a highway intersection, which
is also critical for trajectory reconstruction, so it is given a
medium weight.

4) Extracting complete driving route between high-weighted
anchors from the road network: The sequence of CBSIDs can
be fairly sparse due to a low sampling rate. As a consequence,
some anchors cannot be detected. For example, in Fig. 10,
only CBSIDs 1 and 2 are collected. The fingerprint matching
module only outputs anchors A and C, and the path generated
is A→C, whereas the actual driving route is A→B→C or
A→D→C. The algorithm cannot distinguish such paths due to
the limited hints. In this case, the shortest path is calculated
between the two anchors using the Dijkstra algorithm [55]
based on the road network. The principle is summarized as
Algorithm 2. In this way, the complete trajectory of the driving
route is obtained: {A1, A2, A6, A7, A8, A9}.

Anchor A

Anchor BCBSID 1 CBSID 2

Anchor D Anchor C

Fig. 10. Example of concatenating sequences of toll stations.
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Algorithm 2: Complete driving route generation
Input: Road Network;

the sequence of the concatenated
anchors:A = (A1, A2, . . . , An).

Output: detailed driving route.
1 for i← 1 to n do
2 if Ai and Ai+1 are not on the same road then
3 search and add anchors between Ai and Ai+1;
4 else
5 Dijkstra(Ai,Ai+1);

Search and add anchors between Ai and Ai+1

by the shortest path.
6 end
7 end

IV. CASE STUDY

The study area is Hubei province, China. Its capital city,
Wuhan, is known as the “thoroughfare leading to nine
provinces”. The highway network inside Hubei is also well
developed.

A. Offline War-Driving

We traversed all major highways in Hubei for CBS fin-
gerprints collection to construct the CBSID-anchor radiomap.
During the war-driving, the car was driven at an average speed
of 100 km/h. In the car, four mobile phones (MI-ONE C1, MI
2C, MI 1S, and SAMSUNG GT-i9100) were carried to record
CBS signals and GNSS coordinates at an average interval of 5
s. GNSS coordinates, as explained in Section III, serve as the
sampling points in fingerprint clustering. The anchors along
highways were manually recorded. Following this procedure,
332,510 pieces of data samples were collected, containing
487 anchors and 12,714 CBSs in total. The distribution of
highways is shown in Fig. 11. There are no anchors on some
highways because these highways were under construction in
that period.

B. Parameter Setting

The CBS coverage is the coverage of each base station,
expressed as the longest distance L that was continuously
collected at the time of sampling (the vehicle constructing
the offline map will lose track of the previous base station
only when it travels more than L in the highway, i.e., it does
not receive its signal). For example, in the Figure 6 for base
station 04 (CBS 04), its maximum coverage is the distance
from the sampling point P1 to P5 (LP1−LP5). The statistical
results (Fig. 12) show that 96.3% of the base stations have a
coverage range within 11,403m. Therefore, in Algorithm 1 we
set the threshold parameter to 11,403, and when the distance
between two toll stations is within 11,403m, we associate the
base station (CBS) with both toll stations (anchor); otherwise,
we associate the base station (CBS) only with the closer toll
station (anchor), and not with the more distant one at the same
time (as shown in Figure 6).

C. Radiomap Construction

The CBSID-anchor radiomap was constructed according to
Algorithm 1. Fig. 12 depicts the result of radiomap construc-
tion. The black circles represent anchors, and the colored
circles illustrate the pseudo-locations of CBSs, which are
the average of all the GNSS coordinates of related sampling
points. The CBSs with smaller LAC are painted in green, the
larger in red. Within a similar color range, there are generally
1–3 anchors, which indicate that, by searching the LAC-anchor
database first, the target anchors can be quickly locked.

D. Experiment and Evaluation

1) Evaluation metrics: The commonly used evaluation met-
rics, precision and recall, were adopted to evaluate the perfor-
mance of the map matching algorithm [48], [49] . As shown
in Fig. 13, given the ground truth route G, output route O, and
the correctly matched part M, precision is defined as the ratio
between M and O, and recall as the ratio between M and G.

2) Test datasets: Both simulated routes and field routes
were tested in the experiment. The simulated routes were
generated from data samples collected during war-driving.
As described above, for each route during the war-driving,
the operator recorded all the anchors along the route while
collecting CBS signals every 5 second. Hence, the ground
truths can be represented by the explicitly recorded sequences
of anchors. CBS fingerprints were resampled at intervals of 30
second, 1 min, 5 min, 10 min, 15 min, and 20 min. In this way,
the dataset of routes was obtained, consisting of 197 ground
truth routes (sequences of anchors) and simulated sequences of
CBSIDs (sampled at different time intervals). The field dataset
includes three routes located in the central area of Wuhan
where anchors are densely distributed. The ground truths are
also made up of manually recorded sequences of anchors.
Signal fingerprints are CBSIDs collected at an interval of 15
min.

3) Results: Fig. 14 shows the ratio of accurately recognized
routes at different sampling time intervals. Apparently, the
ratio slightly decreases as the sampling interval of CBSIDs
increases. Within the interval of 5 min, the algorithm can
accurately recover 99% of the 197 routes. It then takes a
decreasing trend and drops to 93.4% at the sampling interval
of 20 min.

There are thirteen mismatched routes for the dataset of the
20-minute sampling interval. And the mismatched parts of
these routes cover the cases of route mismatching for datasets
sampled at other intervals. The detailed information of the
mismatched parts of routes are given in Fig. 15 and Table I.

TABLE I
MISMATCHED PART OF ROUTES

Area Ground truth Output route

A 367-170-169 367-368-169
B 361-L2-363-364-L1-228 361-L2-L1-228

C 129-L4-137-L5-128 129-L5-128
136-L5-L3-L4-55 136-L5-137-L4-55

D 268-292-293-294-263-15-14 268-16-15-14
264-15-263-294-293-292-268 264-15-16-268
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Fig. 11. Distribution of anchors and pseudo-localization of CBSs colored by LAC.

Fig. 12. Statistical result of the CBS coverage ranges on highways and
the distances between anchors.

Correctly matched part (M)

Output Route (O)

Ground truth (G)

Fig. 13. Definition of precision M/O and recall M/G.

For all sampling intervals, two routes were not accurately
recognized, the mismatched parts of which are the same and
distributed in area A. The ground truth route is 367-170-169,
whereas the output route is 367-368-169. These two routes are
less than 1 km apart. When the sampling interval increases to

10 min, we get three more mismatched routes. One of them
is located in area B, and the other two are distributed in area
C. The algorithm tends to output the shorter path in these two
areas. This is due to the fact that no CBSID is collected in the
area because of the sparse sampling interval, and the algorithm
has to calculate the shortest path. The same mismatches take
place in area C as the sampling interval rises to 15 min. Area
D is larger than the above-discussed three areas. When the
sampling interval reaches 20 min, mismatches begin to take
place in this area.

Fig. 14. Testing result of simulated routes. Horizontal axis represents
sampling time interval.

The distribution of three field routes is shown in Fig. 16.
Route 1 starts and ends at toll station 16, taking a U-turn at
toll station 5. A repeat trial was conducted to evaluate the ro-
bustness for each route. In total, six routes were examined. All
routes consist of repeated sections generated by deliberately
taking U-turns. Experiment results are presented in Table II.
The formula for the criterion (P,R) to measure the quality of
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Fig. 15. Distribution of the error areas.

Fig. 16. Distribution of field routes (In order to test the robustness of the algorithm and its ability to recognize off-ramps, we conducted tests in
which the vehicles were driven on special trajectories whenever possible. Our method can accurately reconstruct most of the driving trajectories,
but there is also an error road as marked in the lower right corner).
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the calculation is shown in Equation 3 and Equation 4.

Precision =
True Positive

True Positive+ Fasle Positive
(3)

Recall =
True Positive

True Positive+ Fasle Negative
(4)

TABLE II
TESTING RESULTS OF FIELD ROUTES

Route Length (km) Number of CBSIDs Result
G O M Received Valid P R

1 379.8 410.6 379.8 29 25 0.92 1
379.8 410.6 379.8 29 25 0.92 1

2 370.4 370.4 370.4 31 26 1 1
370.4 370.4 370.4 32 28 1 1

3 249.1 249.1 249.1 15 13 1 1
249.1 249.1 249.1 15 12 1 1

As shown in Table II, the number of valid CBSIDs is less
than that of received CBSIDs, indicating that, in practice, some
CBSIDs cannot find matches due to incomplete radiomap.
With the limited number of available CBSIDs, routes 2 and
3 are recognized with an accuracy of 100%. The average
precision is 0.97. Routes were deliberately twisted by taking
U-turns, such as the route between toll station 88 and 12,
whereas the algorithm does not fall into the trap and still
successfully recognizes all these small twists.

The mismatched part of route 1 is located between toll
station 5 and the starred intersection (Fig. 16). This is due
to the fact that the collected CBSID actually covers these
two anchors, and the intersection is highly weighted in the
trajectory mapping process. In practice, drivers are not likely
take repeated routes like Route 1, and thus such a mistake is
rare.

We compare our algorithm with the traditional Dijkstra
algorithm and list the advantages of our algorithm in the
following two common cases (as shown in Figure 17). In the
CaseA, Dijkstra algorithm incorrectly divides the benefits that
originally belong to Highway A to the investors of Highway
B. In the CaseB, the Dijkstra algorithm fails to recognize the
U-shaped trajectory of the vehicle, resulting in a reduction
in the revenue that would otherwise belong to the highway
investor.

Our method could effectively solve the above two common
cases, while the traditional Dijkstra algorithm does not ac-
curately restore the trajectory of vehicle operation, even in
the worst case (no base station signal is received and two
highways are densely adjacent), our method is no worse than
the traditional Dijkstra method.

V. CONCLUSIONS
In this paper, a CBS fingerprint-based method was proposed

for vehicle route recognition on the highway. The method
generates a vehicle’s driving route by 1) periodically col-
lecting the CBSIDs of register CBSs along the highway; 2)
converting the sequence of CBSIDs to the real route through
fingerprint matching and trajectory mapping. Experiments

were conducted on both simulated and field routes. In the
experiment on 197 simulated routes, CBSIDs were collected
at the intervals of 5 s, 0.5 min, 1 min, 5 min, 10 min, 15 min,
and 20 min, and the percentages of accurately matched map
routes were 99%, 99%, 99%, 99%, 97.5%, 96.4%, and 93.4%,
respectively, showing strong robustness against temporal and
spatial sparseness of fingerprints. In the experiment on three
field routes, CBSIDs were collected every 15 min, and routes
were deliberately twisted by taking U-turns. The algorithm
still accurately recognized two of the routes, and the precision
and recall of the other route were 0.92 and 1, respectively.
Experimental results show that the algorithm can accurately
recover the vehicle’s route from a sparse and noisy CBS
fingerprint sequence.

The strengths of this present work are as follows.
After carefully examining the features of available local-

ization methods, i.e., GNSS, RFID, LPR, and vision, motion,
and signal fingerprints, we concluded that the proposed CBS
fingerprint-based method is most appropriate for tracking a
vehicle’s route on the highway, in consideration of its low en-
ergy consumption, free infrastructure installation, less latency
time, and general availability. The method has been adopted
by the Transportation Bureau of Hubei Province and has been
applied in the local toll collection system.

The proposed method is simple and efficient. It requires
only the CBSIDs of register CBSs, which permits its wider
range of applications in digital devices since the availability
of CBS information is sometimes limited. Vehicles’ special
mobility patterns on the highway are also used in developing
the route recognition method. The method spares the effort
of converting fingerprints into coordinates and improves the
fingerprint matching accuracy by the incorporation of spatial
constraints.

There are also some limitations to this present work. One
such limitation is that the route recognition method cannot
distinguish multiple paths in small areas like the case shown
in Fig. 15. In such cases, the shortest path that the driver may
prefer in practice is computed. Further testing of the algorithm
on smaller areas and addressing the issue are being considered.

The other limitation concerns the radiomap construction.
The offline war-driving is time-consuming, and it is not easy
to update the constructed radiomap in real time (The study
area includes 332,510 pieces of data samples, 487 anchors and
12,714 CBSs in total). Therefore, building a more effective
radiomap needs to be suggested further. Electronic cards are
currently being distributed to drivers to only collect CBSIDs.
Later, transplanting it onto smartphones to collect RSS as well
as other auxiliary information is being considered, encouraging
users to help populate the radiomap in real time [56].
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