{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "The Restricted Boltzmann Machine (RBM) is a pairwise Markov random field with a bipartite graph structure consisting of observed variables $v_i$, $i=1,...,V$, and hidden variables $h_j$, $j=1,...,H$. Here I consider the most common type of RMB with binary units (i.e., discrete random variables taking values in $\\{0, 1\\}$). The joint distribution is\n", "$$\n", "p(h, v) = \\frac{1}{Z} \\exp \\{ b^T v + c^T h + v^T W h \\}\n", "$$\n", "Clearly this specifies an exponential family distribution with sufficient statistics functions $v_i$, $h_j$, and $v_i h_j$, and corresponding natural parameters $b_i$, $c_j$, $W_{ij}$, for $i=1,...,V$ and $j=1,...,H$.\n", "\n", "See http://www.deeplearningbook.org/contents/generative_models.html for a more detailed description of RBMs, including equations like conditional distributions $p_\\theta(h|v)$ used in code. Also see Joshua Bengio's [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf) for a comprehensive treatment." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I use $\\tilde p$ to denote the unnormalized probability measure associated with a model, i.e., $p(x) = \\tilde p(x) / Z$ where $Z$ is the partition function. In the case of an exponential family model, we can use natural parameterization to write $\\tilde p(x) = \\exp \\{ \\langle \\theta, \\phi(x) \\rangle \\}$. The deep learning community seems to prefer using the energy function from physics: $E(x) = - \\log \\tilde p(x)$, so $p(x) = e^{-E(x)}/Z$. In an exponential family, we then have $E(x) = - \\langle \\theta, \\phi(x) \\rangle$; specifically for the RBM considered here, $E(h, v) = - b^T v - c^T h - v^T W h$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Suppose we observe $N$ samples $v^{(1)}, ...,v^{(N)}$, and want to learn a model of $p(v)$. \n", "The (average) incomplete log-likelihood of $N$ samples is\n", "$$\n", "\\ell(\\theta) = \\frac{1}{N} \\sum_n \\log p_\\theta(v^{(n)}) = \\frac{1}{N} \\sum_n \\log \\tilde p_\\theta(v^{(n)}) - \\log Z\n", "$$\n", "which takes the form of a difference between log partition functions. \n", "\n", "The gradient is then\n", "$$\n", "\\nabla_\\theta \\ell(\\theta) = \\frac{1}{N} \\sum_n \\nabla_\\theta \\log \\tilde p_\\theta(v^{(n)}) - \\nabla_\\theta \\log Z\n", "$$\n", "\n", "For a generic model $p(x)$, it's not hard to show $\\nabla_\\theta \\log Z = \\mathbb{E}_{p_\\theta(x)}[\\nabla_\\theta \\log \\tilde p(x)]$.\n", "For exponential families, we further have $\\nabla_\\theta \\log \\tilde p(x) = \\phi(x)$ so $\\nabla_\\theta \\log Z=\\mathbb{E}_{p_\\theta(x)}[\\phi(x)]$. We can thus further simplify the gradient of $\\ell$:\n", "$$\n", "\\frac{\\partial \\ell }{\\partial \\theta_i} = \\frac{1}{N} \\sum_n \\mathbb{E}_{p_\\theta(h|v^{(n)})}[\\phi_i] - \\mathbb{E}_{p_\\theta(h, v)}[\\phi_i]\n", "$$\n", "\n", "This shows that in general, to compute the gradient of the incomplete log-likelihood, we need to run inference $N+1$ times; the first $N$ times with evidence to compute the first term for every data instance, and once in the joint model $p_\\theta(h, v)$. Recall each conditional inference $p_\\theta(h|v^{(n)})$ occurs in the reduced Markov network over $h$ only, which is easier than in the joint model $p_\\theta(h, v)$. Indeed, in the case of RBM, the bipartite graph structure allows computing $p_\\theta(h|v)$ in closed-form in linear time (the reduced Markov network underlying $p_\\theta(h|v)$ simply consists of disconnected nodes $h_j, j=1,...,H$); the same applies to $p(v|h)$ by symmetry.\n", "\n", "We have\n", "\n", "\\begin{align*}\n", "\\frac{\\partial \\ell }{\\partial b_i} &= \\frac{1}{N} \\sum_n \\mathbb{E}_{p_\\theta(h|v^{(n)})}[v_i^{(n)}] - \\mathbb{E}_{p_\\theta(h, v)}[v_i] = \\frac{1}{N} \\sum_n v_i^{(n)} -p_\\theta(v_i=1) \\\\\n", "\\frac{\\partial \\ell }{\\partial c_j} &= \\frac{1}{N} \\sum_n \\mathbb{E}_{p_\\theta(h|v^{(n)})}[h_j] - \\mathbb{E}_{p_\\theta(h, v)}[h_j] = \\frac{1}{N} \\sum_n p(h_j| v^{(n)}) -p_\\theta(h_j=1) \\\\\n", "\\frac{\\partial \\ell }{\\partial W_{ij}} &= \\frac{1}{N} \\sum_n \\mathbb{E}_{p_\\theta(h|v^{(n)})}[v_i h_j] - \\mathbb{E}_{p_\\theta(h, v)}[v_i h_j] = \\frac{1}{N} \\sum_n v_i^{(n)} p_\\theta(h_j=1| v^{(n)}) -p_\\theta(v_i=1, h_j=1)\n", "\\end{align*}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Unfortunately however, the second terms (expectations w.r.t. $p(h,v)$) in the gradient are generally not tractable to compute exactly, due to the need to compute $Z$. One idea is to use Monte Carlo methods to approximate them, prominently featured in the Contrastive Divergence algorithm. Even though (block) Gibbs sampling is efficient in RBM, running it to convergence every gradient iteration is still expensive. Therefore, in $k$-step Contrastive Divergence (CD-$k$), we simply run MCMC $k$ steps, starting from some observed sample. This is Algorithm 18.2 in the Deep Learning book: for every gradient iteration, we sample a minibatch $h^{(1)}, ...,h^{(N)}$ from data, and run $N$ MCMC chains for $k$ steps independently, with the $n$th chain initialized at the $n$th sample $h^{(n)}$. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below I demonstrate learning an RBM over MNIST images by maximizing the (incomplete) log-likelihood with SGD, using $k$-step Constrastive Divergence for gradient approximation. Note [np.random.binomial(n=1, p=probs)]( https://stackoverflow.com/questions/36398445/numpy-draw-a-few-bernoulli-distributions-at-once) can be used to efficiently draw multiple Bernoulli samples at once." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", "from scipy.special import expit # logistic sigmoid\n", "import numpy as np\n", "\n", "\n", "\n", "def p_h_given_v(v, c, W):\n", " \"\"\"\n", " Compute p(h_j=1|v), for a vector h\n", " :param c:\n", " :param v:\n", " :param W:\n", " :return:\n", " \"\"\"\n", " return expit(c + np.dot(v, W))\n", "\n", "\n", "def p_v_given_h(h, b, W):\n", " \"\"\"\n", " Compute p(v_i=1|h), for a vector v\n", " :param b:\n", " :param h:\n", " :param W:\n", " :return:\n", " \"\"\"\n", " return expit(b + np.dot(W, h))\n", "\n", "\n", "def sample_h_given_v(c, v, W):\n", " \"\"\"\n", " Sample h from p(h|v)\n", " :param c:\n", " :param v:\n", " :param W:\n", " :return:\n", " \"\"\"\n", " return np.random.binomial(n=1, p=p_h_given_v(v, c, W))\n", "\n", "\n", "def sample_v_given_h(b, h, W):\n", " \"\"\"\n", " Sample v from p(v|h)\n", " :param b:\n", " :param h:\n", " :param W:\n", " :return:\n", " \"\"\"\n", " return np.random.binomial(n=1, p=p_v_given_h(h, b, W))\n", "\n", "\n", "def gibbs_k(v0, k, b, c, W):\n", " \"\"\"\n", " Run Gibbs sampling for k iterations; only the last joint sample (v, h) is returned for CD-k.\n", " :param v0: initial observed variables\n", " :param k: gibbs steps; must > 0\n", " :param b:\n", " :param h:\n", " :param W:\n", " :return:\n", " \"\"\"\n", " v = v0\n", " for t in range(k):\n", " h = sample_h_given_v(c, v, W)\n", " v = sample_v_given_h(b, h, W)\n", " return v, h\n", "\n", "\n", "def reconstruct(v0, b, c, W):\n", " \"\"\"\n", " Given v0, sample a h and use it to reconstruct a v = E[h|v] = p(h|v)\n", " :param v0:\n", " :param k:\n", " :param b:\n", " :param c:\n", " :param W:\n", " :return:\n", " \"\"\"\n", " h = sample_h_given_v(c, v0, W)\n", " return p_v_given_h(h, b, W)\n", "\n", "\n", "def suff_stats(data, c, W):\n", " \"\"\"\n", " Compute the positive-phase sufficient stats (first term of the log-likelihood gradient) when given a\n", " batch of observations.\n", " :param data:\n", " :param b:\n", " :param c:\n", " :param W:\n", " :return:\n", " \"\"\"\n", " N = len(data)\n", " H = c.size\n", " v_s = np.mean(data, axis=0)\n", " p_h_s = np.empty([N, H])\n", " for n, d in enumerate(data):\n", " p_h_s[n] = p_h_given_v(d, c, W)\n", "\n", " h_s = np.mean(p_h_s, axis=0)\n", " W_s = np.dot(data.T, p_h_s) / N # V by N times N by H\n", " return v_s, h_s, W_s\n", "\n", "\n", "def init_params(V, H, data=None):\n", " \"\"\"\n", " Initialize params of the binary RBM; advice from http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf\n", " :param V: dimension of observed vars\n", " :param H: dimension of hidden vars\n", " :return: (b, c, W)\n", " \"\"\"\n", " if data is not None:\n", " p_marg = np.mean(data, axis=0) # marginal distributions of each \\hat p(x_i)\n", " p_marg[p_marg < 0.001] = 0.001 # avoid zeros\n", " b = np.log(p_marg) - np.log(1 - p_marg)\n", " else:\n", " b = np.zeros(V)\n", " c = np.zeros(H)\n", " W = np.random.normal(scale=0.01, size=[V, H])\n", " return b, c, W\n", "\n", "\n", "def load_data(n_samples):\n", " \"\"\"\n", " Get a n_samples by V array of binary samples\n", " :param n_samples:\n", " :return:\n", " \"\"\"\n", " mnist = np.load('data/mnist.npz')\n", " data = mnist['x_train']\n", " data = data[:n_samples]\n", " data = data.reshape([n_samples, 28 * 28])\n", "\n", " # binarize\n", " data[data < 128] = 0\n", " data[data >= 128] = 1\n", " return data\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "n_samples = 10000 # use the first 10000 images of training data\n", "data = load_data(n_samples)\n", "n_samples, V = data.shape\n", "assert V == 784\n", "\n", "H = 500 # number of hidden units" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "b, c, W = init_params(V, H, data)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEgdJREFUeJzt3XtslXWaB/Dvg+VWKvdL5eZwUVZJCNRI2LBBJrqgmyHg\nRFhgYmBIYDTgQowGJSEY+cORqAkGJ0SngwxeBhd0NWhGBo2ZMBt2yAoqC1KMi5ThJstFWq6lz/7R\nQ0Wm53lq33N5y/P9JIRyvrw9v3N6nr49fd7f7yeqCiKKpU2xB0BEhcfCJwqIhU8UEAufKCAWPlFA\nLHyigBIVvojcKyJfikiViCzO1aCIKL+kpX18EWkDoArA3QAOAdgOYLqqfnnN/+OFAkRFoqrS1O1J\nzvijAexT1W9U9RKAPwCYnODzEVGBJCn8fgCqr/r3wcxtRJRy/OUeUUBJCv9vAAZe9e/+mduIKOWS\nFP52AENF5GYRaQdgOoD3cjMsIsqnkpYeqKqXRWQBgM1o+AZSqap7cjYyIsqbFrfzmn0HbOcRFU0+\n2nlE1Eqx8IkCYuETBcTCJwqIhU8UEAufKCAWPlFALHyigFp85R61DiJNXr+Rs+OtvE0b+7ziXTx2\n+fJlM/dwz4jseMYnCoiFTxQQC58oIBY+UUAsfKKAWPhEAbGdV2RJ2mWA3zLz8pIS+yVw9uxZM+/a\ntWuLP/elS5fMvK6uLtHxXjuwvr7ezK/ndiDP+EQBsfCJAmLhEwXEwicKiIVPFBALnyggFj5RQOzj\nJ5S0z+71utu3b5/o+FOnTpn5gAEDzLx79+5mvmPHjqzZnXfeaR57/vx5Mz9x4oSZe8+t99hra2vN\n3Ovze9cJpPk6AJ7xiQJi4RMFxMInCoiFTxQQC58oIBY+UUAsfKKAJEmvUUT2AzgNoB7AJVUd3cT/\nSW8zE8n78G3btjXzdu3ambnXpy8tLTVzaz48AJSXl5t5t27dzPz999838/nz52fNvNeW12fftGmT\nmR87dszMb731VjPfvXu3mXfu3NnMvesQLl68aOaF6POrapMv8KQX8NQDGK+qJxN+HiIqoKQ/6ksO\nPgcRFVjSolUAfxKR7SIyNxcDIqL8S/qj/lhVPSwivdDwDWCPqm7NxcCIKH8SnfFV9XDm728BvAPg\n7365R0Tp0+LCF5FSESnLfNwJwAQAu3I1MCLKnyQ/6vcB8E6mXVcC4HVV3ZybYRFRPrW48FX1fwGM\nzOFY8iLpNtHenOuysjIz79Chg5n37NnTzKuqqszc61V78+29OfOjRo0y806dOmXNli9fbh572223\nmfmHH35o5sePHzfzCRMmmLn32vCuofCu8fDm83v7AuQTW3FEAbHwiQJi4RMFxMInCoiFTxQQC58o\nIBY+UUDh19X31qX3cq+P37FjRzP35nzfddddZj58+HAzX7t2rZmPGTPGzJ9//nkzX7lypZlb3nzz\nTTOfNm2amb/++utmfs8995j52bNnzby6utrML1y4YOY33HCDmSddtz8JnvGJAmLhEwXEwicKiIVP\nFBALnyggFj5RQCx8ooBafR+/2PvTe316r88/dOhQM3/ooYfMvFevXma+YsUKM3/ttdfM/NFHHzXz\nM2fOZM28r82cOXPMfOPGjWbu9bl79+5t5t51BIMHDzZz7/F56+57r8184hmfKCAWPlFALHyigFj4\nRAGx8IkCYuETBcTCJwqo1ffxPV6v1Jsz7fXx6+rqzNxbm33uXHuvUW9d/AceeMDMZ8yYYeZer9mb\nj79gwYKs2cMPP2we+8EHH5h5bW2tmU+aNMnMKyoqzHzcuHFmfvDgQTP31sVv27atmXuvnXziGZ8o\nIBY+UUAsfKKAWPhEAbHwiQJi4RMFxMInCsjt44tIJYCfATiqqiMyt3UDsB7AzQD2A5imqqfzOM4W\nU1Uz99Y293jz+RctWmTmN954o5l7a7dPnjzZzJctW2bmXi966tSpZv75559nzTZv3mweO2TIEDO/\n//77zdy7RsJaKwDwr/G4ePGimSd9bXnH51NzzvhrAEy85rYnAGxR1WEAPgbwZK4HRkT54xa+qm4F\ncPKamycDuLJFy1oAU3I8LiLKo5a+x++tqkcBQFWPALDXOCKiVMnVL/eK92aFiH60lhb+URHpAwAi\nUg7gWO6GRET51tzCl8yfK94DMDvz8SwA7+ZwTESUZ27hi8gbAP4TwK0ickBEfgng1wD+WUT2Arg7\n828iaiXcPr6qzswS2ZuPp4S39rm3R7rXK+7atWuiz++tB+Ct2+/1qqdPn27mNTU1Zu71mq3nd/78\n+eaxW7ZsMfMNGzaYuXcNg9eHr66uNnNvrQLvuSlmn97DK/eIAmLhEwXEwicKiIVPFBALnyggFj5R\nQCx8ooBa/br6SXup3nx4b8723r17zbx79+5mftNNN5n5c889Z+arV68283nz5pn5unXrzNxbG97q\n43/yySfmsd669507dzZzr8+edN177xoLL/euISkmnvGJAmLhEwXEwicKiIVPFBALnyggFj5RQCx8\nooAk33OGRaSok5K9XmuHDh3M3Jtv/9hjj5m516vu0aOHmb/66qtm7n39vPn23nx/b/zWnPdBgwaZ\nxy5dutTMjx2zV3TzHru3v/2wYcPM/Pjx42buzfc/deqUmdfV1Zl5LqhqkxcT8IxPFBALnyggFj5R\nQCx8ooBY+EQBsfCJAmLhEwXU6ufje7xerzcn+7777jPznj17mvm5c+fM/MUXXzRzr89eWVlp5iUl\n9pf46aefNnNvTrt1HcKcOXPMY7/++mszHzVqlJl7awksXLjQzL3Hdvr0aTP3rpHwriEpRB8/G57x\niQJi4RMFxMInCoiFTxQQC58oIBY+UUAsfKKA3D6+iFQC+BmAo6o6InPbMgBzAVyZML1EVf+Yt1Em\n4K2Lf/nyZTPv0qWLmT/++ONm3q5dOzNfv369mXvr8m/dutXMvV63t4e9t17Atm3bsmbefHVvvvtb\nb71l5lOmTDHzIUOGmLl3jYXX5/f68N5rq5iac8ZfA2BiE7e/oKoVmT+pLHoiappb+Kq6FcDJJqL0\nbhNCRKYk7/EXiMhOEfmtiNg/DxNRqrS08H8DYLCqjgRwBMALuRsSEeVbiwpfVb/V72e/vALgztwN\niYjyrbmFL7jqPb2IlF+V/RzArlwOiojyqzntvDcAjAfQQ0QOAFgG4KciMhJAPYD9AH6VxzESUY5d\n9+vqe/PRe/fubebe/vWzZs0yc2+P99tvv93MZ86caebe4+vVq5eZb9y40cy9fQesPeoffPBB81hv\nLYILFy6Y+cmTTTWbvrd8+XIzP3v2rJlXV1eb+ZkzZ8y8trbWzL3rBHKB6+oTUSMWPlFALHyigFj4\nRAGx8IkCYuETBcTCJwqo1ffxRexJgt58+G7dupm5Nx++rKzMzAcOHGjm3pz1jz76yMwXL15s5gcO\nHDBzb1+ANWvWmPmSJUuyZrNnzzaPHTt2rJl769Lv27fPzMePH2/mVVVVZm5dowAk7+N78/VzUZvs\n4xNRIxY+UUAsfKKAWPhEAbHwiQJi4RMFxMInCih8H79v375m7vXBx4wZY+ZeL9pbD6C0tNTM3377\nbTOfMWOGmffr18/MV61aZeaWw4cPm/kdd9xh5t41BM8884yZe/P1Dx06ZObHjh0zc29dfm89gfr6\nejNnH5+IcoqFTxQQC58oIBY+UUAsfKKAWPhEAbHwiQJyN9RIuzZt7O9dXh/f66WOGDHCzL35/El7\ntd58fc/69evN3LsO4qmnnjJza0560msIvOdm06ZNZu5dJ9C2bdtE9+99bT35vobGwjM+UUAsfKKA\nWPhEAbHwiQJi4RMFxMInCoiFTxSQ28cXkf4Afg+gD4B6AK+o6osi0g3AegA3A9gPYJqqns7jWJuU\ntNeadM60t+691yefN2+emVdWVpp5SYn9JVy0aJGZl5eXm/nSpUvN/Mknn8yavfTSS+axkyZNMvO6\nujozHzdunJl/9dVXZr5//34z79Spk5kXYj59vjTnjF8H4FFVHQ7gHwHMF5F/APAEgC2qOgzAxwCy\nvwKIKFXcwlfVI6q6M/NxDYA9APoDmAxgbea/rQUwJV+DJKLc+lHv8UXkJwBGAtgGoI+qHgUavjkA\nsNeQIqLUaHbhi0gZgA0AFmbO/Ne+gUnvGxoi+oFmFb6IlKCh6Nep6ruZm4+KSJ9MXg7AXpmQiFKj\nuWf83wHYraorr7rtPQCzMx/PAvDutQcRUTo1p503FsAvAHwhIjvQ8CP9EgDPAnhLROYA+AbAtHwO\nlIhyp9Wvq+/Nx/f63F26dDHzAQMGmLnX6+3Ro4eZe/vTe/nLL79s5t66/t7X37uOYPXq1Vmzmpoa\n89gVK1aYubfu/bPPPmvmp06dMnNv3fzz58+b+aVLl8w8DX1+rqtPRI1Y+EQBsfCJAmLhEwXEwicK\niIVPFBALnyigVt/H93h9/o4dO5p5165dzbx///5m/tlnn5m5t7Z7+/btzdybs96hQwcz954f7/Ux\naNCgrJk3H//AgQNmvmvXLjP3rjHw+vi1tbVm7vXhvec+DfPx2ccnokYsfKKAWPhEAbHwiQJi4RMF\nxMInCoiFTxSQuxBHa+f1Ur119U+ePGnmXi/3lltuMXOrDw4AW7ZsMfNHHnnEzDt37mzm3pzzVatW\nmXlFRUXWbOLEieaxU6dONfPDhw+b+XfffWfm3mO7fPmymXuvnTT06VuKZ3yigFj4RAGx8IkCYuET\nBcTCJwqIhU8UEAufKKDrfj6+x9u/3puv7s2XLy0tNfMTJ06Y+fDhwxPd/7lz58y8qqrKzEePHm3m\nZ86cyZqNHz/ePNZakx/w9wTwHlvSPQWuhz4+5+MTUSMWPlFALHyigFj4RAGx8IkCYuETBeQWvoj0\nF5GPReR/ROQLEXkkc/syETkoIp9m/tyb/+ESUS64fXwRKQdQrqo7RaQMwH8DmAzgXwGcUdUXnOPT\n3+w0JO3zl5TYSx54fXirTw4AZWVlZu7tUe/x9hWw1iPw1irw1q33cm8+ved66NN7svXx3YU4VPUI\ngCOZj2tEZA+AfpnYrgoiSqUf9R5fRH4CYCSA/8rctEBEdorIb0WkS47HRkR50uzCz/yYvwHAQlWt\nAfAbAINVdSQafiIwf+QnovRoVuGLSAkain6dqr4LAKr6rX7/JugVAHfmZ4hElGvNPeP/DsBuVV15\n5YbML/2u+DkAe4dDIkoN95d7IjIWwC8AfCEiOwAogCUAZorISAD1APYD+FUex0lEOdSc3+r/BUBT\n8xv/mPvhEFEhhJ+Pn1TSPr93fNL7T/r5vfF7vXqL99rz+vjXQ5893zgfn4gasfCJAmLhEwXEwicK\niIVPFBALnyggFj5RQOzjE13H2McnokYsfKKAWPhEAbHwiQJi4RMFxMInCsidj58LFRUVjR8fOnQI\nffv2LcTdtgjHl0yax5fmsQG5H9+nn36aNWMfn+g6lq2Pn/fCJ6L04Xt8ooBY+EQBFazwReReEflS\nRKpEZHGh7re5RGS/iHwmIjtE5K8pGE+liBwVkc+vuq2biGwWkb0i8mExdy/KMr7UbKTaxGav/5a5\nPRXPYbE3oy3Ie3wRaQOgCsDdAA4B2A5guqp+mfc7byYR+RrAHap6sthjAQAR+ScANQB+r6ojMrc9\nC+D/VHVF5ptnN1V9IkXjW4ZmbKRaCMZmr79ECp7DpJvRJlWoM/5oAPtU9RtVvQTgD2h4kGkiSNFb\nH1XdCuDab0KTAazNfLwWwJSCDuoqWcYHpGQjVVU9oqo7Mx/XANgDoD9S8hxmGV/BNqMt1Au9H4Dq\nq/59EN8/yLRQAH8Ske0iMrfYg8mit6oeBRp3Me5d5PE0JXUbqV612es2AH3S9hwWYzPa1JzhUmCs\nqlYA+BcA8zM/yqZd2nqxqdtItYnNXq99zor6HBZrM9pCFf7fAAy86t/9M7elhqoezvz9LYB30PD2\nJG2OikgfoPE94rEij+cH0raRalObvSJFz2ExN6MtVOFvBzBURG4WkXYApgN4r0D37RKR0sx3XohI\nJwATkI5NQAU/fL/3HoDZmY9nAXj32gMK7AfjS+FGqn+32SvS9RwWbTPagl25l2lLrETDN5tKVf11\nQe64GURkEBrO8oqG+QuvF3t8IvIGgPEAegA4CmAZgP8A8O8ABgD4BsA0VT2VovH9FA3vVRs3Ur3y\nfroI4xsL4M8AvkDD1/XKZq9/BfAWivwcGuObiQI8h7xklygg/nKPKCAWPlFALHyigFj4RAGx8IkC\nYuETBcTCJwqIhU8U0P8D8MTjCsz8++MAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADxJJREFUeJzt3W+MVfWdx/HPFxjEgtQRHUCwUmy2RA0Cm/oH94GNu9VU\nIqYx1rAm2iaEmLrbZJ+U+oRHxnYfmGAMPqDU0KakZRtdeGB2pTHGGMHiWlYoWIkVwQKDAuKOf2CY\n+e6DueAwnfv73d5zz71n5vt+JYQ758uZ+5vLfO65937P+f3M3QUglgmdHgCA9iP4QEAEHwiI4AMB\nEXwgIIIPBFQo+GZ2p5m9ZWZvm9mPWjUoAOWyZvv4ZjZB0tuSbpd0WNJOSfe7+1sj/h0nCgAd4u42\n2vYiR/wbJe139/fcvV/SryUtL/D9ALRJkeDPkXRo2Nfv17YBqDg+3AMCKhL8v0j6yrCv59a2Aai4\nIsHfKelrZna1mU2WdL+kra0ZFoAyTWp2R3cfMLNHJL2goSeQDe6+r2UjA1Captt5Dd8B7TygY8po\n5wEYowg+EBDBBwIi+EBABB8IiOADARF8ICCCDwTU9Jl7GB/MRj2/47zcCV65/cvEmhDN44gPBETw\ngYAIPhAQwQcCIvhAQAQfCIh23hhXtB2Xq3d1dSXrZ8+erVvLjW3SpPSvX+p7N6Lsx2Ys44gPBETw\ngYAIPhAQwQcCIvhAQAQfCIjgAwHRxy9owoT0c2fRy1pz++fuf/78+cn6VVddlay/++67yfqJEyfq\n1hYsWJDc96677krWn3zyyWS9v78/We/r60vWy1bl8wA44gMBEXwgIIIPBETwgYAIPhAQwQcCIvhA\nQFak12hmBySdkjQoqd/dbxzl31S3mdkCZU8vPXHixGR94cKFyfrNN9+crN9www3J+k033ZSsHz58\nuG7t6aefTu57/PjxZP21115L1nOPTdHr+Tvdh2/F/bv7qL+gRU/gGZR0m7ufLPh9ALRR0Zf61oLv\nAaDNiobWJW0zs51mtrIVAwJQvqIv9W919yNmdoWGngD2ufsrrRgYgPIUOuK7+5Ha3x9Iek7SX324\nB6B6mg6+mX3JzKbVbk+V9C1Je1o1MADlKfJSf6ak52rtukmSfuXuL7RmWADK1HTw3f1dSYtaOJaO\nyF3PnuvTDw4OFto/J/f99+7dm6xPnz49Wb/77ruT9YGBgWT9008/rVs7eTLd5b322muT9R07diTr\nubHl+uC58wCKzoVQdHxlohUHBETwgYAIPhAQwQcCIvhAQAQfCIjgAwGFn1e/aC+17DXWc73mXJ//\nzTffTNZza9Rfc801yfr+/fvr1lavXp3cd9WqVcl67mcrquj1+l1dXcl67v8+1+cvE0d8ICCCDwRE\n8IGACD4QEMEHAiL4QEAEHwgofB8/p9Nzqxft9ebWqH/qqaeS9bVr1ybrqevxV65Mz7/62WefJeud\nlptLob+/P1nv9O9OCkd8ICCCDwRE8IGACD4QEMEHAiL4QEAEHwho3Pfxc73YXL3KvdhGnD59Oll/\n+OGHk/UNGzYk60uXLq1by13vnpuXvmxlr3mQw7z6ANqK4AMBEXwgIIIPBETwgYAIPhAQwQcCyvbx\nzWyDpGWSet19YW1bt6TfSLpa0gFJ97n7qRLH2bSy572vut27dyfrzz77bLL+2GOPJeuvvvpq3drc\nuXOT+3744YfJetnXu4/3//uURo74z0i6Y8S21ZJ+5+5fl/SipB+3emAAypMNvru/IunkiM3LJW2s\n3d4o6Z4WjwtAiZp9j9/j7r2S5O5HJfW0bkgAytaqD/fivlkCxqBmg99rZjMlycxmSTrWuiEBKFuj\nwbfan3O2SnqodvtBSVtaOCYAJcsG38w2SXpV0t+Z2UEz+56kn0j6JzP7k6Tba18DGCOyfXx3X1Gn\n9I8tHgtGcdFFFyXruV73jBkzkvVbbrklWT91Kn16xvPPP1+3Nnv27OS+Bw8eTNYj99nLxpl7QEAE\nHwiI4AMBEXwgIIIPBETwgYAIPhCQld0rNTOasQXk5p6fOnVqsr548eJkffPmzcn6ZZddlqz39fXV\nrS1YsCC578DAQLJ+/PjxZB157j7q4gEc8YGACD4QEMEHAiL4QEAEHwiI4AMBEXwgoOz1+ChXbo32\nXD13HsaxY+lZ0S655JJkvbe3N1lPzRdwxx0jZ2W/UO4cgqI/O+rjiA8ERPCBgAg+EBDBBwIi+EBA\nBB8IiOADAdHHH+Nyve7PP/88Wd+0aVOy/sADDyTr+/fvr1vbvn17ct+LL744WT99+nSyTp+/eRzx\ngYAIPhAQwQcCIvhAQAQfCIjgAwERfCCgbB/fzDZIWiap190X1ratkbRS0rmLvR919/8qbZTjWG7e\n/Fw9N+996np5SVq6dGmyPmlS+lck9f2XLVuW3Hf9+vXJek7RPn3k8wAaOeI/I2m0GRWecPcltT+E\nHhhDssF391cknRyllH66BFBZRd7jP2Jmu8zsZ2b25ZaNCEDpmg3+Oknz3X2RpKOSnmjdkACUrang\nu/sH/sUnH+slfaN1QwJQtkaDbxr2nt7MZg2rfUfSnlYOCkC5GmnnbZJ0m6QZZnZQ0hpJ3zSzRZIG\nJR2QtKrEMQJosWzw3X3FKJufKWEsIeX65Jdeemmy3tPTU2j/KVOmJOsTJ05M1lPnGZw4cSK57+Dg\nYLKeU3RNgqL3P5Zx5h4QEMEHAiL4QEAEHwiI4AMBEXwgIIIPBMS8+h2Wu94+d034nj3pkyavu+66\nZP2ll15K1nt7e5P1yZMn161t27YtuW+ujz5t2rRkva+vL1kfz9fTF8URHwiI4AMBEXwgIIIPBETw\ngYAIPhAQwQcCGvN9/Nw11zll93q7urqS9aLXw+eu53/nnXeS9dwa9fPmzUvWX3/99bq1ouvbnzlz\nJllH8zjiAwERfCAggg8ERPCBgAg+EBDBBwIi+EBA9PFLXmN9YGAgWf/kk0+S9Vwvu7u7O1mfPn16\nsp6bd//s2bPJen9/f93aokWLkvtu3749Wc89dp1e377T918ER3wgIIIPBETwgYAIPhAQwQcCIvhA\nQAQfCMhyvUYzmyvpF5JmShqUtN7dnzSzbkm/kXS1pAOS7nP3U6PsX2ozMzcvfdlroOd6ubnr5XPj\nz8n1uq+44opk/fLLL0/WX3755WQ9Na/+448/ntx33bp1yXpu3vzUOQTtkPu/L/t3rxHuPuogG/mt\nOyvp39z9Okm3SPqBmS2QtFrS79z965JelPTjVg0WQLmywXf3o+6+q3a7T9I+SXMlLZe0sfbPNkq6\np6xBAmitv+l1ppnNk7RI0g5JM929Vxp6cpDU0+rBAShHw8E3s2mSfivph7Uj/8j37tU9MRnABRoK\nvplN0lDof+nuW2qbe81sZq0+S9KxcoYIoNUaPeL/XNJed187bNtWSQ/Vbj8oacvInQBUU/ayXDO7\nVdI/S9ptZn/Q0Ev6RyX9VNJmM/u+pPck3VfmQAG0TraPX/gOSu7jF+2jF+0FF73/3PXuqT55IxYv\nXpysr1ixIlm/9957k/XU3PlLlixJ7vvxxx8n67lzFIqeA1FULjtVuB6/SB8fwDhD8IGACD4QEMEH\nAiL4QEAEHwiI4AMBjfl59XO90lyfPNcLzvXpc/vn7r+rqytZnz17drI+Z86cZD13vX3OtGnTkvVU\nL76nJ33d1kcffZSsF523Plfv9HkAnRT3JwcCI/hAQAQfCIjgAwERfCAggg8ERPCBgMZ8Hz+n6DXR\nubnRi86d3sC6Bsn6kSNHkvVDhw4l693d3cl6bnzXX3993drRo0eT+xaVe2zKVoXr7ZvFER8IiOAD\nARF8ICCCDwRE8IGACD4QEMEHAhrz8+oXVXYvuGifPjevfm7/ovMB5NYdmDJlSt3amTNnkvvm6p1W\ndD6AKmBefQDnEXwgIIIPBETwgYAIPhAQwQcCygbfzOaa2Ytm9kcz221m/1LbvsbM3jezN2p/7ix/\nuABaIdvHN7NZkma5+y4zmybpfyQtl/RdSf/n7k9k9q90s7Nor7bsXm/Z48sp8v1z9110LgPk1evj\nZyficPejko7WbveZ2T5J51Zx6OxMCACa8je9xzezeZIWSXqttukRM9tlZj8zsy+3eGwAStJw8Gsv\n838r6Yfu3idpnaT57r5IQ68Iki/5AVRHQ8E3s0kaCv0v3X2LJLn7B/7FG8D1kr5RzhABtFqjR/yf\nS9rr7mvPbah96HfOdyTtaeXAAJSnkU/1b5X0sqTdkrz251FJKzT0fn9Q0gFJq9y9d5T9+VS/AD7V\nRxH1PtXnslyCX9r3J/id13Q7b7wr+4kvtwZ77pe/aLCL3n+R+QJOnz6d3Bedwym7QEAEHwiI4AMB\nEXwgIIIPBETwgYAIPhBQ+BN4xrvxMDc8mse8+gDOI/hAQAQfCIjgAwERfCAggg8E1JbLcpcsWXL+\n9uHDh3XllVe2426bMt7G1+52XpUfvyqPTWr9+N544426Nfr4wDjWsRl4AFQP7/GBgAg+EFDbgm9m\nd5rZW2b2tpn9qF332ygzO2Bm/2tmfzCz31dgPBvMrNfM3hy2rdvMXjCzP5nZf3dy9aI646vMQqqj\nLPb6r7XtlXgMO70YbVve45vZBElvS7pd0mFJOyXd7+5vlX7nDTKzP0v6e3c/2emxSJKZ/YOkPkm/\ncPeFtW0/lXTc3f+99uTZ7e6rKzS+NWpgIdV2SCz2+j1V4DEsuhhtUe064t8oab+7v+fu/ZJ+raEf\nskpMFXrr4+6vSBr5JLRc0sba7Y2S7mnroIapMz6pIgupuvtRd99Vu90naZ+kuarIY1hnfG1bjLZd\nv+hzJB0a9vX7+uKHrAqXtM3MdprZyk4Ppo6ec4uW1FYx7unweEZTuYVUhy32ukPSzKo9hp1YjLYy\nR7gKuNXdl0j6tqQf1F7KVl3VerGVW0h1lMVeRz5mHX0MO7UYbbuC/xdJXxn29dzatspw9yO1vz+Q\n9JyG3p5UTa+ZzZTOv0c81uHxXKBqC6mOttirKvQYdnIx2nYFf6ekr5nZ1WY2WdL9kra26b6zzOxL\ntWdemdlUSd9SNRYBNV34fm+rpIdqtx+UtGXkDm12wfgquJDqXy32qmo9hh1bjLZtZ+7V2hJrNfRk\ns8Hdf9KWO26AmX1VQ0d519D1C7/q9PjMbJOk2yTNkNQraY2k/5T0H5KukvSepPvc/aMKje+bamAh\n1TaNr95ir7+XtFkdfgyLLkZb+P45ZReIhw/3gIAIPhAQwQcCIvhAQAQfCIjgAwERfCAggg8E9P+D\ngf5+aZT3kQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAERlJREFUeJzt3XuM1eWdx/HPF4dBrjoCQrg4WBXWaHTieslGTTC6FTeN\n96CyJloTo0l1m+w/9fIH8R9jN9HENakx1ja01rS16o6RZNViiDGr64gDCxSqRoYKw/2O3J3v/jEH\nRDrzfcb5nctveN6vhDCcD2fOwxk+85tznt/veczdBSAvwxo9AAD1R/GBDFF8IEMUH8gQxQcyRPGB\nDBUqvpnNMbPVZvaZmf2sWoMCUFs22Hl8Mxsm6TNJ10rqltQh6U53X33C3+NEAaBB3N36ur3IEf9y\nSZ+7+1p3Pyzp95JuKvD5ANRJkeJPlfTVcX9eV7kNQMnx5h6QoSLFXy/prOP+PK1yG4CSK1L8Dknn\nmlmrmTVLulPSm9UZFoBaahrsHd39GzN7SNI76v0G8pK7r6rayADUzKCn8wb8AEznAQ1Ti+k8AEMU\nxQcyRPGBDFF8IEMUH8gQxQcyRPGBDFF8IEODPnMPQ4NZn+dvDDiv5WMXNWxYfNw6cuRImOe8pwRH\nfCBDFB/IEMUHMkTxgQxRfCBDFB/IENN5NVbr6bTUlFZqymrs2LFhPn78+DCfPHlyv1lra2t43+7u\n7jBP2bZtW5ivXr06zHOe7uOID2SI4gMZovhAhig+kCGKD2SI4gMZovhAhlhXv6Ci8/TDhw8P8xEj\nRoR5ai56zJgxhT7/bbfdFubReQSp/1sPPvhgmL/11lthftlll4X5okWLwryrqyvMX3755TDv6ekJ\n8zKcB8C6+gCOofhAhig+kCGKD2SI4gMZovhAhig+kKFC8/hm1iVpl6QeSYfd/fI+/k7jJzMDtV4C\nuug8/qhRo8I89fWbOnVqmI8ePTrM77///jC/4YYb+s1S/7aJEyeG+Z49e8J8165dYf7hhx+GeWoe\n/oEHHgjz/fv3h/k333xT6PGrob95/KILcfRImu3uOwp+HgB1VPRHfavC5wBQZ0VL65LeNbMOM4t/\nJgRQGkV/1L/S3TeY2UT1fgNY5e4fVGNgAGqn0BHf3TdUft8i6Q1Jf/fmHoDyGXTxzWyUmY2pfDxa\n0g8lrajWwADUTpEf9SdJeqMyXdck6Xfu/k51hgWglrK/Hr/W8/hNTfH31tQ8+rnnnhvmV111VZhH\n8+xS+pr2r776KsyjueoJEyaE921ubg7zw4cPh3lqT4D169eH+cKFC8O8vb09zJcvXx7mBw4cCPND\nhw6FeTVwPT6AYyg+kCGKD2SI4gMZovhAhig+kCGKD2So6Ln6J72i6+anrjk/++yzw7ytrS3MU/vX\npx7/888/D/NTTjklzFes6P9kze7u7vC+a9euDfPdu3eH+bx588J8ypQpYX7GGWeEeep6+9SeBvWY\npx8sjvhAhig+kCGKD2SI4gMZovhAhig+kCGKD2Qo+3n81HoEqTw1j79z584wP/3008N81qxZYd7Z\n2Rnm77//fpinrhlfvHjxoO+/cuXK8L4jR44M89S/vaOjI8xvvfXWME+tNZD62h88eDDMU/83ar0W\nRoQjPpAhig9kiOIDGaL4QIYoPpAhig9kiOIDGcp+Hr/ouvqp+6euyV62bFmYL126tNDnf+2118I8\nJXU9frRHfWqeOvW5J0+eHOapPQGmT58e5qn967dv3x7mqXMwduyId49nHh9AXVF8IEMUH8gQxQcy\nRPGBDFF8IEMUH8hQch7fzF6S9CNJm9z9osptLZL+IKlVUpekue7e/4TuEFb0evympvgpTq09n5rr\nTs1F9/T0hHnRa8aHDev/2JH63CNGjAjzcePGhfmGDRvCfNu2bWE+Y8aMMN+3b1+Yp9YyiJ4bKf21\nqaWBHPF/Len6E257RNKf3X2WpPckPVrtgQGonWTx3f0DSSeegnSTpAWVjxdIurnK4wJQQ4N9jX+m\nu2+SJHffKOnM6g0JQK1V6829xp10DOB7G2zxN5nZJEkys8mSNldvSABqbaDFt8qvo96UdG/l43sk\ntVdxTABqLFl8M3tF0v9ImmlmfzOzH0t6StI/m9lfJV1b+TOAISI5j+/u/W1Cfl2Vx1JKRa/XT82z\np+bJDx8+XOjxU+MvOtccjT+1P/38+fPD/JxzzgnzadOmhfnHH38c5u3t8Q+qqXXzjxw5Euapr30j\nceYekCGKD2SI4gMZovhAhig+kCGKD2SI4gMZyn5d/aJrmxe9f2qeveg8fCpPnScwfPjwMG9paek3\nS62Lv2TJkjC/5pprwvzdd98tlH/99ddhnroev+g5Ho3EER/IEMUHMkTxgQxRfCBDFB/IEMUHMkTx\ngQyd9PP4qXXpi65tnprLbW5uDvPUPHkqT10Tfuqpp4b5xIkTwzw1133BBRf0m6Xm4efOnRvmn3zy\nSZgX3ROgs7MzzFPnQKSe+zLjiA9kiOIDGaL4QIYoPpAhig9kiOIDGaL4QIas6PXkyQcwa+i+erW+\nnn3ChAlhvmvXrjCfPn16mF944YVhvn379jC/+eZ4I+MXXnghzFtbW8P8jjvu6DdLzeOPHTs2zNes\nWRPmt9xyS5inzqHYuHFjmB86dCjMU+vml2FdfXfvswAc8YEMUXwgQxQfyBDFBzJE8YEMUXwgQxQf\nyFByHt/MXpL0I0mb3P2iym3zJd0vaXPlrz3m7v/dz/0bOo+fuh6/6Dx96vOn8kcffTTMr7vuujBP\nnSfw+uuvh/n5559fKI/OQxg9enR438WLF4f5yJEjw/yjjz4K86effjrMU+vmp+bxm5ri5SxSexYU\nXQtiIIrM4/9a0vV93P6Mu19S+dVn6QGUU7L47v6BpB19REN3GxEgc0Ve4z9kZkvN7JdmdlrVRgSg\n5gZb/F9I+oG7t0naKOmZ6g0JQK0NqvjuvsW/fVfwRUmXVW9IAGptoMU3Hfea3syO3wb1Vkkrqjko\nALWVXF7bzF6RNFvSeDP7m6T5kq4xszZJPZK6JD1QwzECqLIhfz1+6nr7006L33e8+OKLw/zSSy8N\n846OjjB/6qmnwvyss84K89RceOqa8tRc+JdffhnmqT3uo2vqW1pawvsePHgwzLdu3RrmBw4cCPNX\nX301zJ9//vkwLzrPn+pW2efxAZxkKD6QIYoPZIjiAxmi+ECGKD6QIYoPZCh5Ak/ZpfZ/v/vuu8O8\nq6srzJ944okwT+0fv3PnzjBfsmRJmKeu6Z49e3aYr1y5MsxTc+mpPFqvILWufGqe++233w7z22+/\nPcxT50BMmTIlzFevXh3mRddiSJ2HUMtzbDjiAxmi+ECGKD6QIYoPZIjiAxmi+ECGKD6QoSE/jz9q\n1Kgwb2trC/PHH388zDs7O8N85syZYf7kk0+GeWou+frr+1rZ/FupefoZM2aE+fbt28P8yJEjYR7N\nRY8fPz6877Jly8J83rx5YZ46h2LWrFlhfvXVV4f5+vXrw3zv3r1hXvR6/VriiA9kiOIDGaL4QIYo\nPpAhig9kiOIDGaL4QIaG/Dx+an/71tbWMI/WhZfS6+6n9mifM2dOmKeuGZ86dWqYp/79K1bEmxyt\nWrUqzFPX++/fv7/fbM2aNeF9ly9fHuapPQNS8+Dt7e1hnnpuUusJpP7v7N69u9DnryWO+ECGKD6Q\nIYoPZIjiAxmi+ECGKD6QIYoPZCg5j29m0yT9RtIkST2SXnT3/zSzFkl/kNQqqUvSXHffVcOx9il1\nTXZqbfPU9eapefIrrrgizNetWxfmqbnkbdu2hXlq7feFCxeG+ZYtW8I8dc38okWL+s1uvPHG8L5f\nfPFFmKfOoUjNk48bNy7Md+zYEebDhw8P89T+9o283j5lIEf8I5L+3d0vkPRPkn5iZv8g6RFJf3b3\nWZLek/Ro7YYJoJqSxXf3je6+tPLxXkmrJE2TdJOkBZW/tkDSzbUaJIDq+l6v8c1shqQ2SR9JmuTu\nm6Tebw6Szqz24ADUxoCLb2ZjJP1J0k8rR/4TX8CU9wUNgO8YUPHNrEm9pf+tux+98mGTmU2q5JMl\nba7NEAFU20CP+L+S9Bd3f/a4296UdG/l43skxZdCASiNgUznXSnpXyUtN7NO9f5I/5ikn0v6o5nd\nJ2mtpLm1HCiA6rFazzWaWU0fYMSIEWF+3333hfnDDz8c5uedd16Yp84TSO1v/8wzz4R56prv1DXn\nqWviU3Phqf8fZtZvtm/fvvC+LS0tYZ5aSyG1J0AqT0l9bVPnARw8eDDM63E9vrv3+QXizD0gQxQf\nyBDFBzJE8YEMUXwgQxQfyBDFBzI05NfVT+1B3tHREebPPfdcmN91111hnlr3PnXNebQuvSR1d3eH\n+datW8N8w4YNYZ46zyA11xxdkx7N8Uvpef7Nm+OzwFNrKTQ3N4d56hyF1DkUqcdv5Lr5KRzxgQxR\nfCBDFB/IEMUHMkTxgQxRfCBDFB/I0JC/Hj8lNZc7c+bMMB8zZkyYT5w4McxT8/yLFy8O8z179oR5\nal381Dx90a9/aq6+yH2LrAUwkPunrrdPzcOXed38o7geH8AxFB/IEMUHMkTxgQxRfCBDFB/IEMUH\nMnTSz+OnpOZyhw2Lvzc2NcVLGqTm0VNSX58yX/NdZI5fauw5BtV4/DJgHh/AMRQfyBDFBzJE8YEM\nUXwgQxQfyFCy+GY2zczeM7OVZrbczB6u3D7fzNaZ2aeVX3NqP1wA1ZCcxzezyZImu/tSMxsjaYmk\nmyTdIWmPu4cbvJd9Hj8lNY9fdK73ZJgrRnn1N4+f3FDD3TdK2lj5eK+ZrZJ0dHWJYmdIAGiI7/Ua\n38xmSGqT9L+Vmx4ys6Vm9kszO63KYwNQIwMufuXH/D9J+qm775X0C0k/cPc29f5EEP7ID6A8BlR8\nM2tSb+l/6+7tkuTuW/zbF6gvSrqsNkMEUG0DPeL/StJf3P3ZozdU3vQ76lZJK6o5MAC1M5B39a+U\n9L6k5ZK88usxSfPU+3q/R1KXpAfcfVMf9x/Sb1vzrj6Gsv7e1c/+stwUio+hbNDTebmL9n8HhipO\n2QUyRPGBDFF8IEMUH8gQxQcyRPGBDFF8IEMUH8gQxQcyRPGBDFF8IEMUH8gQxQcyRPGBDNXlstxL\nLrnk2Mfd3d2aMmVKPR52UBhfMWUeX5nHJlV/fJ9++mm/GQtxACexhq3AA6B8eI0PZIjiAxmqW/HN\nbI6ZrTazz8zsZ/V63IEysy4zW2ZmnWb2cQnG85KZbTKz/zvuthYze8fM/mpmbzdy96J+xleajVT7\n2Oz13yq3l+I5bPRmtHV5jW9mwyR9JulaSd2SOiTd6e6ra/7gA2RmX0r6R3ff0eixSJKZXSVpr6Tf\nuPtFldt+Lmmbu/9H5Ztni7s/UqLxzdcANlKth2Cz1x+rBM9h0c1oi6rXEf9ySZ+7+1p3Pyzp9+r9\nR5aJqUQvfdz9A0knfhO6SdKCyscLJN1c10Edp5/xSSXZSNXdN7r70srHeyWtkjRNJXkO+xlf3Taj\nrdd/9KmSvjruz+v07T+yLFzSu2bWYWb3N3ow/Tjz6KYllV2Mz2zwePpSuo1Uj9vs9SNJk8r2HDZi\nM9rSHOFK4Ep3v0TSv0j6SeVH2bIr21xs6TZS7WOz1xOfs4Y+h43ajLZexV8v6azj/jytcltpuPuG\nyu9bJL2h3pcnZbPJzCZJx14jbm7weL6jbBup9rXZq0r0HDZyM9p6Fb9D0rlm1mpmzZLulPRmnR47\nycxGVb7zysxGS/qhyrEJqOm7r/felHRv5eN7JLWfeIc6+874SriR6t9t9qpyPYcN24y2bmfuVaYl\nnlXvN5uX3P2pujzwAJjZ2eo9yrt6r1/4XaPHZ2avSJotabykTZLmS/ovSa9Kmi5praS57r6zROO7\nRgPYSLVO4+tvs9ePJf1RDX4Oi25GW/jxOWUXyA9v7gEZovhAhig+kCGKD2SI4gMZovhAhig+kCGK\nD2To/wFzY70T03U62wAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADqhJREFUeJzt3W+MVfWdx/HPdxhQ6SgSlMGRLX+E7SYkBllLYsQocW2N\nNsH0AZrWRGrUPqi7JD7BGg0xatJqxLgP+sTShjZV2kURlriubXigxnSLtbi6DB10Mxb5M8CIyiAq\nznz3wRxxZOf+fte5/87M9/1KCHfuhzPz48LnnjnzO+f8zN0FIJa2Vg8AQPNRfCAgig8ERPGBgCg+\nEBDFBwKqqfhmdq2Z7TazHjNbU69BAWgsG+s8vpm1SeqRdLWk/ZJ2SLrJ3Xef9uc4UQBoEXe30Z6v\nZY+/VNIed3/H3U9K2ihpRQ2fD0CT1FL8CyXtHfHxu8VzAEqOH+4BAdVS/H2Svj7i49nFcwBKrpbi\n75C0wMzmmNkUSTdJ2lqfYQFopPaxbujug2Z2p6QXNPwGst7du+s2MgANM+bpvKq/ANN5QMs0YjoP\nwDhF8YGAKD4QEMUHAqL4QEAUHwiI4gMBUXwgoDGfuYfxwWzU8zdOyZ3Aldu+ra3yviP3uc8666xk\n3tHRkcw//PDDZH7ixIlkHhl7fCAgig8ERPGBgCg+EBDFBwKi+EBATOdNcLXebyE3nXfmmWdWzDo7\nO5PbLlq0KJn39PQk84GBgWQ+efLkZH7y5MlkPpGxxwcCovhAQBQfCIjiAwFRfCAgig8ERPGBgLiv\n/jiXm2fP5TnLli1L5o899ljF7LPPPktuu2nTpmSeu+x227ZtyfzIkSPJPDePn3vtBgcHk3kZcF99\nAKdQfCAgig8ERPGBgCg+EBDFBwKi+EBANV2Pb2a9kj6QNCTppLsvrcegxpNa58lrvf116vbWUvp6\neUlauHBhMp83b14y7+rqqphNmzYtue3q1auT+dlnn53M33vvvWSeO48g99oODQ0l8/Gs1htxDEm6\nyt2P1mMwAJqj1m/1rQ6fA0CT1Vpal/R7M9thZrfXY0AAGq/Wb/Uvd/cDZna+ht8Aut395XoMDEDj\n1LTHd/cDxe+HJW2WFO6He8B4NObim9lUM+soHn9N0rckvVmvgQFonFq+1e+UtLm47LZd0m/c/YX6\nDAtAI3E9/gQ3adKkZD537txk/uKLLybz1DXp/f39yW2XL1+ezI8dO5bMc/Psjf6/PR5wPT6AUyg+\nEBDFBwKi+EBAFB8IiOIDAVF8IKBaz9VHybW3p/+Jr7vuumR+xhlnJPPbbrutYpa7733uevmJrtZ7\nMdSCPT4QEMUHAqL4QEAUHwiI4gMBUXwgIIoPBMQ8/jiXm6e/9dZbk/lDDz2UzD/55JNknrpmvtY1\nBya6Vt4vgD0+EBDFBwKi+EBAFB8IiOIDAVF8ICCKDwTEPP44d+mllybzdevWJfPc9faPPvpoMn/1\n1VcrZtGvty8z9vhAQBQfCIjiAwFRfCAgig8ERPGBgCg+EFB2Ht/M1kv6jqQ+d7+4eG66pN9KmiOp\nV9JKd/+ggeMMa9q0acn82WefTea5efqjR48m87feeiuZp67Xb/T15pMmTUrmg4ODDf3641k1e/xf\nSvr2ac/dLekP7v4NSdsl/bjeAwPQONniu/vLkk7fLayQtKF4vEHSDXUeF4AGGusx/kx375Mkdz8o\naWb9hgSg0er1w73W3TwMwFc21uL3mVmnJJnZLEmH6jckAI1WbfGt+PW5rZJWFY9vkbSljmMC0GDZ\n4pvZk5JekfT3ZvY3M/uBpJ9IusbM/irp6uJjAONEdh7f3b9XIfqnOo8lpLa29Hvv9OnTa8oHBgaS\n+SOPPJLMn3/++WTeymvumacfO87cAwKi+EBAFB8IiOIDAVF8ICCKDwRE8YGAuK9+yc2bNy+Z566n\n7+7uTuYbN25M5rnr+YeGhpJ5K5lZMm/l+vStxh4fCIjiAwFRfCAgig8ERPGBgCg+EBDFBwJiHr/F\n5s+fn8yfeeaZZP7SSy8l85tvvjmZ5+a6c+M7fPhwMk+pdR49dy8DrtevjD0+EBDFBwKi+EBAFB8I\niOIDAVF8ICCKDwTEPH6LXX/99cn8lVdeSebHjx9P5hdccEEyz82lt7en/4t0dHRUzN5///3ktjNm\nzEjm55xzTjLv7e1N5rl5/jLfS6DR2OMDAVF8ICCKDwRE8YGAKD4QEMUHAqL4QEDZeXwzWy/pO5L6\n3P3i4rm1km6XdKj4Y/e4e3oh9aCmTJlS0/ZLly5N5tu2bUvmN954YzLv6elJ5nfccceYP//UqVOT\n206aNCmZX3PNNcn8qaeeSuapcwwk6cCBA8l8It93v5o9/i8lfXuU59e5+5LiF6UHxpFs8d39ZUmj\nLdeSvnULgNKq5Rj/TjPbaWY/N7NpdRsRgIYba/F/Jmm+uy+WdFDSuvoNCUCjjan47n7Yv/jJxxOS\nvlm/IQFotGqLbxpxTG9ms0Zk35X0Zj0HBaCxqpnOe1LSVZJmmNnfJK2VtNzMFksaktQr6YcNHCOA\nOrNGz1Wa2cSdDK1Cbq763nvvTeYrVqxI5idOnEjmH3/8cTK///77k3lunr+/v79ilptHz52jkDsP\nIPf5c2sSfPTRR8l8Iszju/uos2+cuQcERPGBgCg+EBDFBwKi+EBAFB8IiOIDAXFf/QbLrT9/7rnn\nJvMHHnggmV922WXJ/Omnn07mu3btSuYnT55M5qk16HP31X/99deTeW7Ngb6+vmQeYZ5+rNjjAwFR\nfCAgig8ERPGBgCg+EBDFBwKi+EBAzOPXKDdPP3ny5GSeuzf8/Pnzk/n27duT+e7du5P58ePHk/l5\n552XzI8cOVIxy82T59YcyJ1DsGjRomSeW3MgMvb4QEAUHwiI4gMBUXwgIIoPBETxgYAoPhAQ8/g1\nys1V5+5rf+jQoWTe29ubzHPz8O3t6X/i3Phz5ym0tVXedyxcuDC5be5eBAsWLEjmzz33XDJPjU2S\nhoaGkvlExh4fCIjiAwFRfCAgig8ERPGBgCg+EBDFBwLKzuOb2WxJv5LUKWlI0hPu/q9mNl3SbyXN\nkdQraaW7f9DAsY5Lubnk3DXnuTwndx7Bfffdl8wvuuiiZP7www9XzLq6upLb7tu3L5n39/cn89w5\nCJHvm59TzR7/M0l3ufsiSZdJ+pGZ/YOkuyX9wd2/IWm7pB83bpgA6ilbfHc/6O47i8cDkrolzZa0\nQtKG4o9tkHRDowYJoL6+0jG+mc2VtFjSHyV1unufNPzmIGlmvQcHoDGqLr6ZdUjaJGl1sec//QCK\nAypgnKiq+GbWruHS/9rdtxRP95lZZ5HPkpS+2gRAaVS7x/+FpF3u/viI57ZKWlU8vkXSltM3AlBO\n1UznXS7p+5LeMLO/aPhb+nsk/VTS78zsVknvSFrZyIECqB9r9FynmXHsn3D++ecn89w8+po1a2r6\n/Jdcckkyz61xf/To0YrZlVdemdz2iiuuSOZ79uxJ5t3d3cmceX7J3Ue9oQJn7gEBUXwgIIoPBETx\ngYAoPhAQxQcCovhAQMzjt1juvvUdHR3JfOXK9HlTDz74YDLv7OxM5gcPHkzmq1atqpjl7vmfu1dA\nbp7+xIkTyTzCPH0O8/gATqH4QEAUHwiI4gMBUXwgIIoPBETxgYCyN+JAY+Xmmo8dO5bM33777WS+\nefPmZL5s2bJkftdddyXz7du3V8wmT56c3DZ3DsOnn36azJmnHzv2+EBAFB8IiOIDAVF8ICCKDwRE\n8YGAKD4QENfjj3Ntben37ilTpiTzWbNmJfO9e/cm88HBwYpZbp6eefjG43p8AKdQfCAgig8ERPGB\ngCg+EBDFBwLKFt/MZpvZdjP7HzN7w8z+uXh+rZm9a2avFb+ubfxwAdRDdh7fzGZJmuXuO82sQ9Kf\nJa2QdKOkY+6+LrM9k7UtlJtLz2GufXyrNI+fvRGHux+UdLB4PGBm3ZIuLOLa/lcBaImvdIxvZnMl\nLZb0X8VTd5rZTjP7uZlNq/PYADRI1cUvvs3fJGm1uw9I+pmk+e6+WMPfESS/5QdQHlWdq29m7ZK2\nSfoPd398lHyOpH9394tHyThIbCGO8WOr9Vz9X0jaNbL0xQ/9PvddSW+OfXgAmqman+pfLulFSW9I\n8uLXPZK+p+Hj/SFJvZJ+6O59o2zPLqOF2OPHVmmPz2W5ExzFj23M03kY3yguRsMpu0BAFB8IiOID\nAVF8ICCKDwRE8YGAKD4QEMUHAqL4QEAUHwiI4gMBUXwgIIoPBETxgYCaclnukiVLTj3ev3+/urq6\nmvFlx4Tx1abM4yvz2KT6j++1116rmHEjDmACa9kdeACUD8f4QEAUHwioacU3s2vNbLeZ9ZjZmmZ9\n3WqZWa+ZvW5mfzGzP5VgPOvNrM/M/nvEc9PN7AUz+6uZ/WcrVy+qML7SLKQ6ymKv/1I8X4rXsNWL\n0TblGN/M2iT1SLpa0n5JOyTd5O67G/7Fq2Rm/yvpH939aKvHIklmtkzSgKRffb5QiZn9VFK/uz9c\nvHlOd/e7SzS+tapiIdVmSCz2+gOV4DWsdTHaWjVrj79U0h53f8fdT0raqOG/ZJmYSnTo4+4vSzr9\nTWiFpA3F4w2SbmjqoEaoMD6pJAupuvtBd99ZPB6Q1C1ptkryGlYYX9MWo23Wf/QLJe0d8fG7+uIv\nWRYu6fdmtsPMbm/1YCqY+fmiJcUqxjNbPJ7RlG4h1RGLvf5RUmfZXsNWLEZbmj1cCVzu7kskXSfp\nR8W3smVXtrnY0i2kOspir6e/Zi19DVu1GG2zir9P0tdHfDy7eK403P1A8fthSZs1fHhSNn1m1imd\nOkY81OLxfIm7H/Yvfmj0hKRvtnI8xWKvmyT92t23FE+X5jUcbXzNeg2bVfwdkhaY2RwzmyLpJklb\nm/S1s8xsavHOKzP7mqRvqRyLgJq+fLy3VdKq4vEtkracvkGTfWl8JVxI9f8t9qpyvYYtW4y2aWfu\nFdMSj2v4zWa9u/+kKV+4CmY2T8N7edfw9Qu/afX4zOxJSVdJmiGpT9JaSc9K+jdJfyfpHUkr3f39\nEo1vuapYSLVJ46u02OufJP1OLX4Na12Mtuavzym7QDz8cA8IiOIDAVF8ICCKDwRE8YGAKD4QEMUH\nAqL4QED/BzZVhyTxEL1WAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEQpJREFUeJzt3VuMlVWaxvHnFSjOyElKAQUNqEREwsTDhInS0enGsUWi\nwcFDPCXaCe2Mydy07YXeeGHPhYlj4o1NG7qj2D0kDs6EcWwVmXgaCagDdGGpY3FQqkDOJWfqnYva\nYolV7yrr26dy/X8JsdiPm71qVz311d7r+9YydxeAvJxR6wEAqD6KD2SI4gMZovhAhig+kCGKD2So\nUPHNbL6ZbTazZjP7VbkGBaCyrK/z+GZ2hqRmSddK+lLSWkmL3X3zaf8fJwoANeLu1t3tRY74V0j6\nxN23uPtxSS9KuqnAvwegSooUf5KkbV3+vr10G4A6x5t7QIaKFP8LSed1+fvk0m0A6lyR4q+VNM3M\npphZg6TFkl4uz7AAVNLAvt7R3U+a2YOSXlXnD5Cl7t5UtpEBqJg+T+f1+gGYzgNqphLTeQD6KYoP\nZIjiAxmi+ECGKD6QIYoPZIjiAxmi+ECG+nzmHuqDWbfnZ5Tt/qn8jDN6PnYMHBh/ex07dizMi55c\nlhr7yZMnC/37/RlHfCBDFB/IEMUHMkTxgQxRfCBDFB/IENN5FTZo0KAwT005DR48OMzHjx8f5hMn\nTgzzq666Ksybm5vDfNGiRT1m27dvD++7fPnyMG9vbw/zaCpRko4fPx7mra2tYX7ixIkw7+joCPN6\nxhEfyBDFBzJE8YEMUXwgQxQfyBDFBzJE8YEMsa5+QpHLUiVpwIABhf79WbNmhfmUKVPCfObMmWG+\nYMGCMF+zZk2YR/P4KXv27AnzXbt2hfkzzzwT5lOnTg3zVatWhfmnn34a5ql5/kp3qzdYVx/AKRQf\nyBDFBzJE8YEMUXwgQxQfyBDFBzJU6Hp8M2uRtF9Sh6Tj7n5FOQZVT1Jzsal5/FQ+bty4ME/N8+/d\nuzfMU/PwI0aMCPPGxsYwj+ayt27dGt53+vTpYT527Ngwv/fee8N8xYoVYZ5aqyB1HkHqPIR6mMfv\nSdGFODokzXP3+LsPQF0p+qu+leHfAFBlRUvrkv5sZmvN7P5yDAhA5RX9VX+uu+8ws7PU+QOgyd3f\nKsfAAFROoSO+u+8o/XeXpJck/eje3AN+jPpcfDMbZmYjSh8Pl/RTSRvLNTAAlVPkV/1GSS+VLrsd\nKOl5d3+1PMMCUEl9Lr67fy5pdhnHUhNFt4lOzdWmtmI+ePBgmH/22WdhfuTIkTBPbVU9atSoMH/n\nnXfC/Oqrr+4xu+aaa8L77ty5M8w3bdoU5i0tLWGeWstg+PDhYb5u3bowTyn6vVNJTMUBGaL4QIYo\nPpAhig9kiOIDGaL4QIYoPpAh1tVPKLqu/tChQ8P88OHDP3hMXTU0NIT56NGjwzy17n9KdB7CnDlz\nwvseOHAgzG+++eYwv/HGG8O8vb09zJubm8N8yZIlYZ46h6KjoyPMq4F19QGcQvGBDFF8IEMUH8gQ\nxQcyRPGBDFF8IENF19zLXuo8iEOHDhW6f1HDhg0L823btoV5kbnopqamMJ8xY0aYp67XX7t2bZi/\n9tprhe6fWkuhP+OID2SI4gMZovhAhig+kCGKD2SI4gMZovhAhpjHLyg1D190nj51Pf+QIUPCfMuW\nLWGemqseOXJkmJ84caLHLLV//McffxzmTzzxRJgPGjQozFPX+6f2DEg996lzHCr9vVEER3wgQxQf\nyBDFBzJE8YEMUXwgQxQfyBDFBzKUnMc3s6WSfi6pzd1nlW4bI+mPkqZIapF0q7vvr+A461bRdfdT\nc7mp/e1Ta8en/v3BgweHeWpd/mhfgNT+88uXLw/z1PX6qXn61HkCe/fuDfPjx4+Heeq5TX1v1Ps8\n/nOSfnbabQ9Les3dL5L0hqRfl3tgAConWXx3f0vS6T8ab5K0rPTxMkkLyzwuABXU19f4E9y9TZLc\nvVXShPINCUCllevNvX69Px6Qm74Wv83MGiXJzM6WFK+KCKCu9Lb4VvrzjZcl3VP6+G5JK8s4JgAV\nliy+mb0g6R1JF5rZVjO7V9ITkv7WzD6WdG3p7wD6ieQ8vrvf3kN0XZnHUhOpudai8/Spa7qPHTsW\n5kXXdk+NLzWPv3v37jCfN29ej1lqHj712Kk9CY4ePRrmGzZsCPPU/vap6/1rOQ9fFGfuARmi+ECG\nKD6QIYoPZIjiAxmi+ECGKD6QIdbVL2jEiBFhfu6554Z5ap583759YX7OOeeEeeo8hNT9r7/++jC/\n5ZZbesyiNfcl6Ysvvgjz1PXwjz76aJi3tLSEeeprl5rnT50jkcpT5yFUEkd8IEMUH8gQxQcyRPGB\nDFF8IEMUH8gQxQcyxDx+Qmpd+/Hjx4f53Llzw/zrr78O8/Xr14f5xIkTwzy1dnxqfHfddVeYn3XW\nWT1mqXnsmTNnhvmqVavCfNSoUWGeOkeioaEhzMeMGRPmqa/dhAnxGrTNzc1hXkkc8YEMUXwgQxQf\nyBDFBzJE8YEMUXwgQxQfyFD28/gDBgwI82ieWpJuu+22ME/Ns6eul7/00kvDPDXXnFrbfvLkyWE+\nevToMI/mwtvb28P7pta937p1a5hv27YtzK+88sow/+qrr8J8//79YZ762qXOI6gljvhAhig+kCGK\nD2SI4gMZovhAhig+kCGKD2QoOY9vZksl/VxSm7vPKt32mKT7Je0s/W+PuPsrFRtlAal5+uHDh4f5\nQw89FOZLliwJ8wMHDoR5a2trmL/99tthnpqrTl1znlpPoK2tLcyffvrpHrPrrrsuvG9qf/l33303\nzFNf202bNoV56nM///zzwzy17v7GjRvDvJZ6c8R/TtLPurn9SXefU/pTl6UH0L1k8d39LUndLeMS\nn7YEoG4VeY3/oJl9aGa/NbMzyzYiABXX1+I/I+kCd58tqVXSk+UbEoBK61Px3X2Xf/vOzLOSLi/f\nkABUWm+Lb+rymt7Mzu6S3Sypft++BPA9vZnOe0HSPEnjzGyrpMck/cTMZkvqkNQi6RcVHCOAMksW\n391v7+bm5yowlj5Jrd0+duzYML/jjjvCfNGiRWGeuiY7tfb7sGHDwvzw4cNhvnnz5jBfsGBBmK9e\nvTrMzzwzft923LhxPWZTp04N75v63FJrAXz00UdhfuGFF4b59OnTwzy158Djjz8e5kOHDg3z1Odf\nSZy5B2SI4gMZovhAhig+kCGKD2SI4gMZovhAhvr9uvqpefCLLroozFPz+Knr9VPnEXR0dIT5jh07\nwjw11ztkyJAw/+STT8I8Nde9bt26MB84sOdvodQ8dmpPgNRzf+edd4b5fffdF+bvv/9+mF988cVh\nPmnSpDBPPfdFv3eK4IgPZIjiAxmi+ECGKD6QIYoPZIjiAxmi+ECG+v08fkp0vbiUnitOXY8ezWNL\n6bXXU+ch7NmzJ8xT14zv3LkzzFPOO++8MI+ev9Q89XvvvRfmqXX3U+veL126NMwvvzxeMe75558P\n89TXJnUOyQcffBDmlcQRH8gQxQcyRPGBDFF8IEMUH8gQxQcyRPGBDPX7efzUHucnTpwI85MnT4b5\nvn37wnzw4MFhnromveh6AikzZswI8/3794f59u3bw3zatGk9Znv3drfJ8rcOHDgQ5m1tbWE+cuTI\nML/kkkvCPPW1eeWVePf31PfOxo3xBlOVvN4+hSM+kCGKD2SI4gMZovhAhig+kCGKD2SI4gMZstQ1\nz2Y2WdLvJTVK6pD0rLv/i5mNkfRHSVMktUi61d2/NylsZvEDFNTQ0BDmqXnsyy67LMxT+8s3NjaG\n+ezZs8M8dT1/6jyB1FzwmjVrwnzVqlVhvnjx4jCP5vkPHjwY3jd1vfsNN9wQ5qnzAF588cUwnz9/\nfpivXr06zFNrHaT2TEidY1IO7m7d3d6bI/4JSf/k7pdI+mtJvzSziyU9LOk1d79I0huSfl2uwQKo\nrGTx3b3V3T8sfdwuqUnSZEk3SVpW+t+WSVpYqUECKK8f9BrfzKZKmi3pPUmN7t4mdf5wkDSh3IMD\nUBm9Lr6ZjZC0QtJDpSP/6a/dK/paHkD59Kr4ZjZQnaX/g7uvLN3cZmaNpfxsScVWdQRQNb094v9O\n0l/c/akut70s6Z7Sx3dLWnn6nQDUp+RluWY2V9IdkjaY2Qfq/JX+EUm/kfQnM7tP0hZJt1ZyoADK\nJzmPX/gBKjyPn5oHN+t2GvOUhQvjyYjU/vMPPPBAmI8ePTrMU+chDBgwIMzffPPNMG9vbw/z119/\nPcwPHToU5tFc/dGjR8P7fv7552GemudO7YkwYUL8fnPqeyO1FkNqvYDUORap6/nLocg8PoAfGYoP\nZIjiAxmi+ECGKD6QIYoPZIjiAxnq9/P4qbnY1B7tqXnyUaNGhfkFF1wQ5qm55NRcblNTU5jv3r07\nzFPz8KnzCFKi8afm4VNfu5TUuvipef7UORqtra1hnjqH5MiRI2HOPD6AqqL4QIYoPpAhig9kiOID\nGaL4QIYoPpChfj+PX1TRueTU/Ys+v6nzEFLXfFfh61uxx0597impr03Rr1015uGLYh4fwCkUH8gQ\nxQcyRPGBDFF8IEMUH8gQxQcylP08PvJV6XMw6gHz+ABOofhAhig+kCGKD2SI4gMZovhAhpLFN7PJ\nZvaGmW0ysw1m9g+l2x8zs+1mtr70Z37lhwugHJLz+GZ2tqSz3f1DMxshaZ2kmyT9vaSD7v5k4v79\nfzIU6Kd6msePdwTovGOrpNbSx+1m1iRpUikutooFgJr4Qa/xzWyqpNmS/qd004Nm9qGZ/dbMzizz\n2ABUSK+LX/o1f4Wkh9y9XdIzki5w99nq/I0g/JUfQP3o1bn6ZjZQ0n9I+k93f6qbfIqkf3f3Wd1k\nvMYHaqToufq/k/SXrqUvven3jZslbez78ABUU2/e1Z8r6b8lbZDkpT+PSLpdna/3OyS1SPqFu7d1\nc3+O+ECN9HTE57Jc4EeMy3IBnELxgQxRfCBDFB/IEMUHMkTxgQxRfCBDFB/IEMUHMkTxgQxRfCBD\nFB/IEMUHMkTxgQxRfCBDyVV2y2HOnDmnPv7yyy81ceLEajxsnzC+Yup5fPU8Nqn841u/fn2PGQtx\nAD9iNVuBB0D94TU+kCGKD2SoasU3s/lmttnMms3sV9V63N4ysxYz+8jMPjCz9+tgPEvNrM3M/rfL\nbWPM7FUz+9jM/quWuxf1ML662Ui1m81e/7F0e108h7XejLYqr/HN7AxJzZKulfSlpLWSFrv75oo/\neC+Z2f9J+it331vrsUiSmf2NpHZJv/9moxIz+42k3e7+z6UfnmPc/eE6Gt9j6sVGqtUQbPZ6r+rg\nOSy6GW1R1TriXyHpE3ff4u7HJb2ozk+ynpjq6KWPu78l6fQfQjdJWlb6eJmkhVUdVBc9jE+qk41U\n3b3V3T8sfdwuqUnSZNXJc9jD+Kq2GW21vtEnSdrW5e/b9e0nWS9c0p/NbK2Z3V/rwfRgwjeblpR2\nMZ5Q4/F0p+42Uu2y2et7khrr7TmsxWa0dXOEqwNz3X2OpL+T9MvSr7L1rt7mYutuI9VuNns9/Tmr\n6XNYq81oq1X8LySd1+Xvk0u31Q1331H67y5JL6nz5Um9aTOzRunUa8SdNR7Pd7j7Lv/2TaNnJV1e\ny/GUNntdIekP7r6ydHPdPIfdja9az2G1ir9W0jQzm2JmDZIWS3q5So+dZGbDSj95ZWbDJf1U9bEJ\nqOm7r/delnRP6eO7Ja08/Q5V9p3x1eFGqt/b7FX19RzWbDPaqp25V5qWeEqdP2yWuvsTVXngXjCz\n89V5lHd1Xr/wfK3HZ2YvSJonaZykNkmPSfo3Sf8q6VxJWyTd6u776mh8P1EvNlKt0vh62uz1fUl/\nUo2fw6Kb0RZ+fE7ZBfLDm3tAhig+kCGKD2SI4gMZovhAhig+kCGKD2SI4gMZ+n8IpFBdgNWF2QAA\nAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEHFJREFUeJzt3V2MVeW9x/HfHwYQBl+wCAQ4iBVPjUeUcKzxLUHCsTWm\nCaaJaOqFcBLTi3IOCTe13nCjpj2JJh4TY2Jpg42k7WmCcqGtbzEGTYEcRUGHgi8MZYYZiAFkBByG\n+Z+L2eLImfk/01l77b2G5/tJCMP+sWY/e+/5zZo9z3rWMncXgLyMa/YAADQexQcyRPGBDFF8IEMU\nH8gQxQcyVKj4Znanme02sz1m9vN6DQpAuWy08/hmNk7SHknLJHVK2i7pPnfffc7/40ABoEnc3Ya6\nvcge/0ZJe9293d1PS/q9pOUFPh+ABilS/DmS/j7o3wdqtwGoOH65B2SoSPE7JM0b9O+5tdsAVFyR\n4m+XtMDMLjeziZLuk7S5PsMCUKaW0W7o7mfMbLWkVzTwDWS9u7fVbWQASjPq6bwR3wHTeUDTlDGd\nB2CMovhAhig+kCGKD2SI4gMZovhAhig+kCGKD2SI4gMZovhAhig+kCGKD2SI4gMZovhAhig+kCGK\nD2SI4gMZovhAhig+kCGKD2SI4gMZovhAhig+kKFRX1ADGOvMhjzl/FllX3OimdjjAxmi+ECGKD6Q\nIYoPZIjiAxmi+ECGKD6QoULz+Ga2T9IxSf2STrv7jfUY1FiSmgsue/v+/v5C21dZ0eem6OdvaYnr\ncfr06XoOp6GKHsDTL+l2dz9Sj8EAaIyiP+pbHT4HgAYrWlqX9KqZbTezB+sxIADlK/qj/q3uftDM\nLtPAN4A2d99Sj4EBKE+hPb67H6z9fVjSJknZ/XIPGItGXXwzm2JmU2sft0r6gaRd9RoYgPIU+VF/\npqRNZua1z/O8u79Sn2EBKJOVvea49o3hvFV0rnncuPiHrtTnP3PmTJhPmDAhzHt7e8O8mcaPHx/m\nqecu9bVd9muXmudvxDEY7j7kg2QqDsgQxQcyRPGBDFF8IEMUH8gQxQcyRPGBDHFe/SZrbW0N89Sa\n8L6+vjBPzeMfPXo0zFNzzUWOA0k9tosuuijMFy5cGOb79u0L85tvvjnMP//88zDv7u4O85MnT4Z5\ne3t7mJd5jAV7fCBDFB/IEMUHMkTxgQxRfCBDFB/IEMUHMjTm5/GLrskuumY7lV9wwQVh/sgjj4T5\nli3xKQynTJkS5jfddFOYT506Ncznzp0b5m+99daw2fz588Nt9+/fH+b33HNPmE+ePDnMv/jiizB/\n7rnnwrytrS3MU8dAnDhxIsxT51IoE3t8IEMUH8gQxQcyRPGBDFF8IEMUH8gQxQcyVPnz6pc9j37q\n1KkwT82TT58+PcyXLFkS5uvXrw/z1OM7duxYmKfWhKfGf+RIfAX0SZMmDZulnvvjx4+H+WeffRbm\n1157bZh3dXWF+V133RXmqfXyqWNIUudKSJ13vx7d5Lz6AM6i+ECGKD6QIYoPZIjiAxmi+ECGKD6Q\noeR6fDNbL+lHkrrd/brabdMk/UHS5ZL2SVrh7vGE8igVXS+fmqdPbZ867/1jjz0W5suXLw/z1OPb\nuXNnmKfOHT9nzpwwT60JT63Xj6TOO//JJ5+E+Q033BDm0TEEUnqevKenJ8xTXxup1y51TYJmGske\n/7eSfnjObQ9Jes3dvyfpDUm/qPfAAJQnWXx33yLp3MO3lkvaUPt4g6S76zwuACUa7Xv8Ge7eLUnu\n3iVpRv2GBKBs9frlXrkH/AOoq9EWv9vMZkqSmc2SdKh+QwJQtpEW32p/vrZZ0sraxw9IerGOYwJQ\nsmTxzWyjpHck/bOZ7TezVZJ+KekOM/ubpGW1fwMYIyq/Hj+15jk115qSukb7+PHjw3zHjh1hfuWV\nV4Z5aq559erVYf7xxx+H+TvvvBPms2bNCvNLL700zNesWTNstnnz5nDb1LkEUucqSI0tdS6E1Hr/\n1Dx/6mujEevtU1iPD+Asig9kiOIDGaL4QIYoPpAhig9kiOIDGUqux2+21Jrm1Dx/Kk/Npa5duzbM\nL7nkkjBPefPNN8M8dQ331LnbU89fZ2dnmHd0dIT5o48+OmyWOm/+4sWLwzz13KbGtmfPnjDv7e0N\n89RzlzqXQWqeP7V9mdjjAxmi+ECGKD6QIYoPZIjiAxmi+ECGKD6Qocqvx6/D/Yf55MmTw/z6668P\n87fffjvMU8/vLbfcEuZbt24N86ImTJgQ5qnnb/78+cNmBw4cCLeN1vJL0qJFi8I8OoZASh9H0N7e\nHuap164R6+mLYj0+gLMoPpAhig9kiOIDGaL4QIYoPpAhig9kqPLr8YtKzUOnrv++bNmyMC967vSu\nrq4wT0k9vtT5CFKP/9577w3z6Nz5qbE988wzYZ46hiK13j11roHUa5M6xiG1nr/K2OMDGaL4QIYo\nPpAhig9kiOIDGaL4QIYoPpCh5Dy+ma2X9CNJ3e5+Xe22dZIelHSo9t8edvc/lzbKeHxhPnHixDA/\ndepUmKfWhKfmyVPz/OvWrQvzDz74IMxXrFgR5pdddlmYb9u2Lcxvu+22MF+1atWw2csvvxxu+/TT\nT4f5VVddFea7du0K89RjTx1DkTpOoOg1G5q5nn8ke/zfSvrhELc/4e6La3+aUnoAo5MsvrtvkXRk\niCje1QKorCLv8Veb2Q4z+7WZXVy3EQEo3WiL/7Sk77r7Ikldkp6o35AAlG1UxXf3w/7NbyaelfT9\n+g0JQNlGWnzToPf0ZjZrUPZjSfGvVwFUykim8zZKul3Sd8xsv6R1kpaa2SJJ/ZL2SfppiWMEUGdj\n/rz6qXn8lClTpoT5Sy+9FOYLFy4M89bW1jDv6ekJ84MHD4b5ggULwjx1HMOJEyfCPDVXHc2Fr1y5\nMtz2/vvvD/PUY/vwww/D/PHHHw/z7u7uMP/qq6/CvKhGzONzXn0AZ1F8IEMUH8gQxQcyRPGBDFF8\nIEMUH8jQeX9e/ZT+/v4wj84bL0l79uwJ8wsvvDDMU/P8H330UZin5so7OjrC/Pnnnw/ziy+O11/t\n3bt32Oyaa64Jt126dGmYT5s2Lcxff/31ME8dI5Gap0/Ns6fW66e+tpqJPT6QIYoPZIjiAxmi+ECG\nKD6QIYoPZIjiAxka8/P4Rdc0p+ZiU3PFGzduDPO+vr4wP378eJin1tOn5vlT57ZvaYm/BGbPnh3m\nu3fvHja7+uqrw21T1xxIPfYXXnghzM+cORPmRZX9+cvEHh/IEMUHMkTxgQxRfCBDFB/IEMUHMkTx\ngQyN+Xn8ok6ePBnmn376aZinzjuf+vy9vb1hnlrTnVpPX3RN+aFDh0a9/fTp0wvd97Fjx8I8tV4/\nOsZAau716ZuNPT6QIYoPZIjiAxmi+ECGKD6QIYoPZIjiAxlKzuOb2VxJz0maKalf0rPu/t9mNk3S\nHyRdLmmfpBXuHk+8VlBqnjx1bnazIS8/Xjepef7U/afmqouuKY/ON5A6BuKKK64I89R571evXh3m\nW7duDfMqn/e+bCPZ4/dJWuvu/yLpZkk/M7OrJT0k6TV3/56kNyT9orxhAqinZPHdvcvdd9Q+7pHU\nJmmupOWSNtT+2wZJd5c1SAD19Q+9xzez+ZIWSfqrpJnu3i0NfHOQNKPegwNQjhEX38ymSvqTpDW1\nPf+5bx7zPfAZGGNGVHwza9FA6X/n7i/Wbu42s5m1fJakeDUHgMoY6R7/N5I+cvcnB922WdLK2scP\nSHrx3I0AVNNIpvNulXS/pJ1m9p4GfqR/WNKvJP3RzP5dUrukFWUOFED9JIvv7m9LGm7h9L/VdziN\nl5rnLrpmu+g8e0qz15RH5yOYN29euG1qPf7kyZPDvLOzM8ynTp0a5kePHg3zsl+7ZuLIPSBDFB/I\nEMUHMkTxgQxRfCBDFB/IEMUHMpT9efXLNpbneqX0XHZLy/BfQnfccUe4bWo9/MaNG8O8o6MjzL/8\n8sswL/tcClXGHh/IEMUHMkTxgQxRfCBDFB/IEMUHMkTxgQwxj19Qai44Wq8uFT+vfdkmTZoU5gsW\nLBg2mz17drjt6dOnw3zJkiVhvmnTpjBPPfep1y6VV/21i7DHBzJE8YEMUXwgQxQfyBDFBzJE8YEM\nUXwgQ8zjF5Rab5+aC06dO761tTXMT548Gea9vb1hnhp/6v6jufienp5w29deey3Mn3rqqTBva2sL\n86Lz+GP9XAoR9vhAhig+kCGKD2SI4gMZovhAhig+kKFk8c1srpm9YWYfmtlOM/uP2u3rzOyAmb1b\n+3Nn+cMFUA8jmcfvk7TW3XeY2VRJ/2tmr9ayJ9z9ifKG13xFz72eWrOdOrd8X19foTw1l526/9Rx\nANE8/oEDB8JtDx8+HOapefojR46Eeeq1S51r4MSJE2E+liWL7+5dkrpqH/eYWZukObU43ysSAGPY\nP/Qe38zmS1okaWvtptVmtsPMfm1mF9d5bABKMuLi137M/5OkNe7eI+lpSd9190Ua+IngvP6RHzif\njKj4ZtaigdL/zt1flCR3P+zfHMz8rKTvlzNEAPU20j3+byR95O5Pfn2Dmc0alP9Y0q56DgxAeZK/\n3DOzWyXdL2mnmb0nySU9LOknZrZIUr+kfZJ+WuI4AdTRSH6r/7ak8UNEf67/cAA0gpW95tjMzt9F\nzRVQ9DiD1PYtLfG+Ifr6GT9+qP3FNxYvXhzm77//fpinzss/YcKEME/N058P6/HdfcgXmEN2gQxR\nfCBDFB/IEMUHMkTxgQxRfCBDFB/IEPP457mi8/ypufjo6yf1tVU0Rxrz+ADOovhAhig+kCGKj7ri\nffnYQPFRVxR/bKD4QIYacpnswcsvOzs7NXv27Ebc7aicb+MrOp2XOj33uTo6OjRnzsBJmKs2nXe+\nvbYp77777rAZ8/jAeWy4efzSiw+geniPD2SI4gMZaljxzexOM9ttZnvM7OeNut+RMrN9Zva+mb1n\nZtsqMJ71ZtZtZh8Mum2amb1iZn8zs7808+pFw4yvMhdSHeJir/9Zu70Sz2GzL0bbkPf4ZjZO0h5J\nyyR1Stou6T533136nY+QmX0q6V/dPb4SY4OY2W2SeiQ95+7X1W77laTP3f2/at88p7n7QxUa3zpJ\nx6twIdXadR9mDb7Yq6TlklapAs9hML571YDnsFF7/Bsl7XX3dnc/Len3GniQVWKq0Fsfd98i6dxv\nQsslbah9vEHS3Q0d1CDDjE+qyIVU3b3L3XfUPu6R1CZpriryHA4zvoZdjLZRX+hzJP190L8P6JsH\nWRUu6VUz225mDzZ7MMOY4e7d0tmrGM9o8niGUrkLqQ662OtfJc2s2nPYjIvRVmYPVwG3uvtiSXdJ\n+lntR9mqq9pcbOUupDrExV7Pfc6a+hw262K0jSp+h6R5g/49t3ZbZbj7wdrfhyVt0sDbk6rpNrOZ\n0tn3iIeaPJ5vqdqFVIe62Ksq9Bw282K0jSr+dkkLzOxyM5so6T5Jmxt030lmNqX2nVdm1irpB6rG\nRUBN336/t1nSytrHD0h68dwNGuxb46vghVT/38VeVa3nsGkXo23YkXu1aYknNfDNZr27/7IhdzwC\nZnaFBvbyroH1C883e3xmtlHS7ZK+I6lb0jpJL0j6H0n/JKld0gp3P1qh8S3VwHvVsxdS/fr9dBPG\nd6uktyTt1MDr+vXFXrdJ+qOa/BwG4/uJGvAccsgukCF+uQdkiOIDGaL4QIYoPpAhig9kiOIDGaL4\nQIYoPpCh/wN+SFKknEbMlQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD6pJREFUeJzt3VuslfWZx/Hfw2FzDIjNAEHEQ4RqJiLZBnXimKCoJdqg\naYKa9kKdRL2oM9WJSS03Jl61cwFhLhoNpQ01mLbT6OiNCsZ4oKhFcY/KQRomKBT2RhRBzht45mIv\nEJm9nv92ryM8309CWHv9eFl/Fvu33r3W/33fv7m7AOQypNUDANB8FB9IiOIDCVF8ICGKDyRE8YGE\naiq+mc0zs01mttnMfl6vQQFoLBvsPL6ZDZG0WdJcSTskrZV0j7tvOuPPcaAA0CLubv3dX8se/xpJ\nf3P3T929V9IfJN1Rw98HoElqKf4Fkrad9vX2yn0A2hwf7gEJ1VL8v0uadtrXUyv3AWhztRR/raTL\nzOwiM+uQdI+kF+szLACNNGywG7r7cTN7WNJK9b2ALHP3jXUbGYCGGfR03oAfgOk8oGUaMZ0H4CxF\n8YGEKD6QEMUHEqL4QEIUH0iI4gMJUXwgIYoPJETxgYQoPpAQxQcSovhAQhQfSIjiAwlRfCAhig8k\nRPGBhCg+kBDFBxKi+EBCFB9IiOIDCQ16QQ2g0YYPHx7mx48fD/MhQ+L92tChQ2va/sSJE2F+5MiR\nMG8l9vhAQhQfSIjiAwlRfCAhig8kRPGBhCg+kFBN8/hmtlXSXkknJPW6+zX1GBTOHtFcd2ke/sIL\nLwzzZcuWhfmBAwfC/KmnngrzKVOmhPnkyZPD/KWXXgrzTZs2hfnevXvDvJFqPYDnhKQ57r6nHoMB\n0By1/qhvdfg7ADRZraV1SavMbK2ZPVCPAQFovFp/1L/e3Xea2T+o7wVgo7uvrsfAADROTXt8d99Z\n+f1zSc9L4sM94Cww6OKb2WgzG1u5PUbSrZI+rtfAADROLT/qT5L0vJl55e9Z4e4r6zMsAI1k7t7Y\nB+h7YUCbMrMwnzZtWpiPGTOmanbbbbeF2z722GNhPnbs2DAfNWpUmJe88sorYT569OgwX7VqVZh3\ndXWF+csvvxzmpesNDIS79/sfzFQckBDFBxKi+EBCFB9IiOIDCVF8ICGKDyTEdfXbXOna7qV80qRJ\nYX7//feHeWdnZ5jPmTOnala67nyt17UvHYNQcvPNN4f5+++/H+al57Z0Xf3rrrsuzN9+++0wLz2/\nEfb4QEIUH0iI4gMJUXwgIYoPJETxgYQoPpAQ8/gtVpqrLl2bfs2aNWF+2WWXhXnpnPfSOeH79u2r\nmpXOl1+/fn2Yb9iwIcxnzJgR5qVjEDo6OsL84MGDYb5o0aIwLx2nsGPHjjBv5LUy2OMDCVF8ICGK\nDyRE8YGEKD6QEMUHEqL4QELM49eodE54aZ5+/vz5Yf7QQw+F+fTp08O8dBxAb29vmB89ejTMlyxZ\nUjXbv39/uO2KFSvCvLR+/FVXXRXm48aNC/O77747zJ988skw3717d5gfPnw4zBu9pkWEPT6QEMUH\nEqL4QEIUH0iI4gMJUXwgIYoPJGSluUQzWybph5J63H1m5b4Jkv4o6SJJWyXd5e79TrqaWesmK5ug\nNI9/ww03hHlprnjmzJlhPmLEiDAvje+rr74K84ULF4b566+/XjXbuXNnuG3puvMlpWMkxo8fH+a1\nzqMfOnQozGv999WDu/f7DTCQPf7vJP3gjPsel/Squ39f0muSflHb8AA0U7H47r5a0p4z7r5D0vLK\n7eWS7qzzuAA00GDf40909x5JcvduSRPrNyQAjVavD/fO6ffxwLlmsMXvMbNJkmRmkyXtqt+QADTa\nQItvlV8nvSjpvsrteyW9UMcxAWiwYvHN7FlJayTNMLPPzOx+Sb+UdIuZfSJpbuVrAGeJ4jx+zQ9w\njs/jl66dvnr16jCfPXt2mPf09IT59u3bw3zp0qVhvnbt2jDfsmVLmEfHCRw4cCDctpb13QeidF3/\n0rUGSscJlMZfyptxPn4t8/gAzjEUH0iI4gMJUXwgIYoPJETxgYQoPpAQ19UvKJ3PPnFifH5S6br2\npbne888/P8w/++yzMC+dr1/avjQX385K58uX/m8bfZxBK7HHBxKi+EBCFB9IiOIDCVF8ICGKDyRE\n8YGEmMev0bXXXhvmGzZsCPOOjo4wL13X/qabbgrzbdu2hXlpDffS9QaOHz8e5u2slevTtxp7fCAh\nig8kRPGBhCg+kBDFBxKi+EBCFB9IiHn8gtI52++9916Y33777WG+ePHiMB82LP4vWrVqVZjPnz8/\nzNetWxfmpTXev/zyy6rZuXw++9mOPT6QEMUHEqL4QEIUH0iI4gMJUXwgIYoPJFScxzezZZJ+KKnH\n3WdW7ntC0gOSdlX+2EJ3f7lho2yh0jnbu3fvDvM1a9aEeWkefdq0aWG+YMGCMJ83b16Yr1ixIsxv\nvfXWMI/G9/TTT4fbvvPOO2Ge+Xz5RhvIHv93kn7Qz/2L3L2z8uucLD1wrioW391XS9rTTxQf0gag\nbdXyHv9hM+sys9+Y2fi6jQhAww22+L+WdKm7z5LULWlR/YYEoNEGVXx3/9y/+eRlqaTZ9RsSgEYb\naPFNp72nN7PJp2U/kvRxPQcFoLEGMp33rKQ5kr5nZp9JekLSjWY2S9IJSVslPdTAMQKoM2v0XKmZ\nndWTsaXz8UeOHBnm5513Xph3dnaGeXd3d5i/+uqrYT5u3LgwP3bsWJi/8cYbYb558+aq2cqVK8Nt\n33rrrTDfs6e/ySR8F+7e7zcwR+4BCVF8ICGKDyRE8YGEKD6QEMUHEqL4QEJcV7+gNI/f29sb5rt2\n7Qrz0jz8JZdcEuZffPFFmJfWty+ZPTs+GvvSSy+tmm3bti3c9ujRo2FeOg6ghOv6V8ceH0iI4gMJ\nUXwgIYoPJETxgYQoPpAQxQcSYh6/YMiQ+LXx+PHjYV663kFp+9I56W+++WaYf/LJJ2E+ZcqUML/i\niivCvKenp2p29dVXh9uWrulfupbA3r17wxzVsccHEqL4QEIUH0iI4gMJUXwgIYoPJETxgYTSX1e/\ndL79sGHxoQ6lc75L8/Qlo0aNCvPS+fqjR48O802bNoV5aV2AxYsXV81uvPHGmh770UcfDfMPP/ww\nzI8cORLmGXBdfQCnUHwgIYoPJETxgYQoPpAQxQcSovhAQsXz8c1sqqTfS5ok6YSkpe7+n2Y2QdIf\nJV0kaauku9z9nDtBujRP3+prt5fmwkvX1T927FiYjxgxIsznzp1bNSsdg3D55ZeH+cGDB8O81mMk\nMhvIHv+YpH9393+U9E+Sfmpml0t6XNKr7v59Sa9J+kXjhgmgnorFd/dud++q3N4vaaOkqZLukLS8\n8seWS7qzUYMEUF/f6T2+mV0saZakdyRNcvceqe/FQdLEeg8OQGMMuPhmNlbSnyX9rLLnP/MY/LY+\nJh/ANwZUfDMbpr7SP+PuL1Tu7jGzSZV8sqR4dUgAbWOge/zfStrg7ktOu+9FSfdVbt8r6YUzNwLQ\nngYynXe9pJ9I+sjMPlDfj/QLJf1K0p/M7F8kfSrprkYOFED9FIvv7n+RVG0y+Ob6Dqf5StcjKOWl\nefLSPH/pegClNeRL4+vt7Q3z0lz6I488Eubjx4+vmpX+7StXrgzziy++OMy3bNkS5qVjFDLjyD0g\nIYoPJETxgYQoPpAQxQcSovhAQhQfSKg4j3+uK82jl+bJS3PVkydPDvMDBw6E+ddffx3mpfFfcMEF\nYf7cc8+FeWkuPXr89evXh9s+88wzYd7V1RXmhw8fDnNUxx4fSIjiAwlRfCAhig8kRPGBhCg+kBDF\nBxJKP49fmqcfPnx4mM+YMaOm7a+88sowHzlyZJhPnz49zB988MEwHzduXJjv27cvzKNz3pcvX141\nk6QdO3aEeU9PT5hj8NjjAwlRfCAhig8kRPGBhCg+kBDFBxKi+EBC6efxS+ezjxkzJsxL58sfOnQo\nzEvz8AsWLAjzWbNmhXlpnr50PYDSGvXROfUbN24Mty3lpWsdYPDY4wMJUXwgIYoPJETxgYQoPpAQ\nxQcSKhbfzKaa2Wtmtt7MPjKzf63c/4SZbTezdZVf8xo/XAD1YKXz0c1ssqTJ7t5lZmMlvS/pDkl3\nS/ra3RcVto8foM2V5vlLhg2LD5UYO3ZsmA8ZEr8233LLLWE+YcKEmh7/3XffDfPu7u6qWekYgZ07\nd4Y58/i1c/d+v4GLB/C4e7ek7srt/Wa2UdLJVRpqawWAlvhO7/HN7GJJsySd3A08bGZdZvYbMxtf\n57EBaJABF7/yY/6fJf3M3fdL+rWkS919lvp+Igh/5AfQPgZUfDMbpr7SP+PuL0iSu3/u33xAsFTS\n7MYMEUC9DXSP/1tJG9x9yck7Kh/6nfQjSR/Xc2AAGqf44Z6ZXS/pJ5I+MrMPJLmkhZJ+bGazJJ2Q\ntFXSQw0cJ4A6Gsin+n+RNLSf6OX6DwdAMxTn8Wt+gLN8Hr/Vaj2OYOjQ/l6zvxFdF1+SOjo6wry3\nt7dq1ujvLZRVm8fnkF0gIYoPJETxgYQoPpAQxQcSovhAQhQfSIh5fOAcxjw+gFMoPpAQxQcSovhA\nQhQfSIjiAwk1ZZnszs7OU7d37NihKVOmNONhB4Xx1aadx9fOY5PqP75169ZVzZjHB85h1ebxG158\nAO2H9/hAQhQfSKhpxTezeWa2ycw2m9nPm/W4A2VmW83sf8zsAzP7axuMZ5mZ9ZjZh6fdN8HMVprZ\nJ2b2SitXL6oyvrZZSLWfxV7/rXJ/WzyHrV6Mtinv8c1siKTNkuZK2iFpraR73H1Twx98gMzsfyVd\n7e57Wj0WSTKzf5a0X9Lv3X1m5b5fSfrC3f+j8uI5wd0fb6PxPaEBLKTaDMFir/erDZ7DWhejrVWz\n9vjXSPqbu3/q7r2S/qC+f2Q7MbXRWx93Xy3pzBehOyQtr9xeLunOpg7qNFXGJ7XJQqru3u3uXZXb\n+yVtlDRVbfIcVhlf0xajbdY3+gWStp329XZ9849sFy5plZmtNbMHWj2YKia6e490ahXjiS0eT3/a\nbiHV0xZ7fUfSpHZ7DluxGG3b7OHawPXu3inpNkk/rfwo2+7abS627RZS7Wex1zOfs5Y+h61ajLZZ\nxf+7pGmnfT21cl/bcPedld8/l/S8+t6etJseM5sknXqPuKvF4/mWdltItb/FXtVGz2ErF6NtVvHX\nSrrMzC4ysw5J90h6sUmPXWRmoyuvvDKzMZJuVXssAmr69vu9FyXdV7l9r6QXztygyb41vjZcSPX/\nLfaq9noOW7YYbdOO3KtMSyxR34vNMnf/ZVMeeADM7BL17eVdfecvrGj1+MzsWUlzJH1PUo+kJyT9\nt6T/knShpE8l3eXuX7XR+G5U33vVUwupnnw/3YLxXS/pTUkfqe//9eRir3+V9Ce1+DkMxvdjNeE5\n5JBdICE+3AMSovhAQhQfSIjiAwlRfCAhig8kRPGBhCg+kND/AeiwvkvIeFpcAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEAJJREFUeJzt3WuMVfW5x/Hfw1XkIhMuw02EBtuTeAnBSzyRF1Rra45N\nNDXhGBujPYk2Rj0m542WF5j4wtgTL2hi33ilTYlWjEVjUq2aeKn2FKtw0ELVkNEiDAIiF8Hh9pwX\ns1XkzDz/KWvfZp7vJyHO7B+L/Z/l/PaaPf+11t/cXQByGdbqAQBoPooPJETxgYQoPpAQxQcSovhA\nQpWKb2YXm9kGM3vfzG6p16AANJYd7zy+mQ2T9L6kCyVtlrRa0hXuvuGYv8eJAkCLuLv19XiVI/65\nkj5w94/c/aCkxyVdWuHfA9AkVYo/U9I/jvp8U+0xAG2OX+4BCVUp/ieSZh/1+azaYwDaXJXir5Y0\nz8xOMbNRkq6Q9Ex9hgWgkUYc74buftjMbpT0gnpfQB529/V1GxmAhjnu6bwBPwHTeUDLNGI6D8Ag\nRfGBhCg+kBDFBxKi+EBCFB9IiOIDCVF8ICGKDyRE8YGEKD6QEMUHEqL4QEIUH0iI4gMJUXwgIYoP\nJETxgYQoPpAQxQcSovhAQhQfSIjiAwkd94IaQFVmfd7yfcD5kSNH6jmcVDjiAwlRfCAhig8kRPGB\nhCg+kBDFBxKi+EBClebxzaxL0i5JRyQddPdz6zGooWTYsPi1tTRXXdp+5MiRYX7yySeH+aZNm8J8\n/PjxYT5r1qx+s0suuSTc9qKLLgrztWvXhvkDDzwQ5h9//HGY9/T0hHnpPIGq5xG4e6Xtq6h6As8R\nSYvcfWc9BgOgOar+qG91+DcANFnV0rqkP5rZajO7th4DAtB4VX/UP9/dt5jZFPW+AKx399frMTAA\njVPpiO/uW2r/3SbpaUn8cg8YBI67+GZ2opmNq308VtIPJb1br4EBaJwqP+p3SnrazLz27/zW3V+o\nz7AANJI1ei6x9sIwaJXm2Uvz6KV88uTJYT5z5swwv+GGG8L8yy+/DPMFCxaEeek8gnnz5vWbHT58\nONy2tG92794d5hs3bgzzRx99NMxXrlwZ5vv37w/z0nkAVbtVj266e5/fwEzFAQlRfCAhig8kRPGB\nhCg+kBDFBxKi+EBCg/6++lXvzV6aKx01alSYd3R0hPn1119fafvrrrsuzEtz4YcOHQrzXbt2hfmB\nAwfC/KWXXuo3mzt3brjtqaeeGubjxo0L87POOivMS/caeOqpp8K8dB5CSSuvty/hiA8kRPGBhCg+\nkBDFBxKi+EBCFB9IiOIDCQ36efzSXGkpHz58eJiPGBHvokceeSTMzz777DCfMGFCmJeuhy9db1+6\nZvzVV18N8xdffDHMP//8836z9957L9x26dKlYX755ZeHeelr6+rqCvMm3Iuipc8f4YgPJETxgYQo\nPpAQxQcSovhAQhQfSIjiAwkN+nn8kqrX65euxx89enSl7UvXy69atSrMv/jiizC/++67w3zPnj1h\n3t3dHebRGvGlffPJJ5+EeekchdJ99UvnKOzduzfMS9fjVz2HpJU44gMJUXwgIYoPJETxgYQoPpAQ\nxQcSovhAQsV5fDN7WNKPJW119zNrj3VIekLSKZK6JC129/gG7W0qmoeWpLFjx4Z56Zrz0hrvGzZs\nCPMnnngizEv3jt+xY0eYN3KuefLkyWF+zjnnhPnmzZvDfMWKFWH+2muvhXnVefh2nqcvGcgR/1FJ\nPzrmsVslveju35P0sqRf1HtgABqnWHx3f13SzmMevlTS8trHyyVdVudxAWig432PP9Xdt0qSu3dL\nmlq/IQFotHr9cm/wvtkBEjre4m81s05JMrNpkj6t35AANNpAi2+1P195RtI1tY+vlhRfQgagrRSL\nb2YrJL0h6btm9rGZ/UzSnZIuMrO/S7qw9jmAQaI4j+/uV/YT/aDOY2lL27ZtC/Nly5aF+QUXXBDm\nb731VqXnL12PX3WuuXS/gmhdgCuv7O9bp9fEiRPDvDSPP3v27DAvXc9fuhfCYJ6nL+HMPSAhig8k\nRPGBhCg+kBDFBxKi+EBCFB9IyJqwRnhLJ0NL89AlJ5xwQpiPGTOm0vNPmTIlzKdNmxbm69atC/PS\nPH/pfgTnnXdemN95Z//nbkVz/JI0b968MH/88cfDfOnSpWFeum9/6b75Q4G79/kNyBEfSIjiAwlR\nfCAhig8kRPGBhCg+kBDFBxIqXo+f3YEDB8K8dE13aZ6/dO/5u+66K8xL17SX5ulL5wEsWrQozKOv\nr3QOQ2nfltavL11vX/raM+OIDyRE8YGEKD6QEMUHEqL4QEIUH0iI4gMJDfl5/NL9BoYNi1/7StuX\nrunev39/mC9cuDDMOzs7w7x0PX9pLr10TXzp6+vp6ek327dvX7jtSSedFOalcwjuvffeMC+tSZAZ\nR3wgIYoPJETxgYQoPpAQxQcSovhAQhQfSKh4X30ze1jSjyVtdfcza4/dJulaSZ/W/toSd/9DP9sP\n3UXGB2DEiPhUifnz54f5c889F+aTJk0K89L/31Le3d0d5vfff3+/2caNG8NtV6xYEeZ79uwJ82XL\nloX5HXfcEeaNXlOiHVS5r/6jkn7Ux+P3uPuC2p8+Sw+gPRWL7+6vS9rZR1RtiRoALVPlPf6NZrbG\nzB4ys/jcSwBt5XiL/ytJ33H3+ZK6Jd1TvyEBaLTjKr67b/NvfjPyoKRz6jckAI020OKbjnpPb2ZH\nL+H6E0nv1nNQABqreFmuma2QtEjSJDP7WNJtkr5vZvMlHZHUJennDRwjgDorzuNXfoIhPo9fut69\nlJeuSb/99tvDfM6cOWG+Zs2aMH/yySfDfPfu3WEezfOfdtpp4bbPP/98mHd0dIR5V1dXmJfuNcA8\nPoBUKD6QEMUHEqL4QEIUH0iI4gMJUXwgIebxC6rO0w8fPjzMp0+fHual+/KX1ogvPf+uXbvCvIox\nY8aE+fbt28P80KFDYf7GG2+E+S233BLma9euDfOhgHl8AF+j+EBCFB9IiOIDCVF8ICGKDyRE8YGE\nijfiGOpK8/ADWHcgzI8cORLmW7ZsCfNhw+LX5gMHDoR5SSPP45g4cWKYl9avHz9+fJjPnTs3zEv7\nNjOO+EBCFB9IiOIDCVF8ICGKDyRE8YGEKD6Q0JCfxy/Ns1dVmmc/8cQTw7x0PX1Jq+8NH+3fESPi\nb699+/aFeeleAY899lil7TPjiA8kRPGBhCg+kBDFBxKi+EBCFB9IiOIDCRXn8c1slqRfS+qUdETS\ng+5+v5l1SHpC0imSuiQtdvemT5xWve991Xn+0jz+yJEjw/zw4cNhXprrbrTS/hk9enS/2eLFi8Nt\nOzo6wrx0X/3SffF7enrCPLOBHPEPSfovdz9N0r9KusHM/kXSrZJedPfvSXpZ0i8aN0wA9VQsvrt3\nu/ua2sd7Ja2XNEvSpZKW1/7ackmXNWqQAOrrn3qPb2ZzJM2X9GdJne6+Vep9cZA0td6DA9AYAy6+\nmY2TtFLSzbUj/7EniQ/qNfKATAZUfDMbod7S/8bdV9Ue3mpmnbV8mqRPGzNEAPU20CP+I5L+5u73\nHfXYM5KuqX18taRVx24EoD0NZDrvfEk/lbTOzN5R74/0SyT9UtLvzOw/JH0kKZ67AdA2isV39z9J\n6m+R9R/UdzjNV1o/vuo8f2kevnTf/dJ5AqXr8UvXxJfysWPHhvlNN93Ub3bzzTeH25auly+tb//B\nBx+EeWnflfb9UMaZe0BCFB9IiOIDCVF8ICGKDyRE8YGEKD6Q0KC/r35pnn3UqFFhfvDgwTAvzXOX\n7ps/YcKEMC+tb799+/Ywnz59ephPmTIlzJcsWRLmM2bMCPNonn/Dhg3htqV5/FdeeSXMd+/eHebR\nvQKk8poGrV6zoJE44gMJUXwgIYoPJETxgYQoPpAQxQcSovhAQoN+Hr90TXXV6907OzvDfOrU+B6j\nCxcuDPPSXPJVV10V5meccUaYl66nL50HsXPnzjDftGlTv9nKlSvDbd98880wnzRpUph/9tlnYV66\nL39mHPGBhCg+kBDFBxKi+EBCFB9IiOIDCVF8IKFBP49fUrrevrR+fWmefc+ePWFeuh5+9uzZYT5n\nzpwwLzl8+HCYf/jhh2Femsd/6KGH+s2effbZcNuq52BUvS9+6RwGrscHMKRQfCAhig8kRPGBhCg+\nkBDFBxIqFt/MZpnZy2b2npmtM7Obao/fZmabzOzt2p+LGz9cAPVgpblKM5smaZq7rzGzcZL+KulS\nSf8uaY+731PYflBPhpbmekv33S9d71/KS9fTn3766WG+fv36MN+xY0eYjxkzJsx7enr6zUrz7KVz\nDEoG8L1bafuhwN373AnFE3jcvVtSd+3jvWa2XtLMWhzvWQBt6Z96j29mcyTNl/Q/tYduNLM1ZvaQ\nmZ1U57EBaJABF7/2Y/5KSTe7+15Jv5L0HXefr96fCMIf+QG0jwEV38xGqLf0v3H3VZLk7tv8mzdJ\nD0o6pzFDBFBvAz3iPyLpb+5+31cP1H7p95WfSHq3ngMD0DjFX+6Z2fmSfippnZm9I8klLZF0pZnN\nl3REUpeknzdwnADqaCC/1f+TpOF9RH+o/3AANENxHr/yEwzyeXxgMOtvHp9TdoGEKD6QEMUHEqL4\nQEIUH0iI4gMJUXwgIYoPJETxgYQoPpAQxQcSovhAQhQfSIjiAwk1ZZnsBQsWfP3x5s2bNWPGjGY8\n7XFhfNW08/jaeWxS/cf39ttv95txPT4whPV3PX7Diw+g/fAeH0iI4gMJNa34ZnaxmW0ws/fN7JZm\nPe9AmVmXma01s3fM7C9tMJ6HzWyrmf3vUY91mNkLZvZ3M3u+lasX9TO+tllItY/FXv+z9nhb7MNW\nL0bblPf4ZjZM0vuSLpS0WdJqSVe4+4aGP/kAmdlGSWe5+85Wj0WSzGyhpL2Sfu3uZ9Ye+6WkHe7+\n37UXzw53v7WNxnebBrCQajMEi73+TG2wD6suRltVs47450r6wN0/cveDkh5X7xfZTkxt9NbH3V+X\ndOyL0KWSltc+Xi7psqYO6ij9jE9qk4VU3b3b3dfUPt4rab2kWWqTfdjP+Jq2GG2zvtFnSvrHUZ9v\n0jdfZLtwSX80s9Vmdm2rB9OPqe6+Vfp6FeOpLR5PX9puIdWjFnv9s6TOdtuHrViMtm2OcG3gfHdf\nIOnfJN1Q+1G23bXbXGzbLaTax2Kvx+6zlu7DVi1G26zifyJp9lGfz6o91jbcfUvtv9skPa3etyft\nZquZdUpfv0f8tMXj+ZZ2W0i1r8Ve1Ub7sJWL0Tar+KslzTOzU8xslKQrJD3TpOcuMrMTa6+8MrOx\nkn6o9lgE1PTt93vPSLqm9vHVklYdu0GTfWt8bbiQ6v9b7FXttQ9bthht087cq01L3KfeF5uH3f3O\npjzxAJjZXPUe5V291y/8ttXjM7MVkhZJmiRpq6TbJP1e0pOSTpb0kaTF7v55G43v++p9r/r1Qqpf\nvZ9uwfjOl/SqpHXq/f/61WKvf5H0O7V4Hwbju1JN2IecsgskxC/3gIQoPpAQxQcSovhAQhQfSIji\nAwlRfCAhig8k9H+ejg75x3s86gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD/NJREFUeJzt3VuM1GWax/HfwxlsnIAcFPAA8RRXDWLGgGLixF1HzXjI\nXHjiQmeReDGwk+zNOCbqjZpxEzVKokZHDTNBZ3QSD1cDo8YY2ahkkV1dm1FiYAaxW1iBAHLm2Ysu\nEJnu563pf1V1dT/fT0Lsrh//rrdLfv3vqrfe92/uLgC5DBvoAQBoPYoPJETxgYQoPpAQxQcSovhA\nQpWKb2ZXm9k6M/vMzH7ZqEEBaC7r7zy+mQ2T9JmkKyVtlrRa0i3uvu64v8cbBYAB4u7W2+1VzviX\nSPrc3Te6+wFJv5d0Q4WvB6BFqhR/uqS/HfP5ptptANocL+4BCVUp/peSTjvm8xm12wC0uSrFXy3p\nTDM73cxGSbpF0huNGRaAZhrR3wPd/ZCZLZa0Uj0/QJ5z986GjQxA0/R7Oq/uO2A6DxgwzZjOAzBI\nUXwgIYoPJETxgYQoPpAQxQcSovhAQhQfSIjiAwlRfCAhig8kRPGBhCg+kBDFBxKi+EBC/d6IA6jK\nrNel4g3DJeD7xhkfSIjiAwlRfCAhig8kRPGBhCg+kBDFBxJiHh+h0lz76NGj+8ymTp0aHjtiRPzP\n79prrw3zM844I8wfe+yxMB81alSYd3V1hfnevXvD/PDhw2E+kDjjAwlRfCAhig8kRPGBhCg+kBDF\nBxKi+EBCVmXNspltkLRD0mFJB9z9kl7+Douim6jqmvbS8ePHjw/zBQsW9JndfPPN4bG7d+8O8/PO\nOy/MX3755TBft25dmK9duzbMP/nkkzCvut7/wIEDlY6vh7v3+j+46ht4Dku6wt23Vfw6AFqo6q/6\n1oCvAaDFqpbWJf3ZzFab2aJGDAhA81X9Vf8yd//KzCar5wdAp7u/14iBAWieSmd8d/+q9t8tkl6V\n9Hcv7gFoP/0uvpmNM7OO2scnSLpKUvwyKIC2UOVX/amSXq1N142QtNzdVzZmWACaqdI8fl13wDx+\nJaV59lI+cuTIMJ85c2aYL126NMzPPvvsPrMpU6aEx+7fvz/MS+vZS3npe3/mmWfC/KGHHgrzb7/9\nNsz37dsX5q3Y97+veXym4oCEKD6QEMUHEqL4QEIUH0iI4gMJUXwgIfbVH2BV19MPGxb/7C7tPb98\n+fIwP+ecc8L84MGDfWalsR06dCjMS/P8X3zxRZiX9u1ftWpVmI8bNy7Md+zYEeatmKfvL874QEIU\nH0iI4gMJUXwgIYoPJETxgYQoPpAQ6/GbrDRPP3z48DAvzYXPmjUrzFesWBHmp5xySpiXxrdtW987\nq69evTo8tjQPXtp3fu7cuWHe0dER5tHYJWnevHlhvnPnzjAv7RfQCqzHB3AUxQcSovhAQhQfSIji\nAwlRfCAhig8kxHr8JivN45feRzFp0qQwf+edd8J8woQJYV6ap9+zZ0+Yr1+/vs/siSeeCI/t7OwM\n84svvjjMr7/++jAv7au/Zs2aML/kkviKcG+99VaYtzPO+EBCFB9IiOIDCVF8ICGKDyRE8YGEKD6Q\nUHEe38yek/QTSd3ufmHttgmS/iDpdEkbJN3k7vHiavTqpJNOCvOnn346zEvz/KX3EezevTvMH3zw\nwTB/5ZVX+sxK14cfPXp0mJfWs5euT196bObPnx/mCxcuDPPBrJ4z/guSfnzcbXdLetPdz5H0tqRf\nNXpgAJqnWHx3f0/S8VuV3CBpWe3jZZJubPC4ADRRf5/jT3H3bkly9y5JUxo3JADN1qgX91LvqwcM\nNv0tfreZTZUkMztZ0teNGxKAZqu3+Fb7c8Qbku6ofXy7pNcbOCYATVYsvpm9KOk/JZ1tZn81s59J\n+rWkfzGzv0i6svY5gEGiOI/v7rf1Ef1zg8cyJJXWuy9ZsiTMr7nmmjAvzXVv3749zG+99dYw/+CD\nD8I8mosfNWpUeOyXX34Z5lOmxK8ZHzx4MMxL+/J//XX8DHXy5Mlh3t3dHebtjHfuAQlRfCAhig8k\nRPGBhCg+kBDFBxKi+EBC7KtfUWm9+5w5c8K8NI9fmovesmVLmC9atCjMS/vyl/b9j9bEjxs3Ljy2\n9NhddNFFYT5sWHzeKq3XL+X79+8P89Jj08444wMJUXwgIYoPJETxgYQoPpAQxQcSovhAQszjV1Ta\nu/2BBx4I83Xr1oX5xIkTw/yqq64K802bNoX5oUOHwrwkmkvfu3dvpa9demw+/fTTMJ83b16l+y+9\nT2AwG7rfGYA+UXwgIYoPJETxgYQoPpAQxQcSovhAQunn8Utrwkv74i9YsCDMTz311Er3X1ovX9ob\nfsSI+H9xaV/+kSNHhnm0X0Dpa5e+940bN4b5Rx99FObnn39+mL/00kthXtr3fzDjjA8kRPGBhCg+\nkBDFBxKi+EBCFB9IiOIDCRXn8c3sOUk/kdTt7hfWbrtf0iJJRyaR73H3PzVtlBWU5opLxowZE+al\na8CX5vG7urrCfOXKlWFe2rv+m2++CfPSPH1pvX70+Jbm8ceOHRvmpXn20vf27rvvhnnpPRK7du0K\n88GsnjP+C5J+3Mvtj7r7nNqftiw9gN4Vi+/u70na1ktU7VQKYMBUeY6/2MzWmtlvzOwHDRsRgKbr\nb/GflDTL3WdL6pL0aOOGBKDZ+lV8d9/i310x8FlJP2zckAA0W73FNx3znN7MTj4m+6mkTxo5KADN\nVc903ouSrpB0kpn9VdL9kn5kZrMlHZa0QdJdTRwjgAYrFt/db+vl5heaMJamKM3jl/LTTjstzBcv\nXhzmpXn+nTt3hvnWrVvDfMeOHWFemqcvrdcvvY9h9+7d/f7as2fPDvPt27eHeek9DJs3bw7z9evX\nh/l3z2aHHt65ByRE8YGEKD6QEMUHEqL4QEIUH0iI4gMJDfl99UtzyaV57lmzZoV5ac32li1bwry0\nJvz9998P89J6+dL3f8IJJ4R5aS49ep/C5MmTw2Pvuit+39ekSZPCvDT2JUuWhHlpPT/z+ACGFIoP\nJETxgYQoPpAQxQcSovhAQhQfSGjIz+OX9nbft29fmE+cODHMS2u+9+zZE+ZPPfVUmJfm6Uv2798f\n5qW57GHD4nNDtKb+vvvuC4+94IILwryjoyPMH3744TD//PPPw7z0b2Mo44wPJETxgYQoPpAQxQcS\novhAQhQfSIjiAwkN+nn80r74pfXoJ554YpiX9sXftGlTmJf2vS8p7WtfGv+2bb1d6Lh+06ZNC/OF\nCxf2mV166aXhsaW9EPbu3Rvmq1atCvPSexhK/3ZYjw9gSKH4QEIUH0iI4gMJUXwgIYoPJETxgYSK\n8/hmNkPSbyVNlXRY0rPu/oSZTZD0B0mnS9og6SZ3rzZp3Q/Dhw8P8/Hjx4f53Llzw3z+/PlhPnPm\nzDA/88wzw/zyyy8P8507d4b52LFjw/zNN98M89I16h955JEwj/a+L72HovQeg9K++52dnWGeeZ6+\npJ4z/kFJ/+7u/yRpnqSfm9m5ku6W9Ka7nyPpbUm/at4wATRSsfju3uXua2sf75LUKWmGpBskLav9\ntWWSbmzWIAE01j/0HN/MzpA0W9L7kqa6e7fU88NB0pRGDw5Ac9RdfDPrkPRHSb+onfmPf4KU9wkT\nMMjUVXwzG6Ge0v/O3V+v3dxtZlNr+cmSvm7OEAE0Wr1n/Oclferujx9z2xuS7qh9fLuk148/CEB7\nqmc67zJJCyR9bGYfqedX+nskPSzpZTP7V0kbJd3UzIECaBxr9lymmTX1Dkrz+KV57nPPPTfMly9f\nHubTp08P89K+9aV9+0vfX2lv+NL17UvXsC/tqx+ted+6dWt47NKlS8P8ySefDPPSNQsy75t/hLv3\n+mYG3rkHJETxgYQoPpAQxQcSovhAQhQfSIjiAwkN+nn80prrCRMmhPlZZ50V5qX19nfeeWeYl/aW\nL61ZL+UHDx4M80OHDoX5rl27KuUrVqzoM3v++efDY9esWRPmJaXvLfN6+yOYxwdwFMUHEqL4QEIU\nH0iI4gMJUXwgIYoPJDTo5/FLSuvZS9do7+joCPPrrrsuzEuP77333hvmpXn0MWPGhHnp+3/ttdcq\n5R9++GGfWdV59qo5mMcHcAyKDyRE8YGEKD6QEMUHEqL4QEIUH0hoyM/jl5TW85eU9p0vvQ+gdHxp\nHr80/qrXiC+t92fv+vbGPD6Aoyg+kBDFBxKi+EBCFB9IiOIDCRWLb2YzzOxtM/tfM/vYzJbUbr/f\nzDaZ2Zran6ubP1wAjVCcxzezkyWd7O5rzaxD0n9JukHSzZJ2uvujhePbeh6/qtI8/ECvKS+txy8p\nralHe+trHj++WkPPgV2Sumof7zKzTknTa3G1d78AGBD/0HN8MztD0mxJH9RuWmxma83sN2b2gwaP\nDUCT1F382q/5f5T0C3ffJelJSbPcfbZ6fiMIf+UH0D7qKr6ZjVBP6X/n7q9Lkrtv8e+eoD4r6YfN\nGSKARqv3jP+8pE/d/fEjN9Re9Dvip5I+aeTAADRPPa/qXybpXUkfS/Lan3sk3aae5/uHJW2QdJe7\nd/dyPK/qV8ir4lX93Pp6VT/9styqKD7aGcUfoqruJ8De9EMb6/EBHEXxgYQoPpAQxQcSovhAQhQf\nSIjiAwkVl+WivTEPj/7gjA8kRPGBhCg+kBDFBxKi+EBCFB9IqCXTeXPmzDn68ebNmzVt2rRW3G2/\nML5q2nl87Tw2qfHjW7NmTZ8Z6/GBIWzANuIA0H54jg8kRPGBhFpWfDO72szWmdlnZvbLVt1vvcxs\ng5n9t5l9ZGYftsF4njOzbjP7n2Num2BmK83sL2a2YiCvXtTH+NrmQqq9XOz132q3t8VjONAXo23J\nc3wzGybpM0lXStosabWkW9x9XdPvvE5m9oWki91920CPRZLMbL6kXZJ+6+4X1m57WNL/uft/1H54\nTnD3u9tofPerjguptkJwsdefqQ0ew6oXo62qVWf8SyR97u4b3f2ApN+r55tsJ6Y2eurj7u9JOv6H\n0A2SltU+XibpxpYO6hh9jE9qkwupunuXu6+tfbxLUqekGWqTx7CP8bXsYrSt+oc+XdLfjvl8k777\nJtuFS/qzma02s0UDPZg+TDly0ZLaVYynDPB4etN2F1I95mKv70ua2m6P4UBcjLZtznBt4DJ3nyPp\nWkk/r/0q2+7abS627S6k2svFXo9/zAb0MRyoi9G2qvhfSjrtmM9n1G5rG+7+Ve2/WyS9qp6nJ+2m\n28ymSkefI349wOP5nna7kGpvF3tVGz2GA3kx2lYVf7WkM83sdDMbJekWSW+06L6LzGxc7SevzOwE\nSVepPS4Cavr+8703JN1R+/h2Sa8ff0CLfW98bXgh1b+72Kva6zEcsIvRtuyde7VpicfV88PmOXf/\ndUvuuA5mNlM9Z3lXz/qF5QM9PjN7UdIVkk6S1C3pfkmvSXpF0qmSNkq6yd23t9H4fqQ6LqTaovH1\ndbHXDyW9rAF+DKtejLby/fOWXSAfXtwDEqL4QEIUH0iI4gMJUXwgIYoPJETxgYQoPpDQ/wOFZghG\nT9lPvQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADstJREFUeJzt3W2MlXV6x/HfJQg4Q1Qk8iSulmDXaCKEZo2VmqC0rDYa\njC+sWhPZRrPRxa7pm3V5wwuj7vrCxBpN1GUNGoxujVZtbMtuMDFEt5AKVqriRuV5Bok8joAMzNUX\nc8SRzrn+xzmPcH0/yYQz94/7nD+H+c19zvnfD+buApDLae0eAIDWo/hAQhQfSIjiAwlRfCAhig8k\nVFfxzexaM/vYzD4xs180alAAmstGOo9vZqdJ+kTSfEk7JK2VdIu7f3zC32NHAaBN3N2GW17PFv9y\nSX9y983u3i/pRUkL67g/AC1ST/HPk7R1yPfbKssAdDg+3AMSqqf42yX9YMj30yvLAHS4eoq/VtJM\nM7vAzMZIukXS640ZFoBmGj3SFd39mJktlrRSg79Alrn7Rw0bGYCmGfF0Xs0PwHQe0DbNmM4DcJKi\n+EBCFB9IiOIDCVF8ICGKDyRE8YGEKD6Q0Ij33AOazWzYfU9qdtpp8XattPPawMBAXY/fydjiAwlR\nfCAhig8kRPGBhCg+kBDFBxJiOq/NSlNWpXzUqFFhfvHFF4f5kSNHwry/vz/Me3p6RrxuaezTp08P\n8y1btoT5sWPHwrze6cKTGVt8ICGKDyRE8YGEKD6QEMUHEqL4QEIUH0iIefw2Kx062t3dHebTpk0L\n87lz54b5fffdF+ZdXV1hHh3aOmnSpHDdHTt2hPlDDz0U5m+88UaYf/XVV2F+6NChMD+VscUHEqL4\nQEIUH0iI4gMJUXwgIYoPJETxgYTqmsc3s02S9kkakNTv7pc3YlCZlI4ZP3jwYJiPHh3/F27YsCHM\nn3jiiTC//vrrw/zqq68O88jUqVPDfPv27WG+Z8+eMD969GiYl06vfSqrdweeAUnz3D3+HwDQUep9\nqW8NuA8ALVZvaV3S781srZnd1YgBAWi+el/qz3X3HjM7V4O/AD5y99WNGBiA5qlri+/uPZU/d0l6\nVRIf7gEngREX38y6zGx85Xa3pAWS4o+QAXSEel7qT5b0qpl55X5WuPvKxgwLQDONuPju/rmk2Q0c\nC4ZROvd7X19fmPf29ob55s2b67r/6Lz9559/frhuaR+El156KcxL979///4wz4ypOCAhig8kRPGB\nhCg+kBDFBxKi+EBCFB9IiPPqd7jSMeX79u0L871794Z56bz+zz//fJgPDAxUzZ588slw3TFjxoT5\nkSNHwvzw4cNhjurY4gMJUXwgIYoPJETxgYQoPpAQxQcSovhAQszjt1lpLrt03v0DBw6EeemY99L9\nl+b5Fy9ePOJ1S3lPT0+YY+TY4gMJUXwgIYoPJETxgYQoPpAQxQcSovhAQszjN1npvPjNvoZ7vXPp\nW7ZsCfNzzz23alb6t5fyjRs3hnl/f3+Yozq2+EBCFB9IiOIDCVF8ICGKDyRE8YGEKD6QUHEe38yW\nSbpe0k53v6yybIKklyRdIGmTpJvdPT7BO4ZVmqcv5aW58IULF4b5jBkzwry7uzvMo/GVxtbX1xfm\nq1evHvFjI1bLFv9ZST8+Ydn9kv7g7j+UtErSLxs9MADNUyy+u6+WtOeExQslLa/cXi7pxgaPC0AT\njfQ9/iR33ylJ7t4raVLjhgSg2Rr14R5vtoCTyEiLv9PMJkuSmU2R9EXjhgSg2WotvlW+vvG6pEWV\n23dIeq2BYwLQZMXim9kLkt6R9OdmtsXMfiLpV5L+xsw2Sppf+R7ASaI4j+/ut1WJ/rrBYzklleaa\nS8fDl5TOmz9r1qwwv/fee8O8q6srzDdt2lQ1O3jwYLju7t27w/z9998Pc4wce+4BCVF8ICGKDyRE\n8YGEKD6QEMUHEqL4QELW7GOazYz9+AOlefzTTz89zCdMmBDmpWPi33rrrTAv/XysW7euavbuu++G\n61566aVh/tlnn4X5smXLwvzLL78M8wzcfdgfALb4QEIUH0iI4gMJUXwgIYoPJETxgYQoPpAQ8/hN\nVpqnL82z12vixIlhPm/evDBftWpVmE+ZMqVqds4554TrlubhL7zwwjB/8MEHw/yBBx4I82PHjoX5\nqYB5fADHUXwgIYoPJETxgYQoPpAQxQcSovhAQszj16k0T1/KBwYGwrx03vz+/v66Hr/0/196/Ggu\n/MwzzwzX/fTTT8P87LPPDvM1a9aE+RVXXBHmGTCPD+A4ig8kRPGBhCg+kBDFBxKi+EBCFB9IKJ6k\nlWRmyyRdL2mnu19WWbZU0l2Svqj8tSXu/h9NG2UHK83Djxs3LsxL8+il8+b39PTUdf9jxowJ8yNH\njoR55Iwzzgjz0j4CR48eDfNt27aF+VlnnRXm+/btC/OS0rkUmr2PTD1q2eI/K+nHwyx/1N3nVL5S\nlh44WRWL7+6rJe0ZJmruqWMANE097/EXm9l6M/uNmcWvqQB0lJEW/0lJM9x9tqReSY82bkgAmm1E\nxXf3Xf7tJxfPSPpR44YEoNlqLb5pyHt6Mxt6atWbJG1o5KAANFct03kvSJonaaKZbZG0VNLVZjZb\n0oCkTZJ+2sQxAmiwYvHd/bZhFj/bhLGclErz4HPmzAnzm266KcxLx7Q/8sgjYb5169YwL+2HUM88\n/4svvhiuW9rHoTRP/vbbb4f54cOHwzwz9twDEqL4QEIUH0iI4gMJUXwgIYoPJETxgYSK8/inutJ5\n58eOHRvmd955Z5g//PDDYT5q1Kgw//DDD8O8dLx+b29vmJeOty89P88+W32XjiuvvDJctzRP//nn\nn4f5m2++GebN1snH25ewxQcSovhAQhQfSIjiAwlRfCAhig8kRPGBhNLP45fm0adOnRrmixYtCvOu\nrq4wj64vL0n79+8P8/Xr14d5f39/mJfGN3/+/DC/9dZbq2alfQBK5wJ4+umnw7y0j8LXX38d5pmx\nxQcSovhAQhQfSIjiAwlRfCAhig8kRPGBhE75efzSMd+lueRrrrkmzC+66KLvPaahDhw4EOYrVqwI\n83quXy9Jjz/+eJjffvvtYR7tB1HaR2HlypVh/txzz4X5oUOHwhzVscUHEqL4QEIUH0iI4gMJUXwg\nIYoPJETxgYSK8/hmNl3Sc5ImSxqQ9Iy7/7OZTZD0kqQLJG2SdLO772viWEekdO7zUl6aJ9+7d2+Y\nd3d3h3npePiJEyeG+Q033BDmd999d5gvWLAgzEv27NlTNbvqqqvCdUvH0+/evXtEY0JZLVv8o5L+\nyd0vlfSXkn5mZhdLul/SH9z9h5JWSfpl84YJoJGKxXf3XndfX7ndJ+kjSdMlLZS0vPLXlku6sVmD\nBNBY3+s9vpldKGm2pD9KmuzuO6XBXw6SJjV6cACao+bim9l4SS9L+nlly3/im+OT90JiQDI1Fd/M\nRmuw9M+7+2uVxTvNbHIlnyLpi+YMEUCj1brF/62kD939sSHLXpe0qHL7DkmvnbgSgM5Uy3TeXEl/\nL+kDM1unwZf0SyT9WtLvzOwfJG2WdHMzBwqgcazZ1/g2s5P6vf/48ePDvHTe+SVLloT5rFmzwnzz\n5s1hPnPmzDCv9/93165dYX7JJZdUzaI5frSGuw97Qgr23AMSovhAQhQfSIjiAwlRfCAhig8kRPGB\nhJjHr9PYsWPDfPbs2WH+1FNPhfmMGTPCfNy4cWF+9OjRMH/nnXfC/Lrrrgvz/v7+MEd7MY8P4DiK\nDyRE8YGEKD6QEMUHEqL4QEIUH0iIefw2K+0HcM8994T52rVrw3zatGlh/sorr4R56Rr3zf75QX2Y\nxwdwHMUHEqL4QEIUH0iI4gMJUXwgIYoPJMQ8PnAKYx4fwHEUH0iI4gMJUXwgIYoPJETxgYSKxTez\n6Wa2ysz+18w+MLN7K8uXmtk2M3uv8nVt84cLoBGK8/hmNkXSFHdfb2bjJf23pIWS/k7SAXd/tLA+\n8/hAm1Sbxx9dw4q9knort/vM7CNJ51XiYe8UQGf7Xu/xzexCSbMl/Vdl0WIzW29mvzGzsxo8NgBN\nUnPxKy/zX5b0c3fvk/SkpBnuPluDrwjCl/wAOkdN++qb2WhJ/ybp3939sWHyCyS94e6XDZPxHh9o\nk3r31f+tpA+Hlr7yod83bpK0YeTDA9BKtXyqP1fS25I+kOSVryWSbtPg+/0BSZsk/dTddw6zPlt8\noE2qbfE5LBc4hXFYLoDjKD6QEMUHEqL4QEIUH0iI4gMJUXwgIYoPJETxgYQoPpAQxQcSovhAQhQf\nSIjiAwlRfCCh4ll2G2HOnDnHb+/YsUPTpk1rxcOOCOOrTyePr5PHJjV+fO+9917VjBNxAKewtp2B\nB0Dn4T0+kBDFBxJqWfHN7Foz+9jMPjGzX7TqcWtlZpvM7H0zW2dmazpgPMvMbKeZ/c+QZRPMbKWZ\nbTSz/2zn1YuqjK9jLqQ6zMVe/7GyvCOew3ZfjLYl7/HN7DRJn0iaL2mHpLWSbnH3j5v+4DUys88k\n/YW772n3WCTJzP5KUp+k5765UImZ/VrSl+7+SOWX5wR3v7+DxrdUNVxItRWCi73+RB3wHNZ7Mdp6\ntWqLf7mkP7n7Znfvl/SiBv+RncTUQW993H21pBN/CS2UtLxye7mkG1s6qCGqjE/qkAupunuvu6+v\n3O6T9JGk6eqQ57DK+Fp2MdpW/aCfJ2nrkO+36dt/ZKdwSb83s7Vmdle7B1PFpG8uWlK5ivGkNo9n\nOB13IdUhF3v9o6TJnfYctuNitB2zhesAc919jqS/lfSzykvZTtdpc7EddyHVYS72euJz1tbnsF0X\no21V8bdL+sGQ76dXlnUMd++p/LlL0qsafHvSaXaa2WTp+HvEL9o8nu9w913+7YdGz0j6UTvHU7nY\n68uSnnf31yqLO+Y5HG58rXoOW1X8tZJmmtkFZjZG0i2SXm/RYxeZWVflN6/MrFvSAnXGRUBN332/\n97qkRZXbd0h67cQVWuw74+vAC6n+v4u9qrOew7ZdjLZle+5VpiUe0+Avm2Xu/quWPHANzOzPNLiV\ndw0ev7Ci3eMzsxckzZM0UdJOSUsl/aukf5F0vqTNkm52970dNL6rVcOFVFs0vmoXe10j6Xdq83NY\n78Vo6358dtkF8uHDPSAhig8kRPGBhCg+kBDFBxKi+EBCFB9IiOIDCf0fSNOCv9rEQvsAAAAASUVO\nRK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# train with CD-k\n", "T = 20000 # num training iterations\n", "N = 1 # batch size\n", "k = 2 # num of Gibbs sampling steps\n", "lr = 0.01\n", "\n", "for t in range(T):\n", " data_ids = np.random.choice(n_samples, size=N)\n", " batch = data[data_ids]\n", " db, dc, dW = suff_stats(batch, c, W) # 1st gradient term, positive phase done exactly\n", " # Gibbs sampling to approximate the 2nd gradient term (negative phase)\n", " # Could be implemented more efficiently, by Gibbs sampling for the entire batch without the outer loop\n", " # Containers for \"negative particles\"\n", " vs = np.empty([N, V])\n", " hs = np.empty([N, H])\n", " for n, d in enumerate(batch):\n", " v, h = gibbs_k(d, k, b, c, W)\n", " vs[n] = v\n", " hs[n] = h\n", " # model expected suff stats; 2nd gradient term approximated\n", " db -= np.mean(vs, axis=0)\n", " dc -= np.mean(hs, axis=0)\n", " dW -= np.dot(vs.T, hs) / N\n", " \n", " b += lr * db\n", " c += lr * dc\n", " W += lr * dW\n", " \n", " if t % 2000 == 0:\n", " plt.figure()\n", " # visualize a Gibbs sample\n", "# vis = vs[0]\n", " vis = p_v_given_h(hs[0], b, W)\n", " plt.imshow(vis.reshape([28, 28]), cmap='gray', interpolation='none')\n", " \n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-1.72758295797 1.84827739147\n" ] } ], "source": [ "W_abs_max = np.abs(W).max()\n", "print(W.min(), W.max())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF0dJREFUeJzt3Vts3PWVB/DvmRlnfKO2SYgdEkggAdMNS1looSiLPQht\nQatKQTwASx+AXaE+lN1q+1JK21xgW7X7gMQ+9IXSKlRFhVbqQvcBaIXsBHYpiDs0N0JsQognJORm\nE0/mcvbBE8dx/D9n4r/9nym/70caxZkz////N/+ZM7fzu4iqgojCkqp3A4goeUx8ogAx8YkCxMQn\nChATnyhATHyiAMVKfBG5WUS2icgOEfnuXDWKiOaXzLaOLyIpADsA3AjgYwCvArhDVbdNux07ChDV\niarKTNfHece/BsBOVR1W1SKA3wBYO9MNy2WdvKxbt/60/8e9lEr2pVCwL9P3d2b7KualUi6bF297\nLZXMS6VQOO2y7gc/OO3/7jkqVczL9P1Pv8Q/f7NvmxYK9qVcNi/TH4t169ad1WNTKZXNy9iYxrp4\n5857bnv7t8RJ/KUA9kz5/0fV64iowfHHPaIAZWJsuxfAhVP+v6x63Rk2btww+XdHR2eMQ86//v5c\nvZtgyvX11bsJpkY+f7n+/no3wRT33G3ePIAtWwZqum2cH/fSALZj4se9fQBeAfBPqrp12u20XJ6/\n3/e85pfLdjzjvvTZBxAnrpjxt5VJKa3Y2zt3QDMLzLh3gqRcNONF2Pv3z5/BaVvKaZt3cO9Z5z02\n4rTveCHeB+bmZjvuPbcLBTve1iaRP+7N+mFT1bKI3AfgeUx8ZXhsetITUWOK83oNVX0WQO8ctYWI\nEhIr8edG3I/ScX+fjHf8ysyfpCaVy3Y8k7HbL2kzjFLJjnua0vYBnMObx89k4p3bE2hyDm6HY30N\nASD2Q4eWrP01rRLzq0TJee60ZGf/FZq/6hMFiIlPFCAmPlGAmPhEAWLiEwWIiU8UICY+UYAaoI5v\n1yq9SmVK7Foq0vFe25xSLlLedANpew/j4/bmLVnn/LjdOu3tS04/Aq9WPTYevX0m45092/h4vO07\nO+P2EbGpU+iXmM/ttPPccbqQmPiOTxQgJj5RgJj4RAFi4hMFiIlPFCAmPlGAZj0DT80HENFCIbok\n1OQM3ayo/drkz+7jDYt1NvdKPjHLaZm0vYMFY4fs43vjcg8ftuPONDDSaU+VpqOjkbE9pfPNbb2m\ne6XOnh477mlujvfczzqlVm/2J0/cYcXpdPQMPHzHJwoQE58oQEx8ogAx8YkCxMQnChATnyhATHyi\nACUyLNcaXhi3F4FXC27JnHB2YIeLzhTPTWqv9jI+bm/f1eEMK37xRTMsBw7Y2x8/bsdbWuy41w9g\nxYrI0MKbbjU3HR62d71ypR3fO+OCbVPZz66LmvfZm3fbHQW86bMbGd/xiQLExCcKEBOfKEBMfKIA\nMfGJAsTEJwoQE58oQLHG44vIEIAjACoAiqp6zQy30VIp+hjemGVvTLLX/jScOvnBg/b+29rMuIyN\n2dsfO2Zv/957ZhzO9m4dvrfXjnsneNEiO250pFCn0P52+ioz7tXpjS4EAID2dvu5ceHCz8y4Ok/O\nQ6Uv2A1wtLfbcWcFczd3stno8fhxO/BUAORU1Z4tgogaStyP+jIH+yCihMVNWgXwRxF5VUTunYsG\nEdH8i/tRf42q7hOR8zDxArBVVc/oXL5x44bJv/v7c8jlcjEPS0TTDQ4OYPPmgZpuO2eTbYrIegDH\nVPXhadfzxz1re/64F4k/7tnxOD/uzfqjvoi0ikh79e82AF8D8O5s90dEyYnzUb8bwO9FRKv7+bWq\nPj83zSKi+ZTIvPrWR/1Cwd6+OessdVy2x8MfL9nj4VvTznh9b3J3b7y6N+h89WozrM7nwQ9HFpjx\nl1+2D+/J5+14d3d07ItftLf924X2ePjPOpeY8db8bjO+r/liM97THW+Z7AMH7PH4zpIFGB+3j7D4\nPKcFTjiVSXNefSI6hYlPFCAmPlGAmPhEAWLiEwWIiU8UICY+UYASmVff6lrodUsslb315e06fUvR\nnlf+44N2l9fmrF0nP7dgF7p1zRoz/sGQ/dr71qAZxrZt9vkZGbG3N5a3B+CvQW91Y2hqsgvNV/Qu\nNOOtwzvtgzvSaacPSMnuA3J4zH7s3T4oTh2/yX7qulRmP68/3/GJAsTEJwoQE58oQEx8ogAx8YkC\nxMQnChATnyhAidTxrYHDC+CNp7drqRHDjScVynadPpu1tx+1Z9ZC+/JLzLhGz0wFACiV7ON7y9t7\n/SDWrrXjXh3fi1vTBVxwgb2tt3Px5kJwpgVbvMiu4+/cZRfSOzrswy+wn5ruVA4tLfZjX3SeO02Z\n2c+lwXd8ogAx8YkCxMQnChATnyhATHyiADHxiQLExCcKUCLz6o+NRR8j68ybX3bG43tjrlPO5OM7\nd9mvfQvtIePeClzumGxnhS63FuzV8V9/3Y5fe60dHxqy4++/Hx277jp726VLncfeqWN7dW5vSYP3\n37efW5dfbm/vPbbexPdLnHn9PUUnN7LZFOfVJ6JTmPhEAWLiEwWIiU8UICY+UYCY+EQBYuITBcit\n44vIYwC+DiCvqldUr+sC8CSA5QCGANymqkcittfCeCVy/01ij8c/oXHnNrfvX7Fo10K99eG9OvvS\npXbcqwXv3WvHvTHj3nj6jDMjg9dPoaMj+vxeWLDnxd+dudSMe30odu2y41/6kh33+ih4+//yl+24\n10ejULCfm/729nO3rU1i1fF/CeCmadfdD+BPqtoL4AUA36thP0TUINzEV9UXARyadvVaAJuqf28C\ncMsct4uI5tFsv+MvVtU8AKjqCIDFc9ckIppvczXnnvll5aGHNkz+3deXQ39/bo4OS0Qnbd48gC1b\nBmq67WwTPy8i3aqaF5EeAPutG//whxtmeRgiqlVfXw59fbnJ///4xxsjb1vrR32pXk56BsDd1b/v\nAvD02TSQiOrLTXwReQLA/wK4VEQ+FJF7APwEwD+IyHYAN1b/T0R/JRIZj18qRdfxU4iOAUAF9oDz\nIzP2Hqhd0e5GgJIz5turc/f22nGvju6NKfe29x5erx/CSy/ZO7hn7fSCzxTNWXPb/3vLLlR74+G9\nuQiee86Or1plx70+GF4fEq99i5x5/1Nixytqv29nMvHq+ET0OcPEJwoQE58oQEx8ogAx8YkCxMQn\nChATnyhAc9VX31QuR8dSaXtMsbUt4I9Z9urwhw/bca8We+CAHffWt7/sMjt+yCiTA36d31lC3q3j\n3367HUcp+in01P+0mpt649k/+8yO79hhx1evtuPeXAheHw3vueXNJ1Aq2c99r5/AOe12HxgL3/GJ\nAsTEJwoQE58oQEx8ogAx8YkCxMQnChATnyhAidTx00atvujU6b3x5F6t06u1erXcrD2k3J3X3hvv\nPzhox71+Bl4dvrPTjntjwlub7DtQaT4nMuY9NheX7EL8lh32vPuX2mFUnDK3V2f3+mh4fTza2+24\n10clm7Xr/HFm0uA7PlGAmPhEAWLiEwWIiU8UICY+UYCY+EQBYuITBSiROr7NrlV688Z7vH4A3vrx\ncfsReHOz+7VcOx63n4J7fveNmOGXhi+MjK1ZY++6uOwSM75mlTPv/Lg92cHRkj0fwK5dZtjtQ7Fy\npR33HlvvsfP6AXi5Y+E7PlGAmPhEAWLiEwWIiU8UICY+UYCY+EQBYuITBcitkovIYwC+DiCvqldU\nr1sP4F4A+6s3e0BVn43eR/T+vTHNcVnHBoDubjs+NGTHvX4AI3YZ3L3/3tzuvb123Lv/S5faN3hn\n7wVm3OoH4B077Tz7UqPHzPjOfPRcAIDfR8Fbk8Gb68Drw9HSYvdD6Oqw48Xy/L0v17LnXwK4aYbr\nH1bVq6qXyKQnosbjJr6qvghgpvVcZt9tiIjqKs5niftE5E0R+bmIOBNQEVEjmW1P+J8BeFBVVUT+\nA8DDAP4l6sYbN26Y/Lu/P4dcLjfLwxJRlIGBAQwODtR0W1FvFAoAEVkO4A8nf9yrNVaNa7kcfYwa\nDm/yBjp4P8B4x/d+3Mvn7bg3Gad3/A8+sONxf9xbvtyO791rN3B0NPoAPT3esZ1BOLF/3LPvfNwf\nVr0FSTs77ft3Tlu8H/e8Hy/TaYGqzngSav2oL5jynV5Epj6ktwJ4t8b9EFEDqKWc9wSAHICFIvIh\ngPUAbhCRKwFUAAwB+OY8tpGI5lhNH/VjHUBEC4XoY3gft7wxzXHH2+/da8e9Ndr377fj3lcRb957\nbzz+kiX2CbioY6aCzCl/3nmuGX/7bfv41hr33tcIb66A116z79v1V9vj8Xfn7fH43rn1njve1yjv\na15Xl33/vNxIle01D1LZbOyP+kT0OcLEJwoQE58oQEx8ogAx8YkCxMQnChATnyhAicyr35SOXqjc\n65ZYKtm1zpa0XcsslRaYcW+NdK+W+vrrdtybV3901L5/N6zcY++g0ykW5+1F3ru67Dr+jTfau29q\nim7/uU6XVU8mYz839hxsMePeY3fkiB33+mB4XWa97uKelNjnT9NNs9/3rLckor9aTHyiADHxiQLE\nxCcKEBOfKEBMfKIAMfGJApRIHd+aj9ertUYMJ550dNyuZXq11AV2mR/bt9vxVavs+OrVdi32/JE3\nzLg40z+hbBeb1elI8NKT9u69Ne7HxqIfH2+uAW8uBW9NgvZ2+7lRtLt4uI/ttdfa8bExO+7V+b2J\nqr1eEOLU+S18xycKEBOfKEBMfKIAMfGJAsTEJwoQE58oQEx8ogAlUsdXo17pzU3u1ULHx+0deOPt\nt22z414tOJNx6vT42IyLV4dfvdqM7x6x544/5Nw/b8z52Jh9//6uY3d0cNSeOP/T7PlmvLvbDLvP\njbY2O+71M+jqsuMrVjhLgI3b8/5j3Dn57e1m2MorD9/xiQLExCcKEBOfKEBMfKIAMfGJAsTEJwoQ\nE58oQKLOoGgRWQbgcQDdACoAHlXV/xKRLgBPAlgOYAjAbap6xkzlIqJWLdhbo7xctuPemG5vzLQ3\nH4DHq4N76wIsznxqxveM2fPeHzpk13LzeTPsnv9LVtntX5L5JDL2aeY8c9u33rLbvmiRGYbTxQHD\nw3bbL1pux7dut98Xe3rs7c89bPRxAKA9PWa8mLHXDchk7POXTgs0YkKLWt7xSwC+o6qrAVwH4Fsi\nchmA+wH8SVV7AbwA4Hs17IuIGoCb+Ko6oqpvVv8eBbAVwDIAawFsqt5sE4Bb5quRRDS3zuo7vois\nAHAlgJcBdKtqHph4cQCweK4bR0Tzo+a++iLSDuB3AL6tqqNy5oRfkV94fvSjDZN/X399Dn19ubNr\nJRG5BgYGMDg4UNNta0p8EclgIul/papPV6/Oi0i3quZFpAfA/qjtv//9DTU1hohmL5fLIZfLTf7/\nwQc3Rt621o/6vwDwF1V9ZMp1zwC4u/r3XQCenr4RETUmfwJgkTUAvgHgHRF5AxMf6R8A8FMAT4nI\nPwMYBnDbfDaUiOaOW8ePfQARrZSii/HFsl2LbCo5Y5qz9pjvo6P2h5ojR+z7f0H3Cfv4B+z15/Ha\na3b88svN8GfdF5vxwUF7916t25tb/uqr7bjVR6NYtB/b996z933tNU4fiE+3mvGjS//GjHtzDXjz\nAaRK9mQNRdhrPnjzCUjZ3r9m7EUh4tbxiehzholPFCAmPlGAmPhEAWLiEwWIiU8UICY+UYASqeOX\nSpXIuDfefgGcie2dAfXqDMg/queY8Y726LYDAN59145/9JEd/+pXzbB6J8jpx/Dx6Bfs7R1eNwVr\nXYJz7FOL3l473tLirVmwz4yrV4gfL9jxwrgZPt5sT7zfArsPSjFjr4mQSTu56SxKwTo+EZ2GiU8U\nICY+UYCY+EQBYuITBYiJTxQgJj5RgBKp45fL0cfwDm9tC/jz4hecUq03r3z6yCH7Bsed+QI8IyN2\n3CqUA0CTPeZb+3P29mV7YYCjbfYa9kND0bFly+xDN9tdEGBM4wgAaC3Yj82JNrvOfvCgffQl3XYf\njmLZfvJ5dXhvfXvvud/k9HFJZbOs4xPRKUx8ogAx8YkCxMQnChATnyhATHyiADHxiQKUSB2/UIiu\nhzZl7ONXNN5rU6Fg778lbddCjxXsOnmz0w+gKWPXgtV57U2VnHn9S3Yd3ps4X52J9/fk7Ts4Ph59\nfi9Z6vRxcCaWPzRmzxvf3Gw/ttmsXScfHTXDbh29vd3ev9cPwX/uO+PtYT+3JJNhHZ+ITmHiEwWI\niU8UICY+UYCY+EQBYuITBchNfBFZJiIviMh7IvKOiPxr9fr1IvKRiLxevdw8/80lorng1vFFpAdA\nj6q+KSLtAF4DsBbA7QCOqerDzvZq1Xq9WmlLxplX36kFe/0AvDXSI8qgk7xp74tFe/+LFtn737XL\n3v6SlXYtd/ewff+9qefzebt91tNHxG57Z6d9bO/ce3MttLfbcW8uBq+LhDMVQg2cOr8znr9Yts9P\nNpuKrOPbWQNAVUcAjFT/HhWRrQCWVsNeDwYiakBn9R1fRFYAuBLAn6tX3Scib4rIz0WkY47bRkTz\npObEr37M/x2Ab6vqKICfAbhYVa/ExCcC8yM/ETUO96M+AIhIBhNJ/ytVfRoAVPWTKTd5FMAforZ/\n6KENk3/39eXQ780DR0RnbXBwAJs3D9R025oG6YjI4wAOqOp3plzXU/3+DxH5dwBfUdU7Z9iWP+4Z\n+OOetW/+uGeZ1x/3RGQNgG8AeEdE3sBEax8AcKeIXAmgAmAIwDe9fRFRY6jlV/2XAMw0j/Czc98c\nIkpCIuPxS6XZH8OdW9wZ0+yNd/fu/ri9RLrr2DE7fsIZbr/AHpKO1lbn42DR/jjorWHvrVtw4EB0\nzPuo7fE+ajvLw6OtzTuCfe5STrziPLfc567zUd67f95zN5VJczw+EZ3CxCcKEBOfKEBMfKIAMfGJ\nAsTEJwoQE58oQInU8a1usd7c6BKzfcWy/drm1Yq9bp3xxaslHxuz799817JPlKKPn3H6WMStk3u8\n7tRxu8weL9iF9pasd//idUludbqzSzbLOj4RncLEJwoQE58oQIknfq3jheul0ds3MDBQ7yaYBgcH\n6t2ESI3cNiDZxzbxxN+yZSDpQ56VRm/fwOBgvZtgauQXzkZuG5DsCxM/6hMFqKapt+KaPrzQG244\nn8euJZ5k++JK1fmle6bHtlHO33w/tvN9P939x2hAInX8eT0AEUWKquPPe+ITUePhd3yiADHxiQKU\nWOKLyM0isk1EdojId5M6bq1EZEhE3hKRN0TklQZoz2MikheRt6dc1yUiz4vIdhF5rp6rF0W0r2EW\nUp1hsdd/q17fEOew3ovRJvIdX0RSAHYAuBHAxwBeBXCHqm6b94PXSEQ+AHC1qh6qd1sAQET+HsAo\ngMdV9YrqdT8FcFBV/7P64tmlqvc3UPvWo4aFVJNgLPZ6DxrgHMZdjDaupN7xrwGwU1WHVbUI4DeY\nuJONRNBAX31U9UUA01+E1gLYVP17E4BbEm3UFBHtAxpkIVVVHVHVN6t/jwLYCmAZGuQcRrQvscVo\nk3qiLwWwZ8r/P8KpO9koFMAfReRVEbm33o2JsFhV88DkKsaL69yemTTcQqpTFnt9GUB3o53DeixG\n2zDvcA1gjapeBeAfAXyr+lG20TVaLbbhFlKdYbHX6eesruewXovRJpX4ewFcOOX/y6rXNQxV3Vf9\n9xMAv8fE15NGkxeRbmDyO+L+OrfnNKr6iZ760ehRAF+pZ3tmWuwVDXQOoxajTeIcJpX4rwJYJSLL\nRWQBgDsAPJPQsV0i0lp95YWItAH4GoB369sqABPf9aZ+33sGwN3Vv+8C8PT0DRJ2WvuqiXTSraj/\nOfwFgL+o6iNTrmukc3hG+5I6h4n13KuWJR7BxIvNY6r6k0QOXAMRuQgT7/KKifELv653+0TkCQA5\nAAsB5AGsB/DfAH4L4AIAwwBuU9XDDdS+GzDxXXVyIdWT36fr0L41ADYDeAcTj+vJxV5fAfAU6nwO\njfbdiQTOIbvsEgWIP+4RBYiJTxQgJj5RgJj4RAFi4hMFiIlPFCAmPlGAmPhEAfp/xJ8KDtvhhpoA\nAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF+5JREFUeJzt3WtsXOWZB/D/Y49jJw65EweSNikJm3ArKaFs24A9bbol\nKl3RshJlqVZNt6r6od2ttl/KZVGcAKXdlSqx0lZaUYqgard0q2WhrRZaqOyQdIHAkpRQAtSQlKSJ\ncyFxYhMbX5794MFxjM//GXvs8Wzf/0+KMjPPnPO+PjPPzDnz3szdISJpqZrqCohI+SnxRRKkxBdJ\nkBJfJEFKfJEEKfFFElRS4pvZejPbbWavmNk3JqpSIjK5bLzt+GZWBeAVAOsA/BHAdgA3uPvuEc9T\nRwGRKeLuNtrjuRL2eQWAV919LwCY2Y8BXAtg98gndnSczv277mrGzTc3n65AKTUAUF3N4/39PF5b\ne+b9TZuasXFj89D9np6xbT/W8qO/f+Tn8sj6Rfsv9fiUUr9o35Gxlj1SX9+Z92+/vRm33dY8dD96\nbaPyczlegWnopXGvPrOA5k2b0Lxx49D9Uz38hLyujtevunrUnAdQ2qn+YgBvDLu/r/CYiFQ4/bgn\nkqBSTrT3A3jvsPtLCo+9y113NQ/dnjVrTglFTr6mpvxUV4FS/cavsTE/1VWg8k1NJW3f0tKC1taW\nop5byo971QBexuCPewcAPAPgr939pRHP8+HX+CNV2jX+SJV2jT/W/Zf7Gn8s+45M9DX+SJV2jT/S\nRFzjT/iPe+7eb2ZfBfBLDF4y3Dsy6UWkMpX0fevujwJYOUF1EZEyKfFEuzjsdDg6XaoCj0enQ9Gp\neKmibgo11UH9u3n9o9PNvr7Syu/qzm7yAYCz6vjpqpHT1f4SfzuOTtWjy5jotTmrfiCoAL9WOdld\nQ+M1wXvvWAc/9vX1fPvubh5n9Ku+SIKU+CIJUuKLJEiJL5IgJb5IgpT4IglS4oskaNxddosuwMy7\nu7PLiLvU8vr19/O20FK7rEbbR90+6+p4/S04/r39wWdzsH1N1zEaP4Z5fP9BP4pe0szfEbRTz57N\nS57s7sgLFpT23s/oDTusfL7/2trSto/6aFTlqjO77OobXyRBSnyRBCnxRRKkxBdJkBJfJEFKfJEE\nlWVYLhtaGg07Nd7igZpqPrTy7T7+2dbTEwzdrH2bxqef6qRx7GqjYQumUalZsIDGT848h8anBWM7\n5x4/ROO/2rmQxjvJn//UU3RTrF/P49Gw1DnBLG7Hj/N4dzAkedEivn2pqvr5e6unb9rklT1pexaR\niqXEF0mQEl8kQUp8kQQp8UUSpMQXSZASXyRBZRmWy6aALnW1lWjYaDR0s+rIYRq3zpN8B088weNR\nY/aSJTw+cyYNe9BYHfUTwJo1fP+rLuDbL1uWGbrlH6M+FHzXUTv95Zfz+NKlPB6991gfBSBu518c\nLCFb6tTs0ZDt2trslXT0jS+SICW+SIKU+CIJUuKLJEiJL5IgJb5IgpT4IgkqqR3fzPYA6AAwAKDX\n3a8Y5TnOpgmOio/Gy0/vPcF3sH8/DduBA3z7bdt4/Pe/5/FXX+Xx88/n8WA8frhWctQYTtrhAQAr\nVtCwk+1f8/PotlEXh6gLwtGjPB50gcDy5aVtH9Uv6qcQHfpoCfm+vmiZ7ex2/FIn4hgAkHd3Pnm7\niFSUUk/1bQL2ISJlVmrSOoBfmdl2M/vSRFRIRCZfqaf6a939gJmdjcEPgJfcfevIJ23a1Dx0u6kp\nj3w+X2KxIjLSli0tePLJlqKeW1Liu/uBwv+HzewhAFcAeFfib9zYXEoxIlKExsY8GhvzQ/e/+c1N\nmc8d96m+mc0ws5mF2/UAPgFg13j3JyLlU8o3fgOAh2xwbGEOwA/d/ZcTUy0RmUzjTnx3fx3A6mKe\na8ie+z6aN396sEy2nerjO4ja2Q/z8fjY+q4rlzOdDMbrR43NN91Ew/7xj9P46wdn0Hg0ZnzGo//J\nnxBNTl+f3di9IGjnLrWdfu1aHn/sMR7fs4fHr7ySx0uddz/qghHN+z9//vjLVlOcSIKU+CIJUuKL\nJEiJL5IgJb5IgpT4IglS4oskqCzz6vf0ZLfjR/Pe9wRtnTMOvsafcOQIj2/fzuNtfH17dHTQsN96\nK43/+1N8zPrjwbT9l1/O23pvuIG/vvP8TV5AH+8n4bmazNh9D8+j2+7bx4teuZLHP/QhHo9e+qj8\nmuw/rSjRVAhRP4Bo+9mzeTyX07z6IjKMEl8kQUp8kQQp8UUSpMQXSZASXyRBSnyRBJU6516Rstua\nozXCp9dl9wEAAHR18Xg0eXk0KPvQIRr2DRto/IGtvJ3+7rt5O/ypUzSMxx/n8bo6vv8VK3hbe7TG\n+xOkn8FDD/FtL7mEx6N2+ppg3vnL5r7O4yv4mgWvHZlF49F8AvF4fV7/qiB+qmf839v6xhdJkBJf\nJEFKfJEEKfFFEqTEF0mQEl8kQUp8kQSVaTx+dhnRePyuLl6/WdVv8R28+CKPB4OaPVifvr2Xt4Nf\ndx1vR3/2WRoOx2RHc8uffz6Pr1/Pj+9Hm3j8ld9nf3dE4+GjduyPXHyCb777ZRq2nTv49kFDu6/l\nE+sf6JlL4+fUB/WPFg4I+qAMOP/e1nh8ETmDEl8kQUp8kQQp8UUSpMQXSZASXyRBSnyRBIXt+GZ2\nL4BPAWh39/cXHpsL4EEASwHsAXC9u486wbyZOW+LD8bjV7/N6xfMax+uX79zJw371etp/GdP8PXp\no+IPHuTxFSt4fNs2Ht+4kR/fGc9uoXHbvJnG/bOfzQ6u+zjd9r9ffh+Nf/LPgzn/jx/n8c5OHg/6\naHgwsf7A/IU0HvZBqeXvbe/vp/HeHH/v1daW1o5/H4CrRzx2E4DH3X0lgF8DuLmI/YhIhQgT3923\nAjg24uFrAdxfuH0/gE9PcL1EZBKN9xp/obu3A4C7HwTAz3lEpKJM1Jx79GLmzjubh25fdVUejY35\nCSpWRN7R2tqCLVtainrueBO/3cwa3L3dzBYBoDNS3npr8ziLEZFiNTXl0dSUH7p/xx2bMp9b7Km+\n4cypch8BsKFw+/MAHh5LBUVkaoWJb2Y/AvAbAH9mZn8wsy8A+BaAvzCzlwGsK9wXkf8nyjQeP3tu\n/JpqPm++RfPmRwP6n36axxsaaNgXnE3jz+/nv2tedBE/vtP2vErjYVt0FJ9ZT8P2r//Ktw8G1TsZ\n037in/+Nbvvcc3yugjlzgnnzlwfj3dvbadiXL6fxYx38e3H2bF7/l/l0AVi2LOjDkuul8YHqaTSu\n8fgicgYlvkiClPgiCVLiiyRIiS+SICW+SIKU+CIJKks7fldXdlv9jLqg/Kh+UTt2WxvffQOfW/1Q\n7hwazwWdnufV8Xn/7ec/5zt47DEe37CBx6OJ+efxdQFwyy08/sUvZob84kvopr/dx8sOhsNj/nz+\n3ojWr9+/n8dXruTt9D09fPtTp3jc+O5RF+RGXR3fQXW12vFFZBglvkiClPgiCVLiiyRIiS+SICW+\nSIKU+CIJKtN4/OwycrmoHZ+Hq/a/EWwf7CCYlz9q50d/Hw3b/Pl8+337eDyaOz5oTPZLL6XxAx18\nbvZzozXeWWN5tGbBmstp/K1u3k49A0FDedCQ//pe/r23ZAnffR9/6VFdHczFELz3T3bx+kX9FEqd\nV19E/sQo8UUSpMQXSZASXyRBSnyRBCnxRRKkxBdJ0EStnUexqe+7u/m202v5vPthO3fU2Bk5yueV\nf6HvAhr3w3z3Dz54Ho2TaesBhEu846/W8Hg0nQH4tPx87vqZM/m2wbHde4SvaXDhYj7vvD+9g8br\nz/swjdccOUDjb1adS+MnTvB+CFE/gdpaHo+WlGD0jS+SICW+SIKU+CIJUuKLJEiJL5IgJb5IgpT4\nIgkK2/HN7F4AnwLQ7u7vLzy2EcCXABwqPO0Wd380ax/9/aQCOd7W6cFnk0Xt9PW8IdrreVvzAfB5\n9auP8/o/9xwNY+VKHo+2j9rxu7p4fOnSaL6CYLw/OX7t095Dt/3NVl50tCTAhcdfpPFoLoSFz/yM\nbx80tDcs5unzx86FNB6N5w/7sATz8jPFfOPfB+DqUR7/jrtfVviXmfQiUnnCxHf3rQCOjRIq4fNG\nRKZSKdf4XzWzHWb2PTObPWE1EpFJN96++t8FsNnd3czuAPAdAJmLqN1+e/PQ7cbGPJqa8uMsVkSy\ntLS0oKW1tajnjivx3c8YenIPAPoryW23NY+nGBEZg3w+j3w+P3R/8+bNmc8t9lTfMOya3syGjxm7\nDsCuMdVQRKZUMc15PwKQBzDfzP4AYCOAj5rZagADAPYA+PIk1lFEJliY+O5+4ygP3zeWQtj84lXB\nxPkeNR7MDn5XDAb8GxtPDuCcS3lDeW3dNBrfvZuGsXgxj0djsncF51rRGuufWRfMm/8ob6ll/Sga\nrvkU3fbwYT6n/65dvO4fuyY4ONu20bAFHQU8mOvhjQUfoPFz+XB9RA1jvaT/CxD3A2DUc08kQUp8\nkQQp8UUSpMQXSZASXyRBSnyRBCnxRRJUlnn1zbLbK6Pl662fz50eDdr2tjYa7730gzRekwvGRAeu\nHm1A8zBRO380Jn3vXh5fupS3Fb9xfBaNv3fVKl7ApZdmx4J29Cuv/BiNt7fzug+svozGq6LJDKJF\nBdat4/EOXr+zz+Zv7qgPS8R9/N/b+sYXSZASXyRBSnyRBCnxRRKkxBdJkBJfJEFKfJEElaUdn40b\njsYUz/CgHb+jg8dzpf2JFrQFz1vDF6BvvJjXr7Z2Ho1Hf160RvqDD/L4XXfxOA4Gbc2/+EV2bO1a\nuumqBXzfF64K+lAcPMjjy5fzeDRXQw9fU+A9i4MB88H+o0UPTtadTePRkhKMvvFFEqTEF0mQEl8k\nQUp8kQQp8UUSpMQXSZASXyRBZWnHZ23NUTs0gqZQ1NfzeC/vKHCMT52OhmCNdQvGnPuay2n8A3xq\ndjz7LI9fcAGPNzTweLTksdfU0HjvNZ/JjgV9NPa38dJzOf69VD+DT1zfEEwlEIlGyw8E35v9Ob5u\nQM3sIP16+PHRvPoiMiZKfJEEKfFFEqTEF0mQEl8kQUp8kQQp8UUSZB5MbG9mSwA8AKABwACAe9z9\nX8xsLoAHASwFsAfA9e7+rtHjZuZdXdllRGOKo/r1B22Z04J58f3IERq3/ft5AStX8nh7Oy9/8RIa\nf6tvGo1H8+pHQ9KD6qGvlx//6lx2W3M0XH7FCh6PpsVftIjHV63kda/pPEbjb2IujR89ytvZZ8/m\n5TecdYrGvbaWxtHH5wOoqquFu49ayWK+8fsAfN3dLwLwYQBfMbNVAG4C8Li7rwTwawA3F7EvEakA\nYeK7+0F331G43QngJQBLAFwL4P7C0+4H8OnJqqSITKwxXeOb2TIAqwE8BaDB3duBwQ8HAAsnunIi\nMjmK7qtvZjMB/BTA19y908xGXsBkXtDceWfz0O2rrsqjsTE/tlqKSKiltRUtW7YU9dyiEt/MchhM\n+h+4+8OFh9vNrMHd281sEYBDWdvfemtzUZURkfHLNzUh39Q0dH/znXdkPrfYU/3vA/idu9897LFH\nAGwo3P48gIdHbiQilSn8xjeztQA+B+AFM3seg6f0twD4NoCfmNnfAtgL4PrJrKiITJywHb/kAsy8\nuzu7DAtGPdfsf53GB5a+j8arjx6m8XA8fzQ3ejBe3YNB6b/dx9uKd+7kbcVRW3a0BHxvsGzBXF49\nenjWrOGv7bl7/4fG/7D4IzTe08P3f/4C3k5vwR/vbW00jjlzeHwJ76Ph9Wfx7cPJEni4OldVUju+\niPyJUeKLJEiJL5IgJb5IgpT4IglS4oskSIkvkqCyzKvPlqjvD5YYt6VLabyq6ySN98/na4xH68/P\nnsPnRo+2rw3mG4i6CfzN5/h8Au2H+Wf300/z/e/bxxuDr5/+MxofuOYvM2NV257khUeTBQRzLWQ0\nUQ956SDvhHBh53Yaj5rRQ1EnivqZNPx2L39tu7rGWqHT9I0vkiAlvkiClPgiCVLiiyRIiS+SICW+\nSIKU+CIJKst4/K6u7Lbo6bXBvP7RoOOgId1ZJwIgXgS9hze0v3qczzEarRtwkndDQE1NMOa883ka\nbz/3Mhp/rY3v/8MXn6Dx3rpZmbGazjfptqfq5tH49LYXaBxBHw+8+CINW9SPIOgE4cuW8fhFl/A4\nLx09PbwnQXU1376uzjQeX0ROU+KLJEiJL5IgJb5IgpT4IglS4oskSIkvkqAyteNnl1EbtONH4/Wn\n+dv8CUE7vvfxQd+94OvTR0dvGvjc7QM5Pi9/1XE+N/xrx/mY87a20tZwv+IC3tFgoD67HZ+97gBw\nVo6vD99bPZ3Gg+XhURcsL18FPtdBqL2dhn3BAh4PXnsrMTerctVqxxeR05T4IglS4oskSIkvkiAl\nvkiClPgiCQoT38yWmNmvzexFM3vBzP6u8PhGM9tnZv9b+Ld+8qsrIhMhbMc3s0UAFrn7DjObCeA5\nANcC+CyAk+7+nWB7Z+uY53JB+UH9evtLG7McTX3e0cH3H3QDwIL5vP6nuvn+z5rJt/dg9vdt22g4\ntGIFL7+uLrv8+cHfPi3H29Hf2M9fvDlzgn4C9Tx+6Ag/dgsXlPbaBc30UReTkt/7tbVVme344YIa\n7n4QwMHC7U4zewnA4nfqFm0vIpVnTNf4ZrYMwGoA70xN8lUz22Fm3zOz2RNcNxGZJEUnfuE0/6cA\nvubunQC+C+A8d1+NwTMCesovIpWjqLXzzCyHwaT/gbs/DADufnjYU+4BkLnI2u23Nw/dbmzMo6kp\nP46qigjT2tqCLVtainpuUYN0zOwBAEfc/evDHltUuP6Hmf0DgA+6+42jbKsf9wj9uJdNP+5N4Y97\nZrYWwOcAvGBmz2NwQNotAG40s9UABgDsAfDlaF8iUhmK+VV/G4DRPnofnfjqiEg5lGU8/kA0cJqI\nT+V5vKeH7z/68/v6+BNm1fHx9qf6+Xj+2mDMeDA1PIIh3+jl1QsvdaL9z5mTHWtr49vODC5jotZi\nVnYx+49Opd14+Rln0UWL5pqILoOj8nM5zasvIsMo8UUSpMQXSZASXyRBSnyRBCnxRRKkxBdJUFna\n8Xt6srtm1lQH3SJ7+GdT1NYZ7T/qJ1BTzbuV2tGjNO4zZ9I4auto+EQnr9+sYG76sE9xUL+3uvnx\nZ23RUR+Cujr+2szIBTvIBf2xg4byXvA+tfF7p7Tvzeilibr0Rmpr1Y4vIsMo8UUSpMQXSVDZE7+1\ntaXcRY5JpdfvySdbproKVCXXr6W1daqrQBU7ln4ilD3xy/nHjUel12/r1paprgJVyfVr2bJlqqtA\nlfNDU6f6IgkqscGgOCNHNwajHcf03LHsq9jtx7TPcBqV0ipYNeKj2WzEY1XB/kfuoMTyRxrZGjy8\nftHsR2HVJvnFLXWK6Ml+75W6f1p2OdrxJ7UAEcmU1Y4/6YkvIpVH1/giCVLiiySobIlvZuvNbLeZ\nvWJm3yhXucUysz1mttPMnjezZyqgPveaWbuZ/XbYY3PN7Jdm9rKZPTaVqxdl1K9iFlIdZbHXvy88\nXhHHcKoXoy3LNb6ZVQF4BcA6AH8EsB3ADe6+e9ILL5KZvQZgjbsfm+q6AICZXQmgE8AD7v7+wmPf\nBnDU3f+p8OE5191vqqD6bUQRC6mWA1ns9QuogGNY6mK0pSrXN/4VAF51973u3gvgxxj8IyuJoYIu\nfdx9K4CRH0LXAri/cPt+AJ8ua6WGyagfUCELqbr7QXffUbjdCeAlAEtQIccwo35lW4y2XG/0xQDe\nGHZ/H07/kZXCAfzKzLab2ZemujIZFrp7OzC0ivHCKa7PaCpuIdVhi70+BaCh0o7hVCxGWzHfcBVg\nrbtfBuCTAL5SOJWtdJXWFltxC6mOstjryGM2pcdwqhajLVfi7wfw3mH3lxQeqxjufqDw/2EAD2Hw\n8qTStJtZAzB0jXhoiutzBnc/7Kd/NLoHwAensj6jLfaKCjqGWYvRluMYlivxtwNYYWZLzWwagBsA\nPFKmskNmNqPwyQszqwfwCQC7prZWAAav9YZf7z0CYEPh9ucBPDxygzI7o36FRHrHdZj6Y/h9AL9z\n97uHPVZJx/Bd9SvXMSxbz71Cs8TdGPywudfdv1WWgotgZu/D4Le8Y3D8wg+nun5m9iMAeQDzAbQD\n2AjgvwD8B4D3ANgL4Hp3P15B9fsoBq9VhxZSfed6egrqtxbAFgAvYPB1fWex12cA/ARTfAxJ/W5E\nGY6huuyKJEg/7okkSIkvkiAlvkiClPgiCVLiiyRIiS+SICW+SIKU+CIJ+j/EQIPaKQut9wAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFvFJREFUeJzt3V1sXOWZB/D/4zP2+Cv+SELskJTQZbthFS2kVGVVhcaD\n0FJaVQrqBcvSC+iuUC/KbrW9KUUtToCLdi+Q2IveUFqFVVHpVupCV1qWVnQcZVcNdCFsoPmggE0w\niROHxIkdezIfz1544jjG53kmPvaZYd//TxrFmXfOOe85Z56Zc+Z5P0RVQURhaap3BYgofQx8ogAx\n8IkCxMAnChADnyhADHyiACUKfBG5Q0QOicgREfn2clWKiFaWLDWPLyJNAI4AuA3ABwBeAXC3qh5a\n8Do2FCCqE1WVxZ5P8o1/M4C3VHVEVYsAfgZgx6IbL5fnHoMPP3zZ/yvOo1yqmI9KoWA+SiU1H4XC\n5Y/vfnfwsv+Xy87DqZ8WCvZj3rGo5bHw+GmpZD6W+/gsfCw8Hg8/POgfszo9rrxuFfPhvned5b1z\n66/frr8lSeBvAHB03v/frz5HRA2OP+4RBSiTYNlRANfM+//G6nMfsXPXrrm/e7q7E2xy5W3fnqt3\nFUy5gYF6V8E0MJCrdxViNXLdgOTnNp/PY2goX9Nrk/y4FwE4jNkf944BeBnA36jqwQWvUy2XY9fj\nbT3mt4lL6y8XzfJK1GKWG1UDAGS8j0bn+DU59fM3kGz71rEHUjg+H2v2sRWnXGG/d5vc5W3qXLBH\nkcT+uLfk06aqZRF5AMCLmL1leGph0BNRY0r0ea2qLwDYvEx1IaKUpHKhVnEueUxiL6tRs7O4fcHU\nHNnlxZJ9OeVd6moU2eUJLwe94yPO9ptQMcvLTv2kFH8roxn7NsK9lHZuY4pl79wku1RPzj529pF3\n7+JQKFxZbebjr/pEAWLgEwWIgU8UIAY+UYAY+EQBYuATBYiBTxSgVPL4SfKlXp7bKy+X7PV7efjm\nyM62etv38uzeoVFnB4qw2zFEkXN8nCa5XjuHirH9woy9bi/Pnc16y69sk1p3686587rGNjvtDCD2\n97J/fOLxG58oQAx8ogAx8IkCxMAnChADnyhADHyiAKWSzrPSJm7KJWnKxElHedTr9urm4+zikpNO\naynaI/g0T4zbK+jpsbcftZvl007XzzZMx5ZlMva6I+fceF2Sp2bsc9OScfKJra12ucMbAcdTcd/b\ndnmS0Y/4jU8UIAY+UYAY+EQBYuATBYiBTxQgBj5RgBj4RAFa8kw6NW9ARAuF+G14QyC76/dmkvG6\nxSZc/3TBXr+ThsepU/bya9fa28/Yo2ejXeLz7ACgWTuXfWLc/m6wzu0nus/Z657pMsuvcvZdxo6Z\n5dM9681yZ+Rxd/jq1lbvveW1MXEG2HYS+UXYw5dns/Ez6fAbnyhADHyiADHwiQLEwCcKEAOfKEAM\nfKIAMfCJApQojy8iwwAmMDvjb1FVb17kNVoxEqKJp1J2yitqf7Z5fZ697Xu5YK9P+YWS06ccF+wN\n7NtnFkvJGV+8v98s1s2b7eWNAQWOnbKH/vby4D093jTadh78/Ix9ciYmzGJ0dtrbX9XhDT1uv/e8\nKdy9/SuW7f2z8vhJB+KoAMip6umE6yGiFCW91JdlWAcRpSxp0CqAX4vIKyJy/3JUiIhWXtJL/W2q\nekxErsLsB8BBVd278EU7H3107u/c9u3IDQwk3CwRLTQ0lMeePfmaXrtsnXREZBDAOVV9fMHz/HHP\nwB/34vHHvZX7cW/Jl/oi0i4indW/OwDcDuCNpa6PiNKT5FK/D8AvZfZjKwPgp6r64vJUi4hW0pID\nX1XfBbC1ptdG9iVfIt649c6VrtWfHPAv59xZsp1bqZaS3V9eRkftDczYY8d7l+oX+q8xy98+7G0+\n/qJxwwZ72d7sebP8wBv2uPx9ffYFq3cp39dnl2ez9sl1etP7cz7AGazB5dxnGpiKIwoQA58oQAx8\nogAx8IkCxMAnChADnyhADHyiACVtq18TsTKezgTxmknWBsBrFunl6c9N2bncrsjORWNkxCyWaTuP\nj0OH7PI77rDLnUnUT5+2989rB2FNMb92rb1sBW1meTZrLz8xYde9s9Ne3mvu3TLl9Da3dh7+t6o4\nO+g1pl96Fp/f+ERBYuATBYiBTxQgBj5RgBj4RAFi4BMFiIFPFKBU8vjFcvznS7OTjIwZOWjO5JS9\n/OSkXX71GrtP9Kpxpz+8k8uFN7RZs9NOIZezV9/TY5a/O2J/tnu58vfft8u3bYvfv6bRo/bCHXai\nfXR0tVnujQrmnXs3z+8dHG8sBOe9ccGIC8BtgoEmd0QAa1kiCg4DnyhADHyiADHwiQLEwCcKEAOf\nKEAMfKIALdsUWrEbENFSKT7fGDn95d3aOS84O5lsGqOuDjtXqmNjZnmlb71ZPnHGLPZS3Xj2Wbt8\n40a7HYSXKx4etsu3GjMrbNyQ7L11+oxd9ymnDcemTc65bbXbcHhTgF29xpnezJmfTZ2DX4Q9vVwm\n403v1rT8U2gR0ccXA58oQAx8ogAx8IkCxMAnChADnyhADHyiALn98UXkKQBfBjCmqjdUn+sF8CyA\nTQCGAdylqrGzkZfL8flYcfscO3l+Z356r8+1N/18V4ddjjN2In6m+2qz/KjT390Zlh+3326Xv/OO\nffw+t9keO/7zN9on6HymK7ZsZiZZHr5QsMu9/vhOEwt0le0O+93d9ngA58t2nt2bk2AV7DkVoqy3\nfufNb6jlG/8nAL6w4LkHAfxGVTcDeAnAd5ZcAyJKnRv4qroXwMKvhR0Adlf/3g3gzmWuFxGtoKXe\n469T1TEAUNXjANYtX5WIaKUt15h75o3ko4/unPt7+/YcBgZyy7RZIrpoaCiPPXvyNb12qYE/JiJ9\nqjomIv0ATlgv/t73di5xM0RUq4GBy79UH3tsV+xra73Ul+rjoucB3Ff9+14Az11JBYmovtzAF5Fn\nAPw3gD8TkfdE5GsAvg/gr0TkMIDbqv8noo+JlPrjL30bhYK9rD+svTMuvzP2enOzvf226Q/N8tdG\n1pjlXn/3LVvs8muvtcs9b75p79/VdjMEvPpqfNkXb7P7u384aeepX3/drtutW+02CGejXrO8O3Pe\nLNeJ2KYps/r67XKHwsnDe8VO7DZlIvbHJ6JLGPhEAWLgEwWIgU8UIAY+UYAY+EQBYuATBWi52uqb\nmmTp83hns3Yy08tlTjp9vrtwzn7BpD0H+nTHVWb5pk326r1mFKtW2eXeuPheOwWvz/zZs3YFv7jl\naHxhaa257Jtv2uPW3/qXdp5dRsfN8q5NzmAMztvf7e0+5Rxcr0N+d7ezvD0uv3gn38BvfKIAMfCJ\nAsTAJwoQA58oQAx8ogAx8IkCxMAnClAqefxigvG/o8hedtoZe90jmcgs1yk7Fxtl7PqdOmVvf32/\nnSdfnzlprwBertz+bI8ie/uf6nG2390XW3TslN3f/vPbnDkT0G5v+7rrzOK33rb33Uujx+9Z1Yzd\nxsPN4zuDSRQzbWZ5kuDlNz5RgBj4RAFi4BMFiIFPFCAGPlGAGPhEAWLgEwUolTy+NY93NmsvK/a0\nfGiLLtgrmLE75J+FPfZ6l5PrbcnYYw2Mj9ufrV5/+L4tdn9/r7/9/v12eU+PXX7zVvsAWLn68XF7\n37xtt2XscfmnS3Z//g0b7O2PjtrvrT6vO7+Xp/fe3M7ykTMWRRL8xicKEAOfKEAMfKIAMfCJAsTA\nJwoQA58oQAx8ogC5eXwReQrAlwGMqeoN1ecGAdwP4ET1ZQ+p6gtx67DSmWV76HD4o5vbfb5LWbt8\nVcGeY12dVO3Zkt1nvGinovH739vl3d32/o+M2Mtff70zx/yAXX7ipH38Tp6Mr9/QkLkoWlvtfevo\nsPP0hw/by/c709f3eR3unbEY1FlB0Xlvusr2uWnOOJMyGGr5xv8JgC8s8vzjqnpT9REb9ETUeNzA\nV9W9ABb7Wly5ZkVEtKKS3OM/ICL7ReRHIuI0bCWiRrLUtvo/BPCIqqqIPAbgcQB/F/fiXbt2zv09\nMJBDLpdb4maJKE4+n0fe+2GlakmBr6rzR2B8EsCvrNcPDu5cymaI6Arkcpd/qT7yyCOxr631Ul8w\n755eROb/XvoVAG9cUQ2JqK5qSec9AyAHYI2IvAdgEMCtIrIVQAXAMICvr2AdiWiZiXoTtCfdgIiW\njXxk0s1P2d3t/aHNs3YF2ktnzXJ1KnBhzdVm+fCwWYxOp094ZE8LgFdftcs/c5O9/2Mn7OTNmTPx\nZefO2dv22iDccotdt7+4btosv5Cx21h4cx70dNvbd4bFh5SdRhxRsuEwVOxzE0VNUNVFX8SWe0QB\nYuATBYiBTxQgBj5RgBj4RAFi4BMFiIFPFKBU8viFQvw2Mm4q066fOPU/PWHnOnu77XHxxUv2dnSY\nxVoo2Mtn7WRwpdXORR8+bK8+E9nH51Mb7Vz4hzP2HO2rF+24OWvfW6vNZc/aTSSwebNd3tpq71tn\np33uvTkJ2uxdR8bpD9/uzfngDUbhNBTwIrcpipjHJ6JLGPhEAWLgEwWIgU8UIAY+UYAY+EQBYuAT\nBShZh+AaNUdGrtxJRhbLyT6bvHHp1fnsk+PH7Q04k7yLMyCAbtpklnt91p3FMWH0l6/lBT19djuC\no6O9sWWf/rS96ZFh++Rf03zMLL/Qs94sbxl7zyw/hWvM8p4eu34tGbsNCKacNhwOr4nNdGHpA13z\nG58oQAx8ogAx8IkCxMAnChADnyhADHyiADHwiQKUUn98J99piCI7V+mNm+91eU467n7L2wftFaxZ\nYxar0+n7rK4yy7s67fqdn7GPX3urfW5OT9gD9yd5++zbZ5dff7298rVr7eW7ovNmuTcnwnTHVWZ5\n++HX7Aps2ZJo+9oT30YCAGK62s/JZIT98YnoEgY+UYAY+EQBYuATBYiBTxQgBj5RgBj4RAFy8/gi\nshHA0wD6AFQAPKmq/ywivQCeBbAJwDCAu1R1YpHltVRaerLXmQLczSNPTNgv6O1wxj4fHTWLxZog\nvhbO4PHqNETw8vyvv+61g7CPT0+PvXxnZ3xZd7e5qDungjUfAwCsX2OfO/fcOOdWb7zRXv/4uL3+\nVfa50WzWLhdnrAhnMIuk4+qXAHxLVbcA+ByAb4jI9QAeBPAbVd0M4CUA36lhXUTUANzAV9Xjqrq/\n+vckgIMANgLYAWB39WW7Ady5UpUkouV1Rff4InItgK0AfgegT1XHgNkPBwDrlrtyRLQyah5zT0Q6\nAfwCwDdVdVJEFt5gxN5w7Nq1c+7vgYEccrncldWSiFz5fB75oaGaXltTJx0RyQD4dwD/oapPVJ87\nCCCnqmMi0g/gt6r654ssyx/3LPxxLxZ/3Kvvj3sA8GMAf7gY9FXPA7iv+ve9AJ6rcV1EVGfupb6I\nbAPwVQAHROQ1zF7SPwTgBwB+LiJ/C2AEwF0rWVEiWj5174/f7MwxrrAvNcWp/3TBvqjx+tsL7P7q\n0zP2+otOf/9Tp+zyT645Z5Z/MNlllu/da6/fG5f/yBG7fMeO+OPX1Vo0l313tMUs7+m2z83q0QNm\nuXcbBe9SvdfuD4+ivX9obrbLHdraapc7sRFFTeyPT0SXMPCJAsTAJwoQA58oQAx8ogAx8IkCxMAn\nClAqefxKKb7ZacXJRRacOcCzTh7eS9Wu67Fzsaen7FxsR4ddv3LZrl+bU/9pZ1z8Ysku/+MfzWJ3\nbHrv+BWMKeC9cfHdY+c0J26fPGGWu3l0r81wR4dd7kzKoE57c43s+n20O8yC5Z3v7SjiuPpENA8D\nnyhADHyiADHwiQLEwCcKEAOfKEAMfKIANXx/fGd0IdcFJ8+dFTuPr5Gd6z09kfSz097BGSeP74ze\nhGLRXn9fr73/H07auebVncbyZWcwAq/yRvsPACjCrpuXpk9Kyvaxqzh5emdUNTRH9rkrlu33XjbL\nPD4RzcPAJwoQA58oQAx8ogAx8IkCxMAnChADnyhAKeXx47eR8fL4Sbfv7p9dXnE+G708u8fL5UZO\nLrc940wBNmN0mAcgTq5dO4w5smBP46QTE+ayR2euMsv7+sxid6yGzk5nzgS150zwTo7XjsBro1JR\n+73ljeXg5fmbMsmn0CKi/0cY+EQBYuATBYiBTxQgBj5RgBj4RAFyA19ENorISyLypogcEJG/rz4/\nKCLvi8ir1ccdK19dIloObh5fRPoB9KvqfhHpBPA/AHYA+GsA51T1cWd5LRnjo3t5bC/P3hwly8Vq\nxhnb3Dk+0wX7s9NrRmCNSw/4Xda9XG+nMzR808Rp+wXeHO3GeAXTJfvYevO7O8PSI4rsci+P3lSY\ntlfgHHz13lveuPlOf344Y0F44/ZHUVNsHt8dqkBVjwM4Xv17UkQOAthQLU7WeoWI6uKK7vFF5FoA\nWwHsqz71gIjsF5EfiUj3MteNiFZIzYFfvcz/BYBvquokgB8C+BNV3YrZKwLzkp+IGkdNo5KJSAaz\nQf8vqvocAKjqyXkveRLAr+KW37Vr59zfAwM55HK5JVSViCz5fB5DQ/maXltTJx0ReRrAuKp+a95z\n/dX7f4jIPwL4rKres8iy/HHPwB/34vHHvTr+uCci2wB8FcABEXkNs5H4EIB7RGQrgAqAYQBf99ZF\nRI2hll/1/wvAYp+tLyx/dYgoDSs88visJjEuxyP7cqXJudT3xhbPRHa5dylfLNv1a8vatxoXSvb2\nvUt950obXkb1zIS9f6u9OeC9wemNHci2tpiLTk3Zq/aq5nGGIkC7d6/g34eanGkB0Oxs37uUT5JN\nZ5NdogAx8IkCxMAnChADnyhADHyiADHwiQLEwCcKUCrj6pdK8blud45wd2xypx2AJNs/d/1Os89i\nps0s9+dAt7fvHR+nGUQNzWbtFcS0CJ1d1tn4tDMuflurs23ne8t7b0dwmnt7jSycNg5Wc2aghmPv\nNOktwm4nkc0Kx9UnoksY+EQBYuATBSj1wM/n82lv8oo0ev1q7W9dL418/Bq5bkC69Us98Bv+jTs0\nVO8qmPbsyde7CqZGPr+NXDcg3frxUp8oQKl0y7W4PQ8bnbMDSfdvseU/9sesquH3w6vgSu+A995K\nsuo08vgrugEiihWXx1/xwCeixsN7fKIAMfCJApRa4IvIHSJySESOiMi309purURkWEReF5HXROTl\nBqjPUyIyJiL/O++5XhF5UUQOi8h/1nP2opj6NcxEqotM9voP1ecb4hjWezLaVO7xRaQJwBEAtwH4\nAMArAO5W1UMrvvEaicg7AD6jqs5A8+kQkVsATAJ4WlVvqD73AwCnVPWfqh+evar6YAPVbxA1TKSa\nBmOy16+hAY5h0slok0rrG/9mAG+p6oiqFgH8DLM72UgEDXTro6p7ASz8ENoBYHf1790A7ky1UvPE\n1A9okIlUVfW4qu6v/j0J4CCAjWiQYxhTv9Qmo03rjb4BwNF5/38fl3ayUSiAX4vIKyJyf70rE2Od\nqo4Bc7MYr6tzfRbTcBOpzpvs9XcA+hrtGNZjMtqG+YZrANtU9SYAXwLwjeqlbKNrtFxsw02kushk\nrwuPWV2PYb0mo00r8EcBXDPv/xurzzUMVT1W/fckgF9i9vak0YyJSB8wd494os71uYyqntRLPxo9\nCeCz9azPYpO9ooGOYdxktGkcw7QC/xUAfyoim0SkBcDdAJ5PadsuEWmvfvJCRDoA3A7gjfrWCsDs\nvd78+73nAdxX/fteAM8tXCBll9WvGkgXfQX1P4Y/BvAHVX1i3nONdAw/Ur+0jmFqLfeqaYknMPth\n85Sqfj+VDddARD6J2W95xWz/hZ/Wu34i8gyAHIA1AMYADAL4NwD/CuATAEYA3KWqZxqofrdi9l51\nbiLVi/fTdajfNgB7ABzA7Hm9ONnrywB+jjofQ6N+9yCFY8gmu0QB4o97RAFi4BMFiIFPFCAGPlGA\nGPhEAWLgEwWIgU8UIAY+UYD+D15rF6MtXThaAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFshJREFUeJzt3W1sXfV9B/Dv7z74OrHzYJzaZnZwmmxLWbYoaoFSBeFb\nobWo6gSqJsZAE3QT6ouyVeubUtTlAfai3Qsk9qJvKK3CVNQnqYNOGqUVu0YwAVFHslBCAoG4sZuY\n2MRO7CT2ffjthW8cx/j8fjc+vude9v9+JCs393/POf977v3d8/D7P4iqgojCkmp0BYgoeQx8ogAx\n8IkCxMAnChADnyhADHyiAMUKfBG5XUTeEpGjIvKNlaoUEdWXLDePLyIpAEcB3Abg9wD2A7hbVd9a\n9Do2FCBqEFWVpZ6Pc8S/CcDbqjqkqkUAPwJwx1IvnJmpzP9961u7rvh/pVw2/8qlivmnMzPmX6VU\nNv8W1mVZ9Stron+7du1e9FzF/NNy2fzz35+9/sWv37Vr1wrum5jvbdFnveufdl3x/+lpNf8a/9nG\n+7PECfxeACcW/H+4+hwRNTne3CMKUCbGsiMArlvw/77qcx/y6KN75h+vW7c+xibr79Zb842ugmlg\nIN/oKpjyAwONrkKkZq4bEP+zLRQKGBws1PTaODf30gCOYO7m3kkArwH4a1U9vOh1OjNTiVxPNmNv\nP+LexLxUuWgvn7Z/24ple/1u/Rp+0uRdy3n199Zu7x8x1hB/38R8b86buzBj16+11V6+2aXTEnlz\nb9lHfFUti8iDAJ7H3CXDk4uDnoiaU5xTfajqcwC2rlBdiCghsQK/dtGni+6Fhn2mCU2nzXL3VD7t\nnQo7FXDegXUqXMPi7uloxvkEs/bucfdPOm2Xl8rGtjPRl3i1qKj93meNbQP+vlmVs+vnXWaKc5np\nVSDOZdTc8su/lGr0BSoRNQADnyhADHyiADHwiQLEwCcKEAOfKEAMfKIAJZLHz6aXn8/1c53OtuE0\n6ZWsVwF7+zFzuRXnHTjNFNxc8/mL9vJTU/byHR328sVi9PJTU/ay7e12uadUsuvu5fGdXQfReO0Q\n/DYgjcMjPlGAGPhEAWLgEwWIgU8UIAY+UYAY+EQBSiSdp1K/tIa37kraTteVnZSQJ+OsX5xhYKan\n46WkvHSfn/C065dVO115odQSWTY2Zm97bMze9h9tmjXL07l4+362ZB/3Zpwu0e1tdrnXrdbrdmx1\neQbidXvmEZ8oQAx8ogAx8IkCxMAnChADnyhADHyiADHwiQLU8OG1Pd5sKF6u09u2nwe3FZ12ADMz\n9vJr2uxc7NvH7N/mLVvs9Z85Y5efPWvX/2Mb7Fz5WkxGl+WiywAA03a/XRm2p7JJef16nfJMbrVd\n7kSH1yW7CHvfZWG3U0A6uo0EUMPQ9AYe8YkCxMAnChADnyhADHyiADHwiQLEwCcKEAOfKECiXqLc\nWljkOIBJABUARVW9aYnXaKXsJtsjeVMBe9X3Nu3l8SedVHTc5dvb7TfQUTptr2DdOrv82DG73BsD\nu9XOpUupFF3Y22suq04jh0rvRrP8yBGzGFu32uWTk3YbBn/4b2csg7hTsMccxyKdFmjE+OtxG/BU\nAORV1WkmQkTNJO6pvqzAOogoYXGDVgH8SkT2i8gDK1EhIqq/uKf6O1X1pIh8DHM/AIdV9aXFL9qz\nd+/84/zAAPL5fMzNEtFihUIBg4OFml4b6+beFSsS2Q3gnKo+tuh53twz8OZeNN7cq9/NvWWf6ovI\nahFprz5uA/A5AG8sd31ElJw4p/rdAH4uIlpdzw9V9fmVqRYR1dOKnepHbkBES6XoPuf+VYB9uuNV\n3+sPb52pAkAmY2/A60/vDxhgr1+GhpzlHc7ptnuqPz297PV736xDb9n9zcfG7c9+wwZ7/d5b9y4V\nduywy3M5u3xmxt4Dq1q9S4F4997rcqpPRB9dDHyiADHwiQLEwCcKEAOfKEAMfKIAMfCJApTIuPrl\nspWP9Zo9Ln8OcACYmHDmOHeaZXpp7rU5pyHAyy/b5V4yets2s1gvXjTLixl77PhSu12+OvOBvf3x\n8ciy0dS15rIvvWzn6b08utcGw2uC4LV2fucdu3zTJrvca4NSdOqfzcT77lt4xCcKEAOfKEAMfKIA\nMfCJAsTAJwoQA58oQAx8ogAlksePOwe9pWi2EQA2bLDbCaScOc5bnfnhMTRil7e1mcXqJKMvzNi/\nzaWynYdf4/T5Hh6x99/HW+0BDc62RefqB5+z193XZxZ7uw6jo3a510Yj63y03vJjY3Z5d7ddXirF\nG1qrxRkrwsIjPlGAGPhEAWLgEwWIgU8UIAY+UYAY+EQBYuATBSiRPH5KjH7FMQfGv1haZZZ7496L\ns/3UhN0fHRcu2OXexAE33GAWjzl59okJe/XODFhIp+31vz1l96nv74xe3utPf+CAXe7NIOUMVYDh\nYbvcy+N7vP783r6PO+dDS4zo5RGfKEAMfKIAMfCJAsTAJwoQA58oQAx8ogAx8IkC5GYCReRJAF8E\nMKqq26vPdQD4MYB+AMcB3KWqk8upQMX57Smn7Tx9zslDF8v2+lsyzi5wkq2VT/yJWZ76zX57/RP2\nbjt58hqz3OuTvmWLvX9eecVe/pZb7OWt3Tc0ZK/bG/e+v98u9/Lc3pQFXh7dy8O7Yz2IXZ7LOd99\nZ6yJOKPu13LE/wGAzy967iEAv1bVrQBeAPDNGHUgooS5ga+qLwE4s+jpOwDsqz7eB+DOFa4XEdXR\ncq/xu1R1FABU9RSArpWrEhHV20q11TcvZvbs3Tv/OD8wgHw+v0KbJaJLCoUCBgcLNb12uYE/KiLd\nqjoqIj0A3rdevGf37mVuhohqlc/nrzioPvLII5GvrfVUX3Dl1J/PAri/+vg+AM9cTQWJqLHcwBeR\npwH8N4A/FpHficiXAXwbwJ+LyBEAt1X/T0QfEaJef/i4GxDRcjk646hq5yrj9ll2bj9grdNfH8b8\n7wCgXrLX6a9/eNy+L3rNNY3dP5unD5nllW3bI8uOH7e37JV3dNjl3lgE3vz13nwPrc6cBF1OHt+b\n8yFbsr8blZzdhsVrJ5BKp6ERAcaWe0QBYuATBYiBTxQgBj5RgBj4RAFi4BMFiIFPFKBExtW/stHf\n1fFyrRcv2rnMjraiWX522h5cfa3TX1+cCqqTaO+0u9ujK2W2hgY22JO4vz+12l7c6bOOIXv9k5PR\n+39z9oS57Oab7Y2fdeZMWNtuf/aHj9jHtXb7rbnj7nvj/mfTThuZdM4s9vrjC8fVJ6KrwcAnChAD\nnyhADHyiADHwiQLEwCcKEAOfKECJ9MevWLlsb1x7p3qzJTvX2ZKx+9vPluw8vDgVyB60x83XT91o\nr3/EznVLb69ZjpERe/vOeAHnWu3xAEpFp53EVHT9D01uNJfd3nPaLNdOO89/btr+7M+ft8tnZ81i\n5HL17Y/vtVHx8vhe6KTTwv74RHQZA58oQAx8ogAx8IkCxMAnChADnyhADHyiACXTH99IWKrXV98p\nbsk4udSS/dvWMun0d3dyyW6e/rf2uPReh/jzM3b9V3d22ut3nD9nl3/wgZNL7o3O1W/wvl2nTtnl\nU1Nm8YW2zWb5Krs7P86etct7e+33Xizby2fTzpwNZXsFZdgDAnhtTCw84hMFiIFPFCAGPlGAGPhE\nAWLgEwWIgU8UIAY+UYDc/vgi8iSALwIYVdXt1ed2A3gAwKUk+MOq+lzE8louO/lMu4Jmudfn2Ut1\nZkvnzfJKqz0u/eSkvf6OnL3+syVv/fb76+2136CTCserr9rr377dXv7o0eiynh572T6n7quP2W0g\ndNufmuXvDdnHte5us9hLs7tKJfv9XbPOjguvjYs6A/un06lY/fF/AODzSzz/mKp+svq3ZNATUXNy\nA19VXwJwZomi5U+PQ0QNFeca/0EROSAi3xORdStWIyKqu+W21f8ugEdUVUXknwE8BuDvol68d++e\n+ccDA3nk8/llbpaIohQKBQwOFmp6bU2DbYpIP4BfXLq5V2tZtZw39wy8uReNN/cae3MPmLuen1+B\niCz8SL8E4I0a10NETcA91ReRpwHkAXSKyO8A7AbwWRHZAaAC4DiAr9SxjkS0wpIZV984Z/JOZ7xT\n/QtOf3V32H5n/WfO2PUbGrLXf8MN9voPHnT6fBft9Xuno86w+sjZU7S7c8hblxLj4/aymzbZ+2bj\nhH2qX9z6Z2Z5duykWX6ifK29/c4LZvlrb9iXaddfb7+/Ne12uRsbznVsKp3muPpEdBkDnyhADHyi\nADHwiQLEwCcKEAOfKEAMfKIAJTOuvsVrRlAumcWZTItZ7s1B7nUyzNpDm7uOHLHXPzxsL9/fb5d7\nefrR0XjrX7/eLj9tTHFfsj86FAp2+d/cu80sPzPmNNfOOHn69Xae/lzJHpi/v9/J07fFayMTkYKf\nV4rRpJhHfKIAMfCJAsTAJwoQA58oQAx8ogAx8IkCxMAnClAT9Me3f3u8+pWdobcyaWfegJLd4f3E\nqN1O4IKdCsaxY3a5l0f3+ttv2WKXv/NOvPV74wFY7Ry8NgZeG4uNffZnt2r0PbO80r/ZLPeGxpqZ\nMYuxJmfvnHMzdiMQb/9kM3b9KuqNRSHsj09ElzHwiQLEwCcKEAOfKEAMfKIAMfCJAsTAJwpQIv3x\nrfHBvWYEXp7eW/7CRXv5yUk717qx/QN7A712h/WpKfu31cuje33az52zy0dG7PKJCbt850673OK1\nYdiwwcnTj5+wV+A0gvD2bSZjfze8fTM1ZX93ru32pn9z2rDYm4czg5aJR3yiADHwiQLEwCcKEAOf\nKEAMfKIAMfCJAsTAJwqQm8cXkT4ATwHoBlAB8ISq/quIdAD4MYB+AMcB3KWqk0utw8pFZzFrVyBt\n94e35mcHgOlpu7y722kngA6zXMaNgeUBrF/fZZZ7fb7b2uzyN9+0y73+9Bcv2uUHD9rZ5L+4LXpA\ngp4ee/5477OTst1hXb1EvXNcSzmZ8tZWe/nWVvu7U3THvXfGinAz+csfS6OWI34JwNdVdRuAzwD4\nqoh8AsBDAH6tqlsBvADgm8uuBRElyg18VT2lqgeqj6cAHAbQB+AOAPuqL9sH4M56VZKIVtZVXeOL\nyCYAOwC8AqBbVUeBuR8HAPY5LRE1jZrb6otIO4CfAfiaqk6JyOILjMgLjkcf3TP/+NZb8xgYyF9d\nLYnIVSgUUBgcrOm1NQ22KSIZAP8B4D9V9fHqc4cB5FV1VER6APyXql6/xLI6M1OJXHcW9t2nSt1v\n7tnl3g0W7+beu+fi3dzL5ezyoSG73OvEMz5ul3sdaaybe7MZ7+aeve7Osr1v1ZnRswi7E03WGYj1\nrNPByhss88PHxqvjDbbpSaXTsQfb/D6ANy8FfdWzAO6vPr4PwDPLriERJaqWdN5OAPcCOCQir2Pu\nlP5hAN8B8BMR+VsAQwDuqmdFiWjlJDOuvnE+G/d0bLZkn7R4p7Leqf6RI3Z5Z6eXC7Zzvd64/Kvs\nKdrdPuMbNtjlBw7Y5X19dnlra/T77+qIdxk3Ohrvu3ltyenP7+yc2bS981tinopX3BNub04Je+lc\nLsVx9YnoMgY+UYAY+EQBYuATBYiBTxQgBj5RgBj4RAFKZFz9Sjo6V68lJ88ds0nrunV2udcfvb3d\nzqV2rbdz1e9P2LnqNWvs9a8WO9G/ts/ZAa++ahbffPNnzPJUyRkvwVr/CTuPXvrLe83yU6fs70aP\nM269jI2Z5drebi/fbjc59vrbe83RJWO3YRGnjU05xnGbR3yiADHwiQLEwCcKEAOfKEAMfKIAMfCJ\nAsTAJwpQIv3xy+XobdR58yiX7A1kS3ae/L1RO5fr9ZmO6A49zx8azF5/hz3sP1rS0cOeAYA6eX75\n9Kft5YeHI8vOtF9nLls05lsAgK7MGfsFXh7eG3fe6dCuXiMRZ3lJp+31wxuX3y4vOW1g2tqE/fGJ\n6DIGPlGAGPhEAWLgEwWIgU8UIAY+UYAY+EQBSmZcfSPf6eW5pexM8F6yk8GVnD02etpZv6bjDVnw\n7nH7t9UbG72/3y430ugAgKGheJ/vzTfb5dbXx5verKvVnt+r2LrGLG/J2G0UXF4jCqedgBc7xbL9\n2Xvj8scNzVQm/hRaRPT/CAOfKEAMfKIAMfCJAsTAJwoQA58oQG7gi0ifiLwgIr8VkUMi8vfV53eL\nyLCI/E/17/b6V5eIVoKbxxeRHgA9qnpARNoB/AbAHQD+CsA5VX3MWV7L5eXnW1Pq9Cd3llex+0R7\nydIUnLrP2AP/e7nYk5N2O4NrO+12Bmcv2uP2eyYm7HLn7ZnzFqxfb7/5FmcsBG/f/EG73Q7AGzc/\nbhsSjTkuvoq9fe+747UByeVSkXl8t3WKqp4CcKr6eEpEDgPorRbbNSeipnRV1/gisgnADgCXhm15\nUEQOiMj3RMSZs4aImkXNgV89zf8ZgK+p6hSA7wLYrKo7MHdGYJ7yE1HzqKkhuohkMBf0/6aqzwCA\nqp5e8JInAPwiavm9e/fMPx4YyCOfzy+jqkRkGRws4MUXCzW9tqZOOiLyFIAxVf36gud6qtf/EJF/\nBHCjqt6zxLK8uWfgzb1ovLlnFtf35p6I7ARwL4BDIvI65mLtYQD3iMgOABUAxwF8xVsXETWHWu7q\nvwxgqcPmcytfHSJKQsP747vLxzzf0Yz92+aNbe5tv+iMbe7xxpZf3WpfasyW7EuZkRF7/dapelzZ\nrL3v1uTsU+lZ2Jcx3rj5Jedrt6o13pwIIk4bGHvz/mWqc+/dC41MhuPqE9ECDHyiADHwiQLEwCcK\nEAOfKEAMfKIAMfCJApRIHn9mJjoX7aTZkfKynV79vWaR9tKoOLncsjOHuceZQh1eDb3tx/14vc/H\nmtYg44wb7zWHrizZbuxq2Nt351SI2Qak3rx2DKk0x9UnogUY+EQBYuATBSjxwB8cLCS9yatSKBQa\nXQVTs9evmT/fZt93SdYv8cCvdaCARikMDja6CqZmDiyguT/fZt93SdaPp/pEAYo3B3SNFmfUnAzb\nR0qj30uzbV+k8XWq2UemoisvkTx+XTdARJGi8vh1D3wiaj68xicKEAOfKECJBb6I3C4ib4nIURH5\nRlLbrZWIHBeRgyLyuoi81gT1eVJERkXkfxc81yEiz4vIERH5ZSNnL4qoX9NMpLrEZK//UH2+KfZh\noyejTeQaX0RSAI4CuA3A7wHsB3C3qr5V943XSETeBfApVT3T6LoAgIjcAmAKwFOqur363HcAjKvq\nv1R/PDtU9aEmqt9u1DCRahKMyV6/jCbYh3Eno40rqSP+TQDeVtUhVS0C+BHm3mQzETTRpY+qvgRg\n8Y/QHQD2VR/vA3BnopVaIKJ+QJNMpKqqp1T1QPXxFIDDAPrQJPswon6JTUab1Be9F8CJBf8fxuU3\n2SwUwK9EZL+IPNDoykToUtVRYH4W464G12cpTTeR6oLJXl8B0N1s+7ARk9E2zRGuCexU1U8C+AKA\nr1ZPZZtds+Vim24i1SUme128zxq6Dxs1GW1SgT8C4LoF/++rPtc0VPVk9d/TAH6OucuTZjMqIt3A\n/DXi+w2uzxVU9bRevmn0BIAbG1mfpSZ7RRPtw6jJaJPYh0kF/n4Afygi/SLSAuBuAM8mtG2XiKyu\n/vJCRNoAfA7AG42tFYC5a72F13vPAri/+vg+AM8sXiBhV9SvGkiXfAmN34ffB/Cmqj6+4Llm2ocf\nql9S+zCxlnvVtMTjmPuxeVJVv53IhmsgIh/H3FFeMdd/4YeNrp+IPA0gD6ATwCiA3QD+HcBPAWwE\nMATgLlV15rtNtH6fxdy16vxEqpeupxtQv50AXgRwCHOf66XJXl8D8BM0eB8a9bsHCexDNtklChBv\n7hEFiIFPFCAGPlGAGPhEAWLgEwWIgU8UIAY+UYAY+EQB+j9EgSYmZMp3/AAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF3dJREFUeJzt3W1sXOWVB/D/sceZGDuJQ0wcsLdOSWioQkm2tEAVak8F\nW1jUFai0LFt2Bd0VKlLZrVRVKmWbOGm2qN0PSOyHSiuaVikClW5RCXwo7+uEdEUSXpIlr0TZdUjS\n2EnYxMTGnnjGZz944jiO7zmTuZ47Uz3/nzTKZM7cuc/cmeO5M+d5EVUFEYWlptINIKLkMfGJAsTE\nJwoQE58oQEx8ogAx8YkCFCvxReQ2EdkrIu+LyPenq1FEVF5Sah1fRGoAvA/gZgB/BLANwD2qunfS\n/dhRgKhCVFWmuj3OJ/71APar6kFVHQHwawB3THXH0Vx+/LJq5arz/p/NjpqX0XzevOTzOq2XVau6\nJt02al4mPpepLtmsOhfn+U96vAuPn/343vPN5ezL4KB9yedGz7usWrlq/PpoNmte3GPrvPZe2ycf\nix/+sOu8/1/s9hceW7v9ms+bl8nPZ9WqVbGe3+SLJU7itwI4NOH/hwu3EVGV4497RAFKxdj2CIBP\nTPh/W+G2C6xes2b8etOcOTF2WX6dnZlKN8GU6eysdBNM1Xz8OjoylW6CKe5ru3FjNzZt6i7qvnF+\n3KsFsA9jP+4dBbAVwN+o6p5J99PRXD7ycUbyU/72MK4uZbdPy37SYu9fnOM3kvfaZ29fVxvv8VPO\nn3bv5c9m7fjMdPQDSH7E3neqzoyLc2xG1X7u+ei3HQCgttaOe9unnPdmjdN+L/PiPr90WiJ/3Cv5\nE19V8yLyEICXMfaVYd3kpCei6hTnVB+q+iKAJdPUFiJKSKzEL9ZQNvp0Pp22T/WHhu3Htk41Af90\n06OpGXbcbr57OgnYDzDqbe6IeyqfTjuPb7R/OGefyiNnP3fva0q55XLePZwXv8z891Y0/qpPFCAm\nPlGAmPhEAWLiEwWIiU8UICY+UYCY+EQBSqhSGl3v9LsdOo/sDPfXWruW7HWbzDr9CFKpeLVcr1Zc\nW2s//uCgvb1XCx8asuO9vXZ85szoWM6p03uv7cyZ9vbDzmvjmTXLjnvty+fjdbcedfoB1Di9OIay\npX9u8xOfKEBMfKIAMfGJAsTEJwoQE58oQEx8ogAlUs6rT0eXJUbdvz12yWPEKYd5JZVhpyTiDX0c\nGLDjDQ123CunffhhvP03Ntpxz4gzqrmnJzrW1hZv3/X1dtwqJQJ+KdN7bfv67Hhzs/PedErV3nvz\njFMO9YcNR+MnPlGAmPhEAWLiEwWIiU8UICY+UYCY+EQBYuITBSiROr61Wo5Xi/Rqtd6wVW96am//\n3tBMr05/8qQdP3bMjnt1eu/4eM9v0SK7ljxj+LQZHx6eHRnz+gB4x6bVWYJ11y477h0bbzU3b9jv\n4cN2vLnZjtc5fSy8fggzUqVPvs5PfKIAMfGJAsTEJwoQE58oQEx8ogAx8YkCxMQnClCsOr6I9ADo\nx1i5fERVr5/qft40yxZvmWdvem511rH2Ht8bk+05fjze43u13FOn7LhXy25qso/PwIA9B/U110TH\nvKm5Pfv22fElS+z4qVP2izu/ye5o8MoOe4l0f76BeEvAe0vIe+P9LXE78IwCyKiq0xWDiKpJ3FN9\nmYbHIKKExU1aBfCKiGwTkQemo0FEVH5xT/VXqOpREbkMY38A9qjq5sl3+vGPV49f/+IXM+joyMTc\nLRFNtnFjNzZt6i7qvqLer1tFEpEuAKdV9bFJt+vgYOn78Ncvs+Pe0/MGYnhr03nK/eOe137vx72r\nr7bjAwP2AWxvj/4ByvtxzxuAJM5vwosW2fHYP+5tjPfjnhdPpez2eT/ueWv3pdM10Ihft0s+1ReR\nS0SksXC9AcCXAews9fGIKDlxTvVbAPxOxparTQF4SlVfnp5mEVE5TdupfuQORDSbjR437C8lbJ+U\neOPNvTq3N3e7N97eG5Ptnc4eOGDHvVN976uQVwu/7Tb7+H+ywZkwwHoC3sHZu9eO3/u3drzfeXGX\nLTfDh47Yp9KnT3t9HOzde19DFyyw4957zxvvn0rJ9J/qE9GfLiY+UYCY+EQBYuITBYiJTxQgJj5R\ngJj4RAFKZF59cx3yvFOIr7W7TXpdapub7Tp1zQm7T+3/nphvxr1S9dGjdry/344vXWrHDx60401N\ndtzr8itDJ+w7DA1Fx7xOBl4h+2CPHV+82Ayr8+RGRi4x46+9Zu/e6yOycKEd9+rw2awd97o0W/iJ\nTxQgJj5RgJj4RAFi4hMFiIlPFCAmPlGAmPhEAUpkPH4+Fz0evyZr1IExNptnLGl77qkRZ87/2pQd\n98a7t7fbcW96qp4eO+5Na/ZXt9rTS+054Ewv1Wo//uwNT0bG9K67zG0PnbDr6F4fhNnDzlwBTicJ\nnWcX0nf3XmrG33rL3v3ll9txb2our5uDd3xqazken4gmYOITBYiJTxQgJj5RgJj4RAFi4hMFiIlP\nFKCKz6s/Q8/YD+ANGPcGtDuTn6s5WQCAHTvsuLcGlTegftgZdO31ZDhlP3+Zaxd7tdaekmH/QbvO\nv3hRdPvkwH5z2zd6P2XGGxvNMK5Zah+bGano9x0A6K5dZnzLx9ea8WNONwKvTt/q9JGY78wlMZK3\nP7fTadbxiWgCJj5RgJj4RAFi4hMFiIlPFCAmPlGAmPhEAXLn1ReRdQC+AqBPVa8t3DYXwDMA2gH0\nALhbVY2CcvSY9tGUXSdGox2v8SbWX7LEDMvvf29vv9+uRWPEHu/u0UX23PAnh+0x65cOOwP6d9oT\n/4szqPuqVqcYbXRDGF10lbnp0nn2Q/f323XsutzHZlwP2IsOnFnyGTN+mbNmwqxZdtwbL19XZ8/1\nMHUF/hyvC4qlmE/8XwK4ddJtDwN4VVWXAHgdwA9KbwIRJc1NfFXdDODkpJvvALC+cH09gDunuV1E\nVEalfsefr6p9AKCqvQDsdaaIqKpM19p55pextWtXj1/v6MigszMzTbslorO6u7uxcWN3UfctNfH7\nRKRFVftEZAEAc7jCypWrS9wNERUrk8kgk8mM/3/t2jWR9y32VF9w/k/zzwO4v3D9PgAbLqaBRFRZ\nbuKLyNMA/gvAp0TkAxH5JoCfAPgLEdkH4ObC/4noT0Qi4/Fzueh95I0YANT12+vXizPeHinn28zp\n03bcmw9gpj1vvzqDsvccmW3GU868/tZ4eACoydnzHahzfI6dsD8bWpqiH18//NDcFg0NdnzLFjv+\nuc+Z4ZM614yf6rePbWurvfsTJ+y499arq4u3vRdvaOB4fCKagIlPFCAmPlGAmPhEAWLiEwWIiU8U\nICY+UYCmq6++qUaM+c2dOrV4g47nzLHjXh3eqzV78+J78/rn8ma4p8d+/sPDdp3+qtYhM943UG/G\n58+yt6+faW+Pw9GD1uXZZ81N1VkA/uO7/s6MH7SH26OtLV6d3iPOeHlvXQCvDp/P2699fbr0Pjj8\nxCcKEBOfKEBMfKIAMfGJAsTEJwoQE58oQEx8ogAlUsdXY159a859APgodakZnz3sLFKet+voumKF\nGR/J2X8bZ3j9ABrtMectLfbm/c6Y8aP9dp195kx7+5Fae/uUVyrO5aJjN9xgb+scux077LYvW2Y/\nfDZrN37WsD3Xw//V2nPIel1EvC4o3rz8uZwz7749FYSJn/hEAWLiEwWIiU8UICY+UYCY+EQBYuIT\nBYiJTxSgRObVz+ejx+OLveyesyofcHrArnV60+473Qhw+bwR+w45O/4x7PXtT52yG9DYaB+A2U4t\n+mjuMjN++ZFtZhzLl5thc76Exx83t9UbbzTjfVd+wYy31NjPPe7E9GfS3poH9sPHXJIB3pu/Jm+/\n92rSac6rT0TnMPGJAsTEJwoQE58oQEx8ogAx8YkCxMQnCpA7Hl9E1gH4CoA+Vb22cFsXgAcAnB0M\n/4iqvliOBqozeXlDox3P5exa6NzUaTN+7KQ9aLpl92YzblfxgUu8efv32ZPHO90QcHmr0w/B6Sfx\nn5vtRdyvXhIdu2LxYvvB5zWb4TNnnLkIUnYfhZxTR/ek03Z8cNCOO8sGuPJ5+/lnc/ZrYynmE/+X\nAG6d4vbHVPWzhUtZkp6IysNNfFXdDODkFCHvw4aIqlSc7/gPich2Efm5iDjrWBFRNSl1zr2fAfiR\nqqqI/AuAxwD8Q9Sd16xZPX69szODTCZT4m6JKMqmTd14443uou5bUuKr6sTREU8AeMG6f1fX6lJ2\nQ0QXoaMjg46OzPj/H330R5H3LfZUXzDhO72ITPy98qsAdl5UC4moooop5z0NIANgnoh8AKALwJdE\nZDmAUQA9AL5VxjYS0TRLZDx+Nhs9Hr/Ombh9VO2TEmfafHhPb3Aw3nwAl+acef2dCQG02a5Fb91r\n9yNwhsujp8eOv/SSHd+50y7ePPhg9AH685w91v/Qgs+b8YYGe99btphhdzz8iNPF4ZZb7PhBu4sF\nGhvtuF/nd9YFaHDG66dqOR6fiM5h4hMFiIlPFCAmPlGAmPhEAWLiEwWIiU8UoETq+NaYeBF7/xFl\nyHFerTabteNnztjxd96x401Ndvub7SHnmDfPju/fbz//3bvt7V991Y7fdJMdb2+3n9/tC40GPPec\nue2Wm//ZjG/daobdeennOEPHvOkCnKkg3P23tMR7fK/9+bz92qTTNazjE9E5THyiADHxiQLExCcK\nEBOfKEBMfKIAMfGJAlTqnHsXxatXWmokeiw/AFzi1FKHh+ON5/dqqXv32k+urc3e3lpeHgAOHLDj\n25zl7ZcY894Dfj8Cb7y/PPtaZEy/9jVz28HD9mM7Uxm469PPsqcycMfDNzXZ8SNH7Hh/vx1vb7fj\nvtITi5/4RAFi4hMFiIlPFCAmPlGAmPhEAWLiEwWIiU8UoGTq+Iiuxavzt2fUmS7Aq5V69u2z416t\neNkyO/7223a8tdWOe+P5nVI5Nmyw4966Ble8Za6OBuw0FlHqzJibenX6uE6ftuPevPj19Xbc6wPh\nzavvzRXhvffi4Cc+UYCY+EQBYuITBYiJTxQgJj5RgJj4RAFi4hMFyK0UikgbgF8BaAEwCuAJVf03\nEZkL4BkA7QB6ANytqlNW1dUYN+xN6z88bI859tY498ZUX3edHX/rLTu+a5cd9+r03roAXi25ocGO\ne/0MTjn9IORW+wDpju2RsY8Wfsbc9oRzbA8dsuMLF9pxbzy+V2c/dcqOe8feq9MD9pu/Pm3Hh7Kl\nf24Xs2UOwHdVdSmALwD4tohcDeBhAK+q6hIArwP4QcmtIKJEuYmvqr2qur1wfQDAHgBtAO4AsL5w\nt/UA7ixXI4loel3UuYKILASwHMCbAFpUtQ8Y++MAYP50N46IyqPo3sAi0gjgtwC+o6oDcuGid5Ff\nSNasWT1+vbMzg0wmc3GtJCLXpk3deOON7qLuW1Tii0gKY0n/pKqeHfbRJyItqtonIgsAHIvavqtr\ndVGNIaLSdXRk0NGRGf//o4+uibxvsaf6vwCwW1Ufn3Db8wDuL1y/D4AzDoyIqkUx5bwVAO4F8J6I\nvIuxU/pHAPwUwG9E5O8BHARwdzkbSkTTx018Vf0DgKjZ328pZie5XHQt3ptX3huT7NViPb29dtxb\nE2DpUjvujTn3+gGcOGHHvef/7rt2PNNpx/Fa9Lz5ACDGoPTZw8fNbZua7N+DvXnnvT4Q3nvHW98+\nnbbjXp2+rs7bv9NHxVnzwWufhT33iALExCcKEBOfKEBMfKIAMfGJAsTEJwoQE58oQInMq19Xa69x\nb7P/Nnl1cr+WascXLbLj3rz+3vryHm/M91NP2XGvn8L3vuc04N+NefMB+wDmcuamfX32Q3/603a8\n3PJOHX3OHDset49JNmvX+ePMu89PfKIAMfGJAsTEJwoQE58oQEx8ogAx8YkCxMQnClAidXzko+u5\nQzm70F6ftvsANDfbf7u8udEPHLDjLS12/PBhO+7Vcr254b15/Zub7fgN19tzs185vNt+gBdesONf\n/3p0zHny3vrybW12fHDQjnt1dqebgduHwqvze3M5eLzx9l77LfzEJwoQE58oQEx8ogAx8YkCxMQn\nChATnyhATHyiAIl6C9TH3YGIDg5atXiv2Gm3z5qzH/Dn7ffmZvfiXi3Vq/Pv22fHvVr322/bx2fN\nKrsfhNz+l/YOvI4M9fXRsQcfNDfVpdeY8Q96Z5hxby6GpiY77pk1y443NNjHvuaC5SUnccIjeftz\n2e+HIFDVKROEn/hEAWLiEwWIiU8UICY+UYCY+EQBYuITBchNfBFpE5HXRWSXiLwnIv9YuL1LRA6L\nyDuFy23lby4RTYdixuPnAHxXVbeLSCOAt0XklULsMVV9zN1JKrrW7tXZvTq/t70397hXC/Ye3xtz\nfY1dqnbH02/fbsdvvNGOy6DzBG+4wY57HQ2sYrd38J22tbVdam/v8NYU8MbT++Px7Rc/69TZ48yL\nD/jj9c19e3dQ1V4AvYXrAyKyB0BrIRxzqgEiqoSL+o4vIgsBLAewpXDTQyKyXUR+LiLOfCdEVC2K\nTvzCaf5vAXxHVQcA/AzAlaq6HGNnBO4pPxFVh6K+ZYhICmNJ/6SqbgAAVT0+4S5PAIicnG3t2tXj\n1zs6MujszJTQVCKydHd3Y+PG7qLuW+zPC78AsFtVHz97g4gsKHz/B4CvAohcXXHlytVF7oaISpXJ\nZJDJZMb/v3btmsj7uokvIisA3AvgPRF5F2Njih4B8A0RWQ5gFEAPgG/FaTQRJaeYX/X/AGCqotaL\n098cIkpCIvPqW+OG49Yyve3FGRM9v9mOn8nZv3964/X7++24tbw8ACxfbsfdNdifecaOe3V6bwfL\nlkXHvEUNnAHl2avtOr43Ht0fT2/H83n7vVFXa8dV43WMjduHxMIuu0QBYuITBYiJTxQgJj5RgJj4\nRAFi4hMFiIlPFKBE5tXPZqP34dUqrW0BoH5m3LnLvfH+zphrr33peMf3jLNuwIzhj8y4eIPSvQkJ\nvI4KCxZEhtTppKALrrDjMUd953L2sZ+RsuNDWftzMe28tt54f68fgLd/rw9LOs159YloAiY+UYCY\n+EQBSjzxix0vXClsXzzdb75Z6SZEqvpj192d2L4ST/xNm7qT3uVFYfvi6d6yxb9ThVT9sdu4MbF9\n8VSfKECJDMudPHzwYoYTxhl6WOrjV3P7RCbdVuP87fbmYB61l9F2660zJi1lXVt77ra6OnvbMnOP\n3UVuH3f/0719nMdPpI5f1h0QUaSoOn7ZE5+Iqg+/4xMFiIlPFKDEEl9EbhORvSLyvoh8P6n9FktE\nekRkh4i8KyJbq6A960SkT0T+e8Jtc0XkZRHZJyIvVXL1ooj2Vc1CqlMs9vpPhdur4hhWejHaRL7j\ni0gNgPcB3AzgjwC2AbhHVfeWfedFEpH/AXCdqp6sdFsAQERuAjAA4Feqem3htp8C+FBV/7Xwx3Ou\nqj5cRe3rAnC6mIVUy01EFgBYMHGxVwB3APgmquAYGu37ayRwDJP6xL8ewH5VPaiqIwB+jbEnWU0E\nVfTVR1U3A5j8R+gOAOsL19cDuDPRRk0Q0T6gShZSVdVeVd1euD4AYA+ANlTJMYxoX2KL0Sb1Rm8F\ncGjC/w/j3JOsFgrgFRHZJiIPVLoxEearah8wvorx/Aq3ZypVt5DqhMVe3wTQUm3HsBKL0VbNJ1wV\nWKGqnwVwO4BvF05lq1211WKrbiHVKRZ7nXzMKnoMK7UYbVKJfwTAJyb8v61wW9VQ1aOFf48D+B3G\nvp5Umz4RaQHGvyMeq3B7zqOqx/Xcj0ZPAPh8Jdsz1WKvqKJjGLUYbRLHMKnE3wZgsYi0i8gMAPcA\neD6hfbtE5JLCX16ISAOAL8NYBDRBgvO/7z0P4P7C9fsAbJi8QcLOa18hkc4yF1JNyAWLvaK6juGU\ni9FOiJftGCbWc69QlngcY39s1qnqTxLZcRFE5JMY+5RXjI1feKrS7RORpwFkAMwD0AegC8BzAP4D\nwJ8BOAjgblV11qlKtH1fwth31fGFVM9+n65A+1YA2ATgPYy9rmcXe90K4Deo8DE02vcNJHAM2WWX\nKED8cY8oQEx8ogAx8YkCxMQnChATnyhATHyiADHxiQLExCcK0P8DQOlABY0Np7cAAAAASUVORK5C\nYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGDhJREFUeJzt3W2QlNWVB/D/mW7mhQEZhDCjoKBicMU1RDdoSsOMhSYp\nYwU2ldKsbirJbqWS2rib2nxJomUxLKTK7Aer3K3sF0NSJpVUzLqb1YQqExO3B3GDWqywSgCNERSE\n4UUYGJi3njn7YVochun/aaZnejq5/1+VZdPnebn9dJ/p5+nz3HvN3SEiaamZ6gaISOUp8UUSpMQX\nSZASXyRBSnyRBCnxRRJUVuKb2cfNbJeZvWpmX5+oRonI5LLx1vHNrAbAqwBWAngbwIsAPuPuu0Yt\npxsFRKaIu9tYz2fL2OZyAK+5+14AMLOfAFgFYNfoBfv63sv9deva8cAD7SObRncyLcPjA4P8pCWT\noWHk82f/e3T7Bgf5/hvqymtfNsvXt1F/mNvXrkX7mjUlb7/84zvm5+aM2mzx9kXfKT19fNvT6/kG\nou2PPjaj39to/b4+Hq+v5/HI6M/m2rXtWLOm/cy/Bwf5+tkgezOZ4se3nFP9+QDeGvHvfYXnRKTK\n6cc9kQSVc6q/H8ClI/69oPDcOdataz/zeNaspjJ2OflWrGib6iZQba2tU90EqprbV+3vbWtrW1nr\n53I5dHTkSlq2nB/3MgB2Y/jHvQMAXgDwV+6+c9RyPvIa/1zVdY0/WrVd45/v9it9jX/WnqvsGv98\n16/0Nf5oE3GNP+E/7rn7oJndC+BXGL5k2DA66UWkOpVzqg93fwrAkglqi4hUyLhP9UvegZnn8+Pf\nR3QbQJEzmRHr8+1Hr78mOFUeAt/BYHCqHJ2Ks1NpYAJOp+uG+PZPnaJxY+ebwXWUR+eqQdyz03g8\n+GxEp9LRqXgkukycFry3wUcDPX38Uqaxsfipvn7VF0mQEl8kQUp8kQQp8UUSpMQXSZASXyRBSnyR\nBJV1A0+polsfmfr68ur0EQs2MBTUUuM6Pce6TgJAf3BLcbm3JCMf1Ol7e/n6s2YVjw0M8HUPHqTh\nnpbLaNwH+LHr6uK7nzGDv7kz63n7B8DvI4huh+7p5e2vq6Phsu4z0De+SIKU+CIJUuKLJEiJL5Ig\nJb5IgpT4Igmq+m65USkw6tkZlbPKXT8quRw5wuORqGvnRdnDfANz5tJw1K14/z6++eOkZHbtgmN8\n5eDgeX0DjR86wts+b0YPjZ/GdBo/epQf+6Ymvv+oXBh1G45EuaFuuSJyFiW+SIKU+CIJUuKLJEiJ\nL5IgJb5IgpT4IgmqSB1/cLD4EM7RTDHREMKRqM4e1en5LEDAzDredfOtTt5185L50fDd/PV3dvL1\nL55xksa9jk8Hc6K3lsZ7SKn89Gnetu5uGg5nqsnneR28t7e8OvycOXz/UZfwqI5f7ixJUbfcbFZ1\nfBEZQYkvkiAlvkiClPgiCVLiiyRIiS+SICW+SILKGl7bzPYA6AIwBGDA3ZePtVwvGUa4zJmSw1pm\nMMtzWOefbHbwAI3XbN1K4xctWkTj3s2L4SdbrqTx6Pg3kC7z990X9Vfn247GMvjAB3j8kkv4/u+6\ni6+/fz+vs1/SxO+RGPILaLw7+Gw2NvJ4NM03U+64+kMA2tw9GHFBRKpJuaf6NgHbEJEKKzdpHcDT\nZvaimX1xIhokIpOv3FP9m9z9gJm9D8N/AHa6++bRC33rW+1nHn/kI21YsaKtzN2KyGgdHTls2pQr\nadmyEt/dDxT+f9jMfgZgOYBzEv/++9vL2Y2IlKC1tQ2trW1n/r1+/dqiy477VN/MppvZjMLjRgAf\nBfDKeLcnIpVTzjd+M4CfmZkXtvMjd//VxDRLRCZTRfrjnzpVfB9RnTgS1fHDWmwL70/f77w/Ontt\nADDQT8OYd/oNGn/D+VTRUS24eR6Pszo8AMzcv5MvsHBR0dAfDvJx67dt45vu7OTxVat4fPM5F51n\n+/CHeTybDeY0mMPf3KEsv0kken0tLTwepa7644vIWZT4IglS4oskSIkvkiAlvkiClPgiCVLiiySo\nInX8fL74uPo1KG9s8Ugmw7dfk+d1/GOneB2/P6jTv/oqjzc18fZF4/5/cGnQgGjw+t27adiiweW3\nby8a8n37+Lr3/DWPRwb5wemsuZjGo/nlo3h9fXCPSP1hvoFZs3j86FEa9hb++jIZ1fFFZAQlvkiC\nlPgiCVLiiyRIiS+SICW+SIKU+CIJqkgdf3Bw/HX8qHnHuvjY6bNnFd83AOB4Fw3v7LyQxi/kYbz9\nNo/PnRPUgk/x/vAWTQzQ0cHjn/gEj0eD37NJ7KMO8dFgAPPn8/jGjTTsQYf2/o99ksaPBYPGn+ji\n7937T73ENxBZupSG3fhnv6auTnV8EXmPEl8kQUp8kQQp8UUSpMQXSZASXyRBSnyRBFWoP37xffT1\n8f1PRw+NR81/4RVeK45KyQMDvFZKuqMDAG6/ncff9z7+AjK5Z2jcd+2i8aEv/x2N79hBw5gRzNG+\nb3/xWDRnwo038HhN9wm+wIYNPN7URMMeNLD/rs/SeG3+NI3b8eM0Hh0gDz6cA/UzabyurkZ1fBF5\njxJfJEFKfJEEKfFFEqTEF0mQEl8kQUp8kQSFs9Ob2QYAdwDodPdrC8/NBvAYgIUA9gC4092Ldmwf\nHCy+/bo6XicfBK9lHg6GLj96lG+/MahTv/46j191Fa/DN88Oxr0/EtR6p03j8S9/mYa/8x3++rds\n4Zu/+WYeZ93x9+zh6z7+OI+vXn0Bja8I+quHYxHcfz8Nb93Kj91fXD+dxmu79vL9L1jA49GHc5C3\njynlG//7AD426rlvAPi1uy8B8AyAb467BSJScWHiu/tmAKPHIlkF4NHC40cBrJ7gdonIJBrvNf48\nd+8EAHc/CGDexDVJRCZbeI1fInqhu25d+5nHK1a0obW1bYJ2KyLv6ujIYdOmXEnLjjfxO82s2d07\nzawFwCG28AMPtI9zNyJSqtbWs79U169fW3TZUk/1rfDfu54E8PnC488BeOJ8GigiUytMfDP7MYD/\nAfB+M3vTzL4A4EEAt5nZbgArC/8WkT8S4am+u99dJHTrRDQgmv+9ry+o85N7BIB4aPZgCnJcfTWP\nX3wRj9vzz/MFgj7bvnIlja/7Fv/b/dRT/D6D3/42mHcAGRp95ZXisaiOf+ONPH7NNTy+4oagDn7X\nXTzObkIAsHAhP3bTsjw+uOTPaLyvj4YRzJiA3t5gAUJ37okkSIkvkiAlvkiClPgiCVLiiyRIiS+S\nICW+SIIm6l59io2r35AdoOtmG2tp/ORJvu+gVIu5c3l8yRIe37uHxzHAXx+OHOHxXl7sveIK3mf7\n8OFo3gR+H8HOnXNo/LXXiseuvJLvedkyHr8hGHc/vFEgakCe3wSSyfB7GA4Fb110D0pLC39vaozH\nGxsntz++iPyJUeKLJEiJL5IgJb5IgpT4IglS4oskSIkvkqCK1PEb6orXIwfyfNz4fB+vZV4c1EL7\n87zWWZsN+qN3n6Lhffv5HOXvnzGDbz/qdB7ciJDL8df/+98HAxYEtm3jnb7vvbd4+6KXduONvO1X\nL+ZzEvh/bKXx/ltvp/GtfHX09vL23bI0mNQhywebGMDFNB7dgVFj0VgKZN1xrykif7SU+CIJUuKL\nJEiJL5IgJb5IgpT4IglS4oskqCJ1fLfitfRM0IJo7PKeXl6nb+jmtVY7yjtVe3MLjedyfP/Lvrqc\nxi/c/Vsax+5dNPzgg9fR+OrVvE/59ddfSOPNFtSqm4p/d/zu93wshWnBe29btvAFgv7ytfvfoPHL\nL7+cxg8dCirpg7xOP9TMJ13o5beIhP3tg+EEKH3jiyRIiS+SICW+SIKU+CIJUuKLJEiJL5IgJb5I\ngsyd1yrNbAOAOwB0uvu1hefWAPgigEOFxe5z96eKrO99QZ96Lpij3Hmfbdu+nW8+y4vJvnQpjf/n\nL/gs5guCKdw7O/nr++SsTTTuu3bzHTz2Ex5fvJjHB3mxuOdfv1s01lAX9BffuJGGLZj0wOfPp/GX\nuy6l8WyW18nnz+fvzayut2jcg7EU+mfNo/Hg0EcfXdTVGdx9zBdZyjf+9wF8bIznH3L36wr/jZn0\nIlKdwsR3980Ajo0RGv80HiIypcq5xr/XzLaZ2XfNbNaEtUhEJt1479X/NwD/5O5uZusBPATgb4st\nvG5d+5nHK1a0obW1bZy7FZFiOjpy2LQpV9Ky40p8dx/Zc+MRAD9nyz/wQPt4diMi56G19ewv1fXr\n1xZdttRTfcOIa3ozG9ll7VMAXjmvForIlAq/8c3sxwDaAMwxszcBrAFwi5ktAzAEYA+AL01iG0Vk\ngoV1/LJ3YOb5fPF6bg2CWm9QzBzwYFx+3mUa07P8PgDs2EHDUX/9/rl87PQdO/jxv25p0L5cjsfZ\nBPYAsGgRDfttt9H4sVPF72OYNYu/tt/8hobx0ZX8s+H79tP4T7fwOv6nP833H91Dkjn+Dl89qOP7\nNP7ZHcrweE3Qvppspqw6voj8iVHiiyRIiS+SICW+SIKU+CIJUuKLJEiJL5KgitTxWX/8fJ7vv553\nd4f19tD4oe4GGg/HjT95kseDWqzP5x3y39zH//bu3cuPz+IraBjd3Twe3ecQNB8PP1y8k+att/J1\ng6EOMDjIX/vszAka7+y5gMabhw7wBgQd3i3qEB+ZMYOGo8z0LP/sZTI1quOLyHuU+CIJUuKLJEiJ\nL5IgJb5IgpT4IglS4oskaMrr+JFgCnT09vJt793LBwNuCvqMH+/i+786G/R37+2lYY8K6WX299+1\ni2++q4u//o/cMEDjncdqi8aOHuX7tmCc5mDY/LjO38jbPgBeB6/Nn6Zxf/11Gj+56M9pfGZjMN5A\n9L0cHMBMprxx9UXkT4wSXyRBSnyRBCnxRRKkxBdJkBJfJEFKfJEEldmhuDRBKZtqbOTxwUFey2xu\n5us/9xxf/6qr+Pqn519J49Of/28at6CO70GH+h2dvI4fdRlvCY4Pjh7h8Zri+w/K3NGw82EdP5oy\nYHkDv4mhdyGvs9fu30vjFjRwZiO/z8CiGxmCHvlexoTV+sYXSZASXyRBSnyRBCnxRRKkxBdJkBJf\nJEFKfJEEhXV8M1sA4AcAmgEMAXjE3f/FzGYDeAzAQgB7ANzp7mP2Xmf9jvvz/G9PXx9v3wDvch2u\nf/31PL5vH4/39PBa6o6Dt9D43Te9SeMWvIAPLuyn8ac7eJ/z264JxpZv5GO/P/lY8dixY3zTUX/9\na6/l8YgFN4HM3Psy38CSJTy+ezePnzpFw6fnXkLjDXW8jp8f5LtnSvnGzwP4mrsvBfBhAF8xs6sA\nfAPAr919CYBnAHxz/M0QkUoKE9/dD7r7tsLjbgA7ASwAsArAo4XFHgWwerIaKSIT67yu8c1sEYBl\nALYAaHb3TmD4jwOAeRPdOBGZHCXfq29mMwA8DuCr7t5tZqMvQIpekLSvXXvmcVtrK9ra2s6zmSIS\n6ejIYdOmXEnLlpT4ZpbFcNL/0N2fKDzdaWbN7t5pZi0ADhVbv33NmpIaIyLj19rahtbWtjP/Xr9+\nbdFlSz3V/x6A37n7wyOeexLA5wuPPwfgidEriUh1KqWcdxOAewC8bGYvYfiU/j4A3wbwUzP7GwB7\nAdw5mQ0VkYkTJr67Pweg2Oj2wQzowwZIn/mov3g07HxXMO59uVOYz53L47/8JY9fcw2v859oupTG\nZ/YepvHOY7xOj6DPdv+ci2h840a+dXYfRdQff+VKXqdunsZvBGhezLfvTYtofCg44Q3K8Mhewfvz\nT8+foPGGbHATSpCeUW4wunNPJEFKfJEEKfFFEqTEF0mQEl8kQUp8kQQp8UUSZO7jn7u+pB2YOZvD\nPprjPOqTfLqX/+2Kap1RnX8vH1odmWJ3OBQsDmrNnZ08zo4dAFzWzOdwR3dQjG7gg9sPNV5A47/4\nRfFYVxdv+2fv4fPDW3QjQMCv4Af/QCf/7MyZw7d/6hR/fRc28rESovntPcM/nNFYFvX1Bncfcyf6\nxhdJkBJfJEFKfJEEKfFFEqTEF0mQEl8kQUp8kQSV2Vu9xJ3QvfBaZk8wLv70el4LHgq2X9N9ksYP\nHuR17Og+gIt4d/dQNEe8dffyBTaSQjsA7NlDwzV33EHjN9+8vGhsL980LBpYPzq4UaE9uIkjk+Fj\nGdSC95cfrK/l8WwQD8bFD24RiW4DoPSNL5IgJb5IgpT4IglS4oskSIkvkiAlvkiClPgiCapIf3zW\n577c3Uf91bu7ebEzGg+gro6v/9prNIxaXsrFkiV8/9PB+9vbkSN8B0GdHgsW0LAvWkTjh44UrzZH\n7+0FM8t77dGkCt7URONDddNpPOpv39hIw6g5Z3rJUft3/r0b1fkjdXXqjy8iIyjxRRKkxBdJkBJf\nJEFKfJEEKfFFEhQmvpktMLNnzGyHmb1sZn9feH6Nme0zs/8t/PfxyW+uiEyEUvrj5wF8zd23mdkM\nAFvN7OlC7CF3fyjcQBnzeEfr1vNh4cP++ie6y5sjfdGiYI73mUEtev9+GrbeoL99ZMYMGvbt22n8\nnabLaZwNfR/cAoC6en6PRH+e19mn9fJJCXq8gcYbut6h8brGC2k80lPmWxcNRxDN6UC3HS3g7gcB\nHCw87jaznQDeHR6ijKEARGSqnNc1vpktArAMwPOFp+41s21m9l0zmzXBbRORSVJy4hdO8x8H8FV3\n7wbwbwAud/dlGD4jCE/5RaQ6lDTmnpllMZz0P3T3JwDA3Q+PWOQRAD8vtv66de1nHq9Y0YbW1rZx\nNFVEmFwuh46OXEnLltRJx8x+AOCIu39txHMthet/mNk/AviQu989xrre1zf+njjRj3t1waSaNeDx\ncn/cq6mp8h/3BviAkR7MCvpO61/S+O7dxX/miX7ca27m8cE8P7bT9r9B4z3Nl9F4Q98xGu8PftyL\nfnyLP/f8J7Jyf9zLZot30gm/8c3sJgD3AHjZzF4C4ADuA3C3mS0DMARgD4AvRdsSkepQyq/6z2Hs\nkX6fmvjmiEglVKQ/fp6cskWn8lF/+Yb6qM8zP52K9l+b76Hxk3leK55pfNx+b5xJ4zVHDtE4grHp\nfckSGn9rH7/UOd7Fjx8b2j6b5e/NvLn8HovoOuvYAD929Q287fXBZWKUGeX2ty9XNK5+JqP++CIy\nghJfJEFKfJEEKfFFEqTEF0mQEl8kQUp8kQRV/bj6UZ3dglpqJhONq8+3n83w7Rt4LdqCF+BBMdaC\nW27DAQmisefr+PpvH+d94ll3/+i9uaCRHzvv66PxaFz8SPjeB/chRLeDR5/tnr7yvnejt151fBE5\nixJfJEFKfJEEVTzxc7lcpXd5XkrtzzxVcps2TXUTqGefzU11E4qq9s/epk25iu2r4olf7YlVyYM/\nHrlnn53qJlCbN+emuglFVftnr5J/NHWqL5KgkobemkpR18MoPp7tl7vN89pYFK8Z9bfZ7NznmGiY\nlhq+/2nTgtVJ88o+jhP6RlR88+Paf6XaVJE6/qTuQESKKlbHn/TEF5Hqo2t8kQQp8UUSVLHEN7OP\nm9kuM3vVzL5eqf2Wysz2mNl2M3vJzF6ogvZsMLNOM/u/Ec/NNrNfmdluM/vlVM5eVKR9VTOR6hiT\nvf5D4fmqOIZTPRltRa7xzawGwKsAVgJ4G8CLAD7j7rsmfeclMrM/ALje3flg6xViZjcD6AbwA3e/\ntvDctwEcdfd/LvzxnO3u36ii9q0BcLKUiVQnm5m1AGgZOdkrgFUAvoAqOIakfXehAsewUt/4ywG8\n5u573X0AwE8w/CKriaGKLn3cfTOA0X+EVgF4tPD4UQCrK9qoEYq0D6iSiVTd/aC7bys87gawE8AC\nVMkxLNK+ik1GW6kP+nwAb4349z689yKrhQN42sxeNLMvTnVjipjn7p3AmVmM501xe8ZSdROpjpjs\ndQuA5mo7hlMxGW3VfMNVgZvc/ToAtwP4SuFUttpVWy226iZSHWOy19HHbEqP4VRNRlupxN8P4NIR\n/15QeK5quPuBwv8PA/gZhi9Pqk2nmTUDZ64Rg9k2KsvdD/t7Pxo9AuBDU9mesSZ7RRUdw2KT0Vbi\nGFYq8V8EsNjMFppZLYDPAHiyQvsOmdn0wl9emFkjgI8CeGVqWwVg+Fpv5PXekwA+X3j8OQBPjF6h\nws5qXyGR3vUpTP0x/B6A37n7wyOeq6ZjeE77KnUMK3bnXqEs8TCG/9hscPcHK7LjEpjZZRj+lncM\n91/40VS3z8x+DKANwBwAnQDWAPgvAP8O4BIAewHc6e7Hq6h9t2D4WvXMRKrvXk9PQftuArAJwMsY\nfl/fnez1BQA/xRQfQ9K+u1GBY6hbdkUSpB/3RBKkxBdJkBJfJEFKfJEEKfFFEqTEF0mQEl8kQUp8\nkQT9P1EbrkVp9IvmAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF+9JREFUeJzt3W1sXOWVB/D/scexHRvi4CQ2xJCUJAQKS8JLeVGaeCi7\nLRBWQV3EsrASdBGqVmWX3X4pBaE4G0BltULqquoXShFUZYGttoWyWsqbxiEshAgIkCUvJJCQhGQS\nm8TEju3MjM9+8GDM4HvO2NeeGXj+PynKeM7c+zxzZ87MvfO8iaqCiMJSVe4KEFHpMfGJAsTEJwoQ\nE58oQEx8ogAx8YkCFCvxReQKEdkqIttF5CeTVSkimloy0XZ8EakCsB3A5QA+BrARwPWqurXgcewo\nQFQmqipj3Z+Isc+LALyvqrsBQEQeB7AKwNbCBw4NDI7c7li7Fh133z3y99HBaWYhdXUxagigutqO\nZ7Nf/Hvt2g7cfXfHyN+5nFeC/blWX2vHMzn7pCtR8AqtWdOB1as7Pi/d+VjN5ewH1CTs+JDa9Ss8\nPqOPn3fs49ZNnRPWwmNTeOy81zbusa2vG9+xHW/9Ct8bhaqrx8x5APFO9ecC2DPq7735+4iowvHH\nPaIAxTnV3wfgtFF/t+Xv+5KOtWtHbjfNmBGjyKm3YkWy3FUwtbcny10FUyUfv0o/dnHrl0ql0NmZ\nKuqxcX7cqwawDcM/7u0H8DqAv1HVLQWP09HX+IUq7Rq/UKVd43+p9Aq7xh+t0q7xv1y+HS/1Nf6X\n92+XX8w1/qT/uKeqORG5DcBzGL5keKgw6YmoMsU51YeqPgtg8STVhYhKJFbiFysjNZGx2tp4+/ZP\nJ+24d7rkbe/WP7pFBYBf/95eO+5dCmUydgW8/Tc1Oafj1dFx7zLGam4CgKGYp+oe79j39dkVOKHB\nuYzL2s/PK38q8Vd9ogAx8YkCxMQnChATnyhATHyiADHxiQLExCcK0IS77BZdgIgOZaMbXP22Xrt+\nVU6X2f7Bqe0SK047fSZj7yCdtnfQ3Gzv32vL9trpvaETPT12vKUl+vkNDNjPrbvb3vesWXbce25e\nd2yvD4ZXvtdl1+un4HG7NCNjxqtqayO77PIbnyhATHyiADHxiQLExCcKEBOfKEBMfKIAlaQ5b3Bw\nKDIet8ljcDDeDDjHs/FmQcnYLSpuc1hDgx1Pp+Ntv3u3He/qsuNec2dbW3SssdHe9sQT7bjXVOo1\n1/X12XGvqdQr3zv2cYd0u0PKnabu6kQVm/OI6HNMfKIAMfGJAsTEJwoQE58oQEx8ogAx8YkCVJLp\nta0pmNVrLI25Uo03vbXXTu21BXu8tl5vemwv7tV/71477vGG7W7eHB1ra7Nfm8suOGrG30/bDf1x\np2b3+gF4771pPYfszZ0XJ5M4yYy702+7uRON3/hEAWLiEwWIiU8UICY+UYCY+EQBYuITBYiJTxSg\nWO34IrILQA+AIQAZVb1ovPvw2lK9dmqvKdObbsAb7z4wYMc9R47Y8QUL4pXvPT9vzPngoB1vbbXj\nO3dGx5YusbeV3bvM+KIGZ0C/897Zkj3dfoCjsdF+c+3pmm3GjzhzMZx5ph2P0UzvituBZwhAUlUP\nT0ZliKg04p7qyyTsg4hKLG7SKoDnRWSjiNw6GRUioqkX91R/maruF5HZGP4A2KKq6wsf1LFmzcjt\nZHs7kslkzGKJqFAqlUJnZ6qox07aZJsishrAUVV9oOD+WGvnJRLx1s7znt7+tF1+uX/c27fPjnsD\nVXbssOPej3tz59rxV16JjiXb7YN/rrxrxtX7cc+xZdD+cc/74dObLLS7y35+/o979q933g/bnupq\nmfzJNkVkuog05m83APguAGOsFhFVijifKS0Afi8imt/Pb1X1ucmpFhFNpZLMq9/XFz2vfm2tfbrj\nLRU8Ldtvxt1T/Z7pZtxaBhrwLzU+PhDvUmZOnT1m3b0W8c4XG50JA7ZtM8Pba/8sMnZGm/3aSMIZ\ncP7222ZYned28JTzzPicE+z6fXzEfm94fUBaW+3X9mTnvXW4x37veHM1NDRMwak+EX11MfGJAsTE\nJwoQE58oQEx8ogAx8YkCxMQnClBJ5tW32uq9dvqa6ug+AACAfmeBemdi/OZmu632yBG7n4HXJfac\nc+znN333FjMuvb12AVu32nGPNTE+ACyxB9WfURNdvshSe99eJwtvUYAFC83wzg/s1663pd6MO90I\n0NRkx+vq7PK7uuztvT4eZy2eeB8cfuMTBYiJTxQgJj5RgJj4RAFi4hMFiIlPFCAmPlGAStKOb8lm\nvcnD7c8mrbPXUO/us+PotsPNzXZb6UULP7F3sM8uQA4csLd35r5SZ/6ozJ9fZcanrXTq/+qrZlim\nG/0gvLkAGpy5ALyGcuet4+1+3z57B97UW960ZDNm2PFczi7fG2/f70ybZuE3PlGAmPhEAWLiEwWI\niU8UICY+UYCY+EQBYuITBagk7fhViB5Tn83anz2ZjN3W2dfnzF3e8KkZR7fdzp7BN8y4eIO2Z80y\nw+o0FqdnnGHG30nY8YSxxBUAXLbEPr77z1tpxmcYTe29zpIALXXOa+P1A5g3z96/PW2+99Lj7LPt\nuDee3ls+bfZsO37CCXbcW5PCwm98ogAx8YkCxMQnChATnyhATHyiADHxiQLExCcKkNuOLyIPAbga\nQFpVz83fNxPAEwDmAdgF4DpV7YnaR/9gdHuj11Rb7SyhnsvacRl0Bi07bcE1Rw7H2t5dv96Jf/KJ\nM2bcaet1huvjw56ZZtybG76nJ7ofxcnZPea2udmnmvFdc5eb8Z0bzLA7Ht4b7+5NB+As2YCWFjte\nU2PHa2vteC5nxy3FfOM/DOB7BffdAeAFVV0M4CUAP514FYio1NzEV9X1AAq/9lYBeCR/+xEA10xy\nvYhoCk30Gn+OqqYBQFUPAJgzeVUioqk2WX31zQ7z997bMXJ7+fIkVqxITlKxRPSZzs4U1q1LFfXY\niSZ+WkRaVDUtIq0ADloPvuuujgkWQ0TFam9Por09OfL3PfesiXxssaf6gi/Oafo0gJvzt28C8NR4\nKkhE5eUmvog8BuB/AZwhIh+JyA8A/AzAX4jINgCX5/8moq8IUW+N8rgFiOjAQHQZWacd3otb+waA\nlqbj9g68jgReO7y3fr23fyeuTkP9kPPZ7Y0J955eoto+vnM+2mjvwPA/XReZca8d3Wsnf/FFO55M\n2s9t0SynD0e1/dodztlrOtTV2eXX19rx/kH7tW9oEKjqmB0x2HOPKEBMfKIAMfGJAsTEJwoQE58o\nQEx8ogAx8YkCVJJ59XO56PbI6U5b5nFn3n2vHdobtKzOoGitM9Z/ByDO5Oz9jfb4pekD9vr08vh/\nmPGqhQvN+EmvOBPre43lK6+248a6AJ+0nGVu+ukH9q5TKTvuVd0bb//Fzqhf1l9rz1VQD2fifme8\nfDZrl5+JOVeFhd/4RAFi4hMFiIlPFCAmPlGAmPhEAWLiEwWIiU8UoJK041dXR7dX9jvT3ntziycS\ndlvop9l6M16XsfdfM+gs8u5M3v7aBrt+ra0nmfFvXnihGRdvPoCGBjt+6JAdv9+eY0WvvTYy1mW8\n7gCwfbtdtLc+vdGFAIA/l4Mnm3Pa+avt95bXzu7PRWGX7031YOE3PlGAmPhEAWLiEwWIiU8UICY+\nUYCY+EQBYuITBagk8+pns9FleMvXe22h3vaJhDd3+ZC9g157EfTnN9jz3u/aZbfFHjhgFz9/vl3/\nSy6xt583z473Od0ATtrxuv2Azs7IkN7+T+am//XMNDPutXO3ttrxuGsKLFpkH/vzznTG49faEwIc\n7bO/d735BLzcSCQ4rz4RjcLEJwoQE58oQEx8ogAx8YkCxMQnChATnyhA7oheEXkIwNUA0qp6bv6+\n1QBuBXAw/7A7VfXZqH1UIbqt3BtPX+Osz97dbX92eWuoY98+M5yedqoZ//BDu/5PPGEX78034PUD\neOYZe3tvzLbXT+C+W2aZcV25MjK2v9tes2DRIjOMBQvs+KZNdtxZ8gAXX2zHd+60j/38+fZ4/Jm9\n9lwHvVl7zQVvKgWvD4ulmG/8hwF8b4z7H1DV8/P/IpOeiCqPm/iquh7A4TFC9schEVWsONf4t4nI\nJhH5lYjY808RUUWZ6KxdvwTwL6qqInIPgAcA3BL14I41a0ZuJ9vbkUwmJ1gsEUVZty6Fl19OFfXY\nCSW+qo7+1eJBAH+0Ht+xevVEiiGicVixIokVK5Ijf99335rIxxZ7qi8YdU0vIqPHRX0fwOZx1ZCI\nyqqY5rzHACQBNIvIRwBWA7hMRJYCGAKwC8APp7CORDTJ3MRX1RvGuPvh8RSiEt0AYM25DwDHnTHZ\ndXV2O3TVwDF7B11dZviExaeZcWdafSxZYse3bLHjXlu1N2Z91So7Xl9vH/9Pmk434zOz0W3VvT32\nvptm2K/d9CP7zfjevaeYca8Pw+7ddtzrR1Bbaz+/g5nZZjxuO703Ht/CnntEAWLiEwWIiU8UICY+\nUYCY+EQBYuITBYiJTxSgGCtsj8fEB/INDNjbZjJ2W7D025OrqzP5uje3udfW2tZmx7225l/8wo5f\neaUdv/RSO75smX38Tuz+0N6B0ZGgpcUeb97YaL+2H+w62YzX28PhMcueSgA19nQBOPNMO75zpx33\n3rtNTfb2TU3emhATXxOD3/hEAWLiEwWIiU8UICY+UYCY+EQBYuITBYiJTxSgkrTjq9HcmMvZ23rj\n7U9stONDsMdsV73xhh3vOmjGFy+226q9tl7PWWfZ8WtW2c//yrP32DvYdsCOO4vI71+4PDLW4rw2\nVS8+b8ZPX7LUjB+Zax/7vj4zjAULnPoN9pvxRQvsTh6f9sb7Xm1osPsB9E/xvPpE9DXDxCcKEBOf\nKEBMfKIAMfGJAsTEJwoQE58oQCVpx7fa6rPZeGOO1RnrLxteNePegHvpscfrX3yWvf2GDSeacacb\nAebPt+M3/q0dl032Gu16wG7H37PkL834EWNZgpNbhsxtvQXqj9fZxy67y35vLL/Abof/MO0M6Hcm\nSxhy3ntOFwh3PgF/Xv2Jz3PBb3yiADHxiQLExCcKEBOfKEBMfKIAMfGJAsTEJwqQqDVYHoCItAF4\nFEALgCEAD6rqv4vITABPAJgHYBeA61S1Z4ztta8vuoxEwi5/WrXdFqzegH7n+fVnp5nx6V0f2fvv\n7raLX2xPzv70C9PNeKMzpv07lxwz4+IsAq8tLWY8nWk242++GR1rb7frvnmzGcZFiw7bD5gxwwyL\nMec/AOiA3VB+LHGCGd+82W5HnznTDLvz/jtPz5VICFR1zEoW842fBfBjVT0bwKUAfiQiZwK4A8AL\nqroYwEsAfhqvmkRUKm7iq+oBVd2Uv90LYAuANgCrADySf9gjAK6ZqkoS0eQa1zW+iMwHsBTAawBa\nVDUNDH84ALDnQSKiilF0X30RaQTwOwC3q2qviBRewEVe0N17b8fI7eXLk1ixIjm+WhKRK5VKobMz\nVdRji0p8EUlgOOl/o6pP5e9Oi0iLqqZFpBVA5KyUd93VUVRliGjikskkksnkyN9r166JfGyxp/q/\nBvCeqv581H1PA7g5f/smAE8VbkRElcn9xheRZQBuBPCuiLyF4VP6OwHcD+BJEfk7ALsBXDeVFSWi\nyeO248cuQETtMffO3Oa5jBnPwF7kPFFthiHd9nh1NDSY4be22e3w551t1/+9HXY/gsEB+/ic323P\nTY/16+34hReaYa22D+D7C6+KjC2qd+b0b2k1w3vS9mvbaL80OKn7fTOuTjv/4dZvmvHqamfNhzr7\nte/P2a+9M1WEq7o6Xjs+EX3NMPGJAsTEJwoQE58oQEx8ogAx8YkCxMQnClDZ59X35gb32umdZmYI\nnLndnUHPx5zx+s3Ndv2f/INd/+5uuy347285bsbxbxvtuDM3PHbssOPOoPEFV0TH5L83mdvqypVm\n3JkqANN6P7EfsHevHW9qMsPeoauttV/7o4NOHxNn/043g1j4jU8UICY+UYCY+EQBYuITBYiJTxQg\nJj5RgJj4RAEqyXj8wcHoMrx2+FzOrl+NMyY6k7PbWmvUHjP9cZfdjt/ZaYaRsXeP3l47bh07ALj2\nr+ztT2v61H6AN+jbGc+vJ58cGZMPPrD3PeSsmdBqj9d3V4dfsMDev7P5UJO9pkBccd/bQ873dtx5\n9Ynoa4aJTxQgJj5RgJj4RAFi4hMFiIlPFCAmPlGASjIev8ZY475/0P7s8cY8j91K+TlvvP+Hu+0x\n0143h2anqdcbUz1oL9GOq6+26//sn+ztlyw50YzX2E8f53z7O2Z8WvZYdHDrVnvnF19shsWZC0Cd\nAe2ZrP3eqsn2m/G+PjOMujqnHT7hrBnh9GEZcnoqeO8ds+yJb0pEX1VMfKIAMfGJAsTEJwoQE58o\nQEx8ogC5iS8ibSLykoj8n4i8KyL/kL9/tYjsFZE38/+MiZaJqJK44/FFpBVAq6puEpFGAG8AWAXg\nrwEcVdUHnO21ry+6Hb++1i5fxf5s8trZvbZO7/lPd9pq04fs+llrCgBAa6vT1jtgtzW/s2O6GV+4\n0C4/4bQ1T+s5ZMalsTE66Ey2oD09ZnyoebYZ946tN579YJczV0ONHXeWZICI89o6MwJ47+3jTj+F\nurro8fhuBx5VPQDgQP52r4hsATA3H3bnQiCiyjOua3wRmQ9gKYAN+btuE5FNIvIrEXE+/4ioUhSd\n+PnT/N8BuF1VewH8EsDpqroUw2cE5ik/EVWOovrqi0gCw0n/G1V9CgBUdfTF34MA/hi1/b33dozc\nXr48iRUrkhOoKhFZOjtTWLcuVdRji5psU0QeBdClqj8edV9r/vofIvLPAL6lqjeMsS1/3DPwx71o\n/HHP3v+U/rgnIssA3AjgXRF5C8OTk94J4AYRWQpgCMAuAD/09kVElaGYX/VfATDWR/ezk18dIiqF\nkozHTySiT5mc1euRc8azZ7P2+ZB3KXG0zz5dOjZgl++dzp0yy55Yf3/anrcfqDej3nh6b0x4Tc6+\nlOhvsE+363ujLwUOJ+xtZzqTGfT02Kfa3poEtbV2vKnJ3r+3fr03Xt963wN+/bxLGYnRmM4uu0QB\nYuITBYiJTxQgJj5RgJj4RAFi4hMFiIlPFKCiuuzGKkBErTXevbZSv3rxukV67fheW6s3b3690+VX\nnZHNA04/Ai9eb3cDQLXTrbWvz+u2Gr39wIDXJTbe+vDHBrz14c2w2125yumjMaTxumt75Yvz5vfW\npGhoiO6yy298ogAx8YkCxMQnClDJE7+zM1XqIsfl5ZdT5a6Cqdjx1uWSSqXKXYVIlf7eK+WxK3ni\nV/obd/36VLmrYKr0D6ZKTq5Kf++V8tjxVJ8oQCUZlls4fDDOcMLJVlXw0Sfyxfu8uhZuP9m8+jmT\n3Lj19+Le/i3esYn7Phjv/kVK+96b6rLi7L8k7fhTWgARRYpqx5/yxCeiysNrfKIAMfGJAlSyxBeR\nK0Rkq4hsF5GflKrcYonILhF5W0TeEpHXK6A+D4lIWkTeGXXfTBF5TkS2icifyrl6UUT9KmYh1TEW\ne/3H/P0VcQzLvRhtSa7xRaQKwHYAlwP4GMBGANer6tYpL7xIIvIBgAtU9XC56wIAIvJtAL0AHlXV\nc/P33Q+gW1X/Nf/hOVNV76ig+q1GEQuploKx2OsPUAHHMO5itHGV6hv/IgDvq+puVc0AeBzDT7KS\nCCro0kdV1wMo/BBaBeCR/O1HAFxT0kqNElE/oEIWUlXVA6q6KX+7F8AWAG2okGMYUb+SLUZbqjf6\nXAB7Rv29F58/yUqhAJ4XkY0icmu5KxNhjqqmgZFVjOeUuT5jqbiFVEct9voagJZKO4blWIy2Yr7h\nKsAyVT0fwFUAfpQ/la10ldYWW3ELqY6x2GvhMSvrMSzXYrSlSvx9AE4b9Xdb/r6Koar78/8fAvB7\nDF+eVJq0iLQAI9eIB8tcny9Q1UP6+Y9GDwL4VjnrM9Zir6igYxi1GG0pjmGpEn8jgIUiMk9EpgG4\nHsDTJSrbJSLT85+8EJEGAN8FsLm8tQIwfK03+nrvaQA352/fBOCpwg1K7Av1yyfSZ76P8h/DXwN4\nT1V/Puq+SjqGX6pfqY5hyXru5Zslfo7hD5uHVPVnJSm4CCLyDQx/yyuGxy/8ttz1E5HHACQBNANI\nA1gN4A8A/hPAqQB2A7hOVY9UUP0uw/C16shCqp9dT5ehfssArAPwLoZf188We30dwJMo8zE06ncD\nSnAM2WWXKED8cY8oQEx8ogAx8YkCxMQnChATnyhATHyiADHxiQLExCcK0P8Dvm9hFGspLDEAAAAA\nSUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFwdJREFUeJzt3VtwXPV9B/DvTyt5ZWxjCxlLYIO5DZeBABMSKHGLl2EC\nTCczMHmglDxA2mHyENpMk4cQhsE29CHpAzP0IZ0pIQwkMCRNJgUeuCRDVwaXezAFAoa6sWMbJGMX\nGUu2Ze3q1wctQhY6v+9aR3uh/+9nRmN5f3sue3Z/2nPO738xd4eIpKWj1TsgIs2nxBdJkBJfJEFK\nfJEEKfFFEqTEF0lQrsQ3s6vN7B0ze9fMvj9fOyUijWVzreObWQeAdwFcAeB9AC8DuN7d35nxPDUU\nEGkRd7fZHs/zjX8xgPfcfbu7jwN4BMA1sz2xWvWpnzvuWHfE/6vVifBnolINf8bGPPw5cluz/Ry5\nvTvuuOOotj866rl+KpX4Z+bruf32dUf5+vL95N2/+L3J996zY9v4Yxfvv1cq4c/E2NgRP3fcfvsR\n/6/3OGb9RPIk/koAO6b9f2ftMRFpc7q5J5KgzhzL7gJw8rT/r6o99hkbNqyf+n3p0mU5Ntl4a9eW\nWr0LocsuK7V6F0LtvH/tvG8AULrsslzLDwyUsXFjua7n5rm5VwCwBZM39z4A8BKAv3b3t2c8z6vV\naBvx9o3s33g1PmnppH/a8m3/4Fi+k6ZiMY5Xq3Gcv7582MeD7V+ks7Oxx54dm/zHjlxH+0S8NDl4\n41hw1Hs0XbFomTf35vzS3b1qZrcAeBqTlwz3zUx6EWlPuf7mufuTAM6ap30RkSZp8IniJAtOecar\ns56JTOkqsLU3+FKBbH9h4XD8BGK8mu90jp+Kx0/oYqfb8dsDFLKPH7sMqFTYymPsMik/cmxIfMLi\nz5YHxw4AKmNhONeliu7qiyRIiS+SICW+SIKU+CIJUuKLJEiJL5IgJb5IgppSx49q9RktCqccJLXM\nYjFenqweXYW4WSVtZ0AK/aydQCObxAL5a+WVShw/dCg7tmhRvCx/bfG+R9sGgMWLyerJwbfqeLx4\nZ1e8PG0HEOvsjJ9RoG1csukbXyRBSnyRBCnxRRKkxBdJkBJfJEFKfJEENaWcFxUuWLdPVq6j3UZJ\n0YSV+wqF+AkT5G/noUP5SjL79sVxVm7r7Y3jg4P5yn0jI9kx1m106dI43hVXyzAeV9vosWF6SDmQ\nlaIrOUux7LPBP/vZ9I0vkiAlvkiClPgiCVLiiyRIiS+SICW+SIKU+CIJakodv1DI7p7YQbou5p0p\nh3d7JbVYUgtm7QxYLZatv4P8aWavf4x0a2ZdZ7dsieOXXBK8t8MfxQsPD8fx7dvi+BlnhOHDy04K\n4wsQD41ue/aG8Y7e5WF8dCweOr27OwznqtMz+sYXSZASXyRBSnyRBCnxRRKkxBdJkBJfJEFKfJEE\n5arjm9k2APsATAAYd/eLM56ZuY5x0meZDX894WSqYVIn3xuXammtldXpo/7qAN8/1h+fTRW9Y0cc\nHx2N42wI661bs2NndpMXf8rqOL6MdNgn7QAWbHkjjNuePWHcL7gwjO8fIwMGkDYqXSADCnicnqyN\nSyRvA54JACV3Jy01RKSd5D3Vt3lYh4g0Wd6kdQC/NbOXzezm+dghEWm8vKf6a9z9AzM7HpN/AN52\n9+dmPmnDhvVTv69dW0KpVMq5WRGZaWCgjI0by3U915z1YqmTma0DsN/d757xuFcq2duoVskNkKCD\nD8AHu2z0zT3WyYX1Q2n0zT1y/yr3zb0zzsh+f87sJncWV66M4+zgkbiTF5f75l5XTxhnlnSTm3uF\nfDf3ikWDZ4wIOudTfTM7xswW135fBOBKAG/OdX0i0jx5TvX7APzGzLy2nofc/en52S0RaaR5O9XP\n3ICZT0TzIdOpiuNCv5PToYNj+aapZqfiu3bFcdZfnp1Ks7Hj2aXKRRfF8c2b4zi7FPvqBR9mB7vj\n65D9dmwYZ8fumGLcxgPbtsVx8uY66RC/o/vMML487q6Pzs742C4gdX6WuR3F4vyf6ovI55cSXyRB\nSnyRBCnxRRKkxBdJkBJfJEFKfJEENWVc/YlgHnE2rn0X6e8+EfT1B3gdnNXR2RztrNUp64/PmtwO\nDpI6+hVx/NlN8d/2hQvj7ff1xXFb3psdHBgIl11C2kMfuOArYfx/h+PXdhxpA0JfPHlzl5L3lrVD\nYGM5+Gj84fRFS+IVBPSNL5IgJb5IgpT4IglS4oskSIkvkiAlvkiClPgiCWpKHT+ao31hMa5Du5G/\nTUEbAQBgpVw2tFY0bjwA9Pfni7/+ehwfHY1f3xNPxcsfd1wc3707jrPjEx4g1giA1NEnx3jJ1tN9\nIIw76W9/oPekMD60PQzTYzM6Gu//Cf2kRz0b142MFxDRN75IgpT4IglS4oskSIkvkiAlvkiClPgi\nCVLiiySoKXV8BH3mDwY1foDX+ccrcS2T9XnOi5WqX3kljrMpslgpd+fO+PXv3x8v30NmgWJ9yqMD\n7Dt3hosevOTyMM7mNEBn/NoPrD4njO/fHy8/OBhvftmyOM7q/KwK7+QZ9PgE9I0vkiAlvkiClPgi\nCVLiiyRIiS+SICW+SIKU+CIJonV8M7sPwNcADLn7+bXHegD8AsBqANsAXOfumRXpYlCL76jEA98f\nHCMD2xOslsrml2d1elaHX7Uqjr/1VhxfsyaOsznY2bwBW7fG7SS+MP77eAWPPJkdOyeuoxe7SRsM\nUqfePRz351+yJF4/a8PA2oCwY9sbTDkAAHDSH390NAwXFh1LNpCtnm/8+wFcNeOxWwH8zt3PAvAM\ngB/MeQ9EpOlo4rv7cwA+mvHwNQAeqP3+AIBr53m/RKSB5nqNv8LdhwDA3QcBrJi/XRKRRpuvtvrh\nxcqGDeunfl+7toRSqTRPmxWRT5TLZQwMlOt67lwTf8jM+tx9yMz6AYRDNq5bt36OmxGRepVKR36p\n3nXXhszn1nuqbziyM9FjAG6q/X4jgEePZgdFpLVo4pvZwwD+E8CZZvYnM/smgB8C+KqZbQFwRe3/\nIvI5Yc5qiXk3YObVarANsn3WJzkasx/IX4slpVQsXRrHd+2K46y/fXjsAJy0Mo5/PBIfv2PLj4dx\ne/ONMI6BgcyQP/FEuOjuPfH3zorl8Wt7b2u8POuvzuKnnx7Hh4biOOuvv2xZ/PrMJ8K4W/zhLhQM\n7rNPPKGWeyIJUuKLJEiJL5IgJb5IgpT4IglS4oskSIkvkqCmjKtfqWTXK7sKcS3z0Fi+cfPz1nLZ\n+ll//97e+PUdR+Z4Zx3+D1dOiBcfjle/dNXK+AkP/TwM+/e+lx0j3ysrRv4Yxp/femoYv/Tcj8P4\n+yNxf3VWh9+6NY4vXhzHi8U4PkLaWHR2xsePffYi+sYXSZASXyRBSnyRBCnxRRKkxBdJkBJfJEFK\nfJEENaU/fqWS3a+4w+LtT3j8t4n1x89bx2f95UdH4/3vKcZ1eiMd9n04LsQ/X7k4jC9eHO/f+b3v\nx9snc9wfOC97+089Fdep/+ySeN8Gh+Ll2Wvr7Y2XZ3V8VofvIlM+sOWXLMm3vMUvT/3xReRISnyR\nBCnxRRKkxBdJkBJfJEFKfJEEKfFFEtSU/vhhrZ40I2B1djYu/vh4HK9W4zjrc83q/DZCdpC1oyCd\nrvtJLfvUPtLff9Nbcbwz/oi8+GJ2MZn1F9+2PS5E9/fHy/f1xcuToQzQ1xfH2bj4bP1szgXWBsVI\nGxdjyRPQN75IgpT4IglS4oskSIkvkiAlvkiClPgiCVLiiySI1vHN7D4AXwMw5O7n1x5bB+BmALtr\nT7vN3Z/MWkdGl+DJ9VdJoR0Lwijrs8zq7KRMTftss1ow6zTtpFj9USUeG/7Uobfjze/JeQAuuSQM\nXxS0s3jhhXjV27bF8bPOiuOsjs7agDB79sRx1h+f1enZoY/yBgAqpA1KpJ5v/PsBXDXL43e7+xdr\nP5lJLyLthya+uz8H4KNZQmT8DxFpV3mu8W8xs81m9hMzI40TRaSdzLWt/o8B3Onubmb/COBuAH+b\n9eQNG9ZP/b52bQmlUmmOmxWRLAMDZWzcWK7ruXUNtmlmqwE8/snNvXpjtbhXg8E22c29wx7f3GM3\ncNgNlPw39+LjV9g321XSp5zMyslu7vWwm3vs7iaZGdLJzb2PK9nrZzf39u6N41fNdmdpmrwDrbL3\nnk2Yym7usU5KebdfrcafvWKxI/dgm4Zp1/RmNv1W9NcBvFnnekSkDdRTznsYQAlAr5n9CcA6AJeb\n2YUAJgBsA/CtBu6jiMwzmvjufsMsD99/NBvxoABwqBKfL7E6PcNOJ3t74zg7XdyzJy5udHf3hHE2\nf/3OXfH6V606J4yfvDSeQ95Jp/Oh/ceE8XffzY4tXx4uSsdCYGMtkCH/cfzxcZxdBTHsVJ2LT9XZ\nnBMozP3evFruiSRIiS+SICW+SIKU+CIJUuKLJEiJL5IgJb5Igpoyrn40PvjCYlyrPFyJ69is2SZr\nB7B9exxnWLPK4eF4/wcH4+VPOy2OfxyX6QGPGwrYyEgY79v3Xhjf9OGZmbHnnw8XRU/cxIHWydlY\nCKwdQN7PxgUXxPFh0kajuzv+bLA5HfLQN75IgpT4IglS4oskSIkvkiAlvkiClPgiCVLiiySoKXX8\naEBeNvDXAjscP6EYD811gEwP/1E8Mhatpb74Yhw/8cQ4zmrFbI54UoYHDsbFZN+xI4wfuOgvwvih\nV7JjCxeGi+YeC4ENi8aOHRsPgLWhYNtn7RDYeABsXH22/xF944skSIkvkiAlvkiClPgiCVLiiyRI\niS+SICW+SILqmkIr1wbMvFLJ3sbYWLz9hcXs6bcA4OORuEM8G1f/4ME4/uqrcfz00+M4Gy+AzQFv\npKXDCYf+GC8/FHf4Z2//v7z+lTAeDcu/cmW87k2b4vh558Vx1saCvTdsefbesTo8q/OvXh3H2RRZ\nbCyLjs5C7im0ROT/ESW+SIKU+CIJUuKLJEiJL5IgJb5IgpT4Igmi/fHNbBWABwH0AZgAcK+7/7OZ\n9QD4BYDVALYBuM7d9822jg7LrsUXi/HfnvFqHGd9ntnY6Wzs83PPjeO//nUcv/rqOM4M74v7ZGPp\nqWH4xEX74+V3kEnmiWhsezbWAKuzszo3s2VLHD/llDjOxgtg/eHZ/rN2Ap2d8XtPuuuH6vnGrwD4\nrrufC+BSAN82s7MB3Argd+5+FoBnAPxg7rshIs1EE9/dB919c+33EQBvA1gF4BoAD9Se9gCAaxu1\nkyIyv47qGt/MTgFwIYAXAPS5+xAw+ccBwIr53jkRaYy6x9wzs8UAfgXgO+4+Yp+dEC+z4fD6DRum\nfi+tXYtSqXSUuykiTLlcxsBAua7n1pX4ZtaJyaT/mbs/Wnt4yMz63H3IzPoB7M5afv26dXXtjIjM\nXalUOuJL9c4778x8br2n+j8F8Ad3v2faY48BuKn2+40AHp25kIi0p3rKeWsAfAPAG2b2GiZP6W8D\n8CMAvzSzvwGwHcB1jdxREZk/TeqPn13Hr1ZJrZLsHpsDfd+sLQs+xfpUs1owm6OdOX55/AKXdJKJ\nAf57axim/fHXrAnj//rz+ABZ8PaxNhCsP/yuXXH87LPjOKvDszkJWBuRvP35u7vjeCEeaiI89gBQ\nLJr644vIp5T4IglS4oskSIkvkiAlvkiClPgiCVLiiySo7rb6eUT9lrsK8bj5zCjpr8/q9AzrU719\ne1yHv3T1B2QFe8Kwn/uFMN5RGY/X/+GHcZwMbv+lL10ZxncG3flZHZvVoVkdnbWhYHV6VidnbUhY\nG5FozgEAKLJx8avxezuOBfEGonXPeUkR+dxS4oskSIkvkiAlvkiClPgiCVLiiyRIiS+SoKb0xx8b\ny95GZ2e8fTY//ITHf7sqlXj5BWT7+0fiYvOSQ5kjjgEAjHUqr1TCsJO4sWI1Gbze+/vD+H+8GDeE\niFa/d2+4KE48MY739JD3DnGde/dwXOdeuDDe/qJFpM5OPpvM4Ur82Y3yBgAWLYo/m52d6o8vItMo\n8UUSpMQXSZASXyRBSnyRBCnxRRKkxBdJUJPG1c/eRrWar1bL9n6iENdy9+2L19Cz6HAYp3V0Fs87\nyfoe0p+fDP7+ceWYMD48HNeKi8UwHOrpieOsHUBfX/zejZA2GF1d8fILu+O4I14/b4MSL8/aCbjF\n39uFgur4IjKNEl8kQUp8kQQp8UUSpMQXSZASXyRBNPHNbJWZPWNmb5nZG2b2d7XH15nZTjP7fe3n\n6sbvrojMB1rHN7N+AP3uvtnMFgN4FcA1AP4KwH53v5ssH/bHZ5V4Nu6+s79dZOx2I6+f1Wo7DpH5\n6wnWDuGDfXGdvZvU0YfJ2O+sTzcTzfHOxsVnTRjYnAijo3GcYfPT5x0rgh1Z1oRmvEraIZD96ygU\nMuv4dEINdx8EMFj7fcTM3gawshbO96kRkZY4qmt8MzsFwIUAXqw9dIuZbTazn5jZ0nneNxFpkLoT\nv3aa/ysA33H3EQA/BnCau1+IyTOC8JRfRNpHXXPnmVknJpP+Z+7+KAC4+/RJ2e4F8HjW8nfdtX7q\n98suK2Ht2tIcdlVEIuVyGeWBgbqeW1cnHTN7EMAed//utMf6a9f/MLN/APBld79hlmV1cy9cf0w3\n97Lp5l4Db+6Z2RoA3wDwhpm9hsnP6m0AbjCzCwFMANgG4FtsXSLSHuq5q78JwGwTCj85/7sjIs1Q\n1zV+I2WciUzZPxqfypPu5vR0jPapJnOUs/NZtv7D6IrXT69V4nBvbxxnp9usv3308sfG4mXZqXze\nSwE2Ln0XHeuBvTexCXaZaOwyN9+lRLjtHMuKyOeUEl8kQUp8kQQp8UUSpMQXSZASXyRBSnyRBLV8\nXP3864/j7PWxWvEC0mSYrqAwW9unT7E6P8PmWM9bp69U4ni0fvLS6bj2rDk1c3AsPjbdRbJ+8tbQ\nce9zNsllTZ7Z9i1osqtvfJEEKfFFEqTEF0lQ0xO/XC43e5NHZWCg3OpdCLX78du4sdzqXcjUzvsG\nNPez1/TEb/fEavcPR70DLbTKs8+WW70Lmdp534DmfvZ0qi+SoJZ3y2212cqBrEQ49yfPP7b5vLs3\nl/V/8liLD03+97bBWrl/TanjN3QDIpIpq47f8MQXkfaja3yRBCnxRRLUtMQ3s6vN7B0ze9fMvt+s\n7dbLzLaZ2etm9pqZvdQG+3OfmQ2Z2X9Ne6zHzJ42sy1m9lQrZy/K2L+2mUh1lsle/772eFscw1ZP\nRtuUa3wz6wDwLoArALwP4GUA17v7Ow3feJ3M7H8AXOTuH7V6XwDAzP4cwAiAB939/NpjPwKw193/\nqfbHs8fdb22j/VuHOiZSbYZgstdvog2OYd7JaPNq1jf+xQDec/ft7j4O4BFMvsh2YmijSx93fw7A\nzD9C1wB4oPb7AwCubepOTZOxf0CbTKTq7oPuvrn2+wiAtwGsQpscw4z9a9pktM36oK8EsGPa/3fi\n0xfZLhzAb83sZTO7udU7k2GFuw8BU7MYr2jx/sym7SZSnTbZ6wsA+trtGLZiMtq2+YZrA2vc/YsA\n/hLAt2unsu2u3WqxbTeR6iyTvc48Zi09hq2ajLZZib8LwMnT/r+q9ljbcPcPav9+COA3mLw8aTdD\nZtYHTF0j7m7x/hzB3T/0T28a3Qvgy63cn9kme0UbHcOsyWibcQyblfgvAzjDzFab2QIA1wN4rEnb\npszsmNpfXpjZIgBXAniztXsFYPJab/r13mMAbqr9fiOAR2cu0GRH7F8tkT7xdbT+GP4UwB/c/Z5p\nj7XTMfzM/jXrGDat5V6tLHEPJv/Y3OfuP2zKhutgZqdi8lveMdl/4aFW75+ZPQygBKAXwBCAdQD+\nHcC/ATgJwHYA17n7cBvt3+WYvFadmkj1k+vpFuzfGgAbAbyByff1k8leXwLwS7T4GAb7dwOacAzV\nZFckQbq5J5IgJb5IgpT4IglS4oskSIkvkiAlvkiClPgiCVLiiyTo/wAbnqPa+racXgAAAABJRU5E\nrkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF8pJREFUeJztnW1wnWWZx/9XXnqSpmmatjTVZi3QalvL0iIVcft2WFxh\nxLGMMwssfkDXcRhHd32ZcXypTlOxo+4Hd9gPzjiADDo6wjqjoB8QwU1KZanoUoRKi7CbQksb+5o2\naZLmJNd+yGkaQs7/Os1JTs7u/f/NdHry/J/7ue/n5X+e5znXfV+3uTuEEGlRNdMNEEKUHxlfiASR\n8YVIEBlfiASR8YVIEBlfiAQpyfhmdqOZ7TOzl8zsi1PVKCHE9GKTjeObWRWAlwBcD+B1AM8AuM3d\n941bTx0FhJgh3N0mWl5TwjavAfBndz8AAGb2EwBbAOwbv2Jv7wXv79jRhq1b24qupK6Of29Y8MV1\nLscfaoaG3vj3+PZlMrQ4uru5XldXmj5+97Zvb8O2bW2jf+dyvPzAANcbGrg+/viMp7r6jX+PbV9/\nf2nbjo59VH48F3vtlcp0n9to/xsaJvQ8gNIe9ZcAeG3M3wfzy4QQFY5+3BMiQUp51D8E4G1j/m7N\nL3sTO3a0jX5uappXQpXTz8aN2ZluAmXz5uxMN4FSye37/35ud+5sx5NPthe1bik/7lUD2I+RH/cO\nA/gdgH9w9xfHredj3/EvlnK/44+n0t7xx1Np7/hjqbR3/HIz3ee2mHf8Kf9xz92HzOzTAB7DyCvD\nfeNNL4SoTEp51Ie7PwpgxRS1RQhRJib9qF90BWaeyxWuI3oUjR73oteIurrCIQ2AP6oC8eMU2zcA\nqM9w3S36fbW0V51h8P2v6j3Dyzc08vK5c4XF3l5aNnwWjk5OePHw7fcNzSqp+lJfNWpKuu3Grwp1\ndYUf9fWrvhAJIuMLkSAyvhAJIuMLkSAyvhAJIuMLkSAyvhAJUmIksXRKDtVmSovTGy8elo+6VdpA\n0G817NfJ5b4BvgNR+xqDFYLDw/XOTl54RdD3a+9erh87xvWeHirXt7by8ldcQeXhzGyqR9duFIeP\nypfSD0B3fCESRMYXIkFkfCESRMYXIkFkfCESRMYXIkHKEs5jEaMoZBFl4Kmt5noU7qqvGaS6BeGu\n+iAm48HQ1D6vp/rs3qO8/iiFTg9PEXSy7i1Ub8jx4zcwUHho69woXBeFMqNw3TkyJBgA+vqobFGK\noKefpnLVhg1Uz2T4sN/o2o+IhqwzdMcXIkFkfCESRMYXIkFkfCESRMYXIkFkfCESRMYXIkHKEsdn\nM2U3NkTpofl303BQdy6IQ/ehluo11Vyf1XuS6h7E2Y908fb19FxC9TlzqIzLW7jeHPSTeOll3r49\newrrAwN82Optt1IZs06d4is0NVHZ38L7KPj6jVSvevklXn/QvqF5/NxFqdfPlDgLFEN3fCESRMYX\nIkFkfCESRMYXIkFkfCESRMYXIkFkfCESpKQ4vpl1AujGSDh90N2vmWg9FkuP0j9HlJpee3CQl49C\nyQsWNFN9925ePorDz5vH9cuW8p4MnuP9EE6c4vsfZbju6iqsbdnCy9YeeZWvEOWfDsbr27p1vPwr\nf+bVd/NcBqcXv4Pqe3/Pq3/ve7gepc+Orm267ckXBTBi+Ky7814sQoiKotRHfZuCbQghykyppnUA\nvzazZ8zsE1PRICHE9FPqo/56dz9sZpdg5AvgRXffNX6lHTvaRj9v3JjFpk3ZEqsVQoynvb0dHR3t\nRa1bkvHd/XD+/6Nm9jMA1wB4k/G3bm0rpRohRBFks1lks9nRv++6a3vBdSf9qG9ms81sTv5zA4D3\nA3hhstsTQpSPUu74LQB+ZiNjbmsA/MjdH5uaZgkhphPzKFZaagVm3ts7+TqiWGU0JjkqH6S9D3OX\nHzjA9WDIeBinz+X4sZs7xCOp5xp4P4NXXuFx/Cht/7Fjhdv3ru7/oGUt6iQxi+elD+c4X7WK69HJ\nPXSIyh6cvK65PM4/f34wJ4Pz/Yuu/YYGgxfYiEJxQiSIjC9Egsj4QiSIjC9Egsj4QiSIjC9Egsj4\nQiRIWeL4LBYdjcdnOfkBoLaa64e7+HfbggW8/v37uR4R7d+aNVxn490BoLqK7/+i03zMOaLTPxDM\nId9CEvf/ng9IP7z2A1Svq+NVZwI9yoXQ2sr1ty85S/WT/XzegL7+0nIdRNfGwoVcr6lRHF8IMQYZ\nX4gEkfGFSBAZX4gEkfGFSBAZX4gEkfGFSJCyxPGHc4UHDp/t5989AwN8+z09vP0LFvBY6vHjfPss\nTA0ATzzB9SD1e5hX/6ab+P7N6j9NdevooLpfcQXVTzZdxssTbW+Qj6nzAD83Y7JITUhPD9cHB7ke\nnfvVq/mx7w/i9M89x7d/6aVcX7qU61E6gqYmxfGFEGOQ8YVIEBlfiASR8YVIEBlfiASR8YVIEBlf\niAQpSxy/v7/wHO5RLDTKe98fDBeP8sJHee2DIeV48EGu33or16Pc6O8J5lAfGuLnr776HNVfP8Zz\n10d591ks/cwZWjQcbx/FqaP545ct4/rAAD92f72sj+qvHefj8Zcs4duvOnaU6uGA+4CqmmrF8YUQ\nF5DxhUgQGV+IBJHxhUgQGV+IBJHxhUgQGV+IBAnj+GZ2H4APAuhy9yvzy5oBPAhgKYBOALe4e3eB\n8t7bW7iOaP76KE5//Dhv/2VL+KDsrpM8jv3HP/L6o/a/8grXP/Qh3v6WS7h+4hT/7t67NxjPP4sH\nyw8coDI2bCisdXbysk88wdv2tc/wXAPhwV22nMpdfXOpfvo0b9/SpdH89bz87Ezh/i0A4ODbHxzi\neiZTVVIc/34AN4xb9iUAj7v7CgC/AfDlIrYjhKgQQuO7+y4AJ8ct3gLggfznBwDcPMXtEkJMI5N9\nx1/k7l0A4O5HACyauiYJIaaboLdz0dCXmR072kY/b9yYxaZN2SmqVghxno6Oduzc2V7UupM1fpeZ\ntbh7l5ktBvAXtvLWrW2TrEYIUSybN2exeXN29O9vfOPrBdct9lHf8v/O8wiAj+Y/3wHg4YtpoBBi\nZgmNb2Y/BvAUgHeY2atm9jEA3wLwd2a2H8D1+b+FEP9HCB/13f32AtL7iq2EzRGfyfCyUd75nh4e\nyzx8vJbq0ZjxaMz35s1cj0LNl1zCdXtuD9Xnr+Z58Vev5v0Uotz0URy/q6uwFg0n//jHuW7RpAQv\n8MT9Hgz4H2h4J9VPjo9ljePt8+gbbphw4FxNI9VrczwfQA48HwBDPfeESBAZX4gEkfGFSBAZX4gE\nkfGFSBAZX4gEkfGFSJCp6qtPYbH6gYHSth3FinM5HueP8u4v50O6cTRIjb5yJde7T3G9OYgFn+nn\n/RSifAbRvAVR+1k/B9Z/A4j7CCzpCTpBRIn5A722lo+Xv2YdHy9vuSaq+6FDVO9fGMTxM9yeQSoI\niu74QiSIjC9Egsj4QiSIjC9Egsj4QiSIjC9Egsj4QiRIWeL4LNZrxmOptdVcP9nN4/TNTbx8kC4Q\nyPEJ7Ds6+Hj3Vav49ptxguo2yOcFaNz/DNeXtFJ91/NvpfratVTGkSOFtT/8gZe99FKuo4lHqv0U\n7wRxtuUyqnc+x6+d6mp+X2yp4ckM+NaBxho+3n64pp5vn1+aFN3xhUgQGV+IBJHxhUgQGV+IBJHx\nhUgQGV+IBJHxhUiQssTxq1B4XPNQFO0M5CY+JBq2l+dep4FoAL54MdWvuOJKqjfP49Xbyy/zFfbv\n5+XXrePla/kpvuWDZ6n+r9/judvZkPfOTlo0HOuPa6/letAR4NAhfvFUBbe9aE6Elqv5pA++dy/V\n+xbzfgYYiHoCTB7d8YVIEBlfiASR8YVIEBlfiASR8YVIEBlfiASR8YVIEHPn48XN7D4AHwTQ5e5X\n5pdtA/AJAOcnCP+Kuz9aoLz39haO42cyPFbZ28vb1+inqW4HD1IdP/85lX3VKqqf2Pxhqke549eu\n4ftXlTtHdT/VTfWzcy6h+u7dVMaRI/z8XH55Ya27m+/b+zfwPgQWNS44t37DjVQ/XbeI6rkcb/+C\n/f9JdaxZQ2WPJjUI5gUYbphL9Zoag7tPeAKLuePfD+CGCZZ/x93flf83oemFEJVJaHx33wXg5ATS\n9HUrEkJMK6W843/azPaY2b1mFnScFUJUEpPtq/9dAF93dzezbwD4DoCPF1p5x4620c8bN2axaVN2\nktUKIQrR3t6Ojo72otadlPHdfexUkfcA+AVbf+vWtslUI4S4CLLZLLLZ7Ojfd921veC6xT7qG8a8\n05vZ2CFrHwYQDIETQlQS4R3fzH4MIAtggZm9CmAbgOvMbC2AYQCdAO6cxjYKIaaY0PjufvsEi++/\nmEqqqwsHAIaC3OCZDNft5SBOv2sX14NYsR0/TvX517+P6l11fA506z1Dde/hudtPZN5C9Zdf4MGX\naA77lSt4LPuqha+Syvmxt8918Mr7+0vSo7DT3HlBsoQz/NyELFtGZevqoroH+QYi7zDUc0+IBJHx\nhUgQGV+IBJHxhUgQGV+IBJHxhUgQGV+IBClLXn1GbpDHiev7+fzxCHKXR2OasWIFlf3QIaoPz+Fx\n+iiafDLHyze3NPDNn+LbD6YFCPU5PHU87O77CouPBqO1o3MTxfGj8vv2Udmi7be2cr2lheuPP871\nMd1rJyTKJbH8nVwn6I4vRILI+EIkiIwvRILI+EIkiIwvRILI+EIkiIwvRIKUJY4/q6ZwXv0zwRzg\nVhM0MZgXIJzkvL6e179+PdWrgvH0qxYEseIGPibcjO///Hl8UPb8Xt4PAUuWcD2KRXd2Ftai8e6r\nV3M96kQQJRNYuJDri3hefbz+Otffx3MxIMil4MG1N7z4rVTvD9LyM3THFyJBZHwhEkTGFyJBZHwh\nEkTGFyJBZHwhEkTGFyJByhLH7yOx+sYMn/8dp0ockx3F+YO8+bhhohnCL2B79vDyQT8AHDvG9Xvv\n5fVfdx0vH8W6n36a60Esmu2fL19Oix5e+bdUXxCE4fcG8zdFw+3XreN6be4s1V87PpvqCxfzfgK5\nIC9+I4Jrt4QJq3XHFyJBZHwhEkTGFyJBZHwhEkTGFyJBZHwhEkTGFyJBwji+mbUC+AGAFgDDAO5x\n938zs2YADwJYCqATwC3u3j3RNqqrC8cbzwzMovXPjRoYjde/+WauB3n5feVKqj/0+HyqrwrS/l+5\nOghWb9jA9WjMeTDe3tvbqf76+r+nOktd//DDtCj6H+Rx6N27efmbbuJ6UxPXOw9wfdkyHqdfupS3\nv3+Abz9qX+EsFiNUVwcrEIq54+cAfN7dVwN4L4BPmdlKAF8C8Li7rwDwGwBfnnwzhBDlJDS+ux9x\n9z35zz0AXgTQCmALgAfyqz0AILi1CiEqhYt6xzezSwGsBfA0gBZ37wJGvhwABHmMhBCVQtF99c1s\nDoCfAviMu/eY2fiOxAU7Ft91V9vo502bsti8OXtxrRRChOzc2Y4nn2wvat2ijG8jGR9/CuCH7n7+\nJ5suM2tx9y4zWwzgL4XKf+1rbUU1RggxeTZtymLTpuzo39/85vaC6xb7qP99AH9y97vHLHsEwEfz\nn+8AEPyGK4SoFIoJ560H8BEAz5vZsxh5pP8KgG8DeMjM/hHAAQC3TGdDhRBTh3k0Xr3UCsw8lytc\nx0A/r392/wleQZS7vKuL6ufWvJvq0ZjvZ/fwWG403P6qq/j+R7He98z5E1/hV7+ist95J9Uf29VA\n9c9+tnD79+3juQCam2upHqXVb+BNwyc/yfW1a7m+dCnX6+r4uVs0b5DqXsv7sERE1q2pMbj7hBeo\neu4JkSAyvhAJIuMLkSAyvhAJIuMLkSAyvhAJIuMLkSBlyavPUrvnhngcfHgeH+9e1T1hCoALROPV\ng9zkDUEsefFirg8FudPr6nj9y5dH8wLwWLjfcQfVH9vFx5x/4Qu8et5NgvehWLmylerXX8/rjuL4\nEdG5a+XNQ28vP3dew8+N9fO8/eGcETb5+7bu+EIkiIwvRILI+EIkiIwvRILI+EIkiIwvRILI+EIk\nyIyPx4+mb6+t4e2ryp2bTLNG8UOHqH6i6XKqs7zyQLx/jY18/65afobq5zKNVP/lL3n9X/0qj0UP\nBLnh2bQGa9bwfctmed3Nzbzuq6/mekTUxSPa9wULuB5N+dDby49PFMavqeHHr7pa4/GFEGOQ8YVI\nEBlfiASR8YVIEBlfiASR8YVIEBlfiAQpy3j8gYHC8cr6DI9lDg5F3008N3ntUB/V+1ouo/r8odNU\n/5u1/BCeBR/vHsV6cZzPG3Dy7NyStn/ttVw/fJjrc0n1t97K48xR3vwojh6Vj+LgBw5wfcUKrsdx\neq5nMvz4DPK0/NGUEhTd8YVIEBlfiASR8YVIEBlfiASR8YVIEBlfiAQJjW9mrWb2GzPba2bPm9k/\n5ZdvM7ODZvZf+X83Tn9zhRBTQTge38wWA1js7nvMbA6APwDYAuBWAGfc/TtBeToen8X4gTjWGY13\nj7bfmAmCpeDl+4Z4P4JMhm+96sD/8BWCxP5dvojqDz3ENx+1L8otz/Qojr16NdePHOF6LU9bH8bZ\nm5q4Xl/Pz31tNdfP5fh9NZpzIbr26qv5tVtVlyk4Hj/swOPuRwAcyX/uMbMXASzJy9yVQoiK5KLe\n8c3sUgBrAezOL/q0me0xs3vNLPj+FEJUCkUbP/+Y/1MAn3H3HgDfBXC5u6/FyBMBfeQXQlQORfXV\nN7MajJj+h+7+MAC4+9Exq9wD4BeFym/f3jb6efPmLLLZ7CSaKoRgtHd0oH3nzqLWLSrZppn9AMAx\nd//8mGWL8+//MLPPAXi3u98+QVn9uEfQj3uF0Y97M/jjnpmtB/ARAM+b2bP51nwFwO1mthbAMIBO\nAHdG2xJCVAbF/Kr/WwDVE0iPTn1zhBDloCx59Vn+8OqJvlLGEI3JjuZILzVvvw3xx6nBIB9AtH/d\np4JXiX5e/uBB/ip06hQvH41pjx5HW1q4Xsq2o0f1qO3RtVHqq0L0KB5Fu0u1nln0mlylvPpCiAvI\n+EIkiIwvRILI+EIkiIwvRILI+EIkiIwvRIKUJa8+i2VbMLC31Dh9PL970CXYebC3dugsryBoX109\nz7vfNC/YfLD95cu5HsWq+/i0BJTGxtLqjvat1Lz2URy/1Pprq4epPhzcd6P2R9cuQ3d8IRJExhci\nQWR8IRKk7Mbv6Ggvd5UXRXt7+0w3gVLp7XvqqfYZbkFhdu1qn+kmUMp5bstu/J0728td5UVR6V9M\nld6+p55qn+EWFOa3v22f6SZQynlu9agvRIKUJZw3NmRn9ua/p2rbE1FV4ldb2L4Sd6DUNMWz+Kjg\ncFhwdHzioalv3t75MtG2Sz13Ufnx+272xmXTfe2VSqn7T8uWYzz+tFYghChIofH40258IUTloXd8\nIRJExhciQcpmfDO70cz2mdlLZvbFctVbLGbWaWbPmdmzZva7CmjPfWbWZWZ/HLOs2cweM7P9Zvar\nmZy9qED7KmYi1Qkme/3n/PKKOIYzPRltWd7xzawKwEsArgfwOoBnANzm7vumvfIiMbP/BnC1u5+c\n6bYAgJltANAD4AfufmV+2bcBHHf3f8l/eTa7+5cqqH3bUMREquWATPb6MVTAMSx1MtpSKdcd/xoA\nf3b3A+4+COAnGNnJSsJQQa8+7r4LwPgvoS0AHsh/fgDAzWVt1BgKtA+okIlU3f2Iu+/Jf+4B8CKA\nVlTIMSzQvrJNRluuC30JgNfG/H0QF3ayUnAAvzazZ8zsEzPdmAIscvcuYHQWYz6NzsxQcROpjpns\n9WkALZV2DGdiMtqKucNVAOvd/V0APgDgU/lH2Uqn0mKxFTeR6gSTvY4/ZjN6DGdqMtpyGf8QgLeN\n+bs1v6xicPfD+f+PAvgZRl5PKo0uM2sBRt8R/zLD7XkD7n7UL/xodA+Ad89keyaa7BUVdAwLTUZb\njmNYLuM/A2C5mS01s1kAbgPwSJnqDjGz2flvXphZA4D3A3hhZlsFYORdb+z73iMAPpr/fAeAh8cX\nKDNvaF/eSOf5MGb+GH4fwJ/c/e4xyyrpGL6pfeU6hmXruZcPS9yNkS+b+9z9W2WpuAjM7DKM3OUd\nI+MXfjTT7TOzHwPIAlgAoAvANgA/B/DvAP4KwAEAt7h7MElWWdt3HUbeVUcnUj3/Pj0D7VsPYCeA\n5zFyXs9P9vo7AA9hho8had/tKMMxVJddIRJEP+4JkSAyvhAJIuMLkSAyvhAJIuMLkSAyvhAJIuML\nkSAyvhAJ8r9e8zgmPAYDSAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF2RJREFUeJzt3V1wXGd5B/D/o1192Ctblr/k1E7kgKnDOCQGQjKdULSQ\nQphOZky5SGm4ANphuICWKTd8DPUH0wvoRWboBTchMKEDBcpMmoSZQgggpUkHSFMnTRzbgRDHsWMr\ntmM7kizJ+/H0QhtFVrT/Z60j7S59/78Zjdf77Dnn3bPn2XP2vF/m7hCRtHS0ugAi0nxKfJEEKfFF\nEqTEF0mQEl8kQUp8kQRlSnwz+6CZHTKzZ83s80tVKBFZXrbYenwz6wDwLIBbALwE4DEAH3H3Q/Ne\np4YCIi3i7rbQ81nO+DcC+K27v+DuJQDfB7BroRdWK5XZv927d1/y/0qlSv/mvnahv0q5Sv98epr+\nzV/f/PKVy07/pqer9M8rFfpXLfO/+ev78pd3X7r+y3x/b9h/Fc/4d+nntXv37tnH4XvPXLbLO3Yu\n+9gLPxunf5e7/t3/sPsy18//mCyJvxnAi3P+f6z2nIi0Od3cE0lQPsOyxwFcNef/W2rPvcHefftm\nH6/p68uwyeVXHBpqdRGo97yn2OoiUENDxVYXoa52/2yzlm94eBgjI8MNvTbLzb0cgMOYubl3AsBv\nAPyVux+c9zqvVip11+NY8N7D68uDl6/OvYtZHZUSXz7Pv/uqzi+Kot9SXfmo/DSMUoW/vy5ke3+e\n+aKv/hvoiD67cM1R2fgawmMnOvaCD6dU4eXLB5999vXTMHI5q3tzb9FnfHevmNlnADyImZ8Md89P\nehFpT1ku9eHuPwGwfYnKIiJNkinxG8UuqaLLsVYzfjWIXC5YQXA5Z+RnEAB0BhtwvjhKZf4GOnGR\nryC6nmTvb3qaLmo9PXzdqAZxLvjoAA/WH3w2uVxXphIEv1LjYysD3dUXSZASXyRBSnyRBCnxRRKk\nxBdJkBJfJEFKfJEENaUev0zqkqNq4kjU3b+a6+TLZ2xHENXzh6svl/n6S7xJLs6coWH+7gEbGKBx\nn5qi8Wr3irqxadSPAUBPsG86Rk/wF/T28nhwcFnc5pWGOypBG4ioIj5oJxCVL0tza53xRRKkxBdJ\nkBJfJEFKfJEEKfFFEqTEF0lQU6rzOnP1uz8u9wg8FozAE1WnoYdXSVnQtdPLvMpmrMzXnw9qhFYW\neHVb2DU1qFJCdzcNT03V38L4OF91ucQ/29XRCqLhi4KqTuzYweMZ+2RHI+h0Rd1uo2MzQ124zvgi\nCVLiiyRIiS+SICW+SIKU+CIJUuKLJEiJL5Kg5gyvTepDo3r4oBoc+XwwhHHQLbcjqgseH+PxAu8a\nOjbFtz9J6sGBeKaelbmgrnd0lIb99Gka37/mvXz9xLZtvOyrCsHw1ieDz+a552jYN22i8ZdP8/Pe\nwHpePou6RK9bT+MsL4D42M1CZ3yRBCnxRRKkxBdJkBJfJEFKfJEEKfFFEqTEF0mQeVSPzRY2OwLg\nPGbmMy65+40LvMarpM932B8/KF/U5zmf48t3TE/SeNQf3YP+7Bed18V2Tb3Kt3/8OA1bMPx1xK+/\nnsaPHuOdxs+dqx+Luvpffz3/bCpBE4XO5w7SeHX7W2n8PCk7APTbWRq/WOincbZvAGBgQzDWBF88\n1JHLwes0lMnagKcKoOjufA+JSFvJeqlvS7AOEWmyrEnrAH5mZo+Z2SeXokAisvyyXurf7O4nzGwD\nZr4ADrr7I/NftHffvtnHxaEhFIvFjJsVkfmGh4cxPDLS0Gsz3dy7ZEVmewCMufud857XzT1CN/fI\n8rq5lwm7ubfoS30zW2lmvbXHBQAfAPD0YtcnIs2T5VJ/AMC9NjNdbR7Ad939waUplogspyW71K+7\nATOvVMi4+kF//Kg/ei4XLF/my3dNB/3tg6mYo/1XKgdjq58JpoJet47Ho/72mzfT+H8+ysvX18f3\n7+OP14/deitdNOpOj5tu4vHxcb7vf/c7vvyNNwRTrAc/Qw8c4PH16/n6r+jlx573rqLxjuDHgC3H\npb6I/OFS4oskSIkvkiAlvkiClPgiCVLiiyRIiS+SoKbU41enp+vGS+iiy0fFm5jgL+gvXOQrCOrB\nq5uvpPFHH+WrD4Z2x1s2X6Dx/YdX0njQ4jYsX9SOYmKCL792bf3YW3mLWUxO8s9uoBq0cRjgO/eZ\nQ/y8FrUDuOIKvm+OHaNhvPnNPL4hqOefaRtXX9TcPZfrUD2+iLxOiS+SICW+SIKU+CIJUuKLJEiJ\nL5IgJb5IgprTH79M+uMHdZGRctDfvrvM68mjimoP5jg/eox/d/b28vKtXcPnYK+CD311/jwNo1AI\nxiPI8/jFYDyBs2R0qg0b6KJh2XuDsncGYym8NLaaxqOhsaLyrVnD41u28Hj0/jomov76fKyIZRl6\nS0T+cCnxRRKkxBdJkBJfJEFKfJEEKfFFEqTEF0lQ1rnzGmP16+qjWvyomUE0TRN6evj6g8VfHecl\nPHOGL79+PV/+3vv4d+9f7OL1/IUCX/74cb79aAau7dt5/Nln68ceDKZX2bmT7/237eDxoyf5uPPR\nuP1RPfzAAI+TwxpAOPtayKPp2zK0gdEZXyRBSnyRBCnxRRKkxBdJkBJfJEFKfJEEKfFFEhT2xzez\nuwHcBmDU3a+rPdcP4AcABgEcAXC7uy/Ye9nMvFou199AWBHPlbyTxjvPn6LxsW7eafzCZLZ6/GDY\nfrzznXz/rzbeJ/tCjvc5j+aIj/qcj4/zeJ60BInaYKxYwePXXstXMBl8NlF/e3ZYAnE9fdQOYD0f\nyoHuOwDI54IdGBQwl7NM/fG/DeDWec99AcBD7r4dwC8AfLGB9YhImwgT390fATB/nJVdAO6pPb4H\nwIeWuFwisowW+xt/o7uPAoC7nwSwcemKJCLLbana6tMfI3v37Zt9XBwaQrFYXKLNishrhoeHMTIy\n3NBrGxps08wGATww5+beQQBFdx81s00AfunuC06RqJt7PK6be/Xp5l5rb+4BM53o5q7gfgAfrz3+\nGID7GlyPiLSBMPHN7HsA/gvAH5vZUTP7BICvAni/mR0GcEvt/yLyByL8je/ud9QJ/VmjGzF2SZLj\n48ZH49535oPrtUKBhrvz/HJpLLjUDbr7Zx67fXUfj0c/JaJL9SNHeDzqUz44WD/2yit82c2befzY\nMf7ZbAxuKVcq/FL5uvUn+AoCB8//EY1Hcyr090zyDeSDgyscTaI+tdwTSZASXyRBSnyRBCnxRRKk\nxBdJkBJfJEFKfJEENWdcfcKDZode4GOnRwx8XPpoBxw4wOPbtvH4LbfweE8Pf/+vTvH3PxlUBZ88\nyeOHDvF41K1i69b6sQ28NXTYBiJqMtvfz+uxB17az9cftIHw66/n6w/KH3223s3bLGeeU4LQGV8k\nQUp8kQQp8UUSpMQXSZASXyRBSnyRBCnxRRLUlHp8Vh0ZzfFtQZ/jUoV/d+VzPN5RuUjj77+F76JX\nzvH1nznDy3/1Jl4Rn+9dSeOnT9NwODQYq4cH4qHB1j73WP3gwCa67IuVq2i8sJJvu+vY72ncDh6k\ncVx5JY8HgyVMTKyl8VWrojkrgor6hUfNmtWJEl+e0BlfJEFKfJEEKfFFEqTEF0mQEl8kQUp8kQQp\n8UUS1JR6/Cqpj6xUommAorUHdaVB/JUxPgVXVA8+OBjUc6/h8ZdP8T7Zoy/z7W/iVeXheAK33hqU\n/8lf8hWQAQEmd7yLLnolLtD4/sN83wxsD958by+PP/QQjwdzZBU283r8p5/mq3/7Th4PmrjA4uSo\nS2d8kQQp8UUSpMQXSZASXyRBSnyRBCnxRRKkxBdJUFiPb2Z3A7gNwKi7X1d7bg+ATwJ4rZb5S+7+\nk/rrqL/+zhwf9z6qp+8Y532mLc/f4toeHh95mveHj+rRJyZ4fGPHKR7fzMv37ft4XXJUT/+m/FEa\nt6Ay2m+4oW7s7DleEf3fz/F6+qkpvvwrg/yzWbszqChfv57Hd+yg4dHDfPFS0F3eymX+guDYDSce\nIBo5438bwK0LPH+nu7+j9lc36UWk/YSJ7+6PADi7QGjxXzci0lJZfuN/xsyeMLNvmlnfkpVIRJbd\nYtvqfwPAV9zdzewfAdwJ4G/qvXjfvr2zj4eGiihGE7KJyGUbHh7G8MhIQ69dVOK7+9w7UncBeIC9\nfs+evYvZjIhchmLx0pPqvq98pe5rG73UN8z5TW9mc+9lfxhA0A9JRNpJI9V53wNQBLDOzI4C2APg\nvWa2E0AVwBEAn1rGMorIEjOPJuHOugEzr5KJvKNx9Tuc1/P71DSNX8zzuuLjx2kYuRwv3yo+fT36\n+vj+zR1/kcZ9Ha9rvvenvC57/Xq+/fds5x3+/RCvrN7f+6d1YydO8n3385/TMKJq+G3bePyaa/h7\n7y/wORWeP95F41E7g56eYE6FQX5sR3NGdAXj6lt3N9wXHgxDLfdEEqTEF0mQEl8kQUp8kQQp8UUS\npMQXSZASXyRBTRlXn9fV87rQSvDdVA7q6aO61mho8mhc/YmJoK44qMc/MMbnaP/xv/Lt33Ybj0fz\nFlzo3UjjK7ZO0XiB7N8nn6SLRsPWo7ubx6Nh88fHeby/u377EgBYuZLvu6i7fKHAlx+b4Mf2qkLU\nxkbj6ovIZVDiiyRIiS+SICW+SIKU+CIJUuKLJEiJL5KgptTjs7r6aDiAqB46Gpo8ik/z7vzoC4YR\ntWBs87FgXP01a7L194/GE7jpJr6DV4w+T+PPTF5N448/Xj8WtZF43/t4fOVKXva37eDxV8f5ee3E\nOd4G5OQoDYftCKJjL5qTIXJhevHnbZ3xRRKkxBdJkBJfJEFKfJEEKfFFEqTEF0mQEl8kQc3pj0+q\nW8mQ+wDiuuAoPsW7k4eiKcgLhSge9Ie/wJcfHOTx06d5Xfbqzkkav7iZ19Of+TUvP5tiftcuumhY\nz93by7cd9VZfffwZHt9+DY0Xgu1P8l2Lzk4ezyqa84HRGV8kQUp8kQQp8UUSpMQXSZASXyRBSnyR\nBCnxRRJkHnSIN7MtAL4DYABAFcBd7v7PZtYP4AcABgEcAXC7u59fYHmvssr6oDJ2bCLor97N5wgf\nPcvnOB8N+lxPBP3pI729QZ/ywTEav9jDO+R3lXlDADvM57f3qFN4XzD4PWkoUV3TTxftOH+Wxid7\n+PIrynzflbqDwQyCavDOHJ+/HufecLhfYqyTlz86dksWNQTgb6C72+DuC76okTN+GcDn3H0HgD8B\n8GkzuwbAFwA85O7bAfwCwBcbWJeItIEw8d39pLs/UXs8DuAggC0AdgG4p/ayewB8aLkKKSJL67J+\n45vZVgA7AfwKwIC7jwIzXw4A+FxMItI2Gm6rb2a9AH4E4LPuPm5m83+81v0xu3ffvtnHxaEhFIvF\nyyymiERGRobx8MPDDb02vLkHAGaWB/BjAP/h7l+vPXcQQNHdR81sE4BfuvtbF1hWN/cI3dyrTzf3\nWntzDwC+BeCZ15K+5n4AH689/hiA+xpcl4i0WHipb2Y3A/gogKfMbD9mztFfAvA1AD80s78G8AKA\n25ezoCKydBq61M+0ATOvlutf6peCcfOj4nXl+eVYNZhD/Nw5vv4jR3i8xK/Wwv72xaGgHcWT+3k8\nKKBfey2NlwbfQuOdB/j2zw6+vW5sPPiZlsvx9z4ywpe/4Qa+/FvWnKLxCwV+P3p0lK9/0wANh4M5\n5PN8/eFPjWAwi47u7syX+iLy/4gSXyRBSnyRBCnxRRKkxBdJkBJfJEFKfJEENWVcfdayMBobPBp3\n/2KZf3dF4+qf560u0dPD41GT3jVBi9djx3j8qlO8LhonTvD4u99Nwx40+7z3SP16egDAkfrLR20k\noianU1NBPf0gb0RRzW+g8Xwwrn/02a/I8+2PTfMmtyu6+fsrVfixnc8t/rytM75IgpT4IglS4osk\nSIkvkiAlvkiClPgiCVLiiySoOfX4RDT/fNRnu6MSdIjv4UNvrenj67+6jw8PdbR3LY0fOEDD2L6d\nx7FlCw371q00/vw4r8te180339fHPyA2stfQEF93Pjj6enr4ti+C15NPB20sVk29TONXFHhFvhmP\nryrwYytqQ9EJfmy78WOb0RlfJEFKfJEEKfFFEqTEF0mQEl8kQUp8kQQp8UUS1JRx9Scm6o8PHtXl\ndgZjj0cD709O8++2qE90NahrHR+nYawOptB6/gW+/qsH+MD81Z6VND4+HtQVB7M05fi0BHRs+I5g\nfrRXzvHPZnqab7u3l8e7g8+2O5h+zINGJqX8ChqPju1Ih/Nx9aPydeRyGldfRF6nxBdJkBJfJEFK\nfJEEKfFFEqTEF0lQmPhmtsXMfmFmB8zsKTP729rze8zsmJn9T+3vg8tfXBFZCmE9vpltArDJ3Z8w\ns14AjwPYBeAvAYy5+53B8l4u16+PjOp6S5VojnEahmVspxCNbR6tPmqHYM/9lsZP9PL569et4/tn\ndJSGsW4dj0fzGrD9H83/Xirxspczjns/McG3398X1JMH50ULjt1IOG5+1IYlkMt11K3HD5sYuPtJ\nACdrj8fN7CCAzbVwMIyGiLSjy/qNb2ZbAewE8OvaU58xsyfM7Jtm1rfEZRORZdJw4tcu838E4LPu\nPg7gGwDe5O47MXNFQC/5RaR9NNSa2MzymEn6f3H3+wDA3edO6nYXgAfqLb9v397Zx0NDRRSLxUUU\nVUSY4eFhjIwMN/TahjrpmNl3AJx298/NeW5T7fc/zOzvAbzL3e9YYFnd3CN0c68+3dxr4c09M7sZ\nwEcBPGVm+wE4gC8BuMPMdgKoAjgC4FOZSikiTdPIXf1HASzUOfMnS18cEWmGpvTHr5LrxerCVyKz\nKuGlfjDufsbLsXD/TAWdxqenaNiCDv2+bj1ff1ShWuLXy6UVq2k86o/P+8zzfReNhXBhKrjUzjgn\nQ7cF49ZHvyODQyP6mZrL8Xj0/iK5nKk/voi8TokvkiAlvkiClPgiCVLiiyRIiS+SICW+SIJaXo8f\nNYuMihfXdba2nr8avL9K0Cw1miO9FMwR34mLND423U3jvcG8AJmaRAefXdWj81K2zzZqchvNX5+9\nnj5r+fj+UT2+iFxCiS+SICW+SIKanvjDw8PN3uRlafvyjYy0ughUO++/di4b0NzyNT/x2/3Abffy\nPfxwq4tAtfP+a+eyAWh4EI2loEt9kQRlnMhXsoqrI+2N/52zUNxzM5hKWV/9i5a122wrNaUef1k3\nICJ11avHX/bEF5H2ows9kQQp8UUS1LTEN7MPmtkhM3vWzD7frO02ysyOmNmTZrbfzH7TBuW528xG\nzex/5zzXb2YPmtlhM/tpK2cvqlO+tplIdYHJXv+u9nxb7MNWT0bblN/4ZtYB4FkAtwB4CcBjAD7i\n7oeWfeMNMrPfA3inu59tdVkAwMzeDWAcwHfc/brac18DcMbd/6n25dnv7l9oo/LtQQMTqTYDmez1\nE2iDfZh1MtqsmnXGvxHAb939BXcvAfg+Zt5kOzG00U8fd38EwPwvoV0A7qk9vgfAh5paqDnqlA9o\nk4lU3f2kuz9RezwO4CCALWiTfVinfE2bjLZZB/pmAC/O+f8xvP4m24UD+JmZPWZmn2x1YerY6O6j\nwOwsxhtbXJ6FtN1EqnMme/0VgIF224etmIy2bc5wbeBmd38HgD8H8OnapWy7a7e62LabSHWByV7n\n77OW7sNWTUbbrMQ/DuCqOf/fUnuubbj7idq/pwDci5mfJ+1m1MwGgNnfiC+3uDyXcPdT/vpNo7sA\nvKuV5Vlosle00T6sNxltM/ZhsxL/MQDbzGzQzLoAfATA/U3adsjMVta+eWFmBQAfAPB0a0sFoNZA\nd87/7wfw8drjjwG4b/4CTXZJ+WqJ9JoPo/X78FsAnnH3r895rp324RvK16x92LSWe7Vqia9j5svm\nbnf/alM23AAzuxozZ3nHTP+F77a6fGb2PQBFAOsAjALYA+DfAfwbgCsBvADgdnc/10bley9mfqvO\nTqT62u/pFpTvZgAPA3gKM5/ra5O9/gbAD9HifUjKdweasA/VZFckQbq5J5IgJb5IgpT4IglS4osk\nSIkvkiAlvkiClPgiCVLiiyTo/wAsACbaP10qiAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# visualize some learned weights (W)\n", "for h in range(10):\n", " plt.figure()\n", " plt.imshow(W[:, h].reshape([28, 28]), vmin=-W_abs_max, vmax=W_abs_max, cmap='seismic', interpolation='none')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 0 }