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Abstract

The synthetic difference-in-differences method provides an efficient method to estimate

a causal effect with a latent factor model. However, it relies on the use of panel data. This

paper presents an adaptation of the synthetic difference-in-differences method for repeated

cross-sectional data. The treatment is considered to be at the group level. Thus, it is possible

to aggregate data by group to compute the two types of synthetic difference-in-differences

weights on these aggregated data. Then, I compute a third type of weight that account for

the different number of observations for each cross-section. I also provide simulation results

showing the performance of the synthetic difference-in-differences estimator is improved when

using the third type of weights on repeated cross-sectional data.
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1 Introduction

The synthetic difference-in-differences (SDiD) method (Arkhangelsky et al., 2021) combines

features from difference-in-differences and synthetic control methods. Like synthetic controls

methods, it computes weights that match pretreatment outcomes between the treated and the

control groups. This reduces the need for the parallel trend assumption, often hard to verify

in practice (Roth, 2022). Like difference-in-differences methods, it can control for unit-specific

shifts and include covariates.

This method is based on panel data, yet, repeated cross-sectional data, where each unit is

observed only once, is often the only available data. For example, the evaluation of rent control

policies often relies on online listing portals data that are repeated cross-sections.

In this paper, I adapt the SDiD method to repeated cross-sectional data. I focus on the case

where each unit belongs to the same group across time and where the treatment is applied to

one or more group. Once data are aggregated, unit and time weights are computed for each

group using the SDID method. Then, a third type of weight is computed to account for the

different number of observations in each group-period. Using a simulation study, I show that

this estimator (RC-SDiD) performs better in terms of bias, standard deviation and RMSE that

the SDiD one when the number of observations differs in each group-period.

In section 2, I present the synthetic difference-in-differences estimator for repeated cross-

sectional data. Then, I demonstrate the properties of the RC-SDiD estimator in a simulation

study in section 3. Section 4 concludes.

2 The RC-SDID estimator

Consider a dataset with T independent cross-sections, t = 1, ..., T . Each cross-section t is

a random sample from the underlying population. There are K groups: the first Kco are the

control groups and the last Ktr = K −Kco the treated groups. Each group is observed for every

period in the sample, but individuals are not observed for each t. Thus, the individual index
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depends on the cross-section, such as i(k, t) is an individual observed at time t in the group k,

and its outcome is Yi(k,t),t. The number of individuals in each cross-section may vary over time.

Nk,t is the number of observations in group k at time t. The treatment is assigned to groups

Ktr at time t ≥ Tpost.

I apply the SDiD method on aggregated data. Yi(k,t),t is aggregated as:

Ȳk,t = 1
Nk,t

∑
i

Yi(k,t),t (1)

where Ȳk,t is the average of the outcome in group k at time t.

Those data are used to compute the weights presented in Arkhangelsky et al. (2021). The first

weights to estimate are similar to those used in synthetic control methods (Abadie et al., 2010).

They match the outcome of the treated group with a combination of the outcome in the control

groups in the pre-treatment period. They also include a group-specific shift that is accounted

for in the last step in a weighted DiD regression (equation 6). Thus, those weights only need to

make the outcomes from the treated and control groups parallel and not an exact match. Those

weights ω̂sdid are computed as:

(
ω̂0, ω̂sdid

)
= arg min

ω0∈R,ω∈Ω
ℓunit(ω0, ω) where

ℓunit(ω0, ω) =
Tpre∑
t=1

ω0 +
Kco∑
k=1

ωkȲk,t − 1
Ktr

N∑
k=Kco+1

Ȳk,t

2

+ ζ2Tpre ∥ω∥2
2 ,

Ω =
{

ω ∈ RN
+ :

Kco∑
k=1

ωk = 1, ωk = K−1
tr for all k = Kco + 1, . . . , K

}
,

(2)

The regularization parameter ζ is:

ζ = (KtrTpost)1/4 σ̂ with σ̂2 = 1
Kco(Tpre − 1)

Kco∑
k=1

Tpre−1∑
t=1

(
∆k,t − ∆

)2
,

where ∆k,t = Ȳk,(t+1) − Ȳk,t, and ∆ = 1
Kco(Tpre − 1)

Kco∑
k=1

Tpre−1∑
t=1

∆k,t.

(3)

ζ allows increasing the dispersion of the weights and ensuring their uniqueness.

The second type of weights, λ̂sdid match pretreatment periods with post-treatment periods
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for the control group. They give more weight to pre-treatment periods that are similar to

post-treatment periods. They are computed as:

(
λ̂0, λ̂sdid

)
= arg min

λ0∈R,λ∈Λ
ℓtime(λ0, λ) where

ℓtime(λ0, λ) =
Kco∑
k=1

λ0 +
Tpre∑
t=1

λtȲk,t − 1
Tpost

T∑
t=Tpre+1

Ȳk,t

2

ζ2Kco∥λ∥2,

Λ =

λ ∈ RT
+ :

Tpre∑
t=1

λt = 1, λt = T −1
post for all t = Tpre + 1, . . . , T

 .

(4)

where the regularization parameter ζ is set to ζ = 10−6 σ̂, σ̂ taking the same value than in

equation 3.

Because the number of observations in each group may be different for each group-period,

ω̂sdid
k do not assure a similar trend between the treated and control groups. I compute a third

type of weight that accounts for the different number of observations in each group-period. The

cross-sectional weights νRC
k,t are computed as:

νRC
k,t = 1

Nk,t
(5)

The weights ω̂sdid
k × νRC

k,t allow matching the outcome of the treated and control groups for

repeated cross-sectional data. For each individual i(k, t), t, the weights νRC
k,t sum to 1 in each

group-period. It allows making each period equally weighted, as it was the case when computing

the weights λ̂sdid
t on aggregated data.

Once the weights νRC
k,t are obtained, the treatment effect is estimated in a weighted regression

as:

(
τ̂ rc−sdid, µ̂, α̂, β̂

)
= arg min

τ,µ,α,β

{
N∑

i=1

T∑
t=1

(
Yi(k,t),t − µ − αk − βt − Wktτ

)2
ω̂sdid

k λ̂sdid
t νRC

k,t

}
(6)

where µ is an intercept, αk a group fixed effect and βt a time fixed effect. Wk,t is a binary

variable representing treatment exposure, and τ is the treatment effect.
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The RC-SDiD method can be adapted to include covariates (Arkhangelsky et al., 2021;

Kranz, 2022) and to staggered treatment timing (Arkhangelsky et al., 2021; Porreca, 2022).

3 Monte Carlo simulations

I use Monte Carlo simulations to study the properties of the RC-SDiD estimator compared to

the SDiD and DiD estimators. I generate the outcome using a data generating process (DGP)

similar to Xu (2017) but without covariates. The treatment being at the group level, I also

consider individual effects to be at this level. The unobservable dimension is generated using

interactive fixed effects (Bai, 2009). The outcome for observation i in group k at time t is

simulated as:

Yi(k,t),t = τWk,t + αk + βt + Λ′
kft + εi(k,t),t (7)

Only the first group is considered to be treated to keep a reasonable number of observations. Λk

is a vector of group factor loadings and ft a vector of time factors. Both are of size r such as:

Λk = (Λ1, Λ2, ..., Λr)′ and ft = (f1, f2, ..., fr)′ . The error term εi(k,t),t, time fixed effects βt, and

ft are i.i.d. N(0, 1). The values of group fixed effects αk and factor loadings Λk are drawn from

uniform distributions. For the control groups, I use U [−
√

3,
√

3] and U [
√

3−2w
√

3, 3
√

3−2w
√

3]

for the treated group, where w ∈ [0, 1]. As highlighted in Xu (2017), it allows treatment status

and group-specific effects to be correlated and to have a variance of 1 for the random variables

(when 0 ≤ w < 1).

The varying number of observations in each group-period is computed as:

Nk,t =

 Sk × BaseRC + Sk × Ek,t if t=1

Nk,t−1 + Sk × Ek,t if t>1
(8)

where Sk is a scale parameter for each group k. It allows the number of observations to differ

between each group. It is drawn from a discrete uniform distribution and I test different range for

this parameter. The draw of Sk is allowed to be correlated with group fixed effects for different

correlation levels ρ. BaseRC is the baseline number of observations in each cross-section. To
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simulate the evolution of the number of observations, the variable Ek,t is defined as:

Ek,t = N(BaseRC × 0.02,

√
BaseRC

2 ) (9)

On average, the number of observations in each cross-section will slightly grow, while keeping a

reasonable number of observations.

I draw new independent values of εi(k,t),t for each of the 1000 repetitions. The other parame-

ters are fixed, with BaseRC = 100, Sk ∈ [1, 10] is correlated with group fixed effects for ρ = 0.2,

and w = 0.2. I use 30 control groups and 30 periods where half are pre-treatment periods. The

treatment effect is set to τ = 0.3 and the number of factors and loadinds is r = 1. I compare

the performance of the RC-SDiD estimator with DiD and SDiD by computing the mean bias,

the standard deviation and the RMSE.

Mean bias SD RMSE

DiD RC-SDiD SDiD DiD RC-SDiD SDiD DiD RC-SDiD SDiD

Sk = 1 0.4468 0.0013 -0.0373 0.0320 0.0411 0.0436 0.4480 0.0411 0.0574
Sk ∈ [1, 2] 0.4472 0.0005 -0.0437 0.0231 0.0309 0.0332 0.4478 0.0308 0.0549
Sk ∈ [1, 4] 0.4409 0.0007 -0.0422 0.0162 0.0213 0.0238 0.4412 0.0213 0.0484
Sk ∈ [1, 6] 0.4350 -0.0013 -0.0446 0.0128 0.0173 0.0201 0.4352 0.0173 0.0489
Sk ∈ [1, 8] 0.4397 -0.0008 -0.0443 0.0116 0.0158 0.0186 0.4399 0.0158 0.0480
Sk ∈ [1, 10] 0.4380 0.0010 -0.0434 0.0103 0.0130 0.0166 0.4381 0.0130 0.0464
Sk ∈ [1, 15] 0.4366 0.0005 -0.0438 0.0086 0.0112 0.0145 0.4367 0.0112 0.0461
Sk ∈ [1, 20] 0.4375 0.0002 -0.0445 0.0079 0.0099 0.0129 0.4376 0.0099 0.0463

Table 1: Variation of the scale parameter

In table 1, the effect of the scale parameter on the performance of the model is studied. When

the value of this parameter increases, the number of observations in the dataset also increases.

Thus, an efficient estimate should perform better when Sk grows. The DiD estimate is the most

biased estimate because of interactive fixed effects, while the RC-SDiD is the least biased one.

Its bias is reduced when Sk grows. The SD of all models gets lower as Sk grows because of the

higher number of observations. However, the RMSE of the DiD and SDiD estimators are only

slightly affected by the increase of Sk, while the RMSE of RC-SDiD is greatly improved. Thus,

adding the third type of weight presented in section 2 significantly improves the performance of

the estimator when the number of observations differs in each cross-section.
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Mean bias SD RMSE

DiD RC-SDiD SDiD DiD RC-SDiD SDiD DiD RC-SDiD SDiD

r = 0 0.0000 -0.0002 -0.0001 0.0106 0.0128 0.0128 0.0106 0.0128 0.0128
r = 1 0.4375 0.0001 -0.0446 0.0104 0.0133 0.0163 0.4376 0.0133 0.0474
r = 2 -0.0750 0.0002 -0.0254 0.0103 0.0161 0.0263 0.0757 0.0161 0.0366
r = 3 0.9439 -0.0001 -0.0472 0.0104 0.0184 0.0269 0.9439 0.0184 0.0543
r = 4 1.6735 -0.0004 -0.0973 0.0103 0.0188 0.0289 1.6735 0.0188 0.1015

Table 2: Variation of the number of factors and loadings

Table 2 focuses on the effects of the number of factors and loadings on the performance of

the estimators. When r = 0, the DGP only includes group and time fixed effect, and the DiD

estimator performs the best across all measures. However, when r increases, it becomes the

estimator that performs the worst because it cannot account for interactive fixed effects. The

RC-SDiD estimator has the best performance across all values of r > 0. The bias, SD and

RMSE of the SDiD estimator are all highly increasing with r, while they stay moderate for the

RC-SDiD one.

In appendix A, B and C the results are reported for respectively: different values of w,

different values of ρ and for different sample sizes. In all cases, RC-SDiD performs better than

DiD and SDiD, confirming our previous results.

4 Conclusion

In this paper, I adapted the SDiD estimator (Arkhangelsky et al., 2021) for repeated cross-

sectional data, with a simple implementation that consists in adding a third type of weight

that depends on the number of observations in each pair of group-period. Using Monte Carlo

simulations, I demonstrated that the RC-SDiD estimator significantly improves the performance

of the SDiD estimator when using repeated cross-sectional data.
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Appendices

Appendix A

Table A1 presents the results for different values of w. If w = 1, treatment assignment is

random, while when it decreases toward 0, individual fixed effects and factor loadings are more

shifted, reducing the overlap between the control and treated groups. As in the previous table,

the RC-SDiD estimator performs the best in all cases. The more the treatment status is corre-

lated with individual effects, the more the SDiD and DiD estimators are biased. The RC-SDiD

estimator performs well for all values of w, and its SD and RMSE are only slightly higher for

the highest values of w compared to the lowest ones.

Mean bias SD RMSE

DiD RC-SDiD SDiD DiD RC-SDiD SDiD DiD RC-SDiD SDiD

w = 1 -0.1408 -0.0002 0.0108 0.0112 0.0129 0.0132 0.1413 0.0129 0.0170
w = 0.8 0.0039 0.0000 0.0025 0.0111 0.0123 0.0124 0.0117 0.0123 0.0126
w = 0.6 0.1486 0.0005 -0.0071 0.0103 0.0121 0.0126 0.1490 0.0121 0.0145
w = 0.4 0.2931 0.0006 -0.0201 0.0103 0.0122 0.0138 0.2933 0.0123 0.0244
w = 0.2 0.4372 0.0000 -0.0443 0.0107 0.0139 0.0169 0.4373 0.0139 0.0474
w = 0 0.5819 -0.0001 -0.0705 0.0104 0.0147 0.0204 0.5820 0.0147 0.0734

Table A1: Variation of treatment assignment

Appendix B

The results for different values of ρ are presented in table B1. This parameter controls the

correlation between the scale parameter Sk and the individual fixed effects. This parameter

has overall a pretty low effect on the simulation results. The mean bias, standard deviation

and RMSE all have similar values for the different values of ρ that are tested. The RC-SDID

estimates are on average the least biased and have the lowest RMSE. Its standard deviation

is only slightly higher than the DID one (which is highly biased) and is always lower than for

SDID estimates.
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Mean bias SD RMSE

DiD RC-SDiD SDiD DiD RC-SDiD SDiD DiD RC-SDiD SDiD

ρ = 0 0.4254 -0.0005 -0.0379 0.0120 0.0156 0.0196 0.4256 0.0156 0.0427
ρ = 0.2 0.4373 -0.0001 -0.0447 0.0100 0.0139 0.0166 0.4374 0.0139 0.0477
ρ = 0.5 0.4465 -0.0002 -0.0421 0.0159 0.0196 0.0248 0.4468 0.0196 0.0489
ρ = 0.8 0.4579 -0.0002 -0.0424 0.0126 0.0163 0.0204 0.4581 0.0163 0.0470
ρ = 1 0.4523 -0.0009 -0.0420 0.0133 0.0171 0.0209 0.4525 0.0171 0.0469

Table B1: Variation of the correlation between individual fixed effects and the scale parameter

Appendix C

The results reported in table C1 study the effects of sample size on the performance of the

three estimators. Samples are simulated with a different number of baseline observations in each

cross-section (50 vs 100) and a different number of control groups and periods (30 vs 15 for both).

For each sample size considered, RC-SDiD still performs better than DiD and SDiD estimates.

The performance of the RC-SDiD estimator is more impacted by reducing the number of time

periods than the number of groups. Reducing the number of observations in each cross-section

also slightly raise its RMSE and standard deviation. But it performs better than DiD and SDiD

in all cases.

Mean bias SD RMSE

DiD RC-SDiD SDiD DiD RC-SDiD SDiD DiD RC-SDiD SDiD

BaseRC = 100

Kco = 30, T = 30 0.4368 -0.0003 -0.0444 0.0105 0.0135 0.0165 0.4370 0.0135 0.0473
Kco = 15, T = 30 0.4542 -0.0003 -0.0691 0.0103 0.0149 0.0225 0.4543 0.0149 0.0727
Kco = 30, T = 15 -0.1763 -0.0001 -0.0408 0.0154 0.0186 0.0196 0.1770 0.0186 0.0453
Kco = 15, T = 15 -0.1818 0.0006 -0.0456 0.0158 0.0207 0.0226 0.1825 0.0207 0.0508

BaseRC = 50

Kco = 30, T = 30 0.4304 -0.0011 -0.0469 0.0143 0.0193 0.0217 0.4307 0.0194 0.0516
Kco = 15, T = 30 0.4450 0.0009 -0.0745 0.0143 0.0219 0.0305 0.4452 0.0219 0.0805
Kco = 30, T = 15 -0.1668 -0.0004 -0.0415 0.0234 0.0284 0.0288 0.1685 0.0284 0.0505
Kco = 15, T = 15 -0.1729 -0.0018 -0.0480 0.0225 0.0317 0.0339 0.1743 0.0318 0.0587

Table C1: Variation of the number of control groups, time periods, and baseline number of observation by group
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