Computer Physics Communications 185 (2014) 2724-2729

Computer Physics Communications

Contents lists available at ScienceDirect COMPUTER PHYSICS

COMMUNICATIONS

journal homepage: www.elsevier.com/locate/cpc

Instrumentino: An open-source modular Python framework for @CmssMark
controlling Arduino based experimental instruments”

Israel Joel Koenka®*, Jorge Saiz"

, Peter C. Hauser?

2 Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
b Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering - University of Alcald, Ctra. Madrid-Barcelona Km 33.6,

Alcald de Henares 28871, Madrid, Spain

ARTICLE INFO

Article history:

Received 10 April 2014
Accepted 9 June 2014
Available online 18 June 2014

Keywords:

Python

Arduino

Purpose-made instruments
Graphical user interface

ABSTRACT

Instrumentino is an open-source modular graphical user interface framework for controlling Arduino
based experimental instruments. It expands the control capability of Arduino by allowing instruments
builders to easily create a custom user interface program running on an attached personal computer. It
enables the definition of operation sequences and their automated running without user intervention.
Acquired experimental data and a usage log are automatically saved on the computer for further
processing. The use of the programming language Python also allows easy extension. Complex devices,
which are difficult to control using an Arduino, may be integrated as well by incorporating third party
application programming interfaces into the Instrumentino framework.

Program summary

Program title: Instrumentino, Controlino

Catalogue identifier: AET]_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AET]_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 3

No. of lines in distributed program, including test data, etc.: 17 097

No. of bytes in distributed program, including test data, etc.: 3425023

Distribution format: tar.gz

Programming language: Python, C.

Computer: 1386, x86-64.

Operating system: Linux, Mac OS X, Windows.

RAM: 60 MB

Classification: 16.4.

External routines: wxPython, pySerial, matplotlib, agw (Instrumentino), SoftwareSerial (Controlino)

Nature of problem:
Control and monitor purpose-made experimental instruments

Solution method:
Modular Graphical User Interface for hardware control

Running time:
Depends on the user.
© 2014 Elsevier B.V. All rights reserved.

* This paper and its associated computer program are available via the Computer

Physics Communication homepage on ScienceDirect
com/science/journal/00104655).

(http://www.sciencedirect.

* Corresponding author. Tel.: +41 61 267 10 03; fax: +41 61267 10 13.
E-mail address: yoelk@tx.technion.ac.il (1. Koenka).

http://dx.doi.org/10.1016/j.cpc.2014.06.007
0010-4655/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2014.06.007
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.06.007&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:yoelk@tx.technion.ac.il
http://dx.doi.org/10.1016/j.cpc.2014.06.007

IJ. Koenka et al. / Computer Physics Communications 185 (2014) 2724-2729 2725

1. Introduction

In the process of scientific research, many laboratories around
the world face the need to build their own purpose-made exper-
imental systems. Indeed, this is an inherent feature of scientific
research, in which new and unknown phenomena require new ex-
perimental set-ups. While some instruments are too complicated
to be developed in-house and require professional assistance and
ready-made tools from industry, many are simple enough to be
realized with limited engineering capabilities available within re-
search groups and from university support staff. Inrecent years, the
scientific community has discovered the open-source electronics
platform “Arduino” for monitoring and controlling experimental
hardware [1,2]. An Arduino consists of a microcontroller located
on a small printed circuit board (PCB) which is fitted with sockets
to allow easy connection of external devices to digital and analog
input and output (I/O) pins. The success of this particular hardware
package stems from the dedicated integrated development envi-
ronment (IDE), running on a personal computer (PC) under Win-
dows, Mac OS X or Linux, which was designed for the non-expert
user and integrates and significantly simplifies the different steps
of editing, compiling, and uploading software to the microcon-
troller. An Arduino can be connected to a separate PCB or a bread-
board equipped with interface circuitry to adapt the signals to
different components of an experimental system, and thus gain
control and monitor abilities. As an open-source project, the Ar-
duino ecosystem offers a significantly cheaper alternative to other
hardware control solutions, such as LabVIEW (National Instru-
ments, Austin TX, USA); Arduino boards are available for as little
as about 108.

The popularity of Arduino controllers took off with hobby
projects such as wall-avoiding robots and drones [3,4], 3D print-
ers [5], musical instruments [6,7], cellular phones [8], and scientific
applications were not late to follow. To date, Arduino controllers
have been reported to control various scientific experimental set-
ups. Xoscillo [9], for example, is an Arduino-based oscilloscope and
logical analyzer. Do Lago and da Silva [10,11] used an Arduino to
control their capacitively coupled contactless conductivity detec-
tor (C*D) for capillary electrophoresis (CE) and high performance
liquid chromatography (HPLC). Anzalone et al. [12] reported on
an Arduino controlled low-cost colorimeter. Kamogawa et al. [13]
have used Arduino to control valves in a flow analysis system. Sev-
eral Arduino based portable CE instruments were built and suc-
cessfully used to analyze various samples [14-16]. Several research
groups have used the Arduino to monitor ambient conditions such
as temperature, humidity and radiation [17-26], as well as pres-
sure and force [19,27-30]. Indeed, many detectors and actuators
can be controlled using an Arduino, the possibilities are endless.

The Arduino tool-set provides all the bits and bytes to set up
physical control of hardware components. However, it provides
only a limited way to interactively control them and there is much
room to improve in terms of user interface. The most common and
straightforward way to control an Arduino based system is to use
the existing Universal Serial Bus (USB), which also powers the Ar-
duino, to exchange information between the Arduino and the PC
connected to it. This is easily done using the Arduino Serial library
and any terminal program on the PC side, but provides only basic
capabilities (textual commands and lack of automation and data
acquisition). A more sophisticated approach is to write a Graphical
User Interface (GUI) that runs on the PC and communicates with
the Arduino. Several examples of commercial and free GUIs, built to
operate Arduino controlled setups, have been reported. For exam-
ple, it is possible to create a MATLAB (MathWorks, Natick MA, USA)
based GUI for Arduino [31] or to use the inherent GUI abilities of
LabVIEW [32] to control an Arduino. Both of these approaches can
produce powerful and customized GUISs for experiments, which are

stand-alone or a part of a more complicated control mechanism.
Powerful as they are, a clear disadvantage of these approaches is
that they require the purchase of expensive commercial products.
Open source alternatives exist as well. For example, DueGUI [33],
offers Arduino GUI libraries for direct connection to a touch screen,
instead of an external PC. Another example is Guino [34], which
employs a fixed GUI environment on a PC, which receives com-
mands from an Arduino. Both of these packages allow the user to
create custom GUI with direct control and monitoring capabilities.
The problem is that the GUI customization is done in the Arduino
sketch and the Arduino microcontrollers have fairly limited re-
sources in terms of memory and processing power. Moreover, such
approaches do not easily allow the interaction with other hardware
directly connected to the PC, in order to control more complicated
instrumentation. A better approach would be to run a small slave
program on the Arduino, and control it via a custom-made GUI on a
PC. Such slave programs are available [35,36], yet a fully customiz-
able GUI program is still missing.

In this work we present Instrumentino, an open-source mod-
ular GUI framework, written in Python, to control and monitor
Arduino based experimental systems. It communicates with a pro-
gram running on the Arduino called Controlino (a sketch in the Ar-
duino world), via a textual master/slave serial protocol (see next
sections). One of the advantages is that this sketch is constant
between projects and serves only as a mediator between Instru-
mentino on the PC and the physical I/O pins. All of the GUI imple-
mentation is done on the PC, and the effort of programming an
Arduino is replaced by writing a system description file in Python.

2. Overview

The information flow in an Instrumentino controlled experi-
mental system is depicted in Fig. 1. The I/O pins of an Arduino in-
terface different hardware parts via some glue circuitry to properly
convert electrical signals, voltage and power levels. The Arduino
board is connected via a USB to a PC which is running Instrumentino
and provides the GUI. Connection to more complex hardware parts
can be made via another USB port of the PC (or a legacy interface
such as the RS232, a parallel port etc.). These will be controlled by
their matching Application Programming Interfaces (APIs), which
in turn, are governed by the Instrumentino software.

To clarify, a simple example is given in Fig. 2. It consists of an
electronic 0-100 psi pressure controller (Parker-Hannifin, Cleve-
land OH, USA), which is connected to Arduino, and a 3-way valve
(LabSmith, Livermore CA, USA), controlled by a dedicated LabSmith
controller. The pressure is set with an analog voltage created using
the pulse width modulation (PWM) Arduino output pin, and it is
monitored with an analog to digital converter (ADC) input channel.
The valve is operated using a LabSmith API, integrated into Instru-
mentino.

3. The Controlino sketch

The Controlino sketch (controlino.ino, see extra material) pro-
vides a simple way to control and monitor an Arduino board via
the USB cable. It implements the slave side of a textual master/slave
protocol (described below), over a 115200 bps serial connection.
On startup, the sketch initializes and begins listening to the serial
port for incoming commands. Each command is an ASCII string,
terminated by a carriage return (CR) character (ASCII code: 0x0D).
Each command starts with a word (set, read, etc.), followed by a
few parameters. The self-explanatory nature of the commands en-
ables a user to directly control the Arduino using any terminal pro-
gram for debugging purposes. When a CR character is received,
Controlino parses the received string and acts upon it. When the ex-
ecution of a command is finished, it replies with a “done!” string,
preceded by other relevant data.

2726

Table 1

IJ. Koenka et al. / Computer Physics Communications 185 (2014) 2724-2729

The available commands in the Controlino sketch. Arguments are given in parenthesis with possible options separated by vertical lines.

set [pin number] [in\out]

Set a digital pin mode to input or output

reset

Set all digital pins to input mode

read [pin1] [pin2]...

Read the values of a list of pins. Pins are given as “A1” or “D1” for analog and digital pins respectively

write [pin number] [digi\anal] [value]

Write a value to a pin (digital or PWM).

SetPwmFreq [pin number] [divider]

Change the PWM frequency of a pin.

softSerConnect [rx pin] [tx pin] [baudrate] [port number]

Initiates a software serial port using a tx pin and an rx pin that enables external interrupts.

hardSerConnect [baudrate] [port]

Initiates a hardware serial connection.

serSend [hard\soft] [port number]

Send a NULL (0x00) terminated string to a serial port.

serReceive [hard\soft] [port number]

Read the RX buffer of a serial port.

PC Arduino Glue Logic /
] Breadboard
3£glny P Instrumentino Controlino
Keyboard Electrical
usB Mouse USB |j€ || USB I/0 Pins ||| Components
Screen
Arduino controlled <>
API controlled Hardware €[Sockets
Hardware
<P
|

Fig. 1. Data flow in a purpose-made experimental system, using Instrumentino.

(B) Open to atmosphere |

Data
Cables

3-way

ntainer
Valve B

(A) Pressure controller

Fig. 2. The hardware components used in the example instrument, overlaid by a
corresponding schematic representation.

3.1. The Controlino commands list

The list of available commands implemented in the Controlino
sketch is shown in Table 1.

Changing the PWM frequency should be done with caution, as
it may interfere with other timing related Arduino functions. The
number of hardware serial ports is board dependent and up to 4
software serial ports are supported. The Controlino sketch is board
dependent and different binary files are needed for each type of
Arduino board. For now, Arduino boards based on the ATmega328
are supported, as well as the Arduino Mega. Addition of other

boards will require adding board specific settings to the sketch
(controlino.ino).

4. The Instrumentino package

The Instrumentino package provides the front-end for commu-
nication with the Controlino sketch and acts as the master of the
aforementioned communication protocol. It allows the user to di-
rectly control the desired experimental parameters (such as pres-
sure, and temperature) without the need to be aware of physical
control mechanisms (Arduino pins, voltage levels, etc.). The Instru-
mentino framework enables experimenters and system builders to
issue user defined commands and complex running sequences to
their system, visually monitor system parameters and automati-
cally acquire experimental data for later analysis, all while requir-
ing minimal programming effort. Moreover, Instrumentino is built
in such a way that allows the concurrent interaction with several
hardware controllers, not necessarily only from the Arduino fam-
ily. This is very useful when some parts of an experimental sys-
tem are not readily interfaced to an Arduino. Often manufacturers
provide devices, which are designed to be connected directly to a
PC (e.g. via USB) and communicate via an APL In such cases it is
much more straightforward to make use of existing code, rather
than to attempt to rewrite it for the Arduino platform. Furthermore
the hardware and software details of commercial devices may be
proprietary and not available. The Instrumentino framework is de-
signed to cope with such situations by using available APIs to ad-
dress pieces of hardware, thus creating a single control program
for the entire system.

IJ. Koenka et al. / Computer Physics Communications 185 (2014) 2724-2729 2727

2 Acwn Parameters

1 |Empty Contaner =
g Troe himis.s) 0:20.00
VO A® dosed O ||, (FContainer i) sl 0o:c0:20.000
P (sl =
—Trree—— R W P e r
3 " 2
P el o
FiComane =] T bmsesk oo:corze o0
4 x
P lpsl): 50.000
Empty Contaner »

! !

Direct control Methods &
& monitor of Sequences
Components

\

Commands | Srdls

100

'\W Commands &
Signals log | |g
o ©3
;
A A
FM\'\.[
20
\rywsannas °
17:38 17:39 17:40

‘00 ++ BE

Fig. 3. Screenshot of the Instrumentino application created for container.py. The pressure controller and the valve of the example system can be seen in the components
panel. The signal log panel shows how the pressure changed while running the list of actions in the run-control panel.

Python was chosen as programming language for Instrumentino
because of its ease of use, variety of existing code packages and
because it is open source and available for the three operating
systems for which the Arduino platform is available. The user
interface toolkit chosen for Instrumentino was wxPython, which is
based on the popular cross-platform wxWidgets library. It is easy to
use and gives a native look on each machine (hence the name wx:
Windows & 0S X).

To work with Instrumentino, the user only needs to provide a
system description file (written in Python), which lists the system
components and their connections to the Arduino (e.g. the Parker
pressure controller, connected to the Arduino PWM pin 6 for
setting the pressure). It also lets the user define meaningful actions
for the system, which can be later executed via the GUI (e.g. set the
pressure to X psi, wait Y seconds and then turn it off, X & Y being
parameters). By listing the components and the actions of a system,
Instrumentino is provided with all information required to create
the specific GUI.

4.1. The system description file structure

The description file is logically divided into the following sec-
tions (an example is given in the supplementary material (see
Appendix A), container.py):

e Imports
As in any Python module, import statements declare classes and
objects defined in other source files. By importing them, it is
possible to reference them in the module.

e Constants
It is good coding practice to assign meaningful names to con-
stants relevant to the system, such as Arduino pin assignments.

e Components
The instantiation of objects for each component in the experi-
mental system. Each system component is described in the code
by a Python class, which exists in the Instrumentino package.
Hardware components currently supported include high volt-
age power supplies, pressure and mass flow controllers, syringe
pumps, two-, three- and multi-position valves, and data record-
ing systems.

e Actions
The declaration of basic actions to be performed by the system.
Each action is defined as a class, which inherits from the Python
class Instrumentino.action.SysAction, and needs to implement a
method named Command(). This method will be called when
the action is to be executed.

o System definition
Wrapping up all of the above and some more information (such
as the system name and description) in a class, which inherits
from the Instrumentino.Instrument class.

e Program run
The commands to be executed when this Python file runs. To
run the application one needs simply to instantiate the System
class defined in the last section. Typing “python container.py”
in a terminal will start the application.

4.2. The graphical user interface

The GUI, described by container.py, can be seen in Fig. 3. It
features three panels: components, run-control and log, appearing
from left to right. The components panel allows the user to directly
control and monitor the system components. Each component
is represented by a sub-panel and is created according to the
components list in the system description file. A component panel
is composed of its associated digital and analog variables. A digi-
tal variable in a system might be the different positions of a valve
(e.g. A, Bor closed for the LabSmith valve in the example) or a trig-
ger signal (on or off). A digital variable is represented by a set of
radio buttons with the possible options. An analog variable might
be a measurement of some physical quantity (e.g. pressure) and is
represented by a text box for reading the value and an optional text
box for setting it, within the allowed range. The components panel
also features a large stop button, to be used in case an experiment
needs to be shut off abruptly.

The run-control panel has two modes. The first operates with
methods. A method is a successive list of actions, from the actions
pool defined in the description file. It conceptually describes a way
to achieve a specific experimental goal. The action in each line in
the list is picked using a combo-box, and its relevant parameters
can be set. The user can then run the method using the run button
or save the newly defined method as a .mtd file using the File
menu. The second mode manages sequences, in which the user can
create a sequence, composed of previously saved methods. Each
method can be run a number of consecutive times, so a whole
day of experiments or a long-term monitoring experiment can be
planned and run automatically. A defined sequence can also be
saved, as a .seq file, using the File menu.

The log panel to the right has two modes as well. One is the
command-log, which logs each run of a method or a sequence. The

2728 IJ. Koenka et al. / Computer Physics Communications 185 (2014) 2724-2729

contents of this list are automatically saved as a .txt file using the
date and time as the file name. It acts as a lab journal and can be ref-
erenced later to report on the exact experimental conditions. An-
other mode is the signal-log, an interactive timeline graph, which
shows the physical parameters measured by the system. Each pa-
rameter has its own y axis and a different color on the graph. This
data is automatically saved as well as a .csv file (comma separated
values) using the same file name as the command log. The file can be
later opened in spreadsheet programs such as Excel (Microsoft Of-
fice) or the open source Calc (LibreOffice) for further data analysis.

4.3. Program workflow

When the application starts, the panels are disabled. It is only
possible to create methods and sequences until all the required
controllers are connected, using the Comm menu. Once commu-
nication is established, system variables (pressure and valve posi-
tion in the example) are periodically read and displayed in the left
panel, and in the signal log panel. The user can then run a method
and observe the signal log. The screenshot in Fig. 3 was taken after
a method had been created and run (see center panel). It set the
valve to port A to fill the container with gas and set the pressure
inside to 30, 60 and 90 psi in steps of 20 s. Afterwards it opened
the container by setting the valve to port B. The resulting pressure
readings can be seen in the log panel.

The Instrumentino code package is available as a Python egg
which encapsulates both the Python code and the resource files
needed for operation. It can be downloaded from the Computer
Physics Communications Program Library (http://cpc.cs.qub.ac.
uk/summaries/AET]_v1_0.html), PyPI repository (https://pypi.
python.org/pypi/instrumentino) or Github (https://github.com/
yoelk/Instrumentino). Users of Instrumentino will need to install
the egg file on their computer, create a Python module to describe
their experimental set-up and run it (similar to container.py). It is
released under the GPLv3 license, to ensure its open-source nature
in the future.

5. Conclusions

In research, the construction of purpose made experimental
systems is frequently necessary. The introduction of open source
electronics, in particular the Arduino platform, is an enabling fac-
tor, in providing researchers a tool to build relatively complex sys-
tems, which were previously only possible with significantly more
effort or were beyond reach. The Instrumentino/Controlino software
package was developed to streamline the development of the con-
trol software for such systems and to allow full automation in or-
der to improve performance or to enable unattended operation.
It was built in such a way that only a minimal programming ef-
fort is required, greatly simplifying the task of instrument control
and making it accessible for less experienced programmers. Since
its development, Instrumentino has been used extensively in our
research groups, saving a significant amount of time and effort,
and we believe it can assist other researchers as well in achiev-
ing their goals. As a free open source project, users are welcome to
contribute and extend Instrumentino to support more kinds of con-
trollers and hardware components or to add features they find use-
ful. There is much potential to grow and the use of Instrumentino
is, of course, not limited to scientific purposes.

Acknowledgment

The authors are grateful for financial support by the Swiss
National Science Foundation through grants 200020-137676 and
200020-149068.

Conflicts of interest
The authors have declared no conflict of interest.

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2014.06.007.

References

[1] J.M. Pearce, Building research equipment with free, open-source hardware,
Science 337 (2012) 1303.
[2] A. D’Ausilio, Arduino: a low-cost multipurpose lab equipment, Behav. Res.
Methods 44 (2012) 305.
[3] Brandon121233, Wall avoiding Robot, http://www.instructables.com/id/
Make-a-wall-avoiding-Robot!/. Retrieved April 2014.
[4] APM, Ardupilot—official website, http://ardupilot.com/. Retrieved April 2014.
[5] A.Bowyer, RepRap—official website, http://reprap.org/wiki/RepRap. Retrieved
April 2014.
[6] JJH. Owen Vallis, Arduinome—official website, http://flipmu.com/work/
arduinome/. Retrieved.
[7] Kylemcdonald, Arduino based guitar pedal, http://www.instructables.com/id/
Lo-fi-Arduino-Guitar-Pedal/. Retrieved April 2014.
[8] Xiaobo, ArduinoPhone, http://www.instructables.com/id/ArduinoPhone/.
Retrieved April 2014.
[9] Aguaviva, Xoscillo, http://code.google.com/p/xoscillo/. Retrieved April 2014.
[10] J.A. Fracassi da Silva, C.L. do Lago, An oscillometric detector for capillary
electrophoresis, Anal. Chem. 70 (1998) 4339 (1998/10/01).
[11] KJ.M.F. Claudimir Lucio do Lago, OpenC4D—official website, https://sites.
google.com/site/openc4d/home. Retrieved April 2014.
[12] G.C. Anzalone, A.G. Glover,].M. Pearce, Open-source colorimeter, Sensors 13
(2013)5338.
[13] M.Y. Kamogawa,].C. Miranda, Use of “arduino” open source hardware for
solenoid device actuation in flow analysis systems, Quimica Nova 36 (2013)

1232.

[14] T.D. Mali, et al., Portable capillary electrophoresis instrument with automated
injector and contactless conductivity detection, Anal. Chem. 85 (2013) 2333.
2013/02/19.

[15] J. S&iz, T.D. Mai, P.C. Hauser, C. Garcia-Ruiz, Determination of nitrogen
mustard degradation products in water samples using a portable capillary
electrophoresis instrument, Electrophoresis 34 (2013) 2078.

[16] J. Saiz, et al., Rapid determination of scopolamine in evidence of recreational
and predatory use, Science & Justice 53 (2013) 409.

[17] G. Gasparesc, Development of a low-cost system for temperature monitoring,
in: 2013 36th International Conference on Telecommunications and Signal
Processing, TSP, 2013, p. 340.

[18] N. Barroca, et al., Wireless sensor networks for temperature and humidity
monitoring within concrete structures, Constr. Build. Mater. 40 (2013) 1156.

[19] M.R. Dehmlow, Asme, Affordable universal solar tracker, in: Proceedings of
the Asme 5th International Conference on Energy Sustainability 2011, Pts a-C,
2012, pp. 653-661.

[20] A. Abdullah, et al. Development of wireless sensor network for monitoring
global warming, in: 2012 International Conference on Advanced Computer
Science and Information Systems, 2012, pp. 107-111.

[21] S.-h. Sun, Y.-s. Jin, W.-j. Zhang, Asme, Design and simulation of remote
temperature monitor and control system based on embedded web server,
in: 2011 International Conference on Instrumentation, Measurement, Circuits
and Systems, 2011, pp. 297-300.

[22] M.G. Rodriguez, et al. Wireless sensor network for data-center environmental
monitoring, in: 2011 Fifth International Conference on Sensing Technology,
ICST 2011, 2011, p. 533.

[23] A.H. Kioumars, T. Ligiong, Wireless network for health monitoring: heart rate
and temperature sensor, in: 2011 Fifth International Conference on Sensing
Technology, ICST 2011, 2011, p. 362.

[24]].M. Gomes, P.M. Ferreira, A.E. Ruano, Implementation of an intelligent
sensor for measurement and prediction of solar radiation and atmospheric
temperature, in: 2011 IEEE 7th International Symposium on Intelligent Signal
Processing, WISP 2011, 2011, 6 pp.

[25] EJ. Garcia-Diego, J.J. Pascual, F. Marco-Jimenez, Technical note: design of a
large variable temperature chamber for heat stress studies in rabbits, World
Rabbit Sci. 19 (2011) 225.

[26] R. Gomaa, I. Adly, K. Sharshar, A. Safwat, H. Ragai, ZigBee wireless sensor
network for radiation monitoring at nuclear facilities, in: Proceedings of 2013
6th Joint IFIP Wireless and Mobile Networking Conference, WMNC 2013, 2013,
4 pp.

[27] M. Stalin, C.L. Bennett, in: R. Jung, A.J. McGoron,]. Riera (Eds.), 29th Southern
Biomedical Engineering Conference, 2013, pp. 137-138.

[28] F.Grenez, M. Viqueira Villarejo, B. Garcia Zapirain, A. Mendez Zorrilla, Wireless
prototype based on pressure and bending sensors for measuring gate quality,
Sensors (Basel, Switzerland) 13 (2013) 9679.

http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AETJ_v1_0.html
https://pypi.python.org/pypi/instrumentino
https://pypi.python.org/pypi/instrumentino
https://pypi.python.org/pypi/instrumentino
https://pypi.python.org/pypi/instrumentino
https://pypi.python.org/pypi/instrumentino
https://pypi.python.org/pypi/instrumentino
https://github.com/yoelk/Instrumentino
https://github.com/yoelk/Instrumentino
https://github.com/yoelk/Instrumentino
https://github.com/yoelk/Instrumentino
https://github.com/yoelk/Instrumentino
http://dx.doi.org/10.1016/j.cpc.2014.06.007
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref1
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref2
http://www.instructables.com/id/Make-a-wall-avoiding-Robot!/
http://www.instructables.com/id/Make-a-wall-avoiding-Robot!/
http://www.instructables.com/id/Make-a-wall-avoiding-Robot!/
http://www.instructables.com/id/Make-a-wall-avoiding-Robot!/
http://www.instructables.com/id/Make-a-wall-avoiding-Robot!/
http://www.instructables.com/id/Make-a-wall-avoiding-Robot!/
http://ardupilot.com/
http://reprap.org/wiki/RepRap
http://flipmu.com/work/arduinome/
http://flipmu.com/work/arduinome/
http://flipmu.com/work/arduinome/
http://flipmu.com/work/arduinome/
http://flipmu.com/work/arduinome/
http://www.instructables.com/id/Lo-fi-Arduino-Guitar-Pedal/
http://www.instructables.com/id/Lo-fi-Arduino-Guitar-Pedal/
http://www.instructables.com/id/Lo-fi-Arduino-Guitar-Pedal/
http://www.instructables.com/id/Lo-fi-Arduino-Guitar-Pedal/
http://www.instructables.com/id/Lo-fi-Arduino-Guitar-Pedal/
http://www.instructables.com/id/Lo-fi-Arduino-Guitar-Pedal/
http://www.instructables.com/id/ArduinoPhone/
http://code.google.com/p/xoscillo/
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref10
https://sites.google.com/site/openc4d/home
https://sites.google.com/site/openc4d/home
https://sites.google.com/site/openc4d/home
https://sites.google.com/site/openc4d/home
https://sites.google.com/site/openc4d/home
https://sites.google.com/site/openc4d/home
https://sites.google.com/site/openc4d/home
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref12
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref13
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref14
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref15
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref16
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref18
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref25
http://refhub.elsevier.com/S0010-4655(14)00211-2/sbref28

IJ. Koenka et al. / Computer Physics Communications 185 (2014) 2724-2729 2729

[29] L. Russell, A.L. Steele, R. Goubran, leee, in: 2012 leee International Instrumen-
tation and Measurement Technology Conference, 2012, pp. 2695-2699.

[30] R.P. Rush, Acm, sensation augmentation to relieve pressure sore formation
in wheelchair users, in: Assets’09: Proceedings of the 11th International Acm
Sigaccess Conference on Computers and Accessibility, 2009, pp. 275-276.

[31] Rmagtibay, Arduino I/0-Matlab basic tutorial, http://www.instructables.com/
id/Arduino-10-Matlab-basic-tutorial/. Retrieved April 2014.

[32] National Instruments, NI LabVIEW Interface for Arduino Toolkit http://sine.ni.
com/nips/cds/view/p/lang/en/nid/209835. Retrieved April 2014.

[33] Cowasaki, DueGUI, http://www.cowasaki.co.uk/DueGUI/DueGUI_0_13.pdf.
Retrieved April 2014.

[34] Madshobye, Guino: Dashboard for your Arduino, http://www.instructables.
com/id/Guino-Dashboard-for-your-Arduino/. Retrieved April 2014.

[35] Arduino, Arduino and Python, http://playground.arduino.cc/interfacing/
python-.UxYOTI7hO2y. Retrieved April 2014.

[36] Intructable, Control your arduino from your PC with the Qt Gui,
http://www.instructables.com/id/Control-your-arduino-from-your-PC-with-
the-Qt-Gui/. Retrieved April 2014.

http://www.instructables.com/id/Arduino-IO-Matlab-basic-tutorial/
http://www.instructables.com/id/Arduino-IO-Matlab-basic-tutorial/
http://www.instructables.com/id/Arduino-IO-Matlab-basic-tutorial/
http://www.instructables.com/id/Arduino-IO-Matlab-basic-tutorial/
http://www.instructables.com/id/Arduino-IO-Matlab-basic-tutorial/
http://www.instructables.com/id/Arduino-IO-Matlab-basic-tutorial/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209835
http://www.cowasaki.co.uk/DueGUI/DueGUI_0_13.pdf
http://www.instructables.com/id/Guino-Dashboard-for-your-Arduino/
http://www.instructables.com/id/Guino-Dashboard-for-your-Arduino/
http://www.instructables.com/id/Guino-Dashboard-for-your-Arduino/
http://www.instructables.com/id/Guino-Dashboard-for-your-Arduino/
http://www.instructables.com/id/Guino-Dashboard-for-your-Arduino/
http://www.instructables.com/id/Guino-Dashboard-for-your-Arduino/
http://playground.arduino.cc/interfacing/python-.UxY0Tl7hO2y
http://playground.arduino.cc/interfacing/python-.UxY0Tl7hO2y
http://playground.arduino.cc/interfacing/python-.UxY0Tl7hO2y
http://playground.arduino.cc/interfacing/python-.UxY0Tl7hO2y
http://playground.arduino.cc/interfacing/python-.UxY0Tl7hO2y
http://playground.arduino.cc/interfacing/python-.UxY0Tl7hO2y
http://playground.arduino.cc/interfacing/python-.UxY0Tl7hO2y
http://www.instructables.com/id/Control-your-arduino-from-your-PC-with-the-Qt-Gui/
http://www.instructables.com/id/Control-your-arduino-from-your-PC-with-the-Qt-Gui/
http://www.instructables.com/id/Control-your-arduino-from-your-PC-with-the-Qt-Gui/

	Instrumentino: An open-source modular Python framework for controlling Arduino based experimental instruments
	Introduction
	Overview
	The Controlino sketch
	The Controlino commands list

	The Instrumentino package
	The system description file structure
	The graphical user interface
	Program workflow

	Conclusions
	Acknowledgment
	Supplementary material
	References

