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Applying Post-Prediction Inference to Sports Analysis

1. Introduction

For our project, my group decided to use our domain methodology research of post-prediction inference
(postpi) and apply it to sports analysis based on the outcomes of past NFL games. We designed a model that can
predict the outcome of a football game, such as which team will win and what the margin of their victory will
be, and then corrected the statistical inference for selected key features. The main goals of our investigation is
discerning which features most strongly determine the victor of a football game, and subsequently which
features provide the most significant information to predict the margin of that victory. For example, does the
home field advantage increase a team’s chance of winning by 7 points? Is the comparative offense to defense
rating the most critical factor in securing a win? Does temperature on gameday play a statistically significant
part in influencing margin of victory? These are just some of the questions we have brought up to seek an
answer during the course of our research, and by conducting this project we are attempting to revolutionize the
way NFL analytics are conducted via a more accurate statistical method of inference, postpi.

2. Data Collection

To begin a data science project, one requires data. Surprisingly so, the process of data collection was
quite a bit more grueling than we had hoped. NFL datasets themselves and websites dedicated to NFL data are
abundant yet almost none of them were helpful. We began our data search by hoping we would easily find one
or two websites with all of the information we wanted neatly wrapped in uniform csv files just waiting to be
merged together, however, much to our disappointment this was not the case at all. One website might have all
of the offensive ratings for NFL teams from 2000-2021 yet lack any of the defensive ratings (which are just as
important), and another website might have the complimentary defensive ratings but only from 1993-2010, and
also set up in a completely unique format so as to make the prospect of data merging nightmarish at best. We
had hoped that maybe such a scenario would only be true for a couple of the features we wanted, but as it were
to get the minimum features we needed with sufficient data points to allow for any reasonable machine learning
model to be accurate we were looking at having to merge 10+ websites’ csv files all formatted uniquely and
encompassing different year ranges. Our stroke of luck came when Sujeet discovered the website

https://stathead.com/football/, which contains all of the features we needed, for all of the years that we needed,

and all formatted in a very similar way. The catch was that we had to pay $8 a month each to get access to the
csv files for the target features. Additionally, we only had access to 100 rows of data, in csv text form, at a time

for each individual game statistic (you had to click next at the bottom of the page to go on to rows 200-299, etc)


https://stathead.com/football/
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and considering that there were 5,632 NFL games played from 2000 to 2021, and further considering we had 10

target features, this took a lot of tedious manual labor. The data only represented 5,600 games, however the
number of observations was double this due to the fact that a game involved two teams and there are two entries
for each individual game. This is an important aspect of our data because otherwise any model that we create
down the line would bias our Spread predictions, because the Spread column would either only contain all
positive values or negative values. To avoid this, we included all the observations in our dataset, which also
further increased the time it required to collect all the data.

3. Data Cleaning & Exploratory Data Analysis

After we divided up the features we determined could explain the variance in NFL game spread, we
pushed our combined data to the Github repository, and we set out on our next step of a data science project:
Exploratory Data Analysis. Merging the datasets together wasn’t as challenging as it could have been simply
because all of our data came from the same place, and all of the features shared multiple columns. The
combined dataset consisted of 64 total columns ranging from the year the game took place in, to the number of
passes completed in the game, to number of sacks allowed in the game, etc. Many of the columns were
redundant, like having the number of passes attempted, the number of passes completed, and then the percent of
passes completed (making the previous two unnecessary). In several instances columns were included for the
winning teams but not for the opponents (an analysis on the importance of rushing yards must include how
many yards both the winner and loser ran for). Additionally, several columns were present that were objectively
not helpful and could be removed to help declutter the dataframe, like the “year” column while also having the
“date” column, which included year. Some other columns also needed to be transformed because they weren’t
in a format that was machine learning ready. For example, our dataset contained one column called “Result”
which contained the result of each game in the form of a string like “W 12-9”. This represents the result of each
observation in the following format: “TmOutcome TmScore - OppScore”. “Tm” in this dataset represents the
s out NFL team that has it’s game statistics
listed first, and “Opp” represents the
NFL team that has it’s game statistics
listed after. This is why our dataset has
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because it contained an “@” symbol in the data when the “Tm” was at the “Opp” stadium, meaning it was a

home game for the “Opp”. To fix this, we changed the column to a binary column representing when “Tm” was

at home for the given game.

With a refined dataframe in hand we moved on to dealing with null values. A heatmap of null values,

figure above, allowed us to visually identify 9 columns that had between 100 and 301 null values, with

temperature having almost 2500 missing values. As 300

data points out of 11,000 is quite low, we opted to

impute the missing values by randomly sampling from the respective columns. For the temperature column, we

imputed the remaining null values again based on randomly sampling from the rest of the data points in the

temperature column. Applying our methods for dealing
with null values removed we had a final count of 11,148
data points.

Once addressing the missing values in our
dataset, the last thing we did to preprocess our data was
remove any outliers in our Spread column. To do this,
we used a common rule of thumb which is the 1.5*IQR

rule. This helped remove some bias in our model as it is
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very uncommon for the spread of a game to be
something more than 35 points. This only removed
approximately 200 data points from our dataset,
therefore it won’t have a significant impact on our
analysis.

Next, we generated a blend of scatterplots based on the
remaining features in order to do an initial visual
evaluation of how the covariates relate to game spread.
Most variables don’t have a linear relationship when
compared individually with the spread, which is why
we aimed to develop a neural network that can capture
nonlinearities and interactions in the data that other
machine learning models would not be able to.
However, the QB Rating is one variable where a
reasonable positive linear relationship can be seen
individually with Spread, as shown in the scatterplots to
the left. We can see that the better a QB of a specific

team performs, the spread tends to favor that team.



Observing this, we performed a simple linear regression to predict the Spread based on how each teams’ QB
performed, while including the home/away variable to normalize the comparison.

4. Baseline Ordinary Least Squares Model

To generally view the linear relationship between different stats of match and the score spread, we build a

simple linear regression model. The summary of the baseline model is shown as below.

Coefficient | Std. Err t-stat P>|t] 0.025 0.975

Constant 0.1734 0.081 2.134 0.033 0.014 0.333
Home 0.900 0.082 11.380 0.000 0.740 1.060
Tm_QBrating 6.426 0.090 71.684 0.000 6.251 6.602
Opp_QBrating -7.085 0.084 -84.443 0.000 -7.249 -6.920
Tm_RshTD 3.771 0.082 45.710 0.000 3.609 3.933
Tm_Temperature 0.081 0.082 0.999 0.318 -0.078 0.241
Tm_PasslstD 0.226 0.091 2.489 0.013 0.048 0.404

The ordinary least square linear regression model estimates showed us that the team quarterback rating has a
strong positive linear relationship with the score difference and the home feature seems not that important. This
simple model suggests that with a standard deviation increase in QB performance, it can translate to
approximately 7 game points (equivalent of a touchdown and extra point), while explaining approximately 61%
of the variance in spread. This model is by no means a strong predictor of spread, however it helped us gain a
stronger understanding about the relationships in our data going forward. We also notice that the OLS linear
regression model did not capture a strong linear relationship with Temperature and Pass1stD with Spread. We
think that there are more of our features that we can not perfectly capture their relation to the score differences
simply by linear regression estimates. Therefore, we decided to develop an N-N model to have more accurate
predictions since it can capture the non-linear relationships and interactions in the data.

5. Multi-Laver Perceptron Neural Network Model

Since our prediction is a regression problem and our data points are all numerical values, the Multi-layer
Perceptron regressor was a good choice and the sci-kit learn package meets the requirements we need to
develop this. We definitely experienced a tough time at first when trying to find the best hyperparameter for our
Neural network model, which included the activation function, hidden layer size, number of neurons, and

number of epochs.



5.1 Feature Selection

At first, we had 34 features as input for a MLP regressor model using relu as activation function , but
unfortunately the performance was bad. Even though the training error and test error was low, the real
prediction for 2022 Super Bowl Prediction, as well as our validation set predictions, were not even close. We
collected the features of the 2022 Super Bowl match and the prediction value varied a lot with even negative
spreads which is completely opposite to the real result: Los Angeles Rams defeated the Cincinnati Bengals in
Super Bowl 2022 with the score 23-20. Our model at this phase was not robust at all, we kept getting results
like +80. +120, -34, -6 which vary from the actual +3 a lot. Before tuning hyperparameters, we did feature
selection first to improve the performance. We subtracted “Tm” stats from “Opp” stats and created a new set of
features. This brought us down to 16 features. With this reduction in features the prediction was a little more
reasonable as the real predictions ranged from -5 to +60. Additionally, the testing error (MAE) also reduced
from 6 to 4, but it was still not robust enough, so we needed to tune different hyperparameters.

5.2 Hyperparameter Tuning

Below is a table that briefly summarizes some of the hyperparameter combinations that we tried.

Experiment | Activation | Hidden-layer Neurons size Regularization | Epochs | Train Test 2022 Super
function size combination parameter loss loss Bowl Prediction
(MSE) | (MAE) | (real-spread is

3)

1 relu 5 20,20,20,20,20 0.0001 200 16.425 4.443 56.24

2 relu 5 34,34,34,34,34 0.0001 200 15454 | 4.441 2.3

3 sigmoid 4 32,64,64,128 0.001 200 16.434 | 4.338 2.8

4 sigmoid 5 16,32,64,128,256 0.001 200 16.469 | 4.387 6.3

5 sigmoid 7 32,32,64,64,128, 0.001 200 16.617 4.456 10

128,256
As you may have noticed, the sigmoid activation function is Training Loss Curve with Early Stopping
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many times each data point will be use) of the model setting is 200 since the loss curves at right showed us the

training loss stopped decreasing around 80 epochs because the validation loss started to increase at that
iteration. The validation data was set to 20% of the training data.

5.3 Test Robustness

To test the robustness of our MLP model, we tried different initial values of weight and bias by changing

the parameter of “random_state” in scikit-learn MLP regressor package.

Initialization 2 12 46 78 123 290 453 544 999 9999

Training loss | 16.643 | 16.475 | 16.770 | 16.389 | 16.275 [ 16.181 [ 16.292 | 16.483 | 16.427 | 16.626
(MSE)

Test loss 4421 | 4375 | 4398 | 4354 | 4.388 | 4.373 | 4.396 4.369 4403 | 4.389
(MAE)

Super Bowl | 2.358 | 4.886 | 9.394 | 1.952 | 6.945 | 4.464 | 3.007 3.218 3.170 | 4.975
LVI

Prediction

After trying out different initial values of weight and bias we can conclude that our model is robust since
the training error, test error, and prediction for the super bowl this year did not have large variance. In the real
world, our averaged prediction among these 10 different initializations is 4.437 which is very close to the real
value 3. It is also surprising that the prediction on real games is extremely accurate when we choose
initialization from a (400-1000).

5.4 Permutation Importance

With this final model, we started to inspect the Permutation Importances

importance of all features by performing a
permutation importance analysis on this Neural-Net
Model. This analysis measures the decrease in model
performance when shuffling an individual column.
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linear regression estimates’ results that Temperature, Pass1stD, etc has little explanation of Spread. We should
always keep in mind that permutation importances does not reflect the intrinsic predictive value of a feature by
itself but how important this feature is for this particular MLP regressor model. Although we have shown that
this model performs extremely well, we still want to do further research like correcting the statistical inference
on the relationship between the selected features and the game spread.
6. Post Prediction Inference Correction

The permutation graph shows us the relative importance for the prediction model of each covariate in
predicting the game spread, and we must apply postpi to every single feature in order to see what degree (if any)
postpi will assist in correcting statistical inference. Will it provide large corrections for our two most important
features (QBRating and RushTD)? Perhaps only the weaker features like 1stD or Sk will benefit from postpi?
There’s even the chance that no features will derive a benefit from postpi, due to any number of reasons. These
questions guided our analysis in our quest to revolutionize sports analysis.

6.1 Post Prediction Inference Definition

With a successful and sufficient prediction model now completed, it was time to begin the main focus of
our methodology of postpi, but first some background as to what postpi actually is. Post-prediction inference is
a method for providing corrected statistical inference by correcting model bias and improving variance
estimations. Statistical inference (and the reliability of the inference) refers to the theory, methods, and practice
of forming judgments about the parameters of a population and the reliability of statistical relationships,
typically on the basis of random sampling. An example to understand this in the concept of NFL sports analysis
is a hypothetical inference based on the importance of the home-field advantage. A sports analyst takes a
random sample of NFL games and finds statistically significant results that a team playing on its home turf has
around a 10-15% higher chance of winning. Because of the analyst’s strong findings, they can provide reliable
statistical inference across all NFL games (future or otherwise) that a team playing on their home turf has
around a 10-15% higher chance of winning. Another important aspect of postpi is model bias, and it refers to
the difference between average prediction and the correct observation the model is attempting to predict, high
bias is due to an under-fitted prediction model and leads to high training/testing error. Variance estimation
relates to a model’s ability to predict on testing and unseen data, high variance is due to over-fitting on training
data and leads to high test error.

6.2 Post Prediction Inference Method

With some background knowledge about postpi, it’s time to dive into its actual steps and
implementation. The first two steps are splitting the available data into train, test, and validation sets. A critical
assumption of postpi is that the training and testing sets are complete and provided with both covariates and the
observed outcome, while the validation set will solely contain covariates and no observed outcomes. The

reasoning behind this distinction sources from another assumption of postpi, that it’s used in the context that



acquiring true observations for all (or perhaps any) of the available data would be infeasible. As such, the
inference model must be prepared for downstream applications in which there are literally no observed
outcomes collected for any of the covariates. NFL season matchups are prepared long in advance with each
teams’ stats widely known, it’s impossible to collect the observations for future datasets unless you wait until
the game has passed, and thus our subject of interest meets this postpi assumption well. After the datasets are
properly set up, we fit our MLP NN prediction model on the training sets Xi covariates (ranging from
quarterback rating to penalty yards) and yi, observed game-spread outcomes, to extract a relationship between
the covariates and their outcomes. The assumptions of postpi don’t specify what type of machine learning
model/algorithm can and can’t be used as the prediction model, and to the contrary one of the greatest attributes
of postpi is that it excels easily with nearly any model from regression to potentially million parameter
algorithms such as K-Nearest Neighbors and Neural Networks. Once the prediction model is properly trained
and ready for utilization, we use the testing set’s Xi covariates to generate a set of predicted outcomes ypi equal
in size to the test’s observed outcomes set.

The critical inquiry that postpi is designed to address is how to reduce incorrect model bias and variance
so that downstream statistical inference provides more accurate results. Attempting to accomplish this by
directly editing the prediction model itself is more achievable when using a simple regression model, but doing
so on a high level model like our Neural Network would be nearly impossible. Postpi is useful because it
doesn’t operate on the prediction model, an essential part of its inference correction is based on a
low-dimensional relationship model (in our case linear regression) generated between the testing set’s observed
and predicted outcomes. In the validation set, the prediction model generates a set of predicted outcomes ypi on
the validation set’s covariate sample. A refined set of validation outcomes with reduced bias and better variance
estimation is produced by plugging the predicted outcomes into the relationship model to reverse engineer
“observed outcomes”, or basically predicted outcomes that are much more similar to what actual true outcomes
would look like. A potential limitation of postpi is that a critical factor in its successful implementation depends
on the caliber of the relationship model between the testing tests yi observed outcomes and ypi predicted
outcomes, yet this wasn’t an issue with our data.

The relationship model provides a solid means of inference correction, but another and more advanced
method of correction is the bootstrap based approach, and in our code the bootstrap function runs 100 times for
each postpi iteration. This approach takes place after the relationship model has been implemented, and then the
relationship model, the validation data featuring only the covariate of interest, and the uncorrected predicted
outcomes, are passed into the bootstrap function. Random sample with replacement is taken from the validation
data (covariate and predictions) equal in size to the validation data. Corrected predictions are generated using
the relationship model and we produce an OLS regression model as our inference model. From this inference

model, we extract the beta estimate, the standard error of the beta estimate, t-statistic, and the p-value. For



parametric bootstrap we return to the postpi function the median of the 100 beta estimates, the median of the
100 beta estimate standard errors, and the median of the p-value of the beta estimators. In the case of
non-parametric bootstrap, the median of the beta estimates and the median of the p-values are also returned,
however the standard error is calculated as the standard deviation of the 100 beta estimate standard errors. The
t-statistic is calculated back in the postpi function by dividing the aggregated beta estimate with the standard
error, and the final values for parametric and non-parametric bootstrap-based corrected beta estimates, standard
errors, p-values, and t-statistics, are all appended to respective lists at the conclusion of each iteration of postpi.

6.3 Post Prediction Inference Application

Our findings illustrate
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strongly emphasized the results we found across the board from all covariates in our dataset.

In the figure above, the left plot shows QBRating versus the observed game spread, and the plot to the
right shows QBRating versus the predicted game spread. Something that instantly strikes out is how the
predicted outcomes have lower variance and hug closer to the red line when compared to the observed
outcomes. Another point of interest is that the predicted graph’s overall shape and linear angle is highly similar
to the observed outcomes’ graph. The following figures are based on the test set’s data.
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baseline model. We previously mentioned that the ability to easily model the relationship between predicted and

observed outcomes despite the complexity of the prediction model was an essential component of postpi, and
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we can see that both our neural network and linear regression
highlight a strong linear relationship between their respective
observed and predicted outcomes. Another striking detail is that our
prediction model has a far stronger relationship between the
observed and predicted values than the baseline model does, simply
due to the nature of the models themselves. Having concluded that a
simple relationship model between the observed and predicted
outcomes can be established from our Neural Network, we can
derive that the grounds for inference correction via the relationship
model is plausible and move on to bootstrap-based correction.

The graphs to the left are based on the validation set’s data. There are
three potential labels as can be seen in all of these graphs,
non-parametric, parametric, and no correction, with each graph
containing 1,000 data points for each label corresponding to the
number of postpi iterations we ran. The two former have been earlier
explained as the two types of bootstrap-based correction, but no
correction is the control sample of predicted outcomes which
received no correction (via bootstrap nor the relationship model), and
serves to let us observe how the inference model fitted on predictions
directly from our MLP Neural Network contrast to the inference
models rendered via postpi’s bootstrap based correction. No
correction on the top plot is consistently lower than either the
non-parametric or parametric bootstrap, with the latter two seeming
to show nearly identical results, however they all share a very strong
linear relationship. On the Standard Error plot, non-parametric
standard error is all over the place, parametric is almost perfectly on
the line, and no correction is now only slightly lower than the line
and the values are much tighter. Again as with the beta estimates, no
correction displays a strong linear relationship and consistent slope.
Here’s where the findings become quite clear, on the “T-Statistics”
graph because the parametric and no correction t-statistics are both

perfectly on the line with no major differences, again the
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non-parametric values are more widely distributed. On the “P-Values” figure below, all three labels feature a

p-value of approximately zero, as this is less than 0.05 we can reject the null hypothesis that the respective

inference model does not accurately capture the relationship between the covariate of interest (QBRating) and

the predicted outcome (game spread), and decisively conclude that each of the inference models for no
correction, non-parametric bootstrap, and parametric bootstrap all

P-Values reliably represent that relationship. The “P-Values” graph for all of
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] our NFL sports analysis?” The answer to that being “not much”,

apparently. While the exact reasoning as to why postpi didn’t help
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e e Ot effectively expressed the link between each of our covariates and the
game spread outcome.
7. Conclusion
In conclusion, our project followed all the steps of a data science project. We began with collecting our NFL
game data and compiled a final dataset by using all the different smaller datasets we collected. Then, we
conducted exploratory data analysis to understand the relationships between variables in our data, and dealt with
common pre-processing steps such as missing values and outliers. Once we had a strong understanding of our
cleaned dataset, we built a simple linear regression model as a baseline to improve on to gain some
understanding on how our covariates impact our response variable, Spread. Once we saw that our baseline
model is not capturing all the relationships in our data, we developed a neural network model that performed
much better than our baseline model. With this model we were able to achieve a near perfect prediction on
Superbowl LVI, and an average error of 4 points, nearly half of our initial baseline model. We then set out to
understand the importance of each of our features so that we can apply our research of post-prediction inference
to better correct our inference on these variables. After using the method of postpi, we find that our neural
network model results in a very accurate representation of our covariates and therefore statistical inference
correction is not necessary in this case. Our post-prediction inference methods helped confirm that our model is

quite accurate in inferring the relationship for each of our features that is used to determine the outcome of an

NFL game.



