{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Deep Learning Models -- A collection of various deep learning architectures, models, and tips for TensorFlow and PyTorch in Jupyter Notebooks.\n", "- Author: Sebastian Raschka\n", "- GitHub Repository: https://github.com/rasbt/deeplearning-models" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sebastian Raschka \n", "\n", "CPython 3.6.1\n", "IPython 6.0.0\n", "\n", "tensorflow 1.2.0\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -a 'Sebastian Raschka' -v -p tensorflow" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Model Zoo -- Multilayer Perceptron with Batch Normalization" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting ./train-images-idx3-ubyte.gz\n", "Extracting ./train-labels-idx1-ubyte.gz\n", "Extracting ./t10k-images-idx3-ubyte.gz\n", "Extracting ./t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "import tensorflow as tf\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "\n", "\n", "##########################\n", "### DATASET\n", "##########################\n", "\n", "mnist = input_data.read_data_sets(\"./\", one_hot=True)\n", "\n", "\n", "##########################\n", "### SETTINGS\n", "##########################\n", "\n", "# Hyperparameters\n", "learning_rate = 0.1\n", "training_epochs = 10\n", "batch_size = 64\n", "\n", "# Architecture\n", "n_hidden_1 = 128\n", "n_hidden_2 = 256\n", "n_input = 784\n", "n_classes = 10\n", "\n", "# Other\n", "random_seed = 123\n", "\n", "\n", "##########################\n", "### GRAPH DEFINITION\n", "##########################\n", "\n", "g = tf.Graph()\n", "with g.as_default():\n", " \n", " tf.set_random_seed(random_seed)\n", " \n", " # Batchnorm settings\n", " training_phase = tf.placeholder(tf.bool, None, name='training_phase')\n", "\n", " # Input data\n", " tf_x = tf.placeholder(tf.float32, [None, n_input], name='features')\n", " tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')\n", "\n", " # Multilayer perceptron\n", " layer_1 = tf.layers.dense(tf_x, n_hidden_1, \n", " activation=None, # Batchnorm comes before nonlinear activation\n", " use_bias=False, # Note that no bias unit is used in batchnorm\n", " kernel_initializer=tf.truncated_normal_initializer(stddev=0.1))\n", " \n", " layer_1 = tf.layers.batch_normalization(layer_1, training=training_phase)\n", " layer_1 = tf.nn.relu(layer_1)\n", " \n", " layer_2 = tf.layers.dense(layer_1, n_hidden_2, \n", " activation=None,\n", " use_bias=False,\n", " kernel_initializer=tf.truncated_normal_initializer(stddev=0.1))\n", " layer_2 = tf.layers.batch_normalization(layer_2, training=training_phase)\n", " layer_2 = tf.nn.relu(layer_2)\n", " \n", " out_layer = tf.layers.dense(layer_2, n_classes, activation=None, name='logits')\n", "\n", " # Loss and optimizer\n", " loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=tf_y)\n", " cost = tf.reduce_mean(loss, name='cost')\n", " \n", " # control dependency to ensure that batchnorm parameters are also updated\n", " with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):\n", " optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", " train = optimizer.minimize(cost, name='train')\n", "\n", " # Prediction\n", " correct_prediction = tf.equal(tf.argmax(tf_y, 1), tf.argmax(out_layer, 1))\n", " accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch: 001 | AvgCost: 0.280 | Train/Valid ACC: 0.962/0.960\n", "Epoch: 002 | AvgCost: 0.131 | Train/Valid ACC: 0.978/0.972\n", "Epoch: 003 | AvgCost: 0.095 | Train/Valid ACC: 0.984/0.973\n", "Epoch: 004 | AvgCost: 0.074 | Train/Valid ACC: 0.988/0.976\n", "Epoch: 005 | AvgCost: 0.059 | Train/Valid ACC: 0.992/0.980\n", "Epoch: 006 | AvgCost: 0.049 | Train/Valid ACC: 0.995/0.980\n", "Epoch: 007 | AvgCost: 0.039 | Train/Valid ACC: 0.996/0.979\n", "Epoch: 008 | AvgCost: 0.033 | Train/Valid ACC: 0.997/0.981\n", "Epoch: 009 | AvgCost: 0.030 | Train/Valid ACC: 0.997/0.977\n", "Epoch: 010 | AvgCost: 0.024 | Train/Valid ACC: 0.998/0.979\n", "Test ACC: 0.977\n" ] } ], "source": [ "import numpy as np\n", "\n", "##########################\n", "### TRAINING & EVALUATION\n", "##########################\n", " \n", "with tf.Session(graph=g) as sess:\n", " sess.run(tf.global_variables_initializer())\n", "\n", " np.random.seed(random_seed) # random seed for mnist iterator\n", " for epoch in range(training_epochs):\n", " avg_cost = 0.\n", " total_batch = mnist.train.num_examples // batch_size\n", "\n", " for i in range(total_batch):\n", " batch_x, batch_y = mnist.train.next_batch(batch_size)\n", " _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x,\n", " 'targets:0': batch_y,\n", " 'training_phase:0': True})\n", " avg_cost += c\n", " \n", " train_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.train.images,\n", " 'targets:0': mnist.train.labels,\n", " 'training_phase:0': False})\n", " valid_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.validation.images,\n", " 'targets:0': mnist.validation.labels,\n", " 'training_phase:0': False}) \n", " \n", " print(\"Epoch: %03d | AvgCost: %.3f\" % (epoch + 1, avg_cost / (i + 1)), end=\"\")\n", " print(\" | Train/Valid ACC: %.3f/%.3f\" % (train_acc, valid_acc))\n", " \n", " test_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.test.images,\n", " 'targets:0': mnist.test.labels,\n", " 'training_phase:0': False})\n", " print('Test ACC: %.3f' % test_acc)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" } }, "nbformat": 4, "nbformat_minor": 2 }