{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Deep Learning Models -- A collection of various deep learning architectures, models, and tips for TensorFlow and PyTorch in Jupyter Notebooks.\n",
    "- Author: Sebastian Raschka\n",
    "- GitHub Repository: https://github.com/rasbt/deeplearning-models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sebastian Raschka \n",
      "\n",
      "CPython 3.6.1\n",
      "IPython 6.0.0\n",
      "\n",
      "tensorflow 1.2.0\n"
     ]
    }
   ],
   "source": [
    "%load_ext watermark\n",
    "%watermark -a 'Sebastian Raschka' -v -p tensorflow"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "import numpy as np\n",
    "from tensorflow.examples.tutorials.mnist import input_data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Model Zoo -- Multilayer Perceptron with Backpropagation from Scratch"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This notebook contains three different approaches for training a simple 1-hidden layer multilayer perceptron using TensorFlow:\n",
    "    \n",
    "- Gradient descent via the \"high-level\" `tf.train.GradientDescentOptimizer`\n",
    "- A lower-level implementation to perform backpropagation via `tf.gradients`\n",
    "- An implementation of backpropagation and gradient descent learning based on basic linear algebra operations"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Gradient Descent Using `tf.train.GradientDescentOptimizer`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting ./train-images-idx3-ubyte.gz\n",
      "Extracting ./train-labels-idx1-ubyte.gz\n",
      "Extracting ./t10k-images-idx3-ubyte.gz\n",
      "Extracting ./t10k-labels-idx1-ubyte.gz\n"
     ]
    }
   ],
   "source": [
    "# Dataset\n",
    "np.random.seed(123) # set seed for mnist shuffling\n",
    "mnist = input_data.read_data_sets(\"./\", one_hot=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 001 | AvgCost: 0.785 | Train/Valid ACC: 0.885/0.891\n",
      "Epoch: 002 | AvgCost: 0.370 | Train/Valid ACC: 0.906/0.915\n",
      "Epoch: 003 | AvgCost: 0.317 | Train/Valid ACC: 0.914/0.921\n",
      "Epoch: 004 | AvgCost: 0.289 | Train/Valid ACC: 0.922/0.925\n",
      "Epoch: 005 | AvgCost: 0.268 | Train/Valid ACC: 0.926/0.929\n",
      "Epoch: 006 | AvgCost: 0.250 | Train/Valid ACC: 0.931/0.933\n",
      "Epoch: 007 | AvgCost: 0.235 | Train/Valid ACC: 0.936/0.937\n",
      "Epoch: 008 | AvgCost: 0.221 | Train/Valid ACC: 0.939/0.941\n",
      "Epoch: 009 | AvgCost: 0.209 | Train/Valid ACC: 0.943/0.943\n",
      "Epoch: 010 | AvgCost: 0.198 | Train/Valid ACC: 0.947/0.948\n",
      "Test ACC: 0.945\n"
     ]
    }
   ],
   "source": [
    "##########################\n",
    "### SETTINGS\n",
    "##########################\n",
    "\n",
    "# Hyperparameters\n",
    "learning_rate = 0.1\n",
    "training_epochs = 10\n",
    "batch_size = 64\n",
    "\n",
    "# Architecture\n",
    "n_hidden_1 = 128\n",
    "n_input = 784\n",
    "n_classes = 10\n",
    "\n",
    "\n",
    "##########################\n",
    "### GRAPH DEFINITION\n",
    "##########################\n",
    "\n",
    "g = tf.Graph()\n",
    "with g.as_default():\n",
    "    \n",
    "    tf.set_random_seed(123)\n",
    "\n",
    "    # Input data\n",
    "    tf_x = tf.placeholder(tf.float32, [None, n_input], name='features')\n",
    "    tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')\n",
    "\n",
    "    # Model parameters\n",
    "    weights = {\n",
    "        'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1)),\n",
    "        'out': tf.Variable(tf.truncated_normal([n_hidden_1, n_classes], stddev=0.1))\n",
    "    }\n",
    "    biases = {\n",
    "        'b1': tf.Variable(tf.zeros([n_hidden_1])),\n",
    "        'out': tf.Variable(tf.zeros([n_classes]))\n",
    "    }\n",
    "\n",
    "    # Forward Propagation\n",
    "    h1_z = tf.add(tf.matmul(tf_x, weights['h1']), biases['b1'])\n",
    "    h1_act = tf.nn.sigmoid(h1_z)\n",
    "    out_z = tf.matmul(h1_act, weights['out']) + biases['out']\n",
    "    out_act = tf.nn.softmax(out_z, name='predicted_probabilities')\n",
    "    out_labels = tf.argmax(out_z, axis=1, name='predicted_labels')\n",
    "    \n",
    "    ######################\n",
    "    # Forward Propagation\n",
    "    ######################\n",
    "\n",
    "    loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_z, labels=tf_y)\n",
    "    cost = tf.reduce_mean(loss, name='cost')\n",
    "    \n",
    "    ##################\n",
    "    # Backpropagation\n",
    "    ##################\n",
    "\n",
    "    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
    "    train = optimizer.minimize(cost, name='train')\n",
    "\n",
    "    ##############\n",
    "    # Prediction\n",
    "    ##############\n",
    "\n",
    "    correct_prediction = tf.equal(tf.argmax(tf_y, 1), out_labels)\n",
    "    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')\n",
    "\n",
    "    \n",
    "##########################\n",
    "### TRAINING & EVALUATION\n",
    "##########################\n",
    "\n",
    "with tf.Session(graph=g) as sess:\n",
    "    sess.run(tf.global_variables_initializer())\n",
    "\n",
    "    for epoch in range(training_epochs):\n",
    "        avg_cost = 0.\n",
    "        total_batch = mnist.train.num_examples // batch_size\n",
    "\n",
    "        for i in range(total_batch):\n",
    "            batch_x, batch_y = mnist.train.next_batch(batch_size)\n",
    "            _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x,\n",
    "                                                            'targets:0': batch_y})\n",
    "            avg_cost += c\n",
    "        \n",
    "        train_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.train.images,\n",
    "                                                      'targets:0': mnist.train.labels})\n",
    "        valid_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.validation.images,\n",
    "                                                      'targets:0': mnist.validation.labels})  \n",
    "        \n",
    "        print(\"Epoch: %03d | AvgCost: %.3f\" % (epoch + 1, avg_cost / (i + 1)), end=\"\")\n",
    "        print(\" | Train/Valid ACC: %.3f/%.3f\" % (train_acc, valid_acc))\n",
    "        \n",
    "    test_acc = sess.run(accuracy, feed_dict={'features:0': mnist.test.images,\n",
    "                                             'targets:0': mnist.test.labels})\n",
    "    print('Test ACC: %.3f' % test_acc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Gradient Descent Using `tf.gradients` (low level)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting ./train-images-idx3-ubyte.gz\n",
      "Extracting ./train-labels-idx1-ubyte.gz\n",
      "Extracting ./t10k-images-idx3-ubyte.gz\n",
      "Extracting ./t10k-labels-idx1-ubyte.gz\n"
     ]
    }
   ],
   "source": [
    "# Dataset\n",
    "np.random.seed(123) # set seed for mnist shuffling\n",
    "mnist = input_data.read_data_sets(\"./\", one_hot=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 001 | AvgCost: 0.785 | Train/Valid ACC: 0.890/0.894\n",
      "Epoch: 002 | AvgCost: 0.370 | Train/Valid ACC: 0.906/0.912\n",
      "Epoch: 003 | AvgCost: 0.317 | Train/Valid ACC: 0.915/0.918\n",
      "Epoch: 004 | AvgCost: 0.289 | Train/Valid ACC: 0.922/0.926\n",
      "Epoch: 005 | AvgCost: 0.268 | Train/Valid ACC: 0.927/0.930\n",
      "Epoch: 006 | AvgCost: 0.250 | Train/Valid ACC: 0.932/0.934\n",
      "Epoch: 007 | AvgCost: 0.235 | Train/Valid ACC: 0.936/0.938\n",
      "Epoch: 008 | AvgCost: 0.221 | Train/Valid ACC: 0.940/0.941\n",
      "Epoch: 009 | AvgCost: 0.210 | Train/Valid ACC: 0.942/0.944\n",
      "Epoch: 010 | AvgCost: 0.198 | Train/Valid ACC: 0.946/0.947\n",
      "Test ACC: 0.945\n"
     ]
    }
   ],
   "source": [
    "##########################\n",
    "### SETTINGS\n",
    "##########################\n",
    "\n",
    "# Hyperparameters\n",
    "learning_rate = 0.1\n",
    "training_epochs = 10\n",
    "batch_size = 64\n",
    "\n",
    "# Architecture\n",
    "n_hidden_1 = 128\n",
    "n_input = 784\n",
    "n_classes = 10\n",
    "\n",
    "\n",
    "##########################\n",
    "### GRAPH DEFINITION\n",
    "##########################\n",
    "\n",
    "g = tf.Graph()\n",
    "with g.as_default():\n",
    "    \n",
    "    tf.set_random_seed(123)\n",
    "\n",
    "    # Input data\n",
    "    tf_x = tf.placeholder(tf.float32, [None, n_input], name='features')\n",
    "    tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')\n",
    "\n",
    "    # Model parameters\n",
    "    weights = {\n",
    "        'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1)),\n",
    "        'out': tf.Variable(tf.truncated_normal([n_hidden_1, n_classes], stddev=0.1))\n",
    "    }\n",
    "    biases = {\n",
    "        'b1': tf.Variable(tf.zeros([n_hidden_1])),\n",
    "        'out': tf.Variable(tf.zeros([n_classes]))\n",
    "    }\n",
    "\n",
    "    ######################\n",
    "    # Forward Propagation\n",
    "    ######################\n",
    "\n",
    "    h1_z = tf.add(tf.matmul(tf_x, weights['h1']), biases['b1'])\n",
    "    h1_act = tf.nn.sigmoid(h1_z)\n",
    "    out_z = tf.matmul(h1_act, weights['out']) + biases['out']\n",
    "    out_act = tf.nn.softmax(out_z, name='predicted_probabilities')\n",
    "    out_labels = tf.argmax(out_z, axis=1, name='predicted_labels')\n",
    "    \n",
    "    # Loss\n",
    "    loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_z, labels=tf_y)\n",
    "    cost = tf.reduce_mean(loss, name='cost')\n",
    "    \n",
    "    ##################\n",
    "    # Backpropagation\n",
    "    ##################\n",
    "\n",
    "    # Get Gradients\n",
    "    dc_dw_out, dc_db_out = tf.gradients(cost, [weights['out'], biases['out']])\n",
    "    dc_dw_1, dc_db_1 = tf.gradients(cost, [weights['h1'], biases['b1']])\n",
    "    \n",
    "    # Update Weights\n",
    "    upd_w_1 = tf.assign(weights['h1'], weights['h1'] - learning_rate * dc_dw_1)\n",
    "    upd_b_1 = tf.assign(biases['b1'], biases['b1'] - learning_rate * dc_db_1)\n",
    "    upd_w_out = tf.assign(weights['out'], weights['out'] - learning_rate * dc_dw_out)\n",
    "    upd_b_out = tf.assign(biases['out'], biases['out'] - learning_rate * dc_db_out)\n",
    "    \n",
    "    train = tf.group(upd_w_1, upd_b_1, upd_w_out, upd_b_out, name='train')\n",
    "\n",
    "    ##############\n",
    "    # Prediction\n",
    "    ##############\n",
    "\n",
    "    correct_prediction = tf.equal(tf.argmax(tf_y, 1), out_labels)\n",
    "    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')\n",
    "\n",
    "    \n",
    "##########################\n",
    "### TRAINING & EVALUATION\n",
    "##########################\n",
    "\n",
    "with tf.Session(graph=g) as sess:\n",
    "    sess.run(tf.global_variables_initializer())\n",
    "\n",
    "    for epoch in range(training_epochs):\n",
    "        avg_cost = 0.\n",
    "        total_batch = mnist.train.num_examples // batch_size\n",
    "\n",
    "        for i in range(total_batch):\n",
    "            batch_x, batch_y = mnist.train.next_batch(batch_size)\n",
    "            _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x,\n",
    "                                                            'targets:0': batch_y})\n",
    "            avg_cost += c\n",
    "        \n",
    "        train_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.train.images,\n",
    "                                                      'targets:0': mnist.train.labels})\n",
    "        valid_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.validation.images,\n",
    "                                                      'targets:0': mnist.validation.labels})  \n",
    "        \n",
    "        print(\"Epoch: %03d | AvgCost: %.3f\" % (epoch + 1, avg_cost / (i + 1)), end=\"\")\n",
    "        print(\" | Train/Valid ACC: %.3f/%.3f\" % (train_acc, valid_acc))\n",
    "        \n",
    "    test_acc = sess.run(accuracy, feed_dict={'features:0': mnist.test.images,\n",
    "                                             'targets:0': mnist.test.labels})\n",
    "    print('Test ACC: %.3f' % test_acc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Gradient Descent from scratch (very low level)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting ./train-images-idx3-ubyte.gz\n",
      "Extracting ./train-labels-idx1-ubyte.gz\n",
      "Extracting ./t10k-images-idx3-ubyte.gz\n",
      "Extracting ./t10k-labels-idx1-ubyte.gz\n"
     ]
    }
   ],
   "source": [
    "# Dataset\n",
    "np.random.seed(123) # set seed for mnist shuffling\n",
    "mnist = input_data.read_data_sets(\"./\", one_hot=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 001 | AvgCost: 0.785 | Train/Valid ACC: 0.884/0.892\n",
      "Epoch: 002 | AvgCost: 0.370 | Train/Valid ACC: 0.905/0.909\n",
      "Epoch: 003 | AvgCost: 0.317 | Train/Valid ACC: 0.914/0.916\n",
      "Epoch: 004 | AvgCost: 0.288 | Train/Valid ACC: 0.921/0.926\n",
      "Epoch: 005 | AvgCost: 0.268 | Train/Valid ACC: 0.927/0.931\n",
      "Epoch: 006 | AvgCost: 0.251 | Train/Valid ACC: 0.931/0.934\n",
      "Epoch: 007 | AvgCost: 0.235 | Train/Valid ACC: 0.936/0.937\n",
      "Epoch: 008 | AvgCost: 0.222 | Train/Valid ACC: 0.940/0.942\n",
      "Epoch: 009 | AvgCost: 0.209 | Train/Valid ACC: 0.944/0.944\n",
      "Epoch: 010 | AvgCost: 0.199 | Train/Valid ACC: 0.946/0.948\n",
      "Test ACC: 0.945\n"
     ]
    }
   ],
   "source": [
    "##########################\n",
    "### SETTINGS\n",
    "##########################\n",
    "\n",
    "# Hyperparameters\n",
    "learning_rate = 0.1\n",
    "training_epochs = 10\n",
    "batch_size = 64\n",
    "\n",
    "# Architecture\n",
    "n_hidden_1 = 128\n",
    "n_input = 784\n",
    "n_classes = 10\n",
    "\n",
    "\n",
    "##########################\n",
    "### GRAPH DEFINITION\n",
    "##########################\n",
    "\n",
    "g = tf.Graph()\n",
    "with g.as_default():\n",
    "    \n",
    "    tf.set_random_seed(123)\n",
    "\n",
    "    # Input data\n",
    "    tf_x = tf.placeholder(tf.float32, [None, n_input], name='features')\n",
    "    tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')\n",
    "\n",
    "    # Model parameters\n",
    "    weights = {\n",
    "        'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1)),\n",
    "        'out': tf.Variable(tf.truncated_normal([n_hidden_1, n_classes], stddev=0.1))\n",
    "    }\n",
    "    biases = {\n",
    "        'b1': tf.Variable(tf.zeros([n_hidden_1])),\n",
    "        'out': tf.Variable(tf.zeros([n_classes]))\n",
    "    }\n",
    "\n",
    "    ######################\n",
    "    # Forward Propagation\n",
    "    ######################\n",
    "    \n",
    "    h1_z = tf.add(tf.matmul(tf_x, weights['h1']), biases['b1'])\n",
    "    h1_act = tf.nn.sigmoid(h1_z)\n",
    "    out_z = tf.matmul(h1_act, weights['out']) + biases['out']\n",
    "    out_act = tf.nn.softmax(out_z, name='predicted_probabilities')\n",
    "    out_labels = tf.argmax(out_z, axis=1, name='predicted_labels')\n",
    "    \n",
    "    # Loss\n",
    "    loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_z, labels=tf_y)\n",
    "    cost = tf.reduce_mean(loss, name='cost')\n",
    "    \n",
    "    ##################\n",
    "    # Backpropagation\n",
    "    ##################\n",
    "    \n",
    "    # Get Gradients\n",
    "    \n",
    "    # input/output dim: [n_samples, n_classlabels]\n",
    "    sigma_out = (out_act - tf_y) / batch_size\n",
    "    \n",
    "    # input/output dim: [n_samples, n_hidden_1]\n",
    "    softmax_derivative_h1 = h1_act * (1. - h1_act)\n",
    "    \n",
    "    # input dim: [n_samples, n_classlabels] dot [n_classlabels, n_hidden]\n",
    "    # output dim: [n_samples, n_hidden]\n",
    "    sigma_h = (tf.matmul(sigma_out, tf.transpose(weights['out'])) *\n",
    "               softmax_derivative_h1)\n",
    "   \n",
    "    # input dim: [n_features, n_samples] dot [n_samples, n_hidden]\n",
    "    # output dim: [n_features, n_hidden]\n",
    "    grad_w_h1 = tf.matmul(tf.transpose(tf_x), sigma_h)\n",
    "    grad_b_h1 = tf.reduce_sum(sigma_h, axis=0)\n",
    "\n",
    "    # input dim: [n_hidden, n_samples] dot [n_samples, n_classlabels]\n",
    "    # output dim: [n_hidden, n_classlabels]\n",
    "    grad_w_out = tf.matmul(tf.transpose(h1_act), sigma_out)\n",
    "    grad_b_out = tf.reduce_sum(sigma_out, axis=0)\n",
    "    \n",
    "    # Update weights\n",
    "    upd_w_1 = tf.assign(weights['h1'], weights['h1'] - learning_rate * grad_w_h1)\n",
    "    upd_b_1 = tf.assign(biases['b1'], biases['b1'] - learning_rate * grad_b_h1)\n",
    "    upd_w_out = tf.assign(weights['out'], weights['out'] - learning_rate * grad_w_out)\n",
    "    upd_b_out = tf.assign(biases['out'], biases['out'] - learning_rate * grad_b_out)\n",
    "    \n",
    "    train = tf.group(upd_w_1, upd_b_1, upd_w_out, upd_b_out, name='train')\n",
    "    \n",
    "    ##############\n",
    "    # Prediction\n",
    "    ##############\n",
    "\n",
    "    correct_prediction = tf.equal(tf.argmax(tf_y, 1), out_labels)\n",
    "    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')\n",
    "\n",
    "    \n",
    "##########################\n",
    "### TRAINING & EVALUATION\n",
    "##########################\n",
    "\n",
    "with tf.Session(graph=g) as sess:\n",
    "    sess.run(tf.global_variables_initializer())\n",
    "\n",
    "    for epoch in range(training_epochs):\n",
    "        avg_cost = 0.\n",
    "        total_batch = mnist.train.num_examples // batch_size\n",
    "\n",
    "        for i in range(total_batch):\n",
    "            batch_x, batch_y = mnist.train.next_batch(batch_size)\n",
    "            _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x,\n",
    "                                                            'targets:0': batch_y})\n",
    "            avg_cost += c\n",
    "        \n",
    "        train_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.train.images,\n",
    "                                                      'targets:0': mnist.train.labels})\n",
    "        valid_acc = sess.run('accuracy:0', feed_dict={'features:0': mnist.validation.images,\n",
    "                                                      'targets:0': mnist.validation.labels})  \n",
    "        \n",
    "        print(\"Epoch: %03d | AvgCost: %.3f\" % (epoch + 1, avg_cost / (i + 1)), end=\"\")\n",
    "        print(\" | Train/Valid ACC: %.3f/%.3f\" % (train_acc, valid_acc))\n",
    "        \n",
    "    test_acc = sess.run(accuracy, feed_dict={'features:0': mnist.test.images,\n",
    "                                             'targets:0': mnist.test.labels})\n",
    "    print('Test ACC: %.3f' % test_acc)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}