
“stopwatch” code-kit

Because you’re reading this, you will already have unzipped stopwatch.zip on any convenient directory and changed
into its top directory.

Confirm that “ls -1” now shows this:

 0.sql
 README.pdf
 cr-cross-session-stopwatch.sql
 cr-duration-as-text.sql
 cr-stopwatch.sql
 test-cross-session-stopwatch.sql
 test-cross-session-stopwatch.txt
 test-duration-as-text-0.txt
 test-duration-as-text.sql
 test-duration-as-text.txt
 test-stopwatch-0.txt
 test-stopwatch.sql
 test-stopwatch.txt

The scripts install the code and the test results that are explained in the section Case study—implementing a stopwatch
with SQL within the overall Date and time data types section in the YSQL documentation.

Simply start ysqlsh, connecting as an ordinary non-Superuser, say utils, and (ideally) create a schema, say utils_s, in
which this user can create and drop objects at will without interfering with any other projects that the database
you’re connected to might be hosting. Ensure that “show search_path;” returns utils_s as first in the path.

One of the tests, implemented in test-cross-session-stopwatch.sql, includes these two metacommands:

 \c demo u1
 \c demo u1

It doesn’t create objects. Rather, it simply invokes pg_sleep() after starting each new session to demonstrate that the
client-side variable stopwatch_s0 does indeed survive and preserve its value across session boundaries as promised.

Then invoke the script 0.sql. You can do this time and again, from a cold start or after having already run it. It will
always finish silently in a few seconds. (The time is consumed by pg_sleep() invocations whose purpose is to give the
stopwatch tests sensibly long durations to time.)

Each spool file that the tests produce has a partner reference copy whose name has “-0” appended, like this:

 test-duration-as-text-0.txt

Check with your favorite GUI diff application that each of your spool files is close-to pairwise identical with its
reference copy. There are bound to be differences because of randomly occurring variations in the reported
durations.

Any database user that you intend to be able to use the stopwatch code should have the utils_s schema in its path,
should have the usage privilege on the utils_s schema and the execute privilege on each of the code units.

If you intend users to be able to do cross-session timings, then you should define these variables (to act as
shortcuts) in the psqlrc file (on the postgres/etc directory under the directory where you’ve installed the YugabyteDB
client code).

 \set start_stopwatch 'select extract(epoch from clock_timestamp())::text as s0 \\gset stopwatch_'
 \set stopwatch_reading 'select stopwatch_reading(:stopwatch_s0);'

https://docs.yugabyte.com/latest/api/ysql/datatypes/type_datetime/stopwatch/
https://docs.yugabyte.com/latest/api/ysql/datatypes/type_datetime/stopwatch/
https://docs.yugabyte.com/latest/api/ysql/datatypes/type_datetime/

