{ "cells": [ { "cell_type": "markdown", "id": "87fbf7ef", "metadata": {}, "source": [ "## Geolocation Error Budget for NISAR\n", "\n", "Incidence angle = 42 degree" ] }, { "cell_type": "code", "execution_count": 2, "id": "0675459e", "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import os\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", "from mintpy.utils import readfile, utils as ut\n", "from tools.simulation import iono\n", "\n", "inc_angle = 42 / 180 * np.pi" ] }, { "cell_type": "markdown", "id": "80e02e01", "metadata": {}, "source": [ "### Table IV - Range Geolocation Error Budget" ] }, { "cell_type": "code", "execution_count": 9, "id": "18f2beef", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iono: residual GIM: 0.223 +/- 1.206 m\n", "Iono: topside TEC: 1.739 +/- 0.517 m\n" ] } ], "source": [ "## ionosphere\n", "# residual ionosphere based on the bias/uncertainty of GIM\n", "# reference: Hernandez et al. (2009, Table I)\n", "# note that we are using JHR GIM rather than JLR GIM, which from our study here at least, JHR is significantly better than JLR.\n", "tec_jlr = np.array([0.72, 4.49], dtype=np.float32) # mean and STD in TECUm\n", "iono_delay_L = iono.vtec2range_delay(tec_jlr, inc_angle=42, freq=iono.SAR_BAND['L'])\n", "iono_delay_S = iono.vtec2range_delay(tec_jlr, inc_angle=42, freq=iono.SAR_BAND['S'])\n", "print('Iono: residual GIM: {:.3f} +/- {:.3f} m'.format(iono_delay_L[0], iono_delay_L[1]))\n", "\n", "# worse case scenario spatially based on total TEC and the map of snapshot of topTECs\n", "top_tec = np.array([6.6, 1.8], dtype=np.float32)\n", "top_tec_delay_L = iono.vtec2range_delay(top_tec, inc_angle=42, freq=iono.SAR_BAND['L'])\n", "top_tec_delay_S = iono.vtec2range_delay(top_tec, inc_angle=42, freq=iono.SAR_BAND['S'])\n", "print('Iono: topside TEC: {:.3f} +/- {:.3f} m'.format(top_tec_delay_L[0], top_tec_delay_L[1]))" ] }, { "cell_type": "code", "execution_count": 10, "id": "381aee0b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tropo: 0.040 +/- 0.050 m\n" ] } ], "source": [ "## residual troposphere\n", "# mean: +/- 3 cm in zenith direction (Yu et al., 2021, Fig. 1a1)\n", "# STD: +/- 5 cm in LOS direction (Fattahi & Amelung, 2015, sec 4.2.2)\n", "tropo = np.array([0.03 / np.cos(inc_angle), 0.05], dtype=np.float32)\n", "print('Tropo: {:.3f} +/- {:.3f} m'.format(tropo[0], tropo[1]))" ] }, { "cell_type": "code", "execution_count": 11, "id": "a17ecc27", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Earth motion: 0.000 +/- 0.044 m\n" ] } ], "source": [ "## uncompensated tidal effects\n", "OTL_ENU = np.array([0.0100, 0.0100, 0.0500], dtype=np.float32) # reference: Martens et al. (2016); Gisinger (0.01, 0.01, 0.05)\n", "PT_ENU = np.array([0.0035, 0.0035, 0.0125], dtype=np.float32) # reference: Petit & Luzum (2010)\n", "ATM_ENU = np.array([0.0005, 0.0005, 0.0050], dtype=np.float32) # reference: Dong et al. (2002)\n", "OTL_LOS = ut.enu2los(OTL_ENU[0], OTL_ENU[1], OTL_ENU[2], inc_angle=inc_angle*180/np.pi, az_angle=-102)\n", "PT_LOS = ut.enu2los( PT_ENU[0], PT_ENU[1], PT_ENU[2], inc_angle=inc_angle*180/np.pi, az_angle=-102)\n", "ATM_LOS = ut.enu2los(ATM_ENU[0], ATM_ENU[1], ATM_ENU[2], inc_angle=inc_angle*180/np.pi, az_angle=-102)\n", "EM_LOS = np.array([0, np.sqrt(OTL_LOS**2 + PT_LOS**2 + ATM_LOS**2)], dtype=np.float32)\n", "print('Earth motion: {:.3f} +/- {:.3f} m'.format(EM_LOS[0], EM_LOS[1]))" ] }, { "cell_type": "code", "execution_count": 12, "id": "4a53f346", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Orbital error: 0.005 +/- 0.030 m\n" ] } ], "source": [ "## orbital error\n", "# reference: Peter et al. (2017)\n", "orb_s1 = np.array([0.005, 0.030], dtype=np.float32)\n", "print('Orbital error: {:.3f} +/- {:.3f} m'.format(orb_s1[0], orb_s1[1]))" ] }, { "cell_type": "code", "execution_count": 13, "id": "2fac8768", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DEM error: 4.442 +/- 0.002 m\n" ] } ], "source": [ "## DEM error\n", "# reference: 1. NISAR handbook; 2. Sansosti et al. (2006, Eq. 30); 3. Jung et al. (2019, Eq. 8); 4. Fahrland et al. (2020)\n", "# Copernicus global DEM accuracy: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198\n", "rg = 980e3 # m, NISAR\n", "bperp_max = 350 # m\n", "dem_err = 4 # m, absolute vertical accuracy\n", "dem_LOS_rel = dem_err * bperp_max / (rg * np.sin(inc_angle)) * 1\n", "dem_LOS_abs = dem_err / np.tan(inc_angle)\n", "dem_LOS = np.array([dem_LOS_abs, dem_LOS_rel], dtype=np.float32)\n", "print('DEM error: {:.3f} +/- {:.3f} m'.format(dem_LOS[0], dem_LOS[1]))" ] }, { "cell_type": "code", "execution_count": 14, "id": "2a9191cb", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "NISAR L-band:\n", " Iono residual GIM: 0.223 +/- 1.206 m\n", " Iono topside TEC: 1.739 +/- 0.517 m\n", " Tropo : 0.040 +/- 0.050 m\n", " Tidal residual : 0.000 +/- 0.044 m\n", " Orbital error : 0.005 +/- 0.030 m\n", " DEM error : 4.442 +/- 0.002 ms\n", " Overall (L-band) : 6.449 +/- 1.314 m\n", "NISAR S-band:\n", " Iono residual GIM: 0.037 +/- 0.215 m\n", " Iono topside TEC: 0.307 +/- 0.091 m\n", " ...\n", " Overall (S-band) : 4.832 +/- 0.244 m\n" ] } ], "source": [ "geoloc_L = np.sqrt(iono_delay_L**2 + top_tec_delay_L**2 + tropo**2 + EM_LOS**2 + orb_s1**2 + dem_LOS**2)\n", "geoloc_L[0] = iono_delay_L[0] + top_tec_delay_L[0] + tropo[0] + EM_LOS[0] + orb_s1[0] + dem_LOS[0]\n", "print('NISAR L-band:')\n", "print(' Iono residual GIM: {:.3f} +/- {:.3f} m'.format(iono_delay_L[0], iono_delay_L[1]))\n", "print(' Iono topside TEC: {:.3f} +/- {:.3f} m'.format(top_tec_delay_L[0], top_tec_delay_L[1]))\n", "print(' Tropo : {:.3f} +/- {:.3f} m'.format(tropo[0], tropo[1]))\n", "print(' Tidal residual : {:.3f} +/- {:.3f} m'.format(EM_LOS[0], EM_LOS[1]))\n", "print(' Orbital error : {:.3f} +/- {:.3f} m'.format(orb_s1[0], orb_s1[1]))\n", "print(' DEM error : {:.3f} +/- {:.3f} ms'.format(dem_LOS[0], dem_LOS[1]))\n", "print(' Overall (L-band) : {:.3f} +/- {:.3f} m'.format(geoloc_L[0], geoloc_L[1]))\n", "\n", "geoloc_S = np.sqrt(iono_delay_S**2 + top_tec_delay_S**2 + tropo**2 + EM_LOS**2 + orb_s1**2 + dem_LOS**2)\n", "geoloc_S[0] = iono_delay_S[0] + top_tec_delay_S[0] + tropo[0] + EM_LOS[0] + orb_s1[0] + dem_LOS[0]\n", "print('NISAR S-band:')\n", "print(' Iono residual GIM: {:.3f} +/- {:.3f} m'.format(iono_delay_S[0], iono_delay_S[1]))\n", "print(' Iono topside TEC: {:.3f} +/- {:.3f} m'.format(top_tec_delay_S[0], top_tec_delay_S[1]))\n", "print(' ...')\n", "print(' Overall (S-band) : {:.3f} +/- {:.3f} m'.format(geoloc_S[0], geoloc_S[1]))" ] }, { "cell_type": "markdown", "id": "f97a5156", "metadata": {}, "source": [ "### OPERA NI-CSLC: Relative Geolocation Accuracy (using ALOS-2 as a proxy)" ] }, { "cell_type": "code", "execution_count": 6, "id": "3fa2c782", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Range : 0.560 m --> 0.09 pixel\n", "Azimuth: 0.803 m --> 0.11 pixel\n" ] } ], "source": [ "## range\n", "rg_reso = 6.25 # m for NISAR-L 24 MHz\n", "rg_rmse = 0.56 # m from ALOS-2 desc track 23 over Kyushu, Japan\n", "\n", "## azimuth\n", "az_reso = 7 # m for NISAR-L (NISAR handbook)\n", "mintpy_dir = os.path.expanduser('~/data/geolocation/KyushuAlos2DT23/mintpy_offset')\n", "ts_file = os.path.join(mintpy_dir, 'timeseriesAz.h5') # timeseriesRg.h5 or timeseriesAz.h5\n", "\n", "# calculate az geoloc rmse\n", "mask_file = os.path.join(mintpy_dir, 'maskResInv.h5')\n", "ts_data = readfile.read(ts_file)[0]; ts_data = ts_data.reshape(ts_data.shape[0], -1)\n", "mask = readfile.read(mask_file)[0].flatten()\n", "ts_data[:, mask == 0] = np.nan\n", "ts_med = np.nanmedian(ts_data, axis=-1)\n", "ts_med -= np.nanmedian(ts_med)\n", "az_rmse = ut.root_mean_sq_error(ts_med)\n", "\n", "print('Range : {:.3f} m --> {:.2f} pixel'.format(rg_rmse, rg_rmse / rg_reso))\n", "print('Azimuth: {:.3f} m --> {:.2f} pixel'.format(az_rmse, az_rmse / az_reso))" ] }, { "cell_type": "markdown", "id": "18820d37", "metadata": {}, "source": [ "### OPERA NI-CSLC: Absolute Geolocation Accuracy in Range Direction (w/o DEM error)" ] }, { "cell_type": "code", "execution_count": 16, "id": "544b7bc3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Range w/o Topo: 1.8 m\n" ] } ], "source": [ "geoloc = np.sqrt(iono_delay_L**2 + top_tec_delay_L**2 + tropo**2 + EM_LOS**2 + orb_s1**2)\n", "print('Range w/o Topo: {:.1f} m'.format(geoloc[0]))" ] }, { "cell_type": "markdown", "id": "bc20bb09", "metadata": {}, "source": [ "### OPERA NI-CSLC: Absolute Geolocation Accuracy in Azimuth Direction (w/o DEM error)\n", "\n", "We do NOT know due to the lack of TEC gradient/slope knowledge!" ] }, { "cell_type": "code", "execution_count": null, "id": "3c719734", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 5 }