
Functional 
Programming 
and Proving 

in Coq
Matthieu Sozeau 

<matthieu.sozeau@inria.fr>

1

mailto:matthieu.sozeau@inria.fr


–Donald Knuth, Notes on the van Emde Boas construction of priority 
deques: An instructive use of recursion,1977

“Beware of bugs in the above code; I have only 
proved it correct, not tried it.” 

“There are two ways to write error-free programs;  
only the third one works.”

–Alan Perlis,“Epigrams on Programming”, Turing Award citation,1982

2



Formal Proof Is The Answer!

• Mechanically check program correctness with 
respect to a logical specification. 

• (Relative) Logical consistency ensures the 
specification is all you need to believe… 

• …plus ZF(C) or some other trusted foundation, and 
the implementation of the proof checker.

3



“Even perfect program verification can only establish that a 
program meets its specification. […] Much of the essence of 

building a program is in fact the  
debugging of the specification. [italics added]”

–Fred Brooks, “The Mythical Man-Month”, 1986

But No Silver Bullet

4



Outline

Yesterday, the specification language and a bit of 
proofs & programs. 

Today, a bit of history/philosophy and then the full 
GALLINA language of proofs & programs.

5



Recall Total Functional 
Programming

• Basically, effective mathematical functions (dependently-typed λ-
calculus). 

• All functions must terminate with a value → no eval or 
collatz 

• Type checking ensures functions cannot lie about what they 
are doing, or hide any side-effect. You can trust types.   (Typing 
is noted p : A → B, or Γ ⊢ p : A → B where Γ = x1 : τ1 … xn : τn contains variable declarations.) 

All functions and values are total (as opposed to partial), and 
pure. 

E.g: div : ℕ → ℕ → ℕ must handle every input.

6



The Curry-Howard-(Heyting-De Bruijn-
Kolmogorov-…) correspondence

• Coq is based on Type Theory (Bertrand Russell, Per Martin-Löf, 

Thierry Coquand & Gérard Huet) a unified language where 
proofs & programs can be represented. 

⇒ A program of type A → B is 

    a term p of type A → B  

⇒ A proof of some proposition A ⇒ B : Prop is  

    a term p of type A → B

7



Formulae as Types (MLTT)
Logic (in 

Prop) Proposition Type English Example Term

Implication ⇒ → Function 
Space

λ x : ℕ, x + x : 
ℕ → ℕ

Universal 
Quantification

∀ x : α, 
P

Π x : α, 
P

Dependent 
Product

λ x : ℕ, eq_refl x : 
Π x : ℕ, x = x

Existential 
Quantification

∃ x : α, 
P

Σ x : α, 
P

Dependent 
Sum

(0, eq_refl 0) : 
 Σ x : ℕ, x = 0

Truth ⊤ 1, unit Unit Type () : 1

Falsehood ⊥ 0, “void” Empty Type No term constructor

Disjunction P ∨ Q P + Q Sum Type (inl 0) : ℕ + 𝔹 

Conjunction P ∧ Q P × Q Cartesian 
Product (0, false) : ℕ × 𝔹

8



Type Constructors
Introduction : Type Elimination Computation

(λ x : α. b) α → β /  
Π x : α, β

t : α ⊢  
f t : β[t/x]

(λ x : α. b) t  
→β b[t/x]

(t, u) α1 × α2 / 
Σ x : α1, α2

p.1, p.2 : αᵢ 
(x1, x2).i  

→ι xᵢ

tt / I 1 / True
x : unit ⊢  

let tt := x in b
let tt := x in 

b →ι b

N/A 0 / False
x : False ⊢  

match x with end
N/A

9



Booleans and Naturals
Type Introduction Elimination Computation: 

Redex
Computation:
Contractum

2 
(𝔹)

 true  
| false

match x with 
| true ⇒ t₀  
| false ⇒ t₁ 
end

 match cj with 
 … 
| cᵢ => tᵢ 
 …  
 end  

       →ι tj

ℕ 0 | S n

match x with  
| 0 ⇒ t0 
| S n ⇒ tS 
end

Example: 
match S 0 with 
| 0 ⇒ t0 
| S n ⇒ tS 
end

   →ι tS [0/n]

10



The equality type

11

        Introduction: 

x : α ⊢ eq_refl x : eq α x x    (notation x =α x) 

        Derivable: 
• x y : α ⊢ p : x = y ⇒ y = x 
• x y z : α ⊢ p : x = y ⇒ y = z ⇒ x = z 
• ⊢ p : ∀ f : α → β, ∀ x y : α,  

                         x = y → f x = f y 

Equality is an equivalence relation and a congruence.



Summary

12

We have a logic with ∀, ∃, ⇒, ⊥, ⊤, =, and a provability 
relation ⊢.  

An algorithm can check if Γ ⊢ t : T holds. 

A metatheoretical result shows (relative) consistency: 
impossibility to construct a term p s.t. ⊢ p : ⊥ (i.e. without 

assuming extra axioms) 

Type Theory gives a unified language in which we can 
express Higher-Order Logic formulas and construct 

machine-checked proofs for them.



The Trinity in the 70’s
Category Theory Type Theory 

Logic / Proof 
Theory

Cartesian Closed Categories (CCCs) Simply-Typed λ-calculus

Propositional Logic
13



Trinity yesterday
Category Theory Type Theory 

Logic / Proof 
Theory

LCCCs Dependent Type Theory

Intuitionistic Logic

14



Trinity these days
Higher Category 

Theory Homotopy Type Theory 

Logic / Proof 
Theory

 Higher Topoï / ∞-groupoids
(Voevodsky, Coquand, …) 

Types as spaces, towards solving  
the gap with classical set theory

Higher-Dimensional, Proof-Relevant Logic?

15



Type Theory with Inductive 
Types

16

In Coq, we have a general schema for defining 
datatypes, with the generic operators  
match .. with .. end and Fixpoint/fix 

 We are going to see how to write proofs on them!



Inductive command

17

Inductive types generalize disjunction (sum types), 
conjunction (pairs), truth (unit) and falsehood (empty 

types). 

For example, sums can be defined as: 
Inductive sum (A B : Set) : Set := 
| inl : A → sum A B 
| inr : B → sum A B.



Tactics

18

For any inductive type, we have the principles: 

Constructors are disjoint:  discriminate 

Constructors are injective: injection 

An induction principle: induction



Induction Principle

19

∀ (P : nat → Prop) 

(p0 : P 0) 

(pS : ∀ n, P n → P (S n)), 

∀ n, P n 

λ (P : nat → Prop) p0 pS,  
fix prf n :=  

       match n return P n with 
| 0 ⇒ (p0 : P 0) 
| S x ⇒ (pS x (prf x : P x)) : P (S x) 
end



Inductive Predicates

20

Inductive predicates allows to characterize a property 
of an object inductively:  

Inductive even : nat → Prop := 
| even0 : even 0 
| evenSS : forall n : nat, even n -> even (S (S n)).



Inversion

21

Inversion is the ability to infer which constructor/“rule” of 
the inductive predicate can apply to a particular situation. 

Suppose you have H : even (S (S k)). 

 The only possible constructor to build such a value is 
evenSS k H’ for some H’ : even k 

inversion H will destruct the hypothesis H to produce 
the possible subgoals for each applicable rule. 

In case no constructor can apply, this solves the goal.



Inversion

22

Typical example: 

Inductive lt : nat → nat → Prop := 
| lt0 : lt 0 (S n) 
| ltS n m : lt n m -> lt (S n) (S m). 

inversion (H : lt n 0) produces no 
subgoals.



Let’s switch to Coq

23



Going further:  
Dependently-Typed Programming

24

div : ∀ (x : ℕ) (y : ℕ | y ≠ 0), 

 { (q, r) | x = y * q + r ∧ r < y }. 

The function is total but requires a precondition on y. 

{ x : τ | P } ≡ Σ x : τ. P 

I.e., we need to pass a pair of a value for y and a proof that it is 
non-zero. 

We return not only the quotient and rest but also a proof that 
this really performs euclidian division.



Bibliography

25

Theory:

• Per Martin-Löf, Intuitionistic Type Theory (seminal) 

• Programming in Martin-Löf Type Theory (Nordström,  Petersson, and Smith, introductory, a classic) 

• Proofs and Types (Girard, Lafont and Taylor, on the proof theory side) 

• Categorical Logic (B. Jacobs, on semantics of type theories in categories) 

• Semantics of Type Theory (T. Streicher, for the more set-theoretic expert) 

Coq References:

• Software Foundations (Pierce et al, teaching material, CS-oriented, very accessible) 
• Certified Programming with Dependent Types (Chlipala, MIT Press, DTP, Ltac automation)


