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–Donald Knuth, Notes on the van Emde Boas construction of priority 
deques: An instructive use of recursion,1977

“Beware of bugs in the above code; I have only 
proved it correct, not tried it.” 

“There are two ways to write error-free programs;  
only the third one works.”

–Alan Perlis,“Epigrams on Programming”, Turing Award citation,1982
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Formal Proof Is The Answer!

• Mechanically check program correctness with 
respect to a logical specification. 

• (Relative) Logical consistency ensures the 
specification is all you need to believe… 

• …plus ZF(C) or some other trusted foundation, and 
the implementation of the proof checker.
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“Even perfect program verification can only establish that a 
program meets its specification. […] Much of the essence of 

building a program is in fact the  
debugging of the specification. [italics added]”

–Fred Brooks, “The Mythical Man-Month”, 1986

But No Silver Bullet
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Outline

Yesterday, the specification language and a bit of 
proofs & programs. 

Today, a bit of history/philosophy and then the full 
GALLINA language of proofs & programs.
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Recall Total Functional 
Programming

• Basically, effective mathematical functions (dependently-typed λ-
calculus). 

• All functions must terminate with a value → no eval or 
collatz 

• Type checking ensures functions cannot lie about what they 
are doing, or hide any side-effect. You can trust types.   (Typing 
is noted p : A → B, or Γ ⊢ p : A → B where Γ = x1 : τ1 … xn : τn contains variable declarations.) 

All functions and values are total (as opposed to partial), and 
pure. 

E.g: div : ℕ → ℕ → ℕ must handle every input.
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The Curry-Howard-(Heyting-De Bruijn-
Kolmogorov-…) correspondence

• Coq is based on Type Theory (Bertrand Russell, Per Martin-Löf, 

Thierry Coquand & Gérard Huet) a unified language where 
proofs & programs can be represented. 

⇒ A program of type A → B is 

    a term p of type A → B  

⇒ A proof of some proposition A ⇒ B : Prop is  

    a term p of type A → B
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Formulae as Types (MLTT)
Logic (in 

Prop) Proposition Type English Example Term

Implication ⇒ → Function 
Space

λ x : ℕ, x + x : 
ℕ → ℕ

Universal 
Quantification

∀ x : α, 
P

Π x : α, 
P

Dependent 
Product

λ x : ℕ, eq_refl x : 
Π x : ℕ, x = x

Existential 
Quantification

∃ x : α, 
P

Σ x : α, 
P

Dependent 
Sum

(0, eq_refl 0) : 
 Σ x : ℕ, x = 0

Truth ⊤ 1, unit Unit Type () : 1

Falsehood ⊥ 0, “void” Empty Type No term constructor

Disjunction P ∨ Q P + Q Sum Type (inl 0) : ℕ + 𝔹 

Conjunction P ∧ Q P × Q Cartesian 
Product (0, false) : ℕ × 𝔹
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Type Constructors
Introduction : Type Elimination Computation

(λ x : α. b) α → β /  
Π x : α, β

t : α ⊢  
f t : β[t/x]

(λ x : α. b) t  
→β b[t/x]

(t, u) α1 × α2 / 
Σ x : α1, α2

p.1, p.2 : αᵢ 
(x1, x2).i  

→ι xᵢ

tt / I 1 / True
x : unit ⊢  

let tt := x in b
let tt := x in 

b →ι b

N/A 0 / False
x : False ⊢  

match x with end
N/A
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Booleans and Naturals
Type Introduction Elimination Computation: 

Redex
Computation:
Contractum

2 
(𝔹)

 true  
| false

match x with 
| true ⇒ t₀  
| false ⇒ t₁ 
end

 match cj with 
 … 
| cᵢ => tᵢ 
 …  
 end  

       →ι tj

ℕ 0 | S n

match x with  
| 0 ⇒ t0 
| S n ⇒ tS 
end

Example: 
match S 0 with 
| 0 ⇒ t0 
| S n ⇒ tS 
end

   →ι tS [0/n]
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The equality type
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        Introduction: 

x : α ⊢ eq_refl x : eq α x x    (notation x =α x) 

        Derivable: 
• x y : α ⊢ p : x = y ⇒ y = x 
• x y z : α ⊢ p : x = y ⇒ y = z ⇒ x = z 
• ⊢ p : ∀ f : α → β, ∀ x y : α,  

                         x = y → f x = f y 

Equality is an equivalence relation and a congruence.



Summary
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We have a logic with ∀, ∃, ⇒, ⊥, ⊤, =, and a provability 
relation ⊢.  

An algorithm can check if Γ ⊢ t : T holds. 

A metatheoretical result shows (relative) consistency: 
impossibility to construct a term p s.t. ⊢ p : ⊥ (i.e. without 

assuming extra axioms) 

Type Theory gives a unified language in which we can 
express Higher-Order Logic formulas and construct 

machine-checked proofs for them.



The Trinity in the 70’s
Category Theory Type Theory 

Logic / Proof 
Theory

Cartesian Closed Categories (CCCs) Simply-Typed λ-calculus

Propositional Logic
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Trinity yesterday
Category Theory Type Theory 

Logic / Proof 
Theory

LCCCs Dependent Type Theory

Intuitionistic Logic
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Trinity these days
Higher Category 

Theory Homotopy Type Theory 

Logic / Proof 
Theory

 Higher Topoï / ∞-groupoids
(Voevodsky, Coquand, …) 

Types as spaces, towards solving  
the gap with classical set theory

Higher-Dimensional, Proof-Relevant Logic?
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Type Theory with Inductive 
Types
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In Coq, we have a general schema for defining 
datatypes, with the generic operators  
match .. with .. end and Fixpoint/fix 

 We are going to see how to write proofs on them!



Inductive command
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Inductive types generalize disjunction (sum types), 
conjunction (pairs), truth (unit) and falsehood (empty 

types). 

For example, sums can be defined as: 
Inductive sum (A B : Set) : Set := 
| inl : A → sum A B 
| inr : B → sum A B.



Tactics
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For any inductive type, we have the principles: 

Constructors are disjoint:  discriminate 

Constructors are injective: injection 

An induction principle: induction



Induction Principle
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∀ (P : nat → Prop) 

(p0 : P 0) 

(pS : ∀ n, P n → P (S n)), 

∀ n, P n 

λ (P : nat → Prop) p0 pS,  
fix prf n :=  

       match n return P n with 
| 0 ⇒ (p0 : P 0) 
| S x ⇒ (pS x (prf x : P x)) : P (S x) 
end



Inductive Predicates
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Inductive predicates allows to characterize a property 
of an object inductively:  

Inductive even : nat → Prop := 
| even0 : even 0 
| evenSS : forall n : nat, even n -> even (S (S n)).



Inversion
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Inversion is the ability to infer which constructor/“rule” of 
the inductive predicate can apply to a particular situation. 

Suppose you have H : even (S (S k)). 

 The only possible constructor to build such a value is 
evenSS k H’ for some H’ : even k 

inversion H will destruct the hypothesis H to produce 
the possible subgoals for each applicable rule. 

In case no constructor can apply, this solves the goal.



Inversion
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Typical example: 

Inductive lt : nat → nat → Prop := 
| lt0 : lt 0 (S n) 
| ltS n m : lt n m -> lt (S n) (S m). 

inversion (H : lt n 0) produces no 
subgoals.



Let’s switch to Coq
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Going further:  
Dependently-Typed Programming
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div : ∀ (x : ℕ) (y : ℕ | y ≠ 0), 

 { (q, r) | x = y * q + r ∧ r < y }. 

The function is total but requires a precondition on y. 

{ x : τ | P } ≡ Σ x : τ. P 

I.e., we need to pass a pair of a value for y and a proof that it is 
non-zero. 

We return not only the quotient and rest but also a proof that 
this really performs euclidian division.
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